1
|
Male V, Jones CE. Vaccination in pregnancy to protect the newborn. Nat Rev Immunol 2025:10.1038/s41577-025-01162-5. [PMID: 40269273 DOI: 10.1038/s41577-025-01162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/25/2025]
Abstract
Infectious diseases pose a particular risk to newborns and there is a global need to protect this vulnerable group. Because of the challenges of developing vaccines that are effective in newborns, only the hepatitis B and tuberculosis vaccines are given in the first 28 days of life, and even those vaccines are mainly only offered to high-risk groups. Maternal antibodies cross the placenta and can afford some protection to the newborn, so an alternative strategy is vaccination in pregnancy. This approach has been successfully used to protect newborns against tetanus and pertussis, and vaccines that are primarily offered to protect the mother during pregnancy, such as influenza and COVID-19 vaccines, also provide some protection to newborns. A respiratory syncytial virus vaccine has recently been approved for use in pregnancy to protect newborns, and a new vaccine that will be offered during pregnancy to prevent Group B Streptococcus infection in infants is on the horizon. Here, we discuss the current vaccines that are offered during pregnancy and to newborns, the vaccines in development for future use in these groups and the challenges that remain concerning the delivery and uptake of such vaccines.
Collapse
Affiliation(s)
- Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Christine E Jones
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.
- NIHR Southampton Clinical Research Facility and Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK.
| |
Collapse
|
2
|
Oraby AK, Stojic A, Elawar F, Bilawchuk LM, McClelland RD, Erwin K, Granoski MJ, Griffiths CD, Frederick JD, Arutyunova E, Joanne Lemieux M, West FG, Ramilo O, Mejias A, McLellan JS, Marchant DJ. A single amino acid mutation alters multiple neutralization epitopes in the respiratory syncytial virus fusion glycoprotein. NPJ VIRUSES 2025; 3:33. [PMID: 40295799 PMCID: PMC12015481 DOI: 10.1038/s44298-025-00119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of infant hospitalization. All current RSV therapeutics, including antibody prophylaxis and adult vaccination, target the RSV fusion glycoprotein (RSV-F). The seven neutralization sites on RSV-F are highly conserved and infrequently mutate. Here, we show that a single amino acid mutation at position 305 in RSV-F significantly alters antigenic recognition of RSV-F binding sites and reduces the susceptibility of RSV to neutralizing antibodies. In an in vitro evolution assay, we show that RSV-F L305I occurs in a majority of RSV quasi-species. Computational modeling predicted that the L305I mutation altered the epitope landscape of RSV-F, resulting in changes to neutralizing antibody sensitivity and affinity towards the RSV-F glycoprotein. Screening of published RSV-F sequences revealed that position 305 in RSV-F was conserved with a leucine and isoleucine in RSV-A and RSV-B subtypes respectively. Our study suggests that select amino acids in RSV-F may act as 'conformational switches' for RSV to evade host serum antibodies. This work has important implications in understanding RSV evolution and resistance as it suggests that mutational resistance to neutralizing antibodies can occur at sites distal to antigenic epitopes, significantly altering antibody sensitivity to viral infection. These unique antigenic landscape changes should be considered in the context of vaccine and therapeutic development in order to better understand viral mechanisms of evasion and resistance.
Collapse
Affiliation(s)
- Ahmed K Oraby
- Department of Medical Microbiology and Immunology, Edmonton, AB, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Department of Pharmaceutical Organic Chemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, Al-Motamayez District, 6th of October City, Egypt
| | - Aleksandra Stojic
- Department of Medical Microbiology and Immunology, Edmonton, AB, Canada
| | - Farah Elawar
- Department of Medical Microbiology and Immunology, Edmonton, AB, Canada
| | | | | | - Kaci Erwin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Cameron D Griffiths
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Elena Arutyunova
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Frederick G West
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - David J Marchant
- Department of Medical Microbiology and Immunology, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Plock N, Sachs JR, Zang X, Lommerse J, Vora KA, Lee AW, Cheung SYA, Maas BM. Efficacy of monoclonal antibodies and maternal vaccination for prophylaxis of respiratory syncytial virus disease. COMMUNICATIONS MEDICINE 2025; 5:119. [PMID: 40240559 PMCID: PMC12003833 DOI: 10.1038/s43856-025-00807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a leading cause of respiratory tract infection in infants and young children. The level of serum neutralizing antibodies (SNAs) is often used as a measure of protection against respiratory syncytial virus (RSV) infection. METHODS A qualified, model-based, meta-analysis efficacy prediction framework was used to understand the maternal vaccination-induced fold-increase in SNA titers necessary to achieve, over several study observation periods and study populations, similar protection to that of the monoclonal antibody clesrovimab (MK-1654). RESULTS Simulations indicated that 3-month and 6-month efficacy comparable to that predicted for passive immunization (clesrovimab) would require a maternal vaccine to increase SNA titers by 30- and 60-fold, respectively, higher than observed increases reported to date. Efficacy of maternal vaccination was predicted (for vaccines similar to those with published data) to be substantially lower for preterm infants compared to full-term infants, and substantially less over 6 months than over 3 months. Efficacy of passive immunization was predicted to be similar or higher in preterm infants than full-term infants and was similar for 3- and 6-month observation periods. CONCLUSIONS Modeling can be used to reliably predict the efficacy of maternal vaccination for preventing RSV in infants. Passive immunization (e.g., with clesrovimab) is likely to provide more protection for preterm infants and for infants born outside the RSV season than that provided by current maternal vaccines. Maternal vaccination may provide partial protection from RSV disease to full-term infants born just prior to or during the RSV season.
Collapse
Affiliation(s)
| | | | | | - Jos Lommerse
- Certara, Radnor, PA, USA
- Nalma, Oss, The Netherlands
| | | | - Andrew W Lee
- Merck & Co., Inc., Rahway, NJ, USA
- Uniquity Bio, Malvern, PA, USA
| | | | | |
Collapse
|
4
|
Soriano-Arandes A, Creus-Costa A, Perramon-Malavez A, Andrés C, Vila J, Gatell A, Piñana M, Serrano P, González-Sánchez A, Capdevila R, Prats C, Soler-Palacin P, Antón A. Early Experience on Universal Prophylaxis in Infants against Respiratory Syncytial Virus: Facts and Expectations. Semin Respir Crit Care Med 2025. [PMID: 39900111 DOI: 10.1055/a-2531-0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
During the 2023/24 season, nirsevimab significantly reduced the risk of bronchiolitis and confirmed respiratory syncytial virus (RSV) infections in primary care, hospital, and pediatric intensive care unit admissions among infants aged 0 to 11 months, even in a season with a high community RSV burden, particularly for older infants. These findings are very useful for public health authorities to continue to implement immunization campaigns against RSV in the coming seasons. Moreover, universal immunization against RSV represents a transformative step toward reducing the burden of RSV in infants. With promising evidence from recently published studies, the expectations for a reduction of RSV-associated hospitalizations, alongside the improvement of public health outcomes and equitable access to these measures, are high. However, achieving these goals will require addressing challenges related to vaccine uptake, funding, and RSV surveillance to prompt detect resistances due to mutations of the virus. These interventions need to be integrated into public health strategies because they hold the potential to make a significant impact on infant's health worldwide.
Collapse
Affiliation(s)
- Antoni Soriano-Arandes
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Infection and Immunity in Pediatric Patients, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Anna Creus-Costa
- Infection and Immunity in Pediatric Patients, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Hospitalization Unit, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Aida Perramon-Malavez
- Department of Physics, Computational Biology and Complex Systems (BIOCOM-SC) Group, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain
| | - Cristina Andrés
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en red de Enfermedades Infecciosas CIBERINFEC, Instituto Carlos III, Madrid, Spain
| | - Jorgina Vila
- Infection and Immunity in Pediatric Patients, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Hospitalization Unit, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Anna Gatell
- Equip Territorial d'Atenció Primària del Garraf, Institut Català de la Salut, Barcelona, Catalonia, Spain
| | - Maria Piñana
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en red de Enfermedades Infecciosas CIBERINFEC, Instituto Carlos III, Madrid, Spain
| | - Pepe Serrano
- Societat Catalana de Pediatria, Barcelona, Catalonia, Spain
| | - Alejandra González-Sánchez
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en red de Enfermedades Infecciosas CIBERINFEC, Instituto Carlos III, Madrid, Spain
| | - Ramon Capdevila
- ABS Les Borges Blanques, Institut Català de la Salut, Lleida, Catalonia, Spain
| | - Clara Prats
- Department of Physics, Computational Biology and Complex Systems (BIOCOM-SC) Group, Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Infection and Immunity in Pediatric Patients, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Andrés Antón
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en red de Enfermedades Infecciosas CIBERINFEC, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Thambi N, Phuah JY, Staupe RP, Tobias LM, Cao Y, McKelvey T, Railkar RA, Aliprantis AO, Arriola CS, Maas BM, Vora KA. Development of High-Titer Antidrug Antibodies in a Phase 1b/2a Infant Clesrovimab Trial Are Associated With RSV Exposure Beyond Day 150. J Infect Dis 2025; 231:e488-e496. [PMID: 39590882 PMCID: PMC11911791 DOI: 10.1093/infdis/jiae582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Clesrovimab is a human half-life-extended monoclonal antibody in phase 3 evaluation for the prevention of respiratory syncytial virus (RSV) disease in infants. Antidrug antibodies (ADA) were observed at late time points in a phase 1b/2a study where clesrovimab was well tolerated with an extended half-life of approximately 45 days. METHODS Serum samples at days 150, 365, and 545 postdose were assayed for ADA titers. Samples with high ADA titers were characterized for their binding specificity to the Fab or the YTE portion of clesrovimab. RSV serum neutralization (SNA) titers were also measured on ADA-positive and ADA-negative infants. Additionally, a D25 (site Ø) competitive enzyme-linked immunosorbent assay (ELISA) was performed on ADA-positive available samples to determine RSV exposure. Local surveillance data was used to ascertain RSV circulation during the trial. RESULTS High ADA titers were observed in a minority of infants at days 365 and 545 for all doses tested. Additionally, all high-titer ADA-positive infants had ADA directed towards the YTE epitope of clesrovimab. Moreover, these infants demonstrated robust RSV-SNA and had D25 competitive antibodies suggesting an RSV exposure after day 150, coinciding with the epidemiological data. CONCLUSIONS RSV exposure in infants beyond day 150 after dosing is associated with ADA development and high RSV-SNA titers with no impact on pharmacokinetics. CLINICAL TRIALS REGISTRATION NCT03524118.
Collapse
Affiliation(s)
| | | | | | - Lori M Tobias
- Department of Infectious Diseases and Vaccines
- Department of Pharmacokinetics Dynamics Metabolism Bioanalytics
| | - Yu Cao
- Department of Infectious Diseases and Vaccines
- Department of Pharmacokinetics Dynamics Metabolism Bioanalytics
| | - Troy McKelvey
- Department of Pharmacokinetics Dynamics Metabolism Bioanalytics
| | - Radha A Railkar
- Department of Infectious Diseases and Vaccines
- Department of Biostatistics and Research Decision Sciences
| | | | | | - Brian M Maas
- Department of Infectious Diseases and Vaccines
- Department of Quantitative Pharmacology & Pharmacometrics, Merck & Co., Inc., Rahway, New Jersey, USA
| | | |
Collapse
|
6
|
Madhi SA, Simões EAF, Acevedo A, Novoa Pizarro JM, Shepard JS, Railkar RA, Cao X, Maas BM, Zang X, Krick A, Roadcap B, Vora KA, Aliprantis AO, Lee AW, Sinha A. A Phase 1b/2a Trial of a Half-life Extended Respiratory Syncytial Virus Neutralizing Antibody, Clesrovimab, in Healthy Preterm and Full-term Infants. J Infect Dis 2025; 231:e478-e487. [PMID: 39601265 PMCID: PMC11911779 DOI: 10.1093/infdis/jiae581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Clesrovimab is an investigational monoclonal antibody with an extended half-life targeting site IV of the respiratory syncytial virus (RSV) fusion protein for the prevention of RSV disease in infants. METHODS In this phase 1b/2a, double-blind study, 183 healthy preterm and full-term infants 2 weeks to 8 months of age were randomized 4:1 within 5 panels (preterm 20, 50, 75, or 100 mg; full-term 100 mg) to receive 1 dose of clesrovimab or placebo. The objectives were to evaluate safety, pharmacokinetics, serum neutralizing antibodies (SNA), and antidrug antibodies (ADA). The incidence of RSV-associated end points (medically attended lower respiratory tract infection, hospitalization, and acute respiratory infection) were also evaluated through 150 days postdose. RESULTS The most common adverse event through day 14 was irritability; no treatment-related serious AEs were reported. Clesrovimab serum concentrations displayed a geometric mean apparent half-life of 44.9 days. Of participants receiving clesrovimab, 51 (36.7%) developed ADA with no apparent impact in pharmacokinetics. SNA titers increased in a dose-dependent manner at day 150. The incidences of RSV-associated end points were lower in infants treated with clesrovimab compared with placebo. CONCLUSIONS Clesrovimab was generally well tolerated and exhibited an extended half-life compared to typical IgG1 antibodies, supporting its ongoing development in late-stage trials. Clinical Trial Registration. NCT03524118.
Collapse
MESH Headings
- Humans
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/drug therapy
- Double-Blind Method
- Male
- Female
- Antibodies, Neutralizing/blood
- Half-Life
- Infant
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Infant, Premature
- Infant, Newborn
- Antibodies, Viral/blood
- Respiratory Syncytial Virus, Human/immunology
- Antiviral Agents/pharmacokinetics
- Antiviral Agents/adverse effects
- Antiviral Agents/administration & dosage
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/administration & dosage
Collapse
Affiliation(s)
- Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Eric A F Simões
- Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
- Colorado School of Public Health, Aurora, Colorado, USA
| | | | | | | | | | - Xin Cao
- Merck & Co, Inc, Rahway, New Jersey, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Simonich CA, McMahon TE, Ju X, Yu TC, Brunette N, Stevens-Ayers T, Boeckh MJ, King NP, Greninger AL, Bloom JD. RSV F evolution escapes some monoclonal antibodies but does not strongly erode neutralization by human polyclonal sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642476. [PMID: 40161760 PMCID: PMC11952455 DOI: 10.1101/2025.03.11.642476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Vaccines and monoclonal antibodies targeting the respiratory syncytial virus (RSV) fusion protein (F) have recently begun to be widely used to protect infants and high-risk adults. Some other viral proteins evolve to erode polyclonal antibody neutralization and escape individual monoclonal antibodies. However, little is known about how RSV F evolution affects antibodies. Here we develop an experimental system for measuring neutralization titers against RSV F using pseudotyped lentiviral particles. This system is easily adaptable to evaluate neutralization of relevant clinical strains. We apply this system to demonstrate that natural evolution of RSV F leads to escape from some monoclonal antibodies, but at most modestly affects neutralization by polyclonal serum antibodies. Overall, our work sheds light on RSV antigenic evolution and describes a tool to measure the ability of antibodies and sera to neutralize contemporary RSV strains.
Collapse
Affiliation(s)
- Cassandra A.L. Simonich
- Basic Sciences and Computational Biology Divisions, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA, 98195
- Pediatric Infectious Diseases Division, Seattle Children’s Hospital, Seattle, WA 98105
| | - Teagan E. McMahon
- Basic Sciences and Computational Biology Divisions, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Xiaohui Ju
- Basic Sciences and Computational Biology Divisions, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Timothy C. Yu
- Basic Sciences and Computational Biology Divisions, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutch Cancer Center, Seattle, WA 98109, USA
| | - Natalie Brunette
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Michael J. Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Jesse D. Bloom
- Basic Sciences and Computational Biology Divisions, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Howard Hughes Medical Institute, Seattle, WA 98109
| |
Collapse
|
8
|
Feng Z, Xie Z, Xu L. Current antiviral therapies and promising drug candidates against respiratory syncytial virus infection. Virol Sin 2025:S1995-820X(25)00003-3. [PMID: 39884359 DOI: 10.1016/j.virs.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common viruses leading to lower respiratory tract infections (LRTIs) in children and elderly individuals worldwide. Although significant progress in the prevention and treatment of RSV infection was made in 2023, with two anti-RSV vaccines and one monoclonal antibody approved by the FDA, there is still a lack of postinfection therapeutic drugs in clinical practice, especially for the pediatric population. In recent years, with an increasing understanding of the pathogenic mechanisms of RSV, drugs and drug candidates, have shown great potential for clinical application. In this review, we categorize and discuss promising anti-RSV drug candidates that have been in preclinical or clinical development over the last five years.
Collapse
Affiliation(s)
- Ziheng Feng
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Lili Xu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
9
|
Mukhopadhyay S, Manolaridis I, Warren C, Tang A, O’Donnell G, Luo B, Staupe RP, Vora KA, Chen Z. Anti-Idiotypic Antibody as a Booster Vaccine Against Respiratory Syncytial Virus. Vaccines (Basel) 2025; 13:35. [PMID: 39852814 PMCID: PMC11768756 DOI: 10.3390/vaccines13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and broadly neutralizing antibodies. One potential approach involves using anti-idiotypic antibodies (anti-IDs) to mimic specific antigenic sites and enhance preexisting immunity in an epitope-specific manner. RB1, a monoclonal antibody (mAb) that binds to site IV of the RSV fusion (RSV F) protein, is a potent and broadly neutralizing against RSV A and B viruses. It is the precursor for MK1654 (clesrovimab), which successfully completed a Phase III clinical trial. Methods: In this study, we isolated two anti-IDs, 1A6 and 1D4, targeting RB1 CDR regions, demonstrating that 1A6 competes fully with RSV F in binding to RB1. Results: We resolved the RB1-1A6 and RB1-1D4 Fab-Fab complex structures and proved that 1A6 mimics the RSV F site IV better than 1D4. In an immunogenicity study, mice primed with RSV F and boosted with 1A6 Fab showed a site IV-specific antibody response with a concurrent increase in RSV virus neutralization. Conclusions: These results suggest that anti-IDs could be potentially used as booster vaccines for specific epitopes.
Collapse
Affiliation(s)
- Shreya Mukhopadhyay
- Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA; (S.M.); (C.W.); (A.T.)
| | | | - Christopher Warren
- Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA; (S.M.); (C.W.); (A.T.)
| | - Aimin Tang
- Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA; (S.M.); (C.W.); (A.T.)
| | - Gregory O’Donnell
- Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (G.O.); (B.L.)
| | - Bin Luo
- Quantitative Biosciences, Merck & Co., Inc., Rahway, NJ 07065, USA; (G.O.); (B.L.)
| | - Ryan P. Staupe
- Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA; (S.M.); (C.W.); (A.T.)
| | - Kalpit A. Vora
- Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA; (S.M.); (C.W.); (A.T.)
| | - Zhifeng Chen
- Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA; (S.M.); (C.W.); (A.T.)
| |
Collapse
|
10
|
Walter EB, Munoz FM. New Approaches to Respiratory Syncytial Virus Prevention and Treatment. Annu Rev Med 2025; 76:13-28. [PMID: 39656962 DOI: 10.1146/annurev-med-061323-073934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
There have been several recent advances in the prevention of lower respiratory tract disease (LRTD) due to respiratory syncytial virus (RSV) infection in older adults and young children. Three different vaccines are now approved for use in older adults; one of these vaccines is also approved for use in pregnant individuals for the prevention of LRTD due to RSV in their infants. In addition, a new monoclonal antibody is available to prevent RSV LRTD in infants born during or entering their first RSV season and in children up to 24 months of age who remain vulnerable to severe RSV disease through their second RSV season. Despite these advances in prevention efforts, specific antiviral treatment options for RSV infection remain limited. Several promising compounds remain in development.
Collapse
Affiliation(s)
- Emmanuel B Walter
- Department of Pediatrics and Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Flor M Munoz
- Department of Pediatrics and Department of Molecular Virology and Microbiology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
11
|
Yang Y, Wang R, Guo F, Zhao T, Lei Y, Yang Q, Zeng Y, Yang Z, Ajavavarakula T, Tan R, Li M, Dong H, Niu M, Bao K, Geng H, Lv Q, Zhang Q, Shi X, Liu P, Ge J, Wang X, Zhang L. DS2 designer pre-fusion F vaccine induces strong and protective antibody response against RSV infection. NPJ Vaccines 2024; 9:258. [PMID: 39741146 DOI: 10.1038/s41541-024-01059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025] Open
Abstract
DS-Cav1, SC-TM, and DS2 are distinct designer pre-fusion F proteins (pre-F) of respiratory syncytial virus (RSV) developed for vaccines. However, their immunogenicity has not been directly compared. In this study, we generated three recombinant vaccines using the chimpanzee adenovirus vector AdC68 to express DS-Cav1, SC-TM, and DS2. All three vaccines elicited robust serum binding and neutralizing antibodies following intramuscular priming and boosting. DS2 induced the strongest antibody responses, followed by SC-TM and DS-Cav1. DS2 also provided strong protection against live RSV challenge. Monoclonal antibodies (mAbs) isolated from long-lived antibody-secreting cells (ASCs) in the bone marrow six months post-immunization with AdC68-DS2 predominantly targeted site Ø as well as site II. One neutralizing antibody against site II, mAb60, conferred strong protection against live RSV infection in mice. These findings highlight the strong ability of the DS2 design in eliciting long-lived antibody responses and guide the development of next-generation RSV vaccines.
Collapse
Affiliation(s)
- Yiling Yang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Ruoke Wang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Fenglin Guo
- The Ministry of Education Key Laboratory of Protein Science, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Tian Zhao
- School of Biomedical Engineering, Tsinghua University, 100084, Beijing, China
| | - Yuqing Lei
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Qianqian Yang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Yige Zeng
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Ziqing Yang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Tatchapon Ajavavarakula
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Ruijie Tan
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Mingxi Li
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Haodi Dong
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Mengyue Niu
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Keyan Bao
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Hao Geng
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Qining Lv
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Qi Zhang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
| | - Peng Liu
- School of Biomedical Engineering, Tsinghua University, 100084, Beijing, China.
- Changping Laboratory, 102206, Beijing, China.
| | - Jiwan Ge
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 102629, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, 102629, Beijing, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Pandemic Research Alliance Unit, Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
| |
Collapse
|
12
|
Pisuttinusart N, Rattanapisit K, Srisaowakarn C, Thitithanyanont A, Strasser R, Shanmugaraj B, Phoolcharoen W. Neutralizing activity of anti-respiratory syncytial virus monoclonal antibody produced in Nicotiana benthamiana. Hum Vaccin Immunother 2024; 20:2327142. [PMID: 38508690 PMCID: PMC10956629 DOI: 10.1080/21645515.2024.2327142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a highly contagious virus that affects the lungs and respiratory passages of many vulnerable people. It is a leading cause of lower respiratory tract infections and clinical complications, particularly among infants and elderly. It can develop into serious complications such as pneumonia and bronchiolitis. The development of RSV vaccine or immunoprophylaxis remains highly active and a global health priority. Currently, GSK's Arexvy™ vaccine is approved for the prevention of lower respiratory tract disease in older adults (>60 years). Palivizumab and currently nirsevimab are the approved monoclonal antibodies (mAbs) for RSV prevention in high-risk patients. Many studies are ongoing to develop additional therapeutic antibodies for preventing RSV infections among newborns and other susceptible groups. Recently, additional antibodies have been discovered and shown greater potential for development as therapeutic alternatives to palivizumab and nirsevimab. Plant expression platforms have proven successful in producing recombinant proteins, including antibodies, offering a potential cost-effective alternative to mammalian expression platforms. Hence in this study, an attempt was made to use a plant expression platform to produce two anti-RSV fusion (F) mAbs 5C4 and CR9501. The heavy-chain and light-chain sequences of both these antibodies were transiently expressed in Nicotiana benthamiana plants using a geminiviral vector and then purified using single-step protein A affinity column chromatography. Both these plant-produced mAbs showed specific binding to the RSV fusion protein and demonstrate effective viral neutralization activity in vitro. These preliminary findings suggest that plant-produced anti-RSV mAbs are able to neutralize RSV in vitro.
Collapse
Affiliation(s)
- Nuttapat Pisuttinusart
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Kaewta Rattanapisit
- Department of Research and Development, Baiya Phytopharm Co., Ltd., Bangkok, Thailand
| | - Chanya Srisaowakarn
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Balamurugan Shanmugaraj
- Department of Research and Development, Baiya Phytopharm Co., Ltd., Bangkok, Thailand
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Li Q, Li H, Li Z, Wang Y. Vaccine and therapeutic agents against the respiratory syncytial virus: resolved and unresolved issue. MedComm (Beijing) 2024; 5:e70016. [PMID: 39575302 PMCID: PMC11581781 DOI: 10.1002/mco2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a predominant pathogen responsible for respiratory tract infections among infants, the elderly, and immunocompromised individuals. In recent years, significant progress has been made in innovative vaccines and therapeutic agents targeting RSV. Nevertheless, numerous challenges and bottlenecks persist in the prevention and treatment of RSV infections. This review will provide an overview of the resolved and unresolved issues surrounding the development of vaccines and therapeutic agents against RSV. As of September 2024, three RSV vaccines against acute lower respiratory infections (ALRI) have been approved globally. Additionally, there have been notable progress in the realm of passive immunoprophylactic antibodies, with the monoclonal antibody nirsevimab receiving regulatory approval for the prevention of RSV infections in infants. Furthermore, a variety of RSV therapeutic agents are currently under clinical investigation, with the potential to yield breakthrough advancements in the foreseeable future. This review delineates the advancements and challenges faced in vaccines and therapeutic agents targeting RSV. It aims to provide insights that will guide the development of effective preventive and control measures for RSV.
Collapse
Affiliation(s)
- Qianqian Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Huan Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Zhihua Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Youchun Wang
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| |
Collapse
|
14
|
Terstappen J, Hak SF, Bhan A, Bogaert D, Bont LJ, Buchholz UJ, Clark AD, Cohen C, Dagan R, Feikin DR, Graham BS, Gupta A, Haldar P, Jalang'o R, Karron RA, Kragten L, Li Y, Löwensteyn YN, Munywoki PK, Njogu R, Osterhaus A, Pollard AJ, Nazario LR, Sande C, Satav AR, Srikantiah P, Stein RT, Thacker N, Thomas R, Bayona MT, Mazur NI. The respiratory syncytial virus vaccine and monoclonal antibody landscape: the road to global access. THE LANCET. INFECTIOUS DISEASES 2024; 24:e747-e761. [PMID: 39326422 DOI: 10.1016/s1473-3099(24)00455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 09/28/2024]
Abstract
Respiratory syncytial virus (RSV) is the second most common pathogen causing infant mortality. Additionally, RSV is a major cause of morbidity and mortality in older adults (age ≥60 years) similar to influenza. A protein-based maternal vaccine and monoclonal antibody (mAb) are now market-approved to protect infants, while an mRNA and two protein-based vaccines are approved for older adults. First-year experience protecting infants with nirsevimab in high-income countries shows a major public health benefit. It is expected that the RSV vaccine landscape will continue to develop in the coming years to protect all people globally. The vaccine and mAb landscape remain active with 30 candidates in clinical development using four approaches: protein-based, live-attenuated and chimeric vector, mRNA, and mAbs. Candidates in late-phase trials aim to protect young infants using mAbs, older infants and toddlers with live-attenuated vaccines, and children and adults using protein-based and mRNA vaccines. This Review provides an overview of RSV vaccines highlighting different target populations, antigens, and trial results. As RSV vaccines have not yet reached low-income and middle-income countries, we outline urgent next steps to minimise the vaccine delay.
Collapse
Affiliation(s)
- Jonne Terstappen
- Department of Paediatric Infectious Disease & Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sarah F Hak
- Department of Paediatric Infectious Disease & Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Anant Bhan
- Yenepoya Medical College & Centre for Ethics, Yenepoya University, Mangalore, India
| | - Debby Bogaert
- Paediatric Medicine, University of Edinburgh, Edinburgh, UK
| | - Louis J Bont
- Department of Paediatric Infectious Disease & Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; ReSViNET Foundation, Zeist, Netherlands
| | - Ursula J Buchholz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew D Clark
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Cheryl Cohen
- Center for Respiratory Diseases and Meningitis, University of the Witwatersrand and National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Ron Dagan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheba, Israel
| | - Daniel R Feikin
- Department of Immunization, Vaccines, and Biologicals, WHO, Geneva, Switzerland
| | - Barney S Graham
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Anuradha Gupta
- Global Immunization, Sabin Vaccine Institute, Washington, DC, USA
| | - Pradeep Haldar
- Government of India, Ministry of Health and Family Welfare, Delhi, India
| | - Rose Jalang'o
- National Vaccines and Immunization Program, Ministry of Health, Nairobi, Kenya
| | - Ruth A Karron
- Boomberg School of Public Health Department of International Health, Johns Hopkins Bloomberg Baltimore, MD, USA
| | | | - You Li
- Centre for Global Health, University of Edinburgh, Edinburgh, UK; School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yvette N Löwensteyn
- Department of Paediatric Infectious Disease & Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Rosemary Njogu
- Department of International Health, Jhpiego, Nairobi, Kenya
| | - Ab Osterhaus
- Center of Infection Medicine and Zoonosis Research, University of Veterinary Medicine, Hannover, Germany
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, Oxford, UK
| | | | - Charles Sande
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Ashish R Satav
- MAHAN Trust Mahatma Gandhi Tribal Hospital, Melghat, India
| | - Padmini Srikantiah
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Renato T Stein
- Pneumologia Pediátrica, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Naveen Thacker
- International Pediatric Association, Webster Groves, MI, USA; Child Health Foundation, Mumbai, India
| | | | | | - Natalie I Mazur
- Department of Paediatric Infectious Disease & Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
15
|
Citron MP, Zang X, Leithead A, Meng S, Rose Ii WA, Murray E, Fontenot J, Bilello JP, Beshore DC, Howe JA. Evaluation of a non-nucleoside inhibitor of the RSV RNA-dependent RNA polymerase in translatable animals models. J Infect 2024; 89:106325. [PMID: 39454831 DOI: 10.1016/j.jinf.2024.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Respiratory Syncytial Virus (RSV) causes severe respiratory infections and concomitant disease resulting in significant morbidity and mortality in infants, elderly, and immunocompromised adults. Vaccines, monoclonal antibodies, and small-molecule antivirals are now either available or in development to prevent and treat RSV infections. Although rodent and non-rodent preclinical animal models have been used to evaluate these emerging agents, there is still a need to improve our understanding of the pharmacokinetic (PK)-pharmacodynamic (PD) relationships within and between animal models to enable better design of human challenge studies and clinical trials. Herein, we report a PKPD evaluation of MRK-1, a novel small molecule non-nucleoside inhibitor of the RSV L polymerase protein, in the semi-permissive cotton rat and African green monkey models of RSV infection. These studies demonstrate a strong relationship between in vitro activity, in vivo drug exposure, and pharmacodynamic efficacy as well as revealing limitations of the cotton rat RSV model. Additionally, we report unexpected horizontal transmission of human RSV between co-housed African green monkeys, as well as a lack of drug specific resistant mutant generation. Taken together these studies further our understanding of these semi-permissive animal models and offer the potential for expansion of their preclinical utility in evaluating novel RSV therapeutic agents.
Collapse
Affiliation(s)
- Michael P Citron
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States.
| | - Xiaowei Zang
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Andrew Leithead
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Shi Meng
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - William A Rose Ii
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Edward Murray
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Jane Fontenot
- The University of Louisiana New Iberia Research Center, New Iberia, LA 70560, United States
| | - John P Bilello
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - Douglas C Beshore
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| | - John A Howe
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, United States
| |
Collapse
|
16
|
Sun Y, Liu L, Qiang H, Sun H, Jiang Y, Ren L, Jiang Z, Lei S, Chen L, Wang Y, Lin X, Wang G, Huang Y, Fu Y, Shi Y, Chen X, Yu H, Li S, Luo W, Liu E, Zheng Q, Zheng Z, Xia N. A potent broad-spectrum neutralizing antibody targeting a conserved region of the prefusion RSV F protein. Nat Commun 2024; 15:10085. [PMID: 39572535 PMCID: PMC11582626 DOI: 10.1038/s41467-024-54384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Respiratory syncytial virus (RSV) poses a significant public health challenge, especially among children. Although palivizumab and nirsevimab, neutralizing antibodies (nAbs) targeting the RSV F protein, have been used for prophylaxis, their limitations underscore the need for more effective alternatives. Herein, we present a potent and broad nAb, named 5B11, which exhibits nanogram level of unbiased neutralizing activities against both RSV-A and -B subgroups. Notably, 5B11 shows a ~20-fold increase in neutralizing efficacy compared to 1129 (the murine precursor of palivizumab) and approximately a 3-fold increase in neutralizing efficacy against B18537 in comparison to nirsevimab. Cryo-electron microscopy analysis reveals 5B11's mechanism of action by targeting a highly conserved epitope within site V, offering a promising strategy with potentially lower risk of escape mutants. Antiviral testing in a female cotton rat model demonstrated that low-dose (1.5 mg/kg) administration of 5B11 achieved comparable prophylactic efficacy to that achieved by high-dose (15 mg/kg) of 1129. Furthermore, the humanized 5B11 showed a superior in vivo antiviral activity against B18537 infection compared to nirsevimab and palivizumab. Therefore, 5B11 is a promising RSV prophylactic candidate applicable to broad prevention of RSV infection.
Collapse
Affiliation(s)
- Yongpeng Sun
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Liqin Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Hongsheng Qiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Hui Sun
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Yichao Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Luo Ren
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Zemin Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Siyu Lei
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Li Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Yizhen Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Xue Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Guosong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Yang Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Yuhao Fu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Yujin Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Xiuting Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, P. R. China.
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China.
| | - Zizheng Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, P. R. China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, P. R. China.
| |
Collapse
|
17
|
Lee YZ, Han J, Zhang YN, Ward G, Braz Gomes K, Auclair S, Stanfield RL, He L, Wilson IA, Zhu J. Rational design of uncleaved prefusion-closed trimer vaccines for human respiratory syncytial virus and metapneumovirus. Nat Commun 2024; 15:9939. [PMID: 39550381 PMCID: PMC11569192 DOI: 10.1038/s41467-024-54287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we design uncleaved prefusion-closed (UFC) trimers for the fusion protein (F) of both viruses by examining mutations critical to F metastability. For RSV, we assess four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A. We then identify key mutations that can maintain prefusion F in a native-like, closed trimeric form (up to 76%) without introducing any interprotomer disulfide bond. For hMPV, we develop a stable UFC trimer with a truncated F2-F1 linkage and an interprotomer disulfide bond. Dozens of UFC constructs are characterized by negative-stain electron microscopy (nsEM), x-ray crystallography (11 RSV-F structures and one hMPV-F structure), and antigenic profiling. Using an optimized RSV-F UFC trimer as bait, we identify three potent RSV neutralizing antibodies (NAbs) from a phage-displayed human antibody library, with a public NAb lineage targeting sites Ø and V and two cross-pneumovirus NAbs recognizing site III. In mouse immunization, rationally designed RSV-F and hMPV-F UFC trimers induce robust antibody responses with high neutralizing titers. Our study provides a foundation for future prefusion F-based RSV and hMPV vaccine development.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jerome Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Uvax Bio, LLC, Newark, DE, 19702, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Fu Y, Li F, Zhu Y, Huang L, Li Q, Zhang H, Zhong L, Zhang H, Luo ZX, Lu G, Deng J, Cao L, Wu Y, Jin R, Li L, Xu L, Chen X, Xie Z. A multi-center study on genetic variations in the fusion protein of respiratory syncytial virus from children with Acute Lower Respiratory Tract Infections in China during 2017-2021. Virol Sin 2024; 39:727-736. [PMID: 39265703 PMCID: PMC11738779 DOI: 10.1016/j.virs.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of acute lower respiratory tract infection (ALRTI) in children under five years of age. Between 2017 and 2021, 396 complete sequences of the RSV F gene were obtained from 500 RSV-positive throat swabs collected from ten hospitals across nine provinces in China. In addition, 151 sequences from China were sourced from GenBank and GISAID, making a total of 549 RSV F gene sequences subjected to analysis. Phylogenetic and genetic diversity analyses revealed that the RSV F genes circulating in China from 2017 to 2021 have remained relatively conserved, although some amino acids (AAs) have undergone changes. AA mutations with frequencies ≥ 10% were identified at six sites and the p27 region: V384I (site I), N276S (site II), R213S (site Ø), and K124N (p27) for RSV A; F45L (site I), M152I/L172Q/S173 L/I185V/K191R (site V), and R202Q/I206M/Q209R (site Ø) for RSV B. Comparing mutational frequencies in RSV-F before and after 2020 revealed minor changes for RSV A, while the K191R, I206M, and Q209R frequencies increased by over 10% in RSV B. Notably, the nirsevimab-resistant mutation, S211N in RSV B, increased in frequency from 0% to 1.15%. Both representative strains aligned with the predicted RSV-F structures of their respective prototypes exhibited similar conformations, with low root-mean-square deviation values. These results could provide foundational data from China for the development of RSV mAbs and vaccines.
Collapse
Affiliation(s)
- Yiliang Fu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Fei Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Luci Huang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Qiuping Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Hanwen Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Lili Zhong
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Hailin Zhang
- Department of Children's Respiration Disease, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zheng-Xiu Luo
- Department of Respiratory Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Gen Lu
- Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Jikui Deng
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Lingfeng Cao
- Department of Clinical Laboratory, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ying Wu
- Department of Clinical Laboratory Medicine, National Children's Medical Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Rong Jin
- Guiyang Maternal and Child Health Hospital, Guiyang 550003, China
| | - Lei Li
- Yinchuan Maternal and Child Health Care Hospital, Yinchuan 750001, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Xiangpeng Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
19
|
CALABRÒ GIOVANNAELISA, RIZZO CATERINA, DOMNICH ALEXANDER, DE WAURE CHIARA, RUMI FILIPPO, BONANNI PAOLO, BOCCALINI SARA, BECHINI ANGELA, PANATTO DONATELLA, AMICIZIA DANIELA, AMODIO EMANUELE, COSTANTINO CLAUDIO, BERT FABRIZIO, LO MORO GIUSEPPINA, DI PIETRO MARIALUISA, GIUFFRIDA SANDRO, GIORDANO VINCENZO, CONVERSANO MICHELE, RUSSO CARMELA, SPADEA ANTONIETTA, ANSALDI FILIPPO, GRAMMATICO FEDERICO, RICCIARDI ROBERTO, TORRISI MELISSA, PORRETTA ANDREADAVIDE, ARZILLI GUGLIELMO, SCARPALEGGIA MARIANNA, BERTOLA CARLOTTA, VECE MICHELE, LUPI CHIARA, LORENZINI ELISA, MASSARO ELVIRA, TOCCO MARCELLO, TRAPANI GIULIO, ZARCONE ELENA, MUNNO LUDOVICA, ZACE DRIEDA, PETRELLA LUIGI, VITALE FRANCESCO, RICCIARDI WALTER. Health Technology Assessment del vaccino ricombinante adiuvato contro il virus respiratorio sinciziale (Arexvy ®). JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2024; 65:E1-E159. [PMID: 39554593 PMCID: PMC11567645 DOI: 10.15167/2421-4248/jpmh2024.65.2s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Affiliation(s)
- GIOVANNA ELISA CALABRÒ
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
- VIHTALI (Value In Health Technology and Academy for Leadership & Innovation), Spin-off dell’Università Cattolica del Sacro Cuore, Roma
| | - CATERINA RIZZO
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa
| | | | - CHIARA DE WAURE
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia
| | - FILIPPO RUMI
- Alta Scuola di Economia e Management dei Sistemi Sanitari (ALTEMS), Università Cattolica del Sacro Cuore, Roma
| | - PAOLO BONANNI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - SARA BOCCALINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - ANGELA BECHINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - DONATELLA PANATTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
- Centro Interuniversitario di Ricerca sull’Influenza e le altre Infezioni Trasmissibili (CIRI-IT), Genova
| | | | - EMANUELE AMODIO
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - CLAUDIO COSTANTINO
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - FABRIZIO BERT
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino
| | - GIUSEPPINA LO MORO
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino
| | - MARIA LUISA DI PIETRO
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
| | | | | | | | | | - ANTONIETTA SPADEA
- Direzione UOC Accoglienza, Tutela e Promozione della Salute del XIV Distretto ASL Roma 1
| | | | | | - ROBERTO RICCIARDI
- VIHTALI (Value In Health Technology and Academy for Leadership & Innovation), Spin-off dell’Università Cattolica del Sacro Cuore, Roma
| | - MELISSA TORRISI
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa
| | - ANDREA DAVIDE PORRETTA
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa
| | - GUGLIELMO ARZILLI
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa
| | | | - CARLOTTA BERTOLA
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia
| | - MICHELE VECE
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia
| | - CHIARA LUPI
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia
| | - ELISA LORENZINI
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia
| | - ELVIRA MASSARO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | - MARCELLO TOCCO
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - GIULIO TRAPANI
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - ELENA ZARCONE
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - LUDOVICA MUNNO
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
| | - DRIEDA ZACE
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
| | - LUIGI PETRELLA
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
| | - FRANCESCO VITALE
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, Università degli Studi di Palermo
| | - WALTER RICCIARDI
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma
| |
Collapse
|
20
|
Nuttens C, Moyersoen J, Curcio D, Aponte-Torres Z, Baay M, Vroling H, Gessner BD, Begier E. Differences Between RSV A and RSV B Subgroups and Implications for Pharmaceutical Preventive Measures. Infect Dis Ther 2024; 13:1725-1742. [PMID: 38971918 PMCID: PMC11266343 DOI: 10.1007/s40121-024-01012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
INTRODUCTION Understanding the differences between respiratory syncytial virus (RSV) subgroups A and B provides insights for the development of prevention strategies and public health interventions. We aimed to describe the structural differences of RSV subgroups, their epidemiology, and genomic diversity. The associated immune response and differences in clinical severity were also investigated. METHODS A literature review from PubMed and Google Scholar (1985-2023) was performed and extended using snowballing from references in captured publications. RESULTS RSV has two major antigenic subgroups, A and B, defined by the G glycoprotein. The RSV F fusion glycoprotein in the prefusion conformation is a major target of virus neutralizing antibodies and differs in surface exposed regions between RSV A and RSV B. The subgroups co-circulate annually, but there is considerable debate as to whether clinical severity is impacted by the subgroup of the infecting RSV strain. Large variations between the studies reporting RSV subgroup impact on clinical severity were observed. A tendency for higher disease severity may be attributed to RSV A but no consensus could be reached as to whether infection by one of the subgroup caused more severe outcomes. RSV genotype diversity decreased over the last two decades, and ON and BA have become the sole lineages detected for RSV A and RSV B, since 2014. No studies with data obtained after 2014 reported a difference in disease severity between the two subgroups. RSV F is relatively well conserved and highly similar between RSV A and B, but changes in the amino acid sequence have been observed. Some of these changes led to differences in F antigenic sites compared to reference F sequences (e.g., RSV/A Long strain), which are more pronounced in antigenic sites of the prefusion conformation of RSV B. Initial results from the second season after vaccination suggest specific RSV B efficacy wanes more rapidly than RSV A for RSV PreF-based monovalent vaccines. CONCLUSIONS RSV A and RSV B both contribute substantially to the global RSV burden. Both RSV subgroups cause severe disease and none of the available evidence to date suggests any differences in clinical severity between the subgroups. Therefore, it is important to implement measures effective at preventing disease due to both RSV A and RSV B to ensure impactful public health interventions. Monitoring overtime will be needed to assess the impact of waning antibody levels on subgroup-specific efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Marc Baay
- Epidemiology & Pharmacovigilance, P95, Louvain, Belgium
| | - Hilde Vroling
- Epidemiology & Pharmacovigilance, P95, Louvain, Belgium
| | | | - Elizabeth Begier
- Scientific Affairs, Older Adult RSV Vaccine Program, Global Medical Development Scientific and Clinical Affairs, Pfizer Vaccines, 9 Riverwalk, Citywest Business Campus, Dublin 24, Dublin, Ireland.
| |
Collapse
|
21
|
Feikin DR, Karron RA, Saha SK, Sparrow E, Srikantiah P, Weinberger DM, Zar HJ. The full value of immunisation against respiratory syncytial virus for infants younger than 1 year: effects beyond prevention of acute respiratory illness. THE LANCET. INFECTIOUS DISEASES 2024; 24:e318-e327. [PMID: 38000374 DOI: 10.1016/s1473-3099(23)00568-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 11/26/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe respiratory illness and death among children worldwide, particularly in children younger than 6 months and in low-income and middle-income countries. Feasible and cost-effective interventions to prevent RSV disease are not yet widely available, although two new products aimed at preventing RSV disease-long-acting monoclonal antibodies and maternal vaccines-have been licensed within the past 2 years. The primary target of these products is reduction of the substantial burden of RSV-associated acute lower respiratory tract infections (LRTI) in infants younger than 1 year. However, other important public health benefits might also accrue with the prevention of RSV-associated LRTI during the first year of life. Mounting evidence shows that preventing RSV-associated LRTI in infants younger than 1 year could prevent secondary pneumonia caused by other pathogens, reduce recurrent hospitalisations due to other respiratory diseases in later childhood, decrease all-cause infant mortality, ameliorate the burden of respiratory diseases on health-care systems, reduce inappropriate antibiotic use, and possibly improve lung health beyond infancy. We herein review current evidence and suggest approaches to better assess the magnitude of these potential secondary effects of RSV prevention, which, if proven substantial, are likely to be relevant to policy makers in many countries as they consider the use of these new products.
Collapse
Affiliation(s)
- Daniel R Feikin
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland.
| | - Ruth A Karron
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Samir K Saha
- Child Health Research Foundation, Dhaka, Bangladesh; Bangladesh Shishu Hospital and Institute, Dhaka, Bangladesh
| | - Erin Sparrow
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | | | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Heather J Zar
- Department of Paediatrics & Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa; SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Piñana M, González-Sánchez A, Andrés C, Vila J, Creus-Costa A, Prats-Méndez I, Arnedo-Muñoz M, Saubi N, Esperalba J, Rando A, Nadal-Baron P, Quer J, González-López JJ, Soler-Palacín P, Martínez-Urtaza J, Larrosa N, Pumarola T, Antón A. Genomic evolution of human respiratory syncytial virus during a decade (2013-2023): bridging the path to monoclonal antibody surveillance. J Infect 2024; 88:106153. [PMID: 38588960 DOI: 10.1016/j.jinf.2024.106153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES This study investigated the prevalence, genetic diversity, and evolution of human respiratory syncytial virus (HRSV) in Barcelona from 2013 to 2023. METHODS Respiratory specimens from patients with RTI suspicion at Hospital Universitari Vall d'Hebron were collected from October 2013 to May 2023 for laboratory-confirmation of respiratory viruses. Next-generation sequencing was performed in randomly-selected samples with Illumina technology. Phylogenetic analyses of whole genome sequences were performed with BEAST v1.10.4. Signals of selection and evolutionary pressures were inferred by population dynamics and evolutionary analyses. Mutations in major surface proteins were genetic and structurally characterised, emphasizing those within antigenic epitopes. RESULTS Analyzing 139,625 samples, 5.3% were HRSV-positive (3008 HRSV-A, 3882 HRSV-B, 56 HRSV-A and -B, and 495 unsubtyped HRSV), with a higher prevalence observed in the paediatric population. Pandemic-related shifts in seasonal patterns returned to normal in 2022-2023. A total of 198 whole-genome sequences were obtained for HRSV-A (6.6% of the HRSV-A positive samples) belonging to GA2.3.5 lineage. For HRSV-B, 167 samples were sequenced (4.3% of the HRSV-B positive samples), belonging to GB5.0.2, GB5.0.4a and GB5.0.5a. HRSV-B exhibited a higher evolution rate. Post-SARS-CoV-2 pandemic, both subtypes showed increased evolutionary rates and decreased effective population size initially, followed by a sharp increase. Analyses indicated negative selective pressure on HRSV. Mutations in antigenic epitopes, including S276N and M274I in palivizumab-targeted site II, and I206M, Q209R, and S211N in nirsevimab-targeted site Ø, were identified. DISCUSSION Particularly in the context of the large-scale use in 2023-2024 season of nirsevimab, continuous epidemiological and genomic surveillance is crucial.
Collapse
Affiliation(s)
- Maria Piñana
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Alejandra González-Sánchez
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics and Microbiology, School of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Cristina Andrés
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorgina Vila
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain; Infection and Immunity Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Catalonia, Spain; Paediatric Hospitalization Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Anna Creus-Costa
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Ignasi Prats-Méndez
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Arnedo-Muñoz
- Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Narcís Saubi
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juliana Esperalba
- Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ariadna Rando
- Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patricia Nadal-Baron
- Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Juan José González-López
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Soler-Palacín
- Infection and Immunity Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Catalonia, Spain; Paediatric Hospitalization Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain; Department of Paediatrics, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Jaime Martínez-Urtaza
- Department of Genetics and Microbiology, School of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Nieves Larrosa
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tomàs Pumarola
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrés Antón
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Lee YZ, Han J, Zhang YN, Ward G, Gomes KB, Auclair S, Stanfield RL, He L, Wilson IA, Zhu J. A tale of two fusion proteins: understanding the metastability of human respiratory syncytial virus and metapneumovirus and implications for rational design of uncleaved prefusion-closed trimers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583986. [PMID: 38496645 PMCID: PMC10942449 DOI: 10.1101/2024.03.07.583986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause human respiratory diseases and are major targets for vaccine development. In this study, we designed uncleaved prefusion-closed (UFC) trimers for the fusion (F) proteins of both viruses by examining mutations critical to F metastability. For RSV, we assessed four previous prefusion F designs, including the first and second generations of DS-Cav1, SC-TM, and 847A. We then identified key mutations that can maintain prefusion F in a native-like, closed trimeric form (up to 76%) without introducing any interprotomer disulfide bond. For hMPV, we developed a stable UFC trimer with a truncated F2-F1 linkage and an interprotomer disulfide bond. Tens of UFC constructs were characterized by negative-stain electron microscopy (nsEM), x-ray crystallography (11 RSV-F and one hMPV-F structures), and antigenic profiling. Using an optimized RSV-F UFC trimer as bait, we identified three potent RSV neutralizing antibodies (NAbs) from a phage-displayed human antibody library, with a public NAb lineage targeting sites Ø and V and two cross-pneumovirus NAbs recognizing site III. In mouse immunization, rationally designed RSV-F and hMPV-F UFC trimers induced robust antibody responses with high neutralizing titers. Our study provides a foundation for future prefusion F-based RSV and hMPV vaccine development.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jerome Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Garrett Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Keegan Braz Gomes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sarah Auclair
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
24
|
Schaerlaekens S, Jacobs L, Stobbelaar K, Cos P, Delputte P. All Eyes on the Prefusion-Stabilized F Construct, but Are We Missing the Potential of Alternative Targets for Respiratory Syncytial Virus Vaccine Design? Vaccines (Basel) 2024; 12:97. [PMID: 38250910 PMCID: PMC10819635 DOI: 10.3390/vaccines12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) poses a significant global health concern as a major cause of lower respiratory tract infections (LRTIs). Over the last few years, substantial efforts have been directed towards developing vaccines and therapeutics to combat RSV, leading to a diverse landscape of vaccine candidates. Notably, two vaccines targeting the elderly and the first maternal vaccine have recently been approved. The majority of the vaccines and vaccine candidates rely solely on a prefusion-stabilized conformation known for its highly neutralizing epitopes. Although, so far, this antigen design appears to be successful for the elderly, our current understanding remains incomplete, requiring further improvement and refinement in this field. Pediatric vaccines still have a long journey ahead, and we must ensure that vaccines currently entering the market do not lose efficacy due to the emergence of mutations in RSV's circulating strains. This review will provide an overview of the current status of vaccine designs and what to focus on in the future. Further research into antigen design is essential, including the exploration of the potential of alternative RSV proteins to address these challenges and pave the way for the development of novel and effective vaccines, especially in the pediatric population.
Collapse
Affiliation(s)
- Sofie Schaerlaekens
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Lotte Jacobs
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Kim Stobbelaar
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Pediatrics Department, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| |
Collapse
|
25
|
Zou G, Cao S, Gao Z, Yie J, Wu JZ. Current state and challenges in respiratory syncytial virus drug discovery and development. Antiviral Res 2024; 221:105791. [PMID: 38160942 DOI: 10.1016/j.antiviral.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections (LRTI) in young children and elderly people worldwide. Recent significant progress in our understanding of the structure and function of RSV proteins has led to the discovery of several clinical candidates targeting RSV fusion and replication. These include both the development of novel small molecule interventions and the isolation of potent monoclonal antibodies. In this review, we summarize the state-of-the-art of RSV drug discovery, with a focus on the characteristics of the candidates that reached the clinical stage of development. We also discuss the lessons learned from failed and discontinued clinical developments and highlight the challenges that remain for development of RSV therapies.
Collapse
Affiliation(s)
- Gang Zou
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China.
| | - Sushan Cao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Zhao Gao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Junming Yie
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jim Zhen Wu
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| |
Collapse
|
26
|
Hu L, Yang Y, Lin J, Yan Q, Sun C, Li Z, Sun L, Xu J, Chen J, Bai G. Epidemiological characteristics of respiratory syncytial virus infection in pediatric patients before, during the COVID-19 pandemic and after easing of COVID-19 restrictive measures in China. J Med Virol 2024; 96:e29374. [PMID: 38197487 DOI: 10.1002/jmv.29374] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024]
Abstract
We aimed to assess the epidemiological characteristics of respiratory syncytial virus (RSV) infection in Chinese children at different phases of the coronavirus disease 2019 (COVID-19) pandemic, that is, before, during the pandemic and after easing of restrictive measures. We included 123 623 patients aged 0-18 years with respiratory infection symptoms who were suspected with RSV infection from January 1, 2019 to June 30, 2023 in Hangzhou Children's Hospital. Clinical information and RSV test result were extracted from the laboratory information system. We calculated the positive rate of RSV detection by age groups, gender, seasons, types of patients and phases of COVID-19 pandemic. Nonlinear associations between age and risk of RSV infection in three phases of pandemic were assessed by restricted cubic spline regression models. Among 123 623 patients, 3875 (3.13%) were tested as positive. The highest positive rate was observed in children aged 0-28 days (i.e., 12.28%). RSV infection was most prevalent in winter (6.04%), and followed by autumn (2.52%). Although there is no statistical significance regarding the positive rate at three phases of the pandemic, we observed that the rate was lowest during the pandemic and increased after easing the measures in certain age groups (p < 0.05), which was consisted with results from the nonlinear regression analyses. In addition, regression analyses suggested that the age range of children susceptible to RSV got wider, that is, 0-3.5 years, after easing all restrictive measures compared with that before (i.e., 0-3 years) and during the pandemic (i.e., 0-1 year). Based on our findings, we called for attention from health professionals and caregivers on the new epidemiological characteristics of RSV infection in the post-pandemic era after easing the restrictive measures.
Collapse
Affiliation(s)
- Lidan Hu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yang Yang
- Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming, China
| | - Jianyu Lin
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Qingtao Yan
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Changxuan Sun
- Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangshu, China
| | - Ziqiao Li
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Lidan Sun
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jingfang Xu
- Department of Orthopedics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jie Chen
- Department of Respiratory, Hangzhou Children's Hospital, Hangzhou, Zhejiang, China
| | - Guannan Bai
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Phuah JY, Maas BM, Tang A, Zhang Y, Caro L, Railkar RA, Swanson MD, Cao Y, Li H, Roadcap B, Catchpole AP, Aliprantis AO, Vora KA. Quantification of clesrovimab, an investigational, half-life extended, anti-respiratory syncytial virus protein F human monoclonal antibody in the nasal epithelial lining fluid of healthy adults. Biomed Pharmacother 2023; 169:115851. [PMID: 37976891 DOI: 10.1016/j.biopha.2023.115851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Clesrovimab (MK-1654) is an investigational, half-life extended human monoclonal antibody (mAb) against RSV F glycoprotein in clinical trials as a prophylactic agent against RSV infection for infants. METHODS This adult study measured clesrovimab concentrations in the serum and nasal epithelial lining fluid (ELF) to establish the partitioning of the antibody after dosing. Clesrovimab concentrations in the nasal ELF were normalized for sampling dilution using urea concentrations from ELF and serum. Furthermore, in vitro RSV neutralization of human nasal ELF following dosing was also measured to examine the activity of clesrovimab in the nasal compartment. FINDINGS mAbs with YTE mutations are reported in literature to partition ∼1-2 % of serum antibodies into nasal mucosa. Nasal: serum ratios of 1:69-1:30 were observed for clesrovimab in two separate adult human trials after urea normalization, translating to 1.4-3.3 % of serum concentrations. The nasal PK and estimates of peripheral volume of distribution correlated with higher extravascular distribution of clesrovimab. These higher concentration of the antibody in the nasal ELF corroborated with the nasal sample's ability to neutralize RSV ex vivo. An overall trend of decreased viral plaque AUC was also noted with increasing availability of clesrovimab in the nasal ELF from a human RSV challenge study. INTERPRETATION Along with its extended half-life, the higher penetration of clesrovimab into the nasal epithelial lining fluid and the associated local increase in RSV neutralization activity could offer infants better protection against RSV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu Cao
- Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | | | | |
Collapse
|
28
|
Lázaro-Gorines R, Pérez P, Heras-Murillo I, Adán-Barrientos I, Albericio G, Astorgano D, Flores S, Luczkowiak J, Labiod N, Harwood SL, Segura-Tudela A, Rubio-Pérez L, Nugraha Y, Shang X, Li Y, Alfonso C, Adipietro KA, Abeyawardhane DL, Navarro R, Compte M, Yu W, MacKerell AD, Sanz L, Weber DJ, Blanco FJ, Esteban M, Pozharski E, Godoy-Ruiz R, Muñoz IG, Delgado R, Sancho D, García-Arriaza J, Álvarez-Vallina L. Dendritic Cell-Mediated Cross-Priming by a Bispecific Neutralizing Antibody Boosts Cytotoxic T Cell Responses and Protects Mice against SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304818. [PMID: 37863812 PMCID: PMC10700188 DOI: 10.1002/advs.202304818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Administration of neutralizing antibodies (nAbs) has proved to be effective by providing immediate protection against SARS-CoV-2. However, dual strategies combining virus neutralization and immune response stimulation to enhance specific cytotoxic T cell responses, such as dendritic cell (DC) cross-priming, represent a promising field but have not yet been explored. Here, a broadly nAb, TNT , are first generated by grafting an anti-RBD biparatopic tandem nanobody onto a trimerbody scaffold. Cryo-EM data show that the TNT structure allows simultaneous binding to all six RBD epitopes, demonstrating a high-avidity neutralizing interaction. Then, by C-terminal fusion of an anti-DNGR-1 scFv to TNT , the bispecific trimerbody TNT DNGR-1 is generated to target neutralized virions to type 1 conventional DCs (cDC1s) and promote T cell cross-priming. Therapeutic administration of TNT DNGR-1, but not TNT , protects K18-hACE2 mice from a lethal SARS-CoV-2 infection, boosting virus-specific humoral responses and CD8+ T cell responses. These results further strengthen the central role of interactions with immune cells in the virus-neutralizing antibody activity and demonstrate the therapeutic potential of the Fc-free strategy that can be used advantageously to provide both immediate and long-term protection against SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, 28029, Spain
| | - Ignacio Heras-Murillo
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Irene Adán-Barrientos
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Sara Flores
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Joanna Luczkowiak
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Nuria Labiod
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Seandean L Harwood
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, 80000, Denmark
| | - Alejandro Segura-Tudela
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Yudhi Nugraha
- Protein Crystallography Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Xiaoran Shang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Kaylin A Adipietro
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dinendra L Abeyawardhane
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, 28002, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, 28002, Spain
| | - Wenbo Yu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
| | - Alexander D MacKerell
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
- Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, 28220, Spain
| | - David J Weber
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Francisco J Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Edwin Pozharski
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Raquel Godoy-Ruiz
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA
- The Center for Biomolecular Therapeutics, Rockville, MD, 20850, USA
| | - Inés G Muñoz
- Protein Crystallography Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
| | - Rafael Delgado
- Virology and HIV/AIDS Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- Department of Microbiology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - David Sancho
- Immunobiology lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, 28029, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, 28041, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, 28029, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
29
|
Raman SNT, Zetner A, Hashem AM, Patel D, Wu J, Gravel C, Gao J, Zhang W, Pfeifle A, Tamming L, Parikh K, Cao J, Tam R, Safronetz D, Chen W, Johnston MJ, Wang L, Sauve S, Rosu-Myles M, Domselaar GV, Li X. Bivalent vaccines effectively protect mice against influenza A and respiratory syncytial viruses. Emerg Microbes Infect 2023; 12:2192821. [PMID: 36927227 PMCID: PMC10171128 DOI: 10.1080/22221751.2023.2192821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Influenza and Respiratory Syncytial virus (RSV) infections together contribute significantly to the burden of acute lower respiratory tract infections. Despite the disease burden, no approved RSV vaccine is available. While approved vaccines are available for influenza, seasonal vaccination is required to maintain protection. In addition to both being respiratory viruses, they follow a common seasonality, which warrants the necessity for a concerted vaccination approach. Here, we designed bivalent vaccines by utilizing highly conserved sequences, targeting both influenza A and RSV, as either a chimeric antigen or individual antigens separated by a ribosome skipping sequence. These vaccines were found to be effective in protecting the animals from challenge by either virus, with mechanisms of protection being substantially interrogated in this communication.
Collapse
Affiliation(s)
- Sathya N. Thulasi Raman
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Adrian Zetner
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devina Patel
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jianguo Wu
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Caroline Gravel
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jun Gao
- Centre for Vaccines Clinical Trials and Biostatistics, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Wanyue Zhang
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Annabelle Pfeifle
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Levi Tamming
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Karan Parikh
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Roger Tam
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, Canada
| | - Michael J.W. Johnston
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Chemistry, Carleton University, Ottawa, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Simon Sauve
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Michael Rosu-Myles
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Xuguang Li
- Centre for Oncology and Regulatory Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
30
|
McCool RS, Musayev M, Bush SM, Derrien-Colemyn A, Acreman CM, Wrapp D, Ruckwardt TJ, Graham BS, Mascola JR, McLellan JS. Vaccination with prefusion-stabilized respiratory syncytial virus fusion protein elicits antibodies targeting a membrane-proximal epitope. J Virol 2023; 97:e0092923. [PMID: 37737588 PMCID: PMC10617438 DOI: 10.1128/jvi.00929-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in infants, infecting all children by age 5. RSV also causes substantial morbidity and mortality in older adults, and a vaccine for older adults based on a prefusion-stabilized form of the viral F glycoprotein was recently approved by the FDA. Here, we investigate a set of antibodies that belong to the same public clonotype and were isolated from individuals vaccinated with a prefusion-stabilized RSV F protein. Our results reveal that these antibodies are highly potent and recognize a previously uncharacterized antigenic site on the prefusion F protein. Vaccination with prefusion RSV F proteins appears to boost the elicitation of these neutralizing antibodies, which are not commonly elicited by natural infection.
Collapse
Affiliation(s)
- Ryan S. McCool
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Maryam Musayev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabrina M. Bush
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexandrine Derrien-Colemyn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cory M. Acreman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
31
|
Ruckwardt TJ. The road to approved vaccines for respiratory syncytial virus. NPJ Vaccines 2023; 8:138. [PMID: 37749081 PMCID: PMC10519952 DOI: 10.1038/s41541-023-00734-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
After decades of work, several interventions to prevent severe respiratory syncytial virus (RSV) disease in high-risk infant and older adult populations have finally been approved. There were many setbacks along the road to victory. In this review, I will discuss the impact of RSV on human health and how structure-based vaccine design set the stage for numerous RSV countermeasures to advance through late phase clinical evaluation. While there are still many RSV countermeasures in preclinical and early-stage clinical trials, this review will focus on products yielding long-awaited efficacy results. Finally, I will discuss some challenges and next steps needed to declare a global victory against RSV.
Collapse
Affiliation(s)
- Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
32
|
Li HH, Xu J, He L, Denny LI, Rustandi RR, Dornadula G, Fiorito B, Zhang ZQ. Development and qualification of cell-based relative potency assay for a human respiratory syncytial virus (RSV) mRNA vaccine. J Pharm Biomed Anal 2023; 234:115523. [PMID: 37336039 DOI: 10.1016/j.jpba.2023.115523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infections worldwide. A safe and effective RSV vaccine has been an elusive goal but recent advances in vaccine technology have improved the likelihood that a vaccine for the prevention of RSV could be licensed in near future. We have developed an RSV vaccine V171 consisting of four lipids and messenger ribonucleic acid (mRNA) encoding an engineered form of the RSV F protein stabilized in its prefusion conformation. The lipids form lipid nanoparticles (LNP) with mRNA encapsulated during process, which protects the mRNA from degradation and enables the mRNA to be delivered into mammalian cells. Once inside the cells, the mRNA then can be translated into RSV F protein and elicit both humoral and cellular immune responses. Preclinical results and Phase I clinical trial results indicate that this mRNA vaccine targeting RSV F protein is a promising RSV vaccine approach and should be further evaluated in clinical trials. We have developed a cell-based relative potency assay to support the Phase II development of this vaccine. Test articles and a reference standard are tested with serial dilutions in a 96-well plate pre-seeded with Hep G2 cells. Cells were incubated for 16-18 h after transfection and then permeabilized and stained with a human monoclonal antibody specific to RSV F protein, followed by a fluorophore-conjugated secondary antibody. The plate is then analyzed for percentage of transfected cells and relative potency of the test article is calculated by comparing its EC50 to that of a reference standard. This assay takes advantage of the fact that due to the inherent variability in biological test systems an absolute measure of potency is more variable than a measure of activity relative to a standard. Targeting testing relative potency range 25-250 %, our assay showed an R2 close to 1 for linearity, relative bias of 1.05-5.41 %, and intermediate precision of 11.0 %. The assay has been used for testing of process development samples, formulation development samples, as well as drug product intermediate (DPI) and drug product (DP) in support of Phase II development of our RSV mRNA vaccine.
Collapse
Affiliation(s)
- Hualin Helen Li
- Analytical Research and Development, Merck & Co., Inc., West Point, PA 19486, USA.
| | - Jenny Xu
- Analytical Research and Development, Merck & Co., Inc., West Point, PA 19486, USA
| | - Li He
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., West Point, PA 19486, USA
| | - Lynne Ireland Denny
- Analytical Research and Development, Merck & Co., Inc., West Point, PA 19486, USA
| | - Richard R Rustandi
- Analytical Research and Development, Merck & Co., Inc., West Point, PA 19486, USA
| | | | - Brock Fiorito
- Analytical Research and Development, Merck & Co., Inc., West Point, PA 19486, USA
| | - Zhi-Qiang Zhang
- Analytical Research and Development, Merck & Co., Inc., West Point, PA 19486, USA
| |
Collapse
|
33
|
O’Hagan S, Galway N, Shields MD, Mallett P, Groves HE. Review of the Safety, Efficacy and Tolerability of Palivizumab in the Prevention of Severe Respiratory Syncytial Virus (RSV) Disease. Drug Healthc Patient Saf 2023; 15:103-112. [PMID: 37720805 PMCID: PMC10503506 DOI: 10.2147/dhps.s348727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is a major global cause of childhood morbidity and mortality. Palivizumab, a monoclonal antibody that provides passive immunity against RSV, is currently licensed for prophylactic use in specific "high-risk" populations, including congenital heart disease, bronchopulmonary dysplasia and prematurity. Available research suggests palivizumab use in these high-risk populations can lead to a reduction in RSV-related hospitalization. However, palivizumab has not been demonstrated to reduce mortality, adverse events or length of hospital stay related to RSV. In this article, we review the management of RSV, indications for palivizumab prophylaxis, the safety, cost-effectiveness and efficacy of this preventative medication, and emerging therapeutics that could revolutionize future prevention of this significant pathogen.
Collapse
Affiliation(s)
- Shaun O’Hagan
- Paediatric Infectious Diseases, Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, Northern Ireland
| | - Niamh Galway
- Paediatric Respiratory Medicine, Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
| | - Michael D Shields
- Paediatric Respiratory Medicine, Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
- Centre for Medical Education, Queen’s University Belfast School of Medicine, Belfast, Northern Ireland
| | - Peter Mallett
- Paediatric Infectious Diseases, Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
- Centre for Medical Education, Queen’s University Belfast School of Medicine, Belfast, Northern Ireland
| | - Helen E Groves
- Paediatric Infectious Diseases, Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, Northern Ireland
| |
Collapse
|
34
|
Li A, Swanson M, Sullivan N, Homan Y, Nahas D, Mukhopadhyay S, Li HH, Cao Y, Xu W, Tang H, Vora KA, Chen Z. Phage-derived anti-idiotype and anti-YTE antibodies in development of MK-1654 pharmacokinetic and immune response assays. Bioanalysis 2023; 15:1049-1067. [PMID: 37515532 DOI: 10.4155/bio-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023] Open
Abstract
Background: MK-1654 is a fully human monoclonal antibody with YTE mutations currently in phase III clinical trials for prophylactic use in protecting infants from human respiratory syncytial virus infection. Materials & methods: We generated anti-idiotype (anti-ID) and anti-YTE antibodies against MK-1654 by panning with MorphoSys HuCal phage libraries, and used the antibodies in the development of MK-1654 pharmacokinetic (PK) and immune response (IR) assays. Results: Detection of MK-1654 in nonhuman primate and human nasal wash samples showed combined use of anti-ID and anti-YTE antibodies can deliver desired sensitivity and accuracy in PK studies. IR studies showed anti-ID can serve as suitable positive control in neutralizing antibody assays. Conclusion: Phage-derived anti-IDs and anti-YTEs are suitable for PK and IR assays.
Collapse
Affiliation(s)
- April Li
- PCD Regulated Immunogenicity and Molecular, Merck and Co., Inc., West Point, PA 19486, USA
| | - Michael Swanson
- PCD Regulated Immunogenicity and Molecular, Merck and Co., Inc., West Point, PA 19486, USA
- Current address: Janssen Pharmaceutical, Ambler, PA 19002, USA
| | - Nicole Sullivan
- Infectious Diseases and Vaccine Research, Merck and Co., Inc., West Point, PA 19486, USA
| | - Ying Homan
- PCD Regulated Immunogenicity and Molecular, Merck and Co., Inc., West Point, PA 19486, USA
| | - Debbie Nahas
- Infectious Diseases and Vaccine Research, Merck and Co., Inc., West Point, PA 19486, USA
| | - Shreya Mukhopadhyay
- Infectious Diseases and Vaccine Research, Merck and Co., Inc., West Point, PA 19486, USA
| | - Hualin Helen Li
- Analytical Research and Development, Merck and Co., Inc., West Point, PA 19486, USA
| | - Yu Cao
- PCD Regulated Immunogenicity and Molecular, Merck and Co., Inc., West Point, PA 19486, USA
| | - Weifeng Xu
- PCD Regulated Immunogenicity and Molecular, Merck and Co., Inc., West Point, PA 19486, USA
| | - Huaping Tang
- PCD Regulated Immunogenicity and Molecular, Merck and Co., Inc., West Point, PA 19486, USA
- Current address: GSK Pharmaceutical, Collegeville, PA 19426, USA
| | - Kalpit A Vora
- Infectious Diseases and Vaccine Research, Merck and Co., Inc., West Point, PA 19486, USA
| | - Zhifeng Chen
- Infectious Diseases and Vaccine Research, Merck and Co., Inc., West Point, PA 19486, USA
| |
Collapse
|
35
|
Miller RJ, Mousa JJ. Structural basis for respiratory syncytial virus and human metapneumovirus neutralization. Curr Opin Virol 2023; 61:101337. [PMID: 37544710 PMCID: PMC10421620 DOI: 10.1016/j.coviro.2023.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 08/08/2023]
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) continue to be a global burden to infants, the elderly, and immunocompromised individuals. In the past ten years, there has been substantial progress in the development of new vaccine candidates and therapies against these viruses. These advancements were guided by the structural elucidation of the major surface glycoproteins for these viruses, the fusion (F) protein and attachment (G) protein. The identification of immunodominant epitopes on the RSV F and hMPV F proteins has expanded current knowledge on antibody-mediated immune responses, which has led to new approaches for vaccine and therapeutic development through the stabilization of pre-fusion constructs of the F protein and pre-fusion-specific monoclonal antibodies with high potency and efficacy. In this review, we describe structural characteristics of known antigenic sites on the RSV and hMPV proteins, their influence on the immune response, and current progress in vaccine and therapeutic development.
Collapse
Affiliation(s)
- Rose J Miller
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Jarrod J Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
36
|
Cabán M, Rodarte JV, Bibby M, Gray MD, Taylor JJ, Pancera M, Boonyaratanakornkit J. Cross-protective antibodies against common endemic respiratory viruses. Nat Commun 2023; 14:798. [PMID: 36781872 PMCID: PMC9923667 DOI: 10.1038/s41467-023-36459-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Respiratory syncytial virus (RSV), human metapneumovirus (HMPV), and human parainfluenza virus types one (HPIV1) and three (HPIV3) can cause severe disease and death in immunocompromised patients, the elderly, and those with underlying lung disease. A protective monoclonal antibody exists for RSV, but clinical use is limited to high-risk infant populations. Hence, therapeutic options for these viruses in vulnerable patient populations are currently limited. Here, we present the discovery, in vitro characterization, and in vivo efficacy testing of two cross-neutralizing monoclonal antibodies, one targeting both HPIV3 and HPIV1 and the other targeting both RSV and HMPV. The 3 × 1 antibody is capable of targeting multiple parainfluenza viruses; the MxR antibody shares features with other previously reported monoclonal antibodies that are capable of neutralizing both RSV and HMPV. We obtained structures using cryo-electron microscopy of these antibodies in complex with their antigens at 3.62 Å resolution for 3 × 1 bound to HPIV3 and at 2.24 Å for MxR bound to RSV, providing a structural basis for in vitro binding and neutralization. Together, a cocktail of 3 × 1 and MxR could have clinical utility in providing broad protection against four of the respiratory viruses that cause significant morbidity and mortality in at-risk individuals.
Collapse
Affiliation(s)
- Madelyn Cabán
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Immunology & Department of Global Health, University of Washington, Seattle, WA, USA
| | - Justas V Rodarte
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Madeleine Bibby
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Matthew D Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Immunology & Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Jim Boonyaratanakornkit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
37
|
Manti S, Staiano A, Orfeo L, Midulla F, Marseglia GL, Ghizzi C, Zampogna S, Carnielli VP, Favilli S, Ruggieri M, Perri D, Di Mauro G, Gattinara GC, D'Avino A, Becherucci P, Prete A, Zampino G, Lanari M, Biban P, Manzoni P, Esposito S, Corsello G, Baraldi E. UPDATE - 2022 Italian guidelines on the management of bronchiolitis in infants. Ital J Pediatr 2023; 49:19. [PMID: 36765418 PMCID: PMC9912214 DOI: 10.1186/s13052-022-01392-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 02/12/2023] Open
Abstract
Bronchiolitis is an acute respiratory illness that is the leading cause of hospitalization in young children. This document aims to update the consensus document published in 2014 to provide guidance on the current best practices for managing bronchiolitis in infants. The document addresses care in both hospitals and primary care. The diagnosis of bronchiolitis is based on the clinical history and physical examination. The mainstays of management are largely supportive, consisting of fluid management and respiratory support. Evidence suggests no benefit with the use of salbutamol, glucocorticosteroids and antibiotics with potential risk of harm. Because of the lack of effective treatment, the reduction of morbidity must rely on preventive measures. De-implementation of non-evidence-based interventions is a major goal, and educational interventions for clinicians should be carried out to promote high-value care of infants with bronchiolitis. Well-prepared implementation strategies to standardize care and improve the quality of care are needed to promote adherence to guidelines and discourage non-evidence-based attitudes. In parallel, parents' education will help reduce patient pressure and contribute to inappropriate prescriptions. Infants with pre-existing risk factors (i.e., prematurity, bronchopulmonary dysplasia, congenital heart diseases, immunodeficiency, neuromuscular diseases, cystic fibrosis, Down syndrome) present a significant risk of severe bronchiolitis and should be carefully assessed. This revised document, based on international and national scientific evidence, reinforces the current recommendations and integrates the recent advances for optimal care and prevention of acute bronchiolitis.
Collapse
Affiliation(s)
| | - Annamaria Staiano
- SIP "Società Italiana di Pediatria", University "Federico II", Naples, Italy
| | - Luigi Orfeo
- SIN "Società Italiana di Neonatologia", Hospital San Giovanni Calibita Fatebenefratelli, Rome, Italy
| | - Fabio Midulla
- SIMRI "Società Italiana per le Malattie Respiratorie Infantili", University of Rome "La Sapienza", Rome, Italy
| | - Gian Luigi Marseglia
- SIAIP "Società Italiana di Allergologia e Immunologia Pediatrica", Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Ghizzi
- AMIETIP "Accademia Medica Infermieristica di Emergenza e Terapia Intensiva Pediatrica", Major Hospital Polyclinic: Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Bologna, Italy
| | - Stefania Zampogna
- SIMEUP "Società Italiana di Medicina di Emergenza ed Urgenza Pediatrica", Pugliese Ciaccio Hospital, Catanzaro, Italy
| | - Virgilio Paolo Carnielli
- SIMP "Società Italiana di Medicina Perinatale", University Hospital of Ancona Umberto I G M Lancisi G Salesi, Ancona, Italy
| | - Silvia Favilli
- SICP "Società Italiana di Cardiologia Pediatrica", University Hospital Meyer, Firenze, Italy
| | - Martino Ruggieri
- SINP "Società Italiana di Neurologia Pediatrica", University of Catania, Catania, Italy
| | - Domenico Perri
- SIPO "Società Italiana Pediatria Ospedaliera", San Giuseppe Moscati Hospital, Aversa, Italy
| | - Giuseppe Di Mauro
- SIPPS "Società Italiana di Pediatria Preventiva e Sociale", Local Health Authority Caserta, Caserta, Italy
| | - Guido Castelli Gattinara
- SITIP "Società Italiana di Infettivologia Pediatrica", Bambino Gesu Pediatric Hospital, Rome, Italy
| | - Antonio D'Avino
- FIMP "Federazione Italiana Medici Pediatri", Local Health Authority Naples 1 Centre, Naples, Italy
| | - Paolo Becherucci
- SICuPP "Società Italiana delle Cure Primarie Pediatriche", Florence City Council, Florence, Italy
| | - Arcangelo Prete
- AIEOP "Società Italiana di Ematologia e Oncologia Pediatrica", IRCCS University Hospital of Bologna, Bologna, Italy
| | - Giuseppe Zampino
- SIMGePeD "Società Italiana Malattie Genetiche Pediatriche e Disabilità Congenite", University Hospital Agostino Gemelli, Rome, Italy
| | | | - Paolo Biban
- University Hospital of Verona, Verona, Italy
| | - Paolo Manzoni
- Ospedale Degli Infermi, Biella, Italy
- University of Turin, Turin, Italy
| | | | | | - Eugenio Baraldi
- Department of Women's and Children's Health, Neonatal Intensive Care Unit, University Hospital of Padova, Padova, Italy.
| |
Collapse
|
38
|
Jenkins VA, Hoet B, Hochrein H, De Moerlooze L. The Quest for a Respiratory Syncytial Virus Vaccine for Older Adults: Thinking beyond the F Protein. Vaccines (Basel) 2023; 11:382. [PMID: 36851260 PMCID: PMC9963583 DOI: 10.3390/vaccines11020382] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of paediatric respiratory tract infection and causes a significant health burden in older adults. Natural immunity to RSV is incomplete, permitting recurrent symptomatic infection over an individual's lifespan. When combined with immunosenescence, this increases older adults' susceptibility to more severe disease symptoms. As RSV prophylaxis is currently limited to infants, older adults represent an important target population for RSV vaccine development. The relationship between RSV and our immune systems is complex, and these interactions require deeper understanding to tailor an effective vaccine candidate towards older adults. To date, vaccine candidates targeting RSV antigens, including pre-F, F, G (A), G (B), M2-1, and N, have shown efficacy against RSV infection in older adults in clinical trial settings. Although vaccine candidates have demonstrated robust neutralising IgG and cellular responses, it is important that research continues to investigate the RSV immune response in order to further understand how the choice of antigenic target site may impact vaccine effectiveness. In this article, we discuss the Phase 3 vaccine candidates being tested in older adults and review the hurdles that must be overcome to achieve effective protection against RSV.
Collapse
|
39
|
Leroux-Roels I, Bruhwyler J, Stergiou L, Sumeray M, Joye J, Maes C, Lambert PH, Leroux-Roels G. Double-Blind, Placebo-Controlled, Dose-Escalating Study Evaluating the Safety and Immunogenicity of an Epitope-Specific Chemically Defined Nanoparticle RSV Vaccine. Vaccines (Basel) 2023; 11:vaccines11020367. [PMID: 36851245 PMCID: PMC9967611 DOI: 10.3390/vaccines11020367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND V-306 is a virus-like particle-based vaccine candidate displaying respiratory syncytial virus (RSV) F site II protein mimetics (FsIIm) as an antigenic epitope. METHODS This was a randomized, placebo-controlled, double-blind, dose-escalating, first-in-human study, conducted in 60 women aged 18-45 years. Twenty subjects per cohort (15 vaccine and five placebo) received two V-306 intramuscular administrations on Days 0 and 56 at 15 µg, 50 µg, or 150 µg. Safety and immunogenicity were assessed after each vaccination and for 1 year in total. RESULTS V-306 was safe and well tolerated at all dose levels, with no increase in reactogenicity and unsolicited adverse events between the first and second administrations. At 50 µg and 150 µg, V-306 induced an increase in FsIIm-specific immunoglobulin G (IgG) titers, which lasted at least 4 months. This did not translate into an increase in RSV-neutralizing antibody titers, which were already high at baseline. No increase in the anti-F protein-specific IgG titers was observed, which were also high in most subjects at baseline due to past natural infections. CONCLUSIONS V-306 was safe and well-tolerated. Future modifications of the vaccine and assay conditions will likely improve the results of vaccination.
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Jacques Bruhwyler
- Expert Clinical Services Organization (ECSOR) sa/nv, Rue de la Station 78, B-1630 Linkebeek, Belgium
| | - Lilli Stergiou
- Virometix AG, Wagistrasse 14, 8952 Schlieren, Switzerland
- Correspondence: ; Tel.: +41-4343-38660
| | - Mark Sumeray
- Virometix AG, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Cathy Maes
- Center for Vaccinology (CEVAC), Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Paul-Henri Lambert
- Department of Paediatrics, Gynecology and Obstetrics, University of Geneva, Rue du Général Dufour 24, 1211 Geneva, Switzerland
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University Hospital, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| |
Collapse
|
40
|
Mazur NI, Terstappen J, Baral R, Bardají A, Beutels P, Buchholz UJ, Cohen C, Crowe JE, Cutland CL, Eckert L, Feikin D, Fitzpatrick T, Fong Y, Graham BS, Heikkinen T, Higgins D, Hirve S, Klugman KP, Kragten-Tabatabaie L, Lemey P, Libster R, Löwensteyn Y, Mejias A, Munoz FM, Munywoki PK, Mwananyanda L, Nair H, Nunes MC, Ramilo O, Richmond P, Ruckwardt TJ, Sande C, Srikantiah P, Thacker N, Waldstein KA, Weinberger D, Wildenbeest J, Wiseman D, Zar HJ, Zambon M, Bont L. Respiratory syncytial virus prevention within reach: the vaccine and monoclonal antibody landscape. THE LANCET. INFECTIOUS DISEASES 2023; 23:e2-e21. [PMID: 35952703 PMCID: PMC9896921 DOI: 10.1016/s1473-3099(22)00291-2] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Respiratory syncytial virus is the second most common cause of infant mortality and a major cause of morbidity and mortality in older adults (aged >60 years). Efforts to develop a respiratory syncytial virus vaccine or immunoprophylaxis remain highly active. 33 respiratory syncytial virus prevention candidates are in clinical development using six different approaches: recombinant vector, subunit, particle-based, live attenuated, chimeric, and nucleic acid vaccines; and monoclonal antibodies. Nine candidates are in phase 3 clinical trials. Understanding the epitopes targeted by highly neutralising antibodies has resulted in a shift from empirical to rational and structure-based vaccine and monoclonal antibody design. An extended half-life monoclonal antibody for all infants is likely to be within 1 year of regulatory approval (from August, 2022) for high-income countries. Live-attenuated vaccines are in development for older infants (aged >6 months). Subunit vaccines are in late-stage trials for pregnant women to protect infants, whereas vector, subunit, and nucleic acid approaches are being developed for older adults. Urgent next steps include ensuring access and affordability of a respiratory syncytial virus vaccine globally. This review gives an overview of respiratory syncytial virus vaccines and monoclonal antibodies in clinical development highlighting different target populations, antigens, and trial results.
Collapse
Affiliation(s)
- Natalie I Mazur
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jonne Terstappen
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ranju Baral
- PATH, Center for Vaccine Innovation & Access, Seattle, WA, USA
| | - Azucena Bardají
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Centro de Investigaçao em Saúde de Manhiça, Maputo, Mozambique; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Philippe Beutels
- Centre for Health Economics Research & Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; School of Public Health, The University of New South Wales, Sydney, NSW, Australia
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Cheryl Cohen
- University of the Witwatersrand, Centre for Respiratory Disease and Meningitis at the National Institute for Communicable Diseases, Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James E Crowe
- Vanderbilt Vaccine Center, Pediatrics & Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clare L Cutland
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Linda Eckert
- Obstetrics & Gynecology, Global Health, University of Washington, Seattle, WA, USA
| | - Daniel Feikin
- Department of Immunisations, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Tiffany Fitzpatrick
- Yale School of Public Health Department of Epidemiology of Microbial Diseases, Yale University, New Haven, CT, USA
| | - Youyi Fong
- Vaccine & Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Terho Heikkinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Deborah Higgins
- PATH, Center for Vaccine Innovation & Access, Seattle, WA, USA
| | | | - Keith P Klugman
- Pneumonia Program, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Philippe Lemey
- Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | - Yvette Löwensteyn
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Flor M Munoz
- Department of Pediatrics, Division of Infectious Disease, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Patrick K Munywoki
- Kenyan Medical Research Institute-Wellcome Trust Research Program, Kilifi, Kenya
| | | | - Harish Nair
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Marta C Nunes
- South African Medical Research Council, Wits Vaccines & Infectious Diseases Analytics Research Unit and Department of Science and Technology and National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Octavio Ramilo
- Nationwide Children's Hospital Columbus, Columbus, OH, USA
| | - Peter Richmond
- School of Medicine, Division of Paediatrics, University of Western Australia, Perth, WA, Australia
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Charles Sande
- Kenyan Medical Research Institute-Wellcome Trust Research Program, Kilifi, Kenya; Centre for Tropical Medicine & Global Health, University of Oxford, Oxford, UK
| | - Padmini Srikantiah
- Respiratory Syncytial Virus Program and Global Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Naveen Thacker
- Deep Children Hospital & Research Centre, Gandhidham, India
| | - Kody A Waldstein
- Department of Microbiology and Immunology, University of Iowa, Iowa, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa, IA, USA
| | - Dan Weinberger
- Yale School of Public Health Department of Epidemiology of Microbial Diseases, Yale University, New Haven, CT, USA
| | - Joanne Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dexter Wiseman
- National Heart & Lung Institute, Imperial College, London, UK
| | - Heather J Zar
- Department of Pediatrics & Child Health, Red Cross Children's Hospital and SA-MRC unit of Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Maria Zambon
- Reference Microbiology, Public Health England, Faculty of Medicine, Imperial College, London, UK
| | - Louis Bont
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; ReSViNET Foundation, Julius Clinical, Zeist, Netherlands.
| |
Collapse
|
41
|
Chang LA, Phung E, Crank MC, Morabito KM, Villafana T, Dubovsky F, Falloon J, Esser MT, Lin BC, Chen GL, Graham BS, Ruckwardt TJ. A prefusion-stabilized RSV F subunit vaccine elicits B cell responses with greater breadth and potency than a postfusion F vaccine. Sci Transl Med 2022; 14:eade0424. [PMID: 36542692 PMCID: PMC11345946 DOI: 10.1126/scitranslmed.ade0424] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is currently no licensed vaccine for respiratory syncytial virus (RSV). Here, we assess the effect of RSV fusion protein (F) conformation on B cell responses in a post hoc comparison of samples from the DS-Cav1 [prefusion (pre-F)] and MEDI7510 [postfusion (post-F)] vaccine clinical trials. We compared the magnitude and quality of the serological and B cell responses across time points and vaccines. We measured RSV A and B neutralization, F-binding immunoglobulin G titers, and competition assays at week 0 (before vaccination) and week 4 (after vaccination) to evaluate antibody specificity and potency. To compare B cell specificity and activation, we used pre-F and post-F probes in tandem with a 17-color immunophenotyping flow cytometry panel at week 0 (before vaccination) and week 1 (after vaccination). Our data demonstrate that both DS-Cav1 and MEDI7510 vaccination robustly elicit F-specific antibodies and B cells, but DS-Cav1 elicited antibodies that more potently neutralized both RSV A and B. The superior potency was mediated by antibodies that bind antigenic sites on the apex of pre-F that are not present on post-F. In the memory (CD27+) B cell compartment, vaccination with DS-Cav1 or MEDI7510 elicited B cells with different epitope specificities. B cells preferentially binding the pre-F probe were activated in DS-Cav1-vaccinated participants but not in MEDI7510-vaccinated participants. Our findings emphasize the importance of using pre-F as an immunogen in humans because of its deterministic role in eliciting highly potent neutralizing antibodies and memory B cells.
Collapse
Affiliation(s)
- Lauren A. Chang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- Present address: Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Present address: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Authors contributed equally to this manuscript
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- Present address: GlaxoSmithKline, Rockville, MD 20850, USA
- Authors contributed equally to this manuscript
| | - Michelle C. Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- Present address: Institute for Asthma and Allergy, Chevy Chase, MD 20815, USA
| | - Kaitlyn M. Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tonya Villafana
- Vaccines & Immune Therapies, BioPharma R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Filip Dubovsky
- Vaccines & Immune Therapies, BioPharma R&D, AstraZeneca, Gaithersburg, MD 20878, USA
- Present address: Novavax, Gaithersburg, MD 20878, USA
| | - Judith Falloon
- Vaccines & Immune Therapies, BioPharma R&D, AstraZeneca, Gaithersburg, MD 20878, USA
- Present address: Horizon Therapeutics, Gaithersburg, MD 20878, USA
| | - Mark T. Esser
- Vaccines & Immune Therapies, BioPharma R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Grace L. Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- Present address: Moderna, Cambridge, MA 02139, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- Present address: Departments of Medicine and Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
- Senior author
- Lead contact
| |
Collapse
|
42
|
Qiu X, Xu S, Lu Y, Luo Z, Yan Y, Wang C, Ji J. Development of mRNA vaccines against respiratory syncytial virus (RSV). Cytokine Growth Factor Rev 2022; 68:37-53. [PMID: 36280532 DOI: 10.1016/j.cytogfr.2022.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is a single-stranded negative-sense RNA virus that is the primary etiologic pathogen of bronchitis and pneumonia in infants and the elderly. Currently, no preventative vaccine has been approved for RSV infection. However, advances in the characterization, and structural resolution, of the RSV surface fusion glycoprotein have revolutionized RSV vaccine development by providing a new target for preventive interventions. In general, six different approaches have been adopted in the development of preventative RSV therapeutics, namely, particle-based vaccines, vector-based vaccines, live-attenuated or chimeric vaccines, subunit vaccines, mRNA vaccines, and monoclonal antibodies. Among these preventive interventions, MVA-BN-RSV, RSVpreF3, RSVpreF, Ad26. RSV.preF, nirsevimab, clesrovimab and mRNA-1345 is being tested in phase 3 clinical trials, and displays the most promising in infant or elderly populations. Accompanied by the huge success of mRNA vaccines in COVID-19, mRNA vaccines have been rapidly developed, with many having entered clinical studies, in which they have demonstrated encouraging results and acceptable safety profiles. In fact, Moderna has received FDA approval, granting fast-track designation for an investigational single-dose mRNA-1345 vaccine against RSV in adults over 60 years of age. Hence, mRNA vaccines may represent a new, more successful, chapter in the continued battle to develop effective preventative measures against RSV. This review discusses the structure, life cycle, and brief history of RSV, while also presenting the current advancements in RSV preventatives, with a focus on the latest progress in RSV mRNA vaccine development. Finally, future prospects for this field are presented.
Collapse
Affiliation(s)
- Xirui Qiu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyan Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Lu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zichen Luo
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yangtian Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuyue Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
43
|
Abstract
Respiratory Syncytial Virus (RSV) is the main cause of lower respiratory tract infections (LRTIs) in newborns in the first two years of life. RSV disease has a traditional seasonal trend, with an onset and offset, duration and peak. Prematurity, male gender, bronchopulmonary dysplasia (BPD), critical congenital cardiovascular disorders (CCHD), neuromuscular diseases, congenital and inherited airways anatomical anomalies are the main risk factors for increased severity of this infection. RSV infection is associated with negative long-term respiratory outcomes, with excess of morbidity, resulting in reduced quality of life of the infected children and representing a burden for the healthcare costs and resources. Despite all the efforts, prevention remains, to date, the most effective strategy to reduce RSV-related morbidity. Among the current prevention strategies, strict hygiene, breastfeeding and passive immunization with the monoclonal antibody Palivizumab are the cornerstone. In the next future, it is likely that new possibilities of prevention will add, including use of more potent and longer-acting monoclonal antibodies, implementation of maternal vaccination in pregnancy, and active immunization in children. The purpose of this review is to provide an overview of the main current and future prevention strategies against RSV.
Collapse
|
44
|
Xu W, Maas B, Roadcap B, Swarup A, Steinmetz T, Luo L, Ichetovkin M, Wood S, Vazvaei-Smith F, Lee AWT, Vora K, Helmy R. Neutralization Activity of Anti-drug Antibodies Against a Biotherapeutic Can Be Predicted from a Comprehensive Pharmacokinetics, Pharmacodynamics, and Anti-drug Antibody Data Analysis. AAPS J 2022; 24:102. [PMID: 36167856 DOI: 10.1208/s12248-022-00753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/07/2022] [Indexed: 01/18/2023] Open
Abstract
Historically, a neutralization antibody (NAb) assay is considered critical in immunogenicity assessment of biologic therapeutics, even with low anti-drug antibody (ADA) positive rates. In 2019, FDA new guidelines issued on immunogenicity testing acknowledged the possibility of using "a highly sensitive PD marker or an appropriately designed PK assay or both that generate data that inform clinical activity" to replace a NAb assay. In the current manuscript, we present data for PK, PD, and ADA assays which collectively succeed to replace the standalone NAb assay. The data include a total LC/MS-based PK assay, a serum neutralization antibody (SNA) assay that essentially measures pharmacodynamically functional PK and can detect NAb activity in the presence of 1:1 ratio of drug, and a highly drug-tolerant ADA assay. In addition, a model-based meta-analysis (MBMA) demonstrated that the ability of SNA assay to detect NAb at 1:1 ratio of drug is sensitive enough to monitor clinically meaningful efficacy change, which is 50% reduction of SNA titer. Our strategy of preparing a holistic data package discussed here may provide a roadmap to the community for alternatives in assaying neutralizing activity of ADA.
Collapse
Affiliation(s)
- Weifeng Xu
- Preclinical Development, Merck & Co., Inc., Rahway, New Jersey, USA. .,Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania, 19486, USA.
| | - Brian Maas
- Preclinical Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Brad Roadcap
- Preclinical Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Aparna Swarup
- Preclinical Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Thomas Steinmetz
- Preclinical Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Linlin Luo
- Preclinical Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | | | - Sandra Wood
- Global Regulatory Liaison, Vaccines and Infectious Disease, Merck & Co., Inc., Rahway, New Jersey, USA
| | | | | | - Kalpit Vora
- Biology Discovery, Infectious Disease/Vaccine, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Roy Helmy
- Preclinical Development, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
45
|
Virus reduction neutralization test and LI-COR microneutralization assay bridging and WHO international standard calibration studies for respiratory syncytial virus. Bioanalysis 2022; 14:1067-1079. [PMID: 36125040 DOI: 10.4155/bio-2022-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Respiratory syncytial virus (RSV) vaccine is an unmet medical need. The virus reduction neutralization test (VRNT) was developed to replace the LI-COR microneutralization assay to measure RSV neutralization titers. Methods: A bridging study using selected V171 phase I samples and calibration studies using the WHO international standard antiserum to RSV were performed to compare VRNT and LI-COR. Results: From the bridging study, we showed good concordance between VRNT and LI-COR titers, and similar post-/pre-vaccination titer ratios. From the calibration studies, we can convert VRNT and LI-COR titers into similar IU/ml. Conclusion: The VRNT and LI-COR microneutralization assay correlate well and the titers can be standardized as similar IU/ml, enabling direct comparison of titers from different assays.
Collapse
|
46
|
A multi-center study to determine genetic variations in the fusion gene of respiratory syncytial virus (RSV) from children <2 years of age in the U.S. J Clin Virol 2022; 154:105223. [DOI: 10.1016/j.jcv.2022.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
|
47
|
Simões EAF. The Burden of Respiratory Syncytial Virus Lower Respiratory Tract Disease in Infants in the United States: A Synthesis. J Infect Dis 2022; 226:S143-S147. [PMID: 35968867 PMCID: PMC9377025 DOI: 10.1093/infdis/jiac211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Eric A F Simões
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| |
Collapse
|
48
|
Mokhtary P, Pourhashem Z, Mehrizi AA, Sala C, Rappuoli R. Recent Progress in the Discovery and Development of Monoclonal Antibodies against Viral Infections. Biomedicines 2022; 10:biomedicines10081861. [PMID: 36009408 PMCID: PMC9405509 DOI: 10.3390/biomedicines10081861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibodies (mAbs), the new revolutionary class of medications, are fast becoming tools against various diseases thanks to a unique structure and function that allow them to bind highly specific targets or receptors. These specialized proteins can be produced in large quantities via the hybridoma technique introduced in 1975 or by means of modern technologies. Additional methods have been developed to generate mAbs with new biological properties such as humanized, chimeric, or murine. The inclusion of mAbs in therapeutic regimens is a major medical advance and will hopefully lead to significant improvements in infectious disease management. Since the first therapeutic mAb, muromonab-CD3, was approved by the U.S. Food and Drug Administration (FDA) in 1986, the list of approved mAbs and their clinical indications and applications have been proliferating. New technologies have been developed to modify the structure of mAbs, thereby increasing efficacy and improving delivery routes. Gene delivery technologies, such as non-viral synthetic plasmid DNA and messenger RNA vectors (DMabs or mRNA-encoded mAbs), built to express tailored mAb genes, might help overcome some of the challenges of mAb therapy, including production restrictions, cold-chain storage, transportation requirements, and expensive manufacturing and distribution processes. This paper reviews some of the recent developments in mAb discovery against viral infections and illustrates how mAbs can help to combat viral diseases and outbreaks.
Collapse
Affiliation(s)
- Pardis Mokhtary
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Department of Biochemistry and Molecular Biology, University of Siena, 53100 Siena, Italy
| | - Zeinab Pourhashem
- Student Research Committee, Pasteur Institute of Iran, Tehran 1316943551, Iran;
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Akram Abouei Mehrizi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Correspondence: (C.S.); (R.R.)
| | - Rino Rappuoli
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Correspondence: (C.S.); (R.R.)
| |
Collapse
|
49
|
Challenges in Maximizing Impacts of Preventive Strategies against Respiratory Syncytial Virus (RSV) Disease in Young Children. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:293-300. [PMID: 35782467 PMCID: PMC9235255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract illness in infants and young children. It causes substantial morbidity and mortality in young children and older adults. As few therapeutic and prophylaxis options against RSV illness are currently available, there is a great need for effective RSV vaccines and immune-prophylaxis. Encouragingly, multiple vaccines and immuno-prophylaxis aiming to protect pediatric populations have shown promising progress in clinical trials. The three major preventive strategies include RSV F-protein-based vaccines for pregnant women, extended half-life monoclonal antibodies for neonates, and live-attenuated vaccines for infants. Each preventive strategy has its own merits and challenges yet to be overcome. Challenges also exist in maximizing vaccine impacts in the post-implementation era. This perspectives piece focuses on RSV preventive strategies in young children and highlights the remaining questions in current development of RSV immunization products and design of immunization programs.
Collapse
|
50
|
Orito Y, Otani N, Matsumoto Y, Fujimoto K, Oshima N, Maas BM, Caro L, Aliprantis AO, Cox KS, Tokumaru O, Kodama M, Kudo H, Imai H, Uemura N. A Phase 1 Study to Evaluate Safety, Pharmacokinetics, and Pharmacodynamics of Respiratory Syncytial Virus (RSV) Neutralizing Monoclonal Antibody MK-1654 in Healthy Japanese Adults. Clin Transl Sci 2022; 15:1753-1763. [PMID: 35506164 PMCID: PMC9283748 DOI: 10.1111/cts.13290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 12/05/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection among all infants worldwide and remains a significant cause of morbidity and mortality. To address this unmet medical need, MK‐1654, a half‐life extended RSV neutralizing monoclonal antibody, is in clinical development for the prevention of RSV disease in infants. This was a phase I, randomized, placebo‐controlled, single‐site, double‐blind trial of MK‐1654 in 44 healthy Japanese adults. The safety, tolerability, pharmacokinetics, antidrug antibodies (ADAs), and serum neutralizing antibody (SNA) titers against RSV were evaluated for 1 year after a single intramuscular (i.m.) or intravenous (i.v.) dose of MK‐1654 or placebo in five groups (100 mg i.m., 300 mg i.m., 300 mg i.v., 1000 mg i.v., or placebo). MK‐1654 was generally well‐tolerated in Japanese adults. There were no serious drug‐related adverse events (AEs) reported in any MK‐1654 recipient and no discontinuations due to any AEs in the study. The half‐life of MK‐1654 ranged from 76 to 91 days across dosing groups. Estimated bioavailability was 86% for 100 mg i.m. and 77% for 300 mg i.m. One participant out of 33 (3.0%) developed detectable ADA with no apparent associated AEs. The RSV SNA titers increased in a dose‐dependent manner among participants who received MK‐1654. These data support the development of MK‐1654 for use in Japanese infants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonios O Aliprantis
- Merck and Co., Inc., Kenilworth, NJ, USA.,Present address: Flagship Pioneering, Boston, MA, USA
| | - Kara S Cox
- Merck and Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | | | |
Collapse
|