1
|
Ma L, Shi Z, Jing M, Gao J, Wu S, Wang S. Forest mycorrhizal types mediated environmental controls on global particulate and mineral-associated organic matter storage. ENVIRONMENTAL RESEARCH 2025; 275:121459. [PMID: 40122491 DOI: 10.1016/j.envres.2025.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
Most trees associate with arbuscular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi, which increases the input to soil carbon pools. Identifying the regulatory mechanisms of mycorrhizal fungi on environmentally controlled global forest total SOM storage is crucial for understanding the global carbon cycle and addressing climate change. Currently, we lack a comprehensive understanding of how mycorrhizae regulate forest total SOM storage, especially regarding POM and MAOM. This study is based on published data and aims to elucidate the regulatory role of different mycorrhizal types on environmentally controlled POM and MAOM storage by analyzing data from 81 AM to 124 ECM forest sites worldwide. The dataset included 718 sets of organic matter fractions (POM, MAOM, total SOM), climate factors (MAT, MAP-PET), soil factors (pH, sand, silt, clay), and matter inputs (i.e., net primary production [NPP]). We used variance partitioning analysis (VPA), stochastic gradient boosting, and path analysis in R to assess the relative importance of these variables. Significant differences in total SOM storage between AM and ECM forests were found, primarily due to variations in MAOM storage. AM forests store more MAOM (8.41 g C kg-1 soil) and total SOM (8.20 g C kg-1 soil) than ECM forests. In ECM forests, climate and soil explained a higher proportion of variation in POM, MAOM, and total SOM storage (40.06-46.70 %) compared to AM forests (17.56-31.20 %). Further analysis indicates that MAOM storage in AM forests is strongly influenced by Clay (21.90 %) and NPP (20.20 %), whereas in ECM forests, it is predominantly affected by MAT (42.90 %) and MAP-PET (23.90 %). In global forest ecosystems, climate and soil are the primary controlling factors, with different mycorrhizal types mediating variations in POM and MAOM storage, which in turn indirectly affect total SOM storage.
Collapse
Affiliation(s)
- Luping Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Research Center of Human Settlements, Luoyang, 471023, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, 471023, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Research Center of Human Settlements, Luoyang, 471023, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, 471023, China.
| | - Manman Jing
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Research Center of Human Settlements, Luoyang, 471023, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, 471023, China
| | - Jiakai Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shanwei Wu
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuangshuang Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
2
|
Cheaib A, Chieppa J, Perkowski EA, Smith NG. Soil resource acquisition strategy modulates global plant nutrient and water economics. THE NEW PHYTOLOGIST 2025; 246:1536-1553. [PMID: 40123121 DOI: 10.1111/nph.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Natural selection favors growth by selecting a combination of plant traits that maximize photosynthetic CO2 assimilation at the lowest combined carbon costs of resource acquisition and use. We quantified how soil nutrient availability, plant nutrient acquisition strategies, and aridity modulate the variability in plant costs of nutrient acquisition relative to water acquisition (β). We used an eco-evolutionary optimality framework and a global carbon isotope dataset to quantify β. Under low soil nitrogen-to-carbon (N : C) ratios, a mining strategy (symbioses with ectomycorrhizal and ericoid mycorrhizal fungi) reduced β by mining organic nitrogen, compared with a scavenging strategy (symbioses with arbuscular mycorrhizal fungi). Conversely, under high N : C ratios, scavenging strategies reduced β by effectively scavenging soluble nitrogen, compared with mining strategies. N2-fixing plants did not exhibit reduced β under low N : C ratios compared with non-N2-fixing plants. Moisture increased β only in plants using a scavenging strategy, reflecting direct impacts of aridity on the carbon costs of maintaining transpiration in these plants. Nitrogen and phosphorus colimitation further modulated β. Our findings provide a framework for simulating the variability of plant economics due to plant nutrient acquisition strategies in earth system models.
Collapse
Affiliation(s)
- Alissar Cheaib
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jeff Chieppa
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Evan A Perkowski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
3
|
Zhang S, Yang Z, Yang X, Ma X, Ma Q, Ma M, Zhang J. Plant-Soil Interactions Shape Arbuscular Mycorrhizal Fungal Diversity and Functionality in Eastern Tibetan Meadows. J Fungi (Basel) 2025; 11:337. [PMID: 40422671 DOI: 10.3390/jof11050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025] Open
Abstract
Arbuscular mycorrhizal (AM) fungi occur in the interface between soils and plants. Yet, the impacts of the plant community functional composition and soil properties on AM fungal communities remain poorly understood in the face of ongoing climate change. Here, we investigated the AM fungal community in alpine meadow habitats of the Tibetan Plateau by linking fungal species richness to plant community functional composition and soil parameters at three latitudinal sites. High-throughput sequencing of the AM fungal small subunit rRNA gene was performed to characterize fungal communities. We found that AM fungal diversity and plant functional diversity, as well as the contents of soil nutrients, were significantly higher in the southernmost site, Hongyuan (HY). Total soil nitrogen and soil-available phosphorus explained the variation in AM fungal diversity, while AM fungal biomass was best predicted by the plant community-weighed mean nitrogen:phosphorus ratio (CWM-N:P). Glomus species preferentially occurred in the northernmost site of Hezuo (HZ). Distance-based redundancy analysis (db-RDA) revealed that AM fungal community structure was influenced by not only CWM-N:P but also by plant community-weighed mean photosynthetic rate (CWM-Pn), soil total carbon, and plant community functional dispersion (FDis). We conclude that plant traits and soil properties are crucial for nutrient-carbon (C) exchange, as fungal symbionts may shape AM communities in this vast alpine meadow ecosystem. Our findings provide timely insight into AM fungal community assembly from the perspective of nutrient-C exchange dynamics in the Tibetan Plateau's alpine meadow habitats.
Collapse
Affiliation(s)
- Shihu Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Zhengying Yang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Xuechun Yang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoyu Ma
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Qun Ma
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Miaojun Ma
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jiajia Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
4
|
Srivastava AK, Singh RD, Pandey GK, Mukherjee PK, Foyer CH. Unravelling the Molecular Dialogue of Beneficial Microbe-Plant Interactions. PLANT, CELL & ENVIRONMENT 2025; 48:2534-2548. [PMID: 39497504 PMCID: PMC11893932 DOI: 10.1111/pce.15245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 03/12/2025]
Abstract
Plants are an intrinsic part of the soil community, which is comprised of a diverse range of organisms that interact in the rhizosphere through continuous molecular communications. The molecular dialogue within the plant microbiome involves a complex repertoire of primary and secondary metabolites that interact within different liquid matrices and biofilms. Communication functions are likely to involve membrane-less organelles formed by liquid-liquid phase separation of proteins and natural deep eutectic solvents that play a role as alternative media to water. We discuss the chemistry of inter-organism communication and signalling within the biosphere that allows plants to discriminate between harmful, benign and beneficial microorganisms. We summarize current information concerning the chemical repertoire that underpins plant-microbe communication and host-range specificity. We highlight how the regulated production, perception and processing of reactive oxygen species (ROS) is used in the communication between plants and microbes and within the communities that shape the soil microbiome.
Collapse
Affiliation(s)
- Ashish K. Srivastava
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiIndia
| | - Reema D. Singh
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiMaharashtraIndia
| | - Girdhar K. Pandey
- Department of Plant Molecular BiologyUniversity of Delhi South CampusNew DelhiIndia
| | - Prasun K. Mukherjee
- Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiMaharashtraIndia
- Homi Bhabha National InstituteMumbaiIndia
| | | |
Collapse
|
5
|
Zhang E, Wang Y, Crowther TW, Sun W, Chen S, Zhou D, Shangguan Z, Huang J, He JS, Wang Y, Sheng J, Tang L, Li X, Dong M, Wu Y, Hu S, Bai Y, Yu G. Mycorrhiza increases plant diversity and soil carbon storage in grasslands. Proc Natl Acad Sci U S A 2025; 122:e2412556122. [PMID: 39937867 PMCID: PMC11848320 DOI: 10.1073/pnas.2412556122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/07/2025] [Indexed: 02/14/2025] Open
Abstract
Experimental studies have shown that symbiotic relationships between arbuscular mycorrhizal (AM) fungi and host plants can regulate soil organic carbon (SOC) storage. Although the impacts of mycorrhiza are highly context-dependent, it remains unclear how these effects vary across broad spatial scales. Based on data from 2296 field sites across grassland ecosystems of China, here we show that mycorrhizal fungi symbiosis enhances SOC storage in the topsoil and subsoil through increasing plant diversity and elevating biomass allocation to belowground. SOC storage is significantly higher in both the topsoil and subsoil in systems dominated by obligate mycorrhizal (OM) and facultative mycorrhizal (FM) plants than those dominated by nonmycorrhizal (NM) plants. Also, the relative abundance of OM plants increases at the expense of FM plants as temperature and precipitation increase. These findings provide valuable insights into the potential mechanisms by which mycorrhizal fungi may influence grassland plant diversity and SOC storage in the context of global change.
Collapse
Affiliation(s)
- Entao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
| | - Thomas W. Crowther
- Department of Environmental Systems Science, Swiss Federal Institute of Technology, 8001Zurich, Switzerland
| | - Weicheng Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Shiping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
| | - Daowei Zhou
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun130012, China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming in the Loess Plateau, Northwest A&F University, Yangling712100, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, and College of Ecology, Lanzhou University, Lanzhou730000, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing100871, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiandong Sheng
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi830052, China
| | - Lisong Tang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi830011, China
| | - Xinrong Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou730000, China
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou310036, China
| | - Yan Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC27695
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
6
|
Wang M, Zhang S, Guo X, Wang G, Xia J, Xiao L, Luo Z. Whole-Profile Soil Carbon Responses to Concurrent Warming and Precipitation Changes Across Global Biomes. GLOBAL CHANGE BIOLOGY 2025; 31:e70105. [PMID: 39995394 DOI: 10.1111/gcb.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
The joint effects of simultaneous warming and precipitation shifts on soil organic carbon (SOC)-the largest terrestrial carbon pool-remain poorly understood across large spatial extents. By evaluating a global dataset of SOC measurements in the top meter of soil through a space-for-change substitution approach, we show that, averaging across the globe, increased precipitation compensates for warming-induced SOC reductions regardless of soil depth and vice versa. Although additive effects between these two factors are predominant, negative interactive effects, which exacerbate SOC losses, are also common, particularly in tropical and subtropical grasslands/savannas and Mediterranean/montane shrublands. SOC responses vary widely across the globe, primarily correlated to baseline SOC content and local climatic conditions. Notably, SOC responses in tundra systems are opposite the responses in other ecosystems, showing positive and negative responses to warming and precipitation increases, respectively. Under a scenario of 2°C air warming with projected precipitation changes, global SOC stocks in the 0-1 m depth are projected to decrease by 13.1% ± 6.6% (mean ± 95% confidence interval, or 351 ± 100 Pg C). These results demonstrate that accurately predicting SOC dynamics under climate change necessitates explicit consideration of local climatic conditions and existing SOC content in relation to concurrent precipitation shifts and warming.
Collapse
Affiliation(s)
- Mingming Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Shuai Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xiaowei Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Guocheng Wang
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Jianyang Xia
- State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Liujun Xiao
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zhongkui Luo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Ma S, Chen G, Cai Q, Ji C, Zhu B, Tang Z, Hu S, Fang J. Mycorrhizal dominance influences tree species richness and richness-biomass relationship in China's forests. Ecology 2025; 106:e4501. [PMID: 39690731 DOI: 10.1002/ecy.4501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/24/2024] [Accepted: 09/11/2024] [Indexed: 12/19/2024]
Abstract
Mycorrhizal associations drive plant community diversity and ecosystem functions. Arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) are two widespread mycorrhizal types and are thought to differentially affect plant diversity and productivity by nutrient acquisition and plant-soil feedback. However, it remains unclear how the mixture of two mycorrhizal types influences tree diversity, forest biomass, and their relationship at large spatial scales. Here, we explored these issues using data from 1247 plots (600 m2 for each) across China's natural forests located mostly in temperate and subtropical regions. Both AM-dominated and EcM-dominated forests show relatively lower tree species richness and stand biomass, whereas forests with the mixture of mycorrhizal strategies sustain more tree species and higher biomass. Interestingly, the positive effect of tree diversity on biomass is stronger in forests with low (≤50%) than high AM tree proportion (>50%), reflecting a shift from the complementarity effect to functional redundancy with increasing AM trees. Our findings suggest that mycorrhizal dominance influences tree diversity and richness-biomass relationship in forest ecosystems.
Collapse
Affiliation(s)
- Suhui Ma
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Guoping Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qiong Cai
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Chengjun Ji
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Zhiyao Tang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Shuijin Hu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
8
|
Clark R, Miller WM, Osburn MR, Beddows PA, Evans M, Egerton-Warburton LM. Soil moisture and water redistribution patterns in white oak (Quercus alba) saplings and trees in fragmented urban woodlands. ENVIRONMENTAL RESEARCH 2024; 263:120106. [PMID: 39396603 DOI: 10.1016/j.envres.2024.120106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
In the midwestern United States, models predict extended summer heatwaves and increasingly frequent and prolonged drought conditions. In the Chicago region, the potential for large-scale mortality of white oak trees (Quercus alba) coupled with the ongoing decline of white oak sapling recruitment are major concerns for researchers and practitioners. In this study, we determined the sources of water used by mature white oak trees and saplings in three qualitatively different sites within a remnant oak forest in Chicago during the 2021 drought. We investigated soil moisture dynamics (volumetric water content, VWC) and water isotope composition of leaf tissues (δD, δ18O), rainwater, and groundwater. These data were linked to sapling height (proxy for biomass) and ectomycorrhizal (ECM) functional types. We predicted that: (i) mature oak trees use deeper water sources and conducted hydraulic redistribution (HR), and (ii) mature trees shared water with saplings during dry periods via long-distance ECM functional types. Soil moisture decreased progressively from June to October (spring to fall), with August and September having the lowest moisture (<20 % VWC). Following rainfall recharge, temporal patterns of soil moisture showed gravity drainage and then ongoing stair-stepwise drawdown consistent with plant evapotranspiration. Leaf δD and δ18O values in mature trees and saplings were consistent with water uptake from rainfall and subsequent enrichment via evapotranspiration. In two sites, mature trees and saplings demonstrated distinct δD: δ18O slopes, with mature trees more enriched than saplings. In the third site, mature trees and saplings δD: δ18O slopes overlapped but here, the ECM community was dominated by contact-type ECM and sapling height increased with distance from the mature oak. Our findings indicate that HR was not a component of site ecohydrology, and future climate conditions may present increasing challenges for white oak recruitment as both mature trees and saplings compete for limited rainfall-derived soil moisture.
Collapse
Affiliation(s)
- Ry'yan Clark
- Chicago Botanic Garden, 1000 Lake Cook Rd, Glencoe, IL, 60022, USA; Graduate Program in Plant Biology and Conservation, Northwestern University, Sheridan Rd, Evanston, IL, USA
| | - William M Miller
- Chemical and Biological Engineering, Northwestern University, IL, USA
| | | | | | - Matt Evans
- Chicago Botanic Garden, 1000 Lake Cook Rd, Glencoe, IL, 60022, USA
| | - Louise M Egerton-Warburton
- Chicago Botanic Garden, 1000 Lake Cook Rd, Glencoe, IL, 60022, USA; Graduate Program in Plant Biology and Conservation, Northwestern University, Sheridan Rd, Evanston, IL, USA.
| |
Collapse
|
9
|
Netherway T, Bahram M. Melanized root-associated fungi: key players in plant-soil systems. Trends Microbiol 2024; 32:1190-1199. [PMID: 38987052 DOI: 10.1016/j.tim.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Melanized root-associated fungi are a group of fungi that produce melanized structures and form root associations, including different mycorrhizal and endophytic symbioses with plants. They are pervasive across terrestrial ecosystems and play an important role in the prevailing soil carbon (C) and nutrient cycling syndromes through direct and indirect mechanisms, where they may strongly modulate plant-microbe interactions and structure root and soil microbiomes. Furthermore, melanized root-associated fungi can confer on plants an enhanced ability to tolerate abiotic and biotic stressors such as drought, extreme temperatures, heavy metals, and pathogen attacks. We propose that melanized root-associated fungi are a cohesive and ecologically relevant grouping that can be an indicator of plant-soil system functioning, and considering them will advance research on plant-soil interactions.
Collapse
Affiliation(s)
- Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden; Department of Agroecology, Aarhus University, Slagelse, Denmark; Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
10
|
Chen M, Yang J, Xue C, Tu T, Su Z, Feng H, Shi M, Zeng G, Zhang D, Qian X. Community composition of phytopathogenic fungi significantly influences ectomycorrhizal fungal communities during subtropical forest succession. Appl Microbiol Biotechnol 2024; 108:99. [PMID: 38204135 PMCID: PMC10781812 DOI: 10.1007/s00253-023-12992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Ectomycorrhizal fungi (EMF) can form symbiotic relationships with plants, aiding in plant growth by providing access to nutrients and defense against phytopathogenic fungi. In this context, factors such as plant assemblages and soil properties can impact the interaction between EMF and phytopathogenic fungi in forest soil. However, there is little understanding of how these fungal interactions evolve as forests move through succession stages. In this study, we used high-throughput sequencing to investigate fungal communities in young, intermediate, and old subtropical forests. At the genus level, EMF communities were dominated by Sebacina, Russula, and Lactarius, while Mycena was the most abundant genus in pathogenic fungal communities. The relative abundances of EMF and phytopathogenic fungi in different stages showed no significant difference with the regulation of different factors. We discovered that interactions between phytopathogenic fungi and EMF maintained a dynamic balance under the influence of the differences in soil quality attributed to each forest successional stage. The community composition of phytopathogenic fungi is one of the strong drivers in shaping EMF communities over successions. In addition, the EMF diversity was significantly related to plant diversity, and these relationships varied among successional stages. Despite the regulation of various factors, the positive relationship between the diversity of phytopathogenic fungi and EMF remained unchanged. However, there is no significant difference in the ratio of the abundance of EMF and phytopathogenic fungi over the course of successions. These results will advance our understanding of the biodiversity-ecosystem functioning during forest succession. KEY POINTS: •Community composition of both EMF and phytopathogenic fungi changed significantly over forest succession. •Phytopathogenic fungi is a key driver in shaping EMF community. •The effect of plant Shannon's diversity on EMF communities changed during the forest aging process.
Collapse
Affiliation(s)
- Meirong Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhi Yang
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China
| | - Chunquan Xue
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China.
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiyao Su
- South China Agriculture University, Guangzhou, China
| | - Hanhua Feng
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Gui Zeng
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
11
|
Choi YJ, Lee KS, Oh JW. Inverse Trend Between Tree Pollen and Fungal Concentrations With Allergic Sensitization Rates in Seoul for 25 Years. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:571-584. [PMID: 39622683 PMCID: PMC11621478 DOI: 10.4168/aair.2024.16.6.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 12/08/2024]
Abstract
A growing number of individuals are developing allergic diseases due to pollen exposure. Seasonal variations and increased pollen concentrations have occurred with the increased rates of allergic sensitization among both children and adults. Temperature significantly influences pollination, particularly in spring- and early summer-flowering plants, with weather conditions affecting pollen allergen levels. Human activities, including agriculture and deforestation, increase carbon emissions, leading to higher atmospheric CO₂ levels that may enhance allergenic plant productivity. Climate change affects the range of allergenic plant species and length of pollen season. Studies indicate that higher CO₂ and temperature levels are linked to increased pollen concentrations and allergenicity, whereas atmospheric fungal concentrations have declined annually over the past 25 years. Despite more intense precipitation in summer and autumn, the number of rainy days has decreased across all seasons. This concentration of rainfall over shorter periods likely prolongs the dry season and shortens the period of fungal sporulation. Future climate changes, including atmospheric dryness, drought, and desertification could further decrease allergenic fungal sporulation. It remains unclear whether the inverse relationship between pollen and fungal concentrations and distributions directly results from climate change. It is crucial to evaluate the patterns of aeroallergens and their associated health risks.
Collapse
Affiliation(s)
- Young-Jin Choi
- Division of Allergy, Respiratory Diseases, Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea
| | - Kyung-Suk Lee
- Division of Allergy, Respiratory Diseases, Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea
| | - Jae-Won Oh
- Division of Allergy, Respiratory Diseases, Department of Pediatrics, College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|
12
|
Luo YH, Ma LL, Cadotte MW, Seibold S, Zou JY, Burgess KS, Tan SL, Ye LJ, Zheng W, Chen ZF, Liu DT, Zhu GF, Shi XC, Zhao W, Bi Z, Huang XY, Li JH, Liu J, Li DZ, Gao LM. Testing the ectomycorrhizal-dominance hypothesis for ecosystem multifunctionality in a subtropical mountain forest. THE NEW PHYTOLOGIST 2024; 243:2401-2415. [PMID: 39073209 DOI: 10.1111/nph.20003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Mycorrhizal associations are key mutualisms that shape the structure of forest communities and multiple ecosystem functions. However, we lack a framework for predicting the varying dominance of distinct mycorrhizal associations in an integrated proxy of multifunctionality across ecosystems. Here, we used the datasets containing diversity of mycorrhizal associations and 18 ecosystem processes related to supporting, provisioning, and regulating services to examine how the dominance of ectomycorrhiza (EcM) associations affects ecosystem multifunctionality in subtropical mountain forests in Southwest China. Meanwhile, we synthesized the prevalence of EcM-dominant effects on ecosystem functioning in forest biomes. Our results demonstrated that elevation significantly modified the distributions of EcM trees and fungal dominance, which in turn influenced multiple functions simultaneously. Multifunctionality increased with increasing proportion of EcM associations, supporting the ectomycorrhizal-dominance hypothesis. Meanwhile, we observed that the impacts of EcM dominance on individual ecosystem functions exhibited different relationships among forest biomes. Our findings highlight the importance of ectomycorrhizal dominance in regulating multifunctionality in subtropical forests. However, this ectomycorrhizal feedback in shaping ecosystem functions cannot necessarily be generalized across forests. Therefore, we argue that the predictions for ecosystem multifunctionality in response to the shifts of mycorrhizal composition could vary across space and time.
Collapse
Affiliation(s)
- Ya-Huang Luo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Liang-Liang Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Marc W Cadotte
- Biological Sciences, University of Toronto-Scarborough, Toronto, ON, M1C1A4, Canada
| | - Sebastian Seibold
- Forest Zoology, TUD Dresden University of Technology, Tharandt, 01737, Germany
- Ecosystem Dynamics and Forest Management Research Group, Department for Ecology and Ecosystem Management, Technical University of Munich, Freising, 85354, Germany
- Berchtesgaden National Park, Berchtesgaden, 83471, Germany
| | - Jia-Yun Zou
- Forest Zoology, TUD Dresden University of Technology, Tharandt, 01737, Germany
- Ecosystem Dynamics and Forest Management Research Group, Department for Ecology and Ecosystem Management, Technical University of Munich, Freising, 85354, Germany
| | - Kevin S Burgess
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, 31901, USA
| | - Shao-Lin Tan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lin-Jiang Ye
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Zheng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhi-Fa Chen
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Tuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guang-Fu Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Chun Shi
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, 678000, China
| | - Wei Zhao
- Gaoligongshan National Nature Reserve Baoshan Bureau, Baoshan, 678000, China
| | - Zheng Bi
- Gaoligongshan National Nature Reserve Baoshan Bureau Tengchong Division, Baoshan, 679100, China
| | - Xiang-Yuan Huang
- Gaoligongshan National Nature Reserve Baoshan Bureau Tengchong Division, Baoshan, 679100, China
| | - Jia-Hua Li
- Gaoligongshan National Nature Reserve Baoshan Bureau Longyang Division, Baoshan, 678000, China
| | - Jie Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| | - Lian-Ming Gao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
| |
Collapse
|
13
|
Song W. Ectomycorrhizal fungi: Potential guardians of terrestrial ecosystems. MLIFE 2024; 3:387-390. [PMID: 39359683 PMCID: PMC11442127 DOI: 10.1002/mlf2.12127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Wenchen Song
- College of Life and Environmental Sciences Minzu University of China Beijing China
| |
Collapse
|
14
|
Tedersoo L, Magurno F, Alkahtani S, Mikryukov V. Phylogenetic classification of arbuscular mycorrhizal fungi: new species and higher-ranking taxa in Glomeromycota and Mucoromycota (class Endogonomycetes). MycoKeys 2024; 107:273-325. [PMID: 39169987 PMCID: PMC11336396 DOI: 10.3897/mycokeys.107.125549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Arbuscular mycorrhizal (AM) fungi - Glomeromycota and Endogonomycetes - comprise multiple species and higher-level taxa that have remained undescribed. We propose a mixed morphology- and DNA-based classification framework to promote taxonomic communication and shed light into the phylogenetic structure of these ecologically essential fungi. Based on eDNA samples and long reads as type materials, we describe 15 new species and corresponding genera (Pseudoentrophosporakesseensis, Hoforsarebekkae, Kahvenarebeccae, Kelottijaerviashannonae, Kungsaengenashadiae, Langduoadianae, Lehetuaindrekii, Lokrumastenii, Moosteastephanieae, Nikkaluoktamahdiehiae, Parniguacraigii, Riederbergasylviae, Ruuacoralieae, Tammsaareavivikae and Unemaeeanathalieae), the genus Parvocarpum as well as 19 families (Pseudoentrophosporaceae, Hoforsaceae, Kahvenaceae, Kelottijaerviaceae, Kungsaengenaceae, Langduoaceae, Lehetuaceae, Lokrumaceae, Moosteaceae, Nikkaluoktaceae, Parniguaceae, Riederbergaceae, Ruuaceae, Tammsaareaceae, Unemaeeaceae, Bifigurataceae, Planticonsortiaceae, Jimgerdemanniaceae and Vinositunicaceae) and 17 orders (Hoforsales, Kahvenales, Kelottijaerviales, Kungsaengenales, Langduoales, Lehetuales, Lokrumales, Moosteales, Nikkaluoktales, Parniguales, Riederbergales, Ruuales, Tammsaareales, Unemaeeales, Bifiguratales and Densosporales), and propose six combinations (Diversisporabareae, Diversisporanevadensis, Fuscutatacerradensis, Fuscutatareticulata, Viscosporadeserticola and Parvocarpumbadium) based on phylogenetic evidence. We highlight further knowledge gaps in the phylogenetic structure of AM fungi and propose an alphanumeric coding system for preliminary communication and reference-based eDNA quality-filtering of the remaining undescribed genus- and family-level groups. Using AM fungi as examples, we hope to offer a sound, mixed framework for classification to boost research in the alpha taxonomy of fungi, especially the "dark matter fungi".
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, 2 Liivi, 50409 Tartu, Estonia
- Department of Zoology, College of Science, King Saud University, 12371 Riyadh, Saudi Arabia
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, 12371 Riyadh, Saudi Arabia
| | - Vladimir Mikryukov
- Mycology and Microbiology Center, University of Tartu, 2 Liivi, 50409 Tartu, Estonia
| |
Collapse
|
15
|
Olanipon D, Boeraeve M, Jacquemyn H. Arbuscular mycorrhizal fungal diversity and potential association networks among African tropical forest trees. MYCORRHIZA 2024; 34:271-282. [PMID: 38850289 DOI: 10.1007/s00572-024-01156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Tropical forests represent one of the most diverse and productive ecosystems on Earth. High productivity is sustained by efficient and rapid cycling of nutrients, which is in large part made possible by symbiotic associations between plants and mycorrhizal fungi. In these associations, an individual plant typically associates simultaneously with multiple fungi and the fungi associate with multiple plants, creating complex networks among fungi and plants. However, there are few studies that have investigated mycorrhizal fungal composition and diversity in tropical forest trees, particularly in Africa, or that assessed the structure of the network of associations among fungi and trees. In this study, we collected root and soil samples from Ise Forest Reserve (Southwest Nigeria) and used a metabarcoding approach to identify the dominant arbuscular mycorrhizal (AM) fungal taxa in the soil and associating with ten co-occurring tree species to assess variation in AM communities. Network analysis was used to elucidate the architecture of the network of associations between fungi and tree species. A total of 194 Operational Taxonomic Units (OTUs) belonging to six AM fungal families were identified, with 68% of all OTUs belonging to Glomeraceae. While AM fungal diversity did not differ among tree species, AM fungal community composition did. Network analyses showed that the network of associations was not significantly nested and showed a relatively low level of specialization (H2 = 0.43) and modularity (M = 0.44). We conclude that, although there were some differences in AM fungal community composition, the studied tree species associate with a large number of AM fungi. Similarly, most AM fungi had great host breadth and were detected in most tree species, thereby potentially working as interaction network hubs.
Collapse
Affiliation(s)
- Damilola Olanipon
- Department of Biological Sciences, Afe Babalola University, Ado Ekiti, Nigeria.
| | - Margaux Boeraeve
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biology, UAntwerpen, Antwerpen, Belgium
| | - Hans Jacquemyn
- Biology Department, KU Leuven, Kasteelpark Arenberg 31, Heverlee, B-3001, Belgium
| |
Collapse
|
16
|
Van Nuland ME, Qin C, Pellitier PT, Zhu K, Peay KG. Climate mismatches with ectomycorrhizal fungi contribute to migration lag in North American tree range shifts. Proc Natl Acad Sci U S A 2024; 121:e2308811121. [PMID: 38805274 PMCID: PMC11161776 DOI: 10.1073/pnas.2308811121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/05/2024] [Indexed: 05/30/2024] Open
Abstract
Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent.
Collapse
Affiliation(s)
- Michael E. Van Nuland
- Department of Biology, Stanford University, Stanford, CA94305
- Society for the Protection of Underground Networks, Dover, DE19901
| | - Clara Qin
- Society for the Protection of Underground Networks, Dover, DE19901
- Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, CA95064
| | | | - Kai Zhu
- Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, CA95064
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI48109
| | - Kabir G. Peay
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Earth System Science, Stanford University, Stanford, CA94305
| |
Collapse
|
17
|
Choreño-Parra EM, Treseder KK. Mycorrhizal fungi modify decomposition: a meta-analysis. THE NEW PHYTOLOGIST 2024; 242:2763-2774. [PMID: 38605488 DOI: 10.1111/nph.19748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
It has been proposed that ectomycorrhizal fungi can reduce decomposition while arbuscular mycorrhizal fungi may enhance it. These phenomena are known as the 'Gadgil effect' and 'priming effect', respectively. However, it is unclear which one predominates globally. We evaluated whether mycorrhizal fungi decrease or increase decomposition, and identified conditions that mediate this effect. We obtained decomposition data from 43 studies (97 trials) conducted in field or laboratory settings that controlled the access of mycorrhizal fungi to substrates colonized by saprotrophs. Across studies, mycorrhizal fungi promoted decomposition of different substrates by 6.7% overall by favoring the priming effect over the Gadgil effect. However, we observed significant variation among studies. The substrate C : N ratio and absolute latitude influenced the effect of mycorrhizal fungi on decomposition and contributed to the variation. Specifically, mycorrhizal fungi increased decomposition at low substrate C : N and absolute latitude, but there was no discernable effect at high values. Unexpectedly, the effect of mycorrhizal fungi was not influenced by the mycorrhizal type. Our findings challenge previous assumptions about the universality of the Gadgil effect but highlight the potential of mycorrhizal fungi to negatively influence soil carbon storage by promoting the priming effect.
Collapse
Affiliation(s)
- Eduardo M Choreño-Parra
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
18
|
Zhang M, Shi Z, Wang F. Co-occurring tree species drive arbuscular mycorrhizal fungi diversity in tropical forest. Int Microbiol 2024; 27:917-928. [PMID: 37923942 DOI: 10.1007/s10123-023-00443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
It is still uncertain whether environment or host plant species is more important in determining AMF diversity; although, plant roots are usually associated with abundant AMF species in different environments. This study explored the effect of plant species and environmental factors on AMF diversity based on three co-occurring tree species (Glochidion coccineum, Schefflera octophylla, and Schima superba) on six elevations of Mt. Jianfengling. A total of 185 OTUs (operational taxonomic units) of AMF were found in the three co-occurring dominant tree species. Of which 109 unique OTUs were identified in the three co-occurring plant species, which accounted for the total number of 58.92%. Forty-five OTUs were shared by the three co-occurring tree species, accounting for a total number of 24.32%. The plant species of Schefflera octophylla was identified as having the highest AMF diversity with the largest number of OTUs of 143. The fungi in the genus of Glomus were the dominant AMF species in the three co-occurring tree species. AMF communities and diversity are quite different, either within different plant species at the same elevation or within the same plant species at different elevations. However, the altitude had no significant effect on the ACE index. Therefore, the results suggest that plant species have a more important effect on AMF diversity and community composition.
Collapse
Affiliation(s)
- Mengge Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, China.
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China.
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
19
|
Simpson HJ, Andrew C, Skrede I, Kauserud H, Schilling JS. Global field collection data confirm an affinity of brown rot fungi for coniferous habitats and substrates. THE NEW PHYTOLOGIST 2024; 242:2775-2786. [PMID: 38567688 DOI: 10.1111/nph.19723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Unlike 'white rot' (WR) wood-decomposing fungi that remove lignin to access cellulosic sugars, 'brown rot' (BR) fungi selectively extract sugars and leave lignin behind. The relative frequency and distribution of these fungal types (decay modes) have not been thoroughly assessed at a global scale; thus, the fate of one-third of Earth's aboveground carbon, wood lignin, remains unclear. Using c. 1.5 million fungal sporocarp and c. 30 million tree records from publicly accessible databases, we mapped and compared decay mode and tree type (conifer vs angiosperm) distributions. Additionally, we mined fungal record metadata to assess substrate specificity per decay mode. The global average for BR fungi proportion (BR/(BR + WR records)) was 13% and geographic variation was positively correlated (R2 = 0.45) with conifer trees proportion (conifer/(conifer + angiosperm records)). Most BR species (61%) were conifer, rather than angiosperm (22%), specialists. The reverse was true for WR (conifer: 19%; angiosperm: 62%). Global BR proportion patterns were predicted with greater accuracy using the relative distributions of individual tree species (R2 = 0.82), rather than tree type. Fungal decay mode distributions can be explained by tree type and, more importantly, tree species distributions, which our data suggest is due to strong substrate specificities.
Collapse
Affiliation(s)
- Hunter J Simpson
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN, 55108, USA
| | - Carrie Andrew
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316, Oslo, Norway
- Natural History Museum, University of Oslo, Sars' gate 1, 0562, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | | |
Collapse
|
20
|
Kakouridis A, Yuan M, Nuccio EE, Hagen JA, Fossum CA, Moore ML, Estera-Molina KY, Nico PS, Weber PK, Pett-Ridge J, Firestone MK. Arbuscular mycorrhiza convey significant plant carbon to a diverse hyphosphere microbial food web and mineral-associated organic matter. THE NEW PHYTOLOGIST 2024; 242:1661-1675. [PMID: 38358052 DOI: 10.1111/nph.19560] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/04/2023] [Indexed: 02/16/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) transport substantial plant carbon (C) that serves as a substrate for soil organisms, a precursor of soil organic matter (SOM), and a driver of soil microbial dynamics. Using two-chamber microcosms where an air gap isolated AMF from roots, we 13CO2-labeled Avena barbata for 6 wk and measured the C Rhizophagus intraradices transferred to SOM and hyphosphere microorganisms. NanoSIMS imaging revealed hyphae and roots had similar 13C enrichment. SOM density fractionation, 13C NMR, and IRMS showed AMF transferred 0.77 mg C g-1 of soil (increasing total C by 2% relative to non-mycorrhizal controls); 33% was found in occluded or mineral-associated pools. In the AMF hyphosphere, there was no overall change in community diversity but 36 bacterial ASVs significantly changed in relative abundance. With stable isotope probing (SIP)-enabled shotgun sequencing, we found taxa from the Solibacterales, Sphingobacteriales, Myxococcales, and Nitrososphaerales (ammonium oxidizing archaea) were highly enriched in AMF-imported 13C (> 20 atom%). Mapping sequences from 13C-SIP metagenomes to total ASVs showed at least 92 bacteria and archaea were significantly 13C-enriched. Our results illustrate the quantitative and ecological impact of hyphal C transport on the formation of potentially protective SOM pools and microbial roles in the AMF hyphosphere soil food web.
Collapse
Affiliation(s)
- Anne Kakouridis
- University of California Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mengting Yuan
- University of California Berkeley, Berkeley, CA, 94720, USA
| | - Erin E Nuccio
- Lawrence Livermore National Laboratory, Livermore, 94550, CA, USA
| | - John A Hagen
- University of California Berkeley, Berkeley, CA, 94720, USA
| | | | - Madeline L Moore
- University of California Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Katerina Y Estera-Molina
- University of California Berkeley, Berkeley, CA, 94720, USA
- Lawrence Livermore National Laboratory, Livermore, 94550, CA, USA
| | - Peter S Nico
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter K Weber
- Lawrence Livermore National Laboratory, Livermore, 94550, CA, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Livermore, 94550, CA, USA
- University of California Merced, Merced, 95343, CA, USA
| | | |
Collapse
|
21
|
Martin FM, van der Heijden MGA. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. THE NEW PHYTOLOGIST 2024; 242:1486-1506. [PMID: 38297461 DOI: 10.1111/nph.19541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Francis M Martin
- Université de Lorraine, INRAE, UMR IAM, Champenoux, 54280, France
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Marcel G A van der Heijden
- Department of Agroecology & Environment, Plant-Soil Interactions, Agroscope, Zürich, 8046, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland
| |
Collapse
|
22
|
Gu R, Xiao K, Zhu Z, He X, Li D. Afforestation enhances glomalin-related soil protein content but decreases its contribution to soil organic carbon in a subtropical karst area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120754. [PMID: 38522280 DOI: 10.1016/j.jenvman.2024.120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Afforestation on degraded croplands has been proposed as an effective measure to promote ecosystem functions including soil organic carbon (SOC) sequestration. Glomalin-related soil protein (GRSP) plays a crucial role in promoting the accumulation and stability of SOC. Nevertheless, mechanisms underlying the effects of afforestation on GRSP accumulation have not been well elucidated. In the present study, 14 pairs of maize fields and plantation forests were selected using a paired-site approach in a karst region of southwest China. By measuring soil GRSP and a variety of soil biotic and abiotic variables, the pattern of and controls on GRSP accumulation in response to afforestation were explored. The average content of total GRSP (T-GRSP) and its contribution to SOC in the maize field were 5.22 ± 0.29 mg g-1 and 42.33 ± 2.25%, and those in the plantation forest were 6.59 ± 0.32 mg g-1 and 25.77 ± 1.17%, respectively. T-GRSP content was increased by 26.4% on average, but its contribution to SOC was decreased by 39.1% following afforestation. T-GRSP content decreased as soil depth increased regardless of afforestation or not. Afforestation increased T-GRSP indirectly via its positive effects on arbuscular mycorrhizal fungi biomass, which was stimulated by afforestation through elevating fine root biomass or increasing the availability of labile C and N. The suppressed contribution of T-GRSP to SOC following afforestation was due to the relatively higher increase in other SOC components than T-GRSP and the significant increase of soil C:N ratio. Our study reveals the mechanisms underlying the effects of afforestation on T-GRSP accumulation, and is conducive to improving the mechanistic understanding of microbial control on SOC sequestration following afforestation.
Collapse
Affiliation(s)
- Rui Gu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, 547100, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kongcao Xiao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning, 530000, China
| | - Zihong Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, 547100, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xunyang He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning, 530000, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, 547100, China
| | - Dejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning, 530000, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, 547100, China.
| |
Collapse
|
23
|
Susanti WI, Krashevska V, Widyastuti R, Stiegler C, Gunawan D, Scheu S, Potapov AM. Seasonal fluctuations of litter and soil Collembola and their drivers in rainforest and plantation systems. PeerJ 2024; 12:e17125. [PMID: 38577414 PMCID: PMC10993886 DOI: 10.7717/peerj.17125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Rainforest conversion and expansion of plantations in tropical regions change local microclimate and are associated with biodiversity decline. Tropical soils are a hotspot of animal biodiversity and may sensitively respond to microclimate changes, but these responses remain unexplored. To address this knowledge gap, here we investigated seasonal fluctuations in density and community composition of Collembola, a dominant group of soil invertebrates, in rainforest, and in rubber and oil palm plantations in Jambi province (Sumatra, Indonesia). Across land-use systems, the density of Collembola in the litter was at a maximum at the beginning of the wet season, whereas in soil it generally varied little. The community composition of Collembola changed with season and the differences between land-use systems were most pronounced at the beginning of the dry season. Water content, pH, fungal and bacterial biomarkers, C/N ratio and root biomass were identified as factors related to seasonal variations in species composition of Collembola across different land-use systems. We conclude that (1) conversion of rainforest into plantation systems aggravates detrimental effects of low moisture during the dry season on soil invertebrate communities; (2) Collembola communities are driven by common environmental factors across land-use systems, with water content, pH and food availability being most important; (3) Collembola in litter are more sensitive to climatic variations than those in soil. Overall, the results document the sensitivity of tropical soil invertebrate communities to seasonal climatic variations, which intensifies the effects of the conversion of rainforest into plantation systems on soil biodiversity.
Collapse
Affiliation(s)
- Winda Ika Susanti
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August Universität Göttingen, Göttingen, Germany
| | - Valentyna Krashevska
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August Universität Göttingen, Göttingen, Germany
| | - Rahayu Widyastuti
- Department of Soil Sciences and Land Resources, Bogor Institute of Agriculture, Bogor, Indonesia
| | | | - Dodo Gunawan
- Center for Climate Change Information, Agency for Meteorology Climatology and Geophysics, Jakarta, Indonesia
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August Universität Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, Göttingen, Germany
| | - Anton M. Potapov
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August Universität Göttingen, Göttingen, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Institute of Biology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Tedersoo L, Drenkhan R, Abarenkov K, Anslan S, Bahram M, Bitenieks K, Buegger F, Gohar D, Hagh‐Doust N, Klavina D, Makovskis K, Zusevica A, Pritsch K, Padari A, Põlme S, Rahimlou S, Rungis D, Mikryukov V. The influence of tree genus, phylogeny, and richness on the specificity, rarity, and diversity of ectomycorrhizal fungi. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13253. [PMID: 38575147 PMCID: PMC10994715 DOI: 10.1111/1758-2229.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Partner specificity is a well-documented phenomenon in biotic interactions, yet the factors that determine specificity in plant-fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera. The highest level of specificity was observed in root endophytic and ectomycorrhizal associations, while the lowest was found in arbuscular mycorrhizal associations. The majority of ectomycorrhizal fungal species showed a preference for one of their partner trees, primarily at the plant genus level. Specialist ectomycorrhizal fungi were dominant in belowground communities in terms of species richness and relative abundance. Moreover, all tree genera (and occasionally species) demonstrated a preference for certain fungal groups. Partner specificity was not related to the rarity of fungi or plants or environmental conditions, except for soil pH. Depending on the partner tree genus, specific fungi became more prevalent and relatively more abundant with increasing stand age, tree dominance, and soil pH conditions optimal for the partner tree genus. The richness of partner tree species and increased evenness of ectomycorrhizal fungi in multi-host communities enhanced the species richness of ectomycorrhizal fungi. However, it was primarily the partner-generalist fungi that contributed to the high diversity of ectomycorrhizal fungi in mixed forests.
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
- College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Rein Drenkhan
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | | | - Sten Anslan
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Mohammad Bahram
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Kriss Bitenieks
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Franz Buegger
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Research Unit Environmental SimulationNeuherbergGermany
| | - Daniyal Gohar
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Niloufar Hagh‐Doust
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Darta Klavina
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Kristaps Makovskis
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Austra Zusevica
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Karin Pritsch
- Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Research Unit Environmental SimulationNeuherbergGermany
| | - Allar Padari
- Institute of Forestry and EngineeringEstonian University of Life SciencesTartuEstonia
| | - Sergei Põlme
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Natural History MuseumUniversity of TartuTartuEstonia
| | - Saleh Rahimlou
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
| | - Dainis Rungis
- Latvian State Forest Research Institute ‘Silava’ (LSFRI Silava)SalaspilsLatvia
| | - Vladimir Mikryukov
- Mycology and Microbiology CenterUniversity of TartuTartuEstonia
- Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| |
Collapse
|
25
|
Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1349401. [PMID: 38571718 PMCID: PMC10988515 DOI: 10.3389/fpls.2024.1349401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Climate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.
Collapse
Affiliation(s)
- Lorenzo Sena
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Erica Mica
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Patrizia Vaccino
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Nicola Pecchioni
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Foggia, Italy
| |
Collapse
|
26
|
Medina-Vega JA, Zuleta D, Aguilar S, Alonso A, Bissiengou P, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Castaño N, Chave J, Dalling JW, de Oliveira AA, Duque Á, Ediriweera S, Ewango CEN, Filip J, Hubbell SP, Itoh A, Kiratiprayoon S, Lum SKY, Makana JR, Memiaghe H, Mitre D, Mohamad MB, Nathalang A, Nilus R, Nkongolo NV, Novotny V, O'Brien MJ, Pérez R, Pongpattananurak N, Reynolds G, Russo SE, Tan S, Thompson J, Uriarte M, Valencia R, Vicentini A, Yao TL, Zimmerman JK, Davies SJ. Tropical tree ectomycorrhiza are distributed independently of soil nutrients. Nat Ecol Evol 2024; 8:400-410. [PMID: 38200369 DOI: 10.1038/s41559-023-02298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Mycorrhizae, a form of plant-fungal symbioses, mediate vegetation impacts on ecosystem functioning. Climatic effects on decomposition and soil quality are suggested to drive mycorrhizal distributions, with arbuscular mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and ectomycorrhizal (EcM) plants in high-latitude/low-soil-quality areas. However, these generalizations, based on coarse-resolution data, obscure finer-scale variations and result in high uncertainties in the predicted distributions of mycorrhizal types and their drivers. Using data from 31 lowland tropical forests, both at a coarse scale (mean-plot-level data) and fine scale (20 × 20 metres from a subset of 16 sites), we demonstrate that the distribution and abundance of EcM-associated trees are independent of soil quality. Resource exchange differences among mycorrhizal partners, stemming from diverse evolutionary origins of mycorrhizal fungi, may decouple soil fertility from the advantage provided by mycorrhizal associations. Additionally, distinct historical biogeographies and diversification patterns have led to differences in forest composition and nutrient-acquisition strategies across three major tropical regions. Notably, Africa and Asia's lowland tropical forests have abundant EcM trees, whereas they are relatively scarce in lowland neotropical forests. A greater understanding of the functional biology of mycorrhizal symbiosis is required, especially in the lowland tropics, to overcome biases from assuming similarity to temperate and boreal regions.
Collapse
Affiliation(s)
- José A Medina-Vega
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA.
| | - Daniel Zuleta
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
| | | | - Alfonso Alonso
- Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Pulchérie Bissiengou
- Herbier National du Gabon, Institut de Pharmacopée et de Médecine Traditionelle, Libreville, Gabon
| | - Warren Y Brockelman
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Sarayudh Bunyavejchewin
- Thai Long-Term Forest Ecological Research Project, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | | | - Nicolás Castaño
- Herbario Amazónico Colombiano, Instituto Amazónico de Investigaciones Científicas Sinchi, Bogotá, Colombia
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique, CNRS, UPS, IRD, Université Paul Sabatier, Toulouse, France
| | - James W Dalling
- Smithsonian Tropical Research Institute, Balboa, Panama
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alexandre A de Oliveira
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Álvaro Duque
- Departamento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Sisira Ediriweera
- Department of Science and Technology, Uva Wellassa University, Badulla, Sri Lanka
| | - Corneille E N Ewango
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Jonah Filip
- Binatang Research Center, Madang, Papua New Guinea
| | - Stephen P Hubbell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Akira Itoh
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Somboon Kiratiprayoon
- Faculty of Science and Technology, Thammasat University (Rangsit), Pathum Thani, Thailand
| | - Shawn K Y Lum
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Jean-Remy Makana
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Hervé Memiaghe
- Institut de Recherche en Ecologie Tropicale, Centre National de la Recherche Scientifique et Technologique, Libreville, Gabon
| | - David Mitre
- Smithsonian Tropical Research Institute, Balboa, Panama
| | | | - Anuttara Nathalang
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Thailand
| | - Reuben Nilus
- Sabah Forestry Department, Forest Research Centre, Sandakan, Malaysia
| | - Nsalambi V Nkongolo
- School of Science, Navajo Technical University, Crownpoint, NM, USA
- Institut Facultaire des Sciences Agronomiques (IFA) de Yangambi, Kisangani, Democratic Republic of the Congo
| | - Vojtech Novotny
- Biology Centre, Institute of Entomology of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Michael J O'Brien
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Almería, Spain
| | - Rolando Pérez
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Nantachai Pongpattananurak
- Thai Long-Term Forest Ecological Research Project, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Glen Reynolds
- Southeast Asia Rainforest Research Partnership (SEARRP), Kota Kinabalu, Malaysia
| | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA
| | | | | | - María Uriarte
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Renato Valencia
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Alberto Vicentini
- Coordenação de Dinâmica Ambiental (CODAM), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Tze Leong Yao
- Forestry and Environment Division, Forest Research Institute Malaysia, Kepong, Malaysia
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR, USA
| | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
| |
Collapse
|
27
|
Ahkami AH, Qafoku O, Roose T, Mou Q, Lu Y, Cardon ZG, Wu Y, Chou C, Fisher JB, Varga T, Handakumbura P, Aufrecht JA, Bhattacharjee A, Moran JJ. Emerging sensing, imaging, and computational technologies to scale nano-to macroscale rhizosphere dynamics - Review and research perspectives. SOIL BIOLOGY & BIOCHEMISTRY 2024; 189:109253. [PMID: 39238778 PMCID: PMC11376622 DOI: 10.1016/j.soilbio.2023.109253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The soil region influenced by plant roots, i.e., the rhizosphere, is one of the most complex biological habitats on Earth and significantly impacts global carbon flow and transformation. Understanding the structure and function of the rhizosphere is critically important for maintaining sustainable plant ecosystem services, designing engineered ecosystems for long-term soil carbon storage, and mitigating the effects of climate change. However, studying the biological and ecological processes and interactions in the rhizosphere requires advanced integrated technologies capable of decoding such a complex system at different scales. Here, we review how emerging approaches in sensing, imaging, and computational modeling can advance our understanding of the complex rhizosphere system. Particularly, we provide our perspectives and discuss future directions in developing in situ rhizosphere sensing technologies that could potentially correlate local-scale interactions to ecosystem scale impacts. We first review integrated multimodal imaging techniques for tracking inorganic elements and organic carbon flow at nano- to microscale in the rhizosphere, followed by a discussion on the use of synthetic soil and plant habitats that bridge laboratory-to-field studies on the rhizosphere processes. We then describe applications of genetically encoded biosensors in monitoring nutrient and chemical exchanges in the rhizosphere, and the novel nanotechnology-mediated delivery approaches for introducing biosensors into the root tissues. Next, we review the recent progress and express our vision on field-deployable sensing technologies such as planar optodes for quantifying the distribution of chemical and analyte gradients in the rhizosphere under field conditions. Moreover, we provide perspectives on the challenges of linking complex rhizosphere interactions to ecosystem sensing for detecting biological traits across scales, which arguably requires using the best-available model predictions including the model-experiment and image-based modeling approaches. Experimental platforms relevant to field conditions like SMART (Sensors at Mesoscales with Advanced Remote Telemetry) soils testbed, coupled with ecosystem sensing and predictive models, can be effective tools to explore coupled ecosystem behavior and responses to environmental perturbations. Finally, we envision that with the advent of novel high-resolution imaging capabilities at nano- to macroscale, and remote biosensing technologies, combined with advanced computational models, future studies will lead to detection and upscaling of rhizosphere processes toward ecosystem and global predictions.
Collapse
Affiliation(s)
- Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Odeta Qafoku
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Tiina Roose
- Bioengineering Sciences Research Group, Faculty of Engineering and Environment, University of Southampton, University Road, Southampton, England, SO17 1BJ
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin, 105 East 24 Street, Austin, TX 78712, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, 105 East 24 Street, Austin, TX 78712, USA
| | - Zoe G Cardon
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Yuxin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Chunwei Chou
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA, 92866, USA
| | - Tamas Varga
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Pubudu Handakumbura
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Jayde A Aufrecht
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Arunima Bhattacharjee
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - James J Moran
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
- Michigan State University, Department of Integrative Biology and Department of Plant, Soil, and Microbial Sciences, East Lansing, MI, 48824, USA
| |
Collapse
|
28
|
Netherway T, Bengtsson J, Buegger F, Fritscher J, Oja J, Pritsch K, Hildebrand F, Krab EJ, Bahram M. Pervasive associations between dark septate endophytic fungi with tree root and soil microbiomes across Europe. Nat Commun 2024; 15:159. [PMID: 38167673 PMCID: PMC10761831 DOI: 10.1038/s41467-023-44172-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Trees interact with a multitude of microbes through their roots and root symbionts such as mycorrhizal fungi and root endophytes. Here, we explore the role of fungal root symbionts as predictors of the soil and root-associated microbiomes of widespread broad-leaved trees across a European latitudinal gradient. Our results suggest that, alongside factors such as climate, soil, and vegetation properties, root colonization by ectomycorrhizal, arbuscular mycorrhizal, and dark septate endophytic fungi also shapes tree-associated microbiomes. Notably, the structure of root and soil microbiomes across our sites is more strongly and consistently associated with dark septate endophyte colonization than with mycorrhizal colonization and many abiotic factors. Root colonization by dark septate endophytes also has a consistent negative association with the relative abundance and diversity of nutrient cycling genes. Our study not only indicates that root-symbiotic interactions are an important factor structuring soil communities and functions in forest ecosystems, but also that the hitherto less studied dark septate endophytes are likely to be central players in these interactions.
Collapse
Affiliation(s)
- Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden.
| | - Jan Bengtsson
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
| | - Franz Buegger
- Research Unit for Environmental Simulation (EUS), German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Joachim Fritscher
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Jane Oja
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| | - Karin Pritsch
- Research Unit for Environmental Simulation (EUS), German Research Center for Environmental Health, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Eveline J Krab
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 750 07, Uppsala, Sweden
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| |
Collapse
|
29
|
Mikryukov V, Dulya O, Zizka A, Bahram M, Hagh-Doust N, Anslan S, Prylutskyi O, Delgado-Baquerizo M, Maestre FT, Nilsson H, Pärn J, Öpik M, Moora M, Zobel M, Espenberg M, Mander Ü, Khalid AN, Corrales A, Agan A, Vasco-Palacios AM, Saitta A, Rinaldi A, Verbeken A, Sulistyo B, Tamgnoue B, Furneaux B, Duarte Ritter C, Nyamukondiwa C, Sharp C, Marín C, Gohar D, Klavina D, Sharmah D, Dai DQ, Nouhra E, Biersma EM, Rähn E, Cameron E, De Crop E, Otsing E, Davydov E, Albornoz F, Brearley F, Buegger F, Zahn G, Bonito G, Hiiesalu I, Barrio I, Heilmann-Clausen J, Ankuda J, Doležal J, Kupagme J, Maciá-Vicente J, Djeugap Fovo J, Geml J, Alatalo J, Alvarez-Manjarrez J, Põldmaa K, Runnel K, Adamson K, Bråthen KA, Pritsch K, Tchan Issifou K, Armolaitis K, Hyde K, Newsham KK, Panksep K, Lateef AA, Hansson L, Lamit L, Saba M, Tuomi M, Gryzenhout M, Bauters M, Piepenbring M, Wijayawardene NN, Yorou N, Kurina O, Mortimer P, Meidl P, Kohout P, Puusepp R, Drenkhan R, Garibay-Orijel R, Godoy R, Alkahtani S, Rahimlou S, Dudov S, Põlme S, Ghosh S, Mundra S, Ahmed T, Netherway T, Henkel T, Roslin T, Nteziryayo V, Fedosov V, Onipchenko V, Yasanthika WAE, Lim Y, et alMikryukov V, Dulya O, Zizka A, Bahram M, Hagh-Doust N, Anslan S, Prylutskyi O, Delgado-Baquerizo M, Maestre FT, Nilsson H, Pärn J, Öpik M, Moora M, Zobel M, Espenberg M, Mander Ü, Khalid AN, Corrales A, Agan A, Vasco-Palacios AM, Saitta A, Rinaldi A, Verbeken A, Sulistyo B, Tamgnoue B, Furneaux B, Duarte Ritter C, Nyamukondiwa C, Sharp C, Marín C, Gohar D, Klavina D, Sharmah D, Dai DQ, Nouhra E, Biersma EM, Rähn E, Cameron E, De Crop E, Otsing E, Davydov E, Albornoz F, Brearley F, Buegger F, Zahn G, Bonito G, Hiiesalu I, Barrio I, Heilmann-Clausen J, Ankuda J, Doležal J, Kupagme J, Maciá-Vicente J, Djeugap Fovo J, Geml J, Alatalo J, Alvarez-Manjarrez J, Põldmaa K, Runnel K, Adamson K, Bråthen KA, Pritsch K, Tchan Issifou K, Armolaitis K, Hyde K, Newsham KK, Panksep K, Lateef AA, Hansson L, Lamit L, Saba M, Tuomi M, Gryzenhout M, Bauters M, Piepenbring M, Wijayawardene NN, Yorou N, Kurina O, Mortimer P, Meidl P, Kohout P, Puusepp R, Drenkhan R, Garibay-Orijel R, Godoy R, Alkahtani S, Rahimlou S, Dudov S, Põlme S, Ghosh S, Mundra S, Ahmed T, Netherway T, Henkel T, Roslin T, Nteziryayo V, Fedosov V, Onipchenko V, Yasanthika WAE, Lim Y, Van Nuland M, Soudzilovskaia N, Antonelli A, Kõljalg U, Abarenkov K, Tedersoo L. Connecting the multiple dimensions of global soil fungal diversity. SCIENCE ADVANCES 2023; 9:eadj8016. [PMID: 38019923 PMCID: PMC10686567 DOI: 10.1126/sciadv.adj8016] [Show More Authors] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.
Collapse
Affiliation(s)
- Vladimir Mikryukov
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Olesya Dulya
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Alexander Zizka
- Department of Biology, Philipps-University, Marburg 35032, Germany
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Niloufar Hagh-Doust
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Oleh Prylutskyi
- Department of Mycology and Plant Resistance, School of Biology, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas, Sevilla 41012, Spain
| | - Fernando T. Maestre
- Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’ and Departamento de Ecología, Universidad de Alicante, Alicante 03690, Spain
| | - Henrik Nilsson
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg 40530, Sweden
| | - Jaan Pärn
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Mikk Espenberg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Ülo Mander
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | | | - Adriana Corrales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá 111221, Colombia
| | - Ahto Agan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Aída-M. Vasco-Palacios
- Grupo de BioMicro y Microbiología Ambiental, Escuela de Microbiologia, Universidad de Antioquia UdeA, Medellin 050010, Colombia
| | - Alessandro Saitta
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo 90128, Italy
| | - Andrea Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cagliari 09124, Italy
| | | | - Bobby Sulistyo
- Department Biology, Ghent University, Ghent 9000, Belgium
| | - Boris Tamgnoue
- Department of Crop Science, University of Dschang, Dschang, Cameroon
| | - Brendan Furneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | | | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye 10071, Botswana
| | - Cathy Sharp
- Natural History Museum of Zimbabwe, Bulawayo, Zimbabwe
| | - César Marín
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad SantoTomás, Valdivia, Chile
| | - Daniyal Gohar
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | - Darta Klavina
- Latvian State Forest Research Institute Silava, Salaspils 2169, Latvia
| | - Dipon Sharmah
- Department of Botany, Jawaharlal Nehru Rajkeeya Mahavidyalaya, Pondicherry University, Port Blair 744101, India
| | - Dong-Qin Dai
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Eduardo Nouhra
- Instituto Multidisciplinario de Biología Vegetal (CONICET), Universidad Nacional de Córdoba, Cordoba 5000, Argentina
| | - Elisabeth Machteld Biersma
- Natural History Museum of Denmark, Copenhagen 1123, Denmark
- British Antarctic Survey, NERC, High Cross, Cambridge CB3 0ET, UK
| | - Elisabeth Rähn
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Erin Cameron
- Department of Environmental Science, Saint Mary's University, Halifax B3H 3C3, Canada
| | - Eske De Crop
- Department Biology, Ghent University, Ghent 9000, Belgium
| | - Eveli Otsing
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | | | - Felipe Albornoz
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Wembley 6014, Australia
| | - Francis Brearley
- Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Franz Buegger
- Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Geoffrey Zahn
- Biology Department, Utah Valley University, Orem, UT 84058, USA
| | - Gregory Bonito
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824-6254, USA
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Isabel Barrio
- Faculty of Natural and Environmental Sciences, Agricultural University of Iceland, Reykjavík 112, Iceland
| | - Jacob Heilmann-Clausen
- Center for Macroecology, Evolution and Climate, University of Copenhagen, Copenhagen 1350, Denmark
| | - Jelena Ankuda
- Vokė branch, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Vilnius LT-02232, Lithuania
| | - Jiri Doležal
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice 37005, Czech Republic
| | - John Kupagme
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | - Jose Maciá-Vicente
- Department of Environmental Sciences, Plant Ecology and Nature Conservation, Wageningen University and Research, Wageningen 6708, Netherlands
| | | | - József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger 3300, Hungary
| | - Juha Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | | | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
- Natural History Museum, University of Tartu, Tartu 51003, Estonia
| | - Kadri Runnel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Kalev Adamson
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Kari-Anne Bråthen
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø 9019, Norway
| | - Karin Pritsch
- Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Kassim Tchan Issifou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, University of Parakou, Parakou 00229, Benin
| | - Kęstutis Armolaitis
- Department of Silviculture and Ecology, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Girionys 53101, Lithuania
| | - Kevin Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin K. Newsham
- British Antarctic Survey, NERC, High Cross, Cambridge CB3 0ET, UK
| | - Kristel Panksep
- Chair of Hydrobiology and Fishery, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Adebola Azeez Lateef
- Department of Plant Biology, Faculty of Life Science, University of Ilorin, Ilorin 240102, Nigeria
- Department of Forest Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Linda Hansson
- Gothenburg Centre for Sustainable Development, Gothenburg 41133, Sweden
| | - Louis Lamit
- Department of Biology, Syracuse University, Syracuse 13244, USA
| | - Malka Saba
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Tuomi
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø 9019, Norway
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Marijn Bauters
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Meike Piepenbring
- Mycology Working Group, Goethe University Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Nalin N. Wijayawardene
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Nourou Yorou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, University of Parakou, Parakou 00229, Benin
| | - Olavi Kurina
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Peter Mortimer
- Center For Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Peter Meidl
- Freie Universität Berlin, Institut für Biologie, Berlin 14195, Germany
| | - Petr Kohout
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Rasmus Puusepp
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Roberto Godoy
- Instituto Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Rahimlou
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | - Sergey Dudov
- Department of Ecology and Plant Geography, Moscow Lomonosov State University, Moscow 119234, Russia
| | - Sergei Põlme
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
- Natural History Museum, University of Tartu, Tartu 51003, Estonia
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Talaat Ahmed
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Terry Henkel
- Department of Biological Sciences, California State Polytechnic University, Arcata, CA 95521, USA
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Vincent Nteziryayo
- Department of Food Science and Technology, University of Burundi, Bujumbura Burundi
| | - Vladimir Fedosov
- Department of Ecology and Plant Geography, Moscow Lomonosov State University, Moscow 119234, Russia
| | - Vladimir Onipchenko
- Department of Ecology and Plant Geography, Moscow Lomonosov State University, Moscow 119234, Russia
| | | | - Young Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Michael Van Nuland
- Society for the Protection of Underground Networks (SPUN), Dover, DE 19901, USA
| | | | | | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
- Natural History Museum, University of Tartu, Tartu 51003, Estonia
| | - Kessy Abarenkov
- Natural History Museum, University of Tartu, Tartu 51003, Estonia
| | - Leho Tedersoo
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Garstecka Z, Antoszewski M, Mierek-Adamska A, Krauklis D, Niedojadło K, Kaliska B, Hrynkiewicz K, Dąbrowska GB. Trichoderma viride Colonizes the Roots of Brassica napus L., Alters the Expression of Stress-Responsive Genes, and Increases the Yield of Canola under Field Conditions during Drought. Int J Mol Sci 2023; 24:15349. [PMID: 37895028 PMCID: PMC10607854 DOI: 10.3390/ijms242015349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In this work, we present the results of the inoculation of canola seeds (Brassica napus L.) with Trichoderma viride strains that promote the growth of plants. Seven morphologically different strains of T. viride (TvI-VII) were shown to be capable of synthesizing auxins and exhibited cellulolytic and pectinolytic activities. To gain a deeper insight into the molecular mechanisms underlying canola-T. viride interactions, we analyzed the canola stress genes metallothioneins (BnMT1-3) and stringent response genes (BnRSH1-3 and BnCRSH). We demonstrated the presence of cis-regulatory elements responsive to fungal elicitors in the promoter regions of B. napus MT and RSH genes and observed changes in the levels of the transcripts of the above-mentioned genes in response to root colonization by the tested fungal strains. Of the seven tested strains, under laboratory conditions, T. viride VII stimulated the formation of roots and the growth of canola seedlings to the greatest extent. An experiment conducted under field conditions during drought showed that the inoculation of canola seeds with a suspension of T. viride VII spores increased yield by 16.7%. There was also a positive effect of the fungus on the height and branching of the plants, the number of siliques, and the mass of a thousand seeds. We suggest that the T. viride strain TvVII can be used in modern sustainable agriculture as a bioinoculant and seed coating to protect B. napus from drought.
Collapse
Affiliation(s)
- Zuzanna Garstecka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| | - Marcel Antoszewski
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| | - Daniel Krauklis
- Research Centre for Cultivar Testing in Słupia Wielka, Chrząstowo 8, 89-100 Nakło nad Notecią, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Beata Kaliska
- Research Centre for Cultivar Testing in Słupia Wielka, Chrząstowo 8, 89-100 Nakło nad Notecią, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Grażyna B. Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| |
Collapse
|
31
|
Hawkins HJ, Cargill RIM, Van Nuland ME, Hagen SC, Field KJ, Sheldrake M, Soudzilovskaia NA, Kiers ET. Mycorrhizal mycelium as a global carbon pool. Curr Biol 2023; 33:R560-R573. [PMID: 37279689 DOI: 10.1016/j.cub.2023.02.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For more than 400 million years, mycorrhizal fungi and plants have formed partnerships that are crucial to the emergence and functioning of global ecosystems. The importance of these symbiotic fungi for plant nutrition is well established. However, the role of mycorrhizal fungi in transporting carbon into soil systems on a global scale remains under-explored. This is surprising given that ∼75% of terrestrial carbon is stored belowground and mycorrhizal fungi are stationed at a key entry point of carbon into soil food webs. Here, we analyze nearly 200 datasets to provide the first global quantitative estimates of carbon allocation from plants to the mycelium of mycorrhizal fungi. We estimate that global plant communities allocate 3.93 Gt CO2e per year to arbuscular mycorrhizal fungi, 9.07 Gt CO2e per year to ectomycorrhizal fungi, and 0.12 Gt CO2e per year to ericoid mycorrhizal fungi. Based on this estimate, 13.12 Gt of CO2e fixed by terrestrial plants is, at least temporarily, allocated to the underground mycelium of mycorrhizal fungi per year, equating to ∼36% of current annual CO2 emissions from fossil fuels. We explore the mechanisms by which mycorrhizal fungi affect soil carbon pools and identify approaches to increase our understanding of global carbon fluxes via plant-fungal pathways. Our estimates, although based on the best available evidence, are imperfect and should be interpreted with caution. Nonetheless, our estimations are conservative, and we argue that this work confirms the significant contribution made by mycorrhizal associations to global carbon dynamics. Our findings should motivate their inclusion both within global climate and carbon cycling models, and within conservation policy and practice.
Collapse
Affiliation(s)
- Heidi-Jayne Hawkins
- Department of Biological Sciences, University of Cape Town, Cape Town 7701, South Africa; Conservation International, Forrest House, Belmont Park, Cape Town 7700, South Africa.
| | - Rachael I M Cargill
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands; AMOLF, Science Park 102, Amsterdam, The Netherlands
| | - Michael E Van Nuland
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands; Society for the Protection of Underground Networks, SPUN, 3500 South DuPont Highway, Dover, DE 19901, USA
| | | | - Katie J Field
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Merlin Sheldrake
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands; Society for the Protection of Underground Networks, SPUN, 3500 South DuPont Highway, Dover, DE 19901, USA
| | | | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands; Society for the Protection of Underground Networks, SPUN, 3500 South DuPont Highway, Dover, DE 19901, USA
| |
Collapse
|
32
|
Wang B, McCormack ML, Ricciuto DM, Yang X, Iversen CM. Embracing fine-root system complexity in terrestrial ecosystem modeling. GLOBAL CHANGE BIOLOGY 2023; 29:2871-2885. [PMID: 36861355 DOI: 10.1111/gcb.16659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Projecting the dynamics and functioning of the biosphere requires a holistic consideration of whole-ecosystem processes. However, biases toward leaf, canopy, and soil modeling since the 1970s have constantly left fine-root systems being rudimentarily treated. As accelerated empirical advances in the last two decades establish clearly functional differentiation conferred by the hierarchical structure of fine-root orders and associations with mycorrhizal fungi, a need emerges to embrace this complexity to bridge the data-model gap in still extremely uncertain models. Here, we propose a three-pool structure comprising transport and absorptive fine roots with mycorrhizal fungi (TAM) to model vertically resolved fine-root systems across organizational and spatial-temporal scales. Emerging from a conceptual shift away from arbitrary homogenization, TAM builds upon theoretical and empirical foundations as an effective and efficient approximation that balances realism and simplicity. A proof-of-concept demonstration of TAM in a big-leaf model both conservatively and radically shows robust impacts of differentiation within fine-root systems on simulating carbon cycling in temperate forests. Theoretical and quantitative support warrants exploiting its rich potentials across ecosystems and models to confront uncertainties and challenges for a predictive understanding of the biosphere. Echoing a broad trend of embracing ecological complexity in integrative ecosystem modeling, TAM may offer a consistent framework where modelers and empiricists can work together toward this grand goal.
Collapse
Affiliation(s)
- Bin Wang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Daniel M Ricciuto
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Xiaojuan Yang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Colleen M Iversen
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
33
|
Guo H, Wang Y, Yu J, Yi L, Shi Z, Wang F. A novel framework for vegetation change characterization from time series landsat images. ENVIRONMENTAL RESEARCH 2023; 222:115379. [PMID: 36716805 DOI: 10.1016/j.envres.2023.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Understanding terrestrial ecosystem dynamics requires a comprehensive examination of vegetation changes. Remote sensing technology has been established as an effective approach to reconstructing vegetation change history, investigating change properties, and evaluating the ecological effects. However, current remote sensing techniques are primarily focused on break detection but ignore long-term trend analysis. In this study, we proposed a novel framework based on a change detection algorithm and a trend analysis method that could integrate both short-term disturbance detection and long-term trends to comprehensively assess vegetation change. With this framework, we characterized the vegetation changes in Zhejiang Province from 1990 to 2020 using Landsat and landcover data. Benefiting from combining break detection and long-term trend analysis, the framework showcased its capability of capturing a variety of dynamics and trends of vegetation. The results show that the vegetation was browning in the plains while greening in the mountains, and the overall vegetation was gradually greening during the study period. By comparison, detected vegetation disturbances covered 57.71% of the province's land areas (accounting for 66.92% of the vegetated region) which were mainly distributed around the built-up areas, and most disturbances (94%) occurred in forest and cropland. There were two peak timings in the frequency of vegetation disturbances: around 2003 and around 2014, and the proportions of more than twice disturbances in a single location were low. The results illustrate that this framework is promising for the characterization of regional vegetation growth, including long-term trends and short-term features. The proposed framework enlightens a new direction for the continuous monitoring of vegetation dynamics.
Collapse
Affiliation(s)
- Hancheng Guo
- Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanyu Wang
- Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Yu
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| | - Lina Yi
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, China
| | - Zhou Shi
- Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou, 310058, China
| | - Fumin Wang
- Institute of Agricultural Remote Sensing and Information Technology Application, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Jo C, Zhang J, Tam JM, Church GM, Khalil AS, Segrè D, Tang TC. Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater Today Bio 2023; 19:100560. [PMID: 36756210 PMCID: PMC9900623 DOI: 10.1016/j.mtbio.2023.100560] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Filamentous fungi drive carbon and nutrient cycling across our global ecosystems, through its interactions with growing and decaying flora and their constituent microbiomes. The remarkable metabolic diversity, secretion ability, and fiber-like mycelial structure that have evolved in filamentous fungi have been increasingly exploited in commercial operations. The industrial potential of mycelial fermentation ranges from the discovery and bioproduction of enzymes and bioactive compounds, the decarbonization of food and material production, to environmental remediation and enhanced agricultural production. Despite its fundamental impact in ecology and biotechnology, molds and mushrooms have not, to-date, significantly intersected with synthetic biology in ways comparable to other industrial cell factories (e.g. Escherichia coli,Saccharomyces cerevisiae, and Komagataella phaffii). In this review, we summarize a suite of synthetic biology and computational tools for the mining, engineering and optimization of filamentous fungi as a bioproduction chassis. A combination of methods across genetic engineering, mutagenesis, experimental evolution, and computational modeling can be used to address strain development bottlenecks in established and emerging industries. These include slow mycelium growth rate, low production yields, non-optimal growth in alternative feedstocks, and difficulties in downstream purification. In the scope of biomanufacturing, we then detail previous efforts in improving key bottlenecks by targeting protein processing and secretion pathways, hyphae morphogenesis, and transcriptional control. Bringing synthetic biology practices into the hidden world of molds and mushrooms will serve to expand the limited panel of host organisms that allow for commercially-feasible and environmentally-sustainable bioproduction of enzymes, chemicals, therapeutics, foods, and materials of the future.
Collapse
Affiliation(s)
- Charles Jo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jing Zhang
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
| | - Jenny M. Tam
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ahmad S. Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
35
|
Cosme M. Mycorrhizas drive the evolution of plant adaptation to drought. Commun Biol 2023; 6:346. [PMID: 36997637 PMCID: PMC10063553 DOI: 10.1038/s42003-023-04722-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Plant adaptation to drought facilitates major ecological transitions, and will likely play a vital role under looming climate change. Mycorrhizas, i.e. strategic associations between plant roots and soil-borne symbiotic fungi, can exert strong influence on the tolerance to drought of extant plants. Here, I show how mycorrhizal strategy and drought adaptation have been shaping one another throughout the course of plant evolution. To characterize the evolutions of both plant characters, I applied a phylogenetic comparative method using data of 1,638 extant species globally distributed. The detected correlated evolution unveiled gains and losses of drought tolerance occurring at faster rates in lineages with ecto- or ericoid mycorrhizas, which were on average about 15 and 300 times faster than in lineages with the arbuscular mycorrhizal and naked root (non-mycorrhizal alone or with facultatively arbuscular mycorrhizal) strategy, respectively. My study suggests that mycorrhizas can play a key facilitator role in the evolutionary processes of plant adaptation to critical changes in water availability across global climates.
Collapse
Affiliation(s)
- Marco Cosme
- Mycology, Earth and Life Institute, Université Catholique de Louvain, Croix du sud 2, 1348, Louvain‑la‑Neuve, Belgium.
| |
Collapse
|
36
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
37
|
Higher productivity in forests with mixed mycorrhizal strategies. Nat Commun 2023; 14:1377. [PMID: 36914630 PMCID: PMC10011551 DOI: 10.1038/s41467-023-36888-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Decades of theory and empirical studies have demonstrated links between biodiversity and ecosystem functioning, yet the putative processes that underlie these patterns remain elusive. This is especially true for forest ecosystems, where the functional traits of plant species are challenging to quantify. We analyzed 74,563 forest inventory plots that span 35 ecoregions in the contiguous USA and found that in ~77% of the ecoregions mixed mycorrhizal plots were more productive than plots where either arbuscular or ectomycorrhizal fungal-associated tree species were dominant. Moreover, the positive effects of mixing mycorrhizal strategies on forest productivity were more pronounced at low than high tree species richness. We conclude that at low richness different mycorrhizal strategies may allow tree species to partition nutrient uptake and thus can increase community productivity, whereas at high richness other dimensions of functional diversity can enhance resource partitioning and community productivity. Our findings highlight the importance of mixed mycorrhizal strategies, in addition to that of taxonomic diversity in general, for maintaining ecosystem functioning in forests.
Collapse
|
38
|
Yu H, Wang T, Skidmore A, Heurich M, Bässler C. How future climate and tree distribution changes shape the biodiversity of macrofungi across Europe. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Affiliation(s)
- Haili Yu
- Faculty of Geo‐Information Science and Earth Observation University of Twente Enschede The Netherlands
| | - Tiejun Wang
- Faculty of Geo‐Information Science and Earth Observation University of Twente Enschede The Netherlands
| | - Andrew Skidmore
- Faculty of Geo‐Information Science and Earth Observation University of Twente Enschede The Netherlands
- Department of Earth and Environmental Science Macquarie University Sydney New South Wales Australia
| | - Marco Heurich
- Chair of Wildlife Ecology and Wildlife Management University of Freiburg Freiburg Germany
- Bavarian Forest National Park Grafenau Germany
- Institute for Forest and Wildlife Management Inland Norway University of Applied Science Koppang Norway
| | - Claus Bässler
- Bavarian Forest National Park Grafenau Germany
- Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences Goethe University Frankfurt Frankfurt Germany
| |
Collapse
|
39
|
Scartazza A, Sbrana C, D'Andrea E, Matteucci G, Rezaie N, Lauteri M. Above- and belowground interplay: Canopy CO 2 uptake, carbon and nitrogen allocation and isotope fractionation along the plant-ectomycorrhiza continuum. PLANT, CELL & ENVIRONMENT 2023; 46:889-900. [PMID: 36541420 DOI: 10.1111/pce.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In forests, mycorrhizal fungi regulate carbon (C) and nitrogen (N) dynamics. We evaluated the interplay among ectomycorrhizas (ECM), ecosystem C fluxes, tree productivity, C and N exchange and isotopic fractionation along the soil-ECM-plant continuum in a Mediterranean beech forest. From bud break to leaf shedding, we monitored: net ecosystem exchange (NEE, a measure of the net exchange of C between an ecosystem and the atmosphere), leaf area index, stem growth, N concentration, δ13 C and δ15 N in rhizosphere soil, ectomycorrhizal fine root tips (ERT), ECM-free fine root portions (NCR) and leaves. Seasonal changes in ERT relative biomass were strictly related to NEE and mimicked those detected in the radial growth. The analysis of δ13 C in ERT, leaves and NCR highlighted the impact of canopy photosynthesis on ERT development and an asynchronous seasonal C allocation strategy between ERT and NCR at the root tips level. Concerning N, δ15 N of leaves was negatively related to that of ERT and dependent on seasonal 15 N differences between ERT and NCR. Our results unravel a synchronous C allocation towards ERT and tree stem driven by the increasing NEE in spring-early summer. Moreover, they highlighted a phenology-dependent 15 N fractionation during N transfer from ECM to their hosts. This evidence, obtained in mature beech trees under natural conditions, may improve the knowledge of Mediterranean forests functionality.
Collapse
Affiliation(s)
- Andrea Scartazza
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Pisa, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Cristiana Sbrana
- Institute of Agricultural Biology and Biotechnology, National Research Council of Italy (CNR-IBBA), Pisa, Italy
| | - Ettore D'Andrea
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Porano, Italy
| | - Giorgio Matteucci
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Institute for BioEconomy, National Research Council of Italy (CNR-IBE), Sesto Fiorentino, Italy
| | - Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Napoli, Italy
| | - Marco Lauteri
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR-IRET), Porano, Italy
| |
Collapse
|
40
|
The metamicrobiome: key determinant of the homeostasis of nutrient recycling. Trends Ecol Evol 2023; 38:183-195. [PMID: 36328807 DOI: 10.1016/j.tree.2022.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
The metamicrobiome is an integrated concept to study carbon and nutrient recycling in ecosystems. Decomposition of plant-derived matter by free-living microbes and fire - two key recycling pathways - are highly sensitive to global change. Mutualistic associations of microbes with plants and animals strongly reduce this sensitivity. By solving a fundamental allometric trade-off between metabolic and homeostatic capacity, these mutualisms enable continued recycling of plant matter where and when conditions are unfavourable for the free-living microbiome. A diverse metamicrobiome - where multiple plant- and animal-associated microbiomes complement the free-living microbiome - thus enhances homeostasis of ecosystem recycling rates in variable environments. Research into metamicrobiome structure and functioning in ecosystems is therefore important for progress towards understanding environmental change.
Collapse
|
41
|
Barceló M, van Bodegom PM, Soudzilovskaia NA. Fine-resolution global maps of root biomass carbon colonized by arbuscular and ectomycorrhizal fungi. Sci Data 2023; 10:56. [PMID: 36697422 PMCID: PMC9877027 DOI: 10.1038/s41597-022-01913-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
Despite the recognized importance of mycorrhizal associations in ecosystem functioning, the actual abundance patterns of mycorrhizal fungi belowground are still unknown. This information is key for better quantification of mycorrhizal impacts on ecosystem processes and for incorporating mycorrhizal pathways into global biogeochemical models. Here we present the first high-resolution maps of fine root stocks colonized by arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) fungi (MgC ha-1). The maps were assembled by combining multiple open-source databases holding information on root biomass carbon, the proportion of AM and EcM tree biomass, plot-level relative abundance of plant species and intensity of AM and EcM root colonization. We calculated root-associated AM and EcM abundance in 881 spatial units, defined as the combination of ecoregions and land cover types across six continents. The highest AM abundances are observed in the (sub-)tropics, while the highest EcM abundances occur in the taiga regions. These maps serve as a basis for future research where continuous spatial estimates of root mycorrhizal stocks are needed.
Collapse
Affiliation(s)
- Milagros Barceló
- Environmental Biology Department; Institute of Environmental Sciences, CML, Leiden University, Einsteinweg 2, 2333 CC, Leiden, the Netherlands.
| | - Peter M van Bodegom
- Environmental Biology Department; Institute of Environmental Sciences, CML, Leiden University, Einsteinweg 2, 2333 CC, Leiden, the Netherlands
| | - Nadejda A Soudzilovskaia
- Environmental Biology Department; Institute of Environmental Sciences, CML, Leiden University, Einsteinweg 2, 2333 CC, Leiden, the Netherlands.
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
42
|
Deng M, Hu S, Guo L, Jiang L, Huang Y, Schmid B, Liu C, Chang P, Li S, Liu X, Ma K, Liu L. Tree mycorrhizal association types control biodiversity-productivity relationship in a subtropical forest. SCIENCE ADVANCES 2023; 9:eadd4468. [PMID: 36652522 PMCID: PMC9848640 DOI: 10.1126/sciadv.add4468] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/20/2022] [Indexed: 06/16/2023]
Abstract
Mycorrhizae are symbiotic associations between terrestrial plants and fungi in which fungi obtain nutrients in exchange for plant photosynthates. However, it remains unclear how different types of mycorrhizae affect their host interactions and productivity. Using a long-term experiment with a diversity gradient of arbuscular (AM) and ectomycorrhizal (EcM) tree species, we show that the type of mycorrhizae critically controls the effect of diversity on productivity. With increasing diversity, the net primary production of AM trees increased, but EcM trees decreased, largely because AM trees are more effective in acquiring nitrogen and phosphorus. Specifically, with diversity increase, AM trees enhance both nutrient resorption and litter decomposition, while there was a trade-off between litter decomposability and nutrient resorption in EcM trees. These results provide a mechanistic understanding of why AM trees using a different nutrient acquisition strategy from EcM trees can dominate in subtropical forests and at the same time their diversity enhances productivity.
Collapse
Affiliation(s)
- Meifeng Deng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Shuijin Hu
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695 USA
| | - Lulu Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Lin Jiang
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | - Yuanyuan Huang
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
- Institute of Biology, Experimental Interaction Ecology, Leipzig University, Puschstr. 4, 04103 Leipzig, Germany
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Chao Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Pengfei Chang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
- Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| |
Collapse
|
43
|
Tanikawa T, Maie N, Fujii S, Sun L, Hirano Y, Mizoguchi T, Matsuda Y. Contrasting patterns of nitrogen release from fine roots and leaves driven by microbial communities during decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158809. [PMID: 36116643 DOI: 10.1016/j.scitotenv.2022.158809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Leachate from decaying root and leaf litter plays crucial roles in soil biogeochemical processes in forest ecosystems. Unlike for leaf litter, however, the chemical composition and microbial community of root litter leachate are poorly understood. We hypothesized that both leachate nitrogen (N) composition and microbial communities differ between plant organs and decomposition stages and that leachate composition affects microbial community composition. We conducted a 2.5-year laboratory incubation using root and leaf substrate from Cryptomeria japonica and Chamaecyparis obtusa. We monitored the N forms released and used metabarcoding to characterize the microbial communities. Leachate N accounted for 40 % and 30 % of net N losses from C. japonica and C. obtusa roots, respectively; the remainder was probably lost in gaseous forms. In contrast, leaves absorbed N during the incubation regardless of tree species. The predominant N form in root leachate was nitrate (NO3-); cumulative NO3- quantity was 22.6 and 25.5 times greater in root than in leaf leachate for C. japonica and C. obtusa, respectively. A nitrifying bacterium was selected as the indicator taxon in root substrates, whereas many families of N-fixing bacteria were selected in leaf substrates. At the end of the incubation period, bacterial taxonomic diversity was high in both organs from both tree species, ranging from 177 to 339 taxa and increasing with time. However, fungal diversity was low for both organs (72 to 155 taxa). Shifts in bacterial community structure were related to NO3- concentration and leachate pH, whereas shifts in fungal community structure were related to leachate pH. These results suggest that the contrasting N dynamics of root and leaf substrates are strongly affected by the characteristics of and the microbes recruited by their leachates. Understanding organ-specific litter N dynamics is indispensable for predicting N cycling for optimal management of forest ecosystems in a changing world.
Collapse
Affiliation(s)
- Toko Tanikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Nagoya 464-8601, Japan; Kansai Research Center, Forestry and Forest Products Research Institute, Nagai-kyutaro, Momoyama, Fushimi, Kyoto 612-0855, Japan.
| | - Nagamitsu Maie
- School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Saori Fujii
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Lijuan Sun
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yasuhiro Hirano
- Graduate School of Environmental Studies, Nagoya University, Furocho, Nagoya 464-8601, Japan
| | - Takeo Mizoguchi
- Kansai Research Center, Forestry and Forest Products Research Institute, Nagai-kyutaro, Momoyama, Fushimi, Kyoto 612-0855, Japan
| | - Yosuke Matsuda
- Graduate School of Bioresources, Mie University, Mie 514-8507, Japan.
| |
Collapse
|
44
|
Kobayashi Y, Shibata TF, Hirakawa H, Nishiyama T, Yamada A, Hasebe M, Shigenobu S, Kawaguchi M. The genome of Lyophyllum shimeji provides insight into the initial evolution of ectomycorrhizal fungal genomes. DNA Res 2023; 30:6969780. [PMID: 36610744 PMCID: PMC9896470 DOI: 10.1093/dnares/dsac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Mycorrhizae are one of the most fundamental symbioses between plants and fungi, with ectomycorrhizae being the most widespread in boreal forest ecosystems. Ectomycorrhizal fungi are hypothesized to have evolved convergently from saprotrophic ancestors in several fungal clades, especially members of the subdivision Agaricomycotina. Studies on fungal genomes have identified several typical characteristics of mycorrhizal fungi, such as genome size expansion and decreases in plant cell-wall degrading enzymes (PCWDEs). However, genomic changes concerning the evolutionary transition to the ectomycorrhizal lifestyle are largely unknown. In this study, we sequenced the genome of Lyophyllum shimeji, an ectomycorrhizal fungus that is phylogenetically related to saprotrophic species and retains some saprotroph-like traits. We found that the genome of Ly. shimeji strain AT787 lacks both incremental increases in genome size and reduced numbers of PCWDEs. Our findings suggest that the previously reported common genomic traits of mycorrhizal fungi are not essential for the ectomycorrhizal lifestyle, but are a result of abolishing saprotrophic activity. Since Ly. shimeji is commercially consumed as an edible mushroom, the newly available genomic information may also impact research designed to enhance the cultivation of this mushroom.
Collapse
Affiliation(s)
- Yuuki Kobayashi
- To whom correspondence should be addressed. Tel.: +81-0564-55-7672, (Y.K.)
| | - Tomoko F Shibata
- Division of Evolutionary Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Akiyoshi Yamada
- Faculty of Agriculture, Shinshu University, Kamiina, Nagano 399-4598, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan,Department of Basic Biology, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan,Department of Basic Biology, SOKENDAI, Okazaki, Aichi 444-8585, Japan,Trans-omics Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | |
Collapse
|
45
|
Shumskaya M, Filippova N, Lorentzen L, Blue S, Andrew C, Lorusso NS. Citizen science helps in the study of fungal diversity in New Jersey. Sci Data 2023; 10:10. [PMID: 36599859 DOI: 10.1038/s41597-022-01916-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
The history of fungal diversity of the Northeastern United States is currently fragmentary and restricted to particular functional groups or limited geospatial scales. Here, we describe a unique by its size, lifespan and data originators dataset, to improve our understanding of species occurrence and distribution across the state and time. Between the years 2007 to 2019, over 30 parks and nature preserves were sampled during forays conducted by members of the New Jersey Mycological Association (USA), a nonprofit organization of fungi enthusiasts. The dataset contains over 400 000 occurrences of over 1400 species across the state, made up mostly of the phylum Basidiomycota (89%) and Ascomycota (11%), with most observations resolved at the species level (>99%). The database is georeferenced and openly accessible through the Global Biodiversity Information Facility (GBIF) repository. This dataset marks a productive endeavor to contribute to our knowledge of the biodiversity of fungi in the Northeastern United States leveraging citizen science to better resolve biodiversity of this critical and understudied kingdom.
Collapse
Affiliation(s)
- Maria Shumskaya
- Department of Biology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| | - Nina Filippova
- Yugra State University, Chekhova str., 16, Khanty-Mansiysk, 628012, Russia
| | - Laura Lorentzen
- Department of Biology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Shazneka Blue
- Department of Biology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Carrie Andrew
- Oberlin College & Conservatory, Biology Department, 119 Woodland Street, Oberlin, Ohio, 44074, USA
| | - Nicholas S Lorusso
- Department of Biology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
- Department of Natural Sciences, University of North Texas at Dallas, 7300 University Hills Blvd, Dallas, TX, 75241, USA
| |
Collapse
|
46
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
47
|
Hackel J, Henkel TW, Moreau P, De Crop E, Verbeken A, Sà M, Buyck B, Neves M, Vasco‐Palacios A, Wartchow F, Schimann H, Carriconde F, Garnica S, Courtecuisse R, Gardes M, Manzi S, Louisanna E, Roy M. Biogeographic history of a large clade of ectomycorrhizal fungi, the Russulaceae, in the Neotropics and adjacent regions. THE NEW PHYTOLOGIST 2022; 236:698-713. [PMID: 35811430 PMCID: PMC9795906 DOI: 10.1111/nph.18365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The biogeography of neotropical fungi remains poorly understood. Here, we reconstruct the origins and diversification of neotropical lineages in one of the largest clades of ectomycorrhizal fungi in the globally widespread family Russulaceae. We inferred a supertree of 3285 operational taxonomic units, representing worldwide internal transcribed spacer sequences. We reconstructed biogeographic history and diversification and identified lineages in the Neotropics and adjacent Patagonia. The ectomycorrhizal Russulaceae have a tropical African origin. The oldest lineages in tropical South America, most with African sister groups, date to the mid-Eocene, possibly coinciding with a boreotropical migration corridor. There were several transatlantic dispersal events from Africa more recently. Andean and Central American lineages mostly have north-temperate origins and are associated with North Andean uplift and the general north-south biotic interchange across the Panama isthmus, respectively. Patagonian lineages have Australasian affinities. Diversification rates in tropical South America and other tropical areas are lower than in temperate areas. Neotropical Russulaceae have multiple biogeographic origins since the mid-Eocene involving dispersal and co-migration. Discontinuous distributions of host plants may explain low diversification rates of tropical lowland ectomycorrhizal fungi. Deeply diverging neotropical fungal lineages need to be better documented.
Collapse
Affiliation(s)
- Jan Hackel
- Royal Botanic Gardens, KewRichmond‐upon‐ThamesTW9 3AEUK
- Laboratoire Evolution et Diversité Biologique (UMR 5174)Université Toulouse III – Paul Sabatier/CNRS/IRD31062Toulouse cedex 9France
| | - Terry W. Henkel
- Department of Biological SciencesCalifornia State Polytechnic University, HumboldtArcataCA95521USA
| | - Pierre‐Arthur Moreau
- Faculté de Pharmacie, Laboratoire des Sciences Végétales et Fongiques (LGCgE, ER4)Université de Lille59006LilleFrance
| | - Eske De Crop
- Department of BiologyGhent University9000GentBelgium
| | | | - Mariana Sà
- Centro Universitário de João PessoaPB 58053‐000João PessoaBrazil
| | - Bart Buyck
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRSSorbonne Université, EPHE, Université des Antilles75231Paris cedex 05France
| | - Maria‐Alice Neves
- Departamento de BotânicaUniversidade Federal de Santa CatarinaSC 88040‐900FlorianópolisBrazil
| | - Aída Vasco‐Palacios
- Microbiología Ambiental–School of Microbiology, Laboratory of Taxonomy and Ecology of Fungi–Institute of BiologyUniversity of Antioquia050010MedellínColombia
| | - Felipe Wartchow
- Departamento de Sistemática e EcologiaUniversidade Federal da ParaíbaPB 58051‐970João PessoaBrazil
| | - Heidy Schimann
- UMR Ecologie des Forêts de GuyaneAgroParisTech/CIRAD/CNRS/Université des Antilles/Université de la Guyane/INRA97379Kourou cedexFrench Guiana
| | - Fabian Carriconde
- Institut Agronomique néo‐Calédonien (IAC), Equipe Sol & Végétations (SolVeg)BP1823998848NouméaNew Caledonia
| | - Sigisfredo Garnica
- Instituto de Bioquímica y MicrobiologíaUniversidad Austral de Chile5049000ValdiviaChile
| | - Régis Courtecuisse
- Faculté de Pharmacie, Laboratoire des Sciences Végétales et Fongiques (LGCgE, ER4)Université de Lille59006LilleFrance
| | - Monique Gardes
- Laboratoire Evolution et Diversité Biologique (UMR 5174)Université Toulouse III – Paul Sabatier/CNRS/IRD31062Toulouse cedex 9France
| | - Sophie Manzi
- Laboratoire Evolution et Diversité Biologique (UMR 5174)Université Toulouse III – Paul Sabatier/CNRS/IRD31062Toulouse cedex 9France
| | - Eliane Louisanna
- UMR Ecologie des Forêts de GuyaneAgroParisTech/CIRAD/CNRS/Université des Antilles/Université de la Guyane/INRA97379Kourou cedexFrench Guiana
| | - Mélanie Roy
- Laboratoire Evolution et Diversité Biologique (UMR 5174)Université Toulouse III – Paul Sabatier/CNRS/IRD31062Toulouse cedex 9France
- Instituto Franco‐Argentino para el Estudio del Clima y sus Impactos (UMI IFAECI/CNRS‐CONICET‐UBA‐IRD)Universidad de Buenos AiresC1428EGACiudad Autonoma de Buenos AiresArgentina
| |
Collapse
|
48
|
Ward EB, Duguid MC, Kuebbing SE, Lendemer JC, Bradford MA. The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests. THE NEW PHYTOLOGIST 2022; 235:1701-1718. [PMID: 35704030 DOI: 10.1111/nph.18307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Ericoid mycorrhizal (ErM) shrubs commonly occur in forest understories and could therefore alter arbuscular (AM) and/or ectomycorrhizal (EcM) tree effects on soil carbon and nitrogen dynamics. Specifically, ErM fungi have extensive organic matter decay capabilities, and ErM plant and fungal tissues have high concentrations of secondary compounds that can form persistent complexes in the soil. Together, these traits could contribute to organic matter accumulation and inorganic nutrient limitation. These effects could also differ in AM- vs EcM-dominated stands at multiple scales within and among forest biomes by, for instance, altering fungal guild interactions. Most work on ErM effects in forests has been conducted in boreal forests dominated by EcM trees. However, ErM plants occur in c. 96, 69 and 29% of boreal, temperate and tropical forests, respectively. Within tropical montane forests, the effects of ErM plants could be particularly pronounced because their traits are more distinct from AM than EcM trees. Because ErM fungi can function as free-living saprotrophs, they could also be more resilient to forest disturbances than obligate symbionts. Further consideration of ErM effects within and among forest biomes could improve our understanding of how cooccurring mycorrhizal types interact to collectively affect soil carbon and nitrogen dynamics under changing conditions.
Collapse
Affiliation(s)
- Elisabeth B Ward
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
- The New York Botanical Garden, The Bronx, NY, 10458, USA
| | - Marlyse C Duguid
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sara E Kuebbing
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | | | - Mark A Bradford
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
49
|
Soudzilovskaia NA, He J, Rahimlou S, Abarenkov K, Brundrett MC, Tedersoo L. FungalRoot v.2.0 - an empirical database of plant mycorrhizal traits: A response to Bueno et al. (2021) 'Towards a consistent benchmark for plant mycorrhizal association databases': A response to Bueno et al. (2021) 'Towards a consistent benchmark for plant mycorrhizal association databases'. THE NEW PHYTOLOGIST 2022; 235:1689-1691. [PMID: 35915959 DOI: 10.1111/nph.18207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Nadejda A Soudzilovskaia
- Centre for Environmental Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Einsteinweg 2, 2333 CC, Leiden, the Netherlands
| | - Jinhong He
- Chinese Academy of Sciences, South China Botanical Garden, 510650, Guangzhou, China
| | - Saleh Rahimlou
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| | - Kessy Abarenkov
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
- Natural History Museum, University of Tartu, Vanemuise 46, 51003, Tartu, Estonia
| | - Mark C Brundrett
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
50
|
Zhou L, Zhou X, He Y, Fu Y, Du Z, Lu M, Sun X, Li C, Lu C, Liu R, Zhou G, Bai SH, Thakur MP. Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association. Nat Commun 2022; 13:4914. [PMID: 35987902 PMCID: PMC9392739 DOI: 10.1038/s41467-022-32671-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Yet, our knowledge regarding warming effects on root: shoot ratio (R/S) remains limited. Here, we present a meta-analysis encompassing more than 300 studies and including angiosperms and gymnosperms as well as different biomes (cropland, desert, forest, grassland, tundra, and wetland). The meta-analysis shows that average warming of 2.50 °C (median = 2 °C) significantly increases biomass allocation to roots with a mean increase of 8.1% in R/S. Two factors associate significantly with this response to warming: mean annual precipitation and the type of mycorrhizal fungi associated with plants. Warming-induced allocation to roots is greater in drier habitats when compared to shoots (+15.1% in R/S), while lower in wetter habitats (+4.9% in R/S). This R/S pattern is more frequent in plants associated with arbuscular mycorrhizal fungi, compared to ectomycorrhizal fungi. These results show that precipitation variability and mycorrhizal association can affect terrestrial carbon dynamics by influencing biomass allocation strategies in a warmer world, suggesting that climate change could influence belowground C sequestration. Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Here, the authors conduct a meta-analysis showing that warming effect on plant root:shoot is influenced by precipitation and the type of mycorrhizal fungi associated.
Collapse
|