1
|
Atatreh N, Mahgoub RE, Ghattas MA. Exploring covalent inhibitors of SARS-CoV-2 main protease: from peptidomimetics to novel scaffolds. J Enzyme Inhib Med Chem 2025; 40:2460045. [PMID: 39912405 PMCID: PMC11803818 DOI: 10.1080/14756366.2025.2460045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Peptidomimetic inhibitors mimic natural peptide substrates, employing electrophilic warheads to covalently interact with the catalytic Cys145 of Mpro. Examples include aldehydes, α-ketoamides, and aza-peptides, with discussions on their mechanisms of action, potency, and structural insights. Non-peptidomimetic inhibitors utilise diverse scaffolds and mechanisms, achieving covalent modification of Mpro.
Collapse
Affiliation(s)
- Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Radwa E. Mahgoub
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad A. Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Zhang ZQ, Zhu GH, Zhu R, Lei JX, Liu SY, Tu DZ, Zhang YN, Song YQ, Hou XD, Zhuang XY, Wang P, Cao YB, Ge GB. Discovery of baicalein derivatives as novel covalent inhibitors of SARS CoV-2 M pro: Structure-activity relationships and inhibitory mechanisms. Bioorg Chem 2025; 161:108560. [PMID: 40367796 DOI: 10.1016/j.bioorg.2025.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
The SARS-CoV-2 main protease (Mpro) has been validated as a promising target for the development of anti-SARS-CoV-2 agents. This work aims to explore the structure-activity relationships (SARs) of flavonoids as Mpro inhibitors, and to develop more potent Mpro inhibitors. Firstly, the anti-Mpro activity of 109 natural flavonoids were evaluated, identifying baicalein as a potent lead compound. Guided by SARs, 55 baicalein derivatives were designed and synthesized, while the C-8 bromine-substituted baicalein (BA-21) was found as the most potent Mpro inhibitor. Further investigations showed that BA-21 potently inactivate Mpro in a time-dependent manner (IC50 = 0.35 μM). Inactivation kinetics showed that BA-21 was a potent Mpro inactivator, its inactivation efficacy (555.56 M-1 s-1) was about 7.26-fold higher than that of baicalein (76.50 M-1 s-1). Both chemoproteomics and molecular docking simulations demonstrated that baicalein could covalently modify four cysteine residues of Mpro, but BA-21 could covalently modify more functional cysteines of Mpro (such as Cys44, Cys145) via forming at least three reactive intermediates. Collectively, this work uncovers several essential structural features of flavonoids responsible for Mpro inhibition and devises a novel bromine-substituted flavonoid as a more efficacious covalent inhibitor of Mpro.
Collapse
Affiliation(s)
- Zhao-Qin Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang-Hao Zhu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Zhu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing-Xuan Lei
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shu-Yan Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dong-Zhu Tu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya-Ni Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yun-Qing Song
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Dong Hou
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Yu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ping Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200433, China.
| | - Guang-Bo Ge
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Hu S, Zhang Y, Wang C, Li J, Su H, Xie X, Wang J, Wang J, Cao J, He X, Xu Y, Zhang L, Dai W, Liu H. Development of Orally Bioavailable Octahydroindole-Based Peptidomimetic Derivative as a Broad-Spectrum Inhibitor against HCoV-OC43 and SARS-CoV-2. J Med Chem 2025. [PMID: 40400488 DOI: 10.1021/acs.jmedchem.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
A series of novel Mpro inhibitors was designed and synthesized to combat the coronavirus, such as HCoV-OC43 and SARS-CoV-2, and several compounds showed comparable antiviral activity to nirmatrelvir. Among them, an octahydroindole-based peptidomimetic covalent inhibitor 28f showed strong inhibitory activity against Mpros and exhibited broad-spectrum anticoronavirus activity with EC50 values ranging from 0.027 to 4.41 μM. Besides, this compound displayed potent antiviral activity against EV71. Compared to FB2001, 28f displayed better pharmacokinetic properties, and the value of oral bioavailability in CD-1 mice and Beagle dogs was improved to 10.4 and 10.2%, respectively. In addition, oral treatment with 28f could significantly reduce the viral loads of HCoV-OC43 in mice, and compound 28f could also effectively reduce lung viral loads in a K18-hACE2 transgenic mouse model without ritonavir. Taken together, compound 28f is a promising orally bioavailable broad-spectrum antiviral drug candidate that deserves further research.
Collapse
Affiliation(s)
- Shulei Hu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Chenchen Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Jinlin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyuan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Xiaofei He
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Wenhao Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wang J, Yu Y, Dong H, Ji Y, Ning W, Li Y. The interface hydrophilic-hydrophobic integration of fluorinated defective graphene towards biomedical applications. Phys Chem Chem Phys 2025; 27:7538-7555. [PMID: 40167997 DOI: 10.1039/d5cp00075k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In biomedical fields, rational design of novel two-dimensional (2D) biomedical nanomaterials aims to precisely manipulate biomolecules, including efficient capture, structural-functional transformation, directional movement, and self-assembly. In this work, we innovatively proposed new graphene nanosheets and selected two representative proteins to explore their binding mechanisms, structural-functional transformation of proteins, and biological effects of the materials. Fluorinated defective graphene (FDG) exhibited highly efficient capture and structural-functional transformation for the receptor binding domain (RBD), and we observed its collapse phenomenon in 2D materials for the first time. For the main protease (Mpro), FDG achieved an optimal balance between efficient capture, immobilization, and structural disruption. Further studies showed that fluorination on oxygen-containing defect graphene significantly enhanced variances in water distribution, surface properties, and hydrogen bond networks on the material surface. This allowed amino acids to be confined to specific areas, achieving efficient capture and directional movement. Additionally, the adsorption behavior and interaction strength of peptides and deoxynucleotides on FDG further validated the possibility of self-assembly. In summary, we highlight FDG as an excellent biomedical material with hydrophilic-hydrophobic integration.
Collapse
Affiliation(s)
- Jiawen Wang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yi Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Weihua Ning
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Youyong Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
5
|
Wang W, Zhou X, Li W, Zeng P, Guo L, Wang Q, Li J. Inhibitory efficacy and structural insights of Bofutrelvir against SARS-CoV-2 M pro mutants and MERS-CoV M pro. Commun Biol 2025; 8:493. [PMID: 40133408 PMCID: PMC11937426 DOI: 10.1038/s42003-025-07929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
The COVID-19 pandemic has caused significant global health and economic disruption. Mutations E166N, E166R, E166N, S144A and His163A in the SARS-CoV-2 main protease (Mpro) have been implicated in reducing the efficacy of certain antiviral treatments. Bofutrelvir, a promising inhibitor, has shown effectiveness against SARS-CoV-2 Mpro. This study aims to evaluate the inhibitory effects of Bofutrelvir on the E166N, E166R, His163A, E166V and S144A mutants of SARS-CoV-2 Mpro, as well as on MERS-CoV Mpro. Our findings indicate a substantial reduction in the inhibitory potency of Bofutrelvir against these mutants and MERS-CoV, with IC50 values significantly higher than those for the wild-type SARS-CoV-2 Mpro. Specifically, the E166N, E166R, E166V, S144A, and H163A mutations significantly reduce the binding affinity and inhibitory effectiveness of Bofutrelvir due to disrupted hydrogen bonds, altered binding site stability, and reduced enzyme activity. Structural analysis of the crystal complexes showed that changes in interactions at the S1 subsite in the mutants and the loss of hydrogen bonds at the S4 subsite in MERS-CoV Mpro are critical factors contributing to the diminished inhibitory activity. These insights reveal the necessity of ongoing structural analysis to adapt therapeutic strategies.
Collapse
Affiliation(s)
- Weiwei Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xuelan Zhou
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Wenwen Li
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Pei Zeng
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, China
| | - Li Guo
- Jiangxi Jmerry Biopharmaceutical Co, Ltd, Ganzhou, China
| | - Qisheng Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.
| | - Jian Li
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, China.
| |
Collapse
|
6
|
Hu Q, Zhang YW, Zhang YN, Zhu GH, Chen PC, Liu W, Hu XP, Song FF, Pan ZF, Zheng SL, Shen NE, Ge GB, Huang P. Uncovering the naturally occurring covalent inhibitors of SARS-CoV-2 M pro from the Chinese medicine sappanwood and deciphering their synergistic anti-M pro effects. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119397. [PMID: 39870336 DOI: 10.1016/j.jep.2025.119397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese medicine sappanwood is primarily sourced from the dried heartwood of the medicinal plant Caesalpinia sappan Linn., which has been found with a variety of valuable properties including anti-inflammatory, anti-oxidant, and anti-viral effects. Preliminary investigations have demonstrated that sappanwood showed strong anti-SARS-CoV-2 Mpro effects, but the key constituents responsible for SARS-CoV-2 Mpro inhibition and their anti-Mpro mechanisms have not been uncovered. AIM OF THE STUDY This study aims to uncover the naturally occurring covalent inhibitors of SARS-CoV-2 Mpro from the sappanwood extract (SWE), to characterize the anti-Mpro mechanisms of the newly identified inhibitors in SWE, as well as to elucidate their synergistic anti-Mpro mechanisms. MATERIALS AND METHODS The proteolytic activity of SARS-CoV-2 Mpro was monitored using a fluorescence-based biochemical assay. Comprehensive phytochemical profiling of SWE was conducted by UHPLC-Q-Exactive Orbitrap HRMS. The nanoLC-MS/MS-based chemoproteomic profiling was employed to characterize the phytochemical-modified peptides of SARS-CoV-2 Mpro. Inactivation kinetics, surface plasmon resonance, and molecular dynamics (MD) simulations were utilized to investigate the binding affinity and binding modes of the newly identified SARS-CoV-2 Mpro inhibitors. RESULTS SWE was found with strong anti-Mpro effect in both dose- and time-dependent manners. Twenty-three constituents in SWE were subsequently identified by utilizing UHPLC-Q-Exactive Orbitrap HRMS, while chemoproteomic profiling revealed that 14 constituents in SWE could covalently modify SARS-CoV-2 Mpro. The anti-SARS-CoV-2 Mpro effects of these newly identified Mpro binders were then tested one by one. The results showed that most of the tested phytochemicals in SWE exhibited time-dependent inhibition on SARS-CoV-2 Mpro, while hematoxylin, brazilin, sappanchalcone, and protosappanin B were identified as the potent time-dependent inhibitors against SARS-CoV-2 Mpro. Furthermore, the combination of hematoxylin and protosappanin B could synergistically block the formation of catalytic active Mpro dimers and then significantly inhibit the catalytic activity of Mpro. MD simulations provided further insight into the synergistic effects between two identified natural Mpro inhibitors (hematoxylin and protosappanin B). CONCLUSIONS The naturally occurring covalent inhibitors of SARS-CoV-2 Mpro from the SWE were identified using an integrated approach. Among all identified covalent inhibitors of SARS-CoV-2 Mpro, hematoxylin, brazilin, sappanchalcone, and protosappanin B emerged as the efficacious Mpro inactivators, which offers powerful evidence to support the anti-coronavirus effects of the Chinese medicine sappanwood.
Collapse
Affiliation(s)
- Qing Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi-Wen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ya-Ni Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Peng-Cheng Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wei Liu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Fei-Feng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Zong-Fu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Shui-Lian Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Nong-Er Shen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
7
|
Jing L, Zhao F, Zheng L, Meng B, Gao S, Laporte M, Jochmans D, De Jonghe S, Neyts J, Zhan P, Kang D, Liu X. Optimization of SARS-CoV-2 M pro Inhibitors by a Structure-Based Multilevel Virtual Screening Method. Int J Mol Sci 2025; 26:670. [PMID: 39859382 PMCID: PMC11765572 DOI: 10.3390/ijms26020670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/04/2025] [Accepted: 01/12/2025] [Indexed: 01/30/2025] Open
Abstract
With the aim of developing novel anti-SARS-CoV-2 drugs to address the ongoing evolution and emergence of drug-resistant strains, the reported SARS-CoV-2 Mpro inhibitor WU-04 was selected as a lead to find novel, highly potent, and broad-spectrum inhibitors. Using a fragment-based multilevel virtual screening strategy, 15 hit compounds were identified and subsequently synthesized. Among them, A5 (IC50 = 1.05 μM), A6 (IC50 = 1.08 μM), and A9 (IC50 = 0.154 μM) demonstrated potent SARS-CoV-2 Mpro inhibition comparable to or slightly weaker than WU-04. Antiviral activity evaluations revealed that compound A9 exhibited the strongest antiviral activity with an EC50 value of 0.18 μM, quite comparable to the marketed drug Nirmatrelvir (EC50 = 0.123 μM) and inferior to WU-04 (EC50 = 0.042 μM). Molecular dynamics simulations elucidated the key interactions between compounds A5, A6, A9, and the binding pocket of SARS-CoV-2 Mpro, providing valuable insights into their mechanisms of action. These findings identify compound A9 as a promising lead for anti-SARS-CoV-2 drug development.
Collapse
Affiliation(s)
- Lanlan Jing
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Fabao Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Lin Zheng
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Bairu Meng
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shenghua Gao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Manon Laporte
- Antiviral Drug & Vaccine Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Dirk Jochmans
- Antiviral Drug & Vaccine Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Steven De Jonghe
- Molecular, Structural and Translational Virology Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Johan Neyts
- Antiviral Drug & Vaccine Research Group, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Peng Zhan
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dongwei Kang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xinyong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Shandong University, 44 West Culture Road, Jinan 250012, China
| |
Collapse
|
8
|
Lee E, Rauscher S. The Conformational Space of the SARS-CoV-2 Main Protease Active Site Loops Is Determined by Ligand Binding and Interprotomer Allostery. Biochemistry 2025; 64:32-46. [PMID: 39513739 DOI: 10.1021/acs.biochem.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The main protease (Mpro) of SARS-CoV-2 is essential for viral replication and is, therefore, an important drug target. Here, we investigate two flexible loops in Mpro that play a role in catalysis. Using all-atom molecular dynamics simulations, we analyze the structural ensemble of Mpro in an apo state and substrate-bound state. We find that the flexible loops can adopt open, intermediate (partly open), and closed conformations in solution, which differs from the partially closed state observed in crystal structures of Mpro. When the loops are in closed or intermediate states, the catalytic residues are more likely to be in close proximity, which is crucial for catalysis. Additionally, we find that substrate binding to one protomer of the homodimer increases the frequency of intermediate states in the bound protomer while also affecting the structural propensity of the apo protomer's flexible loops. Using dynamic network analysis, we identify multiple allosteric pathways connecting the two active sites of the homodimer. Common to these pathways is an allosteric hotspot involving the N-terminus, a critical region that comprises part of the binding pocket. Taken together, the results of our simulation study provide detailed insight into the relationships between the flexible loops and substrate binding in a prime drug target for COVID-19.
Collapse
Affiliation(s)
- Ethan Lee
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H8, Canada
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H8, Canada
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| |
Collapse
|
9
|
Gu X, Zhang X, Zhang X, Wang X, Sun W, Zhang Y, Hu Z. Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:3. [PMID: 39753911 PMCID: PMC11699025 DOI: 10.1007/s13659-024-00486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
In the twenty-first century, we have witnessed multiple coronavirus pandemics. Despite declining SARS-CoV-2 cases, continued research remains vital. We report the discovery of sydowiol B, a natural product, as a dual inhibitor of SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro). Sydowiol B interacts with the nano-channel at the Mpro dimer interface and the PLpro active site. Molecular dynamics simulations suggest that sydowiol B inhibits Mpro by limiting active site expansion rather than inducing collapse. Furthermore, sydowiol B binding may amplify the fluctuation of two loops coordinating with the structural Zn2+ in PLpro, displacing Zn2+ from the zinc finger domain to the S2 helix. Sydowiol B and its analogue, violaceol I, exhibit broad-spectrum antiviral activity against homologous coronaviruses. Given the conservation of Mpro and PLpro, sydowiol B and violaceol I are promising leads for designing and developing anti-coronavirus therapies.
Collapse
Affiliation(s)
- Xiaoxia Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiaotian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xueke Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xinyu Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
10
|
Garcia-Segura P, Llop-Peiró A, Novau-Ferré N, Mestres-Truyol J, Saldivar-Espinoza B, Pujadas G, Garcia-Vallvé S. SARS-CoV-2 main protease (M-pro) mutational profiling: An insight into mutation coldspots. Comput Biol Med 2025; 184:109344. [PMID: 39531923 DOI: 10.1016/j.compbiomed.2024.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
SARS-CoV-2 and the COVID-19 pandemic have marked a milestone in the history of scientific research worldwide. To ensure that treatments are successful in the mid-long term, it is crucial to characterize SARS-CoV-2 mutations, as they might lead to viral resistance. Data from >5,700,000 SARS-CoV-2 genomes available at GISAID was used to report SARS-CoV-2 mutations. Given the pivotal role of its main protease (M-pro) in virus replication, a detailed analysis of SARS-CoV-2 M-pro mutations was conducted, with particular attention to mutation-resistant residues or mutation coldspots, defined as those residues that have mutated in five or fewer genomes. 32 mutation coldspots were identified, most of which mediate interprotomer interactions or funneling interaction networks from the substrate-binding site towards the dimerization surface and vice versa. Besides, mutation coldspots were virtually conserved in all main proteases from other CoVs. Our results provide valuable information about key residues to M-pro structure that could be useful in rational target-directed drug design and establish a solid groundwork based on mutation analyses for the inhibition of M-pro dimerization, with a potential applicability to future coronavirus outbreaks.
Collapse
Affiliation(s)
- Pol Garcia-Segura
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain.
| | - Ariadna Llop-Peiró
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain.
| | - Nil Novau-Ferré
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain.
| | - Júlia Mestres-Truyol
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain.
| | - Bryan Saldivar-Espinoza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain.
| | - Gerard Pujadas
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain
| | - Santiago Garcia-Vallvé
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, 43007, Tarragona, Spain.
| |
Collapse
|
11
|
Lu J, He Y, Li Y, Chen X, Li H, Chen X, Xu J, Chen H, Wang Y, He X, Liu S, Chen L. Exploring bifunctional molecules for anti-SARS-CoV-2 and anti-inflammatory activity through structure-based virtual screening, SAR investigation, and biological evaluation. Int J Biol Macromol 2025; 287:138529. [PMID: 39653224 DOI: 10.1016/j.ijbiomac.2024.138529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
As new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, they raise increasing concerns about the efficacy of neutralizing antibodies and vaccines. This situation underscores the urgent need for specific drugs against the coronavirus disease 2019 (COVID-19). Given that COVID-19 is particularly associated with substantial inflammation, the development of novel, effective antiviral and anti-inflammatory agents represents a promising research direction. In this study, we virtually screened a library consisting of 2900 anti-inflammatory small molecules for their inhibitory effects on the 3-chymotrypsin-like protease (3CLpro) of SARS-CoV-2 and selected 23 promising candidates for further testing using a fluorescence resonance energy transfer (FRET) assay. The results indicated that Gnetol had the most potent inhibitory effect against SARS-CoV-2 3CLpro. Further structural modifications led to the identification of compounds 38 and 39, which displayed superior inhibitory activity. Compound 39 showed good selectivity for host proteases. Subsequently, Gnetol and its structural analogs, which demonstrated SARS-CoV-2 3CLpro inhibitory activity, were tested for their anti-inflammatory effects. Among these, Piceatannol and compound 39 exhibited enhanced anti-inflammatory effects, with compound 39 alone showing the most potent antiviral and anti-inflammatory activity. Thus, our study has explored a new research strategy for discovering antiviral and anti-inflammatory bifunctional molecules. The discovery of Gnetol and its structural analogs has provided new lead candidates for the development of COVID-19 therapeutics.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingying He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China; Peptide and small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; DP Technology, Beijing 100080, China
| | - Xixiang Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuwen Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jianrong Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China; Peptide and small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; DP Technology, Beijing 100080, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China.
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
12
|
Xiong M, Nie T, Li Z, Hu M, Su H, Hu H, Xu Y, Shao Q. Potency Prediction of Covalent Inhibitors against SARS-CoV-2 3CL-like Protease and Multiple Mutants by Multiscale Simulations. J Chem Inf Model 2024; 64:9501-9516. [PMID: 39605253 DOI: 10.1021/acs.jcim.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
3-Chymotrypsin-like protease (3CLpro) is a prominent target against pathogenic coronaviruses. Expert knowledge of the cysteine-targeted covalent reaction mechanism is crucial to predict the inhibitory potency of approved inhibitors against 3CLpros of SARS-CoV-2 variants and perform structure-based drug design against newly emerging coronaviruses. We carried out an extensive array of classical and hybrid QM/MM molecular dynamics simulations to explore covalent inhibition mechanisms of five well-characterized inhibitors toward SARS-CoV-2 3CLpro and its mutants. The calculated binding affinity and reactivity of the inhibitors are highly consistent with experimental data, and the predicted inhibitory potency of the inhibitors against 3CLpro with L167F, E166V, or T21I/E166V mutant is in full agreement with IC50s determined by the accompanying enzymatic assays. The explored mechanisms unveil the impact of residue mutagenesis on structural dynamics that communicates to change not only noncovalent binding strength but also covalent reaction free energy. Such a change is inhibitor dependent, corresponding to varied levels of drug resistance of these 3CLpro mutants against nirmatrelvir and simnotrelvir and no resistance to the 11a compound. These results together suggest that the present simulations with a suitable protocol can efficiently evaluate the reactivity and potency of covalent inhibitors along with the elucidated molecular mechanisms of covalent inhibition.
Collapse
Affiliation(s)
- Muya Xiong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianqing Nie
- Lingang Laboratory, Shanghai 200031, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhewen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyi Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangchen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yechun Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Benício LFMA, Nascimento ÉCM, Martins JBL. Docking heparan sulfate-based ligands as a promising inhibitor for SARS-CoV-2. J Mol Model 2024; 31:19. [PMID: 39666205 DOI: 10.1007/s00894-024-06236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
CONTEXT Heparan sulfate (HS) linear polysaccharide glycosaminoglycan compound is linked to components from the cell surface and the extracellular matrix. HS mediates SARS-CoV-2 infection through spike protein binding to cell surface receptors and is required to bind ACE2, prompting the need for electronic structure and molecular docking evaluation of this core system to exploit this attachment in developing new derivatives. Therefore, we have studied five molecules based on HS using molecular docking and electronic structure analysis. Non-covalent interaction analysis shows hydrogen bonding and van der Waals interactions in the binding to RBD-ACE2 interface and 3CLpro. SDM3 and SDM1 molecules present the lowest gap, including solvent effect under 154.6 kcal/mol, and exhibit the most reactivity behavior in this group, potentially leading to enhanced interaction in docking studies. METHODS Heparan sulfate and four derivatives were optimized using B3LYP functional with two basis sets 6-31 + G(d,p) and def2SVP. Electronic structure was used to explore the main interactions and the reactivity of these molecules, and these optimized structures were used in the molecular docking study against 3CLpro, RBD, and ACE2.
Collapse
Affiliation(s)
- Luiz F M A Benício
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Érica C M Nascimento
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - João B L Martins
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
14
|
Biernacki K, Ciupak O, Daśko M, Rachon J, Flis D, Budka J, Inkielewicz-Stępniak I, Czaja A, Rak J, Demkowicz S. Development of potent and effective SARS-CoV-2 main protease inhibitors based on maleimide analogs for the potential treatment of COVID-19. J Enzyme Inhib Med Chem 2024; 39:2290910. [PMID: 38093611 PMCID: PMC10732195 DOI: 10.1080/14756366.2023.2290910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
In the present work, we report a new series of potent SARS-CoV-2 Main Protease (Mpro) inhibitors based on maleimide derivatives. The inhibitory activities were tested in an enzymatic assay using recombinant Mpro (3CL Protease from coronavirus SARS-CoV-2). Within the set of new Mpro inhibitors, 6e demonstrated the highest activity in the enzymatic assay with an IC50 value of 8.52 ± 0.44 µM. The IC50 value for Nirmatrelvir (PF-07321332, used as a reference) was 0.84 ± 0.37 µM. The cytotoxic properties were determined in the MTT assay using MRC-5 and HEK-293 cell lines. In the course of the investigation, we found that the newly obtained maleimide derivatives are not substantially cytotoxic (IC50 values for most compounds were above 200 µM).
Collapse
Affiliation(s)
- Karol Biernacki
- Department of Organic Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Damian Flis
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdańsk, Poland
| | - Justyna Budka
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdańsk, Poland
| | | | - Anna Czaja
- Department of Physical Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Janusz Rak
- Department of Physical Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
15
|
Ganapathy A A, Hari Priya VM, Baby K, Bindhu S, Jayan R, Krishnamoorthi R, Somappa SB, Nayak Y, Kumaran A. Flavone-C-glycosides from Cassia auriculata L. as possible inhibitors of phosphodiesterase-5 (PDE5): in vitro, molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2024:1-23. [PMID: 39589221 DOI: 10.1080/07391102.2024.2431659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/03/2024] [Indexed: 11/27/2024]
Abstract
Phosphodiesterase-5 (PDE5) is a homodimeric enzyme that specifically targets cyclic guanosine monophosphate (cGMP), that mediates many downstream effects such as vasodilation, neurotransmission, and calcium homeostasis. Considering the functions of cGMP, inhibition of PDE5 has been established to have several therapeutic effects in disease conditions such as cancer, cardiovascular diseases and Alzheimer's disease. Consequently, many PDE5 inhibitors were developed but with severe adverse effects such as non-arteritic anterior ischemic optic neuropathy (NAION), priapism, etc. Hence, in our study for the identification of new PDE5 inhibitors from alternative sources, Cassia auriculata L. was identified as a potential PDE5 inhibitors with 56.23% inhibition at 100 μg/mL in vitro. In addition, the respective phytoconstituents were evaluated through molecular docking, interaction studies and MM/GBSA binding free energy calculations, identifying two potential flavone C-glycosides, lucenin-II (-15.977, dG bind = -38.8), stellarin-II (-15.099, dG bind = -34.59), and a flavan derivative (2S)-7,4-dihydroxyflavan(4β-8)-catechin, in comparison to sildenafil (-10.890, dG bind = -75.4) and having frequent contacts with Phe 786, Phe 820, Ser 663, Tyr 664, and other crucial residues at the catalytic site of PDE5. Molecular dynamics simulations performed for 100 ns showed structural stability and compactness of the candidates through RMSD, RMSF which showed less fluctuations. The ADMET analysis revealed favorable pharmacokinetics, and pharmacodynamic properties with no subsequent toxicity in normal cells. The biological target class prediction identified enzymes with similar properties and icariin, which is a well-established natural PDE5 inhibitor was identified as a structurally similar analogue. These findings could lead to the development of novel natural product based PDE5 inhibitors.
Collapse
Affiliation(s)
- Anand Ganapathy A
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijayakumari Mahadevan Hari Priya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sreelekshmy Bindhu
- Department of Chemistry and Polymer Chemistry, Kumbalathu Sankupillai Memorial Devaswom Board College, Sasthamcotta, India
| | - Raji Jayan
- Department of Chemistry, Sree Narayana College, Punalur, India
| | - Raman Krishnamoorthi
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sasidhar Balappa Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alaganandam Kumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Grabiński W, Karachitos A, Kicińska A. Backstage Heroes-Yeast in COVID-19 Research. Int J Mol Sci 2024; 25:12661. [PMID: 39684373 PMCID: PMC11640846 DOI: 10.3390/ijms252312661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The extremely rapid development of understanding and technology that led to the containment of the COVID-19 pandemic resulted from collaborative efforts in the fields of Betacoronavirus pandemicum (SARS-CoV-2) biology, pharmacology, vaccinology, and medicine. Perhaps surprisingly, much of the research was conducted using simple and efficient yeast models. In this manuscript, we describe how yeast, eukaryotic microorganisms, have been used to research this global challenge, focusing on the therapeutic potential of the studies discussed herein. Thus, we outline the role of yeast in studying viral protein interactions with the host cell proteome, including the binding of the SARS-CoV-2 virus spike protein to the human ACE2 receptor and its modulation. The production and exploration of viral antigens in yeast systems, which led to the development of two approved COVID-19 vaccines, are also detailed. Moreover, yeast platforms facilitating the discovery and production of single-domain antibodies (nanobodies) against SARS-CoV-2 are described. Methods guiding modern and efficient drug discovery are explained at length. In particular, we focus on studies designed to search for inhibitors of the main protease (Mpro), a unique target for anti-coronaviral therapies. We highlight the adaptability of the techniques used, providing opportunities for rapid modification and implementation alongside the evolution of the SARS-CoV-2 virus. Approaches introduced in yeast systems that may have universal potential application in studies of emerging viral diseases are also described.
Collapse
Affiliation(s)
| | | | - Anna Kicińska
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland; (W.G.); (A.K.)
| |
Collapse
|
17
|
Wang J, Dong H, Ji Y, Li Y, Lee ST. Patterned graphene: An effective platform for adsorption, immobilization, and destruction of SARS-CoV-2 M pro. J Colloid Interface Sci 2024; 673:202-215. [PMID: 38875787 DOI: 10.1016/j.jcis.2024.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
To address the ongoing challenges posed by the SARS-CoV-2 and potentially stronger viruses in the future, the development of effective methods to fabricate patterned graphene (PG) and other precisely functional products has become a new research frontier. Herein, we modeled the "checkerboard" graphene (CG) and stripped graphene (SG) as representatives of PG, and studied their interaction mechanism with the target protein (Mpro) by molecular dynamics simulation. The calculation results on the binding strength and the root mean square deviation values of the active pocket revealed that PG is an effective platform for adsorption, immobilization, and destruction of Mpro. Specifically, CG is found to promote disruption of the active pocket for Mpro, but the presence of "checkerboard" oxidized regions inhibits the adsorption of Mpro. Meanwhile, the SG can effectively confine Mpro within the non-oxidized strips and enhances their binding strength, but doesn't play well on disrupting the active pocket. Our work not only elucidates the biological effects of PGs, but also provides guidance for their targeted and precise utilization in combating the SARS-CoV-2.
Collapse
Affiliation(s)
- Jiawen Wang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Shuit-Tong Lee
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
18
|
Wlodawer A, Dauter Z, Rubach P, Minor W, Loch JI, Brzezinski D, Gilski M, Jaskolski M. Waterless structures in the Protein Data Bank. IUCRJ 2024; 11:966-976. [PMID: 39465564 PMCID: PMC11533996 DOI: 10.1107/s2052252524009928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
The absence of solvent molecules in high-resolution protein crystal structure models deposited in the Protein Data Bank (PDB) contradicts the fact that, for proteins crystallized from aqueous media, water molecules are always expected to bind to the protein surface, as well as to some sites in the protein interior. An analysis of the contents of the PDB indicated that the expected ratio of the number of water molecules to the number of amino-acid residues exceeds 1.5 in atomic resolution structures, decreasing to 0.25 at around 2.5 Å resolution. Nevertheless, almost 800 protein crystal structures determined at a resolution of 2.5 Å or higher are found in the current release of the PDB without any water molecules, whereas some other depositions have unusually low or high occupancies of modeled solvent. Detailed analysis of these depositions revealed that the lack of solvent molecules might be an indication of problems with either the diffraction data, the refinement protocol, the deposition process or a combination of these factors. It is postulated that problems with solvent structure should be flagged by the PDB and addressed by the depositors.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Center for Structural BiologyNational Cancer InstituteFrederickMD21702USA
| | - Zbigniew Dauter
- Center for Structural BiologyNational Cancer InstituteFrederickMD21702USA
| | - Pawel Rubach
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
- Warsaw School of EconomicsWarsawPoland
| | - Wladek Minor
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of ChemistryJagiellonian UniversityKrakowPoland
| | - Dariusz Brzezinski
- Institute of Computing SciencePoznań University of TechnologyPoznańPoland
| | - Miroslaw Gilski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznańPoland
- Department of Crystallography, Faculty of ChemistryAdam Mickiewicz University in PoznańPoznańPoland
| | - Mariusz Jaskolski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznańPoland
- Department of Crystallography, Faculty of ChemistryAdam Mickiewicz University in PoznańPoznańPoland
| |
Collapse
|
19
|
Yang M, Lee MK, Gao S, Song L, Jang H, Jo I, Yang C, Sylvester K, Ko C, Wang S, Ye B, Tang K, Li J, Gu M, Müller CE, Sträter N, Liu X, Kim M, Zhan P. Miniaturized Modular Click Chemistry-enabled Rapid Discovery of Unique SARS-CoV-2 M pro Inhibitors With Robust Potency and Drug-like Profile. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404884. [PMID: 39319611 PMCID: PMC11578313 DOI: 10.1002/advs.202404884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The COVID-19 pandemic has required an expeditious advancement of innovative antiviral drugs. In this study, focused compound libraries are synthesized in 96- well plates utilizing modular click chemistry to rapidly discover potent inhibitors targeting the main protease (Mpro) of SARS-CoV-2. Subsequent direct biological screening identifies novel 1,2,3-triazole derivatives as robust Mpro inhibitors with high anti-SARS-CoV-2 activity. Notably, C5N17B demonstrates sub-micromolar Mpro inhibitory potency (IC50 = 0.12 µM) and excellent antiviral activity in Calu-3 cells determined in an immunofluorescence-based antiviral assay (EC50 = 0.078 µM, no cytotoxicity: CC50 > 100 µM). C5N17B shows superior potency to nirmatrelvir (EC50 = 1.95 µM) and similar efficacy to ensitrelvir (EC50 = 0.11 µM). Importantly, this compound displays high antiviral activities against several SARS-CoV-2 variants (Gamma, Delta, and Omicron, EC50 = 0.13 - 0.26 µM) and HCoV-OC43, indicating its broad-spectrum antiviral activity. It is worthy that C5N17B retains antiviral activity against nirmatrelvir-resistant strains with T21I/E166V and L50F/E166V mutations in Mpro (EC50 = 0.26 and 0.15 µM, respectively). Furthermore, C5N17B displays favorable pharmacokinetic properties. Crystallography studies reveal a unique, non-covalent multi-site binding mode. In conclusion, these findings substantiate the potential of C5N17B as an up-and-coming drug candidate targeting SARS-CoV-2 Mpro for clinical therapy.
Collapse
Affiliation(s)
- Mianling Yang
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
| | - Shenghua Gao
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Letian Song
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Hye‐Yeon Jang
- Infectious Diseases Therapeutic Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
| | - Inseong Jo
- Infectious Diseases Therapeutic Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
| | - Chun‐Chiao Yang
- Institute of Bioanalytical ChemistryLeipzig UniversityDeutscher Platz 504103LeipzigGermany
| | - Katharina Sylvester
- PharmaCenter Bonn & Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453113BonnGermany
| | - Chunkyu Ko
- Infectious Diseases Therapeutic Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
| | - Shuo Wang
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Bing Ye
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Kai Tang
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Junyi Li
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Manyu Gu
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Christa E. Müller
- PharmaCenter Bonn & Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453113BonnGermany
| | - Norbert Sträter
- Institute of Bioanalytical ChemistryLeipzig UniversityDeutscher Platz 504103LeipzigGermany
| | - Xinyong Liu
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
| | - Peng Zhan
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| |
Collapse
|
20
|
Butalewicz JP, Sipe SN, Juetten KJ, James VK, Kim K, Zhang YJ, Meek TD, Brodbelt JS. Insights into the Main Protease of SARS-CoV-2: Thermodynamic Analysis, Structural Characterization, and the Impact of Inhibitors. Anal Chem 2024; 96:15898-15906. [PMID: 39319663 PMCID: PMC11499983 DOI: 10.1021/acs.analchem.4c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The main protease (Mpro) of SARS-CoV-2 is an essential enzyme for coronaviral maturation and is the target of Paxlovid, which is currently the standard-of-care treatment for COVID-19. There remains a need to identify new inhibitors of Mpro as viral resistance to Paxlovid emerges. Here, we report the use of native mass spectrometry coupled with 193 nm ultraviolet photodissociation (UVPD) and integrated with other biophysical tools to structurally characterize Mpro and its interactions with potential covalent inhibitors. The overall energy landscape was obtained using variable temperature nanoelectrospray ionization (vT-nESI), thus providing quantitative evaluation of inhibitor binding on the stability of Mpro. Thermodynamic parameters extracted from van't Hoff plots revealed that the dimeric complexes containing each inhibitor showed enhanced stability through increased melting temperatures as well as overall lower average charge states, giving insight into the basis for inhibition mechanisms.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah N Sipe
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Virginia K James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kangsan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Y Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas D Meek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Bazzi-Allahri F, Shiri F, Ahmadi S, Toropova AP, Toropov AA. SMILES-based QSAR virtual screening to identify potential therapeutics for COVID-19 by targeting 3CL pro and RdRp viral proteins. BMC Chem 2024; 18:191. [PMID: 39363220 PMCID: PMC11451266 DOI: 10.1186/s13065-024-01302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
The COVID-19 pandemic has prompted the medical systems of many countries to develop effective treatments to combat the high rate of infection and death caused by the disease. Within the array of proteins found in SARS-CoV-2, the 3 chymotrypsin-like protease (3CLpro) holds significance as it plays a crucial role in cleaving polyprotein peptides into distinct functional nonstructural proteins. Meanwhile, RNA-dependent RNA polymerase (RdRp) takes center stage as the key enzyme tasked with replicating the viral genomic RNA within host cells. These proteins, 3CLpro and RdRp, are deemed optimal subjects for QSAR modeling due to their pivotal functions in the viral lifecycle. In this study, SMILES-based QSAR classification models were developed for a dataset of 2377 compounds that were defined as either active or inactive against 3CLpro and RdRp. Pharmacophore (PH4) and QSAR modeling were used for the virtual screening on 60.2 million compounds including ZINC, ChEMBL, Molport, and MCULE databases to identify new potent inhibitors against 3CLpro and RdRp. Then, a filter was established based on typical molecular characteristics to identify drug-like molecules. The molecular docking was also performed to evaluate the binding affinity of 156 AND 51 potential inhibitors to 3CLpro and RdRp, respectively. Among the 15 hits identified based on molecular docking scores, M3, N2, and N4 were identified as promising inhibitors due to their good synthetic accessibility scores (3.07, 3.11, and 3.29 out of 10 for M3, N2, and N4 respectively). These compounds contain amine functional groups, which are known for their crucial role in the binding interactions between drugs and their targets. Consequently, these hits have been chosen for further biological assay studies to validate their activity. They may represent novel 3CLpro and RdRp inhibitors possessing drug-like properties suitable for COVID-19 therapy.
Collapse
Affiliation(s)
| | | | - Shahin Ahmadi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alla P Toropova
- Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Andrey A Toropov
- Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| |
Collapse
|
22
|
Purohit P, Panda M, Muya JT, Bandyopadhyay P, Meher BR. Theoretical insights into the binding interaction of Nirmatrelvir with SARS-CoV-2 Mpro mutants (C145A and C145S): MD simulations and binding free-energy calculation to understand drug resistance. J Biomol Struct Dyn 2024; 42:8865-8884. [PMID: 37599474 DOI: 10.1080/07391102.2023.2248519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Mpro, the main protease and a crucial enzyme in SARS-CoV-2 is the most fascinating molecular target for pharmacological treatment and is also liable for viral protein maturation. For antiviral therapy, no drugs have been approved clinically to date. Targeting the Mpro with a compound having inhibitory properties against it can hinder viral replication. The therapeutic potential of the antiviral compound Nirmatrelvir (NMV) against SARS-CoV-2 Mpro was investigated using a systematic approach of molecular docking, MD simulations, and binding free energy calculation based on the MM-GBSA method. NMV, a covalent inhibitor with a recently revealed chemical structure, is a promising oral antiviral clinical candidate with significant in vitro anti-SARS-CoV-2 action in third-phase clinical trials. To explore the therapeutic ability and possible drug resistance, the Mpro system was studied for WT and two of its primary mutants (C145A & C145S). The protein-ligand (Mpro/NMV) complexes were further examined through long MD simulations to check the possible drug resistance in the mutants. To understand the binding affinity, the MM-GBSA method was applied to the Mpro/NMV complexes. Moreover, PCA analysis confirms the detachment of the linker region from the major domains in C145S and C145A mutants allowing for conformational alterations in the active-site region. Based on the predicted biological activities and binding affinities of NMV to WT and mutant (C145A & C145S) Mpro, it can be stipulated that NMV may have conventional potency to act as an anti-viral agent against WT Mpro, while the catalytic-dyad mutations may show substantial mutation-induced drug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Purohit
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, India
| | - Madhusmita Panda
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, India
| | - Jules Tshishimbi Muya
- Faculte of Science, Research Centre for Theoretical Chemistry and Physics in Central Africa, University of Kinshasa, Kinshasa, Congo
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Biswa Ranjan Meher
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, India
| |
Collapse
|
23
|
Duvvuri V, Shire F, Isabel S, Braukmann T, Clark S, Marchand-Austin A, Eshaghi A, Bandukwala H, Varghese N, Li Y, Sivaraman K, Hussain H, Cronin K, Sullivan A, Li A, Zygmunt A, Ramotar K, Kus J, Hasso M, Corbeil A, Gubbay J, Patel S. Large scale analysis of the SARS-CoV-2 main protease reveals marginal presence of nirmatrelvir-resistant SARS-CoV-2 Omicron mutants in Ontario, Canada, December 2021-September 2023. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2024; 50:365-374. [PMID: 39386278 PMCID: PMC11464099 DOI: 10.14745/ccdr.v50i10a05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background In response to the COVID-19 pandemic, a new oral antiviral called nirmatrelvir-ritonavir (PaxlovidTM) was authorized for use in Canada in January 2022. In vitro studies have reported mutations in Mpro protein that may be associated with the development of nirmatrelvir resistance. Objectives To survey the prevalence, relevance and temporal patterns of Mpro mutations among SARS-CoV-2 Omicron lineages in Ontario, Canada. Methods A total of 93,082 Mpro gene sequences from December 2021 to September 2023 were analyzed. Reported in vitro Mpro mutations were screened against our database using in-house data science pipelines to determine the nirmatrelvir resistance. Negative binomial regression was conducted to analyze the temporal trends in Mpro mutation counts over the study time period. Results A declining trend was observed in non-synonymous mutations of Mpro sequences, showing a 7.9% reduction (95% CI: 6.5%-9.4%; p<0.001) every 30 days. The P132H was the most prevalent mutation (higher than 95%) in all Omicron lineages. In vitro nirmatrelvir-resistant mutations were found in 3.12% (n=29/929) Omicron lineages with very low counts, ranging from one to 19. Only two mutations, A7T (n=19) and M82I (n=9), showed temporal presence among the BA.1.1 in 2022 and the BQ.1.2.3 in 2022, respectively. Conclusion The observations suggest that, as of September 2023, no significant or widespread resistance to nirmatrelvir has developed among SARS-CoV-2 Omicron variants in Ontario. This study highlights the importance of creating automated monitoring systems to track the emergence of nirmatrelvir-resistant mutations within the SARS-CoV-2 virus, utilizing genomic data generated in real-time.
Collapse
Affiliation(s)
- Venkata Duvvuri
- Public Health Ontario, Toronto, ON
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
| | - Fatima Shire
- Public Health Ontario, Toronto, ON
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON
| | | | | | | | | | | | | | | | - Ye Li
- Public Health Ontario, Toronto, ON
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON
| | | | | | | | | | - Aimin Li
- Public Health Ontario, Toronto, ON
| | - Austin Zygmunt
- Public Health Ontario, Toronto, ON
- Department of Family Medicine, University of Ottawa, Ottawa, ON
| | | | - Julianne Kus
- Public Health Ontario, Toronto, ON
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
| | | | | | | | - Samir Patel
- Public Health Ontario, Toronto, ON
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
| |
Collapse
|
24
|
Zhao C, Rong Y, Shi S, Gao WC, Zhang C. A novel method for synthesizing authentic SARS-CoV-2 main protease. Protein Expr Purif 2024; 222:106531. [PMID: 38852715 DOI: 10.1016/j.pep.2024.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The SARS-CoV-2 main protease (Mpro) plays a crucial role in virus amplification and is an ideal target for antiviral drugs. Currently, authentic Mpro is prepared through two rounds of proteolytic cleavage. In this method, Mpro carries a self-cleavage site at the N-terminus and a protease cleavage site followed by an affinity tag at the C-terminus. This article proposes a novel method for producing authentic Mpro through single digestion. Mpro was constructed by fusing a His tag containing TEV protease cleavage sites at the N-terminus. The expressed recombinant protein was digested by TEV protease, and the generated protein had a decreased molecular weight and significantly increased activity, which was consistent with that of authentic Mpro generated by the previous method. These findings indicated that authentic Mpro was successfully obtained. Moreover, the substrate specificity of Mpro was investigated. Mpro had a strong preference for Phe at position the P2, which suggested that the S2 subsite was an outstanding target for designing inhibitors. This article also provides a reference for the preparation of Mpro for sudden coronavirus infection in the future.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Yi Rong
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Shuyuan Shi
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Wen-Chao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Chaofeng Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| |
Collapse
|
25
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
26
|
Aniana A, Nashed NT, Ghirlando R, Drago VN, Kovalevsky A, Louis JM. Characterization of alternate encounter assemblies of SARS-CoV-2 main protease. J Biol Chem 2024; 300:107675. [PMID: 39128719 PMCID: PMC11416275 DOI: 10.1016/j.jbc.2024.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
The assembly of two monomeric constructs spanning segments 1-199 (MPro1-199) and 10-306 (MPro10-306) of SARS-CoV-2 main protease (MPro) was examined to assess the existence of a transient heterodimer intermediate in the N-terminal autoprocessing pathway of MPro model precursor. Together, they form a heterodimer population accompanied by a 13-fold increase in catalytic activity. Addition of inhibitor GC373 to the proteins increases the activity further by ∼7-fold with a 1:1 complex and higher order assemblies approaching 1:2 and 2:2 molecules of MPro1-199 and MPro10-306 detectable by analytical ultracentrifugation and native mass estimation by light scattering. Assemblies larger than a heterodimer (1:1) are discussed in terms of alternate pathways of domain III association, either through switching the location of helix 201 to 214 onto a second helical domain of MPro10-306 and vice versa or direct interdomain III contacts like that of the native dimer, based on known structures and AlphaFold 3 prediction, respectively. At a constant concentration of MPro1-199 with molar excess of GC373, the rate of substrate hydrolysis displays first order dependency on the MPro10-306 concentration and vice versa. An equimolar composition of the two proteins with excess GC373 exhibits half-maximal activity at ∼6 μM MPro1-199. Catalytic activity arises primarily from MPro1-199 and is dependent on the interface interactions involving the N-finger residues 1 to 9 of MPro1-199 and E290 of MPro10-306. Importantly, our results confirm that a single N-finger region with its associated intersubunit contacts is sufficient to form a heterodimeric MPro intermediate with enhanced catalytic activity.
Collapse
Affiliation(s)
- Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Nashaat T Nashed
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Victoria N Drago
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, USA.
| |
Collapse
|
27
|
Al Adem K, Ferreira J, Villanueva A, Fadl S, El-Sadaany F, Masmoudi I, Gidiya Y, Gurudza T, Cardoso T, Saksena N, Rabeh W. 3-chymotrypsin-like protease in SARS-CoV-2. Biosci Rep 2024; 44:BSR20231395. [PMID: 39036877 PMCID: PMC11300678 DOI: 10.1042/bsr20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Coronaviruses constitute a significant threat to the human population. Severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, is a highly pathogenic human coronavirus that has caused the coronavirus disease 2019 (COVID-19) pandemic. It has led to a global viral outbreak with an exceptional spread and a high death toll, highlighting the need for effective antiviral strategies. 3-Chymotrypsin-like protease (3CLpro), the main protease in SARS-CoV-2, plays an indispensable role in the SARS-CoV-2 viral life cycle by cleaving the viral polyprotein to produce 11 individual non-structural proteins necessary for viral replication. 3CLpro is one of two proteases that function to produce new viral particles. It is a highly conserved cysteine protease with identical structural folds in all known human coronaviruses. Inhibitors binding with high affinity to 3CLpro will prevent the cleavage of viral polyproteins, thus impeding viral replication. Multiple strategies have been implemented to screen for inhibitors against 3CLpro, including peptide-like and small molecule inhibitors that covalently and non-covalently bind the active site, respectively. In addition, allosteric sites of 3CLpro have been identified to screen for small molecules that could make non-competitive inhibitors of 3CLpro. In essence, this review serves as a comprehensive guide to understanding the structural intricacies and functional dynamics of 3CLpro, emphasizing key findings that elucidate its role as the main protease of SARS-CoV-2. Notably, the review is a critical resource in recognizing the advancements in identifying and developing 3CLpro inhibitors as effective antiviral strategies against COVID-19, some of which are already approved for clinical use in COVID-19 patients.
Collapse
Affiliation(s)
- Kenana Al Adem
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Adrian J. Villanueva
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah El-Sadaany
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Imen Masmoudi
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yugmee Gidiya
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Tariro Gurudza
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Masdar City, Abu Dhabi, United Arab Emirates
| | - Nitin K. Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
28
|
Lohachova KO, Kyrychenko A, Kalugin ON. Critical assessment of popular biomolecular force fields for molecular dynamics simulations of folding and enzymatic activity of main protease of coronavirus SARS-CoV-2. Biophys Chem 2024; 311:107258. [PMID: 38776839 DOI: 10.1016/j.bpc.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The main cysteine protease (Mpro) of coronavirus SARS-CoV-2 has become a promising target for computational development in anti-COVID-19 treatments. Here, we benchmarked the performance of six biomolecular molecular dynamics (MD) force fields (OPLS-AA, CHARMM27, CHARMM36, AMBER03, AMBER14SB and GROMOS G54A7) and three water models (TIP3P, TIP4P and SPC) for reproducing the native fold and the enzymatic activity of Mpro as monomeric and dimeric units. The MD sampling up to 1 μs suggested that the proper choice of the force fields and water models plays an essential role in reproducing the tertiary structure and the inter-residue distance between the catalytic dyad His41-Cys145. We found that while most benchmarked all-atom force fields reproduce well the native fold of Mpro, the CHARMM27/TIP3P and OPLS-AA/TIP4P setups revealed a good performance in reproducing the structure of the catalytic domain. In addition, these FF setups were also well-adopted for MD sampling of Mpro at the physiologic conditions by mimicking the presence of 100 mM NaCl and the elevated temperature of 310 K. Finally, both FFs were also performed well in reproducing the native fold of Mpro in a dimeric form. Therefore, comparing the preservation of the native fold of Mpro and the stability of its catalytic site architecture, our MD benchmarking suggests that the OPLS-AA/TIP4P and CHARMM27/TIP3P MD setups at the physiologic conditions may be well-suited for rapid in silico screening and developing broad-spectrum anti-coronaviral therapeutic agents.
Collapse
Affiliation(s)
- Kateryna O Lohachova
- School of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine
| | - Alexander Kyrychenko
- School of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine.
| | - Oleg N Kalugin
- School of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine
| |
Collapse
|
29
|
Huang L, Gish M, Boehlke J, Jeep RH, Chen C. Assay Development and Validation for Innovative Antiviral Development Targeting the N-Terminal Autoprocessing of SARS-CoV-2 Main Protease Precursors. Viruses 2024; 16:1218. [PMID: 39205192 PMCID: PMC11359197 DOI: 10.3390/v16081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The SARS-CoV-2 main protease (Mpro) is initially synthesized as part of polyprotein precursors that undergo autoproteolysis to release the free mature Mpro. To investigate the autoprocessing mechanism in transfected mammalian cells, we examined several fusion precursors, with the mature SARS-CoV-2 Mpro along with the flanking amino acids (to keep the native substrate sequences) sandwiched between different tags. Our analyses revealed differential proteolysis kinetics at the N- and C-terminal cleavage sites. Particularly, N-terminal processing is differentially influenced by various upstream fusion tags (GST, sGST, CD63, and Nsp4) and amino acid variations at the N-terminal P1 position, suggesting that precursor catalysis is flexible and subject to complex regulation. Mutating Q to E at the N-terminal P1 position altered both precursor catalysis and the properties of the released Mpro. Interestingly, the wild-type precursors exhibited different enzymatic activities compared to those of the released Mpro, displaying much lower susceptibility to known inhibitors targeting the mature form. These findings suggest the precursors as alternative targets for antiviral development. Accordingly, we developed and validated a high-throughput screening (HTS)-compatible platform for functional screening of compounds targeting either the N-terminal processing of the SARS-CoV-2 Mpro precursor autoprocessing or the released mature Mpro through different mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | - Chaoping Chen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.H.); (M.G.); (J.B.); (R.H.J.)
| |
Collapse
|
30
|
Dampalla CS, Kim Y, Zabiegala A, Howard DJ, Nguyen HN, Madden TK, Thurman HA, Cooper A, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-Guided Design of Potent Coronavirus Inhibitors with a 2-Pyrrolidone Scaffold: Biochemical, Crystallographic, and Virological Studies. J Med Chem 2024; 67:11937-11956. [PMID: 38953866 DOI: 10.1021/acs.jmedchem.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Zoonotic coronaviruses are known to produce severe infections in humans and have been the cause of significant morbidity and mortality worldwide. SARS-CoV-2 was the largest and latest contributor of fatal cases, even though MERS-CoV has the highest case-fatality ratio among zoonotic coronaviruses. These infections pose a high risk to public health worldwide warranting efforts for the expeditious discovery of antivirals. Hence, we hereby describe a novel series of inhibitors of coronavirus 3CLpro embodying an N-substituted 2-pyrrolidone scaffold envisaged to exploit favorable interactions with the S3-S4 subsites and connected to an invariant Leu-Gln P2-P1 recognition element. Several inhibitors showed nanomolar antiviral activity in enzyme and cell-based assays, with no significant cytotoxicity. High-resolution crystal structures of inhibitors bound to the 3CLpro were determined to probe and identify the molecular determinants associated with binding, to inform the structure-guided optimization of the inhibitors, and to confirm the mechanism of action of the inhibitors.
Collapse
Affiliation(s)
- Chamandi S Dampalla
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Alexandria Zabiegala
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Dennis J Howard
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Harry Nhat Nguyen
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Trent K Madden
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Hayden A Thurman
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Anne Cooper
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Lijun Liu
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kevin P Battaile
- NYX, New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
31
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
32
|
Kovalevsky A, Aniana A, Coates L, Ghirlando R, Nashed NT, Louis JM. Visualizing the Active Site Oxyanion Loop Transition Upon Ensitrelvir Binding and Transient Dimerization of SARS-CoV-2 Main Protease. J Mol Biol 2024; 436:168616. [PMID: 38762033 PMCID: PMC11182712 DOI: 10.1016/j.jmb.2024.168616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
N-terminal autoprocessing from its polyprotein precursor enables creating the mature-like stable dimer interface of SARS-CoV-2 main protease (MPro), concomitant with the active site oxyanion loop equilibrium transitioning to the active conformation (E*) and onset of catalytic activity. Through mutagenesis of critical interface residues and evaluating noncovalent inhibitor (ensitrelvir, ESV) facilitated dimerization through its binding to MPro, we demonstrate that residues extending from Ser1 through Glu14 are critical for dimerization. Combined mutations G11A, E290A and R298A (MPro™) restrict dimerization even upon binding of ESV to monomeric MPro™ with an inhibitor dissociation constant of 7.4 ± 1.6 µM. Contrasting the covalent inhibitor NMV or GC373 binding to monomeric MPro, ESV binding enabled capturing the transition of the oxyanion loop conformations in the absence of a reactive warhead and independent of dimerization. Characterization of complexes by room-temperature X-ray crystallography reveals ESV bound to the E* state of monomeric MPro as well as an intermediate approaching the inactive state (E). It appears that the E* to E equilibrium shift occurs initially from G138-F140 residues, leading to the unwinding of the loop and formation of the 310-helix. Finally, we describe a transient dimer structure of the MPro precursor held together through interactions of residues A5-G11 with distinct states of the active sites, E and E*, likely representing an intermediate in the autoprocessing pathway.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
| | - Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892-0520, USA
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892-0520, USA
| | - Nashaat T Nashed
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892-0520, USA
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
33
|
Nepravishta R, Ramírez-Cárdenas J, Rocha G, Walpole S, Hicks T, Monaco S, Muñoz-García JC, Angulo J. Fast Quantitative Validation of 3D Models of Low-Affinity Protein-Ligand Complexes by STD NMR Spectroscopy. J Med Chem 2024; 67:10025-10034. [PMID: 38848103 PMCID: PMC11215723 DOI: 10.1021/acs.jmedchem.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Low-affinity protein-ligand interactions are important for many biological processes, including cell communication, signal transduction, and immune responses. Structural characterization of these complexes is also critical for the development of new drugs through fragment-based drug discovery (FBDD), but it is challenging due to the low affinity of fragments for the binding site. Saturation transfer difference (STD) NMR spectroscopy has revolutionized the study of low-affinity receptor-ligand interactions enabling binding detection and structural characterization. Comparison of relaxation and exchange matrix calculations with 1H STD NMR experimental data is essential for the validation of 3D structures of protein-ligand complexes. In this work, we present a new approach based on the calculation of a reduced relaxation matrix, in combination with funnel metadynamics MD simulations, that allows a very fast generation of experimentally STD-NMR-validated 3D structures of low-affinity protein-ligand complexes.
Collapse
Affiliation(s)
- Ridvan Nepravishta
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
- Cancer Research Horizons, CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, U.K
| | - Jonathan Ramírez-Cárdenas
- Institute for Chemical Research (IIQ), CSIC - University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Gabriel Rocha
- Institute for Chemical Research (IIQ), CSIC - University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Samuel Walpole
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Thomas Hicks
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC - University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Jesús Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
- Institute for Chemical Research (IIQ), CSIC - University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| |
Collapse
|
34
|
Shayo MJ, Samwel B, Shadrack DM, Cassel J, Salvino JM, Montaner LJ, Deogratias G, Tietjen I, Kiruri L, Hilonga S, Innocent E. Drug repositioning identifies salvinorin A and deacetylgedunin (DCG) enriched plant extracts as novel inhibitors of Mpro, RBD-ACE2 and TMPRRS2 proteins. RSC Adv 2024; 14:21203-21212. [PMID: 38966817 PMCID: PMC11223729 DOI: 10.1039/d4ra02593h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) has spread worldwide with severe health, social, and economic repercussions. Although vaccines have significantly reduced the severity of symptoms and deaths, alternative medications derived from natural products (NPs) are vital to further decrease fatalities, especially in regions with low vaccine uptake. When paired with the latest computational developments, NPs, which have been used to cure illnesses and infections for thousands of years, constitute a renewed resource for drug discovery. In the present report, a combination of computational and in vitro methods reveals the repositioning of NPs and identifies salvinorin A and deacetylgedunin (DCG) as having potential anti-SARS-CoV-2 activities. Salvinorin A was found both in silico and in vitro to inhibit both SARS-CoV-2 spike/host ACE2 protein interactions, consistent with blocking viral cell entry, and well as live virus replication. Plant extracts from Azadirachta indica and Cedrela odorata, which contain high levels of DCG, inhibited viral cell replication by targeting the main protease (Mpro) and/or inhibited viral cell entry by blocking the interaction between spike RBD-ACE2 protein at concentrations lower than salvinorin A. Our findings suggest that salvinorin A represent promising chemical starting points where further optimization may result in effective natural product-derived and potent anti-SARS-CoV-2 inhibitors to supplement vaccine efforts.
Collapse
Affiliation(s)
- Mariana J Shayo
- Department of Biological and Pre-clinical Studies, Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences P.O.Box 65001 Dar es Salaam Tanzania
| | - Baraka Samwel
- Department of Natural Products, Institute of Traditional Medicines, Muhimbili University of Health and Allied Sciences P.O.Box 65001 Dar es Salaam Tanzania
| | - Daniel M Shadrack
- Department of Chemistry, Faculty of Natural and Applied Sciences, St. John's University of Tanzania P.O.Box 47 Dodoma Tanzania
- School of Life Science and Bio-engineering, Nelson Mandela African Institute of Science and Technology P.O.Box 447 Arusha Tanzania
| | - Joel Cassel
- The Wistar Institute 3601 Spruce Street Philadelphia PA 19104 USA
| | - Joseph M Salvino
- The Wistar Institute 3601 Spruce Street Philadelphia PA 19104 USA
| | - Luis J Montaner
- The Wistar Institute 3601 Spruce Street Philadelphia PA 19104 USA
| | - Geradius Deogratias
- Chemistry Department, College of Natural and Applied Sciences, University of Dar es Salaam P.O.Box 35061 Dar es Salaam Tanzania
| | - Ian Tietjen
- The Wistar Institute 3601 Spruce Street Philadelphia PA 19104 USA
| | - Lucy Kiruri
- Kenyata University, Department of Chemistry P.O.Box 43844-00100 Nairobi Kenya
| | - Samson Hilonga
- Department of Medical Botany, Plant Breeding and Agronomy, Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences P.O.Box 65001 Dar es Salaam Tanzania
| | - Ester Innocent
- Department of Biological and Pre-clinical Studies, Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences P.O.Box 65001 Dar es Salaam Tanzania
| |
Collapse
|
35
|
Yang M, Lin L, Flaumenhaft R. Protocol to identify flavonoid antagonists of the SARS-CoV-2 main protease. STAR Protoc 2024; 5:102990. [PMID: 38583157 PMCID: PMC11002865 DOI: 10.1016/j.xpro.2024.102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Flavonoids are naturally occurring metabolites of plants that can inhibit the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro), which is required for viral replication. Here, we present a protocol to identify flavonoid antagonists of the SARS-CoV-2 Mpro. We describe steps for the expression and purification of Mpro and a kinetic enzymatic assay for Mpro activity using a dequenching fluorescence resonance energy transfer peptide substrate. We then detail procedures for using this enzymatic assay to test flavonoid antagonism and reversible inhibition. For complete details on the use and execution of this protocol, please refer to Lin et al.1.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| | - Lin Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhuo Institute of Oceanography, Fuzhuo, China
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Khachatryan H, Matevosyan M, Harutyunyan V, Gevorgyan S, Shavina A, Tirosyan I, Gabrielyan Y, Ayvazyan M, Bozdaganyan M, Fakhar Z, Gharaghani S, Zakaryan H. Computational evaluation and benchmark study of 342 crystallographic holo-structures of SARS-CoV-2 Mpro enzyme. Sci Rep 2024; 14:14255. [PMID: 38902397 PMCID: PMC11189913 DOI: 10.1038/s41598-024-65228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
The coronavirus disease 19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global health crisis with millions of confirmed cases and related deaths. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication and presents an attractive target for drug development. Despite the approval of some drugs, the search for effective treatments continues. In this study, we systematically evaluated 342 holo-crystal structures of Mpro to identify optimal conformations for structure-based virtual screening (SBVS). Our analysis revealed limited structural flexibility among the structures. Three docking programs, AutoDock Vina, rDock, and Glide were employed to assess the efficiency of virtual screening, revealing diverse performances across selected Mpro structures. We found that the structures 5RHE, 7DDC, and 7DPU (PDB Ids) consistently displayed the lowest EF, AUC, and BEDROCK scores. Furthermore, these structures demonstrated the worst pose prediction results in all docking programs. Two structural differences contribute to variations in docking performance: the absence of the S1 subsite in 7DDC and 7DPU, and the presence of a subpocket in the S2 subsite of 7DDC, 7DPU, and 5RHE. These findings underscore the importance of selecting appropriate Mpro conformations for SBVS, providing valuable insights for advancing drug discovery efforts.
Collapse
Affiliation(s)
- Hamlet Khachatryan
- Denovo Sciences Inc, 0060, Yerevan, Armenia.
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia.
| | - Mher Matevosyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Vardan Harutyunyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Smbat Gevorgyan
- Denovo Sciences Inc, 0060, Yerevan, Armenia
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Anastasiya Shavina
- Denovo Sciences Inc, 0060, Yerevan, Armenia
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Irina Tirosyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Yeva Gabrielyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Marusya Ayvazyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | | | - Zeynab Fakhar
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hovakim Zakaryan
- Denovo Sciences Inc, 0060, Yerevan, Armenia.
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia.
| |
Collapse
|
37
|
Hazemann J, Kimmerlin T, Lange R, Mac Sweeney A, Bourquin G, Ritz D, Czodrowski P. Identification of SARS-CoV-2 Mpro inhibitors through deep reinforcement learning for de novo drug design and computational chemistry approaches. RSC Med Chem 2024; 15:2146-2159. [PMID: 38911172 PMCID: PMC11187573 DOI: 10.1039/d4md00106k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/20/2024] [Indexed: 06/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of coronavirus disease (COVID-19) since its emergence in December 2019. As of January 2024, there has been over 774 million reported cases and 7 million deaths worldwide. While vaccination efforts have been successful in reducing the severity of the disease and decreasing the transmission rate, the development of effective therapeutics against SARS-CoV-2 remains a critical need. The main protease (Mpro) of SARS-CoV-2 is an essential enzyme required for viral replication and has been identified as a promising target for drug development. In this study, we report the identification of novel Mpro inhibitors, using a combination of deep reinforcement learning for de novo drug design with 3D pharmacophore/shape-based alignment and privileged fragment match count scoring components followed by hit expansions and molecular docking approaches. Our experimentally validated results show that 3 novel series exhibit potent inhibitory activity against SARS-CoV-2 Mpro, with IC50 values ranging from 1.3 μM to 2.3 μM and a high degree of selectivity. These findings represent promising starting points for the development of new antiviral therapies against COVID-19.
Collapse
Affiliation(s)
- Julien Hazemann
- Physical Chemistry, Chemistry Department, Johannes Gutenberg University Duesbergweg 10-14 55128 Mainz Germany
- Drug Discovery Chemistry, Idorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil Switzerland
| | - Thierry Kimmerlin
- Drug Discovery Chemistry, Idorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil Switzerland
| | - Roland Lange
- Drug Discovery Chemistry, Idorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil Switzerland
| | - Aengus Mac Sweeney
- Drug Discovery Chemistry, Idorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil Switzerland
| | - Geoffroy Bourquin
- Drug Discovery Chemistry, Idorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil Switzerland
| | - Daniel Ritz
- Drug Discovery Chemistry, Idorsia Pharmaceuticals Ltd. Hegenheimermattweg 91 4123 Allschwil Switzerland
| | - Paul Czodrowski
- Physical Chemistry, Chemistry Department, Johannes Gutenberg University Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
38
|
Blankenship L, Yang KS, Vulupala VR, Alugubelli YR, Khatua K, Coleman D, Ma XR, Sankaran B, Cho CCD, Ma Y, Neuman BW, Xu S, Liu WR. SARS-CoV-2 Main Protease Inhibitors That Leverage Unique Interactions with the Solvent Exposed S3 Site of the Enzyme. ACS Med Chem Lett 2024; 15:950-957. [PMID: 38894905 PMCID: PMC11181478 DOI: 10.1021/acsmedchemlett.4c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
The main protease (MPro) of SARS-CoV-2 is crucial for the virus's replication and pathogenicity. Its active site is characterized by four distinct pockets (S1, S2, S4, and S1-3') and a solvent-exposed S3 site for accommodating a protein substrate. During X-ray crystallographic analyses of MPro bound with dipeptide inhibitors containing a flexible N-terminal group, we often observed an unexpected binding mode. Contrary to the anticipated engagement with the deeper S4 pocket, the N-terminal group frequently assumed a twisted conformation, positioning it for interactions with the S3 site and the inhibitor component bound at the S1 pocket. Capitalizing on this observation, we engineered novel inhibitors to engage both S3 and S4 sites or to adopt a rigid conformation for selective S3 site binding. Several new inhibitors demonstrated high efficacy in MPro inhibition. Our findings underscore the importance of the S3 site's unique interactions in the design of future MPro inhibitors as potential COVID-19 therapeutics.
Collapse
Affiliation(s)
- Lauren
R. Blankenship
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Kai S. Yang
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Veerabhadra R. Vulupala
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Yugendar R. Alugubelli
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Kaustav Khatua
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Demonta Coleman
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Xinyu R. Ma
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Banumathi Sankaran
- Molecular
Biophysics and Integrated Bioimaging, Berkeley Center for Structural
Biology, Laurence Berkeley National National
Laboratory, Berkeley, California 94720, United States
| | - Chia-Chuan D. Cho
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Yuying Ma
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
| | - Benjamin W. Neuman
- Department
of Biology, College of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
- Texas
A&M Global Health Research Complex, Texas A&M University, College Station, Texas 77843, United States
- Department
of Molecular Pathogenesis and Immunology, School of Medicine, Texas A&M University, College Station, Texas 77843, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Scienes, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, School of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
39
|
Altomare A, Baron G, Cambiaghi G, Ferrario G, Zoanni B, Della Vedova L, Fumagalli GM, D’Alessandro S, Parapini S, Vittorio S, Vistoli G, Riso P, Carini M, Delbue S, Aldini G. Screening of M pro Protease (SARS-CoV-2) Covalent Inhibitors from an Anthocyanin-Rich Blueberry Extract Using an HRMS-Based Analytical Platform. Molecules 2024; 29:2702. [PMID: 38893578 PMCID: PMC11173886 DOI: 10.3390/molecules29112702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The viral main protease (Mpro) of SARS-CoV-2 has been recently proposed as a key target to inhibit virus replication in the host. Therefore, molecules that can bind the catalytic site of Mpro could be considered as potential drug candidates in the treatment of SARS-CoV-2 infections. Here we proposed the application of a state-of-the-art analytical platform which combines metabolomics and protein structure analysis to fish-out potential active compounds deriving from a natural matrix, i.e., a blueberry extract. METHODS The experiments focus on finding MS covalent inhibitors of Mpro that contain in their structure a catechol/pyrogallol moiety capable of binding to the nucleophilic amino acids of the enzyme's catalytic site. RESULTS Among the potential candidates identified, the delphinidin-3-glucoside showed the most promising results. Its antiviral activity has been confirmed in vitro on Vero E6 cells infected with SARS-CoV-2, showing a dose-dependent inhibitory effect almost comparable to the known Mpro inhibitor baicalin. The interaction of delphinidin-3-glucoside with the Mpro pocket observed was also evaluated by computational studies. CONCLUSIONS The HRMS analytical platform described proved to be effective in identifying compounds that covalently bind Mpro and are active in the inhibition of SARS-CoV-2 replication, such as delphinidin-3-glucoside.
Collapse
Affiliation(s)
- Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Giulia Cambiaghi
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Giulio Ferrario
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Beatrice Zoanni
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Larissa Della Vedova
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | | | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Carlo Pascal 36, 20133 Milan, Italy;
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Carlo Pascal 36, 20133 Milan, Italy;
| | - Serena Vittorio
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milan, Italy;
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal 36, 20133 Milan, Italy;
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| |
Collapse
|
40
|
Tripathi A, Dubey KD. The mechanistic insights into different aspects of promiscuity in metalloenzymes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:23-66. [PMID: 38960476 DOI: 10.1016/bs.apcsb.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Enzymes are nature's ultimate machinery to catalyze complex reactions. Though enzymes are evolved to catalyze specific reactions, they also show significant promiscuity in reactions and substrate selection. Metalloenzymes contain a metal ion or metal cofactor in their active site, which is crucial in their catalytic activity. Depending on the metal and its coordination environment, the metal ion or cofactor may function as a Lewis acid or base and a redox center and thus can catalyze a plethora of natural reactions. In fact, the versatility in the oxidation state of the metal ions provides metalloenzymes with a high level of catalytic adaptability and promiscuity. In this chapter, we discuss different aspects of promiscuity in metalloenzymes by using several recent experimental and theoretical works as case studies. We start our discussion by introducing the concept of promiscuity and then we delve into the mechanistic insight into promiscuity at the molecular level.
Collapse
Affiliation(s)
- Ankita Tripathi
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
41
|
Lin S, Wang X, Tang RWL, Duan R, Leung KW, Dong TTX, Webb SE, Miller AL, Tsim KWK. Computational Docking as a Tool in Guiding the Drug Design of Rutaecarpine Derivatives as Potential SARS-CoV-2 Inhibitors. Molecules 2024; 29:2636. [PMID: 38893512 PMCID: PMC11173897 DOI: 10.3390/molecules29112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
COVID-19 continues to spread around the world. This is mainly because new variants of the SARS-CoV-2 virus emerge due to genomic mutations, evade the immune system and result in the effectiveness of current therapeutics being reduced. We previously established a series of detection platforms, comprising computational docking analysis, S-protein-based ELISA, pseudovirus entry, and 3CL protease activity assays, which allow us to screen a large library of phytochemicals from natural products and to determine their potential in blocking the entry of SARS-CoV-2. In this new screen, rutaecarpine (an alkaloid from Evodia rutaecarpa) was identified as exhibiting anti-SARS-CoV-2 activity. Therefore, we conducted multiple rounds of structure-activity-relationship (SAR) studies around this phytochemical and generated several rutaecarpine analogs that were subjected to in vitro evaluations. Among these derivatives, RU-75 and RU-184 displayed remarkable inhibitory activity when tested in the 3CL protease assay, S-protein-based ELISA, and pseudovirus entry assay (for both wild-type and omicron variants), and they attenuated the inflammatory response induced by SARS-CoV-2. Interestingly, RU-75 and RU-184 both appeared to be more potent than rutaecarpine itself, and this suggests that they might be considered as lead candidates for future pharmacological elaboration.
Collapse
Affiliation(s)
- Shengying Lin
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoyang Wang
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Roy Wai-Lun Tang
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ran Duan
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ka Wing Leung
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tina Ting-Xia Dong
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sarah E. Webb
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Andrew L. Miller
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Karl Wah-Keung Tsim
- Center for Chinese Medicine, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; (S.L.); (X.W.); (R.W.-L.T.); (R.D.); (K.W.L.); (T.T.-X.D.); (S.E.W.); (A.L.M.)
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
42
|
Deshmukh N, Talkal R, Lakshmi B. In silico screening of potential inhibitors from Cordyceps species against SARS-CoV-2 main protease. J Biomol Struct Dyn 2024; 42:4395-4411. [PMID: 37325819 DOI: 10.1080/07391102.2023.2225110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a result of a retroviral infection of SARS-CoV-2. Due to its virulence and high infection rate, it is a matter of serious concern and a global health emergency. Currently available COVID-19 vaccines approved by regulatory bodies around the world have been shown to provide significant protection against COVID-19. But no vaccine is 100% effective at preventing infection, also they have varying efficacy rates and different side effects. However, the main protease (Mpro) of SARS-CoV-2 has been identified as a key drug target due to its essential role in viral infection and its minimal similarity with human proteases. Cordyceps mushrooms have been found to have various therapeutic properties that could effectively combat SARS-CoV-2, including improve lung functioning, anti-viral, immunomodulators, anti-infectious, and anti-inflammatory. The present study aims to screen and evaluate the inhibitory potential of the bioactive molecules from the Cordyceps species against the Mpro of SARS-CoV-2. The bioactive molecules were screened based on their docking score, molecular interactions in the binding pocket, ADME properties, toxicity, carcinogenicity, and mutagenicity. Among all the molecules that were tested, cordycepic acid was the most effective and promising candidate, with a binding affinity of -8.10 kcal/mol against Mpro. The molecular dynamics (MD) simulation and free binding energy calculations revealed that the cordycepic acid-Mpro complex was highly stable and showed fewer conformational fluctuations. These findings need to be investigated further through in-vitro and in-vivo studies for additional validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Niketan Deshmukh
- L J School of Applied Sciences, L J University, Ahmedabad, India
| | - Reshma Talkal
- Gujarat Biotechnology Research Centre, Gandhinagar, India
| | - Bhaskaran Lakshmi
- Department of Biotechnology, Kadi Sarva Vishwavidyalaya, Gandhinagar, India
| |
Collapse
|
43
|
Kenward C, Vuckovic M, Paetzel M, Strynadka NCJ. Kinetic comparison of all eleven viral polyprotein cleavage site processing events by SARS-CoV-2 main protease using a linked protein FRET platform. J Biol Chem 2024; 300:107367. [PMID: 38750796 PMCID: PMC11209022 DOI: 10.1016/j.jbc.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
The main protease (Mpro) remains an essential therapeutic target for COVID-19 post infection intervention given its critical role in processing the majority of viral proteins encoded by the genome of severe acute respiratory syndrome related coronavirus 2 (SARS-CoV-2). Upon viral entry, the +ssRNA genome is translated into two long polyproteins (pp1a or the frameshift-dependent pp1ab) containing all the nonstructural proteins (nsps) required by the virus for immune modulation, replication, and ultimately, virion assembly. Included among these nsps is the cysteine protease Mpro (nsp5) which self-excises from the polyprotein, dimerizes, then sequentially cleaves 11 of the 15 cut-site junctions found between each nsp within the polyprotein. Many structures of Mpro (often bound to various small molecule inhibitors or peptides) have been detailed recently, including structures of Mpro bound to each of the polyprotein cleavage sequences, showing that Mpro can accommodate a wide range of targets within its active site. However, to date, kinetic characterization of the interaction of Mpro with each of its native cleavage sequences remains incomplete. Here, we present a robust and cost-effective FRET based system that benefits from a more consistent presentation of the substrate that is also closer in organization to the native polyprotein environment compared to previously reported FRET systems that use chemically modified peptides. Using this system, we were able to show that while each site maintains a similar Michaelis constant, the catalytic efficiency of Mpro varies greatly between cut-site sequences, suggesting a clear preference for the order of nsp processing.
Collapse
Affiliation(s)
- Calem Kenward
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
44
|
Matúška J, Bucinsky L, Gall M, Pitoňák M, Štekláč M. SchNetPack Hyperparameter Optimization for a More Reliable Top Docking Scores Prediction. J Phys Chem B 2024; 128:4943-4951. [PMID: 38733335 DOI: 10.1021/acs.jpcb.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Options to improve the extrapolation power of the neural network designed using the SchNetPack package with respect to top docking scores prediction are presented. It is shown that hyperparameter tuning of the atomistic model representation (in the schnetpack.representation) improves the prediction of the top scoring compounds, which have characteristically a low incidence in randomized data sets for training of machine learning models. The prediction robustness is evaluated according to the mean square error (MSE) and the entropy of the average loss landscape decrease. Admittedly, the improvement of the top scoring compounds' prediction accuracy comes with the penalty of worsening the overall prediction power. It is revealed that the most impactful hyperparameter is the cutoff (5 Å is reported as the optimal choice). Other parameters (e.g., number of radial basis functions, number of interaction layers of the neural network, feature vector size or its batch size) are found to not affect the prediction robustness of the top scoring compounds in any comparable way relative to the cutoff. The MSE of the best docking score prediction (below -13 kcal/mol) improves from ca. 3.5 to 0.9 kcal/mol, while the prediction of less potent compounds (-13 to -11 kcal/mol) shows a lesser improvement, i.e., a decrease of MSE from 1.6 to 1.3 kcal/mol. Additionally, oversampling and undersampling of the training set with respect to the top scoring compounds' abundance is presented. The results indicate that the cutoff choice performs better than over- or undersampling of the training set, with undersampling performing better than oversampling.
Collapse
Affiliation(s)
- Ján Matúška
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Marián Gall
- Institute of Information Engineering, Automation and Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
- National SuperComputing Center, Dúbravská cesta č. 9, SK-84104 Bratislava, Slovak Republic
| | - Michal Pitoňák
- National SuperComputing Center, Dúbravská cesta č. 9, SK-84104 Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina Ilkovičova 6, SK-84215 Bratislava, Slovak Republic
| | - Marek Štekláč
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
- Computing Centre, Centre of Operations of the Slovak Academy of Sciences, Dúbravská cesta č. 9, SK-84535 Bratislava, Slovak Republic
| |
Collapse
|
45
|
Zhang J, Zhao L, Bai Y, Li S, Zhang M, Wei B, Wang X, Xue Y, Li L, Ma G, Tang Y, Wang X. An ascidian Polycarpa aurata-derived pan-inhibitor against coronaviruses targeting M pro. Bioorg Med Chem Lett 2024; 103:129706. [PMID: 38508325 DOI: 10.1016/j.bmcl.2024.129706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Coronaviruses (CoVs) are responsible for a wide range of illnesses in both animals and human. The main protease (Mpro) of CoVs is an attractive drug target, owing its critical and highly conserved role in viral replication. Here, we developed and refined an enzymatic technique to identify putative Mpro inhibitors from 189 marine chemicals and 46 terrestrial natural products. The IC50 values of Polycarpine (1a), a marine natural substance we studied and synthesized, are 30.0 ± 2.5 nM for SARS-CoV-2 Mpro and 0.12 ± 0.05 μM for PEDV Mpro. Our research further demonstrated that pretreatment with Polycarpine (1a) inhibited the betacoronavirus SARS-CoV-2 and alphacoronavirus PEDV multiplication in Vero-E6 cells. As a result, Polycarpine (1a), a pan-inhibitor of Mpro, will function as an effective and promising antiviral option to combat CoVs infection and as a foundation for further therapeutic research.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Lili Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| | - Yuxin Bai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Shanshan Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Meifang Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Bo Wei
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xianyang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Li Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Guiliang Ma
- Department of General Surgery, Qingdao Municipal Hospital, No. 5, Donghaizhong Road, Qingdao 266071, China.
| | - Yu Tang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| |
Collapse
|
46
|
Mohammed Hashim KK, Manoj E. Aminoguanidine-based bioactive proligand as AIEE probe for anticancer and anticovid studies. RSC Adv 2024; 14:13654-13668. [PMID: 38665490 PMCID: PMC11044126 DOI: 10.1039/d4ra00554f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The emission features of a novel bioactive compound, 1,3-bis(2-hydroxy-3,5-diiodophenyl-methylideneamino)guanidine is found impressive with aggregation induced emission enhancement. The nitrogen and iodine rich multidentate proligand was characterized physicochemically. SCXRD and Hirshfeld surface investigation have revealed the presence of significant triangular iodine bonding apart from hydrogen bonding, weak C-H⋯π and π⋯π intermolecular interactions. These interactions collectively contribute to the solid-state packing arrangement of the molecules within the crystal lattice. The band gap of the compound was estimated experimentally and is supported with theoretical calculations. The solid-state fluorescence quantum yield of Φ = 0.36 emphasizes the utility of the proligand and the AIEE characteristics is attributed to restricted intramolecular motions as indicated by fluorescence lifetime decay studies. Strong interaction of the compound with calf thymus DNA was explored experimentally and found to align with in silico docking results. Notably, in vitro anticancer assessment on MCF-7 breast cancer cells show an IC50 value of 181.05 μg mL-1 and signifying its potent cytotoxic properties. Also, the compound is found to have lesser cytotoxicity against L929 normal cell line with an IC50 value of 356.54 μg mL-1. Computational studies further underscore the exceptional binding affinity with active sites in the SARS-CoV-2 main protease 3CLpro, surpassing established repurposed drugs. Furthermore, the proligand demonstrates excellent putative affinity towards the SARS-CoV-2 spike glycoprotein, accompanied by its distinctive AIEE attributes, drug likeness and DNA binding capability rendering it a valuable tool for prospective research investigations.
Collapse
Affiliation(s)
- K K Mohammed Hashim
- Department of Applied Chemistry, Cochin University of Science and Technology Kochi Kerala 682 022 India
| | - E Manoj
- Department of Applied Chemistry, Cochin University of Science and Technology Kochi Kerala 682 022 India
| |
Collapse
|
47
|
Azevedo PHRDA, Camargo PG, Constant LEC, Costa SDS, Silva CS, Rosa AS, Souza DDC, Tucci AR, Ferreira VNS, Oliveira TKF, Borba NRR, Rodrigues CR, Albuquerque MG, Dias LRS, Garrett R, Miranda MD, Allonso D, Lima CHDS, Muri EMF. Statine-based peptidomimetic compounds as inhibitors for SARS-CoV-2 main protease (SARS-CoV‑2 Mpro). Sci Rep 2024; 14:8991. [PMID: 38637583 PMCID: PMC11026380 DOI: 10.1038/s41598-024-59442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
COVID-19 is a multisystemic disease caused by the SARS-CoV-2 airborne virus, a member of the Coronaviridae family. It has a positive sense single-stranded RNA genome and encodes two non-structural proteins through viral cysteine-proteases processing. Blocking this step is crucial to control virus replication. In this work, we reported the synthesis of 23 statine-based peptidomimetics to determine their ability to inhibit the main protease (Mpro) activity of SARS-CoV-2. Among the 23 peptidomimetics, 15 compounds effectively inhibited Mpro activity by 50% or more, while three compounds (7d, 8e, and 9g) exhibited maximum inhibition above 70% and IC50 < 1 µM. Compounds 7d, 8e, and 9g inhibited roughly 80% of SARS-CoV-2 replication and proved no cytotoxicity. Molecular docking simulations show putative hydrogen bond and hydrophobic interactions between specific amino acids and these inhibitors. Molecular dynamics simulations further confirmed the stability and persisting interactions in Mpro's subsites, exhibiting favorable free energy binding (ΔGbind) values. These findings suggest the statine-based peptidomimetics as potential therapeutic agents against SARS-CoV-2 by targeting Mpro.
Collapse
Affiliation(s)
- Pedro Henrique R de A Azevedo
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| | - Priscila G Camargo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Larissa E C Constant
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Stephany da S Costa
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Celimar Sinézia Silva
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Alice S Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Daniel D C Souza
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Amanda R Tucci
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Vivian N S Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Thamara Kelcya F Oliveira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Nathalia R R Borba
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Carlos R Rodrigues
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Magaly G Albuquerque
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Luiza R S Dias
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| | - Rafael Garrett
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Milene D Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Diego Allonso
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Camilo Henrique da S Lima
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil.
| | - Estela Maris F Muri
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil.
| |
Collapse
|
48
|
Mohebbi A, Eskandarzadeh M, Zangi H, Fatehi M. In silico study of alkaloids with quercetin nucleus for inhibition of SARS-CoV-2 protease and receptor cell protease. PLoS One 2024; 19:e0298201. [PMID: 38626042 PMCID: PMC11020608 DOI: 10.1371/journal.pone.0298201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/21/2024] [Indexed: 04/18/2024] Open
Abstract
Covid-19 disease caused by the deadly SARS-CoV-2 virus is a serious and threatening global health issue declared by the WHO as an epidemic. Researchers are studying the design and discovery of drugs to inhibit the SARS-CoV-2 virus due to its high mortality rate. The main Covid-19 virus protease (Mpro) and human transmembrane protease, serine 2 (TMPRSS2) are attractive targets for the study of antiviral drugs against SARS-2 coronavirus. Increasing consumption of herbal medicines in the community and a serious approach to these drugs have increased the demand for effective herbal substances. Alkaloids are one of the most important active ingredients in medicinal plants that have wide applications in the pharmaceutical industry. In this study, seven alkaloid ligands with Quercetin nucleus for the inhibition of Mpro and TMPRSS2 were studied using computational drug design including molecular docking and molecular dynamics simulation (MD). Auto Dock software was used to evaluate molecular binding energy. Three ligands with the most negative docking score were selected to be entered into the MD simulation procedure. To evaluate the protein conformational changes induced by tested ligands and calculate the binding energy between the ligands and target proteins, GROMACS software based on AMBER03 force field was used. The MD results showed that Phyllospadine and Dracocephin-A form stable complexes with Mpro and TMPRSS2. Prolinalin-A indicated an acceptable inhibitory effect on Mpro, whereas it resulted in some structural instability of TMPRSS2. The total binding energies between three ligands, Prolinalin-A, Phyllospadine and Dracocephin-A and two proteins MPro and TMRPSS2 are (-111.235 ± 15.877, - 75.422 ± 11.140), (-107.033 ± 9.072, -84.939 ± 10.155) and (-102.941 ± 9.477, - 92.451 ± 10.539), respectively. Since the binding energies are at a minimum, this indicates confirmation of the proper binding of the ligands to the proteins. Regardless of some Prolinalin-A-induced TMPRSS2 conformational changes, it may properly bind to TMPRSS2 binding site due to its acceptable binding energy. Therefore, these three ligands can be promising candidates for the development of drugs to treat infections caused by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Ali Mohebbi
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Marzieh Eskandarzadeh
- Research Committee of Faculty of Pharmacy, Lorestan University of Medical Science, Khorramabad, Iran
| | - Hanieh Zangi
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Marzie Fatehi
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
49
|
de Santiago-Silva KM, Camargo PG, Carvalho Constant LE, Costa SDS, Frensel GB, Allonso D, Nakazato G, Lima CHDS, Bispo MDLF. Molecular modelling studies and in vitro enzymatic assays identified A 4-(nitrobenzyl)guanidine derivative as inhibitor of SARS-CoV-2 Mpro. Sci Rep 2024; 14:8620. [PMID: 38616188 PMCID: PMC11016540 DOI: 10.1038/s41598-024-59292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
Scientists and researchers have been searching for drugs targeting the main protease (Mpro) of SARS-CoV-2, which is crucial for virus replication. This study employed a virtual screening based on molecular docking to identify benzoylguanidines from an in-house chemical library that can inhibit Mpro on the active site and three allosteric sites. Molecular docking was performed on the LaSMMed Chemical Library using 88 benzoylguanidine compounds. Based on their RMSD values and conserved pose, three potential inhibitors (BZG1, BZG2, and BZG3) were selected. These results indicate that BZG1 and BZG3 may bind to the active site, while BZG2 may bind to allosteric sites. Molecular dynamics data suggest that BZG2 selectively targets allosteric site 3. In vitro tests were performed to measure the proteolytic activity of rMpro. The tests showed that BZG2 has uncompetitive inhibitory activity, with an IC50 value of 77 µM. These findings suggest that benzoylguanidines possess potential as Mpro inhibitors and pave the way towards combating SARS-Cov-2 effectively.
Collapse
Affiliation(s)
- Kaio Maciel de Santiago-Silva
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Priscila Goes Camargo
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Larissa Esteves Carvalho Constant
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Stephany da Silva Costa
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Giovanna Barbosa Frensel
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Gerson Nakazato
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Camilo Henrique da Silva Lima
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelle de Lima Ferreira Bispo
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil.
| |
Collapse
|
50
|
Wang F, Liu D, Gao D, Yuan J, Zhao J, Yuan S, Cen Y, Lin GQ, Zhao J, Tian P. Discovery of natural catechol derivatives as covalent SARS-CoV-2 3CL pro inhibitors. Int J Biol Macromol 2024; 264:130377. [PMID: 38395279 DOI: 10.1016/j.ijbiomac.2024.130377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a threat to public health, and extensive research by scientists worldwide has also prompted the development of antiviral therapies. The 3C-like protease (3CLpro) is critical for SARS-CoV-2 replication and acts as an effective target for drug development. To date, numerous of natural products have been reported to exhibit inhibitory effects on 3CLpro, which encourages us to identify other novel inhibitors and elucidate their mechanism of action. In this study, we first screened an in-house compound library of 101 natural products using FRET assay, and found that oleuropein showed good inhibitory activity against SARS CoV-2 3CLpro with an IC50 value of 4.18 μM. Further studies revealed that the catechol core is essential for activity and can covalently bind to SARS-CoV-2 3CLpro. Among other 45 catechol derivatives, wedelolactone, capsazepine and brazilin showed better SARS-CoV-2 3CLpro inhibitory activities with IC50 values of 1.35 μM, 1.95 μM and 1.18 μM, respectively. These catechol derivatives were verified to be irreversible covalent inhibitors by time-dependent experiments, enzymatic kinetic studies, dilution and dialysis assays. It also exhibited good selectivity towards different cysteine proteases (SARS-CoV-2 PLpro, cathepsin B and cathepsin L). Subsequently, the binding affinity between brazilin and SARS-CoV-2 3CLpro was determined by SPR assay with KD value of 0.80 μM. Molecular dynamic (MD) simulations study showed the binding mode of brazilin in the target protein. In particular, brazilin displayed good anti-SARS-CoV-2 activity in A549-hACE2-TMPRSS2 cells with EC50 values of 7.85 ± 0.20 μM and 5.24 ± 0.21 μM for full time and post-infection treatments, respectively. This study provides a promising lead compound for the development of novel anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jinwei Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Shuai Yuan
- Health and Quarantine Laboratory, Guangzhou Customs District Technology Center, Guangzhou 510700, China
| | - Yixin Cen
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China; Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|