1
|
Chen Y, Klute S, Sparrer KMJ, Serra-Moreno R. RAB5 is a host dependency factor for the generation of SARS-CoV-2 replication organelles. mBio 2025; 16:e0331424. [PMID: 40167317 PMCID: PMC12077180 DOI: 10.1128/mbio.03314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a threat due to the emergence of variants with increased transmissibility and enhanced escape from immune responses. Like other coronaviruses before, SARS-CoV-2 likely emerged after its transmission from bats. The successful propagation of SARS-CoV-2 in humans might have been facilitated by usurping evolutionarily conserved cellular factors to execute crucial steps in its life cycle, such as the generation of replication organelles-membrane structures where coronaviruses assemble their replication-transcription complex. In this study, we found that RAB5, which is highly conserved across mammals, is a critical host dependency factor for the replication of the SARS-CoV-2 genome. Our results also suggest that SARS-CoV-2 uses RAB5+ membranes to build replication organelles with the aid of COPB1, a component of the COP-I complex, and that the virus protein NSP6 participates in this process. Hence, targeting NSP6 represents a promising approach to interfere with SARS-CoV-2 RNA synthesis and halt its propagation.IMPORTANCEIn this study, we sought to identify the host dependency factors that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses for the generation of replication organelles: cellular membranous structures that SARS-CoV-2 builds in order to support the replication and transcription of its genome. We uncovered that RAB5 is an important dependency factor for SARS-CoV-2 replication and the generation of replication organelles, and that the viral protein NSP6 participates in this process. Hence, NSP6 represents a promising target to halt SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Yuexuan Chen
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Susanne Klute
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Konstantin Maria Johannes Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Ruth Serra-Moreno
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Pekar JE, Lytras S, Ghafari M, Magee AF, Parker E, Wang Y, Ji X, Havens JL, Katzourakis A, Vasylyeva TI, Suchard MA, Hughes AC, Hughes J, Rambaut A, Robertson DL, Dellicour S, Worobey M, Wertheim JO, Lemey P. The recency and geographical origins of the bat viruses ancestral to SARS-CoV and SARS-CoV-2. Cell 2025:S0092-8674(25)00353-8. [PMID: 40339581 DOI: 10.1016/j.cell.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/21/2024] [Accepted: 03/19/2025] [Indexed: 05/10/2025]
Abstract
The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 led to increased sampling of sarbecoviruses circulating in horseshoe bats. Employing phylogenetic inference while accounting for recombination of bat sarbecoviruses, we find that the closest-inferred bat virus ancestors of SARS-CoV and SARS-CoV-2 existed less than a decade prior to their emergence in humans. Phylogeographic analyses show bat sarbecoviruses traveled at rates approximating their horseshoe bat hosts and circulated in Asia for millennia. We find that the direct ancestors of SARS-CoV and SARS-CoV-2 are unlikely to have reached their respective sites of emergence via dispersal in the bat reservoir alone, supporting interactions with intermediate hosts through wildlife trade playing a role in zoonotic spillover. These results can guide future sampling efforts and demonstrate that viral genomic regions extremely closely related to SARS-CoV and SARS-CoV-2 were circulating in horseshoe bats, confirming their importance as the reservoir species for SARS viruses.
Collapse
Affiliation(s)
- Jonathan E Pekar
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Spyros Lytras
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Mahan Ghafari
- Department of Biology, University of Oxford, Oxford, UK
| | - Andrew F Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Institute of Genomics and Global Health, Redeemer's University, Ede, Osun State, Nigeria
| | - Yu Wang
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Tetyana I Vasylyeva
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Population Health and Disease Prevention, University of California, Irvine, Irvine, CA 92617, USA
| | - Marc A Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong; China Biodiversity Green Development Foundation, Beijing, China
| | - Joseph Hughes
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - David L Robertson
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, 1050 Bruxelles, Belgium; Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium.
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Habeebur‐Rahman SP, Khan FAA, Mohd‐Azlan J, Gumal M, Tan CS. Comparative Analysis of Quan and Watanabe Pan-Coronavirus Assays for Bat Coronavirus Diversity in Sarawak, East Malaysia. J Med Virol 2025; 97:e70389. [PMID: 40358016 PMCID: PMC12070664 DOI: 10.1002/jmv.70389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/04/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Bats are natural reservoirs for a diverse range of coronaviruses (CoVs), including those closely related to SARS-CoV and SARS-CoV-2, making them crucial for understanding CoV genetics and zoonotic transmission. The exceptional bat diversity in Sarawak, Malaysian Borneo, provides an ideal setting to investigate CoV diversity and potential transmission pathways. This study examined CoV prevalence and diversity in 346 fecal samples from bats across 29 species in northern and western Sarawak, employing two pan-CoV PCR assays: Quan (Q-assay) and Watanabe (W-assay). The Q-assay and W-assay estimated the CoV prevalence to be 14.45% and 12.72%, respectively. The overall true prevalence based on both assays was 22.83%. There was a fair agreement between both assays (κ = 0.286) with comparable performance in detecting the virus (McNemar p > 0.05). Phylogenetic analyses identified six distinct clades within alphacoronaviruses (α-CoVs) and betacoronaviruses (β-CoVs), comprising two unclassified Borneo-Alpha CoVs and four from the subgenera Minunacovirus, Rhinacovirus, Nobecovirus, and Sarbecovirus. This study represents the first report of Sarawak bat CoVs derived from rectal and fecal samples, addressing a significant knowledge gap. The findings highlight the need for complementary molecular assays to enhance CoV surveillance and deepen understanding of viral ecology in regions of high biodiversity, with implications for zoonotic disease prevention.
Collapse
Affiliation(s)
- Sultana Parvin Habeebur‐Rahman
- Centre for Tropical and Emerging Diseases, Faculty of Medicine and Health SciencesUniversiti Malaysia SarawakKota SamarahanSarawakMalaysia
| | - Faisal Ali Anwarali Khan
- Faculty of Resource Science and TechnologyUniversiti Malaysia SarawakKota SamarahanSarawakMalaysia
| | - Jayasilan Mohd‐Azlan
- Institute of Biodiversity and Environmental ConservationUniversiti Malaysia SarawakKota SamarahanSarawakMalaysia
| | - Melvin Gumal
- Sarawak Forestry Corporation, Kota SentosaSarawakKuchingMalaysia
| | - Cheng Siang Tan
- Centre for Tropical and Emerging Diseases, Faculty of Medicine and Health SciencesUniversiti Malaysia SarawakKota SamarahanSarawakMalaysia
| |
Collapse
|
4
|
Guillebaud J, Ou TP, Hul V, Hoem T, Meng C, Nuon S, Hoem S, Lim R, Khun L, Furey NM, Cappelle J, Duong V, Chevalier V. Study of coronavirus diversity in wildlife in Northern Cambodia suggests continuous circulation of SARS-CoV-2-related viruses in bats. Sci Rep 2025; 15:12628. [PMID: 40221475 PMCID: PMC11993651 DOI: 10.1038/s41598-025-92475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/27/2025] [Indexed: 04/14/2025] Open
Abstract
Since SARS-CoV-2's emergence, studies in Southeast Asia, including Cambodia, have identified related coronaviruses (CoVs) in rhinolophid bats. This pilot study investigates the prevalence and diversity of CoVs in wildlife from two Cambodian provinces known for wildlife trade and environmental changes, factors favoring zoonotic spillover risk. Samples were collected from 2020 to 2022 using active (capture and swabbing of bats and rodents) and non-invasive (collection of feces from bat caves and wildlife habitats) methods. RNA was screened for CoVs using conventional pan-CoVs and real-time Sarbecovirus-specific PCR systems. Positive samples were sequenced and phylogenetic analysis was performed on the partial RdRp gene. A total of 2608 samples were collected: 867 rectal swabs from bats, 159 from rodents, 41 from other wild animals, and 1541 fecal samples. The overall prevalence of CoVs was 2.0%, with a 3.3% positive rate in bats, 2.5% in rodents, and no CoVs detected in other wildlife species. Alpha-CoVs were exclusive to bats, while Beta-CoVs were found in both bats and rodents. Seven SARS-CoV-2-related viruses were identified in Rhinolophus shameli bats sampled in August 2020, March 2021, and December 2021. Our results highlight diverse CoVs in Cambodian bats and rodents and emphasize bats as significant reservoirs. They also suggest continuous circulation of bat SARS-CoV-2-related viruses may occur in a region where ecological and human factors could favor virus emergence. Continuous surveillance and integrated approaches are crucial to managing and mitigating emerging zoonotic diseases.
Collapse
Affiliation(s)
- Julia Guillebaud
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
- International Centre of Research in Agriculture for Development (CIRAD), UMR ASTRE, Montpellier, France.
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Vibol Hul
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Chana Meng
- Department of Wildlife and Biodiversity, Forestry Administration, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Sithun Nuon
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sreyleak Hoem
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Reaksa Lim
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Limmey Khun
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Julien Cappelle
- International Centre of Research in Agriculture for Development (CIRAD), UMR ASTRE, Montpellier, France
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Véronique Chevalier
- International Centre of Research in Agriculture for Development (CIRAD), UMR ASTRE, Montpellier, France
- Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- CIRAD, UMR ASTRE, Antananarivo, Madagascar
| |
Collapse
|
5
|
Chen J, Zhang W, Li Y, Liu C, Dong T, Chen H, Wu C, Su J, Li B, Zhang W, Hu B, Jia J, Ma CB, Zhu Y, He X, Li A, Pan K, Lin H, Guo Z, Li C, Zhang L, Yan H, Zhou P, Peng W, Shi ZL. Bat-infecting merbecovirus HKU5-CoV lineage 2 can use human ACE2 as a cell entry receptor. Cell 2025; 188:1729-1742.e16. [PMID: 39970913 DOI: 10.1016/j.cell.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Merbecoviruses comprise four viral species with remarkable genetic diversity: MERS-related coronavirus, Tylonycteris bat coronavirus HKU4, Pipistrellus bat coronavirus HKU5, and Hedgehog coronavirus 1. However, the potential human spillover risk of animal merbecoviruses remains to be investigated. Here, we reported the discovery of HKU5-CoV lineage 2 (HKU5-CoV-2) in bats that efficiently utilize human angiotensin-converting enzyme 2 (ACE2) as a functional receptor and exhibits a broad host tropism. Cryo-EM analysis of HKU5-CoV-2 receptor-binding domain (RBD) and human ACE2 complex revealed an entirely distinct binding mode compared with other ACE2-utilizing merbecoviruses with RBD footprint largely shared with ACE2-using sarbecoviruses and NL63. Structural and functional analyses indicate that HKU5-CoV-2 has a better adaptation to human ACE2 than lineage 1 HKU5-CoV. Authentic HKU5-CoV-2 infected human ACE2-expressing cell lines and human respiratory and enteric organoids. This study reveals a distinct lineage of HKU5-CoVs in bats that efficiently use human ACE2 and underscores their potential zoonotic risk.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yang Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chen Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Tianyi Dong
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huiyu Chen
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chunguang Wu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia Su
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bei Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ben Hu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingkun Jia
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yan Zhu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ang Li
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Kaiyi Pan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haofeng Lin
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zishuo Guo
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cong Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Peng Zhou
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Wei Peng
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zheng-Li Shi
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, China.
| |
Collapse
|
6
|
Xu Y, Han Y, Xu P, Zhou S, Zhao P, Wang Y, Hu J, Ma M, Li Z, Bo S, Zhao C, Ji L, Yuan Y, Zhao W, Wang J, Jin Q, He G, Wu Z. Avian Migration-Mediated Transmission and Recombination Driving the Diversity of Gammacoronaviruses and Deltacoronaviruses. Mol Biol Evol 2025; 42:msaf045. [PMID: 39963938 PMCID: PMC11886833 DOI: 10.1093/molbev/msaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 03/08/2025] Open
Abstract
In the wake of pandemics like COVID-19, which have zoonotic origins, the role of wildlife as reservoirs for emerging infectious diseases has garnered heightened attention. Migratory birds, traversing continents, represent a potent but under-researched vector for the spread of infectious diseases, including novel coronaviruses. This study delves into the genetic diversity and transmission dynamics of coronaviruses in migratory birds, presenting pivotal findings. From April 2019 to April 2023, we screened 5,263 migratory bird samples collected from Shanghai, China, identifying 372 coronavirus-positive samples belonging to five avian-related coronavirus subgenera and subsequently obtaining 120 complete genome sequences. To facilitate further research with a global perspective, the study curated all available 19,000 avian-associated coronaviruses and expanded the original 12 species to 16, including three novel coronavirus species identified in our study and one re-classified species from the public domain. The study illuminates the intricate genetic evolution and transmission dynamics of birds-related coronaviruses on a global scale. A notable aspect of our research is the identification of complex recombination patterns within the spike protein across different virus species and subgenera, highlighting migratory birds as a reservoir of coronavirus. Notably, the coronaviruses found in migratory birds, predominantly from the orders Anseriformes, Charadriiformes, and Pelecaniformes, with domestic ducks from Anseriformes playing a key role in bridging the transmission of coronaviruses between migratory and non-migratory birds. These findings reveal the genetic and recombination characteristics of coronaviruses in migratory birds, emphasizing the critical role of ecologically pivotal bird species in coronavirus transmission and genetic diversity shaping.
Collapse
Affiliation(s)
- Yuting Xu
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Peng Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jie Hu
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Min Ma
- School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Zirong Li
- Shanghai Forestry Station, Shanghai, PR China
| | - Shunqi Bo
- Shanghai Landscaping & City Appearance Administrative Bureau, Shanghai, PR China
| | | | - Lei Ji
- Shanghai Forestry Station, Shanghai, PR China
| | - Yue Yuan
- Shanghai Chongming Dongtan Nature Reserve Administration Center, Shanghai, PR China
| | - Wenliang Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Guimei He
- School of Life Sciences, East China Normal University, Shanghai, PR China
- Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, PR China
- Shanghai Institute of Wildlife Epidemics, East China Normal University, Shanghai, PR China
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| |
Collapse
|
7
|
Ahmad S, Alafnan A, Alobaida A, Shahab U, Rehman S, Khan S, Khan MY, Puri P, Pandey RP, Ahmad I, Rafi Z. Decoding the SARS-CoV-2 infection process: Insights into origin, spread, and therapeutic approaches. Microb Pathog 2025; 200:107328. [PMID: 39863091 DOI: 10.1016/j.micpath.2025.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/29/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Globally, over 768 million confirmed cases and 6.9 million deaths had been documented as of July 17, 2023. Coronaviruses have a relatively large RNA genome. As with other viruses, SARS-CoV-2 does have an envelope film produced from host cells that are assisted by virally encoded glycoproteins that are required for infectivity, immunological assault, and viral particle production. Although the intermediate source of origin and transmission to humans is unexplained, rapid transmission from human to human has been established. This review focuses on the mechanistic framework for understanding the SARS-CoV-2 viral infection. Additionally, it discusses the origins and implications of COVID-19 using direct quotations from the published scientific literature to avoid misinterpretation of this catastrophic event that resulted in a massive loss of human life and impact on the global economy. The current available information unfolds large number of topics related with COVID-19 and/or the coronavirus (SARS-CoV-2) responsible of the disease. This review article also delves into the multifaceted aspects of COVID-19 and SARS-CoV-2, with a specific focus on a controversial yet essential issue: the possible association between SARS-CoV-2's origin and aldose reductase, an enzyme known for its role in diabetic retinopathy. Exploring this connection holds utmost significance, offering valuable insights into COVID-19's pathogenesis and unlocking new avenues for therapeutic interventions. It is important to trace back the evolution of coronaviruses and reveal the possible origin of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia.
| | - Ahmed Alafnan
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail City, 2440, Saudi Arabia.
| | - Ahmed Alobaida
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail City, 2440, Saudi Arabia.
| | - Uzma Shahab
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail City, 2440, Saudi Arabia.
| | - Shahnawaz Rehman
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Integral University, U.P., India.
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, 2440, Hail, 2440, Saudi Arabia.
| | - Mohd Yasir Khan
- Department of Biotechnology, School of Applied & Life Science, Uttaranchal University Dehradun, India.
| | - Paridhi Puri
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India.
| | - Ramendra Pati Pandey
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana, 131029, India.
| | - Irfan Ahmad
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Zeeshan Rafi
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, India.
| |
Collapse
|
8
|
Wang D, Li L, Ren Z, Yu Y, Zhang Z, Zhou J, Zhao H, Zhao Z, Shi P, Mi X, Jin X, Deng Z, Li J, Chen J. Host Specificity and Geographic Dispersion Shape Virome Diversity in Rhinolophus Bats. Mol Ecol 2025; 34:e17645. [PMID: 39825599 DOI: 10.1111/mec.17645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/15/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Rhinolophus bats have been identified as natural reservoirs for viruses with global health implications, including severe acute respiratory syndrome-related coronaviruses (SARSr-CoV) and swine acute diarrhoea syndrome-related coronavirus (SADSr-CoV). In this study, we characterised the individual viromes of 603 bats to systematically investigate the diversity, abundance and geographic distribution of viral communities within R. affinis, R. sinicus and 11 other bat species. The massive metatranscriptomic data revealed substantial viral genome resources of 133 vertebrate-infecting viral clusters, which contain occasional cross-species transmission across mammalian orders and especially across bat families. Notably, those viruses included nine clusters closely related to human and/or livestock pathogens, such as SARS-CoVs and SADS-CoVs. The investigation also highlighted distinct features of viral diversity between and within bat colonies, which appear to be influenced by the distinct host population genetics of R. affinis and R. sinicus species. The comparison of SARSr-CoVs further showed varied impact of host specificity along genome-wide diversification and modular viral evolution among Rhinolophus species. Overall, the findings point to a complex interaction between host genetic diversity, and the way viruses spread and structure within natural populations, calling for continued surveillance efforts to understand factors driving viral transmission and emergence in human populations. These results present the underestimated spillover risk of bat viruses, highlighting the importance of enhancing preparedness and surveillance for emerging zoonotic viruses.
Collapse
Affiliation(s)
- Daxi Wang
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zirui Ren
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Yepin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhipeng Zhang
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Hailong Zhao
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Zhiwen Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Peibo Shi
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinrui Mi
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Jin
- BGI Research, Shenzhen, China
| | - Ziqing Deng
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Junhua Li
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- BGI Research, Shenzhen, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Li R, Tendu A, Kane Y, Omondi V, Ying J, Mao L, Xu S, Xu R, Chen X, Chen Y, Descorps-Declère S, Bienes KM, Fassatoui M, Hughes AC, Berthet N, Wong G. Differential prevalence and risk factors for infection with coronaviruses in bats collected from Yunnan Province, China. One Health 2024; 19:100923. [PMID: 39605930 PMCID: PMC11600012 DOI: 10.1016/j.onehlt.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Coronaviruses (CoVs) pose a threat to human health globally, as highlighted by severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and the COVID-19 pandemic. Bats from the Greater Mekong Subregion (GMS) are an important natural reservoir for CoVs. Here we report the differential prevalence of CoVs in bats within Yunnan Province across biological and ecological variables. We also show the coexistence of CoVs in individual bats and identify an additional putative host for SARS-related CoV, with higher dispersal capacity than other known hosts. Notably, 11 SARS-related coronaviruses (SARSr-CoVs) were discovered in horseshoe bats (family Rhinolophidae) and a Chinese water myotis bat (Myotis laniger) by pan-CoV detection and Illumina sequencing. Our findings facilitate an understanding of the fundamental features of the distribution and circulation of CoVs in nature as well as zoonotic spillover risk in the One health framework.
Collapse
Affiliation(s)
- Ruiya Li
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexander Tendu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yakhouba Kane
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Victor Omondi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Jiaxu Ying
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Lingjing Mao
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Shiman Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yanhua Chen
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Kathrina Mae Bienes
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Meriem Fassatoui
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Alice C. Hughes
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Nicolas Berthet
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
- Institut Pasteur, Unité Environnement et Risque Infectieux, Cellule d'Intervention Biologique d'Urgence, 75015 Paris, France
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
10
|
Wang Y, Xu P, Han Y, Zhao W, Zhao L, Li R, Zhang J, Zhang S, Lu J, Daszak P, Jin Q, Wu Z. Unveiling bat-borne viruses: a comprehensive classification and analysis of virome evolution. MICROBIOME 2024; 12:235. [PMID: 39543683 PMCID: PMC11566218 DOI: 10.1186/s40168-024-01955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Bats (Order Chiroptera) are an important reservoir of emerging zoonotic microbes, including viruses of public health concern such as henipaviruses, lyssaviruses, and SARS-related coronaviruses. Despite the continued discovery of new viruses in bat populations, a significant proportion of these viral agents remain uncharacterized, highlighting the imperative for additional research aimed at elucidating their evolutionary relationship and taxonomic classification. RESULTS In order to delve deeper into the viral reservoir hosted by bats, the present study employed Next Generation Sequencing (NGS) technology to analyze 13,105 swab samples obtained from various locations in China. Analysis of 378 sample pools revealed the presence of 846 vertebrate-associated viruses. Subsequent thorough examination, adhering to the International Committee on Taxonomy of Viruses (ICTV) criteria for virus classification, identified a total of 120 putative viral species with the potential to emerge as novel viruses, comprising a total of 294 viral strains. Phylogenetic analysis of conserved genomic regions indicated the novel virus exhibited a diverse array of viral lineages and branches, some of which displayed close genetic relationships to known human and livestock pathogens, such as poxviruses and pestiviruses. CONCLUSIONS This study investigates the breadth of DNA and RNA viruses harbored by bats, delineating several novel evolutionary lineages and offering significant contributions to virus taxonomy. Furthermore, the identification of hitherto unknown viruses with relevance to human and livestock health underscores the importance of this study in encouraging infectious disease monitoring and management efforts in both public health and veterinary contexts. Video Abstract.
Collapse
Affiliation(s)
- Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Wenliang Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Lamei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Rui Li
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, P. R. China
| | | | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
11
|
Silva-Ramos CR, Ballesteros-Ballesteros JA, Chala-Quintero SM, Matiz-González JM, Herrera-Sepúlveda MT, Faccini-Martínez ÁA, Pulido-Villamarín ADP, Hidalgo M, Pinto CM, Pérez-Torres J, Cuervo C. Genetic diversity of Bartonella spp. among cave-dwelling bats from Colombia. Acta Trop 2024; 259:107370. [PMID: 39216810 DOI: 10.1016/j.actatropica.2024.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Bartonella is a bacterial genus that comprises arthropod-borne microorganisms. Several Bartonella isolates have been detected from bats worldwide, which are thought to be undescribed species. We aimed to test the presence of Bartonella spp. among bats from Colombia, and evaluate the genetic diversity of bat-associated Bartonella spp. through phylogenetic analyses. A total of 108 bat blood samples were collected from three bat species (Carollia perspicillata, Mormoops megalophylla, and Natalus tumidirostris) that inhabit the Macaregua cave. The Bartonella ssrA gene was targeted through real-time and end-point PCR; additionally, the gltA and rpoB genes were detected by end-point PCR. All obtained amplicons were purified and bidirectionally sequenced for phylogenetic analysis using a concatenated supermatrix and a supertree approaches. A detection frequency of 49.1 % (53/108) for Bartonella spp. was evidenced among bat blood samples, of which 59.1 % (26/44), 54.3 % (19/35) and 27.6 % (8/29) were identified in Carollia perspicillata, Natalus tumidirostris and Mormoops megalophylla respectively. A total of 35 ssrA, 5 gltA and 4 rpoB good-quality sequences were obtained which were used for phylogenetic analysis. All obtained bat sequences clustered together with sequences obtained from Neotropical bat species into two bat-restricted clades namely clade A and clade N. We detected the presence of Bartonella spp. that clustered within two different bat-associated Bartonella clades, giving the first data of the genetic diversity of these bacteria among bats from Colombia.
Collapse
Affiliation(s)
- Carlos Ramiro Silva-Ramos
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jesús A Ballesteros-Ballesteros
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sandra M Chala-Quintero
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - J Manuel Matiz-González
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - María T Herrera-Sepúlveda
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Álvaro A Faccini-Martínez
- Servicio de Infectología, Hospital Militar Central, Bogotá, Colombia; Servicios y Asesorías en Infectología - SAI, Bogotá, Colombia; Facultad de Medicina, Universidad Militar Nueva Granada, Bogotá, Colombia
| | - Adriana Del Pilar Pulido-Villamarín
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Marylin Hidalgo
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - C Miguel Pinto
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galápagos, Ecuador
| | - Jairo Pérez-Torres
- Unidad de Ecología y Sistemática (UNESIS), Laboratorio de Ecología Funcional, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
12
|
Yang M, Li Z, Chen J, Li Y, Xu R, Wang M, Xu Y, Chen R, Ji W, Li X, Wei J, Zhou Z, Ren M, Ma K, Guan J, Mo G, Zhou P, Shu B, Guo J, Yuan Y, Shi ZL, Zhang S. Structural basis for human DPP4 receptor recognition by a pangolin MERS-like coronavirus. PLoS Pathog 2024; 20:e1012695. [PMID: 39514585 DOI: 10.1371/journal.ppat.1012695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) and the pangolin MERS-like coronavirus MjHKU4r-CoV-1 employ dipeptidyl peptidase 4 (DPP4) as an entry receptor. MjHKU4r-CoV-1 could infect transgenic mice expressing human DPP4. To understand the mechanism of MjHKU4r-CoV-1 entry into cells, we determined the crystal structures of the receptor binding domain (RBD) of MjHKU4r-CoV-1 spike protein bound to human DPP4 (hDPP4) and Malayan pangolin DPP4 (MjDPP4), respectively. The overall hDPP4-binding mode of MjHKU4r-CoV-1 RBD is similar to that of MERS-CoV RBD. MjHKU4r-CoV-1 RBD shows higher binding affinity to hDPP4 compared to the bat MERS-like coronavirus Ty-BatCoV-HKU4. Via swapping residues between MjHKU4r-CoV-1 RBD and Ty-BatCoV-HKU4 RBD, we identified critical determinants on MjHKU4r-CoV-1 that are responsible for virus usage of hDPP4. Our study suggests that MjHKU4r-CoV-1 is more adapted to the human receptor compared to the bat HKU4 coronavirus and highlights the potential of virus emergence into the human population.
Collapse
Affiliation(s)
- Mo Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zehou Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ran Xu
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Meihua Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
| | - Weiwei Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxia Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiayu Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhengrong Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Minjie Ren
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ke Ma
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiayu Guan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Zhou
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Bo Shu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Yuan Yuan
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Zheng-Li Shi
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shuijun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Pauciullo S, Zulian V, La Frazia S, Paci P, Garbuglia AR. Spillover: Mechanisms, Genetic Barriers, and the Role of Reservoirs in Emerging Pathogens. Microorganisms 2024; 12:2191. [PMID: 39597581 PMCID: PMC11596118 DOI: 10.3390/microorganisms12112191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Viral spillover represents the transmission of pathogen viruses from one species to another that can give rise to an outbreak. It is a critical concept that has gained increasing attention, particularly after the SARS-CoV-2 pandemic. However, the term is often used inaccurately to describe events that do not meet the true definition of spillover. This review aims to clarify the proper use of the term and provides a detailed analysis of the mechanisms driving zoonotic spillover, with a focus on the genetic and environmental factors that enable viruses to adapt to new hosts. Key topics include viral genetic variability in reservoir species, biological barriers to cross-species transmission, and the factors that influence viral adaptation and spread in novel hosts. The review also examines the role of evolutionary processes such as mutation and epistasis, alongside ecological conditions that facilitate the emergence of new pathogens. Ultimately, it underscores the need for more accurate predictive models and improved surveillance to better anticipate and mitigate future spillover events.
Collapse
Affiliation(s)
- Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Paola Paci
- Department of Computer, Control, and Management Engineering “A. Ruberti” (DIAG), Sapienza University of Rome, 00185 Rome, Italy;
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| |
Collapse
|
14
|
Bazzoni E, Cacciotto C, Zobba R, Pittau M, Martella V, Alberti A. Bat Ecology and Microbiome of the Gut: A Narrative Review of Associated Potentials in Emerging and Zoonotic Diseases. Animals (Basel) 2024; 14:3043. [PMID: 39457973 PMCID: PMC11504201 DOI: 10.3390/ani14203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we tentatively tried to connect the most recent findings on the bat microbiome and to investigate on their microbial communities, that may vary even in conspecific hosts and are influenced by host physiology, feeding behavior and diet, social interactions, but also by habitat diversity and climate change. From a conservation perspective, understanding the potentially negative and indirect effects of habitat destruction on animal microbiota can also play a crucial role in the conservation and management of the host itself. According to the One Health concept, which recognizes an interdependence between humans, animals, and the environment, bat microbiota represents an indicator of host and environmental health, besides allowing for evaluation of the risk of emerging infectious diseases. We noticed that a growing number of studies suggest that animal microbiota may respond in various ways to changes in land use, particularly when such changes lead to altered or deficient food resources. We have highlighted that the current literature is strongly focused on the initial phase of investigating the microbial communities found in Chiroptera from various habitats. However, there are gaps in effectively assessing the impacts of pathogens and microbial communities in general in animal conservation, veterinary, and public health. A deeper understanding of bat microbiomes is paramount to the implementation of correct habitat and host management and to the development of effective surveillance protocols worldwide.
Collapse
Affiliation(s)
- Emanuela Bazzoni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
| | - Carla Cacciotto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Rosanna Zobba
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
| | - Marco Pittau
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Bari, Italy;
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Alberto Alberti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| |
Collapse
|
15
|
Si JY, Chen YM, Sun YH, Gu MX, Huang ML, Shi LL, Yu X, Yang X, Xiong Q, Ma CB, Liu P, Shi ZL, Yan H. Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness. Nat Commun 2024; 15:8869. [PMID: 39402048 PMCID: PMC11473667 DOI: 10.1038/s41467-024-53029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Our comprehensive understanding of the multi-species ACE2 adaptiveness of sarbecoviruses remains elusive, particularly for those with various receptor binding motif (RBM) insertions/deletions (indels). Here, we analyzed RBM sequences from 268 sarbecoviruses categorized into four RBM indel types. We examined the ability of 20 representative sarbecovirus Spike glycoproteins (S) and derivatives in utilizing ACE2 from various bats and several other mammalian species. We reveal that sarbecoviruses with long RBMs (type-I) can achieve broad ACE2 tropism, whereas viruses with single deletions in Region 1 (type-II) or Region 2 (type-III) exhibit narrower ACE2 tropism. Sarbecoviruses with double region deletions (type-IV) completely lost ACE2 usage, which is restricted by clade-specific residues within and outside RBM. Lastly, we propose the evolution of sarbecovirus RBM indels and illustrate how loop lengths, disulfide, and residue determinants shape multi-species ACE2 adaptiveness. This study provides profound insights into the mechanisms governing ACE2 usage and spillover risks of sarbecoviruses.
Collapse
Affiliation(s)
- Jun-Yu Si
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Meng-Xue Gu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lu-Lu Shi
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao Yang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qing Xiong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peng Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
16
|
McHugh SW, Donoghue MJ, Landis MJ. A Phylogenetic Model of Established and Enabled Biome Shifts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610561. [PMID: 39282335 PMCID: PMC11398350 DOI: 10.1101/2024.08.30.610561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Where each species actually lives is distinct from where it could potentially survive and persist. This suggests that it may be important to distinguish established from enabled biome affinities when considering how ancestral species moved and evolved among major habitat types. We introduce a new phylogenetic method, called RFBS, to model how anagenetic and cladogenetic events cause established and enabled biome affinities (or, more generally, other discrete realized versus fundamental niche states) to shift over evolutionary timescale. We provide practical guidelines for how to assign established and enabled biome affinity states to extant taxa, using the flowering plant clade Viburnum as a case study. Through a battery of simulation experiments, we show that RFBS performs well, even when we have realistically imperfect knowledge of enabled biome affinities for most analyzed species. We also show that RFBS reliably discerns established from enabled affinities, with similar accuracy to standard competing models that ignore the existence of enabled biome affinities. Lastly, we apply RFBS to Viburnum to infer ancestral biomes throughout the tree and to highlight instances where repeated shifts between established affinities for warm and cold temperate forest biomes were enabled by a stable and slowly-evolving enabled affinity for both temperate biomes.
Collapse
Affiliation(s)
- Sean W. McHugh
- Department of Biology, Washington University in St. Louis, Rebstock Hall, St. Louis, Missouri, 63130, USA
| | - Michael J. Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, Environmental Science Center, New Haven, Connecticut, 06511, USA
| | - Michael J. Landis
- Department of Biology, Washington University in St. Louis, Rebstock Hall, St. Louis, Missouri, 63130, USA
| |
Collapse
|
17
|
Holmes EC. The Emergence and Evolution of SARS-CoV-2. Annu Rev Virol 2024; 11:21-42. [PMID: 38631919 DOI: 10.1146/annurev-virology-093022-013037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The origin of SARS-CoV-2 has evoked heated debate and strong accusations, yet seemingly little resolution. I review the scientific evidence on the origin of SARS-CoV-2 and its subsequent spread through the human population. The available data clearly point to a natural zoonotic emergence within, or closely linked to, the Huanan Seafood Wholesale Market in Wuhan. There is no direct evidence linking the emergence of SARS-CoV-2 to laboratory work conducted at the Wuhan Institute of Virology. The subsequent global spread of SARS-CoV-2 was characterized by a gradual adaptation to humans, with dual increases in transmissibility and virulence until the emergence of the Omicron variant. Of note has been the frequent transmission of SARS-CoV-2 from humans to other animals, marking it as a strongly host generalist virus. Unless lessons from the origin of SARS-CoV-2 are learned, it is inevitable that more zoonotic events leading to more epidemics and pandemics will plague human populations.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
18
|
Dias RA. Towards a Comprehensive Definition of Pandemics and Strategies for Prevention: A Historical Review and Future Perspectives. Microorganisms 2024; 12:1802. [PMID: 39338476 PMCID: PMC11433773 DOI: 10.3390/microorganisms12091802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The lack of a universally accepted definition of a pandemic hinders a comprehensive understanding of and effective response to these global health crises. Current definitions often lack quantitative criteria, rendering them vague and limiting their utility. Here, we propose a refined definition that considers the likelihood of susceptible individuals contracting an infectious disease that culminates in widespread global transmission, increased morbidity and mortality, and profound societal, economic, and political consequences. Applying this definition retrospectively, we identify 22 pandemics that occurred between 165 and 2024 AD and were caused by a variety of diseases, including smallpox (Antonine and American), plague (Justinian, Black Death, and Third Plague), cholera (seven pandemics), influenza (two Russian, Spanish, Asian, Hong Kong, and swine), AIDS, and coronaviruses (SARS, MERS, and COVID-19). This work presents a comprehensive analysis of past pandemics caused by both emerging and re-emerging pathogens, along with their epidemiological characteristics, societal impact, and evolution of public health responses. We also highlight the need for proactive measures to reduce the risk of future pandemics. These strategies include prioritizing surveillance of emerging zoonotic pathogens, conserving biodiversity to counter wildlife trafficking, and minimizing the potential for zoonotic spillover events. In addition, interventions such as promoting alternative protein sources, enforcing the closure of live animal markets in biodiversity-rich regions, and fostering global collaboration among diverse stakeholders are critical to preventing future pandemics. Crucially, improving wildlife surveillance systems will require the concerted efforts of local, national and international entities, including laboratories, field researchers, wildlife conservationists, government agencies and other stakeholders. By fostering collaborative networks and establishing robust biorepositories, we can strengthen our collective capacity to detect, monitor, and mitigate the emergence and transmission of zoonotic pathogens.
Collapse
Affiliation(s)
- Ricardo Augusto Dias
- School of Veterinary Medicine, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 05508-270, Brazil
| |
Collapse
|
19
|
Maestri R, Perez-Lamarque B, Zhukova A, Morlon H. Recent evolutionary origin and localized diversity hotspots of mammalian coronaviruses. eLife 2024; 13:RP91745. [PMID: 39196812 PMCID: PMC11357359 DOI: 10.7554/elife.91745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
Abstract
Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus-host codiversification have been largely over-estimated.
Collapse
Affiliation(s)
- Renan Maestri
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
- Departamento de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Benoît Perez-Lamarque
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’histoire naturelle, CNRS, Sorbonne Université, EPHE, UAParisFrance
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| |
Collapse
|
20
|
Zhang Y, Wu F, Han Y, Wu Y, Huang L, Huang Y, Yan D, Jiang X, Ma J, Xu W. Unraveling the assembly mechanism of SADS-CoV virus nucleocapsid protein: insights from RNA binding, dimerization, and epitope diversity profiling. J Virol 2024; 98:e0092624. [PMID: 39082816 PMCID: PMC11334509 DOI: 10.1128/jvi.00926-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused significant disruptions in porcine breeding and raised concerns about potential human infection. The nucleocapsid (N) protein of SADS-CoV plays a vital role in viral assembly and replication, but its structure and functions remain poorly understood. This study utilized biochemistry, X-ray crystallography, and immunization techniques to investigate the N protein's structure and function in SADS-CoV. Our findings revealed distinct domains within the N protein, including an RNA-binding domain, two disordered domains, and a dimerization domain. Through biochemical assays, we confirmed that the N-terminal domain functions as an RNA-binding domain, and the C-terminal domain is involved in dimerization, with the crystal structure analysis providing visual evidence of dimer formation. Immunization experiments demonstrated that the disordered domain 2 elicited a significant antibody response. These identified domains and their interactions are crucial for viral assembly. This comprehensive understanding of the N protein in SADS-CoV enhances our knowledge of its assembly and replication mechanisms, enabling the development of targeted interventions and therapeutic strategies. IMPORTANCE SADS-CoV is a porcine coronavirus that originated from a bat HKU2-related coronavirus. It causes devastating swine diseases and poses a high risk of spillover to humans. The coronavirus N protein, as the most abundant viral protein in infected cells, likely plays a key role in viral assembly and replication. However, the structure and function of this protein remain unclear. Therefore, this study employed a combination of biochemistry and X-ray crystallography to uncover distinct structural domains in the N protein, including RNA-binding domains, two disordered domains, and dimerization domains. Additionally, we made the novel discovery that the disordered domain elicited a significant antibody response. These findings provide new insights into the structure and functions of the SADS-CoV N protein, which have important implications for future studies on SADS-CoV diagnosis, as well as the development of vaccines and anti-viral drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fang Wu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yongyue Han
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuzhe Wu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liqiu Huang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuanwei Huang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Di Yan
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiwen Jiang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Caraballo DA, Vico ML, Piccirilli MG, Hirmas Riade SM, Russo S, Martínez G, Beltrán FJ, Cisterna DM. Bat Rabies in the Americas: Is Myotis the Main Ancestral Spreader? Viruses 2024; 16:1302. [PMID: 39205276 PMCID: PMC11359690 DOI: 10.3390/v16081302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The rabies virus (RABV) is the exclusive lyssavirus affecting both wild and domestic mammalian hosts in the Americas, including humans. Additionally, the Americas stand out as the sole region where bat rabies occurs. While carnivore rabies is being increasingly managed across the region, bats are emerging as significant reservoirs of RABV infection for humans and domestic animals. Knowledge of the bat species maintaining rabies and comprehending cross-species transmission (CST) and host shift processes are pivotal for directing surveillance as well as ecological research involving wildlife reservoir hosts. Prior research indicates that bat RABV CST is influenced by host genetic similarity and geographic overlap, reflecting host adaptation. In this study, we compiled and analyzed a comprehensive nucleoprotein gene dataset representing bat-borne RABV diversity in Argentina and the broader Americas using Bayesian phylogenetics. We examined the association between host genus and geography, finding both factors shaping the global phylogenetic structure. Utilizing a phylogeographic approach, we inferred CST and identified key bat hosts driving transmission. Consistent with CST determinants, we observed monophyletic/paraphyletic clustering of most bat genera in the RABV phylogeny, with stronger CST evidence between host genera of the same family. We further discuss Myotis as a potential ancestral spreader of much of RABV diversity.
Collapse
Affiliation(s)
- Diego A. Caraballo
- Instituto de Ecología, Genética y Evolución de Buenos Aires, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - María Lorena Vico
- Departamento de Zoonosis Urbanas, Ministerio de Salud de la Provincia de Buenos Aires, Buenos Aires B1870, Argentina
| | - María Guadalupe Piccirilli
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - Stella Maris Hirmas Riade
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - Susana Russo
- Dirección General de Laboratorio y Control Técnico (DILAB), Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Buenos Aires B1640CZT, Argentina
| | - Gustavo Martínez
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - Fernando J. Beltrán
- Instituto de Zoonosis “Luis Pasteur”, Ciudad Autónoma de Buenos Aires C1405DCD, Argentina
| | - Daniel M. Cisterna
- Departamento de Zoonosis Urbanas, Ministerio de Salud de la Provincia de Buenos Aires, Buenos Aires B1870, Argentina
| |
Collapse
|
22
|
Chen X, Kalyar F, Chughtai AA, MacIntyre CR. Use of a risk assessment tool to determine the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:1896-1906. [PMID: 38488186 DOI: 10.1111/risa.14291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/28/2023] [Indexed: 08/07/2024]
Abstract
The origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is contentious. Most studies have focused on a zoonotic origin, but definitive evidence such as an intermediary animal host is lacking. We used an established risk analysis tool for differentiating natural and unnatural epidemics, the modified Grunow-Finke assessment tool (mGFT) to study the origin of SARS-COV-2. The mGFT scores 11 criteria to provide a likelihood of natural or unnatural origin. Using published literature and publicly available sources of information, we applied the mGFT to the origin of SARS-CoV-2. The mGFT scored 41/60 points (68%), with high inter-rater reliability (100%), indicating a greater likelihood of an unnatural than natural origin of SARS-CoV-2. This risk assessment cannot prove the origin of SARS-CoV-2 but shows that the possibility of a laboratory origin cannot be easily dismissed.
Collapse
Affiliation(s)
- Xin Chen
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Fatema Kalyar
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Abrar Ahmad Chughtai
- School of Population Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Chandini Raina MacIntyre
- Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- College of Public Service & Community Solutions, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
23
|
Fereidouni S, Keleş SJ, Schlottau K, Bagó Z, Reiter G, Milchram M, Hoffmann B. Monitoring of Astroviruses, Brno-Hantaviruses, Coronaviruses, Influenza Viruses, Bornaviruses, Morbilliviruses, Lyssaviruses and Pestiviruses in Austrian Bats. Viruses 2024; 16:1232. [PMID: 39205206 PMCID: PMC11359250 DOI: 10.3390/v16081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Here, we report the results of a monitoring study of bat viruses in Austria to strengthen the knowledge of circulating viruses in Austrian bat populations. In this study, we analyzed 618 oropharyngeal and rectal swab samples from 309 bats and 155 pooled tissue samples from dead bats. Samples were collected from 18 different bat species from multiple locations in Austria, from November 2015 to April 2018, and examined for astroviruses, bornaviruses, coronaviruses, hantaviruses, morbilliviruses, orthomyxoviruses (influenza A/C/D viruses), pestiviruses and rhabdoviruses (lyssaviruses) using molecular techniques and sequencing. Using RT-qPCR, 36 samples revealed positive or suspicious results for astroviruses, Brno-hantaviruses, and coronaviruses in nine different bat species. Further sequencing revealed correspondent sequences in five samples. In contrast, none of the tested samples was positive for influenza viruses A/C/D, bornaviruses, morbilliviruses, lyssaviruses, or pestiviruses.
Collapse
Affiliation(s)
- Sasan Fereidouni
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria;
| | - Sinan Julian Keleş
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1160 Vienna, Austria;
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany; (K.S.); (B.H.)
| | - Zoltán Bagó
- Austrian Agency for Health and Food Safety Ltd. (AGES), Institute for Veterinary Disease Control, 2340 Mödling, Austria;
| | - Guido Reiter
- Austrian Coordination Centre for Bat Conservation and Research (KFFÖ), 4060 Leonding, Austria;
| | - Markus Milchram
- Institute of Zoology, BOKU University, 1180 Vienna, Austria;
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany; (K.S.); (B.H.)
| |
Collapse
|
24
|
Li W, Tahiri N. Host-Virus Cophylogenetic Trajectories: Investigating Molecular Relationships between Coronaviruses and Bat Hosts. Viruses 2024; 16:1133. [PMID: 39066295 PMCID: PMC11281392 DOI: 10.3390/v16071133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Bats, with their virus tolerance, social behaviors, and mobility, are reservoirs for emerging viruses, including coronaviruses (CoVs) known for genetic flexibility. Studying the cophylogenetic link between bats and CoVs provides vital insights into transmission dynamics and host adaptation. Prior research has yielded valuable insights into phenomena such as host switching, cospeciation, and other dynamics concerning the interaction between CoVs and bats. Nonetheless, a distinct gap exists in the current literature concerning a comparative cophylogenetic analysis focused on elucidating the contributions of sequence fragments to the co-evolution between hosts and viruses. In this study, we analyzed the cophylogenetic patterns of 69 host-virus connections. Among the 69 host-virus links examined, 47 showed significant cophylogeny based on ParaFit and PACo analyses, affirming strong associations. Focusing on two proteins, ORF1ab and spike, we conducted a comparative analysis of host and CoV phylogenies. For ORF1ab, the specific window ranged in multiple sequence alignment (positions 520-680, 770-870, 2930-3070, and 4910-5080) exhibited the lowest Robinson-Foulds (RF) distance (i.e., 84.62%), emphasizing its higher contribution in the cophylogenetic association. Similarly, within the spike region, distinct window ranges (positions 0-140, 60-180, 100-410, 360-550, and 630-730) displayed the lowest RF distance at 88.46%. Our analysis identified six recombination regions within ORF1ab (positions 360-1390, 550-1610, 680-1680, 700-1710, 2060-3090, and 2130-3250), and four within the spike protein (positions 10-510, 50-560, 170-710, and 230-730). The convergence of minimal RF distance regions with combination regions robustly affirms the pivotal role of recombination in viral adaptation to host selection pressures. Furthermore, horizontal gene transfer reveals prominent instances of partial gene transfer events, occurring not only among variants within the same host species but also crossing host species boundaries. This suggests a more intricate pattern of genetic exchange. By employing a multifaceted approach, our comprehensive strategy offers a nuanced understanding of the intricate interactions that govern the co-evolutionary dynamics between bat hosts and CoVs. This deeper insight enhances our comprehension of viral evolution and adaptation mechanisms, shedding light on the broader dynamics that propel viral diversity.
Collapse
Affiliation(s)
| | - Nadia Tahiri
- Department of Computer Science, University of Sherbrooke, 2500 Bd University, Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
25
|
Apoorva, Singh SK. A tale of endurance: bats, viruses and immune dynamics. Future Microbiol 2024; 19:841-856. [PMID: 38648093 PMCID: PMC11382704 DOI: 10.2217/fmb-2023-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/09/2024] [Indexed: 04/25/2024] Open
Abstract
The emergence of highly zoonotic viral infections has propelled bat research forward. The viral outbreaks including Hendra virus, Nipah virus, Marburg virus, Ebola virus, Rabies virus, Middle East respiratory syndrome coronavirus, SARS-CoV and the latest SARS-CoV-2 have been epidemiologically linked to various bat species. Bats possess unique immunological characteristics that allow them to serve as a potential viral reservoir. Bats are also known to protect themselves against viruses and maintain their immunity. Therefore, there is a need for in-depth understanding into bat-virus biology to unravel the major factors contributing to the coexistence and spread of viruses.
Collapse
Affiliation(s)
- Apoorva
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi (North Campus), New Delhi, 110007, India
| |
Collapse
|
26
|
Hills FR, Eruera AR, Hodgkinson-Bean J, Jorge F, Easingwood R, Brown SHJ, Bouwer JC, Li YP, Burga LN, Bostina M. Variation in structural motifs within SARS-related coronavirus spike proteins. PLoS Pathog 2024; 20:e1012158. [PMID: 38805567 PMCID: PMC11236199 DOI: 10.1371/journal.ppat.1012158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/10/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
SARS-CoV-2 is the third known coronavirus (CoV) that has crossed the animal-human barrier in the last two decades. However, little structural information exists related to the close genetic species within the SARS-related coronaviruses. Here, we present three novel SARS-related CoV spike protein structures solved by single particle cryo-electron microscopy analysis derived from bat (bat SL-CoV WIV1) and civet (cCoV-SZ3, cCoV-007) hosts. We report complex glycan trees that decorate the glycoproteins and density for water molecules which facilitated modeling of the water molecule coordination networks within structurally important regions. We note structural conservation of the fatty acid binding pocket and presence of a linoleic acid molecule which are associated with stabilization of the receptor binding domains in the "down" conformation. Additionally, the N-terminal biliverdin binding pocket is occupied by a density in all the structures. Finally, we analyzed structural differences in a loop of the receptor binding motif between coronaviruses known to infect humans and the animal coronaviruses described in this study, which regulate binding to the human angiotensin converting enzyme 2 receptor. This study offers a structural framework to evaluate the close relatives of SARS-CoV-2, the ability to inform pandemic prevention, and aid in the development of pan-neutralizing treatments.
Collapse
Affiliation(s)
- Francesca R. Hills
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James Hodgkinson-Bean
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Fátima Jorge
- Otago Microscopy and Nano Imaging Unit, University of Otago, Dunedin, New Zealand
| | - Richard Easingwood
- Otago Microscopy and Nano Imaging Unit, University of Otago, Dunedin, New Zealand
| | - Simon H. J. Brown
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - James C. Bouwer
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yi-Ping Li
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Laura N. Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Otago Microscopy and Nano Imaging Unit, University of Otago, Dunedin, New Zealand
| |
Collapse
|
27
|
Meyer M, Melville DW, Baldwin HJ, Wilhelm K, Nkrumah EE, Badu EK, Oppong SK, Schwensow N, Stow A, Vallo P, Corman VM, Tschapka M, Drosten C, Sommer S. Bat species assemblage predicts coronavirus prevalence. Nat Commun 2024; 15:2887. [PMID: 38575573 PMCID: PMC10994947 DOI: 10.1038/s41467-024-46979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Anthropogenic disturbances and the subsequent loss of biodiversity are altering species abundances and communities. Since species vary in their pathogen competence, spatio-temporal changes in host assemblages may lead to changes in disease dynamics. We explore how longitudinal changes in bat species assemblages affect the disease dynamics of coronaviruses (CoVs) in more than 2300 cave-dwelling bats captured over two years from five caves in Ghana. This reveals uneven CoV infection patterns between closely related species, with the alpha-CoV 229E-like and SARS-related beta-CoV 2b emerging as multi-host pathogens. Prevalence and infection likelihood for both phylogenetically distinct CoVs is influenced by the abundance of competent species and naïve subadults. Broadly, bat species vary in CoV competence, and highly competent species are more common in less diverse communities, leading to increased CoV prevalence in less diverse bat assemblages. In line with the One Health framework, our work supports the notion that biodiversity conservation may be the most proactive measure to prevent the spread of pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| | - Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Heather J Baldwin
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Evans Ewald Nkrumah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ebenezer K Badu
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Kingsley Oppong
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Adam Stow
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter Vallo
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Victor M Corman
- Charité - Universitätsmedizin Berlin Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Christian Drosten
- Charité - Universitätsmedizin Berlin Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| |
Collapse
|
28
|
Zyoud S. Global Mapping and Visualization Analysis of One Health Knowledge in the COVID-19 Context. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241236017. [PMID: 38449589 PMCID: PMC10916474 DOI: 10.1177/11786302241236017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Globally, the COVID-19 pandemic had a significant impact on the health, social, and economic systems, triggering lasting damage and exposing the complexity of the problem beyond just being a health emergency. This crisis has highlighted the need for a comprehensive and collaborative strategy to successfully counter infectious diseases and other global challenges. With the COVID-19 pandemic pushing One Health to the forefront of global health and sustainable development agendas, this concept has emerged as a potential approach for addressing these challenges. In the context of COVID-19, this study investigates global knowledge about One Health by examining its state, significant contributions, and future directions. It seeks to offer an integrated framework of insights guiding the development of well-informed decisions. A comprehensive search using the Scopus database was conducted, employing specific terms related to One Health and COVID-19. VOSviewer 1.6.19 software was used to generate network visualization maps. Countries' research output was adjusted based on their gross domestic product (GDP) and population size. The study identified a total of 527 publications. The United States led with 134 documents (25.4%), but India topped the adjusted ranking. One Health journal stood as the most common outlet for disseminating knowledge (49 documents; 9.3%), while Centers for Disease Control and Prevention (CDC), the United States emerged as the most prolific institution (13 documents; 2.5%). Key topics were related to the virus transmission mechanisms, climate change impacts, antimicrobial resistance, ecosystem health, preparedness, collaboration, community engagement, and developing of efficient surveillance systems. The study emphasizes how critical it is to capitalize on the present momentum of COVID-19 to advance One Health concepts. Integrating social and environmental sciences, and a variety of professions for better interaction and collaboration is crucial. Additionally, increased funding for developing countries, and legislative empowerment are vital to advance One Health and boost disease prevention.
Collapse
Affiliation(s)
- Shaher Zyoud
- Department of Building Engineering & Environment,Palestine Technical University (Kadoorie), Tulkarem, Palestine
- Department of Civil Engineering & Sustainable Structures,Palestine Technical University (Kadoorie), Tulkarem, Palestine
| |
Collapse
|
29
|
Forero-Muñoz NR, Muylaert RL, Seifert SN, Albery GF, Becker DJ, Carlson CJ, Poisot T. The coevolutionary mosaic of bat betacoronavirus emergence risk. Virus Evol 2023; 10:vead079. [PMID: 38361817 PMCID: PMC10868545 DOI: 10.1093/ve/vead079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/01/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
Pathogen evolution is one of the least predictable components of disease emergence, particularly in nature. Here, building on principles established by the geographic mosaic theory of coevolution, we develop a quantitative, spatially explicit framework for mapping the evolutionary risk of viral emergence. Driven by interest in diseases like Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19), we examine the global biogeography of bat-origin betacoronaviruses, and find that coevolutionary principles suggest geographies of risk that are distinct from the hotspots and coldspots of host richness. Further, our framework helps explain patterns like a unique pool of merbecoviruses in the Neotropics, a recently discovered lineage of divergent nobecoviruses in Madagascar, and-most importantly-hotspots of diversification in southeast Asia, sub-Saharan Africa, and the Middle East that correspond to the site of previous zoonotic emergence events. Our framework may help identify hotspots of future risk that have also been previously overlooked, like West Africa and the Indian subcontinent, and may more broadly help researchers understand how host ecology shapes the evolution and diversity of pandemic threats.
Collapse
Affiliation(s)
- Norma R Forero-Muñoz
- Département de Sciences Biologiques, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal (Québec) H2V 0B3, Canada
- Québec Centre for Biodiversity Sciences
| | - Renata L Muylaert
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, New Zealand
| | - Stephanie N Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Colin J Carlson
- Department of Biology, Georgetown University, Washington, DC, USA
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Timothée Poisot
- Département de Sciences Biologiques, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal (Québec) H2V 0B3, Canada
- Québec Centre for Biodiversity Sciences
| |
Collapse
|
30
|
Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023; 9:e22351. [PMID: 38125540 PMCID: PMC10730444 DOI: 10.1016/j.heliyon.2023.e22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
The potential biotechnological uses of bat-associated bacteria are discussed briefly, indicating avenues for biotechnological applications of bat-associated microbes. The uniqueness of bats in terms of their lifestyle, genomes and molecular immunology may predispose bats to act as disease reservoirs. Molecular phylogenetic analysis has shown several instances of bats harbouring the ancestral lineages of bacterial (Bartonella), protozoal (Plasmodium, Trypanosoma cruzi) and viral (SARS-CoV2) pathogens infecting humans. Along with the transmission of viruses from bats, we also discuss the potential roles of bat-associated bacteria, fungi, and protozoan parasites in emerging diseases. Current evidence suggests that environmental changes and interactions between wildlife, livestock, and humans contribute to the spill-over of infectious agents from bats to other hosts. Domestic animals including livestock may act as intermediate amplifying hosts for bat-origin pathogens to transmit to humans. An increasing number of studies investigating bat pathogen diversity and infection dynamics have been published. However, whether or how these infectious agents are transmitted both within bat populations and to other hosts, including humans, often remains unknown. Metagenomic approaches are uncovering the dynamics and distribution of potential pathogens in bat microbiomes, which might improve the understanding of disease emergence and transmission. Here, we summarize the current knowledge on bat zoonoses of public health concern and flag the gaps in the knowledge to enable further research and allocation of resources for tackling future outbreaks.
Collapse
Affiliation(s)
- J. Dhivahar
- Research Department of Zoology, St. Johns College, Palayamkottai, 627002, India
- Department of Plant Biology and Biotechnology, Laboratory of Microbial Ecology, Loyola College, Chennai, 600034, India
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Anutthaman Parthasarathy
- Department of Chemistry and Biosciences, Richmond Building, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Kathiravan Krishnan
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Basavaraj S. Kovi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| |
Collapse
|
31
|
Guo M, Zhao K, Peng X, He X, Deng J, Wang B, Yang X, Zhang L. Pangolin HKU4-related coronaviruses found in greater bamboo bats from southern China. Virol Sin 2023; 38:868-876. [PMID: 37967719 PMCID: PMC10786669 DOI: 10.1016/j.virs.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
Coronavirus (CoV) spillover originating from game animals, particularly pangolins, is currently a significant concern. Meanwhile, vigilance is urgently needed for coronaviruses carried by bats, which are known as natural reservoirs of many coronaviruses. In this study, we collected 729 anal swabs of 20 different bat species from nine locations in Yunnan and Guangdong provinces, southern China, in 2016 and 2017, and described the molecular characteristics and genetic diversity of alphacoronaviruses (αCoVs) and betacoronaviruses (βCoVs) found in these bats. Using RT-PCR, we identified 58 (8.0%) bat CoVs in nine bat species from six locations. Furthermore, using the Illumina platform, we obtained two representative full-length genomes of the bat CoVs, namely TyRo-CoV-162275 and TyRo-CoV-162269. Sequence analysis showed that TyRo-CoV-162275 shared the highest identity with Malayan pangolin (Manis javanica) HKU4-related coronaviruses (MjHKU4r-CoVs) from Guangxi Province, whereas TyRo-CoV-162269 was closely related to HKU33-CoV discovered in a greater bamboo bat (Tylonycteris robustula) from Guizhou Province. Notably, TyRo-CoV-162275 has a putative furin protease cleavage site in its S protein and is likely to utilize human dipeptidyl peptidase-4 (hDPP4) as a cell-entry receptor, similar to MERS-CoV. To the best of our knowledge, this is the first report of a bat HKU4r-CoV strain containing a furin protease cleavage site. These findings expand our understanding of coronavirus geographic and host distributions.
Collapse
Affiliation(s)
- Min Guo
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Kai Zhao
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650023, China
| | - Xingwen Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Xiangyang He
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Jin Deng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650023, China; Hubei Jiangxia Lab, Wuhan, 430071, China.
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
| |
Collapse
|
32
|
Jaramillo Ortiz L, Begeman L, Schillemans M, Kuiken T, de Boer WF. Presence of coronaviruses in the common pipistrelle (P. pipistrellus) and Nathusius´ pipistrelle (P. nathusii) in relation to landscape composition. PLoS One 2023; 18:e0293649. [PMID: 38019737 PMCID: PMC10686486 DOI: 10.1371/journal.pone.0293649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Changes in land use can modify habitat and roosting behaviour of bats, and therefore the transmission dynamics of viruses. Within bat roosts the density and contact rate among individuals increase and may facilitate the transmission of bat coronaviruses (CoVs). Landscape components supporting larger bat populations may thus lead to higher CoVs prevalence, as the number of roosts and/or roost size are likely to be higher. Hence, relationships between landscape composition and the presence of CoVs are expected to exist. To increase our understanding of the spread and shedding of coronaviruses in bat populations we studied the relationships between landscape composition and CoVs prevalence in the species Pipistrellus pipistrellus and Pipistrellus nathusii. Faecal samples were collected across The Netherlands, and were screened to detect the presence of CoV RNA. Coordinates were recorded for all faecal samples, so that landscape attributes could be quantified. Using a backward selection procedure on the basis of AIC, the landscape variables that best explained the presence of CoVs were selected in the final model. Results suggested that relationships between landscape composition and CoVs were likely associated with optimal foraging opportunities in both species, e.g. nearby water in P. nathusii or in areas with more grassland situated far away from forests for P. pipistrellus. Surprisingly, we found no positive association between built-up cover (where roosts are frequently found) and the presence of bat-CoVs for both species. We also show that samples collected from large bat roosts, such as maternity colonies, substantially increased the probability of finding CoVs in P. pipistrellus. Interestingly, while maternity colonies of P. nathusii are rarely present in The Netherlands, CoVs prevalence was similar in both species, suggesting that other mechanisms besides roost size, participate in the transmission of bat-CoVs. We encourage further studies to quantify bat roosts and colony networks over the different landscape compositions to better understand the ecological mechanisms involved in the transmission of bat-CoVs.
Collapse
Affiliation(s)
- Laura Jaramillo Ortiz
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Lineke Begeman
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem Frederik de Boer
- Wildlife Ecology and Conservation Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
33
|
Hu GM, Tai YC, Chen CM. Unraveling the evolutionary patterns and phylogenomics of coronaviruses: A consensus network approach. J Med Virol 2023; 95:e29233. [PMID: 38009694 DOI: 10.1002/jmv.29233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
The COVID-19 pandemic emphasizes the significance of studying coronaviruses (CoVs). This study investigates the evolutionary patterns of 350 CoVs using four structural proteins (S, E, M, and N) and introduces a consensus methodology to construct a comprehensive phylogenomic network. Our clustering of CoVs into 4 genera is consistent with the current CoV classification. Additionally, we calculate network centrality measures to identify CoV strains with significant average weighted degree and betweenness centrality values, with a specific focus on RaTG13 in the beta genus and NGA/A116E7/2006 in the gamma genus. We compare the phylogenetics of CoVs using our distance-based approach and the character-based model with IQ-TREE. Both methods yield largely consistent outcomes, indicating the reliability of our consensus approach. However, it is worth mentioning that our consensus method achieves an approximate 5000-fold increase in speed compared to IQ-TREE when analyzing the data set of 350 CoVs. This improved efficiency enhances the feasibility of conducting large-scale phylogenomic studies on CoVs.
Collapse
Affiliation(s)
- Geng-Ming Hu
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Chen Tai
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | - Chi-Ming Chen
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
34
|
Muylaert RL, Wilkinson DA, Kingston T, D'Odorico P, Rulli MC, Galli N, John RS, Alviola P, Hayman DTS. Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots. Nat Commun 2023; 14:6854. [PMID: 37891177 PMCID: PMC10611769 DOI: 10.1038/s41467-023-42627-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The emergence of SARS-like coronaviruses is a multi-stage process from wildlife reservoirs to people. Here we characterize multiple drivers-landscape change, host distribution, and human exposure-associated with the risk of spillover of zoonotic SARS-like coronaviruses to help inform surveillance and mitigation activities. We consider direct and indirect transmission pathways by modeling four scenarios with livestock and mammalian wildlife as potential and known reservoirs before examining how access to healthcare varies within clusters and scenarios. We found 19 clusters with differing risk factor contributions within a single country (N = 9) or transboundary (N = 10). High-risk areas were mainly closer (11-20%) rather than far ( < 1%) from healthcare. Areas far from healthcare reveal healthcare access inequalities, especially Scenario 3, which includes wild mammals and not livestock as secondary hosts. China (N = 2) and Indonesia (N = 1) had clusters with the highest risk. Our findings can help stakeholders in land use planning, integrating healthcare implementation and One Health actions.
Collapse
Affiliation(s)
- Renata L Muylaert
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.
| | - David A Wilkinson
- UMR ASTRE, CIRAD, INRAE, Université de Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Paolo D'Odorico
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Maria Cristina Rulli
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
| | - Nikolas Galli
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
| | - Reju Sam John
- Department of Physics, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Phillip Alviola
- Institute of Biological Sciences, University of the Philippines- Los Banos, Laguna, Philippines
| | - David T S Hayman
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
35
|
Arnaout Y, Picard-Meyer E, Robardet E, Cappelle J, Cliquet F, Touzalin F, Jimenez G, Djelouadji Z. Assessment of virus and Leptospira carriage in bats in France. PLoS One 2023; 18:e0292840. [PMID: 37862301 PMCID: PMC10588846 DOI: 10.1371/journal.pone.0292840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
With over 1,400 species worldwide, bats represent the second largest order of mammals after rodents, and are known to host major zoonotic pathogens. Here, we estimate the presence of pathogens in autochthonous bat populations. First, we set out to check our samples for PCR amplification efficiency by assessing the occurrence of inhibited PCR reactions from different types of bat samples with amplifying the housekeeping gene β-actin. Second, we investigated the presence of five targeted pathogens in a French bat population using PCR. We targeted viral RNA of Canine distemper virus, Alphacoronavirus, Lyssavirus, Rotavirus and bacterial Leptospira DNA. To do so, we screened for these viruses in bat faecal samples as well as in oropharyngeal swab samples. The presence of Leptospira was assessed in urine, kidney, lung and faecal samples. Results showed a frequency of inhibited reactions ranging from 5 to 60% of samples, varying according to the sample itself and also suspected to vary according to sampling method and the storage buffer solution used, demonstrating the importance of the sampling and storage on the probability of obtaining negative PCR results. For pathogen assessment, rotavirus and alphacoronavirus RNA were detected in Myotis myotis, Myotis daubentonii, Myotis emarginatus and Rhinolophus ferrumequinum bats. Rotaviruses were also detected in Barbastella barbastellus. The presence of alphacoronavirus also varied seasonally, with higher frequencies in late summer and October, suggesting that juveniles potentially play an important role in the dynamics of these viruses. Leptospira DNA was detected in M. myotis and M. daubentonii colonies. The 16S rRNA sequences obtained from Leptospira positive samples showed 100% genetic identity with L. borgpetersenii. Neither canine distemper virus nor lyssavirus RNA were detected in any of the tested samples. This study is the first to show the presence of Leptospira in autochthonous French bats in addition to coronavirus and rotavirus RNA previously reported in European autochthonous bats.
Collapse
Affiliation(s)
- Youssef Arnaout
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
- USC 1233-INRAE Rongeurs Sauvages, Risque Sanitaire et Gestion des Populations, VetAgro Sup, Marcy l’Etoile, France
| | - Evelyne Picard-Meyer
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Emmanuelle Robardet
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Julien Cappelle
- UMR ASTRE, CIRAD, INRAE, Université de Montpellier, Montpellier, France
- UMR EPIA, INRAE, VetAgro Sup, Theix, France
| | - Florence Cliquet
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Frédéric Touzalin
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Dublin, Ireland
| | | | - Zouheira Djelouadji
- USC 1233-INRAE Rongeurs Sauvages, Risque Sanitaire et Gestion des Populations, VetAgro Sup, Marcy l’Etoile, France
| |
Collapse
|
36
|
Alfaro M, Hamel F, Patout F, Roques L. Adaptation in a heterogeneous environment II: to be three or not to be. J Math Biol 2023; 87:68. [PMID: 37814160 DOI: 10.1007/s00285-023-01996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/20/2023] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
We propose a model to describe the adaptation of a phenotypically structured population in a H-patch environment connected by migration, with each patch associated with a different phenotypic optimum, and we perform a rigorous mathematical analysis of this model. We show that the large-time behaviour of the solution (persistence or extinction) depends on the sign of a principal eigenvalue, [Formula: see text], and we study the dependency of [Formula: see text] with respect to H. This analysis sheds new light on the effect of increasing the number of patches on the persistence of a population, which has implications in agroecology and for understanding zoonoses; in such cases we consider a pathogenic population and the patches correspond to different host species. The occurrence of a springboard effect, where the addition of a patch contributes to persistence, or on the contrary the emergence of a detrimental effect by increasing the number of patches on the persistence, depends in a rather complex way on the respective positions in the phenotypic space of the optimal phenotypes associated with each patch. From a mathematical point of view, an important part of the difficulty in dealing with [Formula: see text], compared to [Formula: see text] or [Formula: see text], comes from the lack of symmetry. Our results, which are based on a fixed point theorem, comparison principles, integral estimates, variational arguments, rearrangement techniques, and numerical simulations, provide a better understanding of these dependencies. In particular, we propose a precise characterisation of the situations where the addition of a third patch increases or decreases the chances of persistence, compared to a situation with only two patches.
Collapse
Affiliation(s)
- Matthieu Alfaro
- Univ. Rouen Normandie, LMRS, CNRS, Rouen, France
- INRAE, BioSP, 84914, Avignon, France
| | | | | | | |
Collapse
|
37
|
Liu B, Zhao P, Xu P, Han Y, Wang Y, Chen L, Wu Z, Yang J. A comprehensive dataset of animal-associated sarbecoviruses. Sci Data 2023; 10:681. [PMID: 37805633 PMCID: PMC10560225 DOI: 10.1038/s41597-023-02558-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023] Open
Abstract
Zoonotic spillover of sarbecoviruses (SarbeCoVs) from non-human animals to humans under natural conditions has led to two large-scale pandemics, the severe acute respiratory syndrome (SARS) pandemic in 2003 and the ongoing COVID-19 pandemic. Knowledge of the genetic diversity, geographical distribution, and host specificity of SarbeCoVs is therefore of interest for pandemic surveillance and origin tracing of SARS-CoV and SARS-CoV-2. This study presents a comprehensive repository of publicly available animal-associated SarbeCoVs, covering 1,535 viruses identified from 63 animal species distributed in 43 countries worldwide (as of February 14,2023). Relevant meta-information, such as host species, sampling time and location, was manually curated and included in the dataset to facilitate further research on the potential patterns of viral diversity and ecological characteristics. In addition, the dataset also provides well-annotated sequence sets of receptor-binding domains (RBDs) and receptor-binding motifs (RBMs) for the scientific community to highlight the potential determinants of successful cross-species transmission that could be aid in risk estimation and strategic design for future emerging infectious disease control and prevention.
Collapse
Affiliation(s)
- Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Peng Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| |
Collapse
|
38
|
Temmam S, Tu TC, Regnault B, Bonomi M, Chrétien D, Vendramini L, Duong TN, Phong TV, Yen NT, Anh HN, Son TH, Anh PT, Amara F, Bigot T, Munier S, Thong VD, van der Werf S, Nam VS, Eloit M. Genotype and Phenotype Characterization of Rhinolophus sp. Sarbecoviruses from Vietnam: Implications for Coronavirus Emergence. Viruses 2023; 15:1897. [PMID: 37766303 PMCID: PMC10536463 DOI: 10.3390/v15091897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Bats are a major reservoir of zoonotic viruses, including coronaviruses. Since the emergence of SARS-CoV in 2002/2003 in Asia, important efforts have been made to describe the diversity of Coronaviridae circulating in bats worldwide, leading to the discovery of the precursors of epidemic and pandemic sarbecoviruses in horseshoe bats. We investigated the viral communities infecting horseshoe bats living in Northern Vietnam, and report here the first identification of sarbecoviruses in Rhinolophus thomasi and Rhinolophus siamensis bats. Phylogenetic characterization of seven strains of Vietnamese sarbecoviruses identified at least three clusters of viruses. Recombination and cross-species transmission between bats seemed to constitute major drivers of virus evolution. Vietnamese sarbecoviruses were mainly enteric, therefore constituting a risk of spillover for guano collectors or people visiting caves. To evaluate the zoonotic potential of these viruses, we analyzed in silico and in vitro the ability of their RBDs to bind to mammalian ACE2s and concluded that these viruses are likely restricted to their bat hosts. The workflow applied here to characterize the spillover potential of novel sarbecoviruses is of major interest for each time a new virus is discovered, in order to concentrate surveillance efforts on high-risk interfaces.
Collapse
Affiliation(s)
- Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Tran Cong Tu
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Béatrice Regnault
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Massimiliano Bonomi
- Structural Bioinformatics Unit, Institut Pasteur, CNRS UMR3528, Université Paris Cité, 75015 Paris, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Léa Vendramini
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Tran Vu Phong
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Nguyen Thi Yen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Hoang Ngoc Anh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Tran Hai Son
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Pham Tuan Anh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Faustine Amara
- Institut Pasteur, G5 Evolutionary Genomics of RNA Viruses, Université Paris Cité, 75015 Paris, France
| | - Thomas Bigot
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, 75015 Paris, France
| | - Sandie Munier
- Institut Pasteur, G5 Evolutionary Genomics of RNA Viruses, Université Paris Cité, 75015 Paris, France
| | - Vu Dinh Thong
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Hanoi 70072, Vietnam
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Université Paris Cité, 75015 Paris, France
| | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015 Paris, France
- Institut Pasteur, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
- Ecole Nationale Vétérinaire d’Alfort, University of Paris-Est, 77420 Maisons-Alfort, France
| |
Collapse
|
39
|
Han Y, Xu P, Wang Y, Zhao W, Zhang J, Zhang S, Wang J, Jin Q, Wu Z. Panoramic analysis of coronaviruses carried by representative bat species in Southern China to better understand the coronavirus sphere. Nat Commun 2023; 14:5537. [PMID: 37684236 PMCID: PMC10491624 DOI: 10.1038/s41467-023-41264-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Bats, recognized as considerable reservoirs for coronaviruses (CoVs), serve as natural hosts for several highly pathogenic CoVs, including SARS-CoV and SARS-CoV-2. Investigating the bat CoV community provides insights into the origin for highly pathogenic CoVs and highlights bat CoVs with potential spillover risks. This study probes the evolution, recombination, host range, geographical distribution, and cross-species transmission characteristics of bat CoVs across China and its associated CoVs in other regions. Through detailed research on 13,064 bat samples from 14 provinces of China, 1141 CoV strains are found across 10 subgenera and one unclassified Alpha-CoV, generating 399 complete genome sequences. Within bat CoVs, 11 new CoV species are identified and 425 recombination events are detected. Bats in southern China, particularly in Yunnan province, exhibit a pronounced diversity of CoVs. Limited sampling and low detection rates exist for CoVs in Myotacovirus, Nyctacovirus, Hibecovirus, Nobecovirus in China. The genus Myotis is highlighted as a potential ancestral host for Alpha-CoV, with the genus Hipposideros suggested as a likely progenitor host for bat-associated Beta-CoV, indicating the complexity of cross-species transmission dynamics. Through the comprehensive analysis, this study enriches the understanding of bat CoVs and offers a valuable resource for future research.
Collapse
Affiliation(s)
- Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenliang Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
40
|
George U, George O, Oguzie J, Osasona O, Motayo B, Kamani J, Eromon P, Folarin O, Happi A, Komolafe I, Happi C. Genomic characterization of Alphacoronavirus from Mops condylurus bats in Nigeria. Virus Res 2023; 334:199174. [PMID: 37467933 PMCID: PMC10392604 DOI: 10.1016/j.virusres.2023.199174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Coronaviruses (CoVs) are responsible for sporadic, epidemic and pandemic respiratory diseases worldwide. Bats have been identified as the reservoir for CoVs. To increase the number of complete coronavirus genomes in Africa and to comprehend the molecular epidemiology of bat Alphacoronaviruses (AlphaCoVs), we used deep metagenomics shotgun sequencing to obtain three (3) near-complete genomes of AlphaCoVs from Mops condylurus (Angolan free-tailed) bat in Nigeria. Phylogenetic and pairwise identity analysis of open reading frame 1ab (ORF1ab), spike (S), envelope (E), membrane (M) and nucleocapsid (N) genes of AlphaCoV in this study to previously described AlphaCoVs subgenera showed that the Nigerian AlphaCoVs may be members of potentially unique AlphaCoV subgenera circulating exclusively in bats in the Molossidae bat family. Recombination events were detected, suggesting the evolution of AlphaCoVs within the Molossidae family. The pairwise identity of the S gene in this study and previously published S gene sequences of other AlphaCoVs indicate that the Nigerian strains may have a genetically unique spike protein that is distantly related to other AlphaCoVs. Variations involving non-polar to polar amino acid substitution in both the Heptad Repeat (HR) regions 1 and 2 were observed. Further monitoring of bats to understand the host receptor use requirements of CoVs and interspecies CoV transmission in Africa is necessary to identify and prevent the potential danger that bat CoVs pose to public health.
Collapse
Affiliation(s)
- Uwem George
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | | | - Judith Oguzie
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Oluwadamilola Osasona
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Babatunde Motayo
- Department of Medical Microbiology, Federal Medical Centre, Abeokuta, Nigeria
| | - Joshua Kamani
- Parasitology Division National Veterinary Research Institute NVRI PMB 01, Vom, Plateau state Nigeria
| | - Philomena Eromon
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
| | - Onikepe Folarin
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Anise Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
| | - Isaac Komolafe
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Christian Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
| |
Collapse
|
41
|
Dundarova H, Ivanova-Aleksandrova N, Bednarikova S, Georgieva I, Kirov K, Miteva K, Neov B, Ostoich P, Pikula J, Zukal J, Hristov P. Phylogeographic Aspects of Bat Lyssaviruses in Europe: A Review. Pathogens 2023; 12:1089. [PMID: 37764897 PMCID: PMC10534866 DOI: 10.3390/pathogens12091089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
During the last few decades, bat lyssaviruses have become the topic of intensive molecular and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis in humans which has led to research into effective strategies for their eradication. Modelling of potential future cross-species virus transmissions forms a substantial component of the recent infection biology of rabies. In this article, we summarise the available data on the phylogeography of both bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most divergent lyssaviruses generates impetus for additional phylogenetic and virological research within this geographical region.
Collapse
Affiliation(s)
- Heliana Dundarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | | | - Sarka Bednarikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Irina Georgieva
- National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Krasimir Kirov
- Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria
| | - Kalina Miteva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Boyko Neov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Peter Ostoich
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Peter Hristov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| |
Collapse
|
42
|
Campbell LK, Peery RM, Magor KE. Evolution and expression of the duck TRIM gene repertoire. Front Immunol 2023; 14:1220081. [PMID: 37622121 PMCID: PMC10445537 DOI: 10.3389/fimmu.2023.1220081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Tripartite motif (TRIM) proteins are involved in development, innate immunity, and viral restriction. TRIM gene repertoires vary between species, likely due to diversification caused by selective pressures from pathogens; however, this has not been explored in birds. We mined a de novo assembled transcriptome for the TRIM gene repertoire of the domestic mallard duck (Anas platyrhynchos), a reservoir host of influenza A viruses. We found 57 TRIM genes in the duck, which represent all 12 subfamilies based on their C-terminal domains. Members of the C-IV subfamily with C-terminal PRY-SPRY domains are known to augment immune responses in mammals. We compared C-IV TRIM proteins between reptiles, birds, and mammals and show that many C-IV subfamily members have arisen independently in these lineages. A comparison of the MHC-linked C-IV TRIM genes reveals expansions in birds and reptiles. The TRIM25 locus with related innate receptor modifiers is adjacent to the MHC in reptile and marsupial genomes, suggesting the ancestral organization. Within the avian lineage, both the MHC and TRIM25 loci have undergone significant TRIM gene reorganizations and divergence, both hallmarks of pathogen-driven selection. To assess the expression of TRIM genes, we aligned RNA-seq reads from duck tissues. C-IV TRIMs had high relative expression in immune relevant sites such as the lung, spleen, kidney, and intestine, and low expression in immune privileged sites such as in the brain or gonads. Gene loss and gain in the evolution of the TRIM repertoire in birds suggests candidate immune genes and potential targets of viral subversion.
Collapse
Affiliation(s)
- Lee K. Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Rhiannon M. Peery
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Katharine E. Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
43
|
Ou X, Xu G, Li P, Liu Y, Zan F, Liu P, Hu J, Lu X, Dong S, Zhou Y, Mu Z, Wu Z, Wang J, Jin Q, Liu P, Lu J, Wang X, Qian Z. Host susceptibility and structural and immunological insight of S proteins of two SARS-CoV-2 closely related bat coronaviruses. Cell Discov 2023; 9:78. [PMID: 37507385 PMCID: PMC10382498 DOI: 10.1038/s41421-023-00581-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The bat coronaviruses (CoV) BANAL-20-52 and BANAL-20-236 are two newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) closely related coronaviruses (SC2r-CoV) and the genome of BANAL-20-52 shares the highest homology with SARS-CoV-2. However, the risk of their potential zoonotic transmission has not been fully evaluated. Here, we determined their potential host susceptibility among 13 different bat species and 26 different animal species, and found that both might have extensive host ranges, indicating high zoonotic transmission potential. We also determined the cryo-EM structures of BANAL-20-52 and BANAL-20-236 S proteins at pH 5.5 and the complex of BANAL-20-236 S1 and Rhinolophus affinis ACE2, and found that both trimeric S proteins adopt all three receptor binding domains (RBDs) in "closed" conformation and are more compact than SARS-CoV-2. Strikingly, the unique sugar moiety at N370 of bat SC2r-CoVs acts like a "bolt" and crosses over two neighboring subunits, facilitating the S proteins in the locked conformation and underpinning the architecture stability. Removal of the glycosylation at N370 by a T372A substitution substantially enhances virus infectivity but becomes highly sensitive to trypsin digestion at pH 5.5, a condition roughly mimicking the insectivorous bat's stomach digestion. In contrast, WT S proteins of SC2r-CoVs showed considerable resistance to trypsin digestion at pH 5.5, indicating that the highly conserved T372 in bat CoVs might result from the selective advantages in stability during the fecal-oral transmission over A372. Moreover, the results of cross-immunogenicity among S proteins of SARS-CoV-2, BANAL-20-52, and BANAL-20-236 showed that A372 pseudoviruses are more sensitive to anti-S sera than T372, indicating that immune evasion might also play a role in the natural selection of T372 over A372 during evolution. Finally, residues 493 and 498 of the S protein affect host susceptibility, and residue 498 also influences the immunogenicity of the S protein. Together, our findings aid a better understanding of the molecular basis of CoV entry, selective evolution, and immunogenicity and highlight the importance of surveillance of susceptible hosts of these viruses to prevent potential outbreaks.
Collapse
Affiliation(s)
- Xiuyuan Ou
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ge Xu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pei Li
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Liu
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fuwen Zan
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pan Liu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Hu
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xing Lu
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siwen Dong
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yao Zhou
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhixia Mu
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiqiang Wu
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Jin
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pinghuang Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Lu
- College of Life Sciences, Peking University, Beijing, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Zhaohui Qian
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
44
|
Pekar JE, Lytras S, Ghafari M, Magee AF, Parker E, Havens JL, Katzourakis A, Vasylyeva TI, Suchard MA, Hughes AC, Hughes J, Robertson DL, Dellicour S, Worobey M, Wertheim JO, Lemey P. The recency and geographical origins of the bat viruses ancestral to SARS-CoV and SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548617. [PMID: 37502985 PMCID: PMC10369958 DOI: 10.1101/2023.07.12.548617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 has led to increased sampling of related sarbecoviruses circulating primarily in horseshoe bats. These viruses undergo frequent recombination and exhibit spatial structuring across Asia. Employing recombination-aware phylogenetic inference on bat sarbecoviruses, we find that the closest-inferred bat virus ancestors of SARS-CoV and SARS-CoV-2 existed just ~1-3 years prior to their emergence in humans. Phylogeographic analyses examining the movement of related sarbecoviruses demonstrate that they traveled at similar rates to their horseshoe bat hosts and have been circulating for thousands of years in Asia. The closest-inferred bat virus ancestor of SARS-CoV likely circulated in western China, and that of SARS-CoV-2 likely circulated in a region comprising southwest China and northern Laos, both a substantial distance from where they emerged. This distance and recency indicate that the direct ancestors of SARS-CoV and SARS-CoV-2 could not have reached their respective sites of emergence via the bat reservoir alone. Our recombination-aware dating and phylogeographic analyses reveal a more accurate inference of evolutionary history than performing only whole-genome or single gene analyses. These results can guide future sampling efforts and demonstrate that viral genomic fragments extremely closely related to SARS-CoV and SARS-CoV-2 were circulating in horseshoe bats, confirming their importance as the reservoir species for SARS viruses.
Collapse
Affiliation(s)
- Jonathan E Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Spyros Lytras
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
- These authors contributed equally
| | - Mahan Ghafari
- Department of Biology, University of Oxford, Oxford, UK
| | - Andrew F Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Tetyana I Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Marc A Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong
- China Biodiversity Green Development Foundation, Beijing, China
| | - Joseph Hughes
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - David L Robertson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
- These authors jointly supervised the work
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, 1050, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
- These authors jointly supervised the work
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- These authors jointly supervised the work
| | - Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- These authors jointly supervised the work
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
- These authors jointly supervised the work
| |
Collapse
|
45
|
Ma C, Liu C, Xiong Q, Gu M, Shi L, Wang C, Si J, Tong F, Liu P, Huang M, Yan H. Broad host tropism of ACE2-using MERS-related coronaviruses and determinants restricting viral recognition. Cell Discov 2023; 9:57. [PMID: 37321999 DOI: 10.1038/s41421-023-00566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/14/2023] [Indexed: 06/17/2023] Open
Abstract
Recently, two Middle East respiratory syndrome coronavirus (MERS-CoV) closely related to bat merbecoviruses, NeoCoV and PDF-2180, were discovered to use angiotensin-converting enzyme 2 (ACE2) for entry. The two viruses cannot use human ACE2 efficiently, and their host range and cross-species transmissibility across a wide range of mammalian species remain unclear. Herein, we characterized the species-specific receptor preference of these viruses by testing ACE2 orthologues from 49 bats and 53 non-bat mammals through receptor-binding domain (RBD)-binding and pseudovirus entry assays. Results based on bat ACE2 orthologues revealed that the two viruses were unable to use most, but not all, ACE2 from Yinpterochiropteran bats (Yin-bats), which is distinct from NL63 and SARS-CoV-2. Besides, both viruses exhibited broad receptor recognition spectra across non-bat mammals. Genetic and structural analyses of bat ACE2 orthologues highlighted four crucial host range determinants, all confirmed by subsequent functional assays in human and bat cells. Notably, residue 305, participating in a critical viral receptor interaction, plays a crucial role in host tropism determination, particularly in non-bat mammals. Furthermore, NeoCoV and PDF-2180 mutants with enhanced human ACE2 recognition expanded the potential host range, especially by enhancing their interaction with an evolutionarily conserved hydrophobic pocket. Our results elucidate the molecular basis for the species-specific ACE2 usage of MERS-related viruses and shed light on their zoonotic risks.
Collapse
Affiliation(s)
- Chengbao Ma
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qing Xiong
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mengxue Gu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lulu Shi
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chunli Wang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Junyu Si
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Fei Tong
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peng Liu
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Meiling Huang
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Huan Yan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
46
|
Wells HL, Bonavita CM, Navarrete-Macias I, Vilchez B, Rasmussen AL, Anthony SJ. The coronavirus recombination pathway. Cell Host Microbe 2023; 31:874-889. [PMID: 37321171 PMCID: PMC10265781 DOI: 10.1016/j.chom.2023.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Recombination is thought to be a mechanism that facilitates cross-species transmission in coronaviruses, thus acting as a driver of coronavirus spillover and emergence. Despite its significance, the mechanism of recombination is poorly understood, limiting our potential to estimate the risk of novel recombinant coronaviruses emerging in the future. As a tool for understanding recombination, here, we outline a framework of the recombination pathway for coronaviruses. We review existing literature on coronavirus recombination, including comparisons of naturally observed recombinant genomes as well as in vitro experiments, and place the findings into the recombination pathway framework. We highlight gaps in our understanding of coronavirus recombination illustrated by the framework and outline how further experimental research is critical for disentangling the molecular mechanism of recombination from external environmental pressures. Finally, we describe how an increased understanding of the mechanism of recombination can inform pandemic predictive intelligence, with a retrospective emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Heather L Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA; Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA.
| | - Cassandra M Bonavita
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Isamara Navarrete-Macias
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Blake Vilchez
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA.
| |
Collapse
|
47
|
Nwadiugwu MC, Monteiro N. Applied genomics for identification of virulent biothreats and for disease outbreak surveillance. Postgrad Med J 2023; 99:403-410. [PMID: 37294718 DOI: 10.1136/postgradmedj-2021-139916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/18/2021] [Indexed: 12/16/2022]
Abstract
Fortifying our preparedness to cope with biological threats by identifying and targeting virulence factors may be a preventative strategy for curtailing infectious disease outbreak. Virulence factors evoke successful pathogenic invasion, and the science and technology of genomics offers a way of identifying them, their agents and evolutionary ancestor. Genomics offers the possibility of deciphering if the release of a pathogen was intentional or natural by observing sequence and annotated data of the causative agent, and evidence of genetic engineering such as cloned vectors at restriction sites. However, to leverage and maximise the application of genomics to strengthen global interception system for real-time biothreat diagnostics, a complete genomic library of pathogenic and non-pathogenic agents will create a robust reference assembly that can be used to screen, characterise, track and trace new and existing strains. Encouraging ethical research sequencing pathogens found in animals and the environment, as well as creating a global space for collaboration will lead to effective global regulation and biosurveillance.
Collapse
Affiliation(s)
- Martin C Nwadiugwu
- Department of Biomedical Informatics, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Nelson Monteiro
- The Forsyth Institute, Cambridge, MA, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
48
|
Cohen LE, Fagre AC, Chen B, Carlson CJ, Becker DJ. Coronavirus sampling and surveillance in bats from 1996-2019: a systematic review and meta-analysis. Nat Microbiol 2023; 8:1176-1186. [PMID: 37231088 PMCID: PMC10234814 DOI: 10.1038/s41564-023-01375-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
The emergence of SARS-CoV-2 highlights a need for evidence-based strategies to monitor bat viruses. We performed a systematic review of coronavirus sampling (testing for RNA positivity) in bats globally. We identified 110 studies published between 2005 and 2020 that collectively reported positivity from 89,752 bat samples. We compiled 2,274 records of infection prevalence at the finest methodological, spatiotemporal and phylogenetic level of detail possible from public records into an open, static database named datacov, together with metadata on sampling and diagnostic methods. We found substantial heterogeneity in viral prevalence across studies, reflecting spatiotemporal variation in viral dynamics and methodological differences. Meta-analysis identified sample type and sampling design as the best predictors of prevalence, with virus detection maximized in rectal and faecal samples and by repeat sampling of the same site. Fewer than one in five studies collected and reported longitudinal data, and euthanasia did not improve virus detection. We show that bat sampling before the SARS-CoV-2 pandemic was concentrated in China, with research gaps in South Asia, the Americas and sub-Saharan Africa, and in subfamilies of phyllostomid bats. We propose that surveillance strategies should address these gaps to improve global health security and enable the origins of zoonotic coronaviruses to be identified.
Collapse
Affiliation(s)
- Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Binqi Chen
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
49
|
Lange CE, Coulibaly JK, Ako ABA, N'dri Vakou S, Koffi EK, Mendelsohn E, Ball S, Martinez S, Francisco L, Saylors K, Manzan J, Bamba D, Kouakou V, Koui ST, Frantz JL, Joly D, Yapi C, Daszak P, Dosso M, Laudisoit A. Human interactions with bats and bat coronaviruses in rural Côte d'Ivoire. One Health 2023; 16:100569. [PMID: 37275302 PMCID: PMC10229207 DOI: 10.1016/j.onehlt.2023.100569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Bats are presumed reservoirs of diverse α- and β- coronaviruses (CoVs) and understanding the diversity of bat-CoVs and the role bats play in CoV transmission is highly relevant in the context of the current COVID pandemic. We sampled bats in Côte d'Ivoire (2016-2018) living at ecotones between anthropogenic and wild habitats in the Marahoué National Park, a recently encroached protected area, to detect and characterize the CoVs circulating in bats and humans. A total of 314 bats were captured, mostly during the rainy season (78%), and CoV RNA was detected in three of the bats (0.96%). A CoV RNA sequence similar to Chaerephon bat coronavirus/Kenya/KY22/2006 (BtKY22) was found in a Chaerephon cf. pumilus and a Mops sp. fecal swab, while a CoV RNA sequence similar to the two almost identical Kenya bat coronaviruses BtKY55 and BtKY56 (BtKY55/56) was detected in an Epomops buettikoferi oral swab. Phylogenetic analyses indicated differences in the degree of evolutionary host-virus co-speciation for BtKY22 and BtKY55/56. To assess potential for human exposure to these viruses, we conducted human syndromic and community-based surveillance in clinics and high-risk communities. We collected data on participant characteristics, livelihoods, animal contact, and high-risk behaviors that may be associated with exposure to zoonotic diseases. We then collected biological samples for viral testing from 401 people. PCR testing of these biological samples revealed no evidence of CoV infection among the enrolled individuals. We identified higher levels of exposure to bats in people working in crop production and in hunting, trapping and fishing. Finally, we used the 'Spillover' risk-ranking tool to assess the potential for viral spillover and concluded that, while there is no evidence to suggest imminent risk of spillover for these CoVs, their host range and other traits suggest caution and vigilance are warranted in people with high exposure risk.
Collapse
Affiliation(s)
- Christian E Lange
- Metabiota Inc., 425 California Street, San Francisco, CA 94104, USA
- Labyrinth Global Health Inc., 546 15TH Ave NE, St. Petersburg, FL 33704, USA
- Kwantlen Polytechnic University, 12666 72 Avenue, Surrey, BC V3W 2M8, Canada
| | | | | | - Sabine N'dri Vakou
- Institute Pasteur of Côte d'Ivoire (IPCI), 01 BP 490, Abidjan, Côte d'Ivoire
| | | | - Emma Mendelsohn
- EcoHealth Alliance, 520 Eighth Ave, Suite 1200, New York, NY 10018, USA
| | - Shannon Ball
- EcoHealth Alliance, 520 Eighth Ave, Suite 1200, New York, NY 10018, USA
| | | | - Leilani Francisco
- The Henry M. Jackson Foundation, 6720A Rockledge Dr, Bethesda, MD 20817, USA
| | - Karen Saylors
- Metabiota Inc., 425 California Street, San Francisco, CA 94104, USA
- Labyrinth Global Health Inc., 546 15TH Ave NE, St. Petersburg, FL 33704, USA
| | - Jean Manzan
- Institute Pasteur of Côte d'Ivoire (IPCI), 01 BP 490, Abidjan, Côte d'Ivoire
| | - Djeneba Bamba
- Institute Pasteur of Côte d'Ivoire (IPCI), 01 BP 490, Abidjan, Côte d'Ivoire
| | - Valère Kouakou
- National Agricultural Development Support Laboratory (Laboratoire National d'Appui au Développement Agricole [in French], LANADA), BP 206, Bingerville, Côte d'Ivoire
| | | | | | - Damien Joly
- Metabiota Inc., 425 California Street, San Francisco, CA 94104, USA
| | - Cyprien Yapi
- National Agricultural Development Support Laboratory (Laboratoire National d'Appui au Développement Agricole [in French], LANADA), BP 206, Bingerville, Côte d'Ivoire
| | - Peter Daszak
- EcoHealth Alliance, 520 Eighth Ave, Suite 1200, New York, NY 10018, USA
| | - Mireille Dosso
- Institute Pasteur of Côte d'Ivoire (IPCI), 01 BP 490, Abidjan, Côte d'Ivoire
| | - Anne Laudisoit
- EcoHealth Alliance, 520 Eighth Ave, Suite 1200, New York, NY 10018, USA
- University of Antwerp, EVECO, Campus Drie Eiken Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
50
|
Apaa T, Withers AJ, Staley C, Blanchard A, Bennett M, Bremner-Harrison S, Chadwick EA, Hailer F, Harrison SWR, Loose M, Mathews F, Tarlinton R. Sarbecoviruses of British horseshoe bats; sequence variation and epidemiology. J Gen Virol 2023; 104. [PMID: 37319000 DOI: 10.1099/jgv.0.001859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Horseshoe bats are the natural hosts of the Sarbecovirus subgenus that includes SARS-CoV and SARS-CoV- 2. Despite the devastating impact of the COVID-19 pandemic, there is still little known about the underlying epidemiology and virology of sarbecoviruses in their natural hosts, leaving large gaps in our pandemic preparedness. Here we describe the results of PCR testing for sarbecoviruses in the two horseshoe bat species (Rhinolophus hipposideros and R. ferrumequinum) present in Great Britain, collected in 2021-22 during the peak of COVID-19 pandemic. One hundred and ninety seven R. hipposideros samples from 33 roost sites and 277 R. ferrumequinum samples from 20 roost sites were tested. No coronaviruses were detected in any samples from R. ferrumequinum whereas 44 and 56 % of individual and pooled (respectively) faecal samples from R. hipposideros across multiple roost sites tested positive in a sarbecovirus-specific qPCR. Full genome sequences were generated from three of the positive samples (and partial genomes from two more) using Illumina RNAseq on unenriched samples. Phylogenetic analyses showed that the obtained sequences belong to the same monophyletic clade, with >95 % similarity to previously-reported European isolates from R. hipposideros. The sequences differed in the presence or absence of accessory genes ORF 7b, 9b and 10. All lacked the furin cleavage site of SARS-CoV-2 spike gene and are therefore unlikely to be infective for humans. These results demonstrate a lack, or at least low incidence, of SARS-CoV-2 spill over from humans to susceptible GB bats, and confirm that sarbecovirus infection is widespread in R. hipposideros. Despite frequently sharing roost sites with R. ferrumequinum, no evidence of cross-species transmission was found.
Collapse
Affiliation(s)
- Ternenge Apaa
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | - Amy J Withers
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | - Ceri Staley
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Adam Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Malcolm Bennett
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Samantha Bremner-Harrison
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
- Vincent Wildlife Trust, Herefordshire, UK
| | - Elizabeth A Chadwick
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
- Organisms and Environment, School of Biosciences, Cardiff University, UK
| | - Frank Hailer
- Organisms and Environment, School of Biosciences, Cardiff University, UK
| | - Stephen W R Harrison
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, UK
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Fiona Mathews
- School of Life sciences, University of Sussex, Brighton, UK
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| |
Collapse
|