1
|
Kisby T, Borst GR, Coope DJ, Kostarelos K. Targeting the glioblastoma resection margin with locoregional nanotechnologies. Nat Rev Clin Oncol 2025:10.1038/s41571-025-01020-2. [PMID: 40369318 DOI: 10.1038/s41571-025-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2025] [Indexed: 05/16/2025]
Abstract
Surgical resection is the first stage of treatment for patients diagnosed with resectable glioblastoma and is followed by a combination of adjuvant radiotherapy and systemic single-agent chemotherapy, which is typically commenced 4-6 weeks after surgery. This delay creates an interval during which residual tumour cells residing in the resection margin can undergo uninhibited proliferation and further invasion, even immediately after surgery, thus limiting the effectiveness of adjuvant therapies. Recognition of the postsurgical resection margin and peri-marginal zones as important anatomical clinical targets and the need to rethink current strategies can galvanize opportunities for local, intraoperative approaches, while also generating a new landscape of innovative treatment modalities. In this Perspective, we discuss opportunities and challenges for developing locoregional therapeutic strategies to target the glioblastoma resection margin as well as emerging opportunities offered by nanotechnology in this clinically transformative setting. We also discuss how persistent barriers to clinical translation can be overcome to offer a potential path forward towards broader acceptability of such advanced technologies.
Collapse
Affiliation(s)
- Thomas Kisby
- Centre for Nanotechnology in Medicine, Faculty of Biology & Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Gerben R Borst
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health & Manchester Cancer Research Centre, Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - David J Coope
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford Royal, Salford, UK
| | - Kostas Kostarelos
- Centre for Nanotechnology in Medicine, Faculty of Biology & Medicine and Health, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Nanomedicine Lab, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Barcelona, Spain.
- Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
2
|
Gao Z, Wang X, Mei Q, Shen T, Wang J, Liu C. Sulfated chitosan directs the recovery of ischemic stroke by attenuating the inflammatory cascade. Theranostics 2025; 15:5870-5889. [PMID: 40365292 PMCID: PMC12068298 DOI: 10.7150/thno.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025] Open
Abstract
Background: Ischemic stroke is considered a fatal ischemic disease with high mortality and morbidity. Acute ischemic stroke is a cascade of inflammatory reactions, which not only causes vascular degeneration but also leads to neurological disorders. During this period, the rapid response of neutrophil-dominated granulocytes releases cytokines and chemokines to affect tissue repair. Thus, effective regulation of neutrophils appears to be the key in treating major organ injuries associated with inflammation. Methods: This study developed a semisynthetic sulfated chitosan (SCS) associated with the functional sulfated groups. The immunoregulatory effects of SCS on neutrophils were tested by Real-Time Quantitative Reverse Transcription (RT-PCR), ELISA and immunofluorescence staining at gene and protein levels in vitro. Flow cytometry, WB and PCR were used to study the effect of neutrophils on macrophages, indicating the regulation of the inflammatory cascade by SCS. Acute ischemic stroke model was established to verify the effectiveness and the regulation of inflammatory cascade of SCS. Finally, the lower limb ischemia model was used to verify the universality of SCS in the treatment of ischemic diseases, especially with regard to acute inflammatory-related major organ damage. Results: SCS can not only promote neutrophil apoptosis, but also enable neutrophils to produce vascular-related subsets to regulate immunity and promote angiogenesis. Neutrophil stimulated by SCS mediated macrophage polarization via IL-10-induced Stat3 signaling pathway to weaken the inflammatory cascade. In animal models of ischemic hind limb and ischemic stroke, SCS had demonstrated its ability to shorten the acute inflammatory period, as indicated by neutrophil, and accelerate the subsequent repair period characterized by the presence of M2 macrophages. Additionally, SCS effectively inhibits the expression of MMP-9 to provide a favorable environment for rapid extracellular matrix reconstruction. Encouragingly, treatment with SCS had been shown to reduce the expansion of the infarct volume by approximately 20% in our experiments. Conclusion: This study underscores the effect of SCS in regulating the heterogeneity of neutrophils in order to suppress the initiation of inflammation to treat ischemic stroke. Crucially, our approach relies on non-exogenous growth factors and cells, highlighting its remarkable potential for clinical translatability in the treatment of major organ injuries.
Collapse
Affiliation(s)
- Zehua Gao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Xuanlin Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Tong Shen
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
DuBois EM, Herrema KE, Simkulet MG, Hassan LF, O’Connor PR, Sen R, O’Shea TM. Thioether-Functionalized Cellulose for the Fabrication of Oxidation-Responsive Biomaterial Coatings and Films. Adv Healthc Mater 2025; 14:e2403021. [PMID: 39604609 PMCID: PMC12031653 DOI: 10.1002/adhm.202403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Biomaterial coatings and films can prevent premature failure and enhance the performance of chronically implanted medical devices. However, current hydrophilic polymer coatings and films have significant drawbacks, including swelling and delamination. To address these issues, hydroxyethyl cellulose is modified with thioether groups to generate an oxidation-responsive polymer, HECMTP. HECMTP readily dissolves in green solvents and can be fabricated as coatings or films with tunable thicknesses. HECMTP coatings effectively scavenge hydrogen peroxide, resulting in the conversion of thioether groups to sulfoxide groups on the polymer chain. Oxidation-driven, hydrophobic-to-hydrophilic transitions that are isolated to the surface of HECMTP coatings under physiologically relevant conditions increase wettability, decrease stiffness, and reduce protein adsorption to generate a non-fouling interface with minimal coating delamination or swelling. HECMTP can be used in diverse optical applications and permits oxidation-responsive, controlled drug release. HECMTP films are non-resorbable in vivo and evoke minimal foreign body responses. These results highlight the versatility of HECMTP and support its incorporation into chronically implanted medical devices.
Collapse
Affiliation(s)
- Eric M. DuBois
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Kate E. Herrema
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Matthew G. Simkulet
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Laboni F. Hassan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Payton R. O’Connor
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Riya Sen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Timothy M. O’Shea
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| |
Collapse
|
4
|
Zheng Y, Nützl M, Schackel T, Chen J, Weidner N, Müller R, Puttagunta R. Biomaterial scaffold stiffness influences the foreign body reaction, tissue stiffness, angiogenesis and neuroregeneration in spinal cord injury. Bioact Mater 2025; 46:134-149. [PMID: 39760066 PMCID: PMC11700269 DOI: 10.1016/j.bioactmat.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Biomaterial scaffold engineering presents great potential in promoting axonal regrowth after spinal cord injury (SCI), yet persistent challenges remain, including the surrounding host foreign body reaction and improper host-implant integration. Recent advances in mechanobiology spark interest in optimizing the mechanical properties of biomaterial scaffolds to alleviate the foreign body reaction and facilitate seamless integration. The impact of scaffold stiffness on injured spinal cords has not been thoroughly investigated. Herein, we introduce stiffness-varied alginate anisotropic capillary hydrogel scaffolds implanted into adult rat C5 spinal cords post-lateral hemisection. Four weeks post-implantation, scaffolds with a stiffness approaching that of the spinal cord effectively minimize the host foreign body reaction via yes-associated protein (YAP) nuclear translocation. Concurrently, the softest scaffolds maximize cell infiltration and angiogenesis, fostering significant axonal regrowth but limiting the rostral-caudal linear growth. Furthermore, as measured by atomic force microscopy (AFM), the surrounding spinal cord softens when in contact with the stiffest scaffold while maintaining a physiological level in contact with the softest one. In conclusion, our findings underscore the pivotal role of stiffness in scaffold engineering for SCI in vivo, paving the way for the optimal development of efficacious biomaterial scaffolds for tissue engineering in the central nervous system.
Collapse
Affiliation(s)
- Yifeng Zheng
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118, Heidelberg, Germany
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, 350005, Fuzhou, China
| | - Maximilian Nützl
- Department of Physical and Theoretical Chemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Thomas Schackel
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | - Jing Chen
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | - Rainer Müller
- Department of Physical and Theoretical Chemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Radhika Puttagunta
- Laboratory of Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118, Heidelberg, Germany
| |
Collapse
|
5
|
Morrison C, Chan EP, Deming TJ. Triggered Inversion of Dual Responsive Diblock Copolypeptide Vesicles. J Am Chem Soc 2025; 147:7617-7623. [PMID: 39973289 PMCID: PMC11887448 DOI: 10.1021/jacs.4c17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
We report the synthesis of amphiphilic poly(l-methionine sulfoxide)x-b-poly(dehydroalanine)y, diblock copolypeptides, MOxADHy, and their self-assembly into submicrometer-diameter unilamellar vesicles in aqueous media. The formation of vesicles was observed over an unprecedented range of copolypeptide compositions due to the unique properties and chain conformations of ADH hydrophobic segments. These copolypeptides incorporate two distinct thiol reactive components where each segment can respond differently to a single thiol stimulus. Incubation of MO35ADH30 vesicles with glutathione under intracellular mimetic conditions resulted in vesicle disruption and release of cargo. Further, incubation of MO35ADH30 vesicles with thiolglycolic acid resulted in a reversal of amphipilicity and successful in situ inversion of the vesicle assemblies. This conversion of biomimetic polymer vesicles into stable inverted vesicles using a biologically relevant stimulus at physiological pH and temperature is unprecedented. These results provide insights toward the development of advanced functional synthetic assemblies with potential uses in biology and medicine.
Collapse
Affiliation(s)
- Casey
A. Morrison
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Ethan P. Chan
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Timothy J. Deming
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Adewumi HO, Simkulet MG, Küreli G, Giblin JT, Lopez AB, Erdener ŞE, Jiang J, Boas DA, O’Shea TM. Optical coherence tomography enables longitudinal evaluation of cell graft-directed remodeling in stroke lesions. Exp Neurol 2025; 385:115117. [PMID: 39694221 PMCID: PMC11781960 DOI: 10.1016/j.expneurol.2024.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Stem cell grafting can promote glial repair of adult stroke injuries during the subacute wound healing phase, but graft survival and glial repair outcomes are perturbed by lesion severity and mode of injury. To better understand how stroke lesion environments alter the functions of cell grafts, we employed optical coherence tomography (OCT) to longitudinally image mouse cortical photothrombotic ischemic strokes treated with allogeneic neural progenitor cell (NPC) grafts. OCT angiography, signal intensity, and signal decay resulting from optical scattering were assessed at multiple timepoints across two weeks in mice receiving an NPC graft or an injection of saline at two days after stroke. OCT scattering information revealed pronounced axial lesion contraction that naturally occurred throughout the subacute wound healing phase that was not modified by either NPC or saline treatment. By analyzing OCT signal intensity along the coronal plane, we observed dramatic contraction of the cortex away from the imaging window in the first week after stroke which impaired conventional OCT angiography but which enabled the detection of NPC graft-induced glial repair. There was moderate, but variable, NPC graft survival at photothrombotic strokes at two weeks which was inversely correlated with acute stroke lesion sizes as measured by OCT prior to treatment, suggesting a prognostic role for OCT imaging and reinforcing the dominant effect of lesion size and severity on graft outcome. Overall, our findings demonstrate the utility of OCT imaging for both tracking and predicting natural and treatment-directed changes in ischemic stroke lesion cores.
Collapse
Affiliation(s)
- Honour O Adewumi
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Matthew G Simkulet
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Gülce Küreli
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - John T Giblin
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Arnaldo Bisbal Lopez
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, 06230, Türkiye
| | - John Jiang
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Timothy M O’Shea
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| |
Collapse
|
7
|
Tao Z, Wang S, Liu J, Zhu T, Jiang J, Liu S, Ma X. Sustainable Immunomodulatory via Macrophage P2Y12 Inhibition Mediated Bioactive Patche for Peritendinous Antiadhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409128. [PMID: 39630942 PMCID: PMC11775537 DOI: 10.1002/advs.202409128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/25/2024] [Indexed: 12/07/2024]
Abstract
Persistent anti-inflammatory responses are critical for the prevention of peritendinous adhesion. Although modified anti-adhesion barriers have been studied extensively, the immune response induced by the implants and the unclear mechanism limits their application. In this research, the advantage of the multi-functionalities of CA (caffeic acid) is taken to synthesize biodegradable poly (ester urethane) urea elastomers with ester- and carbamate-bonded CA (PEUU-CA). PEUU-CA is electrospun into bioactive patches that can uniquely present a sustained CA niche, referred to as BPSN. In the early stage of degradation, the breakage of the ester bond from BPSN is the dominant factor contributing to the early release of CA. In the later stage of BPSN degradation, the breakage of the ester and carbamate bonds contributes to the sustained release of CA. In vitro experiments showed that CA, when specifically bound to the P2Y12 receptor, down-regulated the expression and function of active P2Y12, effectively inhibiting the aberrant activation of macrophages and the secretion of inflammatory chemokines. BPSN addresses the foreign body reaction induced by macrophage-dominated biomaterial implantation and the issue of the short-term release of drugs at later stages of adhesion, providing a feasible strategy for the prevention and treatment of tissue adhesion, and more broadly, the well-known implant-derived inflammatory responses.
Collapse
Affiliation(s)
- Zaijin Tao
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan Rd.Shanghai200233P. R. China
| | - Shuo Wang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan Rd.Shanghai200233P. R. China
| | - Jingwen Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan Rd.Shanghai200233P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced MaterialsInstitute for Frontier Medical TechnologySchool of Chemistry and Chemical EngineeringShanghai University of Engineering Science333 Longteng Rd.Shanghai201620P. R. China
| | - Jia Jiang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan Rd.Shanghai200233P. R. China
| | - Shen Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan Rd.Shanghai200233P. R. China
| | - Xin Ma
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan Rd.Shanghai200233P. R. China
| |
Collapse
|
8
|
Adewumi HO, Simkulet MG, Küreli G, Giblin JT, Lopez AB, Erdener ŞE, Jiang J, Boas DA, O'Shea TM. Optical coherence tomography enables longitudinal evaluation of cell graft-directed remodeling in stroke lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617387. [PMID: 39416121 PMCID: PMC11482790 DOI: 10.1101/2024.10.09.617387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Stem cell grafting can promote glial repair of adult stroke injuries during the subacute wound healing phase, but graft survival and glial repair outcomes are perturbed by lesion severity and mode of injury. To better understand how stroke lesion environments alter the functions of cell grafts, we employed optical coherence tomography (OCT) to longitudinally image mouse cortical photothrombotic ischemic strokes treated with allogeneic neural progenitor cell (NPC) grafts. OCT angiography, signal intensity, and signal decay resulting from optical scattering were assessed at multiple timepoints across two weeks in mice receiving an NPC graft or an injection of saline at two days after stroke. OCT scattering information revealed pronounced axial lesion contraction that naturally occurred throughout the subacute wound healing phase that was not modified by either NPC or saline treatment. By analyzing OCT signal intensity along the coronal plane, we observed dramatic contraction of the cortex away from the imaging window in the first week after stroke which impaired conventional OCT angiography but which enabled the detection of NPC graft-induced glial repair. There was moderate, but variable, NPC graft survival at photothrombotic strokes at two weeks which was inversely correlated with acute stroke lesion sizes as measured by OCT prior to treatment, suggesting a prognostic role for OCT imaging and reinforcing the dominant effect of lesion size and severity on graft outcome. Overall, our findings demonstrate the utility of OCT imaging for both tracking and predicting natural and treatment-directed changes in ischemic stroke lesion cores.
Collapse
|
9
|
Amani H, Alipour M, Shahriari E, Taboas JM. Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Adv Healthc Mater 2024:e2401253. [PMID: 39370571 DOI: 10.1002/adhm.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Indexed: 10/08/2024]
Abstract
The immune cells have demonstrated the ability to promote tissue repair by removing debris, breaking down the extracellular matrix, and regulating cytokine secretion profile. If the behavior of immune cells is not well directed, chronic inflammation and foreign body reaction (FBR) will lead to scar formation and loss of biomaterial functionality. The immunologic response toward tissue repair or chronic inflammation after injury and implantation can be modulated by manipulating the surface properties of biomaterials. Tailoring surface properties of biomaterials enables the regulation of immune cell fate such as adhesion, proliferation, recruitment, polarization, and cytokine secretion profile. This review begins with an overview of the role of immune cells in tissue healing and their interactions with biomaterials. It then discusses how the surface properties of biomaterials influence immune cell behavior. The core focus is reviewing surface modification methods to create innovative materials that reduce foreign body reactions and enhance tissue repair and regeneration by modulating immune cell activities. The review concludes with insights into future advancements in surface modification techniques and the associated challenges.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahdieh Alipour
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Juan M Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
10
|
Fabbri R, Scidà A, Saracino E, Conte G, Kovtun A, Candini A, Kirdajova D, Spennato D, Marchetti V, Lazzarini C, Konstantoulaki A, Dambruoso P, Caprini M, Muccini M, Ursino M, Anderova M, Treossi E, Zamboni R, Palermo V, Benfenati V. Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes. NATURE NANOTECHNOLOGY 2024; 19:1344-1353. [PMID: 38987650 PMCID: PMC11405283 DOI: 10.1038/s41565-024-01711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell-electrolyte or cell-material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine.
Collapse
Affiliation(s)
- Roberta Fabbri
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Alessandra Scidà
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Emanuela Saracino
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Giorgia Conte
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Alessandro Kovtun
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Andrea Candini
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Diletta Spennato
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Valeria Marchetti
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Chiara Lazzarini
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Aikaterini Konstantoulaki
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Paolo Dambruoso
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Bologna, Italy
| | - Mauro Ursino
- Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Emanuele Treossi
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Vincenzo Palermo
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| |
Collapse
|
11
|
O'Shea TM, Ao Y, Wang S, Ren Y, Cheng AL, Kawaguchi R, Shi Z, Swarup V, Sofroniew MV. Derivation and transcriptional reprogramming of border-forming wound repair astrocytes after spinal cord injury or stroke in mice. Nat Neurosci 2024; 27:1505-1521. [PMID: 38907165 PMCID: PMC11303254 DOI: 10.1038/s41593-024-01684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/15/2024] [Indexed: 06/23/2024]
Abstract
Central nervous system (CNS) lesions become surrounded by neuroprotective borders of newly proliferated reactive astrocytes; however, fundamental features of these cells are poorly understood. Here we show that following spinal cord injury or stroke, 90% and 10% of border-forming astrocytes derive, respectively, from proliferating local astrocytes and oligodendrocyte progenitor cells in adult mice of both sexes. Temporal transcriptome analysis, single-nucleus RNA sequencing and immunohistochemistry show that after focal CNS injury, local mature astrocytes dedifferentiate, proliferate and become transcriptionally reprogrammed to permanently altered new states, with persisting downregulation of molecules associated with astrocyte-neuron interactions and upregulation of molecules associated with wound healing, microbial defense and interactions with stromal and immune cells. These wound repair astrocytes share morphologic and transcriptional features with perimeningeal limitans astrocytes and are the predominant source of neuroprotective borders that re-establish CNS integrity around lesions by separating neural parenchyma from stromal and immune cells as occurs throughout the healthy CNS.
Collapse
Affiliation(s)
- Timothy M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yilong Ren
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| | - Amy L Cheng
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Liddelow SA, Olsen ML, Sofroniew MV. Reactive Astrocytes and Emerging Roles in Central Nervous System (CNS) Disorders. Cold Spring Harb Perspect Biol 2024; 16:a041356. [PMID: 38316554 PMCID: PMC11216178 DOI: 10.1101/cshperspect.a041356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In addition to their many functions in the healthy central nervous system (CNS), astrocytes respond to CNS damage and disease through a process called "reactivity." Recent evidence reveals that astrocyte reactivity is a heterogeneous spectrum of potential changes that occur in a context-specific manner. These changes are determined by diverse signaling events and vary not only with the nature and severity of different CNS insults but also with location in the CNS, genetic predispositions, age, and potentially also with "molecular memory" of previous reactivity events. Astrocyte reactivity can be associated with both essential beneficial functions as well as with harmful effects. The available information is rapidly expanding and much has been learned about molecular diversity of astrocyte reactivity. Emerging functional associations point toward central roles for astrocyte reactivity in determining the outcome in CNS disorders.
Collapse
Affiliation(s)
- Shane A Liddelow
- Neuroscience Institute, NYU School of Medicine, New York, New York 10016, USA
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, New York 10016, USA
- Department of Ophthalmology, NYU School of Medicine, New York, New York 10016, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
13
|
Gao Y, Wang Y, Wu Y, Liu S. Biomaterials targeting the microenvironment for spinal cord injury repair: progression and perspectives. Front Cell Neurosci 2024; 18:1362494. [PMID: 38784712 PMCID: PMC11111957 DOI: 10.3389/fncel.2024.1362494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) disrupts nerve pathways and affects sensory, motor, and autonomic function. There is currently no effective treatment for SCI. SCI occurs within three temporal periods: acute, subacute, and chronic. In each period there are different alterations in the cells, inflammatory factors, and signaling pathways within the spinal cord. Many biomaterials have been investigated in the treatment of SCI, including hydrogels and fiber scaffolds, and some progress has been made in the treatment of SCI using multiple materials. However, there are limitations when using individual biomaterials in SCI treatment, and these limitations can be significantly improved by combining treatments with stem cells. In order to better understand SCI and to investigate new strategies for its treatment, several combination therapies that include materials combined with cells, drugs, cytokines, etc. are summarized in the current review.
Collapse
Affiliation(s)
- Yating Gao
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Adewumi HO, Berniac GI, McCarthy EA, O'Shea TM. Ischemic and hemorrhagic stroke lesion environments differentially alter the glia repair potential of neural progenitor cell and immature astrocyte grafts. Exp Neurol 2024; 374:114692. [PMID: 38244885 DOI: 10.1016/j.expneurol.2024.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Using cell grafting to direct glia-based repair mechanisms in adult CNS injuries represents a potential therapeutic strategy for supporting functional neural parenchymal repair. However, glia repair directed by neural progenitor cell (NPC) grafts is dramatically altered by increasing lesion size, severity, and mode of injury. To address this, we studied the interplay between astrocyte differentiation and cell proliferation of NPC in vitro to generate proliferating immature astrocytes (ImA) using hysteretic conditioning. ImA maintain proliferation rates at comparable levels to NPC but showed robust immature astrocyte marker expression including Gfap and Vimentin. ImA demonstrated enhanced resistance to myofibroblast-like phenotypic transformations upon exposure to serum enriched environments in vitro compared to NPC and were more effective at scratch wound closure in vitro compared to quiescent astrocytes. Glia repair directed by ImA at acute ischemic striatal stroke lesions was equivalent to NPC but better than quiescent astrocyte grafts. While ischemic injury environments supported enhanced survival of grafts compared to healthy striatum, hemorrhagic lesions were hostile towards both NPC and ImA grafts leading to poor survival and ineffective modulation of natural wound repair processes. Our findings demonstrate that lesion environments, rather than transcriptional pre-graft states, determine the survival, cell-fate, and glia repair competency of cell grafts applied to acute CNS injuries.
Collapse
Affiliation(s)
- Honour O Adewumi
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA
| | - Gabriela I Berniac
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA
| | - Emily A McCarthy
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA.
| |
Collapse
|
15
|
Han M, Yildiz E, Bozuyuk U, Aydin A, Yu Y, Bhargava A, Karaz S, Sitti M. Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound. Nat Commun 2024; 15:2013. [PMID: 38443369 PMCID: PMC10915158 DOI: 10.1038/s41467-024-46245-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Electrical stimulation is a fundamental tool in studying neural circuits, treating neurological diseases, and advancing regenerative medicine. Injectable, free-standing piezoelectric particle systems have emerged as non-genetic and wireless alternatives for electrode-based tethered stimulation systems. However, achieving cell-specific and high-frequency piezoelectric neural stimulation remains challenging due to high-intensity thresholds, non-specific diffusion, and internalization of particles. Here, we develop cell-sized 20 μm-diameter silica-based piezoelectric magnetic Janus microparticles (PEMPs), enabling clinically-relevant high-frequency neural stimulation of primary neurons under low-intensity focused ultrasound. Owing to its functionally anisotropic design, half of the PEMP acts as a piezoelectric electrode via conjugated barium titanate nanoparticles to induce electrical stimulation, while the nickel-gold nanofilm-coated magnetic half provides spatial and orientational control on neural stimulation via external uniform rotating magnetic fields. Furthermore, surface functionalization with targeting antibodies enables cell-specific binding/targeting and stimulation of dopaminergic neurons. Taking advantage of such functionalities, the PEMP design offers unique features towards wireless neural stimulation for minimally invasive treatment of neurological diseases.
Collapse
Affiliation(s)
- Mertcan Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Erdost Yildiz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Ugur Bozuyuk
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Asli Aydin
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yan Yu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Aarushi Bhargava
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Selcan Karaz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, 34450, Istanbul, Türkiye.
| |
Collapse
|
16
|
Yang K, Liu Y, Zhang M. The Diverse Roles of Reactive Astrocytes in the Pathogenesis of Amyotrophic Lateral Sclerosis. Brain Sci 2024; 14:158. [PMID: 38391732 PMCID: PMC10886687 DOI: 10.3390/brainsci14020158] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Astrocytes displaying reactive phenotypes are characterized by their ability to remodel morphologically, molecularly, and functionally in response to pathological stimuli. This process results in the loss of their typical astrocyte functions and the acquisition of neurotoxic or neuroprotective roles. A growing body of research indicates that these reactive astrocytes play a pivotal role in the pathogenesis of amyotrophic lateral sclerosis (ALS), involving calcium homeostasis imbalance, mitochondrial dysfunction, abnormal lipid and lactate metabolism, glutamate excitotoxicity, etc. This review summarizes the characteristics of reactive astrocytes, their role in the pathogenesis of ALS, and recent advancements in astrocyte-targeting strategies.
Collapse
Affiliation(s)
- Kangqin Yang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Liu
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Zhang Z, He C, Chen X. Designing Hydrogels for Immunomodulation in Cancer Therapy and Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308894. [PMID: 37909463 DOI: 10.1002/adma.202308894] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Indexed: 11/03/2023]
Abstract
The immune system not only acts as a defense against pathogen and cancer cells, but also plays an important role in homeostasis and tissue regeneration. Targeting immune systems is a promising strategy for efficient cancer treatment and regenerative medicine. Current systemic immunomodulation therapies are usually associated with low persistence time, poor targeting to action sites, and severe side effects. Due to their extracellular matrix-mimetic nature, tunable properties and diverse bioactivities, hydrogels are intriguing platforms to locally deliver immunomodulatory agents and cells, as well as provide an immunomodulatory microenvironment to recruit, activate, and expand host immune cells. In this review, the design considerations, including polymer backbones, crosslinking mechanisms, physicochemical nature, and immunomodulation-related components, of the hydrogel platforms, are focused on. The immunomodulatory effects and therapeutic outcomes in cancer therapy and tissue regeneration of different hydrogel systems are emphasized, including hydrogel depots for delivery of immunomodulatory agents, hydrogel scaffolds for cell delivery, and immunomodulatory hydrogels depending on the intrinsic properties of materials. Finally, the remained challenges in current systems and future development of immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
18
|
Yang B, Rutkowski N, Elisseeff J. The foreign body response: emerging cell types and considerations for targeted therapeutics. Biomater Sci 2023; 11:7730-7747. [PMID: 37904536 DOI: 10.1039/d3bm00629h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The foreign body response (FBR) remains a clinical challenge in the field of biomaterials due to its ability to elicit a chronic and sustained immune response. Modulating the immune response to materials is a modern paradigm in tissue engineering to enhance repair while limiting fibrous encapsulation and implant isolation. Though the classical mediators of the FBR are well-characterized, recent studies highlight that our understanding of the cell types that shape the FBR may be incomplete. In this review, we discuss the emerging role of T cells, stromal-immune cell interactions, and senescent cells in the biomaterial response, particularly to synthetic materials. We emphasize future studies that will deepen the field's understanding of these cell types in the FBR, with the goal of identifying therapeutic targets that will improve implant integration. Finally, we briefly review several considerations that may influence our understanding of the FBR in humans, including rodent models, aging, gut microbiota, and sex differences. A better understanding of the heterogeneous host cell response during the FBR can enable the design and development of immunomodulatory materials that favor healing.
Collapse
Affiliation(s)
- Brenda Yang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Natalie Rutkowski
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
DuBois EM, Adewumi HO, O'Connor PR, Labovitz JE, O'Shea TM. Trehalose-Guanosine Glycopolymer Hydrogels Direct Adaptive Glia Responses in CNS Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211774. [PMID: 37097729 DOI: 10.1002/adma.202211774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/21/2023] [Indexed: 06/18/2023]
Abstract
Neural tissue damaged after central nervous system (CNS) injury does not naturally regenerate but is instead replaced by non-neural fibrotic scar tissue that serves no neurological function. Scar-free repair to create a more permissive environment for regeneration requires altering the natural injury responses of glial cells. In this work, glycopolymer-based supramolecular hydrogels are synthesized to direct adaptive glia repair after CNS injury. Combining poly(trehalose-co-guanosine) (pTreGuo) glycopolymers with free guanosine (fGuo) generates shear-thinning hydrogels through stabilized formation of long-range G-quadruplex secondary structures. Hydrogels with smooth or granular microstructures and mechanical properties spanning three orders of magnitude are produced through facile control of pTreGuo hydrogel composition. Injection of pTreGuo hydrogels into healthy mouse brains elicits minimal stromal cell infiltration and peripherally derived inflammation that is comparable to a bioinert methyl cellulose benchmarking material. pTreGuo hydrogels alter astrocyte borders and recruit microglia to infiltrate and resorb the hydrogel bulk over 7 d. Injections of pTreGuo hydrogels into ischemic stroke alter the natural responses of glial cells after injury to reduce the size of lesions and increase axon regrowth into lesion core environments. These results support the use of pTreGuo hydrogels as part of neural regeneration strategies to activate endogenous glia repair mechanisms.
Collapse
Affiliation(s)
- Eric M DuBois
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Honour O Adewumi
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Payton R O'Connor
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Jacob E Labovitz
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| |
Collapse
|
21
|
Fang Z, Xu H, Duan J, Ruan B, Liu J, Song P, Ding J, Xu C, Li Z, Dou K, Wang L. Short-term tamoxifen administration improves hepatic steatosis and glucose intolerance through JNK/MAPK in mice. Signal Transduct Target Ther 2023; 8:94. [PMID: 36864030 PMCID: PMC9981902 DOI: 10.1038/s41392-022-01299-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 03/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) which is a leading cause of chronic liver diseases lacks effective treatment. Tamoxifen has been proven to be the first-line chemotherapy for several solid tumors in clinics, however, its therapeutic role in NAFLD has never been elucidated before. In vitro experiments, tamoxifen protected hepatocytes against sodium palmitate-induced lipotoxicity. In male and female mice fed with normal diets, continuous tamoxifen administration inhibited lipid accumulation in liver, and improved glucose and insulin intolerance. Short-term tamoxifen administration largely improved hepatic steatosis and insulin resistance, however, the phenotypes manifesting inflammation and fibrosis remained unchanged in abovementioned models. In addition, mRNA expressions of genes related to lipogenesis, inflammation, and fibrosis were downregulated by tamoxifen treatment. Moreover, the therapeutic effect of tamoxifen on NAFLD was not gender or ER dependent, as male and female mice with metabolic disorders shared no difference in response to tamoxifen and ER antagonist (fulvestrant) did not abolish its therapeutic effect as well. Mechanistically, RNA sequence of hepatocytes isolated from fatty liver revealed that JNK/MAPK signaling pathway was inactivated by tamoxifen. Pharmacological JNK activator (anisomycin) partially deprived the therapeutic role of tamoxifen in treating hepatic steatosis, proving tamoxifen improved NAFLD in a JNK/MAPK signaling-dependent manner.
Collapse
Affiliation(s)
- Zhiqiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juanli Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Center of Clinical Aerospace Medicine & Department of Aviation Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jingjing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhiwen Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
22
|
O'Shea TM, Ao Y, Wang S, Wollenberg AL, Kim JH, Ramos Espinoza RA, Czechanski A, Reinholdt LG, Deming TJ, Sofroniew MV. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun 2022; 13:5702. [PMID: 36171203 PMCID: PMC9519954 DOI: 10.1038/s41467-022-33382-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023] Open
Abstract
Neural progenitor cells (NPC) represent potential cell transplantation therapies for CNS injuries. To understand how lesion environments influence transplanted NPC fate in vivo, we derived NPC expressing a ribosomal protein-hemagglutinin tag (RiboTag) for transcriptional profiling of transplanted NPC. Here, we show that NPC grafted into uninjured mouse CNS generate cells that are transcriptionally similar to healthy astrocytes and oligodendrocyte lineages. In striking contrast, NPC transplanted into subacute CNS lesions after stroke or spinal cord injury in mice generate cells that share transcriptional, morphological and functional features with newly proliferated host astroglia that restrict inflammation and fibrosis and isolate lesions from adjacent viable neural tissue. Our findings reveal overlapping differentiation potentials of grafted NPC and proliferating host astrocytes; and show that in the absence of other interventions, non-cell autonomous cues in subacute CNS lesions direct the differentiation of grafted NPC towards a naturally occurring wound repair astroglial phenotype.
Collapse
Affiliation(s)
- T M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA.
| | - Y Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - S Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - A L Wollenberg
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - J H Kim
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - R A Ramos Espinoza
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - A Czechanski
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | - T J Deming
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - M V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
| |
Collapse
|
23
|
Wireless charging-mediated angiogenesis and nerve repair by adaptable microporous hydrogels from conductive building blocks. Nat Commun 2022; 13:5172. [PMID: 36056007 PMCID: PMC9440098 DOI: 10.1038/s41467-022-32912-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/22/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury causes inflammation and glial scarring that impede brain tissue repair, so stimulating angiogenesis and recovery of brain function remain challenging. Here we present an adaptable conductive microporous hydrogel consisting of gold nanoyarn balls-coated injectable building blocks possessing interconnected pores to improve angiogenesis and recovery of brain function in traumatic brain injury. We show that following minimally invasive implantation, the adaptable hydrogel is able to fill defects with complex shapes and regulate the traumatic brain injury environment in a mouse model. We find that placement of this injectable hydrogel at peri-trauma regions enhances mature brain-derived neurotrophic factor by 180% and improves angiogenesis by 250% in vivo within 2 weeks after electromagnetized stimulation, and that these effects facilitate neuron survival and motor function recovery by 50%. We use blood oxygenation level-dependent functional neuroimaging to reveal the successful restoration of functional brain connectivity in the corticostriatal and corticolimbic circuits.
Collapse
|
24
|
Cornelison C, Fadel S. Clickable Biomaterials for Modulating Neuroinflammation. Int J Mol Sci 2022; 23:8496. [PMID: 35955631 PMCID: PMC9369181 DOI: 10.3390/ijms23158496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Crosstalk between the nervous and immune systems in the context of trauma or disease can lead to a state of neuroinflammation or excessive recruitment and activation of peripheral and central immune cells. Neuroinflammation is an underlying and contributing factor to myriad neuropathologies including neurodegenerative diseases like Alzheimer's disease and Parkinson's disease; autoimmune diseases like multiple sclerosis; peripheral and central nervous system infections; and ischemic and traumatic neural injuries. Therapeutic modulation of immune cell function is an emerging strategy to quell neuroinflammation and promote tissue homeostasis and/or repair. One such branch of 'immunomodulation' leverages the versatility of biomaterials to regulate immune cell phenotypes through direct cell-material interactions or targeted release of therapeutic payloads. In this regard, a growing trend in biomaterial science is the functionalization of materials using chemistries that do not interfere with biological processes, so-called 'click' or bioorthogonal reactions. Bioorthogonal chemistries such as Michael-type additions, thiol-ene reactions, and Diels-Alder reactions are highly specific and can be used in the presence of live cells for material crosslinking, decoration, protein or cell targeting, and spatiotemporal modification. Hence, click-based biomaterials can be highly bioactive and instruct a variety of cellular functions, even within the context of neuroinflammation. This manuscript will review recent advances in the application of click-based biomaterials for treating neuroinflammation and promoting neural tissue repair.
Collapse
Affiliation(s)
- Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | | |
Collapse
|
25
|
Martin-Saldaña S, Chevalier MT, Pandit A. Therapeutic potential of targeting galectins – A biomaterials-focused perspective. Biomaterials 2022; 286:121585. [DOI: 10.1016/j.biomaterials.2022.121585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/16/2022]
|
26
|
Koop F, Strauß S, Peck CT, Aper T, Wilhelmi M, Hartmann C, Hegermann J, Schipke J, Vogt PM, Bucan V. Preliminary application of native Nephila edulis spider silk and fibrin implant causes granulomatous foreign body reaction in vivo in rat's spinal cord. PLoS One 2022; 17:e0264486. [PMID: 35286342 PMCID: PMC8920256 DOI: 10.1371/journal.pone.0264486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/12/2022] [Indexed: 12/22/2022] Open
Abstract
After spinal cord injury, gliomesenchymal scaring inhibits axonal regeneration as a physical barrier. In peripheral nerve injuries, native spider silk was shown to be an effective scaffold to facilitate axonal re-growth and nerve regeneration. This study tested a two-composite scaffold made of longitudinally oriented native spider silk containing a Haemocomplettan fibrin sheath to bridge lesions in the spinal cord and enhance axonal sprouting. In vitro cultivation of neuronal cells on spider silk and fibrin revealed no cytotoxicity of the scaffold components. When spinal cord tissue was cultured on spider silk that was reeled around a metal frame, migration of different cell types, including neurons and neural stem cells, was observed. The scaffold was implanted into spinal cord lesions of four Wistar rats to evaluate the physical stress caused on the animals and examine the bridging potential for axonal sprouting and spinal cord regeneration. However, the implantation in-vivo resulted in a granulomatous foreign body reaction. Spider silk might be responsible for the strong immune response. Thus, the immune response to native spider silk seems to be stronger in the central nervous system than it is known to be in the peripheral body complicating the application of native spider silk in spinal cord injury treatment.
Collapse
Affiliation(s)
- Felix Koop
- Department of Plastic, Aesthetic, Hand & Reconstructive Surgery, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand & Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Claas-Tido Peck
- Department of Plastic, Aesthetic, Hand & Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Aper
- Cardiac, Thoracic, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Cardiac, Thoracic, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christian Hartmann
- Department of Neuropathology, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy and Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Peter M. Vogt
- Department of Plastic, Aesthetic, Hand & Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand & Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Wang ZQ, Liu ZQ, Zhao CH, Zhang K, Kang ZJ, Qu TR, Zeng FS, Guo PY, Tong ZC, Wang CL, Wang KL, Wang HL, Xu YS, Wang WH, Chu ML, Wang L, Qiao ZY, Wang H, Xu W. An Ultrasound-Induced Self-Clearance Hydrogel for Male Reversible Contraception. ACS NANO 2022; 16:5515-5528. [PMID: 35352555 DOI: 10.1021/acsnano.1c09959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nearly half of pregnancies worldwide are unintended mainly due to failure of contraception, resulting in negative effects on women's health. Male contraception techniques, primarily condoms and vasectomy, play a crucial role in birth control, but cannot be both highly effective and reversible at the same time. Herein, an ultrasound (US)-induced self-clearance hydrogel capable of real-time monitoring is utilized for in situ injection into the vas deferens, enabling effective contraception and noninvasive recanalization whenever needed. The hydrogel is composed of (i) sodium alginate (SA) conjugated with reactive oxygen species (ROS)-cleavable thioketal (SA-tK), (ii) titanium dioxide (TiO2), which can generate a specific level of ROS after US treatment, and (iii) calcium chloride (CaCl2), which triggers the formation of the hydrogel. For contraception, the above mixture agents are one-time injected into the vas deferens, which can transform from liquid to hydrogel within 160 s, thereby significantly physically blocking the vas deferens and inhibiting movability of sperm. When fertility is needed, a noninvasive remedial ultrasound can make TiO2 generate ROS, which cleaves SA-tK to destroy the network of the hydrogel. Owing to the recanalization, the refertility rate is restored to 100%. Meanwhile, diagnostic ultrasound (D-US, 22 MHz) can monitor the occlusion and recanalization process in real-time. In summary, the proposed hydrogel contraception can be a reliable, safe, and reversible male contraceptive strategy that addresses an unmet need for men to control their fertility.
Collapse
Affiliation(s)
- Zi-Qi Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Zhong-Qing Liu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Chang-Hao Zhao
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Kuo Zhang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Zhi-Jian Kang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Tian-Rui Qu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Fan-Shu Zeng
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Peng-Yu Guo
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Zhi-Chao Tong
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Chang-Lin Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Ke-Liang Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Hong-Lei Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Yin-Sheng Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wan-Hui Wang
- Department of Urology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Mao-Lin Chu
- Department of Urology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lu Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Hao Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
28
|
Wang S, Lu M, Wang W, Yu S, Yu R, Cai C, Li Y, Shi Z, Zou J, He M, Xie W, Yu D, Jin H, Li H, Xiao W, Fan C, Wu F, Li Y, Liu S. Macrophage Polarization Modulated by NF-κB in Polylactide Membranes-Treated Peritendinous Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104112. [PMID: 34816589 DOI: 10.1002/smll.202104112] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Foreign body reactions (FBR) to implants seriously impair tissue-implant integration and postoperative adhesion. The macrophage, owing to its phenotypic plasticity, is a major regulator in the formation of the inflammatory microenvironment; NF-κB signaling also plays a vital role in the process. It is hypothesized that NF-κB phosphorylation exerts a proinflammatory regulator in FBR to polylactide membranes (PLA-M) and adhesion. First, in vitro and in vivo experiments show that PLA-M induces NF-κB phosphorylation in macrophages, leading to M1 polarization and release of inflammatory factors. The inflammatory microenvironment formed due to PLA-M accelerates myofibroblast differentiation and release of collagen III and MMP2, jointly resulting in peritendinous adhesion. Therefore, JSH-23 (a selective NF-κB inhibitor)-loaded PLA membrane (JSH-23/PLA-M) is fabricated by blend electrospinning to regulate the associated M1 polarization for peritendinous anti-adhesion. JSH-23/PLA-M specifically inhibits NF-κB phosphorylation in macrophages and exhibits anti-inflammatory and anti-adhesion properties. The findings demonstrate that NF-κB phosphorylation has a critical role in PLA-induced M1 polarization and aggravating FBR to PLA-M. Additionally, JSH-23/PLA-M precisely targets modulation of NF-κB phosphorylation in FBR to break the vicious cycle in peritendinous adhesion therapy.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Mingkuan Lu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Wei Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Shiyang Yu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Ruyue Yu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chuandong Cai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Zhongmin Shi
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jian Zou
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Dengjie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Fei Wu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| |
Collapse
|
29
|
Kiang L, Woodington B, Carnicer-Lombarte A, Malliaras G, Barone DG. Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. J Neural Eng 2022; 19. [PMID: 35320780 DOI: 10.1088/1741-2552/ac605f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Bioelectronic stimulation of the spinal cord has demonstrated significant progress in restoration of motor function in spinal cord injury (SCI). The proximal, uninjured spinal cord presents a viable target for the recording and generation of control signals to drive targeted stimulation. Signals have been directly recorded from the spinal cord in behaving animals and correlated with limb kinematics. Advances in flexible materials, electrode impedance and signal analysis will allow SCR to be used in next-generation neuroprosthetics. In this review, we summarize the technological advances enabling progress in SCR and describe systematically the clinical challenges facing spinal cord bioelectronic interfaces and potential solutions, from device manufacture, surgical implantation to chronic effects of foreign body reaction and stress-strain mismatches between electrodes and neural tissue. Finally, we establish our vision of bi-directional closed-loop spinal cord bioelectronic bypass interfaces that enable the communication of disrupted sensory signals and restoration of motor function in SCI.
Collapse
Affiliation(s)
- Lei Kiang
- Orthopaedic Surgery, Singapore General Hospital, Outram Road, Singapore, Singapore, 169608, SINGAPORE
| | - Ben Woodington
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Alejandro Carnicer-Lombarte
- Clinical Neurosciences, University of Cambridge, Bioelectronics Laboratory, Cambridge, CB2 0PY, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - George Malliaras
- University of Cambridge, University of Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Damiano G Barone
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
30
|
Bai Q, Teng L, Zhang X, Dong C. Multifunctional Single-Component Polypeptide Hydrogels: The Gelation Mechanism, Superior Biocompatibility, High Performance Hemostasis, and Scarless Wound Healing. Adv Healthc Mater 2022; 11:e2101809. [PMID: 34865324 DOI: 10.1002/adhm.202101809] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Polymeric hydrogels have been increasingly studied for wound sealants, adhesives, hemostats, and dressings, however, multi-component gelation, adhesion-causing tissue damage, inefficient hemostasis, and skin scarring in wound healing hamper their advances. So it is urgent to develop multifunctional single-component polymeric hydrogels with benign tissue detachment, high performance hemostasis, and scarless wound healing attributes. Herein, a dopamine-modified poly(l-glutamate) hydrogel at an ultralow concentration of 0.1 wt% is serendipitously constructed by physical treatments, in which a gelation mechanism is disclosed via oxidative catechol-crosslinking and sequential dicatechol-carboxyl hydrogen-bonding interactions. The covalent/H-bonding co-crosslinked and highly negative-charged networks enable the polypeptide hydrogels thermo-, salt-, urea-resistant, self-healing, injectable, and adhesive yet detachable. In vitro and in vivo assays demonstrate they have superior biocompatibility with ≈0.5% hemolysis and negligible inflammation. The polypeptide/graphene oxide hybrid hydrogel performs fast and efficient hemostasis of 12 s and 1.4% blood loss, surpassing some hydrogels and commercial counterparts. Remarkably, the polypeptide hydrogels achieve scarless and full wound healing and regenerate thick dermis with some embedded hair follicles within 14 days, presenting superior full-thickness wound healing and skin scar-preventing capabilities. This work provides a simple and practicable method to construct multifunctional polypeptide hemostatic and healing hydrogels that overcome some above-mentioned hurdles.
Collapse
Affiliation(s)
- Qian Bai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lin Teng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chang‐Ming Dong
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
31
|
Polysaccharide hydrogels: Functionalization, construction and served as scaffold for tissue engineering. Carbohydr Polym 2022; 278:118952. [PMID: 34973769 DOI: 10.1016/j.carbpol.2021.118952] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/07/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
Polysaccharide hydrogels have been widely utilized in tissue engineering. They interact with the organismal environments, modulating the cargos release and realizing of long-term survival and activations of living cells. In this review, the potential strategies for modification of polysaccharides were introduced firstly. It is not only used to functionalize the polysaccharides for the consequent formation of hydrogels, but also used to introduce versatile side groups for the regulation of cell behavior. Then, techniques and underlying mechanisms in inducing the formation of hydrogels by polysaccharides or their derivatives are briefly summarized. Finally, the applications of polysaccharide hydrogels in vivo, mainly focus on the performance for alleviation of foreign-body response (FBR) and as cell scaffolds for tissue regeneration, are exemplified. In addition, the perspectives and challenges for further research are addressed. It aims to provide a comprehensive framework about the potentials and challenges that the polysaccharide hydrogels confronting in tissue engineering.
Collapse
|
32
|
Woods I, O'Connor C, Frugoli L, Kerr S, Gutierrez Gonzalez J, Stasiewicz M, McGuire T, Cavanagh B, Hibbitts A, Dervan A, O'Brien FJ. Biomimetic Scaffolds for Spinal Cord Applications Exhibit Stiffness-Dependent Immunomodulatory and Neurotrophic Characteristics. Adv Healthc Mater 2022; 11:e2101663. [PMID: 34784649 DOI: 10.1002/adhm.202101663] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Indexed: 01/14/2023]
Abstract
After spinal cord injury (SCI), tissue engineering scaffolds offer a potential bridge for regeneration across the lesion and support repair through proregenerative signaling. Ideal biomaterial scaffolds that mimic the physicochemical properties of native tissue have the potential to provide innate trophic signaling while also minimizing damaging inflammation. To address this challenge, taking cues from the spinal cord's structure, the proregenerative signaling capabilities of native cord components are compared in vitro. A synergistic mix of collagen-IV and fibronectin (Coll-IV/Fn) is found to optimally enhance axonal extension from neuronal cell lines (SHSY-5Y and NSC-34) and induce morphological features typical of quiescent astrocytes. This optimal composition is incorporated into hyaluronic acid scaffolds with aligned pore architectures but varying stiffnesses (0.8-3 kPa). Scaffolds with biomimetic mechanical properties (<1 kPa), functionalized with Coll-IV/Fn, not only modulate primary astrocyte behavior but also stimulate the production of anti-inflammatory cytokine IL-10 in a stiffness-dependent manner. Seeded SHSY-5Y neurons generate distributed neuronal networks, while softer biomimetic scaffolds promote axonal outgrowth in an ex vivo model of axonal regrowth. These results indicate that the interaction of stiffness and biomaterial composition plays an essential role in vitro in generating repair-critical cellular responses and demonstrates the potential of biomimetic scaffold design.
Collapse
Affiliation(s)
- Ian Woods
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Cian O'Connor
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Lisa Frugoli
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Seán Kerr
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Javier Gutierrez Gonzalez
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre RCSI 123 St Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Martyna Stasiewicz
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Tara McGuire
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Brenton Cavanagh
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
- Cellular and Molecular Imaging Core Royal College of Surgeons in Ireland 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Adrian Dervan
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre RCSI 123 St Stephen's Green, Dublin 2, D02YN77 Ireland
- Trinity Centre for Biomedical Engineering Trinity College Dublin Dublin 2, D02R590 Ireland
| |
Collapse
|
33
|
Loss-of-function manipulations to identify roles of diverse glia and stromal cells during CNS scar formation. Cell Tissue Res 2022; 387:337-350. [PMID: 34164732 PMCID: PMC8975763 DOI: 10.1007/s00441-021-03487-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/09/2021] [Indexed: 01/30/2023]
Abstract
Scar formation is the replacement of parenchymal cells by stromal cells and fibrotic extracellular matrix. Until as recently as 25 years ago, little was known about the major functional contributions of different neural and non-neural cell types in the formation of scar tissue and tissue fibrosis in the CNS. Concepts about CNS scar formation are evolving rapidly with the availability of different types of loss-of-function technologies that allow mechanistic probing of cellular and molecular functions in models of CNS disorders in vivo. Such loss-of-function studies are beginning to reveal that scar formation and tissue fibrosis in the CNS involves complex interactions amongst multiple types of CNS glia and non-neural stromal cells. For example, attenuating functions of the CNS resident glial cells, astrocytes or microglia, can disrupt the formation of limitans borders that form around stromal cell scars, which leads to increased spread of inflammation, increased loss of neural tissue, and increased fibrosis. Insights are being gained into specific neuropathological mechanisms whereby specific dysfunctions of different types of CNS glia could cause or contribute to disorder-related tissue pathology and dysfunction. CNS glia, as well as fibrosis-producing stromal cells, are emerging as potential major contributors to diverse CNS disorders either through loss- or gain-of-functions, and are thereby emerging as important potential targets for interventions. In this article, we will review and discuss the effects on CNS scar formation and tissue repair of loss-of-function studies targeted at different specific cell types in various disorder models in vivo.
Collapse
|
34
|
Dervan A, Franchi A, Almeida-Gonzalez FR, Dowling JK, Kwakyi OB, McCoy CE, O’Brien FJ, Hibbitts A. Biomaterial and Therapeutic Approaches for the Manipulation of Macrophage Phenotype in Peripheral and Central Nerve Repair. Pharmaceutics 2021; 13:2161. [PMID: 34959446 PMCID: PMC8706646 DOI: 10.3390/pharmaceutics13122161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Injury to the peripheral or central nervous systems often results in extensive loss of motor and sensory function that can greatly diminish quality of life. In both cases, macrophage infiltration into the injury site plays an integral role in the host tissue inflammatory response. In particular, the temporally related transition of macrophage phenotype between the M1/M2 inflammatory/repair states is critical for successful tissue repair. In recent years, biomaterial implants have emerged as a novel approach to bridge lesion sites and provide a growth-inductive environment for regenerating axons. This has more recently seen these two areas of research increasingly intersecting in the creation of 'immune-modulatory' biomaterials. These synthetic or naturally derived materials are fabricated to drive macrophages towards a pro-repair phenotype. This review considers the macrophage-mediated inflammatory events that occur following nervous tissue injury and outlines the latest developments in biomaterial-based strategies to influence macrophage phenotype and enhance repair.
Collapse
Affiliation(s)
- Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Antonio Franchi
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Francisco R. Almeida-Gonzalez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Ohemaa B. Kwakyi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (J.K.D.); (O.B.K.); (C.E.M.)
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.D.); (A.F.); (F.R.A.-G.); (F.J.O.)
- Trinity Centre for Bioengineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| |
Collapse
|
35
|
Yang B, Liang C, Chen D, Cheng F, Zhang Y, Wang S, Shu J, Huang X, Wang J, Xia K, Ying L, Shi K, Wang C, Wang X, Li F, Zhao Q, Chen Q. A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Bioact Mater 2021; 15:103-119. [PMID: 35386356 PMCID: PMC8941182 DOI: 10.1016/j.bioactmat.2021.11.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
The current effective method for treatment of spinal cord injury (SCI) is to reconstruct the biological microenvironment by filling the injured cavity area and increasing neuronal differentiation of neural stem cells (NSCs) to repair SCI. However, the method is characterized by several challenges including irregular wounds, and mechanical and electrical mismatch of the material-tissue interface. In the current study, a unique and facile agarose/gelatin/polypyrrole (Aga/Gel/PPy, AGP3) hydrogel with similar conductivity and modulus as the spinal cord was developed by altering the concentration of Aga and PPy. The gelation occurred through non-covalent interactions, and the physically crosslinked features made the AGP3 hydrogels injectable. In vitro cultures showed that AGP3 hydrogel exhibited excellent biocompatibility, and promoted differentiation of NSCs toward neurons whereas it inhibited over-proliferation of astrocytes. The in vivo implanted AGP3 hydrogel completely covered the tissue defects and reduced injured cavity areas. In vivo studies further showed that the AGP3 hydrogel provided a biocompatible microenvironment for promoting endogenous neurogenesis rather than glial fibrosis formation, resulting in significant functional recovery. RNA sequencing analysis further indicated that AGP3 hydrogel significantly modulated expression of neurogenesis-related genes through intracellular Ca2+ signaling cascades. Overall, this supramolecular strategy produces AGP3 hydrogel that can be used as favorable biomaterials for SCI repair by filling the cavity and imitating the physiological properties of the spinal cord. A facile strategy was developed to fabricate AGP3 hydrogel satisfying physiological requirements. AGP3 hydrogel promoted the differentiation of NSCs into neurons in vitro. AGP3 hydrogel could activate endogenous neurogenesis to repair spinal cord injury. AGP3 hydrogel modulated expression of neurogenesis-related genes in vitro.
Collapse
|
36
|
Gerschenfeld G, Aid R, Simon-Yarza T, Lanouar S, Charnay P, Letourneur D, Topilko P. Tuning Physicochemical Properties of a Macroporous Polysaccharide-Based Scaffold for 3D Neuronal Culture. Int J Mol Sci 2021; 22:12726. [PMID: 34884531 PMCID: PMC8657966 DOI: 10.3390/ijms222312726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Central nervous system (CNS) lesions are a leading cause of death and disability worldwide. Three-dimensional neural cultures in biomaterials offer more physiologically relevant models for disease studies, toxicity screenings or in vivo transplantations. Herein, we describe the development and use of pullulan/dextran polysaccharide-based scaffolds for 3D neuronal culture. We first assessed scaffolding properties upon variation of the concentration (1%, 1.5%, 3% w/w) of the cross-linking agent, sodium trimetaphosphate (STMP). The lower STMP concentration (1%) allowed us to generate scaffolds with higher porosity (59.9 ± 4.6%), faster degradation rate (5.11 ± 0.14 mg/min) and lower elastic modulus (384 ± 26 Pa) compared with 3% STMP scaffolds (47 ± 2.1%, 1.39 ± 0.03 mg/min, 916 ± 44 Pa, respectively). Using primary cultures of embryonic neurons from PGKCre, Rosa26tdTomato embryos, we observed that in 3D culture, embryonic neurons remained in aggregates within the scaffolds and did not attach, spread or differentiate. To enhance neuronal adhesion and neurite outgrowth, we then functionalized the 1% STMP scaffolds with laminin. We found that treatment of the scaffold with a 100 μg/mL solution of laminin, combined with a subsequent freeze-drying step, created a laminin mesh network that significantly enhanced embryonic neuron adhesion, neurite outgrowth and survival. Such scaffold therefore constitutes a promising neuron-compatible and biodegradable biomaterial.
Collapse
Affiliation(s)
- Gaspard Gerschenfeld
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), F-75005 Paris, France; (G.G.); (P.C.)
- Collège Doctoral, Sorbonne Université, F-75005 Paris, France
| | - Rachida Aid
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 Rue H Huchard, F-75018 Paris, France; (R.A.); (T.S.-Y.); (S.L.); (D.L.)
- INSERM UMS-34, FRIM, Université de Paris, X Bichat School of Medicine, F-75018 Paris, France
| | - Teresa Simon-Yarza
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 Rue H Huchard, F-75018 Paris, France; (R.A.); (T.S.-Y.); (S.L.); (D.L.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 Av JB Clément, F-93430 Villetaneuse, France
| | - Soraya Lanouar
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 Rue H Huchard, F-75018 Paris, France; (R.A.); (T.S.-Y.); (S.L.); (D.L.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 Av JB Clément, F-93430 Villetaneuse, France
| | - Patrick Charnay
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), F-75005 Paris, France; (G.G.); (P.C.)
| | - Didier Letourneur
- INSERM U1148, LVTS, Université de Paris, X Bichat Hospital, 46 Rue H Huchard, F-75018 Paris, France; (R.A.); (T.S.-Y.); (S.L.); (D.L.)
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, 99 Av JB Clément, F-93430 Villetaneuse, France
| | - Piotr Topilko
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), F-75005 Paris, France; (G.G.); (P.C.)
- Institut Mondor de Recherche Biomédicale (IMRB), Université Paris Est Créteil (UPEC), INSERM U955, F-94010 Créteil, France
| |
Collapse
|
37
|
Matsubara T, Yamashita T. Remote Optogenetics Using Up/Down-Conversion Phosphors. Front Mol Biosci 2021; 8:771717. [PMID: 34805279 PMCID: PMC8602066 DOI: 10.3389/fmolb.2021.771717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial rhodopsins widely used for optogenetics are sensitive to light in the visible spectrum. As visible light is heavily scattered and absorbed by tissue, stimulating light for optogenetic control does not reach deep in the tissue irradiated from outside the subject body. Conventional optogenetics employs fiber optics inserted close to the target, which is highly invasive and poses various problems for researchers. Recent advances in material science integrated with neuroscience have enabled remote optogenetic control of neuronal activities in living animals using up- or down-conversion phosphors. The development of these methodologies has stimulated researchers to test novel strategies for less invasive, wireless control of cellular functions in the brain and other tissues. Here, we review recent reports related to these new technologies and discuss the current limitations and future perspectives toward the establishment of non-invasive optogenetics for clinical applications.
Collapse
Affiliation(s)
- Takanori Matsubara
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
38
|
Mirzaei S, Kulkarni K, Zhou K, Crack PJ, Aguilar MI, Finkelstein DI, Forsythe JS. Biomaterial Strategies for Restorative Therapies in Parkinson's Disease. ACS Chem Neurosci 2021; 12:4224-4235. [PMID: 34634903 DOI: 10.1021/acschemneuro.1c00484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disorder, in which dopaminergic midbrain neurons degenerate, leading to dopamine depletion that is associated with neuronal death. In this Review, we initially describe the pathogenesis of PD and established therapies that unfortunately only delay progression of the disease. With a rapidly escalating incidence in PD, there is an urgent need to develop new therapies that not only halt progression but even reverse degeneration. Biomaterials are playing critical roles in these new therapies which include controlled and site-specific delivery of neurotrophins, increased engraftment of implanted neural stem cells, and redirection of endogenous stem cell populations away from their niche to encourage reparative mechanisms. This Review will therefore cover important design features of biomaterials used in regenerative medicine and tissue engineering strategies targeted at PD.
Collapse
Affiliation(s)
- Samaneh Mirzaei
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Kun Zhou
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Peter J. Crack
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John S. Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
39
|
Portillo-Lara R, Goding JA, Green RA. Adaptive biomimicry: design of neural interfaces with enhanced biointegration. Curr Opin Biotechnol 2021; 72:62-68. [PMID: 34715548 DOI: 10.1016/j.copbio.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
Neural interfaces (NIs) have traditionally used inorganic device constructs paired with electrical stimulation to bypass injured or diseased electroactive tissues. These bioinert devices have significant impact on the neural tissue, being synthetic and causing large volumetric changes to the biological environment. The concept of biomimicry has become popular for tissue engineering technologies, reflecting biological properties as a component of material design. Tissue engineering strategies can be harnessed in bioelectronic device design to improve biological tolerance, but the need for improved integration with the native tissue remains an unmet need. Adaptive biomimetic designs that respond to the changing neural tissue environment associated with wound healing can actively address the immune response to improve biointegration. These adaptive approaches include responsive materials paired with stem cells and bioactive molecules as integrated components of NIs. Combining adaptive biomimetics with NIs provides a new, more natural approach for communicating with the nervous system.
Collapse
Affiliation(s)
- Roberto Portillo-Lara
- Department of Bioengineering, Imperial College London, SW7 2BP, London, United Kingdom
| | - Josef A Goding
- Department of Bioengineering, Imperial College London, SW7 2BP, London, United Kingdom
| | - Rylie A Green
- Department of Bioengineering, Imperial College London, SW7 2BP, London, United Kingdom.
| |
Collapse
|
40
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
41
|
Lin C, Ekblad-Nordberg Å, Michaëlsson J, Götherström C, Hsu CC, Ye H, Johansson J, Rising A, Sundström E, Åkesson E. In Vitro Study of Human Immune Responses to Hyaluronic Acid Hydrogels, Recombinant Spidroins and Human Neural Progenitor Cells of Relevance to Spinal Cord Injury Repair. Cells 2021; 10:1713. [PMID: 34359882 PMCID: PMC8303367 DOI: 10.3390/cells10071713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Scaffolds of recombinant spider silk protein (spidroin) and hyaluronic acid (HA) hydrogel hold promise in combination with cell therapy for spinal cord injury. However, little is known concerning the human immune response to these biomaterials and grafted human neural stem/progenitor cells (hNPCs). Here, we analyzed short- and long-term in vitro activation of immune cells in human peripheral blood mononuclear cells (hPBMCs) cultured with/without recombinant spidroins, HA hydrogels, and/or allogeneic hNPCs to assess potential host-donor interactions. Viability, proliferation and phenotype of hPBMCs were analyzed using NucleoCounter and flow cytometry. hPBMC viability was confirmed after exposure to the different biomaterials. Short-term (15 h) co-cultures of hPBMCs with spidroins, but not with HA hydrogel, resulted in a significant increase in the proportion of activated CD69+ CD4+ T cells, CD8+ T cells, B cells and NK cells, which likely was caused by residual endotoxins from the Escherichia coli expression system. The observed spidroin-induced hPBMC activation was not altered by hNPCs. It is resource-effective to evaluate human compatibility of novel biomaterials early in development of the production process to, when necessary, make alterations to minimize rejection risk. Here, we present a method to evaluate biomaterials and hPBMC compatibility in conjunction with allogeneic human cells.
Collapse
Affiliation(s)
- Chenhong Lin
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-171 64 Stockholm, Sweden;
| | - Åsa Ekblad-Nordberg
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-141 52 Stockholm, Sweden; (Å.E.-N.); (C.G.)
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, SE-141 86 Stockholm, Sweden;
| | - Cecilia Götherström
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-141 52 Stockholm, Sweden; (Å.E.-N.); (C.G.)
| | - Chia-Chen Hsu
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK; (C.-C.H.); (H.Y.)
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK; (C.-C.H.); (H.Y.)
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Stockholm, Sweden; (J.J.); (A.R.)
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Stockholm, Sweden; (J.J.); (A.R.)
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Erik Sundström
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-171 64 Stockholm, Sweden;
| | - Elisabet Åkesson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-171 64 Stockholm, Sweden;
- The R&D Unit, Stockholms Sjukhem, SE-112 19 Stockholm, Sweden
| |
Collapse
|
42
|
Xue C, Li M, Liu C, Li Y, Fei Y, Hu Y, Cai K, Zhao Y, Luo Z. NIR‐Actuated Remote Activation of Ferroptosis in Target Tumor Cells through a Photothermally Responsive Iron‐Chelated Biopolymer Nanoplatform. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chencheng Xue
- School of Life Sciences Chongqing University Huxi, G75 Lanhai Chongqing 400044 China
| | - Menghuan Li
- School of Life Sciences Chongqing University Huxi, G75 Lanhai Chongqing 400044 China
| | - Changhuang Liu
- School of Life Sciences Chongqing University Huxi, G75 Lanhai Chongqing 400044 China
| | - Yanan Li
- School of Life Sciences Chongqing University Huxi, G75 Lanhai Chongqing 400044 China
| | - Yang Fei
- School of Life Sciences Chongqing University Huxi, G75 Lanhai Chongqing 400044 China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Zhong Luo
- School of Life Sciences Chongqing University Huxi, G75 Lanhai Chongqing 400044 China
| |
Collapse
|
43
|
Xue C, Li M, Liu C, Li Y, Fei Y, Hu Y, Cai K, Zhao Y, Luo Z. NIR‐Actuated Remote Activation of Ferroptosis in Target Tumor Cells through a Photothermally Responsive Iron‐Chelated Biopolymer Nanoplatform. Angew Chem Int Ed Engl 2021; 60:8938-8947. [DOI: 10.1002/anie.202016872] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Chencheng Xue
- School of Life Sciences Chongqing University Huxi, G75 Lanhai Chongqing 400044 China
| | - Menghuan Li
- School of Life Sciences Chongqing University Huxi, G75 Lanhai Chongqing 400044 China
| | - Changhuang Liu
- School of Life Sciences Chongqing University Huxi, G75 Lanhai Chongqing 400044 China
| | - Yanan Li
- School of Life Sciences Chongqing University Huxi, G75 Lanhai Chongqing 400044 China
| | - Yang Fei
- School of Life Sciences Chongqing University Huxi, G75 Lanhai Chongqing 400044 China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Zhong Luo
- School of Life Sciences Chongqing University Huxi, G75 Lanhai Chongqing 400044 China
| |
Collapse
|