1
|
Groen K, Kuratli R, Enkelmann J, Fernbach S, Wendel-Garcia PD, Staiger WI, Lejeune M, Sauras-Colón E, Roche-Campo F, Filippidis P, Rauch A, Trkola A, Günthard HF, Kouyos RD, Brugger SD, Hale BG. Type I interferon autoantibody footprints reveal neutralizing mechanisms and allow inhibitory decoy design. J Exp Med 2025; 222:e20242039. [PMID: 40111224 PMCID: PMC11924951 DOI: 10.1084/jem.20242039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Autoantibodies neutralizing type I interferons (IFN-Is; IFNα or IFNω) exacerbate severe viral disease, but specific treatments are unavailable. With footprint profiling, we delineate two dominant IFN-I faces commonly recognized by neutralizing IFN-I autoantibody-containing plasmas from aged individuals with HIV-1 and from individuals with severe COVID-19. These faces overlap with IFN-I regions independently essential for engaging the IFNAR1/IFNAR2 heterodimer, and neutralizing plasmas efficiently block the interaction of IFN-I with both receptor subunits in vitro. In contrast, non-neutralizing autoantibody-containing plasmas limit the interaction of IFN-I with only one receptor subunit and display relatively low IFN-I-binding avidities, thus likely hindering neutralizing function. Iterative engineering of signaling-inert mutant IFN-Is (simIFN-Is) retaining dominant autoantibody targets created potent decoys that prevent IFN-I neutralization by autoantibody-containing plasmas and that restore IFN-I-mediated antiviral activity. Additionally, microparticle-coupled simIFN-Is were effective at depleting IFN-I autoantibodies from plasmas, leaving antiviral antibodies unaffected. Our study reveals mechanisms of action for IFN-I autoantibodies and demonstrates a proof-of-concept strategy to alleviate pathogenic effects.
Collapse
Affiliation(s)
- Kevin Groen
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger Kuratli
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jannik Enkelmann
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Sonja Fernbach
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Pedro D. Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Willy I. Staiger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marylène Lejeune
- Biobank IISPV-Node Tortosa, Hospital Verge de la Cinta, Institut d’Investigació Sanitària Pere Virgili (IISPV), Tortosa, Spain
| | - Esther Sauras-Colón
- Clinical Studies Unit, Hospital Verge de la Cinta, Institut d’Investigació Sanitària Pere Virgili (IISPV), Tortosa, Spain
| | - Ferran Roche-Campo
- Intensive Care Unit, Hospital Verge de la Cinta, Institut d’Investigació Sanitària Pere Virgili (IISPV), Tortosa, Spain
| | - Paraskevas Filippidis
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Breznik JA, Cowbrough B, Bilaver L, Dushoff M, Stacey HD, Ang J, Clare R, Kennedy A, Costa AP, Nazy I, Loeb M, Verschoor CP, Bramson J, Miller MS, Bowdish DME. Minimal Impact of Prior Common Cold Coronavirus Exposure on Immune Responses to Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination or Infection Risk in Older Adults in Congregate Care. Open Forum Infect Dis 2025; 12:ofaf178. [PMID: 40313478 PMCID: PMC12044602 DOI: 10.1093/ofid/ofaf178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/19/2025] [Indexed: 05/03/2025] Open
Abstract
Background Common cold coronaviruses were a frequent cause of respiratory infections in older adults living in congregate care homes before the coronavirus disease 2019 pandemic, which may influence immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and infection. We investigated humoral and cellular immune responses to prior common cold coronaviruses and SARS-CoV-2, how they are affected by SARS-CoV-2 vaccination and infection, and their associations with Omicron BA.1 SARS-CoV-2 infections in residents of long-term care and retirement homes. Methods In SARS-CoV-2 infection-naive residents with 3 monovalent messenger RNA SARS-CoV-2 vaccinations, we measured serum anti-receptor binding domain (RBD) immunoglobulin (Ig) G and IgA antibody titers against SARS-CoV-2 and common cold human coronavirus (HCoV) NL63, HCoV-OC43, and HCoV-229E; ancestral and Omicron BA.1 neutralizing antibodies; and CD4+ and CD8+ T-cell activation responses to membrane, nucleocapsid, and spike proteins. We examined the relationships of common cold coronavirus and SARS-CoV-2 humoral immune responses, whether antibody and T-cell responses changed after SARS-CoV-2 messenger RNA vaccination or infection, and their associations with Omicron BA.1 infection. Results Anti-RBD IgG HCoV-OC43 titers were positively correlated with SARS-CoV-2 anti-RBD IgG and neutralizing antibody titers. Common cold coronavirus anti-RBD IgA titers, but not anti-RBD IgG titers, increased after SARS-CoV-2 vaccination or infection, and many residents had cross-reactive T cells. Common cold coronavirus humoral immunity was similar in residents without and those with subsequent Omicron BA.1 infection. Conclusions Despite frequent exposure, and associations of common cold coronavirus and vaccine-induced SARS-CoV-2 humoral immunity, preexisting common cold coronavirus immunity was not associated with Omicron BA.1 infection in residents of long-term care and retirement communities.
Collapse
Affiliation(s)
- Jessica A Breznik
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
| | - Braeden Cowbrough
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lucas Bilaver
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Miriam Dushoff
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Hannah D Stacey
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jann Ang
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Rumi Clare
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Allison Kennedy
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Andrew P Costa
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Ishac Nazy
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Mark Loeb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Chris P Verschoor
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Health Sciences North Research Institute, Health Sciences North, Sudbury, Ontario, Canada
| | - Jonathan Bramson
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Matthew S Miller
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Dawn M E Bowdish
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Bedekar P, Luke RA, Kearsley AJ. Prevalence Estimation Methods for Time-Dependent Antibody Kinetics of Infected and Vaccinated Individuals: A Markov Chain Approach. Bull Math Biol 2025; 87:26. [PMID: 39752117 PMCID: PMC11698776 DOI: 10.1007/s11538-024-01402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Immune events such as infection, vaccination, and a combination of the two result in distinct time-dependent antibody responses in affected individuals. These responses and event prevalence combine non-trivially to govern antibody levels sampled from a population. Time-dependence and disease prevalence pose considerable modeling challenges that need to be addressed to provide a rigorous mathematical underpinning of the underlying biology. We propose a time-inhomogeneous Markov chain model for event-to-event transitions coupled with a probabilistic framework for antibody kinetics and demonstrate its use in a setting in which individuals can be infected or vaccinated but not both. We conduct prevalence estimation via transition probability matrices using synthetic data. This approach is ideal to model sequences of infections and vaccinations, or personal trajectories in a population, making it an important first step towards a mathematical characterization of reinfection, vaccination boosting, and cross-events of infection after vaccination or vice versa.
Collapse
Affiliation(s)
- Prajakta Bedekar
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, 21218, USA
- Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
| | - Rayanne A Luke
- Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA.
- Department of Mathematical Sciences, George Mason University, Fairfax, Virginia, 22030, USA.
| | - Anthony J Kearsley
- Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
| |
Collapse
|
4
|
Kuthning D, Raafat D, Holtfreter S, Gramenz J, Wittmann N, Bröker BM, Meyer-Bahlburg A. Variant-specific antibody profiling for tracking SARS-CoV-2 variant infections in children and adolescents. Front Immunol 2024; 15:1434291. [PMID: 39257574 PMCID: PMC11384586 DOI: 10.3389/fimmu.2024.1434291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Monitoring the seroprevalence of SARS-CoV-2 in children and adolescents can provide valuable information for effective SARS-CoV-2 surveillance, and thus guide vaccination strategies. In this study, we quantified antibodies against the spike S1 domains of several SARS-CoV-2 variants (wild-type, Alpha, Delta, and Omicron variants) as well as endemic human coronaviruses (HCoVs) in 1,309 children and adolescents screened between December 2020 and March 2023. Their antibody binding profiles were compared with those of 22 pre-pandemic samples from children and adolescents using an in-house Luminex®-based Corona Array (CA). The primary objectives of this study were to (i) monitor SARS-CoV-2-specific antibodies in children and adolescents, (ii) evaluate whether the S1-specific antibody response can identify the infecting variant of concern (VoC), (iii) estimate the prevalence of silent infections, and (iv) test whether vaccination or infection with SARS-CoV-2 induce HCoV cross-reactive antibodies. Both SARS-CoV-2 infection and vaccination induced a robust antibody response against the S1 domain of WT and VoCs in children and adolescents. Antibodies specific for the S1 domain were able to distinguish between SARS-CoV-2 VoCs in infected children. The serologically identified VoC was typically the predominant VoC at the time of infection. Furthermore, our highly sensitive CA identified more silent SARS-CoV-2 infections than a commercial ELISA (12.1% vs. 6.3%, respectively), and provided insights into the infecting VoC. Seroconversion to endemic HCoVs occurred in early childhood, and vaccination or infection with SARS-CoV-2 did not induce HCoV S1 cross-reactive antibodies. In conclusion, the antibody response to the S1 domain of the spike protein of SARS-CoV-2 is highly specific, providing information about the infecting VoC and revealing clinically silent infections.
Collapse
Affiliation(s)
- Daniela Kuthning
- Pediatric Rheumatology, Department of Pediatric and Adolescent Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Jana Gramenz
- Pediatric Rheumatology, Department of Pediatric and Adolescent Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nico Wittmann
- Pediatric Rheumatology, Department of Pediatric and Adolescent Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Almut Meyer-Bahlburg
- Pediatric Rheumatology, Department of Pediatric and Adolescent Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Abela IA, Hauser A, Schwarzmüller M, Pasin C, Kusejko K, Epp S, Cavassini M, Battegay M, Rauch A, Calmy A, Notter J, Bernasconi E, Fux CA, Leuzinger K, Perreau M, Ramette A, Gottschalk J, Schindler E, Wepf A, Marconato M, Manz MG, Frey BM, Braun DL, Huber M, Günthard HF, Trkola A, Kouyos RD. Deciphering Factors Linked With Reduced Severe Acute Respiratory Syndrome Coronavirus 2 Susceptibility in the Swiss HIV Cohort Study. J Infect Dis 2024; 230:e292-e304. [PMID: 38227786 PMCID: PMC11326820 DOI: 10.1093/infdis/jiae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Factors influencing susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain to be resolved. Using data from the Swiss HIV Cohort Study on 6270 people with human immunodeficiency virus (HIV) and serologic assessment for SARS-CoV-2 and circulating human coronavirus (HCoV) antibodies, we investigated the association of HIV-related and general parameters with SARS-CoV-2 infection. METHODS We analyzed SARS-CoV-2 polymerase chain reaction test results, COVID-19-related hospitalizations, and deaths reported to the Swiss HIV Cohort Study between 1 January 2020 and 31 December 2021. Antibodies to SARS-CoV-2 and HCoVs were determined in prepandemic (2019) and pandemic (2020) biobanked plasma samples and compared with findings in HIV-negative individuals. We applied logistic regression, conditional logistic regression, and bayesian multivariate regression to identify determinants of SARS-CoV-2 infection and antibody responses to SARS-CoV-2 in people with HIV. RESULTS No HIV-1-related factors were associated with SARS-CoV-2 acquisition. High prepandemic HCoV antibodies were associated with a lower risk of subsequent SARS-CoV-2 infection and with higher SARS-CoV-2 antibody responses on infection. We observed a robust protective effect of smoking on SARS-CoV-2 infection risk (adjusted odds ratio, 0.46 [95% confidence interval, .38-.56]; P < .001), which occurred even in previous smokers and was highest for heavy smokers. CONCLUSIONS Our findings of 2 independent protective factors, smoking and HCoV antibodies, both affecting the respiratory environment, underscore the importance of the local immune milieu in regulating susceptibility to SARS-CoV-2.
Collapse
Affiliation(s)
- Irene A Abela
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Anthony Hauser
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Chloé Pasin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, Lausanne University Hospital, Lausanne, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexandra Calmy
- Laboratory of Virology and Division of Infectious Diseases, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Julia Notter
- Division of Infectious Diseases, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale Lugano, University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Christoph A Fux
- Department of Infectious Diseases, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Matthieu Perreau
- Division of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | - Alexander Wepf
- Institute of Laboratory Medicine, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Maddalena Marconato
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Beat M Frey
- Blood Transfusion Service Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Bean DJ, Monroe J, Liang YM, Borberg E, Senussi Y, Swank Z, Chalise S, Walt D, Weinberg J, Sagar M. Heterotypic immunity from prior SARS-CoV-2 infection but not COVID-19 vaccination associates with lower endemic coronavirus incidence. Sci Transl Med 2024; 16:eado7588. [PMID: 38865483 PMCID: PMC11565543 DOI: 10.1126/scitranslmed.ado7588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Immune responses from prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19 vaccination mitigate disease severity, but they do not fully prevent subsequent infections, especially from genetically divergent strains. We examined the incidence of and immune differences against human endemic coronaviruses (eCoVs) as a proxy for response against future genetically heterologous coronaviruses (CoVs). We assessed differences in symptomatic eCoV and non-CoV respiratory disease incidence among those with known prior SARS-CoV-2 infection or previous COVID-19 vaccination but no documented SARS-CoV-2 infection or neither exposure. Retrospective cohort analyses suggest that prior SARS-CoV-2 infection, but not previous COVID-19 vaccination alone, associates with a lower incidence of subsequent symptomatic eCoV infection. There was no difference in non-CoV incidence, implying that the observed difference was eCoV specific. In a second cohort where both cellular and humoral immunity were measured, those with prior SARS-CoV-2 spike protein exposure had lower eCoV-directed neutralizing antibodies, suggesting that neutralization is not responsible for the observed decreased eCoV disease. The three groups had similar cellular responses against the eCoV spike protein and nucleocapsid antigens. However, CD8+ T cell responses to the nonstructural eCoV proteins nsp12 and nsp13 were higher in individuals with previous SARS-CoV-2 infection as compared with the other groups. This association between prior SARS-CoV-2 infection and decreased incidence of eCoV disease may therefore be due to a boost in CD8+ T cell responses against eCoV nsp12 and nsp13, suggesting that incorporation of nonstructural viral antigens in a future pan-CoV vaccine may improve vaccine efficacy.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Janet Monroe
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ella Borberg
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Zoe Swank
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Sujata Chalise
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - David Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
7
|
Abela IA, Schwarzmüller M, Ulyte A, Radtke T, Haile SR, Ammann P, Raineri A, Rueegg S, Epp S, Berger C, Böni J, Manrique A, Audigé A, Huber M, Schreiber PW, Scheier T, Fehr J, Weber J, Rusert P, Günthard HF, Kouyos RD, Puhan MA, Kriemler S, Trkola A, Pasin C. Cross-protective HCoV immunity reduces symptom development during SARS-CoV-2 infection. mBio 2024; 15:e0272223. [PMID: 38270455 PMCID: PMC10865973 DOI: 10.1128/mbio.02722-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Numerous clinical parameters link to severe coronavirus disease 2019, but factors that prevent symptomatic disease remain unknown. We investigated the impact of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and endemic human coronavirus (HCoV) antibody responses on symptoms in a longitudinal children cohort (n = 2,917) and a cross-sectional cohort including children and adults (n = 882), all first exposed to SARS-CoV-2 (March 2020 to March 2021) in Switzerland. Saliva (n = 4,993) and plasma (n = 7,486) antibody reactivity to the four HCoVs (subunit S1 [S1]) and SARS-CoV-2 (S1, receptor binding domain, subunit S2 [S2], nucleocapsid protein) was determined along with neutralizing activity against SARS-CoV-2 Wuhan, Alpha, Delta, and Omicron (BA.2) in a subset of individuals. Inferred recent SARS-CoV-2 infection was associated with a strong correlation between mucosal and systemic SARS-CoV-2 anti-spike responses. Individuals with pre-existing HCoV-S1 reactivity exhibited significantly higher antibody responses to SARS-CoV-2 in both plasma (IgG regression coefficients = 0.20, 95% CI = [0.09, 0.32], P < 0.001) and saliva (IgG regression coefficient = 0.60, 95% CI = [0.088, 1.11], P = 0.025). Saliva neutralization activity was modest but surprisingly broad, retaining activity against Wuhan (median NT50 = 32.0, 1Q-3Q = [16.4, 50.2]), Alpha (median NT50 = 34.9, 1Q-3Q = [26.0, 46.6]), and Delta (median NT50 = 28.0, 1Q-3Q = [19.9, 41.7]). In line with a rapid mucosal defense triggered by cross-reactive HCoV immunity, asymptomatic individuals presented with higher pre-existing HCoV-S1 activity in plasma (IgG HKU1, odds ratio [OR] = 0.53, 95% CI = [0.29,0.97], P = 0.038) and saliva (total HCoV, OR = 0.55, 95% CI = [0.33, 0.91], P = 0.019) and higher SARS-CoV-2 reactivity in saliva (IgG S2 fold change = 1.26, 95% CI = [1.03, 1.54], P = 0.030). By investigating the systemic and mucosal immune responses to SARS-CoV-2 and HCoVs in a population without prior exposure to SARS-CoV-2 or vaccination, we identified specific antibody reactivities associated with lack of symptom development.IMPORTANCEKnowledge of the interplay between human coronavirus (HCoV) immunity and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is critical to understanding the coexistence of current endemic coronaviruses and to building knowledge potential future zoonotic coronavirus transmissions. This study, which retrospectively analyzed a large cohort of individuals first exposed to SARS-CoV-2 in Switzerland in 2020-2021, revealed several key findings. Pre-existing HCoV immunity, particularly mucosal antibody responses, played a significant role in improving SARS-CoV-2 immune response upon infection and reducing symptoms development. Mucosal neutralizing activity against SARS-CoV-2, although low in magnitude, retained activity against SARS-CoV-2 variants underlining the importance of maintaining local mucosal immunity to SARS-CoV-2. While the cross-protective effect of HCoV immunity was not sufficient to block infection by SARS-CoV-2, the present study revealed a remarkable impact on limiting symptomatic disease. These findings support the feasibility of generating pan-protective coronavirus vaccines by inducing potent mucosal immune responses.
Collapse
Affiliation(s)
- Irene A. Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Agne Ulyte
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sarah R. Haile
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Priska Ammann
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alessia Raineri
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Sonja Rueegg
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Amapola Manrique
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter W. Schreiber
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Collegium Helveticum, Zurich, Switzerland
| |
Collapse
|
8
|
Chammartin F, Griessbach A, Kusejko K, Audigé A, Epp S, Stoeckle MP, Eichenberger AL, Amstutz A, Schoenenberger CM, Hasse B, Braun DL, Rauch A, Trkola A, Briel M, Bucher HC, Günthard HF, Speich B, Abela IA. Bridging the gap: identifying factors impacting mRNA severe acute respiratory syndrome coronavirus 2 vaccine booster response in people with HIV-1. AIDS 2024; 38:217-222. [PMID: 37830908 DOI: 10.1097/qad.0000000000003751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
OBJECTIVES This study aimed to investigate the association of demographic and clinical characteristics, including HIV-specific parameters with the antibody response to a third dose of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine in people with HIV-1 (PWH). DESIGN Post hoc analysis of data collected during the observational extension of the COrona VaccinE tRiAL pLatform trial (COVERALL-2) nested into the Swiss HIV Cohort Study (SHCS). METHODS Serological measurements were conducted on a total of 439 PWH who had received a third dose of either mRNA-1273 (Moderna) or BNT162b2 (Pfizer-BioNTech) SARS-CoV-2 vaccine. Antibody reactivity was assessed using the multifactorial ABCORA immunoassay that defines SARS-CoV-2 seroconversion and predicts neutralization activity. The association between log transformed antibody reactivity and various baseline factors, including vaccine type, demographics, immune and viral status, smoking status, comorbidities, infection history, and co-medication with chemotherapy and immunosuppressive drugs, was investigated using a multivariable linear regression model. RESULTS Antibody response to third SARS-CoV-2 vaccination was significantly lower among PWH with CD4 + cell count less than 350 cells/μl [ratio of means 0.79; 95% confidence interval (CI) 0.65-0.95]. Having a detectable HIV-1 viral load at least 50 copies/ml and being on concurrent chemotherapy was associated with an overall lower humoral immune response (ratio of means 0.75; 95% CI 0.57-1.00 and 0.34; 95% CI 0.22-0.52, respectively). CONCLUSION The study highlights the importance of optimal antiretroviral treatment for PWH, emphasizing the need for timely intervention to enhance the vaccine immunogenicity in this population. Moreover, it underscores the significance of sequential mRNA vaccination and provides important evidence for informing vaccine guidelines.
Collapse
Affiliation(s)
- Frédérique Chammartin
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Alexandra Griessbach
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Marcel P Stoeckle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Anna L Eichenberger
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alain Amstutz
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Christof M Schoenenberger
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Barbara Hasse
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Matthias Briel
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Heiner C Bucher
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Benjamin Speich
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Irene A Abela
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Perrig L, Abela IA, Banholzer N, Audigé A, Epp S, Mugglin C, Zürcher K, Egger M, Trkola A, Fenner L. Long-term course of neutralising antibodies against SARS-CoV-2 in vaccinated and unvaccinated staff and residents in a Swiss nursing home: a cohort study 2021-2022. Swiss Med Wkly 2023; 153:3502. [PMID: 38579325 DOI: 10.57187/s.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Given their high-risk resident population, nursing homes were critical institutions in the COVID-19 pandemic, calling for continued monitoring and vaccine administration to healthcare workers and residents. Here, we studied long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity in vaccinated and unvaccinated healthcare workers and residents of a nursing home in Switzerland between February 2021 and June 2022. METHODS Our study comprised 45 participants, of which 39 were healthcare workers and six were residents. All participants were offered a maximum of three mRNA vaccine doses (Pfizer/BioNTech, BNT162b2) in December 2020, January 2021, and November/December 2021. Thirty-five participants received three vaccinations, seven either one or two, and three remained unvaccinated. We collected four blood samples: one in March 2021 and three during follow-ups in November 2021, February 2022, and June 2022. We performed a multifactorial serological SARS-CoV-2 assay (ABCORA) for immunoglobulin G, A, and M responses to spike (receptor-binding domain, S1, and S2) and nucleocapsid (N) proteins. Furthermore, we assessed predicted neutralisation activity based on signal over cutoff in ABCORA. We collected epidemiological data from participants via a standardised questionnaire. RESULTS Thirty-two (71%) of the 45 participants showed hybrid immunity from combined vaccination and previous infection; 10 (22%) had only vaccine-induced immunity; and three (7%) had only post-infection immunity. Participants with hybrid immunity showed the highest predicted neutralisation activity at the end of the study period (median Sum S1 = 273), and unvaccinated participants showed the lowest (median Sum S1 = 41). Amongst participants who reported a SARS-CoV-2 infection, median Sum S1 levels increased with the number of vaccinations (p = 0.077). The healthcare worker group showed a significant time-dependent decrease in median Sum S1 after base immunisation (93% decrease, p = 0.0005) and the booster dose (26% decrease, p = 0.010). Predicted neutralisation activity was lower amongst residents (adjusted ratio of means [AM] = 0.7, 95% confidence interval [CI] = 0.3-1.0) and amongst smokers (AM = 0.5, 95% CI 0.3-0.8). Activity increased with the number of vaccinations (booster: AM = 3.6, 95% CI 1.5-8.8; no booster: AM = 2.3, 95% CI 0.9-2.5). Positive SARS-CoV-2 infection status tended to confer higher predicted neutralisation levels (AM = 1.5, 95% CI 0.9-2.5). CONCLUSIONS Our study of the long-term serological course of SARS-CoV-2 in a nursing home showed that the first SARS-CoV-2 booster vaccine was essential for maintaining antiviral antibody levels. Hybrid immunity sustained SARS-CoV-2 immunity at the highest level. In critical settings such as nursing homes, monitoring the SARS-CoV-2 immune status may guide booster vaccinations.
Collapse
Affiliation(s)
- Lisa Perrig
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Nicolas Banholzer
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Catrina Mugglin
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kathrin Zürcher
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Lukas Fenner
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Griessbach A, Chammartin F, Abela IA, Amico P, Stoeckle MP, Eichenberger AL, Hasse B, Braun DL, Schuurmans MM, Müller TF, Tamm M, Audigé A, Mueller NJ, Rauch A, Günthard HF, Koller MT, Trkola A, Epp S, Amstutz A, Schönenberger CM, Taji Heravi A, Papadimitriou-Olivgeris M, Casutt A, Manuel O, Kusejko K, Bucher HC, Briel M, Speich B. Antibody Response After the Third SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients and People Living With HIV (COVERALL-2). Open Forum Infect Dis 2023; 10:ofad536. [PMID: 38023564 PMCID: PMC10655940 DOI: 10.1093/ofid/ofad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background After basic immunization with 2 mRNA SARS-CoV-2 vaccine doses, only a small proportion of patients who are severely immunocompromised generate a sufficient antibody response. Hence, we assessed the additional benefit of a third SARS-CoV-2 vaccine in patients with different levels of immunosuppression. Methods In this observational extension of the COVERALL trial (Corona Vaccine Trial Platform), we recruited patients from the Swiss HIV Cohort Study and the Swiss Transplant Cohort Study (ie, lung and kidney transplant recipients). We collected blood samples before and 8 weeks after the third SARS-CoV-2 vaccination with either mRNA-1273 (Moderna) or BNT162b2 (Pfizer-BioNTech). The primary outcome was the proportion of participants showing an antibody response (Elecsys Anti-SARS-CoV-2 S test; threshold ≥100 U/mL) 8 weeks after the third SARS-CoV-2 vaccination. We also compared the proportion of patients who reached the primary outcome from basic immunization (the first and second vaccines) to the third vaccination. Results Nearly all participants (97.2% [95% CI, 95.9%-98.6%], 564/580) had an antibody response. This response was comparable between mRNA-1273 (96.1% [95% CI, 93.7%-98.6%], 245/255) and BNT162b2 (98.2% [95% CI, 96.7%-99.6%], 319/325). Stratification by cohort showed that 99.8% (502/503) of people living with HIV and 80.5% (62/77) of recipients of solid organ transplants achieved the primary endpoint. The proportion of patients with an antibody response in solid organ transplant recipients improved from the second vaccination (22.7%, 15/66) to the third (80.5%, 62/77). Conclusions People living with HIV had a high antibody response. The third vaccine increased the proportion of solid organ transplant recipients with an antibody response. Clinical Trials Registration. NCT04805125 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Alexandra Griessbach
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Frédérique Chammartin
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Patrizia Amico
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Marcel P Stoeckle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Anna L Eichenberger
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Barbara Hasse
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Macé M Schuurmans
- Division of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Müller
- Nephrology Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Michael Tamm
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nicolas J Mueller
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Michael T Koller
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- Swiss Transplant Cohort Study, University Hospital Basel, Basel, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alain Amstutz
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christof M Schönenberger
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ala Taji Heravi
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Alessio Casutt
- Division of Pulmonology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Katharina Kusejko
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Heiner C Bucher
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matthias Briel
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Benjamin Speich
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Bean DJ, Monroe J, Liang YM, Borberg E, Senussi Y, Swank Z, Chalise S, Walt D, Weinberg J, Sagar M. Heterotypic responses against nsp12/nsp13 from prior SARS-CoV-2 infection associates with lower subsequent endemic coronavirus incidence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563621. [PMID: 37961343 PMCID: PMC10634759 DOI: 10.1101/2023.10.23.563621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Immune responses from prior SARS-CoV-2 infection and COVID-19 vaccination do not prevent re-infections and may not protect against future novel coronaviruses (CoVs). We examined the incidence of and immune differences against human endemic CoVs (eCoV) as a proxy for response against future emerging CoVs. Assessment was among those with known SARS-CoV-2 infection, COVID-19 vaccination but no documented SARS-CoV-2 infection, or neither exposure. Retrospective cohort analyses suggest that prior SARS-CoV-2 infection, but not COVID-19 vaccination alone, protects against subsequent symptomatic eCoV infection. CD8+ T cell responses to the non-structural eCoV proteins, nsp12 and nsp13, were significantly higher in individuals with previous SARS-CoV-2 infection as compared to the other groups. The three groups had similar cellular responses against the eCoV spike and nucleocapsid, and those with prior spike exposure had lower eCoV-directed neutralizing antibodies. Incorporation of non-structural viral antigens in a future pan-CoV vaccine may improve protection against future heterologous CoV infections.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Janet Monroe
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Ella Borberg
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Yasmeen Senussi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Zoe Swank
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Sujata Chalise
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - David Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| |
Collapse
|
12
|
Brown JA, Hauser A, Abela IA, Pasin C, Epp S, Mohloanyane T, Nsakala BL, Trkola A, Labhardt ND, Kouyos RD, Günthard HF. Seroprofiling of Antibodies Against Endemic Human Coronaviruses and Severe Acute Respiratory Syndrome Coronavirus 2 in a Human Immunodeficiency Virus Cohort in Lesotho: Correlates of Antibody Response and Seropositivity. J Infect Dis 2023; 228:1042-1054. [PMID: 37261930 PMCID: PMC10582919 DOI: 10.1093/infdis/jiad197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Serological data on endemic human coronaviruses (HCoVs) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in southern Africa are scarce. Here, we report on (1) endemic HCoV seasonality, (2) SARS-CoV-2 seroprevalence, and (3) correlates of SARS-CoV-2 seropositivity and strength of SARS-CoV-2 and endemic HCoV serological responses among adults living with human immunodeficiency virus (HIV). METHODS Plasma samples were collected from February 2020 to July 2021 within an HIV cohort in Lesotho. We used the AntiBody CORonavirus Assay (ABCORA) multiplex immunoassay to measure antibody responses to endemic HCoV (OC43, HKU1, NL63, and 229E) and SARS-CoV-2 antigens. RESULTS Results for 3173 samples from 1403 adults were included. Serological responses against endemic HCoVs increased over time and peaked in winter and spring. SARS-CoV-2 seropositivity reached >35% among samples collected in early 2021 and was associated with female sex, obesity, working outside the home, and recent tiredness or fever. Positive correlations were observed between the strength of response to endemic HCoVs and to SARS-CoV-2 and between older age or obesity and the immunoglobulin G response to SARS-CoV-2. CONCLUSIONS These results add to our understanding of the impact of biological, clinical, and social/behavioral factors on serological responses to coronaviruses in southern Africa.
Collapse
Affiliation(s)
- Jennifer A Brown
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Division of Clinical Epidemiology, Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Anthony Hauser
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Irene A Abela
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Chloé Pasin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Niklaus D Labhardt
- Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- Division of Clinical Epidemiology, Department of Clinical Research, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Zürcher K, Abela IA, Stange M, Dupont C, Mugglin C, Egli A, Trkola A, Egger M, Fenner L. Alpha Variant Coronavirus Outbreak in a Nursing Home Despite High Vaccination Coverage: Molecular, Epidemiological, and Immunological Studies. Clin Infect Dis 2023; 77:537-546. [PMID: 35522980 PMCID: PMC9129182 DOI: 10.1093/cid/ciab1005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Vaccination may control the coronavirus disease 2019 (COVID-19) pandemic, including in nursing homes where many high-risk people live. We conducted extensive outbreak investigations. METHODS We studied an outbreak at a nursing home in Switzerland, where the uptake of messenger RNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was 82% among residents as of 21 January 2021. After diagnosis of COVID-19 in a vaccinated symptomatic healthcare worker (HCW) on 22 February, we performed outbreak investigations in house A (47 residents; 37 HCWs), using SARS-CoV-2-specific polymerase chain reaction testing of nasopharyngeal swab samples. We performed whole-genome sequencing of SARS-CoV-2 and serological analyses. RESULTS We identified 17 individuals with positive polymerase chain reaction results, 10 residents (5 vaccinated) and 7 HCWs (3 vaccinated). The median age (interquartile range) was 86 (70-90) years among residents and 49 (29-59) years among HCWs. Of the 5 vaccinated residents, 3 had mild disease and 2 had no symptoms, whereas all 5 unvaccinated residents had mild to severe disease, and 2 died. Vaccine effectiveness for the prevention of infection among residents was 73.0% (95% confidence interval, 24.7%-90.1%). The 12 available genomes were all alpha variants. Neutralizing titers were significantly higher in vaccinated individuals on reexposure (>1 week after diagnosis) than in vaccinated, unexposed HCWs (P = .01). Transmission networks indicated 4 likely or possible transmissions from vaccinated to other individuals and 12 transmission events from unvaccinated individuals. CONCLUSIONS COVID-19 outbreaks can occur in nursing homes, including transmission from vaccinated persons to others. Outbreaks might occur silently, underlining the need for continued testing and basic infection control measures in these high-risk settings.
Collapse
Affiliation(s)
- Kathrin Zürcher
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zürich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Madlen Stange
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Carole Dupont
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Catrina Mugglin
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Kantonsärztlicher Dienst, Gesundheitsamt, Kanton Solothurn, Switzerland
| | - Adrian Egli
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Zurich, Switzerland
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lukas Fenner
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Kantonsärztlicher Dienst, Gesundheitsamt, Kanton Solothurn, Switzerland
| |
Collapse
|
14
|
Finckh A, Ciurea A, Raptis CE, Rubbert-Roth A. Susceptibility to COVID-19 and Immunologic Response to Vaccination in Patients With Immune-Mediated Inflammatory Diseases. J Infect Dis 2023; 228:S13-S23. [PMID: 37539758 PMCID: PMC10401619 DOI: 10.1093/infdis/jiad148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/06/2023] [Indexed: 08/05/2023] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a highly heterogeneous group of diseases that share a common etiology of immune dysregulation, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, among others. It is estimated that the prevalence of IMIDs ranges between 5% and 7% in developed countries. As current management of IMIDs includes the use of immunomodulatory medications, the resulting weakened immune response can increase the risk of infection, including with SARS-CoV-2 (the causative agent of COVID-19) and reduce response to vaccination, placing these individuals at continued risk of severe outcomes from COVID-19. In this article, we summarize the current literature related to COVID-19 outcomes and the immunogenicity and reactogenicity of COVID-19 mRNA vaccination among patients with rheumatologically dominated IMIDs, as well as the effect of immunomodulatory therapies on these outcomes. We conclude by providing current COVID-19 vaccination recommendations for individuals with IMID.
Collapse
Affiliation(s)
- Axel Finckh
- Division of Rheumatology, Geneva University Hospitals, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Adrian Ciurea
- Department of Rheumatology, Zurich University Hospital, University of Zurich, Zurich, Switzerland
| | | | - Andrea Rubbert-Roth
- Correspondence: A. Rubbert-Roth, MD, Division of Rheumatology, Cantonal Hospital St. Gallen, Rorschacherstr 95, 9007 St. Gallen, Switzerland ()
| |
Collapse
|
15
|
Reiner MF, Schmidt D, Frischknecht L, Ruschitzka F, Duru F, Saguner AM. Case report of long-term postural tachycardia syndrome in a patient after messenger RNA coronavirus disease-19 vaccination with mRNA-1273. Eur Heart J Case Rep 2023; 7:ytad390. [PMID: 37650075 PMCID: PMC10464593 DOI: 10.1093/ehjcr/ytad390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023]
Abstract
Background Postural tachycardia syndrome (POTS) is characterized by orthostatic intolerance and heart rate increase in an upright position without orthostatic hypotension. It has been described after coronavirus disease-19 (COVID-19) as well as after COVID-19 vaccination. Case summary A 54-year-old female patient presented with a 9-months history of severe orthostatic intolerance since COVID-19 vaccination with messenger RNA (mRNA)-1273 (Spikevax, Moderna). Except for diet-controlled coeliac disease, the patient was healthy, had no allergies, and did not take regular medication. Tilt table testing revealed a significant heart rate increase to 168 bpm without orthostatic hypotension accompanied by light-headedness, nausea, and syncope, findings consistent with POTS. Potential underlying causes including anaemia, thyroid dysfunction, adrenal insufficiency, pheochromocytoma, (auto)-immune disease, chronic inflammation as well as neurological causes were ruled out. Echocardiography and cardiac stress magnetic resonance imaging (MRI) did not detect structural or functional heart disease or myocardial ischaemia. Forty-eight-hour-electrocardiogram (ECG) showed no tachycardias other than sinus tachycardia. Finally, genomic analysis did not detect an inherited arrhythmia syndrome. Serologic analysis revealed adequate immune response to mRNA-1273 vaccination without signs of previous severe acute respiratory syndrome-coronavirus-2 infection. While ivabradine was not tolerated and metoprolol extended release only slightly improved symptoms, physical exercise reduced orthostatic intolerance moderately. At a 5-months follow-up, the patient remained dependant on assistance for activities of daily living. Discussion The temporal association of POTS with the COVID-19 vaccination in a previously healthy patient and the lack of evidence of an alternative aetiology suggests COVID-19 vaccination is the potential cause of POTS in this patient. To our knowledge, this is the first case reporting severe, long-term, and treatment-refractory POTS following COVID-19 vaccination with mRNA1273.
Collapse
Affiliation(s)
- Martin F Reiner
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Dörthe Schmidt
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Lukas Frischknecht
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Firat Duru
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
16
|
Zurbuchen Y, Michler J, Taeschler P, Adamo S, Cervia C, Raeber ME, Acar IE, Nilsson J, Warnatz K, Soyka MB, Moor AE, Boyman O. Human memory B cells show plasticity and adopt multiple fates upon recall response to SARS-CoV-2. Nat Immunol 2023; 24:955-965. [PMID: 37106039 PMCID: PMC10232369 DOI: 10.1038/s41590-023-01497-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/21/2023] [Indexed: 04/29/2023]
Abstract
The B cell response to different pathogens uses tailored effector mechanisms and results in functionally specialized memory B (Bm) cell subsets, including CD21+ resting, CD21-CD27+ activated and CD21-CD27- Bm cells. The interrelatedness between these Bm cell subsets remains unknown. Here we showed that single severe acute respiratory syndrome coronavirus 2-specific Bm cell clones showed plasticity upon antigen rechallenge in previously exposed individuals. CD21- Bm cells were the predominant subsets during acute infection and early after severe acute respiratory syndrome coronavirus 2-specific immunization. At months 6 and 12 post-infection, CD21+ resting Bm cells were the major Bm cell subset in the circulation and were also detected in peripheral lymphoid organs, where they carried tissue residency markers. Tracking of individual B cell clones by B cell receptor sequencing revealed that previously fated Bm cell clones could redifferentiate upon antigen rechallenge into other Bm cell subsets, including CD21-CD27- Bm cells, demonstrating that single Bm cell clones can adopt functionally different trajectories.
Collapse
Affiliation(s)
- Yves Zurbuchen
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Jan Michler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Patrick Taeschler
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Sarah Adamo
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Carlo Cervia
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Miro E Raeber
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Ilhan E Acar
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Klaus Warnatz
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael B Soyka
- Department of Otorhinolaryngology, Head and Neck Surgery, University and University Hospital Zurich, Zurich, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.
- Faculty of Medicine and Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, "long COVID") and post-COVID-19 vaccination syndrome (PCVS, "post-COVIDvac-syndrome"): Similarities and differences. Pathol Res Pract 2023; 246:154497. [PMID: 37192595 DOI: 10.1016/j.prp.2023.154497] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Worldwide there have been over 760 million confirmed coronavirus disease 2019 (COVID-19) cases, and over 13 billion COVID-19 vaccine doses have been administered as of April 2023, according to the World Health Organization. An infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to an acute disease, i.e. COVID-19, but also to a post-acute COVID-19 syndrome (PACS, "long COVID"). Currently, the side effects of COVID-19 vaccines are increasingly being noted and studied. Here, we summarise the currently available indications and discuss our conclusions that (i) these side effects have specific similarities and differences to acute COVID-19 and PACS, that (ii) a new term should be used to refer to these side effects (post-COVID-19 vaccination syndrome, PCVS, colloquially "post-COVIDvac-syndrome"), and that (iii) there is a need to distinguish between acute COVID-19 vaccination syndrome (ACVS) and post-acute COVID-19 vaccination syndrome (PACVS) - in analogy to acute COVID-19 and PACS ("long COVID"). Moreover, we address mixed forms of disease caused by natural SARS-CoV-2 infection and COVID-19 vaccination. We explain why it is important for medical diagnosis, care and research to use the new terms (PCVS, ACVS and PACVS) in order to avoid confusion and misinterpretation of the underlying causes of disease and to enable optimal medical therapy. We do not recommend to use the term "Post-Vac-Syndrome" as it is imprecise. The article also serves to address the current problem of "medical gaslighting" in relation to PACS and PCVS by raising awareness among the medical professionals and supplying appropriate terminology for disease.
Collapse
Affiliation(s)
- Felix Scholkmann
- University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Christian-Albrecht May
- Department of Anatomy, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
18
|
Bedekar P, Kearsley AJ, Patrone PN. Prevalence estimation and optimal classification methods to account for time dependence in antibody levels. J Theor Biol 2023; 559:111375. [PMID: 36513210 DOI: 10.1016/j.jtbi.2022.111375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Serology testing can identify past infection by quantifying the immune response of an infected individual providing important public health guidance. Individual immune responses are time-dependent, which is reflected in antibody measurements. Moreover, the probability of obtaining a particular measurement from a random sample changes due to changing prevalence (i.e., seroprevalence, or fraction of individuals exhibiting an immune response) of the disease in the population. Taking into account these personal and population-level effects, we develop a mathematical model that suggests a natural adaptive scheme for estimating prevalence as a function of time. We then combine the estimated prevalence with optimal decision theory to develop a time-dependent probabilistic classification scheme that minimizes the error associated with classifying a value as positive (history of infection) or negative (no such history) on a given day since the start of the pandemic. We validate this analysis by using a combination of real-world and synthetic SARS-CoV-2 data and discuss the type of longitudinal studies needed to execute this scheme in real-world settings.
Collapse
Affiliation(s)
- Prajakta Bedekar
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | - Anthony J Kearsley
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Paul N Patrone
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
19
|
Wang D, Chen Y, Xiang S, Hu H, Zhan Y, Yu Y, Zhang J, Wu P, Liu FY, Kai T, Ding P. Recent advances in immunoassay technologies for the detection of human coronavirus infections. Front Cell Infect Microbiol 2023; 12:1040248. [PMID: 36683684 PMCID: PMC9845787 DOI: 10.3389/fcimb.2022.1040248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the seventh coronavirus (CoV) that has spread in humans and has become a global pandemic since late 2019. Efficient and accurate laboratory diagnostic methods are one of the crucial means to control the development of the current pandemic and to prevent potential future outbreaks. Although real-time reverse transcription-polymerase chain reaction (rRT-PCR) is the preferred laboratory method recommended by the World Health Organization (WHO) for diagnosing and screening SARS-CoV-2 infection, the versatile immunoassays still play an important role for pandemic control. They can be used not only as supplemental tools to identify cases missed by rRT-PCR, but also for first-line screening tests in areas with limited medical resources. Moreover, they are also indispensable tools for retrospective epidemiological surveys and the evaluation of the effectiveness of vaccination. In this review, we summarize the mainstream immunoassay methods for human coronaviruses (HCoVs) and address their benefits, limitations, and applications. Then, technical strategies based on bioinformatics and advanced biosensors were proposed to improve the performance of these methods. Finally, future suggestions and possibilities that can lead to higher sensitivity and specificity are provided for further research.
Collapse
Affiliation(s)
- Danqi Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yuejun Chen
- Breast Surgery Department I, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shan Xiang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Huiting Hu
- Breast Surgery Department I, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Fei Yue Liu
- Department of Economics and Management, ChangSha University, Changsha, Hunan, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Sun Y, Luo B, Liu Y, Wu Y, Chen Y. Immune damage mechanisms of COVID-19 and novel strategies in prevention and control of epidemic. Front Immunol 2023; 14:1130398. [PMID: 36960050 PMCID: PMC10028144 DOI: 10.3389/fimmu.2023.1130398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has diverse clinical manifestations, which is the main feature of the disease, and the fundamental reason is the different immune responses in different bodies among the population. The damage mechanisms of critical illness by SARS-CoV-2 and its variants, such as hyperinflammatory response, a double-edged function of type I interferon, and hyperactivation of the complement system, are the same as other critical illnesses. Targeting specific immune damage mechanisms of COVID-19, we scored the first to put forward that the responses of T cells induced by acute virus infection result in "acute T-cell exhaustion" in elderly patients, which is not only the peripheral exhaustion with quantity reduction and dysfunction of T cells but also the central exhaustion that central immune organs lost immune homeostasis over peripheral immune organs, whereas the increased thymic output could alleviate the severity and reduce the mortality of the disease with the help of medication. We discovered that immune responses raised by SARS-CoV-2 could also attack secondary lymphoid organs, such as the spleen, lymphoid nodes, and kidneys, in addition to the lung, which we generally recognize. Integrated with the knowledge of mechanisms of immune protection, we developed a coronavirus antigen diagnostic kit and therapeutic monoclonal antibody. In the future, we will further investigate the mechanisms of immune damage and protection raised by coronavirus infection to provide more scientific strategies for developing new vaccines and immunotherapies.
Collapse
Affiliation(s)
- Yuting Sun
- School of Medicine, Chongqing University, Chongqing, China
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Bin Luo
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Yueping Liu
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, People’s Liberation Army, Third Military Medical University, Chongqing, China
- *Correspondence: Yongwen Chen,
| |
Collapse
|
21
|
Bankova AK, Pasin C, Huang A, Cicin‐Sain C, Epp S, Audige A, Mueller NJ, Nilsson J, Vilinovszki O, Nair G, Wolfensberger N, Hockl P, Schanz U, Trkola A, Kouyos R, Hasse B, Zinkernagel AS, Manz MG, Abela IA, Müller AMS. Antibody response to a third SARS‐CoV‐2 vaccine dose in recipients of an allogeneic haematopoietic cell transplantation. Br J Haematol 2022; 201:58-63. [PMID: 36382698 DOI: 10.1111/bjh.18562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
Allogeneic haematopoietic cell transplantation (allo-HCT) recipients show impaired antibody (Ab) response to a standard two-dose vaccination against severe acute respiratory syndrome coronavirus-2 and currently a third dose is recommended as part of the primary vaccination regimen. By assessing Ab titres 1 month after a third mRNA vaccine dose in 74 allo-HCT recipients we show sufficient neutralisation activity in 77% of the patients. Discontinuation of immunosuppression before the third vaccine led to serological responses in 50% of low responders to two vaccinations. Identifying factors that might contribute to better vaccine responses in allo-HCT recipients is critical to optimise current vaccination strategies.
Collapse
Affiliation(s)
- Andriyana K. Bankova
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Chloé Pasin
- Institute of Medical Virology University of Zürich Zürich Switzerland
- Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich, University of Zürich Zürich Switzerland
| | - Alice Huang
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Caroline Cicin‐Sain
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Selina Epp
- Institute of Medical Virology University of Zürich Zürich Switzerland
| | - Annette Audige
- Institute of Medical Virology University of Zürich Zürich Switzerland
| | - Nicolas J. Mueller
- Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich, University of Zürich Zürich Switzerland
| | - Jakob Nilsson
- Department of Immunology University Hospital Zürich Zürich Switzerland
| | - Oliver Vilinovszki
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
- Department of Internal Medicine University Hospital Zürich Zürich Switzerland
| | - Gayathri Nair
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Nathan Wolfensberger
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Philipp Hockl
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology University of Zürich Zürich Switzerland
| | - Roger Kouyos
- Institute of Medical Virology University of Zürich Zürich Switzerland
- Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich, University of Zürich Zürich Switzerland
| | - Barbara Hasse
- Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich, University of Zürich Zürich Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich, University of Zürich Zürich Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
| | - Irene A. Abela
- Institute of Medical Virology University of Zürich Zürich Switzerland
- Department of Infectious Diseases and Hospital Epidemiology University Hospital Zurich, University of Zürich Zürich Switzerland
| | - Antonia M. S. Müller
- Department of Medical Oncology and Hematology University Hospital Zürich Zürich Switzerland
- Department of Blood Group Serology and Transfusion Medicine Medical University of Vienna Vienna Austria
| |
Collapse
|
22
|
de Castro MV, Silva MVR, Naslavsky MS, Scliar MO, Nunes K, Passos-Bueno MR, Castelli EC, Magawa JY, Adami FL, Moretti AIS, de Oliveira VL, Boscardin SB, Cunha-Neto E, Kalil J, Jouanguy E, Bastard P, Casanova JL, Quiñones-Vega M, Sosa-Acosta P, Guedes JDS, de Almeida NP, Nogueira FCS, Domont GB, Santos KS, Zatz M. The oldest unvaccinated Covid-19 survivors in South America. Immun Ageing 2022; 19:57. [PMID: 36384671 PMCID: PMC9666972 DOI: 10.1186/s12979-022-00310-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although older adults are at a high risk of severe or critical Covid-19, there are many cases of unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated. RESULTS Despite their advanced age, humoral immune response analysis showed that these individuals displayed robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and metabolites related to innate immune response and host defense was also observed. None presented autoantibodies (auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes underlying the known inborn errors of immunity, including particular inborn errors of type I IFN. CONCLUSION These observations suggest that their Covid-19 resilience might be a combination of their genetic background and their innate and adaptive immunity.
Collapse
Affiliation(s)
- Mateus V de Castro
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Monize V R Silva
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Michel S Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marilia O Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Kelly Nunes
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Erick C Castelli
- Department of Pathology, School of Medicine, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Jhosiene Y Magawa
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Flávia L Adami
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana I S Moretti
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
| | - Vivian L de Oliveira
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
| | - Silvia B Boscardin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mauricio Quiñones-Vega
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica de S Guedes
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália P de Almeida
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), Institute of Chemistry, LADETEC, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Keity S Santos
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia-Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil
- Departamento de Clínica Médica, Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
23
|
Li Y, Merbah M, Wollen-Roberts S, Beckman B, Mdluli T, Swafford I, Mayer SV, King J, Corbitt C, Currier JR, Liu H, Esber A, Pinyakorn S, Parikh A, Francisco LV, Phanuphak N, Maswai J, Owuoth J, Kibuuka H, Iroezindu M, Bahemana E, Vasan S, Ake JA, Modjarrad K, Gromowski G, Paquin-Proulx D, Rolland M. Coronavirus Antibody Responses before COVID-19 Pandemic, Africa and Thailand. Emerg Infect Dis 2022; 28:2214-2225. [PMID: 36220131 PMCID: PMC9622245 DOI: 10.3201/eid2811.221041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prior immune responses to coronaviruses might affect human SARS-CoV-2 response. We screened 2,565 serum and plasma samples collected from 2013 through early 2020, before the COVID-19 pandemic began, from 2,250 persons in 4 countries in Africa (Kenya, Nigeria, Tanzania, and Uganda) and in Thailand, including persons living with HIV-1. We detected IgG responses to SARS-CoV-2 spike (S) subunit 2 protein in 1.8% of participants. Profiling against 23 coronavirus antigens revealed that responses to S, subunit 2, or subunit 1 proteins were significantly more frequent than responses to the receptor-binding domain, S-Trimer, or nucleocapsid proteins (p<0.0001). We observed similar responses in persons with or without HIV-1. Among all coronavirus antigens tested, SARS-CoV-2, SARS-CoV-1, and Middle East respiratory syndrome coronavirus antibody responses were much higher in participants from Africa than in participants from Thailand (p<0.01). We noted less pronounced differences for endemic coronaviruses. Serosurveys could affect vaccine and monoclonal antibody distribution across global populations.
Collapse
|
24
|
Schmiedeberg K, Abela IA, Pikor NB, Vuilleumier N, Schwarzmueller M, Epp S, Pagano S, Grabherr S, Patterson AB, Nussberger M, Trkola A, Ludewig B, von Kempis J, Rubbert-Roth A. Postvaccination anti-S IgG levels predict anti-SARS-CoV-2 neutralising activity over 24 weeks in patients with RA. RMD Open 2022; 8:rmdopen-2022-002575. [PMID: 36288822 PMCID: PMC9615173 DOI: 10.1136/rmdopen-2022-002575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES To correlate immune responses following a two-dose regimen of mRNA anti-SARS-CoV-2 vaccines in patients with rheumatoid arthritis (RA) to the development of a potent neutralising antiviral activity. METHODS The RECOVER study was a prospective, monocentric study including patients with RA and healthy controls (HCs). Assessments were performed before, and 3, 6, 12 and 24 weeks, after the first vaccine dose, respectively, and included IgG, IgA and IgM responses (against receptor binding domain, S1, S2, N), IFN-γ ELISpots as well as neutralisation assays. RESULTS In patients with RA, IgG responses developed slower with lower peak titres compared with HC. Potent neutralising activity assessed by a SARS-CoV-2 pseudovirus neutralisation assay after 12 weeks was observed in all 21 HCs, and in 60.3% of 73 patients with RA. A significant correlation between peak anti-S IgG levels 2 weeks after the second vaccine dose and potent neutralising activity against SARS-CoV-2 was observed at weeks 12 and 24. The analysis of IgG, IgA and IgM isotype responses to different viral proteins demonstrated a delay in IgG but not in IgA and IgM responses. T cell responses were comparable in HC and patients with RA but declined earlier in patients with RA. CONCLUSION In patients with RA, vaccine-induced IgG antibody levels were diminished, while IgA and IgM responses persisted, indicating a delayed isotype switch. Anti-S IgG levels 2 weeks after the second vaccine dose correlate with the development of a potent neutralising activity after 12 and 24 weeks and may allow to identify patients who might benefit from additional vaccine doses or prophylactic regimen.
Collapse
Affiliation(s)
- Kristin Schmiedeberg
- Division of Rheumatology and Immunology, Kantonsspital St Gallen, Sankt Gallen, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland,Division of Infectious Diseases and Hospital Epidemiology, University of Zurich, Zurich, Switzerland
| | | | | | - Magdalena Schwarzmueller
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland,Division of Infectious Diseases and Hospital Epidemiology, University of Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland,Division of Infectious Diseases and Hospital Epidemiology, University of Zurich, Zurich, Switzerland
| | - Sabrina Pagano
- Laboratory Medicine Division, University of Geneva, Geneve, Switzerland
| | - Sarah Grabherr
- Institute of Immunobiology, Kantonsspital St Gallen, Sankt Gallen, Switzerland
| | | | - Madalina Nussberger
- Division of Rheumatology and Immunology, Kantonsspital St Gallen, Sankt Gallen, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland,Division of Infectious Diseases and Hospital Epidemiology, University of Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St Gallen, Sankt Gallen, Switzerland,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Johannes von Kempis
- Division of Rheumatology and Immunology, Kantonsspital St Gallen, Sankt Gallen, Switzerland
| | - Andrea Rubbert-Roth
- Division of Rheumatology and Immunology, Kantonsspital St Gallen, Sankt Gallen, Switzerland
| |
Collapse
|
25
|
Diani S, Leonardi E, Cavezzi A, Ferrari S, Iacono O, Limoli A, Bouslenko Z, Natalini D, Conti S, Mantovani M, Tramonte S, Donzelli A, Serravalle E. SARS-CoV-2-The Role of Natural Immunity: A Narrative Review. J Clin Med 2022; 11:6272. [PMID: 36362500 PMCID: PMC9655392 DOI: 10.3390/jcm11216272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Both natural immunity and vaccine-induced immunity to COVID-19 may be useful to reduce the mortality/morbidity of this disease, but still a lot of controversy exists. AIMS This narrative review analyzes the literature regarding these two immunitary processes and more specifically: (a) the duration of natural immunity; (b) cellular immunity; (c) cross-reactivity; (d) the duration of post-vaccination immune protection; (e) the probability of reinfection and its clinical manifestations in the recovered patients; (f) the comparisons between vaccinated and unvaccinated as to the possible reinfections; (g) the role of hybrid immunity; (h) the effectiveness of natural and vaccine-induced immunity against Omicron variant; (i) the comparative incidence of adverse effects after vaccination in recovered individuals vs. COVID-19-naïve subjects. MATERIAL AND METHODS through multiple search engines we investigated COVID-19 literature related to the aims of the review, published since April 2020 through July 2022, including also the previous articles pertinent to the investigated topics. RESULTS nearly 900 studies were collected, and 246 pertinent articles were included. It was highlighted that the vast majority of the individuals after suffering from COVID-19 develop a natural immunity both of cell-mediated and humoral type, which is effective over time and provides protection against both reinfection and serious illness. Vaccine-induced immunity was shown to decay faster than natural immunity. In general, the severity of the symptoms of reinfection is significantly lower than in the primary infection, with a lower degree of hospitalizations (0.06%) and an extremely low mortality. CONCLUSIONS this extensive narrative review regarding a vast number of articles highlighted the valuable protection induced by the natural immunity after COVID-19, which seems comparable or superior to the one induced by anti-SARS-CoV-2 vaccination. Consequently, vaccination of the unvaccinated COVID-19-recovered subjects may not be indicated. Further research is needed in order to: (a) measure the durability of immunity over time; (b) evaluate both the impacts of Omicron BA.5 on vaccinated and healed subjects and the role of hybrid immunity.
Collapse
Affiliation(s)
- Sara Diani
- School of Musictherapy, Université Européenne Jean Monnet, 35129 Padova, Italy
| | | | | | | | - Oriana Iacono
- Physical Medicine and Rehabilitation Department, Mirandola Hospital, 41037 Mirandola, Italy
| | - Alice Limoli
- ARPAV (Regional Agency for the Environment Protection), 31100 Treviso, Italy
| | - Zoe Bouslenko
- Cardiology Department, Valdese Hospital, 10100 Torino, Italy
| | | | | | | | - Silvano Tramonte
- Environment and Health Commission, National Bioarchitecture Institute, 20121 Milano, Italy
| | | | | |
Collapse
|
26
|
Mueed A, Ahmad T, Abdullah M, Sultan F, Khan AA. Impact of school closures and reopening on COVID-19 caseload in 6 cities of Pakistan: An Interrupted Time Series Analysis. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000648. [PMID: 36962567 PMCID: PMC10022346 DOI: 10.1371/journal.pgph.0000648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
Abstract
Schools were closed all over Pakistan on November 26, 2020 to reduce community transmission of COVID-19 and reopened between January 18 and February 1, 2021. However, these closures were associated with significant economic and social costs, prompting a review of effectiveness of school closures to reduce the spread of COVID-19 infections in a developing country like Pakistan. A single-group interrupted time series analysis (ITSA) was used to measure the impact of school closures, as well as reopening schools, on daily new COVID-19 cases in 6 major cities across Pakistan: Lahore, Karachi, Islamabad, Quetta, Peshawar, and Muzaffarabad. However, any benefits were contingent on continued closure of schools, as cases bounced back once schools reopened. School closures are associated with a clear and statistically significant reduction in COVID-19 cases by 0.07 to 0.63 cases per 100,000 population, while reopening schools is associated with a statistically significant increase. Lahore is an exception to the effect of school closures, but it too saw an increase in COVID-19 cases after schools reopened in early 2021. We show that closing schools was a viable policy option, especially before vaccines became available. However, its social and economic costs must also be considered.
Collapse
Affiliation(s)
- Abdul Mueed
- Akhter Hameed Khan Foundation, Islamabad, Pakistan
| | | | | | - Faisal Sultan
- Ministry of National Health Services, Regulation and Coordination, Islamabad, Pakistan
| | - Adnan Ahmad Khan
- Ministry of National Health Services, Regulation and Coordination, Islamabad, Pakistan
- Research and Development Solutions, Islamabad, Pakistan
| |
Collapse
|
27
|
Violán C, Torán-Monserrat P, Quirant B, Lamonja-Vicente N, Carrasco-Ribelles LA, Chacón C, Manresa-Dominguez JM, Ramos-Roure F, Dacosta-Aguayo R, Palacios-Fernández C, Roso-Llorach A, Pujol A, Ouchi D, Monteagudo M, Montero-Alia P, Garcia-Sierra R, Arméstar F, Doladé M, Prat N, Bonet JM, Clotet B, Blanco I, Boigues-Pons M, Moreno-Millán N, Prado JG, Cáceres EMM. Kinetics of humoral immune response over 17 months of COVID-19 pandemic in a large cohort of healthcare workers in Spain: the ProHEpiC-19 study. BMC Infect Dis 2022; 22:721. [PMID: 36057544 PMCID: PMC9439943 DOI: 10.1186/s12879-022-07696-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background Understanding the immune response to the SARS-CoV-2 virus is critical for efficient monitoring and control strategies. The ProHEpic-19 cohort provides a fine-grained description of the kinetics of antibodies after SARS-CoV-2 infection with an exceptional resolution over 17 months. Methods We established a cohort of 769 healthcare workers including healthy and infected with SARS-CoV-2 in northern Barcelona to determine the kinetics of the IgM against the nucleocapsid (N) and the IgG against the N and spike (S) of SARS-CoV-2 in infected healthcare workers. The study period was from 5 May 2020 to 11 November 2021.We used non-linear mixed models to investigate the kinetics of IgG and IgM measured at nine time points over 17 months from the date of diagnosis. The model included factors of time, gender, and disease severity (asymptomatic, mild-moderate, severe-critical) to assess their effects and their interactions. Findings 474 of the 769 participants (61.6%) became infected with SARS-CoV-2. Significant effects of gender and disease severity were found for the levels of all three antibodies. Median IgM(N) levels were already below the positivity threshold in patients with asymptomatic and mild-moderate disease at day 270 after the diagnosis, while IgG(N and S) levels remained positive at least until days 450 and 270, respectively. Kinetic modelling showed a general rise in both IgM(N) and IgG(N) levels up to day 30, followed by a decay with a rate depending on disease severity. IgG(S) levels remained relatively constant from day 15 over time. Interpretation IgM(N) and IgG(N, S) SARS-CoV-2 antibodies showed a heterogeneous kinetics over the 17 months. Only the IgG(S) showed a stable increase, and the levels and the kinetics of antibodies varied according to disease severity. The kinetics of IgM and IgG observed over a year also varied by clinical spectrum can be very useful for public health policies around vaccination criteria in adult population. Funding Regional Ministry of Health of the Generalitat de Catalunya (Call COVID19-PoC SLT16_04; NCT04885478). Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07696-6.
Collapse
Affiliation(s)
- Concepción Violán
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Unitat de Suport a la Recerca Metropolitana Nord, Mare de Déu de Guadalupe 2, Planta 1ª, Mataro, 08303, Barcelona, Spain. .,Direcció d'Atenció Primària Metropolitana Nord Institut Català de Salut, Barcelona, Spain. .,Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, S/N, Badalona, 08916, Barcelona, Spain. .,Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Pere Torán-Monserrat
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Unitat de Suport a la Recerca Metropolitana Nord, Mare de Déu de Guadalupe 2, Planta 1ª, Mataro, 08303, Barcelona, Spain.,Direcció d'Atenció Primària Metropolitana Nord Institut Català de Salut, Barcelona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, S/N, Badalona, 08916, Barcelona, Spain.,Department of Medicine, Faculty of Medicine, Universitat de Girona, 17003, Girona, Spain.,Multidisciplinary Research Group in Health and Society GREMSAS (2017 SGR 917), 08007, Barcelona, Spain
| | - Bibiana Quirant
- Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, S/N, Badalona, 08916, Barcelona, Spain.,Cell Biology, Physiology, Immunology Department, FOCIS Center of Excellence-Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Immunology Division, Laboratori Clinic Metropolitana Nord (LCMN), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Noemi Lamonja-Vicente
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Unitat de Suport a la Recerca Metropolitana Nord, Mare de Déu de Guadalupe 2, Planta 1ª, Mataro, 08303, Barcelona, Spain.,Direcció d'Atenció Primària Metropolitana Nord Institut Català de Salut, Barcelona, Spain
| | - Lucía A Carrasco-Ribelles
- Fundació Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain
| | - Carla Chacón
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Unitat de Suport a la Recerca Metropolitana Nord, Mare de Déu de Guadalupe 2, Planta 1ª, Mataro, 08303, Barcelona, Spain.,Direcció d'Atenció Primària Metropolitana Nord Institut Català de Salut, Barcelona, Spain
| | - Josep Maria Manresa-Dominguez
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Unitat de Suport a la Recerca Metropolitana Nord, Mare de Déu de Guadalupe 2, Planta 1ª, Mataro, 08303, Barcelona, Spain.,Direcció d'Atenció Primària Metropolitana Nord Institut Català de Salut, Barcelona, Spain.,Immunology Division, Laboratori Clinic Metropolitana Nord (LCMN), Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Nursing, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Francesc Ramos-Roure
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Unitat de Suport a la Recerca Metropolitana Nord, Mare de Déu de Guadalupe 2, Planta 1ª, Mataro, 08303, Barcelona, Spain.,Department of Medicine, Faculty of Medicine, Universitat Autónoma de Barcelona, 08193, Bellaterra, Spain
| | - Rosalia Dacosta-Aguayo
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Unitat de Suport a la Recerca Metropolitana Nord, Mare de Déu de Guadalupe 2, Planta 1ª, Mataro, 08303, Barcelona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, S/N, Badalona, 08916, Barcelona, Spain
| | - Cristina Palacios-Fernández
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Unitat de Suport a la Recerca Metropolitana Nord, Mare de Déu de Guadalupe 2, Planta 1ª, Mataro, 08303, Barcelona, Spain.,Direcció d'Atenció Primària Metropolitana Nord Institut Català de Salut, Barcelona, Spain
| | - Albert Roso-Llorach
- Fundació Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain.,Departament de Pediatria, d'Obstetrícia i Ginecologia i de Medicina Preventiva, Universitat Autónoma de Barcelona, 08193, Bellaterra, Spain
| | - Aleix Pujol
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Unitat de Suport a la Recerca Metropolitana Nord, Mare de Déu de Guadalupe 2, Planta 1ª, Mataro, 08303, Barcelona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, S/N, Badalona, 08916, Barcelona, Spain
| | - Dan Ouchi
- Fundació Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain.,AIDS Research Institute Irsicaixa, Badalona, Spain
| | - Mónica Monteagudo
- Fundació Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain
| | - Pilar Montero-Alia
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Unitat de Suport a la Recerca Metropolitana Nord, Mare de Déu de Guadalupe 2, Planta 1ª, Mataro, 08303, Barcelona, Spain.,Direcció d'Atenció Primària Metropolitana Nord Institut Català de Salut, Barcelona, Spain.,Department of Medicine, Faculty of Medicine, Universitat de Girona, 17003, Girona, Spain.,Centre d'Atenció Primària La Riera (Mataró 1), Institut Català de la Salut, Barcelona, Spain
| | - Rosa Garcia-Sierra
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Unitat de Suport a la Recerca Metropolitana Nord, Mare de Déu de Guadalupe 2, Planta 1ª, Mataro, 08303, Barcelona, Spain.,Department of Medicine, Faculty of Medicine, Universitat de Girona, 17003, Girona, Spain.,Department of Nursing, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Fernando Arméstar
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Intensive Care Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Maria Doladé
- Clinical and Biochemical Analysis Division, Laboratori Clinic Metropolitana Nord (LCMN), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Nuria Prat
- Direcció d'Atenció Primària Metropolitana Nord Institut Català de Salut, Barcelona, Spain
| | - Josep Maria Bonet
- Direcció d'Atenció Primària Metropolitana Nord Institut Català de Salut, Barcelona, Spain
| | - Bonaventura Clotet
- Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, S/N, Badalona, 08916, Barcelona, Spain.,AIDS Research Institute Irsicaixa, Badalona, Spain.,Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain
| | - Ignacio Blanco
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Gerència Territorial Metropolitana Nord, Institut Català de la Salut, Barcelona, Spain
| | - Marc Boigues-Pons
- Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, S/N, Badalona, 08916, Barcelona, Spain.,Cell Biology, Physiology, Immunology Department, FOCIS Center of Excellence-Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Immunology Division, Laboratori Clinic Metropolitana Nord (LCMN), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Nemesio Moreno-Millán
- Direcció d'Atenció Primària Metropolitana Nord Institut Català de Salut, Barcelona, Spain
| | - Julia G Prado
- Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, S/N, Badalona, 08916, Barcelona, Spain.,AIDS Research Institute Irsicaixa, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINF), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eva María Martínez Cáceres
- Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, S/N, Badalona, 08916, Barcelona, Spain.,Cell Biology, Physiology, Immunology Department, FOCIS Center of Excellence-Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Immunology Division, Laboratori Clinic Metropolitana Nord (LCMN), Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | |
Collapse
|
28
|
Speich B, Chammartin F, Abela IA, Amico P, Stoeckle MP, Eichenberger AL, Hasse B, Braun DL, Schuurmans MM, Müller TF, Tamm M, Audigé A, Mueller NJ, Rauch A, Günthard HF, Koller MT, Trkola A, Briel M, Kusejko K, Bucher HC. Antibody Response in Immunocompromised Patients After the Administration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine BNT162b2 or mRNA-1273: A Randomized Controlled Trial. Clin Infect Dis 2022; 75:e585-e593. [PMID: 35234868 PMCID: PMC8903480 DOI: 10.1093/cid/ciac169] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND BNT162b2 by Pfizer-BioNTech and mRNA-1273 by Moderna are the most commonly used vaccines to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Head-to-head comparison of the efficacy of these vaccines in immunocompromised patients is lacking. METHODS Parallel, 2-arm (allocation 1:1), open-label, noninferiority randomized clinical trial nested into the Swiss HIV Cohort Study and the Swiss Transplant Cohort Study. People living with human immunodeficiency virus (PLWH) or solid organ transplant recipients (SOTR; ie, lung and kidney) from these cohorts were randomized to mRNA-1273 or BNT162b2. The primary endpoint was antibody response to SARS-CoV-2 spike (S1) protein receptor binding domain (Elecsys Anti-SARS-CoV-2 immunoassay, Roche; cutoff ≥0.8 units/mL) 12 weeks after first vaccination (ie, 8 weeks after second vaccination). In addition, antibody response was measured with the Antibody Coronavirus Assay 2 (ABCORA 2). RESULTS A total of 430 patients were randomized and 412 were included in the intention-to-treat analysis (341 PLWH and 71 SOTR). The percentage of patients showing an immune response was 92.1% (95% confidence interval [CI]: 88.4-95.8; 186/202) for mRNA-1273 and 94.3% (95% CI: 91.2-97.4; 198/210) for BNT162b2 (difference: -2.2%; 95% CI: -7.1 to 2.7), fulfilling noninferiority of mRNA-1273. With the ABCORA 2 test, 89.1% had an immune response to mRNA-1273 (95% CI: 84.8-93.4; 180/202) and 89.5% to BNT162b2 (95% CI: 85.4-93.7; 188/210). Based on the Elecsys test, all PLWH had an antibody response (100.0%; 341/341), whereas for SOTR, only 60.6% (95% CI: 49.2-71.9; 43/71) had titers above the cutoff level. CONCLUSIONS In immunocompromised patients, the antibody response of mRNA-1273 was noninferior to BNT162b2. PLWH had in general an antibody response, whereas a high proportion of SOTR had no antibody response.
Collapse
Affiliation(s)
- Benjamin Speich
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Frédérique Chammartin
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Irene A Abela
- University of Zurich, Institute of Medical Virology, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Patrizia Amico
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Marcel P Stoeckle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Switzerland
| | - Anna L Eichenberger
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Barbara Hasse
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Dominique L Braun
- University of Zurich, Institute of Medical Virology, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Macé M Schuurmans
- Division of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Müller
- Nephrology Clinic, University Hospital Zurich, Zürich, Switzerland
| | - Michael Tamm
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Annette Audigé
- University of Zurich, Institute of Medical Virology, Zurich, Switzerland
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Huldrych F Günthard
- University of Zurich, Institute of Medical Virology, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Michael T Koller
- Swiss Transplant Cohorts Study, University Hospital Basel, University of Basel, Basel, Switzerlandand
| | - Alexandra Trkola
- University of Zurich, Institute of Medical Virology, Zurich, Switzerland
| | - Matthias Briel
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Katharina Kusejko
- University of Zurich, Institute of Medical Virology, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Heiner C Bucher
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Chammartin F, Kusejko K, Pasin C, Trkola A, Briel M, Amico P, Stoekle MP, Eichenberger AL, Hasse B, Braun DL, Schuurmans MM, Müller TF, Tamm M, Mueller NJ, Rauch A, Koller MT, Günthard HF, Bucher HC, Speich B, Abela IA. Determinants of antibody response to severe acute respiratory syndrome coronavirus 2 mRNA vaccines in people with HIV. AIDS 2022; 36:1465-1468. [PMID: 35876706 DOI: 10.1097/qad.0000000000003246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We identified determinants of SARS-CoV-2 mRNA vaccine antibody response in people with HIV (PWH). Antibody response was higher among PWH less than 60 years, with CD4+ cell count superior to 350 cells/μl and vaccinated with mRNA-1273 by Moderna compared with BNT162b2 by Pfizer-BioNTech. Preinfection with SARS-CoV-2 boosted the antibody response and smokers had an overall lower antibody response. Elderly PWH and those with low CD4+ cell count should be prioritized for booster vaccinations.
Collapse
Affiliation(s)
- Frédérique Chammartin
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, Basel
| | - Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich
- Institute of Medical Virology, University of Zürich, Zürich
| | - Chloé Pasin
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich
- Institute of Medical Virology, University of Zürich, Zürich
| | | | - Matthias Briel
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, Basel
| | | | - Marcel P Stoekle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel
| | - Anna L Eichenberger
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern
| | - Barbara Hasse
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich
| | | | | | | | - Michael Tamm
- Clinic of Respiratory Medicine and Pulmonary Cell Research
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern
| | - Michael T Koller
- Swiss Transplant Cohort Study, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich
- Institute of Medical Virology, University of Zürich, Zürich
| | - Heiner C Bucher
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, Basel
| | - Benjamin Speich
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, Basel
| | - Irene A Abela
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich
- Institute of Medical Virology, University of Zürich, Zürich
| |
Collapse
|
30
|
Critically ill COVID-19 patients with neutralizing autoantibodies against type I interferons have increased risk of herpesvirus disease. PLoS Biol 2022; 20:e3001709. [PMID: 35788562 PMCID: PMC9286229 DOI: 10.1371/journal.pbio.3001709] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/15/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Autoantibodies neutralizing the antiviral action of type I interferons (IFNs) have been associated with predisposition to severe Coronavirus Disease 2019 (COVID-19). Here, we screened for such autoantibodies in 103 critically ill COVID-19 patients in a tertiary intensive care unit (ICU) in Switzerland. Eleven patients (10.7%), but no healthy donors, had neutralizing anti-IFNα or anti-IFNα/anti-IFNω IgG in plasma/serum, but anti-IFN IgM or IgA was rare. One patient had non-neutralizing anti-IFNα IgG. Strikingly, all patients with plasma anti-IFNα IgG also had anti-IFNα IgG in tracheobronchial secretions, identifying these autoantibodies at anatomical sites relevant for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Longitudinal analyses revealed patient heterogeneity in terms of increasing, decreasing, or stable anti-IFN IgG levels throughout the length of hospitalization. Notably, presence of anti-IFN autoantibodies in this critically ill COVID-19 cohort appeared to predict herpesvirus disease (caused by herpes simplex viruses types 1 and 2 (HSV-1/-2) and/or cytomegalovirus (CMV)), which has been linked to worse clinical outcomes. Indeed, all 7 tested COVID-19 patients with anti-IFN IgG in our cohort (100%) suffered from one or more herpesviruses, and analysis revealed that these patients were more likely to experience CMV than COVID-19 patients without anti-IFN autoantibodies, even when adjusting for age, gender, and systemic steroid treatment (odds ratio (OR) 7.28, 95% confidence interval (CI) 1.14 to 46.31, p = 0.036). As the IFN system deficiency caused by neutralizing anti-IFN autoantibodies likely directly and indirectly exacerbates the likelihood of latent herpesvirus reactivations in critically ill patients, early diagnosis of anti-IFN IgG could be rapidly used to inform risk-group stratification and treatment options. Trial Registration: ClinicalTrials.gov Identifier: NCT04410263. Autoantibodies that neutralize the antiviral action of type I interferons are associated with predisposition to severe COVID-19. This study shows that this deficiency in the interferon system is associated with a heightened risk of herpesvirus disease in critically ill patients infected with SARS-CoV-2.
Collapse
|
31
|
Marconato M, Abela IA, Hauser A, Schwarzmüller M, Katzensteiner R, Braun DL, Epp S, Audigé A, Weber J, Rusert P, Schindler E, Pasin C, West E, Böni J, Kufner V, Huber M, Zaheri M, Schmutz S, Frey BM, Kouyos RD, Günthard HF, Manz MG, Trkola A. Antibodies from convalescent plasma promote SARS-CoV-2 clearance in individuals with and without endogenous antibody response. J Clin Invest 2022; 132:e158190. [PMID: 35482408 PMCID: PMC9197521 DOI: 10.1172/jci158190] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDNeutralizing antibodies are considered a key correlate of protection by current SARS-CoV-2 vaccines. The manner in which human infections respond to therapeutic SARS-CoV-2 antibodies, including convalescent plasma therapy, remains to be fully elucidated.METHODSWe conducted a proof-of-principle study of convalescent plasma therapy based on a phase I trial in 30 hospitalized COVID-19 patients with a median interval between onset of symptoms and first transfusion of 9 days (IQR, 7-11.8 days). Comprehensive longitudinal monitoring of the virological, serological, and disease status of recipients allowed deciphering of parameters on which plasma therapy efficacy depends.RESULTSIn this trial, convalescent plasma therapy was safe as evidenced by the absence of transfusion-related adverse events and low mortality (3.3%). Treatment with highly neutralizing plasma was significantly associated with faster virus clearance, as demonstrated by Kaplan-Meier analysis (P = 0.034) and confirmed in a parametric survival model including viral load and comorbidity (adjusted hazard ratio, 3.0; 95% CI, 1.1-8.1; P = 0.026). The onset of endogenous neutralization affected viral clearance, but even after adjustment for their pretransfusion endogenous neutralization status, recipients benefitted from plasma therapy with high neutralizing antibodies (hazard ratio, 3.5; 95% CI, 1.1-11; P = 0.034).CONCLUSIONOur data demonstrate a clear impact of exogenous antibody therapy on the rapid clearance of viremia before and after onset of the endogenous neutralizing response, and point beyond antibody-based interventions to critical laboratory parameters for improved evaluation of current and future SARS-CoV-2 therapies.TRIAL REGISTRATIONClinicalTrials.gov NCT04869072.FUNDINGThis study was funded via an Innovation Pool project by the University Hospital Zurich; the Swiss Red Cross Glückskette Corona Funding; Pandemiefonds of the UZH Foundation; and the Clinical Research Priority Program "Comprehensive Genomic Pathogen Detection" of the University of Zurich.
Collapse
Affiliation(s)
- Maddalena Marconato
- Department of Medical Oncology and Haematology; University Hospital Zurich and University of Zurich; Comprehensive Cancer Center Zurich; Switzerland
| | - Irene A. Abela
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Anthony Hauser
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Rheliana Katzensteiner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Dominique L. Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Eméry Schindler
- Blood Transfusion Service Zurich, Swiss Red Cross, Zurich, Switzerland
| | - Chloé Pasin
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Emily West
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Verena Kufner
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Maryam Zaheri
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Stefan Schmutz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Beat M. Frey
- Blood Transfusion Service Zurich, Swiss Red Cross, Zurich, Switzerland
| | - Roger D. Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Haematology; University Hospital Zurich and University of Zurich; Comprehensive Cancer Center Zurich; Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Cugno M, Meroni PL, Consonni D, Griffini S, Grovetti E, Novembrino C, Torri A, Griffante G, Gariglio M, Varani L, Peyvandi F. Effects of Antibody Responses to Pre-Existing Coronaviruses on Disease Severity and Complement Activation in COVID-19 Patients. Microorganisms 2022; 10:microorganisms10061191. [PMID: 35744709 PMCID: PMC9228214 DOI: 10.3390/microorganisms10061191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
The severity of coronavirus disease 2019 (COVID-19) may be influenced by pre-existing immune responses against endemic coronaviruses, but conflicting data have been reported. We studied 148 patients who were hospitalised because of a confirmed diagnosis of COVID-19, classified mild in 58, moderate in 44, and severe in 46. The controls were 27 healthy subjects. At admission, blood samples were collected for the measurement of biomarkers of disease severity and levels of the IgG against the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and pre-existing coronaviruses OC43, HKU1, NL63 and 229E. Higher levels of IgG antibodies against the RBD of pre-existing coronavirus (with the highest significance for anti-HKU1 IgG, p = 0.01) were found in patients with mild disease, compared with those with moderate or severe disease. Multivariable logistic regression confirmed the association of high levels of antibodies to pre-existing coronavirus with mild disease and showed their associations with low levels of the complement activation marker SC5b-9 (p range = 0.007–0.05). High levels of anti-NL63 antibodies were associated with low levels of the coagulation activation marker D-dimer (p = 0.04), while high levels of IgG against 229E were associated with low levels of the endothelial activation marker von Willebrand factor (p = 0.05). Anti-SARS-CoV-2-neutralising activity of plasma positively correlated with anti-SARS-CoV-2 IgG (r = 0.53, p = 0.04) and with anti-HKU1 IgG (r = 0.51, p = 0.05). In hospitalised patients with COVID-19, high levels of antibodies to pre-existing coronaviruses are associated with mild disease, suggesting that their measurement could be useful in predicting the severity of the disease.
Collapse
Affiliation(s)
- Massimo Cugno
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy;
- UOC Medicina Generale–Emostasi e Trombosi, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.G.); (E.G.); (C.N.); (A.T.)
- Correspondence:
| | - Pier Luigi Meroni
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy;
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Samantha Griffini
- UOC Medicina Generale–Emostasi e Trombosi, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.G.); (E.G.); (C.N.); (A.T.)
| | - Elena Grovetti
- UOC Medicina Generale–Emostasi e Trombosi, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.G.); (E.G.); (C.N.); (A.T.)
| | - Cristina Novembrino
- UOC Medicina Generale–Emostasi e Trombosi, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.G.); (E.G.); (C.N.); (A.T.)
| | - Adriana Torri
- UOC Medicina Generale–Emostasi e Trombosi, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.G.); (E.G.); (C.N.); (A.T.)
| | - Gloria Griffante
- Virology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (G.G.); (M.G.)
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (G.G.); (M.G.)
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland;
| | - Flora Peyvandi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy;
- UOC Medicina Generale–Emostasi e Trombosi, Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.G.); (E.G.); (C.N.); (A.T.)
| |
Collapse
|
33
|
Wachter F, Regensburger AP, Antonia Sophia Peter, Knieling F, Wagner AL, Simon D, Hoerning A, Woelfle J, Überla K, Neubert A, Rauh M. Continuous monitoring of SARS-CoV-2 seroprevalence in children using residual blood samples from routine clinical chemistry. Clin Chem Lab Med 2022; 60:941-951. [PMID: 35218170 DOI: 10.1515/cclm-2022-0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The assessment of SARS-CoV-2 infections in children is still challenging, but essential for appropriate political decisions. The aim of this study was to investigate whether residual blood samples can be used for SARS-CoV-2 seroprevalence monitoring in pediatrics. METHODS In this repeated cross-sectional cohort study, anonymous residual blood samples from pediatric patients aged 0-17 years were collected in three time-periods (Oct.-Nov. 2020, April 2021, and June-July 2021) and analyzed for SARS-CoV-2 Spike protein (anti-S) and nucleocapsid (anti-N) antibodies using commercial antibody assays. 28 reactive samples were used to compare antibody levels with a pseudotyped neutralization assay. The results were further compared to the official national COVID-19 surveillance data to calculate the number of unreported cases. RESULTS In total, n=2,626 individual blood samples were analyzed. In this unvaccinated pediatric cohort anti-S and anti-N antibody seroprevalence increased over the three time periods (anti-S: 1.38-9.16%, and 14.59%; anti-N: 1.26%, to 6.19%, and 8.56%). Compared to the national surveillance data this leads to a 3.93-5.66-fold increase in the number of unreported cases. However, a correlation between the cumulative incidence of the individual provinces and our assigned data was found (r=0.74, p=0.0151). In addition, reactive samples with anti-S and anti-N and samples with only anti-S showed neutralization capabilities (11/14 and 8/14, respectively). Anti-S levels were not significantly different between age groups and sexes (all p>0.05). CONCLUSIONS The present study suggests that residual blood samples from routine laboratory chemistry could be included in the estimation of the total SARS-CoV-2 seroprevalence in children.
Collapse
Affiliation(s)
- Felix Wachter
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Antonia Sophia Peter
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra L Wagner
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - André Hoerning
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Antje Neubert
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
34
|
Embong AK, Nguyen-Contant P, Wang J, Kanagaiah P, Chaves FA, Fitzgerald TF, Zhou Q, Kosoy G, Branche AR, Miller BL, Zand MS, Sangster MY, Topham DJ. Formation and Expansion of Memory B Cells against Coronavirus in Acutely Infected COVID-19 Individuals. Pathogens 2022; 11:186. [PMID: 35215130 PMCID: PMC8876169 DOI: 10.3390/pathogens11020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Infection with the β-coronavirus SARS-CoV-2 typically generates strong virus-specific antibody production. Antibody responses against novel features of SARS-CoV-2 proteins require naïve B cell activation, but there is a growing appreciation that conserved regions are recognized by pre-existing memory B cells (MBCs) generated by endemic coronaviruses. The current study investigated the role of pre-existing cross-reactive coronavirus memory in the antibody response to the viral spike (S) and nucleocapsid (N) proteins following SARS-CoV-2 infection. The breadth of reactivity of circulating antibodies, plasmablasts, and MBCs was analyzed. Acutely infected subjects generated strong IgG responses to the S protein, including the novel receptor binding domain, the conserved S2 region, and to the N protein. The response included reactivity to the S of endemic β-coronaviruses and, interestingly, to the N of an endemic α-coronavirus. Both mild and severe infection expanded IgG MBC populations reactive to the S of SARS-CoV-2 and endemic β-coronaviruses. Avidity of S-reactive IgG antibodies and MBCs increased after infection. Overall, findings indicate that the response to the S and N of SARS-CoV-2 involves pre-existing MBC activation and adaptation to novel features of the proteins, along with the potential of imprinting to shape the response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- A. Karim Embong
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA; (A.K.E.); (P.K.); (F.A.C.); (T.F.F.); (M.Y.S.)
| | | | - Jiong Wang
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14620, USA; (J.W.); (Q.Z.); (M.S.Z.)
| | - Preshetha Kanagaiah
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA; (A.K.E.); (P.K.); (F.A.C.); (T.F.F.); (M.Y.S.)
| | - Francisco A. Chaves
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA; (A.K.E.); (P.K.); (F.A.C.); (T.F.F.); (M.Y.S.)
| | - Theresa F. Fitzgerald
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA; (A.K.E.); (P.K.); (F.A.C.); (T.F.F.); (M.Y.S.)
| | - Qian Zhou
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14620, USA; (J.W.); (Q.Z.); (M.S.Z.)
| | - Gabrielle Kosoy
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14620, USA; (G.K.); (B.L.M.)
| | - Angela R. Branche
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14620, USA;
| | - Benjamin L. Miller
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14620, USA; (G.K.); (B.L.M.)
| | - Martin S. Zand
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14620, USA; (J.W.); (Q.Z.); (M.S.Z.)
| | - Mark Y. Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA; (A.K.E.); (P.K.); (F.A.C.); (T.F.F.); (M.Y.S.)
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA; (A.K.E.); (P.K.); (F.A.C.); (T.F.F.); (M.Y.S.)
| |
Collapse
|
35
|
Huang A, Cicin-Sain C, Pasin C, Epp S, Audigé A, Müller NJ, Nilsson J, Bankova A, Wolfensberger N, Vilinovszki O, Nair G, Hockl P, Schanz U, Kouyos RD, Hasse B, Zinkernagel AS, Trkola A, Manz MG, Abela IA, Müller AMS. Antibody Response to SARS-CoV-2 Vaccination in Patients Following Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 2022; 28:214.e1-214.e11. [PMID: 35092892 PMCID: PMC8802693 DOI: 10.1016/j.jtct.2022.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/06/2023]
Abstract
Vaccines against SARS-CoV-2 have been rapidly approved. Although pivotal studies were conducted in healthy volunteers, little information is available on the safety and efficacy of mRNA vaccines in immunocompromised patients, including recipients of allogeneic hematopoietic cell transplantation (allo-HCT). Here we used a novel assay to analyze patient- and transplantation-related factors and their influence on immune responses to SARS-CoV-2 vaccination over an extended period (up to 6 months) in a large and homogenous group of allo-HCT recipients at a single center in Switzerland. We examined longitudinal antibody responses to SARS-CoV-2 vaccination with BNT162b2 (BioNTech/Pfizer) and mRNA-1273 (Moderna) in 110 allo-HCT recipients and 86 healthy controls. Seroprofiling recording IgG, IgA, and IgM reactivity against SARS-CoV-2 antigens (receptor-binding domain, spike glycoprotein subunits S1 and S2, and nucleocapsid protein) was performed before vaccination, before the second dose, and at 1, 3, and 6 months after the second dose. Patients were stratified to 3 groups: 3 to 6 months post-allo-HCT, 6 to 12 months post-allo-HCT, and >12 months post-allo-HCT. Patients in the 3 to 6 months and 6 to 12 months post-allo-HCT groups developed significantly lower antibody titers after vaccination compared with patients in the >12 months post-allo-HCT group and healthy controls (P < .001). Within the cohort of allo-HCT recipients, patients age >65 years (P = .030), those receiving immunosuppression for prevention or treatment of graft-versus-host disease (GVHD) (P = .033), and patients with relapsed disease (P = .014) displayed low humoral immune responses to the vaccine. In contrast, the intensity of the conditioning regimen, underlying disease (myeloid/lymphoid/other), and presence of chronic GVHD had no impact on antibody levels. Antibody titers achieved the highest levels at 1 month after the second dose of the vaccine but waned substantially in all transplantation groups and healthy controls over time. This analysis of long-term vaccine antibody response is of critical importance to allo-HCT recipients and transplant physicians to guide treatment decisions regarding revaccination and social behavior during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Alice Huang
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Caroline Cicin-Sain
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Chloe Pasin
- Institute of Medical Virology, University of Zurich, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Selina Epp
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Annette Audigé
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Nicolas J Müller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, Switzerland
| | - Andriyana Bankova
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Nathan Wolfensberger
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Oliver Vilinovszki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Gayathri Nair
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Philipp Hockl
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Urs Schanz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Barbara Hasse
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Irene A Abela
- Institute of Medical Virology, University of Zurich, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Antonia M S Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland.
| |
Collapse
|
36
|
Jarius S, Pache F, Körtvelyessy P, Jelčić I, Stettner M, Franciotta D, Keller E, Neumann B, Ringelstein M, Senel M, Regeniter A, Kalantzis R, Willms JF, Berthele A, Busch M, Capobianco M, Eisele A, Reichen I, Dersch R, Rauer S, Sandner K, Ayzenberg I, Gross CC, Hegen H, Khalil M, Kleiter I, Lenhard T, Haas J, Aktas O, Angstwurm K, Kleinschnitz C, Lewerenz J, Tumani H, Paul F, Stangel M, Ruprecht K, Wildemann B. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients. J Neuroinflammation 2022; 19:19. [PMID: 35057809 PMCID: PMC8771621 DOI: 10.1186/s12974-021-02339-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Comprehensive data on the cerebrospinal fluid (CSF) profile in patients with COVID-19 and neurological involvement from large-scale multicenter studies are missing so far. OBJECTIVE To analyze systematically the CSF profile in COVID-19. METHODS Retrospective analysis of 150 lumbar punctures in 127 patients with PCR-proven COVID-19 and neurological symptoms seen at 17 European university centers RESULTS: The most frequent pathological finding was blood-CSF barrier (BCB) dysfunction (median QAlb 11.4 [6.72-50.8]), which was present in 58/116 (50%) samples from patients without pre-/coexisting CNS diseases (group I). QAlb remained elevated > 14d (47.6%) and even > 30d (55.6%) after neurological onset. CSF total protein was elevated in 54/118 (45.8%) samples (median 65.35 mg/dl [45.3-240.4]) and strongly correlated with QAlb. The CSF white cell count (WCC) was increased in 14/128 (11%) samples (mostly lympho-monocytic; median 10 cells/µl, > 100 in only 4). An albuminocytological dissociation (ACD) was found in 43/115 (37.4%) samples. CSF L-lactate was increased in 26/109 (24%; median 3.04 mmol/l [2.2-4]). CSF-IgG was elevated in 50/100 (50%), but was of peripheral origin, since QIgG was normal in almost all cases, as were QIgA and QIgM. In 58/103 samples (56%) pattern 4 oligoclonal bands (OCB) compatible with systemic inflammation were present, while CSF-restricted OCB were found in only 2/103 (1.9%). SARS-CoV-2-CSF-PCR was negative in 76/76 samples. Routine CSF findings were normal in 35%. Cytokine levels were frequently elevated in the CSF (often associated with BCB dysfunction) and serum, partly remaining positive at high levels for weeks/months (939 tests). Of note, a positive SARS-CoV-2-IgG-antibody index (AI) was found in 2/19 (10.5%) patients which was associated with unusually high WCC in both of them and a strongly increased interleukin-6 (IL-6) index in one (not tested in the other). Anti-neuronal/anti-glial autoantibodies were mostly absent in the CSF and serum (1509 tests). In samples from patients with pre-/coexisting CNS disorders (group II [N = 19]; including multiple sclerosis, JC-virus-associated immune reconstitution inflammatory syndrome, HSV/VZV encephalitis/meningitis, CNS lymphoma, anti-Yo syndrome, subarachnoid hemorrhage), CSF findings were mostly representative of the respective disease. CONCLUSIONS The CSF profile in COVID-19 with neurological symptoms is mainly characterized by BCB disruption in the absence of intrathecal inflammation, compatible with cerebrospinal endotheliopathy. Persistent BCB dysfunction and elevated cytokine levels may contribute to both acute symptoms and 'long COVID'. Direct infection of the CNS with SARS-CoV-2, if occurring at all, seems to be rare. Broad differential diagnostic considerations are recommended to avoid misinterpretation of treatable coexisting neurological disorders as complications of COVID-19.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Florence Pache
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Körtvelyessy
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) in Magdeburg, Magdeburg, Germany
| | - Ilijas Jelčić
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Emanuela Keller
- Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care, University Hospital and University of Zurich, Zurich, Switzerland
| | - Bernhard Neumann
- Department of Neurology, University of Regensburg, Regensburg, Germany
- Department of Neurology, DONAUISAR Klinikum Deggendorf, Deggendorf, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Makbule Senel
- Department of Neurology, Ulm University, Ulm, Germany
| | - Axel Regeniter
- Medica Medical Laboratories Dr. F. Kaeppeli AG, Zurich, Switzerland
| | - Rea Kalantzis
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan F. Willms
- Institute of Intensive Care Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Markus Busch
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Marco Capobianco
- Regional Referral Multiple Sclerosis Centre, Department of Neurology, University Hospital S. Luigi - Orbassano (I), Orbassano, Italy
| | - Amanda Eisele
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Ina Reichen
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Rick Dersch
- Clinic of Neurology and Neurophysiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Rauer
- Clinic of Neurology and Neurophysiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Sandner
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Catharina C. Gross
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Ingo Kleiter
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Thorsten Lenhard
- Neuroinfectiology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klemens Angstwurm
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Lewerenz
- Department of Neurology, Ulm University, Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Ulm, Germany
- Specialty Hospital of Neurology Dietenbronn, Schwendi, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - ; in cooperation with the German Society for Cerebrospinal Fluid Diagnostics and Clinical Neurochemistry
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) in Magdeburg, Magdeburg, Germany
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University of Duisburg-Essen, Essen, Germany
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, University of Regensburg, Regensburg, Germany
- Department of Neurology, DONAUISAR Klinikum Deggendorf, Deggendorf, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Ulm University, Ulm, Germany
- Medica Medical Laboratories Dr. F. Kaeppeli AG, Zurich, Switzerland
- Institute of Intensive Care Medicine, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Regional Referral Multiple Sclerosis Centre, Department of Neurology, University Hospital S. Luigi - Orbassano (I), Orbassano, Italy
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Clinic of Neurology and Neurophysiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neurology, Medical University of Graz, Graz, Austria
- Neuroinfectiology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
- Specialty Hospital of Neurology Dietenbronn, Schwendi, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité—Universitätsmedizin Berlin, Berlin, Germany
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hanover, Germany
| |
Collapse
|