1
|
Wei L, Zhu W, Dong C, Kim JK, Ma Y, Denning TL, Kang SM, Wang BZ. Lipid nanoparticles encapsulating both adjuvant and antigen mRNA improve influenza immune cross-protection in mice. Biomaterials 2025; 317:123039. [PMID: 39724768 DOI: 10.1016/j.biomaterials.2024.123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The rapid approval of SARS-CoV-2 mRNA lipid nanoparticle (LNP) vaccines indicates the versatility of mRNA LNPs in an urgent vaccine need. However, the mRNA vaccines do not induce mucosal cellular responses or broad protection against recent variants. To improve cross-protection of mRNA vaccines, here we engineered a pioneered mRNA LNP encapsulating with mRNA constructs encoding cytokine adjuvant and influenza A hemagglutinin (HA) antigen for intradermal vaccination. The adjuvant mRNA encodes a novel fusion cytokine GIFT4 comprising GM-CSF and IL-4. We found that the adjuvanted mRNA LNP vaccine induced high levels of humoral antibodies and systemic T cell responses against heterologous influenza antigens and protected immunized mice against influenza A viral infections. Also, the adjuvanted mRNA LNP vaccine elicited early germinal center reactions in draining lymph nodes and promoted antibody-secreting B cell responses. In addition, we generated another adjuvant mRNA encoding CCL27, which enhanced systemic immune responses. We found the two adjuvant mRNAs both showed effective adjuvanticity in enhancing humoral and cellular responses in mice. Interestingly, intradermal immunizations of GIFT4 or CCL27 mRNA adjuvanted mRNA LNP vaccines induced significant lung tissue-resident T cells. Our findings demonstrate that the cytokine mRNA can be a promising adjuvant flexibly formulated into mRNA LNP vaccines to provoke strong immunity against viral variants.
Collapse
Affiliation(s)
- Lai Wei
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Berton RR, Heidarian M, Kannan SK, Shah M, Butler NS, Harty JT, Badovinac VP. Accurate enumeration of pathogen-specific and virtual memory CD8 T cells after infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:995-1007. [PMID: 40167212 PMCID: PMC12123210 DOI: 10.1093/jimmun/vkaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/04/2025] [Indexed: 04/02/2025]
Abstract
Establishing the magnitude and kinetics of polyclonal Ag-specific CD8 T-cell responses, in addition to their functional fitness, is critical for evaluating a host's ability to respond to different kinds of infections and/or immunizations. To track CD8 T-cell responses during infection, a surrogate-activation-marker approach (CD8αloCD11ahi) is used to distinguish naïve and Ag-experienced effector/memory CD8 T cells in vivo. However, semidifferentiated virtual memory (Tvm) CD8 T cells have recently been identified in uninfected/unmanipulated mice that display a phenotype similar to Ag-experienced cells. Therefore, magnitude and breadth of CD8 T-cell responses may be overestimated when responses are profiled using only CD8α/CD11a markers. Thus, to precisely define and distinguish Tvm from pathogen-specific CD8 T cells during bacterial, parasitic, and viral infections, pathogen-specific sensor TCR-Tg cells were adoptively transferred prior to challenge. We demonstrate that Tvm CD8 T cells are found in CD8αloCD11ahi-defined Ag-experienced CD8 T cells but can be parsed out in infected host with their CD49d-CD44hiCD122hi expression pattern. However, this approach presents potential limitations as CD49d+ Ag-specific CD8 T cells can lose CD49d expression and adopt a Tvm-like phenotype depending on their Ag-stimulation history, age, and naïve CD8 T-cell precursor frequency before the infection. Importantly, Tvm cells contribute to the breadth of the CD8 T-cell response, and their contribution depends on type of infection, time after infection, and tissue examined. Thus, these data define limitations in our ability to resolve between pathogen/Ag-specific and Tvm CD8 T-cell responses during infection, a notion of direct relevance for experimental murine studies designed to follow CD8 T-cell responses in vivo.
Collapse
Affiliation(s)
- Roger R Berton
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| | - Mohammad Heidarian
- Department of Pathology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology Graduate Programs, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| | - Shravan Kumar Kannan
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| | - Manan Shah
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Microbiology and Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Microbiology and Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| | - John T Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology Graduate Programs, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| | - Vladimir P Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
- Department of Pathology Graduate Programs, University of Iowa, 500 Newton Rd, 1020 ML, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
VanOudenhove J, Liu Y, Nelakanti R, Kim D, Busarello E, Ovalle NT, Qi Z, Mamillapalli P, Siddon A, Bai Z, Axtmayer A, Corso C, Kothari S, Foss F, Isufi I, Tebaldi T, Gowda L, Fan R, Seropian S, Halene S. Impact of memory T cells on SARS-CoV-2 vaccine response in hematopoietic stem cell transplant. PLoS One 2025; 20:e0320744. [PMID: 40294012 PMCID: PMC12036906 DOI: 10.1371/journal.pone.0320744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/24/2025] [Indexed: 04/30/2025] Open
Abstract
During the COVID-19 pandemic, hematopoietic stem cell transplant (HSCT) recipients had elevated mortality rates from SARS-CoV-2 infection, ranging between 10-40%. SARS-CoV-2 mRNA vaccines are important tools in preventing severe disease, yet their efficacy post-transplant remains unclear, especially in patients subjected to myeloablative chemotherapy and immunosuppression. We evaluated humoral and adaptive immune responses to the SARS-CoV-2 mRNA vaccination series in 42 HSCT recipients and 5 healthy controls. Post-vaccination responses were assessed by anti-spike IgG and nucleocapsid levels, and antigen specific T cell activity. Immune profiling was performed using clinical flow and mass cytometry. Patients were selected based on humoral and cellular responses for single-cell RNA with TCR and BCR sequencing. Our studies revealed defects in memory T cells that correlated with an absence of cellular response despite nearly universal humoral response. Several patients with a robust antibody response developed COVID-19 infection, but none developed severe disease or died from the infection.
Collapse
Affiliation(s)
- Jennifer VanOudenhove
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yuxin Liu
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Raman Nelakanti
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - Emma Busarello
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Natalia Tijaro Ovalle
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Zhihong Qi
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Padmavathi Mamillapalli
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Alexa Siddon
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - Alfredo Axtmayer
- Bone Marrow Transplant and Cellular Therapy Program, Yale New Haven Hospital and Yale Cancer Center, New Haven, Connecticut, United States of America
| | - Cheryl Corso
- Bone Marrow Transplant and Cellular Therapy Program, Yale New Haven Hospital and Yale Cancer Center, New Haven, Connecticut, United States of America
| | - Shalin Kothari
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Francine Foss
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Iris Isufi
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Bone Marrow Transplant and Cellular Therapy Program, Yale New Haven Hospital and Yale Cancer Center, New Haven, Connecticut, United States of America
| | - Toma Tebaldi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Lohith Gowda
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - Stuart Seropian
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
4
|
Karl V, Hofmann M, Thimme R. Role of antiviral CD8+ T cell immunity to SARS-CoV-2 infection and vaccination. J Virol 2025; 99:e0135024. [PMID: 40029063 PMCID: PMC11998524 DOI: 10.1128/jvi.01350-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
The COVID-19 pandemic has greatly enhanced our understanding of CD8+ T cell immunity and their role in natural infection and vaccine-induced protection. Rapid and early SARS-CoV-2-specific CD8+ T cell responses have been associated with efficient viral clearance and mild disease. Virus-specific CD8+ T cell responses can compensate for waning, morbidity-related, and iatrogenic reduction of humoral immunity. After infection or vaccination, SARS-CoV-2-specific memory CD8+ T cells are formed, which mount an efficient recall response in the event of breakthrough infection and help to protect from severe disease. Due to their breadth and ability to target mainly highly conserved epitopes, SARS-CoV-2-specific CD8+ T cells are also able to cross-recognize epitopes of viral variants, thus maintaining immunity even after the emergence of viral evolution. In some cases, however, CD8+ T cells may contribute to the pathogenesis of severe COVID-19. In particular, delayed and uncontrolled, e.g., nonspecific and hyperactivated, cytotoxic CD8+ T cell responses have been linked to poor COVID-19 outcomes. In this minireview, we summarize the tremendous knowledge about CD8+ T cell responses to SARS-CoV-2 infection and COVID-19 vaccination that has been gained over the past 5 years, while also highlighting the critical knowledge gaps that remain.
Collapse
Affiliation(s)
- Vivien Karl
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Ha NY, Kim AR, Jeong H, Cheon S, Park CR, Choe JH, Kim HJ, Yoon JW, Kim M, An MY, Jung S, Do HN, Lee J, Kim YS. Neutralizing Activity and T-Cell Responses Against Wild Type SARS-CoV-2 Virus and Omicron BA.5 Variant After Ancestral SARS-CoV-2 Vaccine Booster Dose in PLWH Receiving ART Based on CD4 T-Cell Count. J Korean Med Sci 2025; 40:e28. [PMID: 40065712 PMCID: PMC11893351 DOI: 10.3346/jkms.2025.40.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/09/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND We evaluated severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)-specific humoral and cellular responses for up to 6 months after the 3rd dose of ancestral coronavirus disease 2019 (COVID-19) vaccination in people living with HIV (PLWH) and healthy controls (HCs) who were not infected with COVID-19. METHODS Anti-spike receptor-binding domain IgG (anti-RBD IgG) concentrations using chemiluminescence immunoassay and neutralizing antibodies using focus reduction neutralization test (FRNT) were assessed at 1 week after each dose of vaccination, and 3 and 6 months after the 3rd dose in 62 PLWH and 25 HCs. T-cell responses using intracellular cytokine stain were evaluated at 1 week before, and 1 week and 6 months after the 3rd dose. RESULTS At 1 week after the 3rd dose, adequate anti-RBD IgG (> 300 binding antibody unit /mL) was elicited in all PLWH except for one patient with 36 CD4 T-cell count/mm³. The geometric mean titers of 50% FRNT against wild type (WT) and omicron BA.5 strains of SARS-CoV-2 in PLWH with CD4 T-cell count ≥ 500 cells/mm³ (high CD4 recovery, HCDR) were comparable to HC, but they were significantly decreased in PLWH with CD4 T-cell count < 500/mm³ (low CD4 recovery, LCDR). After adjusting for age, gender, viral suppression, and number of preexisting comorbidities, CD4 T-cell counts < 500/mm³ significantly predicted a poor magnitude of neutralizing antibodies against WT, omicron BA.5, and XBB 1.5 strains among PLWH. Multivariable linear regression adjusting for age and gender revealed that LCDR was associated with reduced neutralizing activity (P = 0.017) and interferon-γ-producing T-cell responses (P = 0.049 for CD T-cell; P = 0.014 for CD8 T-cell) against WT, and strongly associated with more decreased cross-neutralization against omicron BA.5 strains (P < 0.001). CONCLUSION HCDR demonstrated robust humoral and cell-mediated immune responses after a booster dose of ancestral SARS-CoV-2 vaccine, whereas LCDR showed diminished immune responses against WT virus and more impaired cross-neutralization against omicron BA.5 strain.
Collapse
Affiliation(s)
- Na Young Ha
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, Korea
| | - Ah-Ra Kim
- Division of Clinical Research for Vaccine, Center for Vaccine Research, Korea National Institute of Infectious Diseases, Cheongju, Korea
| | - Hyeongseok Jeong
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Shinhye Cheon
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Cho Rong Park
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Jin Ho Choe
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Hyo Jung Kim
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Jae Won Yoon
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Miryoung Kim
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Mi Yeong An
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Sukyoung Jung
- Department of Health Care Policy Research, Korea Institute for Health and Social Affairs, Sejong, Korea
| | - Hyeon Nam Do
- Division of Clinical Research for Vaccine, Center for Vaccine Research, Korea National Institute of Infectious Diseases, Cheongju, Korea
| | - Junewoo Lee
- Division of Clinical Research for Vaccine, Center for Vaccine Research, Korea National Institute of Infectious Diseases, Cheongju, Korea
| | - Yeon-Sook Kim
- Emerging Infectious Diseases Research Institute, Chungnam National University Hospital, Daejeon, Korea
- Translational Immunology Institute, Chungnam National University, Daejeon, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea.
| |
Collapse
|
6
|
Kato Y, Kumanogoh A. The immune memory of innate immune systems. Int Immunol 2025; 37:195-202. [PMID: 39588905 DOI: 10.1093/intimm/dxae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/24/2024] [Indexed: 11/27/2024] Open
Abstract
Immune memory has long been considered a function specific to adaptive immune systems; however, adaptive immune memory alone has not fully explained the mechanism by which vaccines exert their protective effects against nontarget pathogens. Recently, trained immunity, in which human monocytes vaccinated with bacillus Calmette-Guérin become highly responsive to pathogens other than Mycobacterium tuberculosis, has been reported. However, a phenomenon called endotoxin tolerance is also known, in which monocyte responsiveness is attenuated after the first lipopolysaccharide stimulation. These phenomena represent an altered innate immune response after the initial exposure to the stimulus, indicating that memories are formed in the innate immune system. In this review, we discuss trained immunity and endotoxin tolerance, known as innate immune memory, and innate immune memory formation by mRNA vaccines, which have been newly used in the coronavirus disease 2019 (COVID-19) pandemic and are considered important vaccine modalities in the future.
Collapse
Affiliation(s)
- Yasuhiro Kato
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Li B, Jiang AY, Raji I, Atyeo C, Raimondo TM, Gordon AGR, Rhym LH, Samad T, MacIsaac C, Witten J, Mughal H, Chicz TM, Xu Y, McNamara RP, Bhatia S, Alter G, Langer R, Anderson DG. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat Biomed Eng 2025; 9:167-184. [PMID: 37679571 DOI: 10.1038/s41551-023-01082-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Abstract
To elicit optimal immune responses, messenger RNA vaccines require intracellular delivery of the mRNA and the careful use of adjuvants. Here we report a multiply adjuvanted mRNA vaccine consisting of lipid nanoparticles encapsulating an mRNA-encoded antigen, optimized for efficient mRNA delivery and for the enhanced activation of innate and adaptive responses. We optimized the vaccine by screening a library of 480 biodegradable ionizable lipids with headgroups adjuvanted with cyclic amines and by adjuvanting the mRNA-encoded antigen by fusing it with a natural adjuvant derived from the C3 complement protein. In mice, intramuscular or intranasal administration of nanoparticles with the lead ionizable lipid and with mRNA encoding for the fusion protein (either the spike protein or the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) increased the titres of antibodies against SARS-CoV-2 tenfold with respect to the vaccine encoding for the unadjuvanted antigen. Multiply adjuvanted mRNA vaccines may improve the efficacy, safety and ease of administration of mRNA-based immunization.
Collapse
MESH Headings
- Animals
- Mice
- Nanoparticles/chemistry
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- RNA, Messenger/immunology
- RNA, Messenger/genetics
- RNA, Messenger/administration & dosage
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19/prevention & control
- COVID-19/immunology
- Lipids/chemistry
- Adjuvants, Immunologic
- Female
- mRNA Vaccines/immunology
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Humans
- Mice, Inbred BALB C
- Immunogenicity, Vaccine
- Adjuvants, Vaccine
- Liposomes
Collapse
Affiliation(s)
- Bowen Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Allen Yujie Jiang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Idris Raji
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Theresa M Raimondo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Akiva G R Gordon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke H Rhym
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tahoura Samad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Corina MacIsaac
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob Witten
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haseeb Mughal
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taras M Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yue Xu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Sangeeta Bhatia
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Wyss Institute at Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
da Silva Antunes R, Fajardo-Rosas V, Yu ED, Gálvez RI, Abawi A, Alexandar Escarrega E, Martínez-Pérez A, Johansson E, Goodwin B, Frazier A, Dan JM, Crotty S, Seumois G, Weiskopf D, Vijayanand P, Sette A. Evolution of SARS-CoV-2 T cell responses as a function of multiple COVID-19 boosters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631842. [PMID: 39829792 PMCID: PMC11741356 DOI: 10.1101/2025.01.08.631842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The long-term effects of repeated COVID-19 vaccinations on adaptive immunity remain incompletely understood. Here, we conducted a comprehensive three-year longitudinal study examining T cell and antibody responses in 78 vaccinated individuals without reported symptomatic infections. We observed distinct dynamics in Spike-specific humoral and cellular immune responses across multiple vaccine doses. While antibody titers incrementally increased and stabilized with each booster, T cell responses rapidly plateaued, maintaining remarkable stability across CD4+ and CD8+ subsets. Notably, approximately 30% of participants showed CD4+ T cell reactivity to non-Spike antigens, consistent with asymptomatic infections. Single-cell RNA sequencing revealed a diverse landscape of Spike-specific T cell phenotypes, with no evidence of increased exhaustion or significant functional impairment. However, qualitative changes were observed in individuals with evidence of asymptomatic infection, exhibiting unique immunological characteristics, including increased frequencies of Th17-like CD4+ T cells and GZMKhi/IFNR CD8+ T cell subsets. Remarkably, repeated vaccinations in this group were associated with a progressive increase in regulatory T cells, potentially indicating a balanced immune response that may mitigate immunopathology. By regularly stimulating T cell memory, boosters contribute to a stable and enhanced immune response, which may provide better protection against symptomatic infections.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- These authors contributed equally
| | - Vicente Fajardo-Rosas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Bioinformatics and Systems Biology Graduate Program; University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Rosa Isela Gálvez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Adam Abawi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - E. Alexandar Escarrega
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Amparo Martínez-Pérez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Emil Johansson
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Benjamin Goodwin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Grégory Seumois
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Pandurangan Vijayanand
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- Senior authorship
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- Senior authorship
- Lead contact
| |
Collapse
|
9
|
Shoumariyeh K, Csernalabics B, Salimi Alizei E, Reinscheid M, Giese S, Ciminski K, Kochs G, Schwemmle M, Lang-Meli J, Maas M, Roehlen N, Karl V, Graeser A, Sogukpinar O, von Metzler I, Grathwohl D, Rasche L, Hebart H, Kull M, Emmerich F, Waller CF, Duyster J, Engelhardt M, Hartmann TN, Bengsch B, Boettler T, Neumann-Haefelin C, Hofmann M, Thimme R, Luxenburger H. Impaired SARS-CoV-2-Specific CD8+ T Cells After Infection or Vaccination but Robust Hybrid T Cell Immunity in Patients with Multiple Myeloma. Vaccines (Basel) 2024; 12:1249. [PMID: 39591152 PMCID: PMC11598869 DOI: 10.3390/vaccines12111249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) patients are at high risk of severe infections including COVID-19 due to an immune dysregulation affecting both innate and adaptive immune responses. However, our understanding of the immune responses to infection and vaccination in MM patients is limited. To gain more detailed insights into infection- and vaccine-elicited T cell immunity in MM, we studied the CD8+ T cell response on the single-epitope level in SARS-CoV-2 convalescent and mRNA-vaccinated MM patients. METHODS We compared peptide/MHC class I tetramer-enriched SARS-CoV-2-specific CD8+ T cells and antibody responses in MM patients (convalescent: n = 16, fully vaccinated: n = 5, vaccinated convalescent: n = 5) and healthy controls (HCs) (convalescent: n = 58, fully vaccinated: n = 7) either after infection with SARS-CoV-2 alone, complete mRNA vaccination or SARS-CoV-2 infection and single-shot mRNA vaccination (hybrid immunity). RESULTS MM patients have lower frequencies and a lower proportion of fully functional virus-specific CD8+ T cells compared to HCs, after both SARS-CoV-2 infection and vaccination. CD8+ T cell memory subset distribution in MM patients is skewed towards reduced frequencies of central memory (TCM) T cells and higher frequencies of effector memory 1 (TEM1) T cells. In contrast, the humoral immune response was comparable in both cohorts after viral clearance. Notably, CD8+ T cell frequencies as well as the humoral immune response were improved by a single dose of mRNA vaccine in convalescent MM patients. CONCLUSIONS MM patients have relative immunological deficiencies in SARS-CoV-2 immunity but benefit from hybrid immunity. These findings underline the relevance of vaccinations in this vulnerable patient group.
Collapse
Affiliation(s)
- Khalid Shoumariyeh
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and University Medical Center Freiburg, 79098 Freiburg, Germany
| | - Benedikt Csernalabics
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Elahe Salimi Alizei
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- Faculty of Chemistry and Pharmacy, University of Freiburg, 79098 Freiburg, Germany
| | - Matthias Reinscheid
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79098 Freiburg, Germany
| | - Sebastian Giese
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Julia Lang-Meli
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Michelle Maas
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79098 Freiburg, Germany
| | - Natascha Roehlen
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Vivien Karl
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79098 Freiburg, Germany
| | - Anne Graeser
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Oezlem Sogukpinar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Ivana von Metzler
- Department of Medicine II—Hematology and Oncology, Goethe-University Frankfurt, University Hospital, 60629 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a Partnership Between DKFZ and University Hospital Frankfurt, 60596 Frankfurt am Main, Germany
| | - Denise Grathwohl
- Department of Internal Medicine II, University of Würzburg, 97070 Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University of Würzburg, 97070 Würzburg, Germany
| | - Holger Hebart
- Clinics Ostalb, Stauferklinikum, 73557 Mutlangen, Germany
| | - Miriam Kull
- Department of Internal Medicine III, Ulm University Hospital, 89081 Ulm, Germany
| | - Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Cornelius Florian Waller
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and University Medical Center Freiburg, 79098 Freiburg, Germany
| | - Monika Engelhardt
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Tanja Nicole Hartmann
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Bertram Bengsch
- German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership Between DKFZ and University Medical Center Freiburg, 79098 Freiburg, Germany
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79098 Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Hendrik Luxenburger
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| |
Collapse
|
10
|
Nguyen HC, Lal KG, Balinsky CA, Hontz RD, Lin J, Beye MJ, Smith L, Pan L, Cheng Y, Fox I, Lizewski SE, Foo HS, Krebs SJ, Sun P, Letizia AG. Informing the Need for a SARS-CoV-2 Booster Based on the Immune Responses Among Young Healthy Adults to Variants Circulating in Late 2023. J Infect Dis 2024; 230:645-656. [PMID: 38718223 DOI: 10.1093/infdis/jiae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/07/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND COVID-19 remains a global public health challenge due to new immune-evasive SARS-CoV-2 variants and heterogeneous immunity. METHODS In this cross-sectional study, we evaluated the adaptive immune responses in US active duty personnel who completed a COVID-19 primary vaccine series and had heterogenous SARS-CoV-2 vaccination and infection histories to 3 previously dominant variants (ancestral, Delta, BA.5) and 3 circulating variants (XBB.1.5, EG.5, and BA.2.86) in late 2023. Analyses were based on the most recent exposure in terms of timing (within or beyond 12 months) and type (vaccine or infection). RESULTS Significant reduction was observed in binding antibodies, neutralization antibodies, memory B cells, and CD8+ T cells against circulating variants when compared with previous variants. The reduction in antibody response was more pronounced in those whose most recent exposure was >12 months from enrollment. In contrast, the CD4+ T-cell response was largely consistent across all tested variants. The type of most recent exposure was not a significant factor in determining the magnitude of current immune responses. CONCLUSIONS Administration of the XBB.1.5-based booster is likely to enhance cross-reactive humoral responses against SARS-CoV-2 circulating lineages. Ongoing surveillance of immune responses to emerging variants is needed for informing vaccine composition and timing.
Collapse
Affiliation(s)
- Huy C Nguyen
- US Naval Medical Research Unit INDO PACIFIC, Science Directorate, Singapore, Singapore
| | - Kerri G Lal
- Walter Reed Army Institute of Research, US Military HIV Research Program, B Cell Biology, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Corey A Balinsky
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
- Naval Medical Research Command, Diagnostics Surveillance Division, Silver Spring
| | - Robert D Hontz
- US Naval Medical Research Unit INDO PACIFIC, Science Directorate, Singapore, Singapore
| | - Jin Lin
- US Naval Medical Research Unit INDO PACIFIC, Science Directorate, Singapore, Singapore
| | - Matthew J Beye
- US Naval Medical Research Unit INDO PACIFIC, Science Directorate, Singapore, Singapore
| | - Lauren Smith
- Walter Reed Army Institute of Research, US Military HIV Research Program, B Cell Biology, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Li Pan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | | | - Isabella Fox
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda
| | - Stephen E Lizewski
- Naval Medical Research Command, Diagnostics Surveillance Division, Silver Spring
| | - Hayley S Foo
- US Naval Medical Research Unit INDO PACIFIC, Science Directorate, Singapore, Singapore
| | - Shelly J Krebs
- Walter Reed Army Institute of Research, US Military HIV Research Program, B Cell Biology, Silver Spring
| | - Peifang Sun
- Naval Medical Research Command, Diagnostics Surveillance Division, Silver Spring
| | - Andrew G Letizia
- US Naval Medical Research Unit INDO PACIFIC, Science Directorate, Singapore, Singapore
| |
Collapse
|
11
|
Byrne J, Gu L, Garcia-Leon A, Gaillard CM, Saini G, Alalwan D, Tomás-Cortázar J, Kenny G, Donohue S, Reynolds B, O'Gorman T, Landay A, Doran P, Stemler J, Koehler P, Cox RJ, Olesen OF, Lelievre JD, O'Broin C, Savinelli S, Feeney ER, O'Halloran JA, Cotter A, Horgan M, Kelly C, Sadlier C, de Barra E, Cornely OA, Gautier V, Mallon PW. Robust and persistent B-cell responses following SARS-CoV-2 vaccine determine protection from SARS-CoV-2 infection. Front Immunol 2024; 15:1445653. [PMID: 39355249 PMCID: PMC11442242 DOI: 10.3389/fimmu.2024.1445653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction A clear immune correlate of protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has not been defined. We explored antibody, B-cell, and T-cell responses to the third-dose vaccine and relationship to incident SARS-CoV-2 infection. Methods Adults in a prospective cohort provided blood samples at day 0, day 14, and 10 months after the third-dose SARS-CoV-2 vaccine. Participants self-reported incident SARS-CoV-2 infection. Plasma anti-SARS-CoV-2 receptor-binding domain (RBD) and spike-subunit-1 and spike-subunit-2 antibodies were measured. A sub-study assessed SARS-CoV-2-specific plasma and memory B-cell and memory T-cell responses in peripheral blood mononuclear cells by enzyme-linked immunospot. Comparative analysis between participants who developed incident infection and uninfected participants utilised non-parametric t-tests, Kaplan-Meier survival analysis, and Cox proportional hazard ratios. Results Of the 132 participants, 47 (36%) reported incident SARS-CoV-2 infection at a median 16.5 (16.25-21) weeks after the third-dose vaccination. RBD titres and B-cell responses, but not T-cell responses, increased after the third-dose vaccine. Whereas no significant difference in day 14 antibody titres or T-cell responses was observed between participants with and without incident SARS-CoV-2 infection, RBD memory B-cell frequencies were significantly higher in those who did not develop infection [10.0% (4.5%-16.0%) versus 4.9% (1.6%-9.3%), p = 0.01]. RBD titres and memory B-cell frequencies remained significantly higher at 10 months than day 0 levels (p < 0.01). Discussion Robust antibody and B-cell responses persisted at 10 months following the third-dose vaccination. Higher memory B-cell frequencies, rather than antibody titres or T-cell responses, predicted protection from subsequent infection, identifying memory B cells as a correlate of protection.
Collapse
Affiliation(s)
- Joanne Byrne
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Lili Gu
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Alejandro Garcia-Leon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Colette Marie Gaillard
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Gurvin Saini
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Dana Alalwan
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Julen Tomás-Cortázar
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Grace Kenny
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Sean Donohue
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Bearach Reynolds
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Tessa O'Gorman
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Alan Landay
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Peter Doran
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Jannik Stemler
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Philipp Koehler
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole F Olesen
- European Vaccine Initiative, Heidelberg, Germany
| | | | - Cathal O'Broin
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Stefano Savinelli
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Eoin R Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Jane A O'Halloran
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Aoife Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mary Horgan
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Christine Kelly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Corrina Sadlier
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Eoghan de Barra
- Department of Infectious Diseases, Beaumont Hospital, Dublin, Ireland
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Faculty of Medicine Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Partner Site Bonn-Cologne Department Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Patrick Wg Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
12
|
Tsagkli P, Geropeppa M, Papadatou I, Spoulou V. Hybrid Immunity against SARS-CoV-2 Variants: A Narrative Review of the Literature. Vaccines (Basel) 2024; 12:1051. [PMID: 39340081 PMCID: PMC11436074 DOI: 10.3390/vaccines12091051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of SARS-CoV-2 led to a global health crisis and the burden of the disease continues to persist. The rapid development and emergency authorization of various vaccines, including mRNA-based vaccines, played a pivotal role in mitigating severe illness and mortality. However, rapid viral mutations, leading to several variants of concern, challenged vaccine effectiveness, particularly concerning immune evasion. Research on immunity, both from natural infection and vaccination, revealed that while neutralizing antibodies provide protection against infection, their effect is short-lived. The primary defense against severe COVID-19 is derived from the cellular immune response. Hybrid immunity, developed from a combination of natural infection and vaccination, offers enhanced protection, with convalescent vaccinated individuals showing significantly higher levels of neutralizing antibodies. As SARS-CoV-2 continues to evolve, understanding the durability and breadth of hybrid immunity becomes crucial. This narrative review examines the latest data on humoral and cellular immunity from both natural infection and vaccination, discussing how hybrid immunity could inform and optimize future vaccination strategies in the ongoing battle against COVID-19 and in fear of a new pandemic.
Collapse
Affiliation(s)
- Panagiota Tsagkli
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Maria Geropeppa
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory and Infectious Diseases Department "MAKKA", First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
13
|
Guo ZY, Tang YQ, Zhang ZB, Liu J, Zhuang YX, Li T. COVID-19: from immune response to clinical intervention. PRECISION CLINICAL MEDICINE 2024; 7:pbae015. [PMID: 39139990 PMCID: PMC11319938 DOI: 10.1093/pcmedi/pbae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the pivotal role of the immune response in determining the progression and severity of viral infections. In this paper, we review the most recent studies on the complicated dynamics between SARS-CoV-2 and the host immune system, highlight the importance of understanding these dynamics in developing effective treatments and formulate potent management strategies for COVID-19. We describe the activation of the host's innate immunity and the subsequent adaptive immune response following infection with SARS-CoV-2. In addition, the review emphasizes the immune evasion strategies of the SARS-CoV-2, including inhibition of interferon production and induction of cytokine storms, along with the resulting clinical outcomes. Finally, we assess the efficacy of current treatment strategies, including antiviral drugs, monoclonal antibodies, and anti-inflammatory treatments, and discuss their role in providing immunity and preventing severe disease.
Collapse
Affiliation(s)
- Zheng-yang Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yan-qing Tang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Zi-bo Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Yu-xin Zhuang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
14
|
Bonam SR, Hazell NC, Mathew MJ, Liang Y, Zhang X, Wei Z, Alameh MG, Weissman D, Hu H. Innate and Adaptive Immune Parameters following mRNA Vaccination in Mice. Vaccines (Basel) 2024; 12:543. [PMID: 38793794 PMCID: PMC11125668 DOI: 10.3390/vaccines12050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The COVID-19 pandemic has raised the standard regarding the current vaccine development pace, as several messenger RNA (mRNA)-lipid nanoparticle (LNP) vaccines have proved their ability to induce strong immunogenicity and protective efficacy. We developed 1-methylpseudouridine-containing mRNA-LNP vaccines, expressing either the more conserved SARS-CoV-2 nucleoprotein (mRNA-N) or spike protein (mRNA-S), both based on the prototypic viral sequences. When combining both mRNA-S and mRNA-N together (mRNA-S+N), the vaccine showed high immunogenicity and broad protection against different SARS-CoV-2 variants, including wildtype, Delta, BA.1, BA.5, and BQ.1. To better understand the mechanisms behind this broad protection obtained by mRNA-S+N, we analyzed innate and adaptive immune parameters following vaccination in mice. Compared to either mRNA-S or mRNA-N alone, mice vaccinated with mRNA-S+N exhibited an increase in the innate immune response, as depicted by the higher cytokine (IL-6 and chemokine (MCP-1) levels. In addition, lymph node immunophenotyping showed the maturation and activation of dendritic cells and natural killer cells, respectively. To understand the adaptive immune response, RNA-Seq analyses of the lung and spleen samples of the vaccinated mice were performed in parallel and revealed a stronger immune gene-expression profile in the lung than that in the spleen. Compared to mRNA-S alone, mRNA-S+N vaccination elicited higher levels of expression for genes involved in multiple immune pathways, including T cells, cytokine signaling, antigen presentation, B cells, and innate immunity. Together, our studies provide immunological insights into the mechanisms of broad protection conferred by dual mRNA vaccination against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (N.C.H.); (Y.L.)
| | - Nicholas C. Hazell
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (N.C.H.); (Y.L.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mano Joseph Mathew
- EFREI Research Lab, Panthéon Assas University, 30-32 Avenue de la République, 94800 Villejuif, France;
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (N.C.H.); (Y.L.)
| | - Xuxiang Zhang
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (X.Z.); (Z.W.)
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (X.Z.); (Z.W.)
| | - Mohamad-Gabriel Alameh
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA; (M.-G.A.); (D.W.)
| | - Drew Weissman
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA; (M.-G.A.); (D.W.)
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (N.C.H.); (Y.L.)
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
15
|
Rodriguez Velásquez S, Biru LE, Hakiza SM, Al-Gobari M, Triulzi I, Dalal J, Varela CBG, Botero Mesa S, Keiser O. Long-term levels of protection of different types of immunity against the Omicron variant: a rapid literature review. Swiss Med Wkly 2024; 154:3732. [PMID: 38749028 DOI: 10.57187/s.3732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
INTRODUCTION With the emergence of newer SARS-CoV-2 variants and their substantial effects on the levels and duration of protection against infection, an understanding of these characteristics of the protection conferred by humoral and cellular immunity can aid in the proper development and implementation of vaccine and safety guidelines. METHODS We conducted a rapid literature review and searched five electronic databases weekly from 1 November 2021 to 30 September 2022. Studies that assessed the humoral or cellular immunity conferred by infection, vaccination or a hybrid (combination of both) in adults and risk groups (immunocompromised and older populations) were identified. Studies were eligible when they reported data on immunological assays of COVID-19 (related to vaccination and/or infection) or the effectiveness of protection (related to the effectiveness of vaccination and/or infection). RESULTS We screened 5103 studies and included 205 studies, of which 70 provided data on the duration of protection against SARS-CoV-2 infection. The duration of protection of adaptive immunity was greatly impacted by Omicron and its subvariants: levels of protection were low by 3-6 months from exposure to infection/vaccination. Although more durable, cellular immunity also showed signs of waning by 6 months. First and second mRNA vaccine booster doses increased the levels of protection against infection and severe disease from Omicron and its subvariants but continued to demonstrate a high degree of waning over time. CONCLUSION All humoral immunities (infection-acquired, vaccine-acquired and hybrid) waned by 3-6 months. Cellular immunity was more durable but showed signs of waning by 6 months. Hybrid immunity had the highest magnitude of protection against SARS-CoV-2 infection. Boosting may be recommended as early as 3-4 months after the last dose, especially in risk groups.
Collapse
Affiliation(s)
- Sabina Rodriguez Velásquez
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| | - Loza Estifanos Biru
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| | - Sandrine Marie Hakiza
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| | - Muaamar Al-Gobari
- The GRAPH Network, Geneva, Switzerland
- HIV/AIDS Unit Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Isotta Triulzi
- The GRAPH Network, Geneva, Switzerland
- Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Sara Botero Mesa
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| | - Olivia Keiser
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- The GRAPH Network, Geneva, Switzerland
| |
Collapse
|
16
|
Tan D, Kang N, Zhu Y, Hou J, Wang H, Xu H, Zu C, Gao Z, Liu M, Liu N, Deng Q, Lu H, Liu J, Xie Y. Construction and efficacy testing of DNA vaccines containing HLA-A*02:01-restricted SARS-CoV-2 T-cell epitopes predicted by immunoinformatics. Acta Biochim Biophys Sin (Shanghai) 2024; 56:986-996. [PMID: 38655616 PMCID: PMC11322877 DOI: 10.3724/abbs.2024039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/31/2024] [Indexed: 04/26/2024] Open
Abstract
Vaccines play essential roles in the fight against the COVID-19 pandemic. The development and assessment of COVID-19 vaccines have generally focused on the induction and boosting of neutralizing antibodies targeting the SARS-CoV-2 spike (S) protein. Due to rapid and continuous variation in the S protein, such vaccines need to be regularly updated to match newly emerged dominant variants. T-cell vaccines that target MHC I- or II-restricted epitopes in both structural and non-structural viral proteins have the potential to induce broadly cross-protective and long-lasting responses. In this work, the entire proteome encoded by SARS-CoV-2 (Wuhan-hu-1) is subjected to immunoinformatics-based prediction of HLA-A*02:01-restricted epitopes. The immunogenicity of the predicted epitopes is evaluated using peripheral blood mononuclear cells from convalescent Wuhan-hu-1-infected patients. Furthermore, predicted epitopes that are conserved across major SARS-CoV-2 lineages and variants are used to construct DNA vaccines expressing multi-epitope polypeptides. Most importantly, two DNA vaccine constructs induce epitope-specific CD8 + T-cell responses in a mouse model of HLA-A*02:01 restriction and protect immunized mice from challenge with Wuhan-hu-1 virus after hACE2 transduction. These data provide candidate T-cell epitopes useful for the development of T-cell vaccines against SARS-CoV-2 and demonstrate a strategy for quick T-cell vaccine candidate development applicable to other emerging pathogens.
Collapse
Affiliation(s)
- Dan Tan
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Ning Kang
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Yuanfei Zhu
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Jia Hou
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Hanqing Wang
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Huijun Xu
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Cheng Zu
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Zixiang Gao
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Mu Liu
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Nannan Liu
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Hongzhou Lu
- Shanghai Public Health Clinical CenterFudan UniversityShanghai201508China
- National Clinical Research Centre for Infectious Diseasesthe Third People’s Hospital of ShenzhenThe Second Affiliated Hospital of Southern University of Science and TechnologyShenzhen518112China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (NHC & MOE & CAMS)Shanghai Institute of Infectious Diseases and BiosecurityDepartment of Medical Microbiology and ParasitologySchool of Basic Medical SciencesShanghai Medical CollegeFudan UniversityShanghai200031China
- Shanghai Public Health Clinical CenterFudan UniversityShanghai201508China
| |
Collapse
|
17
|
Aoki H, Kitabatake M, Abe H, Xu P, Tsunoda M, Shichino S, Hara A, Ouji-Sageshima N, Motozono C, Ito T, Matsushima K, Ueha S. CD8 + T cell memory induced by successive SARS-CoV-2 mRNA vaccinations is characterized by shifts in clonal dominance. Cell Rep 2024; 43:113887. [PMID: 38458195 DOI: 10.1016/j.celrep.2024.113887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/27/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
mRNA vaccines against the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicit strong T cell responses. However, a clonal-resolution analysis of T cell responses to mRNA vaccination has not been performed. Here, we temporally track the CD8+ T cell repertoire in individuals who received three shots of the BNT162b2 mRNA vaccine through longitudinal T cell receptor sequencing with peptide-human leukocyte antigen (HLA) tetramer analysis. We demonstrate a shift in T cell responses between the clonotypes with different kinetics: from early responders that expand rapidly after the first shot to main responders that greatly expand after the second shot. Although the main responders re-expand after the third shot, their clonal diversity is skewed, and newly elicited third responders partially replace them. Furthermore, this shift in clonal dominance occurs not only between, but also within, clonotypes specific for spike epitopes. Our study will be a valuable resource for understanding vaccine-induced T cell responses in general.
Collapse
Affiliation(s)
- Hiroyasu Aoki
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan; Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Haruka Abe
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Peng Xu
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Mikiya Tsunoda
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Atsushi Hara
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Noriko Ouji-Sageshima
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Chihiro Motozono
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto City, Kumamoto 8600811, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan.
| |
Collapse
|
18
|
Zhang G, Zhang J, Gao Q, Zhao Y, Lai Y. Clinical and immunologic features of co-infection in COVID-19 patients, along with potential traditional Chinese medicine treatments. Front Immunol 2024; 15:1357638. [PMID: 38576608 PMCID: PMC10991704 DOI: 10.3389/fimmu.2024.1357638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Objectives With the increasing number of people worldwide infected with SARS-CoV-2, the likelihood of co-infection and/or comorbidities is rising. The impact of these co-infections on the patient's immune system remains unclear. This study aims to investigate the immunological characteristics of secondary infections in hospitalized COVID-19 patients, and preliminarily predict potential therapeutic effects of traditional Chinese medicine and their derivatives for the treatment of co-infections. Methods In this retrospective cohort study, we included 131 hospitalized patients with laboratory-confirmed COVID-19, of whom there were 64 mild and 67 severe cases. We analyzed clinical characteristics and immunologic data, including circulating immune cell numbers, levels of inflammatory factors and viral load, comparing COVID-19 patients with and without co-infection. Results Among 131 hospitalized COVID-19 patients, 41 (31.3%) were co-infection positive, with 33 (80.5%) having severe disease and 14 (34.1%) of them resulting in fatalities. Co-infected patients exhibited significantly higher severity and mortality rates compared to non-co-infected counterparts. Co-infected patients had significantly lower absolute counts of lymphocytes, total T lymphocytes, CD4+ T cells, CD8+ T cells and B lymphocytes, while levels of hs-CRP, PCT and IL-6 were significantly elevated compared to non-co-infected patients. Additionally, the viral load of co-infected patients was significantly higher than non-co-infected patients. Conclusion Co-infection emerges as a dangerous factor for COVID-19 patients, elevating the risk of severe pneumonia and mortality. Co-infection suppresses the host's immune response by reducing the number of lymphocytes and increasing inflammation, thereby diminishing the antiviral and anti-infective effects of the immune system, which promotes the severity of the disease. Therefore, it is crucial to implement infection prevention measures to minimize the spread of co-infections among COVID-19 hospitalized patients. Additionally, changes in these biomarkers provide a theoretical basis for the effective treatment of co-infections with traditional Chinese medicine.
Collapse
Affiliation(s)
- Guochao Zhang
- Department of Clinical Laboratory, Ninth Hospital of Xi’an, Xi’an, Shannxi, China
| | - Junjun Zhang
- Xianyang Center for Disease Control and Prevention, Xianyang, Shannxi, China, China
| | - Qi Gao
- Department of Clinical Laboratory, Ninth Hospital of Xi’an, Xi’an, Shannxi, China
| | - Yingying Zhao
- Department of Pathology, Fenyang College of Shanxi Medical University, Fenyang, Shanxi, China
| | - Yanjun Lai
- Department of Clinical Laboratory, Ninth Hospital of Xi’an, Xi’an, Shannxi, China
| |
Collapse
|
19
|
Underwood AP, Sølund C, Jacobsen K, Binderup A, Fernandez-Antunez C, Mikkelsen LS, Inekci D, Villadsen SL, Castruita JAS, Pinholt M, Fahnøe U, Ramirez S, Brix L, Weis N, Bukh J. Neutralizing antibody and CD8 + T cell responses following BA.4/5 bivalent COVID-19 booster vaccination in adults with and without prior exposure to SARS-CoV-2. Front Immunol 2024; 15:1353353. [PMID: 38571939 PMCID: PMC10987722 DOI: 10.3389/fimmu.2024.1353353] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/08/2024] [Indexed: 04/05/2024] Open
Abstract
As severe acute respiratory coronavirus 2 (SARS-CoV-2) variants continue to emerge, it is important to characterize immune responses against variants which can inform on protection efficacies following booster vaccination. In this study, neutralizing breadth and antigen-specific CD8+ T cell responses were analyzed in both infection-naïve and infection-experienced individuals following administration of a booster bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine. Significantly higher neutralizing titers were found after this vaccination compared to the pre-third booster vaccination time point. Further, neutralizing breadth to omicron variants, including BA.1, BA.2, BA.5, BQ.1 and XBB.1, was found to be boosted following bivalent vaccination. SARS-CoV-2-specific CD8+ T cells were identified, but with no evidence that frequencies were increased following booster vaccinations. Spike protein-specific CD8+ T cells were the only responses detected after vaccination and non-spike-specific CD8+ T cells were only detected after infection. Both spike-specific and non-spike-specific CD8+ T cells were found at much lower frequencies than CD8+ T cells specific to cytomegalovirus (CMV), Epstein-Barr virus (EBV) and influenza (Flu). Taken together, these results show that the bivalent Wuhan-Hu-1+BA.4/5 Comirnaty® mRNA vaccine boosted the breadth of neutralization to newer SARS-CoV-2 variants and that vaccination is able to induce spike protein-specific CD8+ T cell responses, which are maintained longitudinally.
Collapse
Affiliation(s)
- Alexander P. Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Christina Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lotte S. Mikkelsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Signe Lysemose Villadsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Jose A. S. Castruita
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
20
|
Nogimori T, Nagatsuka Y, Kobayashi S, Murakami H, Masuta Y, Suzuki K, Tomimaru Y, Noda T, Akita H, Takahama S, Yoshioka Y, Doki Y, Eguchi H, Yamamoto T. Humoral and cellular immune responses to COVID-19 mRNA vaccines in immunosuppressed liver transplant recipients. COMMUNICATIONS MEDICINE 2024; 4:30. [PMID: 38409262 PMCID: PMC10897323 DOI: 10.1038/s43856-024-00448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Liver transplant recipients (LTRs) are at a high risk of severe COVID-19 owing to immunosuppression and comorbidities. LTRs are less responsive to mRNA vaccines than healthy donors (HDs) or other immunosuppressed patients. However, the disruption mechanism in humoral and cellular immune memory responses is unclear. METHODS We longitudinally collected peripheral blood mononuclear cells and plasma samples from HDs (n = 44) and LTRs (n = 54) who received BNT162b2 or mRNA-1273 vaccines. We measured the levels of anti-receptor-binding domain (RBD) antibodies and spike-specific CD4+ and CD8+ T-cell responses. RESULTS Here, we show that the induction of anti-RBD IgG was weaker in LTRs than in HDs. The use of multiple immunosuppressive drugs is associated with lower antibody titers than only calcineurin inhibitor, and limits the induction of CD4+ T-cell responses. However, spike-specific CD4+ T-cell and antibody responses improved with a third vaccination. Furthermore, mRNA vaccine-induced spike-specific CD8+ T cells are quantitatively, but not qualitatively, limited to LTRs. Both CD4+ and CD8+ T cells react to omicron sublineages, regardless of the presence in HDs or LTRs. However, there is no boosting effect of spike-specific memory CD8+ T-cell responses after a third vaccination in HDs or LTRs. CONCLUSIONS The third mRNA vaccination improves both humoral responses and spike-specific CD4+ T-cell responses in LTRs but provides no booster effect for spike-specific memory CD8+ T-cell responses. A third mRNA vaccination could be helpful in LTRs to prevent severe COVID-19, although further investigation is required to elicit CD8+ T-cell responses in LTRs and HDs.
Collapse
Affiliation(s)
- Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yuta Nagatsuka
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Hirotomo Murakami
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Yuji Masuta
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hirofumi Akita
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, 540-0008, Japan
- Laboratory of Translational Cancer Immunology and Biology, Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, 540-0008, Japan
| | - Shokichi Takahama
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yasuo Yoshioka
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Translational Cancer Immunology and Biology, Next-generation Precision Medicine Research Center, Osaka International Cancer Institute, Osaka, 540-0008, Japan.
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
21
|
Lasrado N, Collier ARY, Miller J, Hachmann NP, Liu J, Anand T, A. Bondzie E, Fisher JL, Mazurek CR, Patio RC, Rodrigues SL, Rowe M, Surve N, Ty DM, Wu C, Chicz TM, Tong X, Korber B, McNamara RP, Barouch DH. Waning immunity and IgG4 responses following bivalent mRNA boosting. SCIENCE ADVANCES 2024; 10:eadj9945. [PMID: 38394195 PMCID: PMC10889350 DOI: 10.1126/sciadv.adj9945] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Messenger RNA (mRNA) vaccines were highly effective against the ancestral SARS-CoV-2 strain, but the efficacy of bivalent mRNA boosters against XBB variants was substantially lower. Here, we show limited durability of neutralizing antibody (NAb) responses against XBB variants and isotype switching to immunoglobulin G4 (IgG4) responses following bivalent mRNA boosting. Bivalent mRNA boosting elicited modest XBB.1-, XBB.1.5-, and XBB.1.16-specific NAbs that waned rapidly within 3 months. In contrast, bivalent mRNA boosting induced more robust and sustained NAbs against the ancestral WA1/2020 strain, suggesting immune imprinting. Following bivalent mRNA boosting, serum antibody responses were primarily IgG2 and IgG4 responses with poor Fc functional activity. In contrast, a third monovalent mRNA immunization boosted all isotypes including IgG1 and IgG3 with robust Fc functional activity. These data show substantial immune imprinting for the ancestral spike and isotype switching to IgG4 responses following bivalent mRNA boosting, with important implications for future booster designs and boosting strategies.
Collapse
Affiliation(s)
- Ninaad Lasrado
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ai-ris Y. Collier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessica Miller
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicole P. Hachmann
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinyan Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Trisha Anand
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Esther A. Bondzie
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jana L. Fisher
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Camille R. Mazurek
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert C. Patio
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Marjorie Rowe
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nehalee Surve
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Darren M. Ty
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cindy Wu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Taras M. Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Xin Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Bette Korber
- Los Alamos National Laboratory and New Mexico Consortium, Los Alamos, NM, USA
| | | | - Dan H. Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
22
|
Kared H, Jyssum I, Alirezaylavasani A, Egner IM, The Tran T, Tietze L, Lund KP, Tveter AT, Provan SA, Ørbo H, Haavardsholm EA, Vaage JT, Jørgensen K, Syversen SW, Lund-Johansen F, Goll GL, Munthe LA. Dynamics of SARS-CoV-2 immunity after vaccination and breakthrough infection in rituximab-treated rheumatoid arthritis patients: a prospective cohort study. Front Immunol 2024; 15:1296273. [PMID: 38455062 PMCID: PMC10917913 DOI: 10.3389/fimmu.2024.1296273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Background SARS-CoV-2 vaccination in rheumatoid arthritis (RA) patients treated with B cell-depleting drugs induced limited seroconversion but robust cellular response. We aimed to document specific T and B cell immunity in response to vaccine booster doses and breakthrough infection (BTI). Methods We included 76 RA patients treated with rituximab who received up to four SARS-CoV-2 vaccine doses or three doses plus BTI, in addition to vaccinated healthy donors (HD) and control patients treated with tumor necrosis factor inhibitor (TNFi). We quantified anti-SARS-CoV-2 receptor-binding domain (RBD) Spike IgG, anti-nucleocapsid (NC) IgG, 92 circulating inflammatory proteins, Spike-binding B cells, and Spike-specific T cells along with comprehensive high-dimensional phenotyping and functional assays. Findings The time since the last rituximab infusion, persistent inflammation, and age were associated with the anti-SARS-CoV-2 RBD IgG seroconversion. The vaccine-elicited serological response was accompanied by an incomplete induction of peripheral Spike-specific memory B cells but occurred independently of T cell responses. Vaccine- and BTI-elicited cellular immunity was similar between RA and HD ex vivo in terms of frequency or phenotype of Spike-specific cytotoxic T cells and in vitro in terms of the functionality and differentiation profile of Spike-specific T cells. Interpretation SARS-CoV-2 vaccination in RA can induce persistent effector T-cell responses that are reactivated by BTI. Paused rituximab medication allowed serological responses after a booster dose (D4), especially in RA with lower inflammation, enabling efficient humoral and cellular immunity after BTI, and contributed overall to the development of potential durable immunity.
Collapse
Affiliation(s)
- Hassen Kared
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Jyssum
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Amin Alirezaylavasani
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid M. Egner
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trung The Tran
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- ImmunoLingo Convergence Center, University of Oslo, Oslo, Norway
| | - Lisa Tietze
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- ImmunoLingo Convergence Center, University of Oslo, Oslo, Norway
| | - Katrine Persgård Lund
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Therese Tveter
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Sella A. Provan
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Hilde Ørbo
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Espen A. Haavardsholm
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - John Torgils Vaage
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Kristin Jørgensen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Silje Watterdal Syversen
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- ImmunoLingo Convergence Center, University of Oslo, Oslo, Norway
| | - Guro Løvik Goll
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Ludvig A. Munthe
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Zhang Y, Chen C, Su M, Wang J, Li C, Yang X. Hydrophobization of Ribonucleic Acids for Facile Systemic Delivery and Multifaceted Cancer Immunotherapy. NANO LETTERS 2024; 24:1376-1384. [PMID: 38232332 DOI: 10.1021/acs.nanolett.3c04507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Ribonucleic acids (RNAs) enable disease-related gene inhibition, expression, and editing and represent promising therapeutics in various diseases. The efficacy of RNA relies heavily on the presence of a secure and effective delivery system. Herein, we found that RNA could be hydrophobized by cationic lipid and ionizable lipid and conveniently coassemble with amphiphilic polymer to achieve micelle-like nanoparticles (MNP). The results of the study indicate that MNP exhibits a high level of efficiency in delivering RNA. Besides, the MNP encapsulating siRNA that targets CD47 and PD-L1 remarkably blocked these immune checkpoints in a melanoma tumor model and elicited a robust immune response. Moreover, the MNP encapsulating the mRNA of OVA achieved antigen translation and presentation, leading to an effective antitumor immunoprophylaxis outcome against OVA-expressing melanoma model. Our findings suggest that RNA hydrophobization could serve as a viable approach for delivering RNA, thereby facilitating the exploration of RNA therapy in disease treatment.
Collapse
Affiliation(s)
- Yuxi Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200080, P. R. China
| | - Chaoran Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Miao Su
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Junxia Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Cheng Li
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200080, P. R. China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
24
|
Meulewaeter S, Zhang Y, Wadhwa A, Fox K, Lentacker I, Harder KW, Cullis PR, De Smedt SC, Cheng MHY, Verbeke R. Considerations on the Design of Lipid-based mRNA Vaccines Against Cancer. J Mol Biol 2024; 436:168385. [PMID: 38065276 DOI: 10.1016/j.jmb.2023.168385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/26/2023]
Abstract
Throughout the last decades, mRNA vaccines have been developed as a cancer immunotherapeutic and the technology recently gained momentum during the COVID-19 pandemic. Recent promising results obtained from clinical trials investigating lipid-based mRNA vaccines in cancer therapy further highlighted the potential of this therapy. Interestingly, while the technologies being used in authorized mRNA vaccines for the prevention of COVID-19 are relatively similar, mRNA vaccines in clinical development for cancer vaccination show marked differences in mRNA modification, lipid carrier, and administration route. In this review, we describe findings on how these factors can impact the potency of mRNA vaccines in cancer therapy and provide insights into the complex interplay between them. We discuss how lipid carrier composition can affect passive targeting to immune cells to improve the efficacy and safety of mRNA vaccines. Finally, we summarize strategies that are established or still being explored to improve the efficacy of mRNA cancer vaccines and include next-generation vaccines that are on the horizon in clinical development.
Collapse
Affiliation(s)
- Sofie Meulewaeter
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Yao Zhang
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Abishek Wadhwa
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Kevin Fox
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Miffy H Y Cheng
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Rein Verbeke
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
25
|
Kozak M, Hu J. DNA Vaccines: Their Formulations, Engineering and Delivery. Vaccines (Basel) 2024; 12:71. [PMID: 38250884 PMCID: PMC10820593 DOI: 10.3390/vaccines12010071] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The concept of DNA vaccination was introduced in the early 1990s. Since then, advancements in the augmentation of the immunogenicity of DNA vaccines have brought this technology to the market, especially in veterinary medicine, to prevent many diseases. Along with the successful COVID mRNA vaccines, the first DNA vaccine for human use, the Indian ZyCovD vaccine against SARS-CoV-2, was approved in 2021. In the current review, we first give an overview of the DNA vaccine focusing on the science, including adjuvants and delivery methods. We then cover some of the emerging science in the field of DNA vaccines, notably efforts to optimize delivery systems, better engineer delivery apparatuses, identify optimal delivery sites, personalize cancer immunotherapy through DNA vaccination, enhance adjuvant science through gene adjuvants, enhance off-target and heritable immunity through epigenetic modification, and predict epitopes with bioinformatic approaches. We also discuss the major limitations of DNA vaccines and we aim to address many theoretical concerns.
Collapse
Affiliation(s)
- Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
26
|
Paganelli R. When Cell-Mediated Immunity after Vaccination Is Important. Pathogens 2024; 13:65. [PMID: 38251372 PMCID: PMC10819879 DOI: 10.3390/pathogens13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
The review by Reeg D [...].
Collapse
Affiliation(s)
- Roberto Paganelli
- Internal Medicine, UniCamillus, International Medical University in Rome, 00131 Rome, Italy;
- YDA, Institute of Clinical Immunotherapy and Advanced Biological Treatments, 66100 Pescara, Italy
| |
Collapse
|
27
|
Lineburg KE, Crooks P, Raju J, Le Texier L, Khaledi P, Berry K, Swaminathan S, Panikkar A, Rehan S, Guppy-Coles K, Neller MA, Khanna R, Smith C. Breakthrough SARS-COV-2 infection induces broad anti-viral T cell immunity. iScience 2023; 26:108474. [PMID: 38077128 PMCID: PMC10698266 DOI: 10.1016/j.isci.2023.108474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 05/18/2024] Open
Abstract
Vaccines have curtailed the devastation wrought by COVID-19. Nevertheless, emerging variants result in a high incidence of breakthrough infections. Here we assess the impact of vaccination and breakthrough infection on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cell immunity. We demonstrate that COVID-19 vaccination induces robust spike-specific T cell responses that, within the CD4+ compartment, display comparable IFN-γ responses to SARS-CoV-2 infection without vaccination. Vaccine-induced CD8+ IFN-γ responses however, were significantly greater than those primed by SARS-CoV-2 infection alone. This increased responsiveness is associated with induction of novel HLA-restricted CD8+ T cell epitopes not primed by infection alone (without vaccination). Despite these augmented responses, breakthrough infection still induced de novo T cell responses against additional SARS-CoV-2 CD8+ epitopes that display HLA-associated immunodominance hierarchies consistent with those in unvaccinated COVID-19 convalescent individuals. This study demonstrates the unique modulation of anti-viral T cell responses against multiple viral antigens following consecutive yet distinct priming events in COVID-19 vaccination and breakthrough infection.
Collapse
Affiliation(s)
- Katie Eireann Lineburg
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Pauline Crooks
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Jyothy Raju
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Laetitia Le Texier
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Panteha Khaledi
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Kiana Berry
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Srividhya Swaminathan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Archana Panikkar
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Sweera Rehan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Kristyan Guppy-Coles
- Cardiology, Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Services, Queensland Health, QLD 4006, Australia
| | - Michelle Anne Neller
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
28
|
Koseki T, Teramachi M, Koga M, Ko MSH, Amano T, Yu H, Amano M, Leyder E, Badiola M, Ray P, Kim J, Ko AC, Achour A, Weng NP, Imai T, Yoshida H, Taniuchi S, Shintani A, Fujigaki H, Kondo M, Doi Y. A Phase I/II Clinical Trial of Intradermal, Controllable Self-Replicating Ribonucleic Acid Vaccine EXG-5003 against SARS-CoV-2. Vaccines (Basel) 2023; 11:1767. [PMID: 38140172 PMCID: PMC10747308 DOI: 10.3390/vaccines11121767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have played a key role in reducing morbidity and mortality from coronavirus disease 2019 (COVID-19). We conducted a double-blind, placebo-controlled phase I/II trial to evaluate the safety, tolerability, and immunogenicity of EXG-5003, a two-dose, controllable self-replicating RNA vaccine against SARS-CoV-2. EXG-5003 encodes the receptor binding domain (RBD) of SARS-CoV-2 and was administered intradermally without lipid nanoparticles (LNPs). The participants were followed for 12 months. Forty healthy participants were enrolled in Cohort 1 (5 µg per dose, n = 16; placebo, n = 4) and Cohort 2 (25 µg per dose, n = 16; placebo, n = 4). No safety concerns were observed with EXG-5003 administration. SARS-CoV-2 RBD antibody titers and neutralizing antibody titers were not elevated in either cohort. Elicitation of antigen-specific cellular immunity was observed in the EXG-5003 recipients in Cohort 2. At the 12-month follow-up, participants who had received an approved mRNA vaccine (BNT162b2 or mRNA-1273) >1 month after receiving the second dose of EXG-5003 showed higher cellular responses compared with equivalently vaccinated participants in the placebo group. The findings suggest a priming effect of EXG-5003 on the long-term cellular immunity of approved SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Takenao Koseki
- Department of Pharmacotherapeutics and Informatics, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan;
| | - Mayumi Teramachi
- Center for Clinical Trial and Research Support, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan; (M.T.); (M.K.)
| | - Minako Koga
- KM Pharmaceutical Consulting, Washington, DC 20006, USA;
| | - Minoru S. H. Ko
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Tomokazu Amano
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Hong Yu
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Misa Amano
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Erica Leyder
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Maria Badiola
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Priyanka Ray
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Jiyoung Kim
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Akihiro C. Ko
- Elixirgen Therapeutics, Inc., Baltimore, MD 21205, USA; (M.S.H.K.); (T.A.); (H.Y.); (M.A.); (E.L.); (M.B.); (P.R.); (J.K.); (A.C.K.)
| | - Achouak Achour
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA; (A.A.); (N.-p.W.)
| | - Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA; (A.A.); (N.-p.W.)
| | - Takumi Imai
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan; (T.I.); (H.Y.); (S.T.); (A.S.)
| | - Hisako Yoshida
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan; (T.I.); (H.Y.); (S.T.); (A.S.)
| | - Satsuki Taniuchi
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan; (T.I.); (H.Y.); (S.T.); (A.S.)
| | - Ayumi Shintani
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan; (T.I.); (H.Y.); (S.T.); (A.S.)
| | - Hidetsugu Fujigaki
- Department of Advanced Diagnostic System Development, Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Japan
| | - Masashi Kondo
- Center for Clinical Trial and Research Support, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan; (M.T.); (M.K.)
- Department of Respiratory Medicine, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
| | - Yohei Doi
- Departments of Microbiology and Infectious Diseases, School of Medicine, Fujita Health University, Toyoake 470-1192, Japan
- Center for Infectious Disease Research, Fujita Health University, Toyoake 470-1192, Japan
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
29
|
Wang L, Nicols A, Turtle L, Richter A, Duncan CJA, Dunachie SJ, Klenerman P, Payne RP. T cell immune memory after covid-19 and vaccination. BMJ MEDICINE 2023; 2:e000468. [PMID: 38027416 PMCID: PMC10668147 DOI: 10.1136/bmjmed-2022-000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The T cell memory response is a crucial component of adaptive immunity responsible for limiting or preventing viral reinfection. T cell memory after infection with the SARS-CoV-2 virus or vaccination is broad, and spans multiple viral proteins and epitopes, about 20 in each individual. So far the T cell memory response is long lasting and provides a high level of cross reactivity and hence resistance to viral escape by variants of the SARS-CoV-2 virus, such as the omicron variant. All current vaccine regimens tested produce robust T cell memory responses, and heterologous regimens will probably enhance protective responses through increased breadth. T cell memory could have a major role in protecting against severe covid-19 disease through rapid viral clearance and early presentation of epitopes, and the presence of cross reactive T cells might enhance this protection. T cell memory is likely to provide ongoing protection against admission to hospital and death, and the development of a pan-coronovirus vaccine might future proof against new pandemic strains.
Collapse
Affiliation(s)
- Lulu Wang
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Alex Nicols
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Christopher JA Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
- Department of Infection and Tropical Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Susanna J Dunachie
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Faculty of Science, Bangkok, Thailand
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Rebecca P Payne
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Borgo GM, Rutishauser RL. Generating and measuring effective vaccine-elicited HIV-specific CD8 + T cell responses. Curr Opin HIV AIDS 2023; 18:331-341. [PMID: 37751362 PMCID: PMC10552829 DOI: 10.1097/coh.0000000000000824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW There is growing consensus that eliciting CD8 + T cells in addition to antibodies may be required for an effective HIV vaccine for both prevention and cure. Here, we review key qualities of vaccine-elicited CD8 + T cells as well as major CD8 + T cell-based delivery platforms used in recent HIV vaccine clinical trials. RECENT FINDINGS Much progress has been made in improving HIV immunogen design and delivery platforms to optimize CD8 + T cell responses. With regards to viral vectors, recent trials have tested newer chimp and human adenovirus vectors as well as a CMV vector. DNA vaccine immunogenicity has been increased by delivering the vaccines by electroporation and together with adjuvants as well as administering them as part of a heterologous regimen. In preclinical models, self-amplifying RNA vaccines can generate durable tissue-based CD8 + T cells. While it may be beneficial for HIV vaccines to recapitulate the functional and phenotypic features of HIV-specific CD8 + T cells isolated from elite controllers, most of these features are not routinely measured in HIV vaccine clinical trials. SUMMARY Identifying a vaccine capable of generating durable T cell responses that target mutationally vulnerable epitopes and that can rapidly intercept infecting or rebounding virus remains a challenge for HIV. Comprehensive assessment of HIV vaccine-elicited CD8 + T cells, as well as comparisons between different vaccine platforms, will be critical to advance our understanding of how to design better CD8 + T cell-based vaccines for HIV.
Collapse
Affiliation(s)
- Gina M Borgo
- Department of Medicine, University of California, San Francisco, California, USA
| | | |
Collapse
|
31
|
Painter MM, Johnston TS, Lundgreen KA, Santos JJS, Qin JS, Goel RR, Apostolidis SA, Mathew D, Fulmer B, Williams JC, McKeague ML, Pattekar A, Goode A, Nasta S, Baxter AE, Giles JR, Skelly AN, Felley LE, McLaughlin M, Weaver J, Kuthuru O, Dougherty J, Adamski S, Long S, Kee M, Clendenin C, da Silva Antunes R, Grifoni A, Weiskopf D, Sette A, Huang AC, Rader DJ, Hensley SE, Bates P, Greenplate AR, Wherry EJ. Prior vaccination promotes early activation of memory T cells and enhances immune responses during SARS-CoV-2 breakthrough infection. Nat Immunol 2023; 24:1711-1724. [PMID: 37735592 DOI: 10.1038/s41590-023-01613-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific cluster of differentiation (CD)4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production and primary responses to nonspike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mark M Painter
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Timothy S Johnston
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Kendall A Lundgreen
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jefferson J S Santos
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Juliana S Qin
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rishi R Goel
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Bria Fulmer
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Justine C Williams
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Michelle L McKeague
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ahmad Goode
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sean Nasta
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy E Baxter
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Josephine R Giles
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashwin N Skelly
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura E Felley
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Maura McLaughlin
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joellen Weaver
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sharon Adamski
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sherea Long
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Macy Kee
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Cynthia Clendenin
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alexander C Huang
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn Medicine Biobank, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E Hensley
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Luxenburger H, Thimme R. SARS-CoV-2 and the liver: clinical and immunological features in chronic liver disease. Gut 2023; 72:1783-1794. [PMID: 37316169 PMCID: PMC10423489 DOI: 10.1136/gutjnl-2023-329623] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
SARS-CoV-2 infection may affect the liver in healthy individuals but also influences the course of COVID-19 in patients with chronic liver disease (CLD). As described in healthy individuals, a strong SARS-CoV-2-specific adaptive immune response is important for the outcome of COVID-19, however, knowledge on the adaptive immune response in CLD is limited.Here, we review the clinical and immunological features of SARS-CoV-2 infection in individuals with CLD. Acute liver injury occurs in many cases of SARS-CoV-2 infection and may be induced by multiple factors, such as cytokines, direct viral infection or toxic effects of COVID-19 drugs. In individuals with CLD, SARS-CoV-2 infection may have a more severe course and promote decompensation and particularly in patients with cirrhosis. Compared with healthy individuals, the SARS-CoV-2-specific adaptive immune responses is impaired in patients with CLD after both, natural infection and vaccination but improves at least partially after booster vaccination.Following SARS-CoV-2 vaccination, rare cases of acute vaccine-induced liver injury and the development of autoimmune-like hepatitis have been reported. However, the concomitant elevation of liver enzymes is reversible under steroid treatment.
Collapse
Affiliation(s)
- Hendrik Luxenburger
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Chen M, Venturi V, Munier CML. Dissecting the Protective Effect of CD8 + T Cells in Response to SARS-CoV-2 mRNA Vaccination and the Potential Link with Lymph Node CD8 + T Cells. BIOLOGY 2023; 12:1035. [PMID: 37508464 PMCID: PMC10376827 DOI: 10.3390/biology12071035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
SARS-CoV-2 vaccines have played a crucial role in effectively reducing COVID-19 disease severity, with a new generation of vaccines that use messenger RNA (mRNA) technology being administered globally. Neutralizing antibodies have featured as the heroes of vaccine-induced immunity. However, vaccine-elicited CD8+ T cells may have a significant impact on the early protective effects of the mRNA vaccine, which are evident 12 days after initial vaccination. Vaccine-induced CD8+ T cells have been shown to respond to multiple epitopes of SARS-CoV-2 and exhibit polyfunctionality in the periphery at the early stage, even when neutralizing antibodies are scarce. Furthermore, SARS-CoV-2 mRNA vaccines induce diverse subsets of memory CD8+ T cells that persist for more than six months following vaccination. However, the protective role of CD8+ T cells in response to the SARS-CoV-2 mRNA vaccines remains a topic of debate. In addition, our understanding of CD8+ T cells in response to vaccination in the lymph nodes, where they first encounter antigen, is still limited. This review delves into the current knowledge regarding the protective role of polyfunctional CD8+ T cells in controlling the virus, the response to SARS-CoV-2 mRNA vaccines, and the contribution to supporting B cell activity and promoting immune protection in the lymph nodes.
Collapse
Affiliation(s)
- Mengfei Chen
- The Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
34
|
Ziemssen T, Schlegel E, Groth M, Ettle B, Bopp T. Results on SARS-CoV-2 mRNA Vaccine Booster from an Open-Label Multicenter Study in Ofatumumab-Treated Participants with Relapsing Multiple Sclerosis. Vaccines (Basel) 2023; 11:vaccines11050978. [PMID: 37243082 DOI: 10.3390/vaccines11050978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Few data exist on how ofatumumab treatment impacts SARS-CoV-2 booster vaccination response. METHODS KYRIOS is an ongoing prospective open-label multicenter study on the response to initial and booster SARS-CoV-2 mRNA vaccination before or during ofatumumab treatment in relapsing MS patients. The results on the initial vaccination cohort have been published previously. Here, we describe 23 patients who received their initial vaccination outside of the study but booster vaccination during the study. Additionally, we report the booster results of two patients in the initial vaccination cohort. The primary endpoint was SARS-CoV-2-specific T-cell response at month 1. Furthermore, serum total and neutralizing antibodies were measured. RESULTS The primary endpoint was reached by 87.5% of patients with booster before (booster cohort 1, N = 8) and 46.7% of patients with booster during ofatumumab treatment (booster cohort 2, N = 15). Seroconversion rates for neutralizing antibodies increased from 87.5% at baseline to 100.0% at month 1 in booster cohort 1 and from 71.4% to 93.3% in booster cohort 2. Of note, 3 of 4 initially seronegative patients in booster cohort 2 and one seronegative patient in the initial vaccination cohort seroconverted after the booster during ofatumumab treatment. CONCLUSIONS Booster vaccinations increase neutralizing antibody titers in ofatumumab-treated patients. A booster is recommended in ofatumumab-treated patients.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- Department of Neurology, Center of Clinical Neuroscience, Carl Gustav Carus University Clinic, University Hospital of Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Eugen Schlegel
- Zentrum für Neurologische Studien, 57076 Siegen, Germany
| | - Marie Groth
- Novartis Pharma GmbH, 90429 Nuremberg, Germany
| | | | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
35
|
Del Mastro A, Picascia S, D'Apice L, Trovato M, Barba P, Di Biase I, Di Biase S, Laccetti M, Belli A, Amato G, Di Muro P, Credendino O, Picardi A, De Berardinis P, Del Pozzo G, Gianfrani C. Booster Dose of SARS-CoV-2 mRNA Vaccine in Kidney Transplanted Patients Induces Wuhan-Hu-1 Specific Neutralizing Antibodies and T Cell Activation but Lower Response against Omicron Variant. Viruses 2023; 15:v15051132. [PMID: 37243218 DOI: 10.3390/v15051132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Kidney transplanted recipients (KTR) are at high risk of severe SARS-CoV-2 infection due to immunosuppressive therapy. Although several studies reported antibody production in KTR after vaccination, data related to immunity to the Omicron (B.1.1.529) variant are sparse. Herein, we analyzed anti-SARS-CoV-2 immune response in seven KTR and eight healthy controls after the second and third dose of the mRNA vaccine (BNT162b2). A significant increase in neutralizing antibody (nAb) titers were detected against pseudoviruses expressing the Wuhan-Hu-1 spike (S) protein after the third dose in both groups, although nAbs in KTR were lower than controls. nAbs against pseudoviruses expressing the Omicron S protein were low in both groups, with no increase after the 3rd dose in KTR. Reactivity of CD4+ T cells after boosting was observed when cells were challenged with Wuhan-Hu-1 S peptides, while Omicron S peptides were less effective in both groups. IFN-γ production was detected in KTR in response to ancestral S peptides, confirming antigen-specific T cell activation. Our study demonstrates that the 3rd mRNA dose induces T cell response against Wuhan-Hu-1 spike peptides in KTR, and an increment in the humoral immunity. Instead, humoral and cellular immunity to Omicron variant immunogenic peptides were low in both KTR and healthy vaccinated subjects.
Collapse
Affiliation(s)
- Andrea Del Mastro
- AORN A. Cardarelli-Internal Medicine Division 1-Immunology Unit, 80131 Naples, Italy
| | - Stefania Picascia
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, 80131 Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, 80131 Naples, Italy
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, 80131 Naples, Italy
| | - Pasquale Barba
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, 80131 Naples, Italy
| | | | | | - Marco Laccetti
- AORN A. Cardarelli-Internal Medicine Division 1-Immunology Unit, 80131 Naples, Italy
| | - Antonello Belli
- AORN A. Cardarelli-Clinical Pathology Division, 80131 Naples, Italy
| | - Gerardino Amato
- AORN A. Cardarelli-Clinical Pathology Division, 80131 Naples, Italy
| | - Potito Di Muro
- AORN A. Cardarelli-Nephrology and Dialysis Unit, 80131 Naples, Italy
| | - Olga Credendino
- AORN A. Cardarelli-Nephrology and Dialysis Unit, 80131 Naples, Italy
| | - Alessandra Picardi
- AORN A. Cardarelli-Molecular Biology Laboratory-Hematology and HSC Transplantation Unit, 80131 Naples, Italy
| | | | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics, Italian National Council of Research, 80131 Naples, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, 80131 Naples, Italy
| |
Collapse
|
36
|
Tani Y, Takita M, Kobashi Y, Wakui M, Zhao T, Yamamoto C, Saito H, Kawashima M, Sugiura S, Nishikawa Y, Omata F, Shimazu Y, Kawamura T, Sugiyama A, Nakayama A, Kaneko Y, Kodama T, Kami M, Tsubokura M. Varying Cellular Immune Response against SARS-CoV-2 after the Booster Vaccination: A Cohort Study from Fukushima Vaccination Community Survey, Japan. Vaccines (Basel) 2023; 11:vaccines11050920. [PMID: 37243024 DOI: 10.3390/vaccines11050920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Booster vaccination reduces the incidence of severe cases and mortality related to COVID-19, with cellular immunity playing an important role. However, little is known about the proportion of the population that has achieved cellular immunity after booster vaccination. Thus, we conducted a Fukushima cohort database and assessed humoral and cellular immunity in 2526 residents and healthcare workers in Fukushima Prefecture in Japan through continuous blood collection every 3 months from September 2021. We identified the proportion of people with induced cellular immunity after booster vaccination using the T-SPOT.COVID test, and analyzed their background characteristics. Among 1089 participants, 64.3% (700/1089) had reactive cellular immunity after booster vaccination. Multivariable analysis revealed the following independent predictors of reactive cellular immunity: age < 40 years (adjusted odds ratio: 1.81; 95% confidence interval: 1.19-2.75; p-value: 0.005) and adverse reactions after vaccination (1.92, 1.19-3.09, 0.007). Notably, despite IgG(S) and neutralizing antibody titers of ≥500 AU/mL, 33.9% (349/1031) and 33.5% (341/1017) of participants, respectively, did not have reactive cellular immunity. In summary, this is the first study to evaluate cellular immunity at the population level after booster vaccination using the T-SPOT.COVID test, albeit with several limitations. Future studies will need to evaluate previously infected subjects and their T-cell subsets.
Collapse
Affiliation(s)
- Yuta Tani
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Morihito Takita
- Medical Governance Research Institute, Tokyo 108-0074, Japan
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima 976-0016, Japan
| | - Moe Kawashima
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Sota Sugiura
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Yoshitaka Nishikawa
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Fumiya Omata
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Yuzo Shimazu
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Akira Sugiyama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Aya Nakayama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Medical and Biological Laboratories Co., Ltd., Tokyo 105-0012, Japan
| | - Tetsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Masahiro Kami
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima 976-0016, Japan
| |
Collapse
|
37
|
Tsai TF, Ng CY. COVID-19 vaccine-associated vitiligo: A cross-sectional study in a tertiary referral center and systematic review. J Dermatol 2023. [PMID: 37186102 DOI: 10.1111/1346-8138.16799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to infect patients globally, vaccination remains one of the primary methods to combat this prolonged pandemic. However, there are growing reports of coronavirus disease 2019 (COVID-19) vaccines possibly triggering autoimmunity, irrespective of the vaccine's design. This phenomenon has been observed in patients with vitiligo, with a rising number of cases reporting new-onset or worsening vitiligo following COVID-19 vaccinations. In this study, the authors present the most extensive case series of COVID-19 vaccine-associated vitiligo to date, along with a systematic review of the literature. The aim is to assist physicians in the clinical evaluation of patients with vitiligo with regard to future vaccinations.
Collapse
Affiliation(s)
- Tsung-Fu Tsai
- Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
- Vitiligo Clinic and Pigment Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chau Yee Ng
- Department of Dermatology, Chang Gung Memorial Hospital, Taipei, Taiwan
- Vitiligo Clinic and Pigment Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology and Aesthetic Medicine Center, Jen Ai Hospital, Taichung, Taiwan
| |
Collapse
|
38
|
Koutsakos M, Reynaldi A, Lee WS, Nguyen J, Amarasena T, Taiaroa G, Kinsella P, Liew KC, Tran T, Kent HE, Tan HX, Rowntree LC, Nguyen THO, Thomas PG, Kedzierska K, Petersen J, Rossjohn J, Williamson DA, Khoury D, Davenport MP, Kent SJ, Wheatley AK, Juno JA. SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses. Immunity 2023; 56:879-892.e4. [PMID: 36958334 PMCID: PMC9970913 DOI: 10.1016/j.immuni.2023.02.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Julie Nguyen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - George Taiaroa
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Paul Kinsella
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kwee Chin Liew
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas Tran
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen E Kent
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Jan Petersen
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - David Khoury
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
39
|
Xu Z, Fisher DE. mRNA melanoma vaccine revolution spurred by the COVID-19 pandemic. Front Immunol 2023; 14:1155728. [PMID: 37063845 PMCID: PMC10101324 DOI: 10.3389/fimmu.2023.1155728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The advent of mRNA vaccines represents a significant advance in the field of vaccinology. While several vaccine approaches (mRNA, DNA, recombinant protein, and viral-vectored vaccines) had been investigated at the start of the COVID-19 pandemic, mRNA vaccines quickly gained popularity due to superior immunogenicity at a low dose, strong safety/tolerability profiles, and the possibility of rapid vaccine mass manufacturing and deployment to rural regions. In addition to inducing protective neutralizing antibody responses, mRNA vaccines can also elicit high-magnitude cytotoxic T-cell responses comparable to natural viral infections; thereby, drawing significant interest from cancer immunotherapy experts. This mini-review will highlight key developmental milestones and lessons we have learned from mRNA vaccines during the COVID-19 pandemic, with a specific emphasis on clinical trial data gathered so far for mRNA vaccines against melanoma and other forms of cancer.
Collapse
Affiliation(s)
- Ziyang Xu
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - David E. Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, United States
- *Correspondence: David E. Fisher,
| |
Collapse
|
40
|
Luxenburger H, Reeg DB, Lang-Meli J, Reinscheid M, Eisner M, Bettinger D, Oberhardt V, Salimi Alizei E, Wild K, Graeser A, Karl V, Sagar, Emmerich F, Klein F, Panning M, Huzly D, Bengsch B, Boettler T, Elling R, Thimme R, Hofmann M, Neumann-Haefelin C. Boosting compromised SARS-CoV-2-specific immunity with mRNA vaccination in liver transplant recipients. J Hepatol 2023; 78:1017-1027. [PMID: 36804404 PMCID: PMC10019593 DOI: 10.1016/j.jhep.2023.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND & AIMS Liver transplant recipients (LTRs) demonstrate a reduced response to COVID-19 mRNA vaccination; however, a detailed understanding of the interplay between humoral and cellular immunity, especially after a third (and fourth) vaccine dose, is lacking. METHODS We longitudinally compared the humoral, as well as CD4+ and CD8+ T-cell, responses between LTRs (n = 24) and healthy controls (n = 19) after three (LTRs: n = 9 to 16; healthy controls: n = 9 to 14 per experiment) to four (LTRs: n = 4; healthy controls: n = 4) vaccine doses, including in-depth phenotypical and functional characterization. RESULTS Compared to healthy controls, development of high antibody titers required a third vaccine dose in most LTRs, while spike-specific CD8+ T cells with robust recall capacity plateaued after the second vaccine dose, albeit with a reduced frequency and epitope repertoire compared to healthy controls. This overall attenuated vaccine response was linked to a reduced frequency of spike-reactive follicular T helper cells in LTRs. CONCLUSION Three doses of a COVID-19 mRNA vaccine induce an overall robust humoral and cellular memory response in most LTRs. Decisions regarding additional booster doses may thus be based on individual vaccine responses as well as evolution of novel variants of concern. IMPACT AND IMPLICATIONS Due to immunosuppressive medication, liver transplant recipients (LTR) display reduced antibody titers upon COVID-19 mRNA vaccination, but the impact on long-term immune memory is not clear. Herein, we demonstrate that after three vaccine doses, the majority of LTRs not only exhibit substantial antibody titers, but also a robust memory T-cell response. Additional booster vaccine doses may be of special benefit for a small subset of LTRs with inferior vaccine response and may provide superior protection against evolving novel viral variants. These findings will help physicians to guide LTRs regarding the benefit of booster vaccinations.
Collapse
Affiliation(s)
- Hendrik Luxenburger
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; IMM-PACT, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David B Reeg
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Lang-Meli
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; IMM-PACT, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Reinscheid
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Miriam Eisner
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106, Freiburg, Germany
| | - Dominik Bettinger
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Valerie Oberhardt
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elahe Salimi Alizei
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Wild
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Graeser
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vivien Karl
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Marcus Panning
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roland Elling
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Christoph Neumann-Haefelin
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
41
|
Painter MM, Johnston TS, Lundgreen KA, Santos JJS, Qin JS, Goel RR, Apostolidis SA, Mathew D, Fulmer B, Williams JC, McKeague ML, Pattekar A, Goode A, Nasta S, Baxter AE, Giles JR, Skelly AN, Felley LE, McLaughlin M, Weaver J, Kuthuru O, Dougherty J, Adamski S, Long S, Kee M, Clendenin C, da Silva Antunes R, Grifoni A, Weiskopf D, Sette A, Huang AC, Rader DJ, Hensley SE, Bates P, Greenplate AR, Wherry EJ. Prior vaccination enhances immune responses during SARS-CoV-2 breakthrough infection with early activation of memory T cells followed by production of potent neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527215. [PMID: 36798171 PMCID: PMC9934532 DOI: 10.1101/2023.02.05.527215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
SARS-CoV-2 infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened Spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific CD4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production, and primary responses to non-Spike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mark M Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Timothy S Johnston
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kendall A Lundgreen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Jefferson J S Santos
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Juliana S Qin
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Rishi R Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Bria Fulmer
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Justine C Williams
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Michelle L McKeague
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Ahmad Goode
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Sean Nasta
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Amy E Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Josephine R Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Ashwin N Skelly
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura E Felley
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Maura McLaughlin
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Joellen Weaver
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Jeanette Dougherty
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Sharon Adamski
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Sherea Long
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Macy Kee
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Cynthia Clendenin
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alexander C Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott E Hensley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| |
Collapse
|
42
|
Reeg DB, Hofmann M, Neumann-Haefelin C, Thimme R, Luxenburger H. SARS-CoV-2-Specific T Cell Responses in Immunocompromised Individuals with Cancer, HIV or Solid Organ Transplants. Pathogens 2023; 12:pathogens12020244. [PMID: 36839516 PMCID: PMC9966413 DOI: 10.3390/pathogens12020244] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Adaptive immune responses play an important role in the clinical course of SARS-CoV-2 infection. While evaluations of the virus-specific defense often focus on the humoral response, cellular immunity is crucial for the successful control of infection, with the early development of cytotoxic T cells being linked to efficient viral clearance. Vaccination against SARS-CoV-2 induces both CD4+ and CD8+ T cell responses and permits protection from severe COVID-19, including infection with the currently circulating variants of concern. Nevertheless, in immunocompromised individuals, first data imply significantly impaired SARS-CoV-2-specific immune responses after both natural infection and vaccination. Hence, these high-risk groups require particular consideration, not only in routine clinical practice, but also in the development of future vaccination strategies. In order to assist physicians in the guidance of immunocompromised patients, concerning the management of infection or the benefit of (booster) vaccinations, this review aims to provide a concise overview of the current knowledge about SARS-CoV-2-specific cellular immune responses in the vulnerable cohorts of cancer patients, people living with HIV (PLWH), and solid organ transplant recipients (SOT). Recent findings regarding the virus-specific cellular immunity in these differently immunocompromised populations might influence clinical decision-making in the future.
Collapse
|
43
|
Rzymski P, Szuster-Ciesielska A, Dzieciątkowski T, Gwenzi W, Fal A. mRNA vaccines: The future of prevention of viral infections? J Med Virol 2023; 95:e28572. [PMID: 36762592 DOI: 10.1002/jmv.28572] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Messenger RNA (mRNA) vaccines against COVID-19 are the first authorized biological preparations developed using this platform. During the pandemic, their administration has been proven to be a life-saving intervention. Here, we review the main advantages of using mRNA vaccines, identify further technological challenges to be met during the development of the mRNA platform, and provide an update on the clinical progress on leading mRNA vaccine candidates against different viruses that include influenza viruses, human immunodeficiency virus 1, respiratory syncytial virus, Nipah virus, Zika virus, human cytomegalovirus, and Epstein-Barr virus. The prospects and challenges of manufacturing mRNA vaccines in low-income countries are also discussed. The ongoing interest and research in mRNA technology are likely to overcome some existing challenges for this technology (e.g., related to storage conditions and immunogenicity of some components of lipid nanoparticles) and enhance the portfolio of vaccines against diseases for which classical formulations are already authorized. It may also open novel pathways of protection against infections and their consequences for which no safe and efficient immunization methods are currently available.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.,Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Willis Gwenzi
- Alexander von Humboldt Fellow & Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany.,Alexander von Humboldt Fellow & Guest Professor, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Andrzej Fal
- Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszynski University, Warsaw, Poland.,Department of Public Health, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
44
|
Ho-Yan Fong C, Zhang X, Chen LL, Wing-Shan Poon R, Pui-Chun Chan B, Zhao Y, King-Ho Wong C, Chan KH, Yuen KY, Fan-Ngai Hung I, Yuk Yuen JK, Kai-Wang To K. Effect of vaccine booster, vaccine type, and hybrid immunity on humoral and cellular immunity against SARS-CoV-2 ancestral strain and Omicron variant sublineages BA.2 and BA.5 among older adults with comorbidities: a cross sectional study. EBioMedicine 2023; 88:104446. [PMID: 36706582 PMCID: PMC9874281 DOI: 10.1016/j.ebiom.2023.104446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Vaccination reduces COVID-19-related hospitalization among older adults. However, how SARS-CoV-2 infection and vaccine regimens affect vaccine-elicited immunity remain unclear. METHODS This is a cross-sectional study recruiting adults aged ≥70 years with comorbidities in Hong Kong. Demographic and clinical information were collected using a questionnaire. Neutralizing antibody (nAb) titers (against ancestral and Omicron strains) and SARS-CoV-2-specific T cell response were analyzed according to infection and vaccination status. Multivariable regression analysis was performed to assess the associations of BNT162b2 and booster doses with higher nAb titers, with adjustment for comorbidities. FINDINGS In July 2022, 101 patients were recruited, of whom 25 (24%) had previous infection. Overall, the geometric mean titer (GMT) of BA.5 nAb was 2.8-fold lower than that against BA.2 (P < 0.0001). The ancestral strain and BA.2 titers were higher for the 3-4-dose-BNT162 group than the 2-dose-BNT162b2 group. Non-infected individuals in the 3-4-dose-CoronaVac group had a more robust T cell response than the 2-dose-CoronaVac group (P = 0.0181), but there was no significant difference between the 2-dose-BNT162b2 and 3-4-dose-BNT162b groups. Patients who had heterologous CoronaVac-BNT162b2 prime-boost regimen had 3.22-fold higher BA.5 nAb titers than those who were primed/boosted with CoronaVac (P = 0.0207). Patients with hybrid immunity had higher Omicron nAb titers than those with vaccine-only immunity. Multivariable analysis showed that BNT162b2 and booster doses were independently associated with higher ancestral strain nAb titers. INTERPRETATION Our data support the use of booster doses for older adults with or without prior infection. Non-infected individuals primed with CoronaVac will benefit from heterologous mRNA vaccine booster. FUNDING Richard and Carol Yu, May Tam Mak Mei Yin, The Shaw Foundation Hong Kong, Michael Tong, Marina Lee, Government Consultancy Service (See acknowledgements for full list).
Collapse
Affiliation(s)
- Carol Ho-Yan Fong
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaojuan Zhang
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lin-Lei Chen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Rosana Wing-Shan Poon
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Brian Pui-Chun Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yan Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Carlos King-Ho Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China,Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Ivan Fan-Ngai Hung
- Infectious Diseases Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jacqueline Kwan Yuk Yuen
- Division of Geriatric Medicine, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Corresponding author. Division of Geriatric Medicine, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China,Corresponding author. Department of Microbiology, 19th Floor, Block T, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
45
|
Hybrid and herd immunity 6 months after SARS-CoV-2 exposure among individuals from a community treatment program. Sci Rep 2023; 13:763. [PMID: 36641523 PMCID: PMC9840162 DOI: 10.1038/s41598-023-28101-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
The death rate from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in 2022 was lower than the death rate in 2021, when the infection rate increased. Hybrid immunity provided by a combination of vaccination and infection, including asymptomatic infection, may confer effective protection against death. We explored the combined effect of asymptomatic infection and hybrid immunity by studying T-cell and antibody responses against SARS-CoV-2 among individuals treated in home health care services 6 months after SARS-CoV-2 exposure. Asymptomatic SARS-CoV-2 infection was demonstrated in 24.4% of close contacts. The levels of immunity were not different between patients and close contacts. Anti-RBD IgG against SARS-CoV-2 increased in a dose-dependent manner with the number of vaccine doses. Interestingly, the T-cell response decreased soon after a booster dose of vaccine. Asymptomatic SARS-CoV-2 infection could not enhance immunity against SARS-CoV-2 among vaccinated close contacts. Full vaccination was crucial to provide hybrid immunity. However, when designing vaccine strategies, T-cell exhaustion after multiple vaccinations should be considered.
Collapse
|
46
|
Nogimori T, Suzuki K, Masuta Y, Washizaki A, Yagoto M, Ikeda M, Katayama Y, Kanda H, Takada M, Minami S, Kobayashi T, Takahama S, Yoshioka Y, Yamamoto T. Functional changes in cytotoxic CD8+ T-cell cross-reactivity against the SARS-CoV-2 Omicron variant after mRNA vaccination. Front Immunol 2023; 13:1081047. [PMID: 36685601 PMCID: PMC9845949 DOI: 10.3389/fimmu.2022.1081047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Understanding the T-cell responses involved in inhibiting COVID-19 severity is crucial for developing new therapeutic and vaccine strategies. Here, we characterized SARS-CoV-2 spike-specific CD8+ T cells in vaccinees longitudinally. The BNT162b2 mRNA vaccine can induce spike-specific CD8+ T cells cross-reacting to BA.1, whereas the T-cell receptor (TCR) repertoire usages decreased with time. Furthermore the mRNA vaccine induced spike-specific CD8+ T cells subpopulation expressing Granzyme A (GZMA), Granzyme B (GZMB) and Perforin simultaneously in healthy donors at 4 weeks after the second vaccination. The induced subpopulation was not maintained at 12 weeks after the second vaccination. Incorporating factors that efficiently induce CD8+ T cells with highly cytotoxic activity could improve future vaccine efficacy against such variants.
Collapse
Affiliation(s)
- Takuto Nogimori
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Osaka, Japan
| | - Yuji Masuta
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan,Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ayaka Washizaki
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Mika Yagoto
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Mami Ikeda
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yuki Katayama
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | | | - Minoru Takada
- KINSHUKAI, Hanwa The Second Senboku Hospital, Osaka, Japan
| | - Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shokichi Takahama
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yasuo Yoshioka
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Osaka, Japan,Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan,Laboratory of Nano-design for innovative drug development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan,Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan,Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan,Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan,*Correspondence: Takuya Yamamoto,
| |
Collapse
|
47
|
Cagigi A, Douradinha B. Have mRNA vaccines sentenced DNA vaccines to death? Expert Rev Vaccines 2023; 22:1154-1167. [PMID: 37941101 DOI: 10.1080/14760584.2023.2282065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION After receiving emergency approval during the COVID-19 pandemic, mRNA vaccines have taken center stage in the quest to enhance future vaccination strategies for both infectious diseases and cancer. Indeed, they have significantly overshadowed another facet of genetic vaccination, specifically DNA vaccines. Nevertheless, it is important to acknowledge that both types of genetic vaccines have distinct advantages and disadvantages that set them apart from each other. AREAS COVERED In this work, we delve extensively into the history of genetic vaccines, their mechanisms of action, their strengths, and limitations, and ultimately highlight ongoing research in key areas for potential enhancement of both DNA and mRNA vaccines. EXPERT OPINION Here, we assess the significance of the primary benefits and drawbacks associated with DNA and mRNA vaccination. We challenge the current lines of thought by highlighting that the existing drawbacks of DNA vaccination could potentially be more straightforward to address compared to those linked with mRNA vaccination. In our view, this suggests that DNA vaccines should remain viable contenders in the pursuit of the future of vaccination.
Collapse
Affiliation(s)
- Alberto Cagigi
- Nykode Therapeutics ASA, Oslo Science Park, Oslo, Norway
| | | |
Collapse
|
48
|
Okada Y, Kayano T, Anzai A, Zhang T, Nishiura H. Protection against SARS-CoV-2 BA.4 and BA.5 subvariants via vaccination and natural infection: A modeling study. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:2530-2543. [PMID: 36899545 DOI: 10.3934/mbe.2023118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With continuing emergence of new SARS-CoV-2 variants, understanding the proportion of the population protected against infection is crucial for public health risk assessment and decision-making and so that the general public can take preventive measures. We aimed to estimate the protection against symptomatic illness caused by SARS-CoV-2 Omicron variants BA.4 and BA.5 elicited by vaccination against and natural infection with other SARS-CoV-2 Omicron subvariants. We used a logistic model to define the protection rate against symptomatic infection caused by BA.1 and BA.2 as a function of neutralizing antibody titer values. Applying the quantified relationships to BA.4 and BA.5 using two different methods, the estimated protection rate against BA.4 and BA.5 was 11.3% (95% confidence interval [CI]: 0.01-25.4) (method 1) and 12.9% (95% CI: 8.8-18.0) (method 2) at 6 months after a second dose of BNT162b2 vaccine, 44.3% (95% CI: 20.0-59.3) (method 1) and 47.3% (95% CI: 34.1-60.6) (method 2) at 2 weeks after a third BNT162b2 dose, and 52.3% (95% CI: 25.1-69.2) (method 1) and 54.9% (95% CI: 37.6-71.4) (method 2) during the convalescent phase after infection with BA.1 and BA.2, respectively. Our study indicates that the protection rate against BA.4 and BA.5 are significantly lower compared with those against previous variants and may lead to substantial morbidity, and overall estimates were consistent with empirical reports. Our simple yet practical models enable prompt assessment of public health impacts posed by new SARS-CoV-2 variants using small sample-size neutralization titer data to support public health decisions in urgent situations.
Collapse
Affiliation(s)
- Yuta Okada
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| | - Taishi Kayano
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| | - Asami Anzai
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| | - Tong Zhang
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| | - Hiroshi Nishiura
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| |
Collapse
|
49
|
Perico L, Todeschini M, Casiraghi F, Mister M, Pezzotta A, Peracchi T, Tomasoni S, Trionfini P, Benigni A, Remuzzi G. Long-term adaptive response in COVID-19 vaccine recipients and the effect of a booster dose. Front Immunol 2023; 14:1123158. [PMID: 36926327 PMCID: PMC10011096 DOI: 10.3389/fimmu.2023.1123158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
We examined the immune response in subjects previously infected with SARS-CoV2 and infection-naïve 9 months after primary 2-dose COVID-19 mRNA vaccination and 3 months after the booster dose in a longitudinal cohort of healthcare workers. Nine months after primary vaccination, previously infected subjects exhibited higher residual antibody levels, with significant neutralizing activity against distinct variants compared to infection-naïve subjects. The higher humoral response was associated with higher levels of receptor binding domain (RBD)-specific IgG+ and IgA+ memory B cells. The booster dose increased neither neutralizing activity, nor the B and T cell frequencies. Conversely, infection-naïve subjects needed the booster to achieve comparable levels of neutralizing antibodies as those found in previously infected subjects after primary vaccination. The neutralizing titer correlated with anti-RBD IFNγ producing T cells, in the face of sustained B cell response. Notably, pre-pandemic samples showed high Omicron cross-reactivity. These data show the importance of the booster dose in reinforcing immunological memory and increasing circulating antibodies in infection-naïve subjects.
Collapse
Affiliation(s)
- Luca Perico
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Todeschini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marilena Mister
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Anna Pezzotta
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Tobia Peracchi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Susanna Tomasoni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Piera Trionfini
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
50
|
Geers D, Sablerolles RS, van Baarle D, Kootstra NA, Rietdijk WJ, Schmitz KS, Gommers L, Bogers S, Nieuwkoop NJ, van Dijk LL, van Haren E, Lafeber M, Dalm VA, Goorhuis A, Postma DF, Visser LG, Huckriede AL, Sette A, Grifoni A, de Swart RL, Koopmans MP, van der Kuy PHM, GeurtsvanKessel CH, de Vries RD, SWITCH research group. Ad26.COV2.S priming provided a solid immunological base for mRNA-based COVID-19 booster vaccination. iScience 2022; 26:105753. [PMID: 36507223 PMCID: PMC9726653 DOI: 10.1016/j.isci.2022.105753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of novel SARS-CoV-2 variants led to the recommendation of booster vaccinations after Ad26.COV2.S priming. It was previously shown that heterologous booster vaccination induces high antibody levels, but how heterologous boosters affect other functional aspects of the immune response remained unknown. Here, we performed immunological profiling of Ad26.COV2.S-primed individuals before and after homologous or heterologous (mRNA-1273 or BNT162b2) booster. Booster vaccinations increased functional antibodies targeting ancestral SARS-CoV-2 and emerging variants. Especially heterologous booster vaccinations induced high levels of functional antibodies. In contrast, T-cell responses were similar in magnitude following homologous or heterologous booster vaccination and retained cross-reactivity towards variants. Booster vaccination led to a minimal expansion of SARS-CoV-2-specific T-cell clones and no increase in the breadth of the T-cell repertoire. In conclusion, we show that Ad26.COV2.S priming vaccination provided a solid immunological base for heterologous boosting, increasing humoral and cellular responses targeting emerging variants of concern.
Collapse
Affiliation(s)
- Daryl Geers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim J.R. Rietdijk
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Lennert Gommers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Nella J. Nieuwkoop
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Laura L.A. van Dijk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eva van Haren
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Melvin Lafeber
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Virgil A.S.H. Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology and Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Abraham Goorhuis
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands,Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Douwe F. Postma
- Department of Internal Medicine and Infectious Diseases, University Medical Center Groningen, Groningen, the Netherlands
| | - Leo G. Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Anke L.W. Huckriede
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Rik L. de Swart
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | | | - Rory D. de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands,Corresponding author
| | | |
Collapse
|