1
|
Gai T, Zhang H, Hu Y, Li R, Wang J, Chen X, Wang J, Chen Z, Jing Y, Wang C, Bai L, Wang X, Su J. Sequential construction of vascularized and mineralized bone organoids using engineered ECM-DNA-CPO-based bionic matrix for efficient bone regeneration. Bioact Mater 2025; 49:362-377. [PMID: 40144795 PMCID: PMC11937690 DOI: 10.1016/j.bioactmat.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Given the limitations of allogeneic and artificial bone grafts, bone organoids have attracted extensive attention for their physiological properties that closely resemble natural bone, offering great potential to bone reconstruction for critical-sized bone defects. Although early-stage bone organoids such as osteo-callus organoids and woven bone organoids have been reported, functional bone organoids with vascularization and mineralization are currently unavailable due to the lack of bone-mimicking matrix and dynamic culture systems suitable for the long-term cultivation of mature bone organoids. Herein, a novel engineered bionic matrix hydrogels with multifunctional components and double network structure are developed by incorporating calcium phosphate oligomers (CPO) into a combination of bone-derived decellularized extracellular matrix (ECM) and salmon-derived deoxyribonucleic acid (DNA) via photo-crosslinking and dynamic self-assembly strategies. This kind of bionic matrix hydrogels facilitate recruitment, proliferation, osteogenesis and angiogenesis of bone marrow mesenchymal stromal cells (BMSCs). More importantly, vascularized and mineralized bone organoids are sequentially constructed using BMSCs-loaded engineered bionic matrix hydrogels via in vitro dynamic culture and in vivo heterotopic ossification. Meanwhile, this kind of engineered bionic matrix are capable of achieving efficient bone repair for cranial defect. These findings suggest that engineered bionic matrix hydrogels combined with such dynamic culture system, providing a promising strategy for functional bone organoids construction.
Collapse
Affiliation(s)
- Tingting Gai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yan Hu
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ruiyang Li
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jianhua Wang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhenhua Chen
- Yantai Zhenghai Bio-tech Co., Ltd, Yantai, 264006, China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Chenglong Wang
- Yantai Zhenghai Bio-tech Co., Ltd, Yantai, 264006, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
2
|
Lei T, Zhang T, Fang T, Han J, Gu C, Liao Y, Fei Y, Luo J, Liu H, Wu Y, Shen W, Chen X, Yin Z, Wang J. Engineering a stem cell-embedded bilayer hydrogel with biomimetic collagen mineralization for tendon-bone interface healing. Bioact Mater 2025; 49:207-217. [PMID: 40130078 PMCID: PMC11931223 DOI: 10.1016/j.bioactmat.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 03/26/2025] Open
Abstract
The tendon-bone interface effectively transfers mechanical stress for movement, yet its regeneration presents significant clinical challenges due to its hierarchical structure and composition. Biomimetic strategies that replicate the distinctive characteristics have demonstrated potential for enhancing the healing process. However, there remains a challenge in developing a composite that replicates the nanostructure of the tendon-bone interface and embeds living cells. Here, we engineered a nanoscale biomimetic bilayer hydrogel embedded with tendon stem cells for tendon-bone interface healing. Specifically, the biomimetic hydrogel incorporates intra- and extrafibrillar mineralized collagen fibrils as well as non-mineralized collagen fibrils resembling the tendon-bone interface at the nanoscale. Furthermore, biomimetic mineralization with the presence of cells realizes living tendon-bone-like tissue constructs. In the in vivo patella-patellar tendon-interface injury model, the tendon stem cell-laden biomimetic hydrogel promoted tendon-bone interface regeneration, demonstrated by increased fibrocartilage formation, improved motor function, and enhanced biomechanical outcomes. This study highlights the potential of the stem cell-laden biomimetic hydrogel as an effective strategy for tendon-bone interface regeneration, offering a novel approach to engineering complex tissue interfaces.
Collapse
Affiliation(s)
- Tingyun Lei
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Tao Zhang
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Tianshun Fang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunyi Gu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Youguo Liao
- Department of Burns and Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Fei
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Junchao Luo
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanhuan Liu
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Yan Wu
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Weiliang Shen
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiao Chen
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zi Yin
- Department of Orthopedic Surgery of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Cell Biology, Zhejiang University, Hangzhou, China
| | - Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Sun W, Wu H, Yan Y, Zhang X, Yao X, Li R, Zuo J, Li W, Ouyang H. Living joint prosthesis with in-situ tissue engineering for real-time and long-term osteoarticular reconstruction. Bioact Mater 2025; 48:431-442. [PMID: 40093302 PMCID: PMC11908457 DOI: 10.1016/j.bioactmat.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
The reconstruction of large osteoarticular defects caused by tumor resection or severe trauma remains a clinical challenge. Current metal prostheses exhibit a lack of osteo-chondrogenic functionality and demonstrate poor integration with host tissues. This often results in complications such as abnormal bone absorption and prosthetic loosening, which may necessitate secondary revisions. Here, we propose a paradigm-shifting "living prosthesis" strategy that combines a customized 3D-printed hollow titanium humeral prosthesis with engineered bone marrow condensations presenting bone morphogenetic protein-2 (BMP-2) and transforming growth factor-β3 (TGF-β3) from encapsulated silk fibroin hydrogels. This innovative approach promotes in situ endochondral defect regeneration of the entire humeral head while simultaneously providing immediate mechanical support. In a rabbit model of total humerus resection, the designed "living prosthesis" achieved weight, macroscopic and microscopic morphologies that were comparable to those of undamaged native joints at 2 months post-implantation, with organized osteochondral tissues were regenerated both around and within the prosthesis. Notably, the "living prosthesis" displayed significantly higher osteo-integration than the blank metal prosthesis did, as evidenced by a 3-fold increase in bone ingrowth and a 2-fold increase in mechanical pull-out strength. Furthermore, the "living prosthesis" restored joint cartilage function, with rabbits exhibiting normal gait and weight-bearing capacity. The successful regeneration of fully functional humeral head tissue from a single implanted prosthesis represents technical advance in designing bioactive bone prosthesis, with promising implications for treating extreme-large osteochondral defects.
Collapse
Affiliation(s)
- Wei Sun
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Wu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yiyang Yan
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Xianzhu Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Xudong Yao
- Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Rui Li
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyi Zuo
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wenyue Li
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
4
|
Wang L, Kang J, Li Y, Xia Y, Li X, Du X, Yin Z, Tian F, Wu F, Zhao B. BMSCs laden gelatin methacrylate (GelMA) hydrogel integrating silk fibroin/hydroxyapatite scaffold with multi-layered-oriented pores for enhanced bone regeneration. Int J Pharm 2025; 675:125495. [PMID: 40154821 DOI: 10.1016/j.ijpharm.2025.125495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
Due to the limited regenerative ability of bone tissue, bone injury repair has always been a complicated problem in clinical treatment. Bone tissue engineering based on cell delivery is an effective method to repair bone defects, but it also puts forward strict requirements on the scaffold used in the repair process and the survival rate of cell inoculation. To address this challenge, we constructed a bone mesenchymal stem cells (BMSCs) laden gelatin methacrylate (GelMA) hydrogel to integrate in silk fibroin (SF) /nano-hydroxyapatite (nHAp) scaffold, building a dual architecture to achieve enhanced angiogenesis and bone regeneration. The GelMA hydrogel prepared by visible photo-crosslinking showed good cell loading capacity, and the multi-layered-oriented pores of the scaffold provided a suitable microenvironment for cell proliferation and nutrient exchange. We further explored the effects of this "dual-system" complex on BMSCs and in a critical-sized rat cranial defect model. The results showed that BMSCs@GelMA-SF/nHAp composite scaffold with directional pore structure was more conducive to the repair of skull defects in rats due to the faster rate of vascularization and osteogenesis, indicating the developed gel-scaffold complex would be a promising therapeutic strategy for the repair of bone defects regeneration.
Collapse
Affiliation(s)
- Lu Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Jie Kang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Yuanjiao Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China; Academy of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yijing Xia
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Xiujuan Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Xin Du
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Ziruo Yin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Feng Tian
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Feng Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| |
Collapse
|
5
|
Li Z, Guo Z, Yang Z, Yang B, Hu Y, Xie X, Zong Z, Chen Z, Zhang K, Zhao P, Li G, Yang X, Bian L. Metabolite-dependent m 6A methylation driven by mechanotransduction-metabolism-epitranscriptomics axis promotes bone development and regeneration. Cell Rep 2025; 44:115611. [PMID: 40272981 DOI: 10.1016/j.celrep.2025.115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/18/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Intramembranous ossification, a major bone development process, begins with the condensation of precursor cells through the timely structural adaption of extracellular matrix (ECM) catering to rapid cellular morphological changes. Inspired by this, we design a highly cell-adaptable hydrogel to recapitulate an ECM-dependent mechanotransduction-metabolism-epitranscriptomics axis in mesenchymal stromal cells (MSCs). This hydrogel significantly enhances the E-cadherin-mediated cell-cell interactions of MSCs and promotes glucose uptake and tricarboxylic acid (TCA) cycle activities. We further show that elevated succinate inhibits fat mass and obesity-associated protein (FTO), a N6-methyladenosine (m6A) demethylase, thereby enhancing methyltransferase-like 3 (METTL3)-driven m6A methylation. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) indicates increased m6A methylation of runt-related transcription 2 (Runx2), a key osteogenic signaling factor, promoting osteogenesis of hydrogel-delivered MSCs and bone regeneration in critical-sized bone defects. Our findings reveal the mechanism underlying the critical impact of adaptable ECM structures on tissue development and provide valuable guidance for the design of ECM-mimetic cell carriers to enhance the therapeutic outcomes of regenerative medicine.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Zhengnan Guo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhengmeng Yang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Boguang Yang
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Yuan Hu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Zhixian Zong
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| | - Zekun Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Gang Li
- Department of Orthopaedic and Traumatology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xuefeng Yang
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China.
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Ouyang X, Li R, Sun W, Gu Y, Lin J, Fan Z, Yao X, Gu H, Xie C, Li W, Yang Y, Yan Y, Wei W, Wu B, Chen X, He B, Zhang S, Hong Y, Cui Z, Wang X. 3D-Printed Dual-Lineage Inductive Approach for Efficient Osteochondral Regeneration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20613-20627. [PMID: 40162492 DOI: 10.1021/acsami.4c14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Osteochondral defect regeneration is challenging due to the mismatch between cartilage and subchondral bone. We developed a functionalized scaffold replicating the natural architecture, biochemical and biomechanical environment of both tissues to promote concurrent regeneration. Our bilayered, zone-specific scaffold combines tailored materials for each tissue type: gelatin methacryloyl (GelMA), modified hyaluronic acid, and umbilical cord-derived extracellular matrix (ECM) for the cartilage layer; GelMA, placenta-derived ECM, and nano amorphous calcium phosphate for the osseous layer. Using 3D digital light-processing printing, we constructed the scaffold with spatially distributed biochemical and biomechanical signaling. This approach created dual chondro-/osteogenic microenvironments facilitating bone marrow mesenchymal stem cell differentiation. In vivo studies demonstrated concurrent regeneration of cartilage and subchondral bone tissues with robust integration. This 3D-printed biomimetic scaffold, featuring dual-lineage inductive properties, shows promising potential for efficient osteochondral regeneration and addresses complex tissue engineering requirements.
Collapse
Affiliation(s)
- Xinyi Ouyang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX12JD, U.K
| | - Rui Li
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310058, China
| | - Wei Sun
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310058, China
| | - Yuqing Gu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310058, China
| | - Junxin Lin
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310058, China
| | - Zhang Fan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
| | - Xudong Yao
- International Institutes of Medicine, The fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Hongyi Gu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
| | - Chang Xie
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310058, China
| | - Wenyue Li
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310058, China
| | - Yifei Yang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310058, China
| | - Yiyang Yan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310058, China
| | - Wei Wei
- International Institutes of Medicine, The fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Bingbing Wu
- International Institutes of Medicine, The fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Xiuying Chen
- International Institutes of Medicine, The fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Bin He
- Department of Orthopedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shufang Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310058, China
| | - Yi Hong
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310058, China
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX12JD, U.K
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou Industrial Park, Jiangsu 215123, China
| | - Xiaozhao Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310058, China
| |
Collapse
|
7
|
Ghorai SK, Dutta A, Subramanian B, Kumar N, Dhara S, Whitlock PW, Chattopadhyay S. Mussel-inspired surface-engineering of 3D printed scaffolds employing bedecked transition metal for accelerated bone tissue regeneration. BIOMATERIALS ADVANCES 2025; 174:214309. [PMID: 40233478 DOI: 10.1016/j.bioadv.2025.214309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
In modern civilization with fast work culture and uncontrolled lifestyles increase bone-related problems, moreover, lack of auto-regeneration of bone, indulge to formulate a suitable methodology to get rid of this problem. In this article, nanohydroxyapatite (nHA) decorated hierarchical titanium phosphate (TP) was synthesized by solvothermal process and incorporated into newly synthesized tartaric acid-based polyurethane (PU) through in situ technique. The porous 3D scaffold was fabricated by most advanced 3D printing technique with desired porous structure in a controlled manner. The biochemical properties of scaffold's surface were improved via immobilizing polydopamine (PDA) at ambient temperature. Elemental analysis indicated that TP-doped nanohybrid scaffolds experienced higher amount of PDA immobilization as compared to pristine and nHA-doped scaffolds. The unoccupied 'd' orbital of introduced Ti can form a coordinate bond with catechol groups of dopamine (DA) which augments PDA deposition on the scaffold's surface. Furthermore, the higher effective nuclear charge (Z⁎) of tetravalent Ti ion generates an effective dative bond with the urethane groups of PU chain which improves hardness and tensile strength (TS) of produced nanocomposites (PU/TP-nHA) remarkably by 71.3 % and 126 % compared to pristine PU. Ti-doped nanohybrid scaffolds, containing calcium and phosphate components with higher amounts of deposited PDA exhibited improved in vitro osteogenic bioactivity. Moreover, in vivo study expressed superior bone regeneration efficacy of the TP-doped nHA-integrated PU scaffold without showing any organ toxicity. Thus, the optimum level of TP-doped nHA with higher amount of PDA-immobilized PU nanohybrid scaffold would be a suitable bone graft substitute in bone regeneration applications.
Collapse
Affiliation(s)
- Sanjoy Kumar Ghorai
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India; Division of Pediatric Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Abir Dutta
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, India; Department of Mechanical Engineering, Indian Institute of Technology, Tirupati 517619, India
| | | | - Nikhil Kumar
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Patrick W Whitlock
- Division of Pediatric Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | |
Collapse
|
8
|
Hao H, Chen Y, Yu W, Wang X, Wang C, Zhang P, Ji J. Regulating Cell-Material Interfacial Interactions through Selective Cellular Resistance. J Am Chem Soc 2025; 147:9981-9989. [PMID: 40035633 DOI: 10.1021/jacs.5c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Regulating the behavior of different types of cells at the material-tissue interface is pivotal for inducing tissue regeneration. Traditional methods enhance target cell activity using specific ligands such as peptides and antibodies, which have stability issues within biological environments. Herein, we show that selective cell resistance can be realized by fine-tuning the material surface chemistry, achieving strong cell selectivity superior to that of extracellular matrix peptides. A certain degree of adsorption resistance differentially affects the adhesion of various types of cells on material surfaces. Taking this principle into account, a polyethylene glycol (PEG) grafted surface was meticulously fine-tuned to selectively support endothelial cells (ECs) while resisting smooth muscle cell attachment. Mechanistic studies identified that the difference in myosin II expression is crucial for cell selectivity. An EC-selective polymer coating for cardiovascular devices was fabricated to promote rapid surface endothelialization and prevent neointimal hyperplasia in vivo.
Collapse
Affiliation(s)
- Hongye Hao
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining 314400, P. R. China
| | - Yifeng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weijiang Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xingwang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Cong Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peng Zhang
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining 314400, P. R. China
| | - Jian Ji
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining 314400, P. R. China
- Transvascular Implantation Devices Research Institute China, Hangzhou 310058, P. R. China
| |
Collapse
|
9
|
Jo Y, Kushram P, Bose S. Curcumin and vitamin D3 release from calcium phosphate enhances bone regeneration. Biomater Sci 2025; 13:1568-1577. [PMID: 39960074 DOI: 10.1039/d4bm01188k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Improving early in vivo osseointegration and removing residual cancer cells after tumor removal requires the development of novel bone implants with osteogenic and anti-cancer properties. Here, curcumin and vitamin D3 (Cur/VitD3) are loaded into calcium phosphate (CaP) matrices to improve in vivo osteogenesis and inhibit the proliferation of human osteosarcoma cells. Patient-specific, 3D-printed tricalcium phosphate (TCP) loaded with Cur/VitD3 increases the viability of in vitro osteoblast cells after 11 days. When delivered in combination, Cur/VitD3 loaded hydroxyapatite (HA)-coated Ti64 implant promotes new bone formation by 2.7-fold compared to the control after 6 weeks. This delivery system also decreases osteosarcoma cell viability relative to the 3D-printed TCP after day 11, indicating its anti-cancer properties. These findings contribute to the understanding of multifunctional CaP bone grafts to improve early osteogenesis after severe bone trauma and suppress the proliferation of osteosarcoma cells after tumor resection surgery.
Collapse
Affiliation(s)
- Yongdeok Jo
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| | - Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| |
Collapse
|
10
|
Li B, Ma Y, Fatima K, Zhou X, Chen S, He C. 3D printed scaffolds with multistage osteogenic activity for bone defect repair. Regen Biomater 2025; 12:rbaf010. [PMID: 40151200 PMCID: PMC11947418 DOI: 10.1093/rb/rbaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
The bone defect repair is a complex process including immune regulation, stem cell osteogenic differentiation and extracellular matrix mineralization. Current bone tissue engineering approaches often fail to adapt throughout the above osteogenic process, resulting in suboptimal repair outcomes. To address this problem, a 3D-printed scaffold with multistage osteogenic activity based on shape-memory elastomer and electroactive material is developed. The scaffold exhibits excellent shape memory performance and can trigger shape recovery by physiological temperature. The physiological temperature-triggered shape-memory behavior makes the scaffold promising for minimally invasive implantation. After electric field polarization, the scaffold's surface carries the negative charge, which can activate the PI3K/Akt signaling pathway to promote the polarization of macrophages to M2 phenotype and activate the FAK/ERK signaling pathway to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), indicating that the scaffold can effectively participate in immune microenvironment regulation and stem cell osteogenic differentiation. Additionally, the negative charge on the scaffold's surface can attract calcium and phosphate ions, forming a mineralized matrix and promoting late-stage extracellular matrix mineralization by continuously supplying mineralizing ions such as calcium and phosphate. Overall, this study introduces a 3D-printed scaffold with multistage osteogenic activity, offering a promising strategy for bone defect repair.
Collapse
Affiliation(s)
- Bing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yichao Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Kanwal Fatima
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
11
|
Wang T, Bai M, Geng W, Adeli M, Ye L, Cheng C. Bioinspired artificial antioxidases for efficient redox homeostasis and maxillofacial bone regeneration. Nat Commun 2025; 16:856. [PMID: 39833195 PMCID: PMC11746915 DOI: 10.1038/s41467-025-56179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Reconstructing large, inflammatory maxillofacial defects using stem cell-based therapy faces challenges from adverse microenvironments, including high levels of reactive oxygen species (ROS), inadequate oxygen, and intensive inflammation. Here, inspired by the reaction mechanisms of intracellular antioxidant defense systems, we propose the de novo design of an artificial antioxidase using Ru-doped layered double hydroxide (Ru-hydroxide) for efficient redox homeostasis and maxillofacial bone regeneration. Our studies demonstrate that Ru-hydroxide consists hydroxyls-synergistic monoatomic Ru centers, which efficiently react with oxygen species and collaborate with hydroxyls for rapid proton and electron transfer, thus exhibiting efficient, broad-spectrum, and robust ROS scavenging performance. Moreover, Ru-hydroxide can effectively sustain stem cell viability and osteogenic differentiation in elevated ROS environments, modulating the inflammatory microenvironment during bone tissue regeneration in male mice. We believe this Ru-hydroxide development offers a promising avenue for designing antioxidase-like materials to treat various inflammation-associated disorders, including arthritis, diabetic wounds, enteritis, and bone fractures.
Collapse
Affiliation(s)
- Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Liu Z, Zhang H, Gan J, Zhao Y, Wang Y. Black Phosphorus Tagged Responsive Strontium Hydrogel Particles for Bone Defect Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408284. [PMID: 39501915 PMCID: PMC11714197 DOI: 10.1002/advs.202408284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Indexed: 01/30/2025]
Abstract
Hydrogel-derived implants have proven value in bone tissue regeneration, and current efforts have concentrated on devising strategies for producing functional implants with desired structures and functions to improve therapeutic outcomes. Herein, a novel black phosphorus (BP) tagged responsive strontium (Sr) hydrogel particles are presented for bone defect repair. By applying microfluidic technology, Sr and carboxymethyl chitosan, and BP are integrated into poly(N-isopropyl acrylamide) (pNIPAM) hydrogel matrix to generate such microparticles called pNBCSMs. Upon exposure to near-infrared irradiation, the pNBCSMs experience volume shrinkage and provoke the extrusion of the incorporated Sr, ascribed to the photothermal conversion ability of BP and the thermosensitivity of pNIPAM. In vitro and in vivo experimental results reveal that pNBCSMs subjected to near-infrared light display superior anti-inflammatory, anti-apoptotic, bacterial inhibitory, as well as osteogenesis-promoting effects, thereby effectively improving defective cranial bone repair. These features suggest that the proposed pNBCSMs can be promising candidates for bone repair.
Collapse
Affiliation(s)
- Zhengwei Liu
- Department of OrthopedicsNorthern Jiangsu People's HospitalClinical Teaching Hospital of Medical SchoolNanjing UniversityYangzhou225001China
| | - Hui Zhang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Shenzhen Research InstituteSoutheast UniversityShenzhen518071China
| | - Yongxiang Wang
- Department of OrthopedicsNorthern Jiangsu People's HospitalClinical Teaching Hospital of Medical SchoolNanjing UniversityYangzhou225001China
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhou225001China
| |
Collapse
|
13
|
Wang Y, Jin S, Guo Y, Zhu L, Lu Y, Li J, Heng BC, Liu Y, Deng X. Cordycepin-Loaded Dental Pulp Stem Cell-Derived Exosomes Promote Aged Bone Repair by Rejuvenating Senescent Mesenchymal Stem Cells and Endothelial Cells. Adv Healthc Mater 2025; 14:e2402909. [PMID: 39551987 DOI: 10.1002/adhm.202402909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Aging impairs bone marrow mesenchymal stem cell (BMSC) functions as well as associated angiogenesis which is critical for bone regeneration and repair. Hence, repairing bone defects in elderly patients poses a formidable challenge in regenerative medicine. Here, the engineered dental pulp stem cell-derived exosomes loaded with the natural derivative of adenosine Cordycepin (CY@D-exos) are fabricated by means of the intermittent ultrasonic shock, which dually rejuvenates both senescent BMSCs and endothelial cells and significantly improve bone regeneration and repair in aged animals. CY@D-exos can efficiently overcome the senescence of aged BMSCs and enhance their osteogenic differentiation by activating NRF2 signaling and maintaining heterochromatin stability. Importantly, CY@D-exos also potently overcomes the senescence of vascular endothelial cells and promotes angiogenesis. In vivo injectable gelatin methacryloyl (GelMA) hydrogels with sustained release of CY@D-exos can accelerate bone injury repair and promote new blood vessel formation in aged animals. Taken together, these results thus demonstrate that cordycepin-loaded dental pulp stem cell-derived exosomes display considerable potential to be developed as a next-generation therapeutic agent for promoting aged bone regeneration and repair.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Shanshan Jin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology &National Center for Stomatology &National Clinical Research Center for Oral Diseases &National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Lisha Zhu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Yilong Lu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Jing Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Yan Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
14
|
Zhu S, Liao X, Xu Y, Zhou N, Pan Y, Song J, Zheng T, Zhang L, Bai L, Wang Y, Zhou X, Gou M, Tao J, Liu R. 3D bioprinting of high-performance hydrogel with in-situ birth of stem cell spheroids. Bioact Mater 2025; 43:392-405. [PMID: 39399841 PMCID: PMC11470575 DOI: 10.1016/j.bioactmat.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Digital light processing (DLP)-based bioprinting technology holds immense promise for the advancement of hydrogel constructs in biomedical applications. However, creating high-performance hydrogel constructs with this method is still a challenge, as it requires balancing the physicochemical properties of the matrix while also retaining the cellular activity of the encapsulated cells. Herein, we propose a facile and practical strategy for the 3D bioprinting of high-performance hydrogel constructs through the in-situ birth of stem cell spheroids. The strategy is achieved by loading the cell/dextran microdroplets within gelatin methacryloyl (GelMA) emulsion, where dextran functions as a decoy to capture and aggregate the cells for bioprinting while GelMA enables the mechanical support without losing the structural complexity and fidelity. Post-bioprinting, the leaching of dextran results in a smooth curved surface that promotes in-situ birth of spheroids within hydrogel constructs. This process significant enhances differentiation potential of encapsulated stem cells. As a proof-of-concept, we encapsulate dental pulp stem cells (DPSCs) within hydrogel constructs, showcasing their regenerative capabilities in dentin and neovascular-like structures in vivo. The strategy in our study enables high-performance hydrogel tissue construct fabrication with DLP-based bioprinting, which is anticipated to pave a promising way for diverse biomedical applications.
Collapse
Affiliation(s)
- Shunyao Zhu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Xueyuan Liao
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yue Xu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Nazi Zhou
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yingzi Pan
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Taijing Zheng
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Lin Zhang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Liyun Bai
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yu Wang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Xia Zhou
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400042, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610065, China
| | - Jie Tao
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| |
Collapse
|
15
|
Liu K, Fu XW, Wang ZM. Msx1-Modified Rat Bone Marrow Mesenchymal Stem Cell Therapy for Rotator Cuff Repair: A Comprehensive Analysis of Tendon-Bone Healing and Cellular Mechanisms. J Orthop Res 2024. [PMID: 39739627 DOI: 10.1002/jor.26039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/01/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025]
Abstract
This study investigates the therapeutic potential of Msx1-overexpressing bone marrow mesenchymal stem cells (BMSCs) in enhancing tendon-bone healing in rotator cuff injuries. BMSCs were genetically modified to overexpress Msx1 and were evaluated in vitro for their proliferation, migration, and differentiation potential. Results demonstrated that Msx1 overexpression significantly increased BMSC proliferation and migration while inhibiting osteogenic and chondrogenic differentiation. In a rat model of acute rotator cuff injury, Msx1-BMSCs embedded in a hydrogel scaffold were implanted at the tendon-bone junction. Micro-CT analysis revealed substantial new bone formation in the Msx1-BMSC group, and histological evaluation showed organized collagen and cartilage structures at the repair site. Biomechanical testing further confirmed enhanced structural strength in the Msx1-BMSC-treated group. These findings suggest that Msx1 modification enhances BMSC-mediated repair by promoting cell proliferation and migration, facilitating tendon-bone integration. This Msx1-based approach presents a promising strategy for advancing regenerative therapies for rotator cuff injuries.
Collapse
Affiliation(s)
- Kang Liu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia-Wei Fu
- Department of Orthopaedic Surgery, First Affiliated Hospital of Navy Medical University (Changhai Hospital), Shanghai, China
| | - Zi-Min Wang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Lotfi MS, Sheibani M, Jafari-Sabet M. Quercetin-based biomaterials for enhanced bone regeneration and tissue engineering. Tissue Cell 2024; 91:102626. [PMID: 39591724 DOI: 10.1016/j.tice.2024.102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Quercetin, a natural flavonoid, has been extensively researched for its potential in promoting bone regeneration and tissue engineering. This review aimed to provide a comprehensive overview of the applications of quercetin-based biomaterials in bone regeneration and tissue engineering. The review discusses several studies that have integrated quercetin into biomaterials such as electrospun fibers, hydrogels, microspheres, and nanoparticles. These biomaterials are engineered to imitate the natural extracellular matrix of bone, creating an environment conducive to cell attachment, growth, and differentiation. The investigations presented emphasize the potential of quercetin-derived biomaterials in improving bone regeneration, decreasing oxidative stress and inflammation, and facilitating bone tissue restoration. These biomaterials have demonstrated the ability to facilitate cell encapsulation, maintain consistent quercetin release patterns, and have been applied in a range of uses such as bone grafts, implants, and tissue engineering scaffolds. Biomaterials derived from quercetin are utilized in the treatment of bone-related disorders, including osteoporosis and bone defects. These materials enhance bone regeneration by providing a scaffold for new bone growth, promoting the development of new bone tissue, and improving the mechanical properties of bone tissue.
Collapse
Affiliation(s)
- Mohammad-Sadegh Lotfi
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Jafari-Sabet
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Han Z, Lin Y, Guo X, Xu J, Gao X, Yang R, Zhao Y, Gui M, Zhang L, Guo Y, Chen Z. "Osteo-Organogenesis Niche" Hyaluronic Acid Engineered Materials Directing Re-Osteo-Organogenesis via Manipulating Macrophage CD44-MAPK/ERK-ETV1/5-MRC1 Axis. Adv Healthc Mater 2024; 13:e2403122. [PMID: 39440638 DOI: 10.1002/adhm.202403122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The strategy of re-organogenesis provides an optimal framework for restoring complex organ structures and functions in adult damage. While the focus has often been on restoring organogenesis stem cells, there is limited investigations of reverting the environmental niche to support this approach. The guiding principle of "Nature selects the fittest to survive" drives the intricate dynamic changes in cellular events within the niche environment, especially through immune surveillance. The extracellular matrix (ECM) serves as the "self-associated molecular patterns" of the niche, containing extensive data on cell-niche reaction data and acting as the active tuner of immune surveillance. In this study, hyaluronic acid (HA) is identified as a unique component of the ECM in cranial osteo-organogenesis. Mechanistically, HA activates the Cluster of Differentiation 44 (CD44)-Mitogen-Activated Protein Kinase (MAPK)/Extracellular Signal-Regulated Kinase (ERK)-Ets Variant 1/5 (ETV1/5)- Mannose Receptor C-Type 1 (MRC1) axis in macrophages, establishing a distinct immune surveillance during osteo-organogenesis. Furthermore, HA is utilized as a novel engineered material for an "Osteo-organogenesis niche", restoring immune surveillance and synergistically regulating stem cells to achieve re-osteo-organogenesis in cranial defects of rats. Taken together, the study unveils a previously unknown strategy for leveraging re-organogenesis by utilizing "organogenesis niche" ECM engineered materials to manipulate immune surveillance, thereby comprehensively regulating stem cells and other tissue cells effectively for re-organogenesis.
Collapse
Affiliation(s)
- Zongpu Han
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yixiong Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xinyu Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jieyun Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xiaomeng Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Ruihan Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yuan Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Mixiao Gui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Linjun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yuanlong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
18
|
Wang X, Zeng J, Gan D, Ling K, He M, Li J, Lu Y. Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration. NANO-MICRO LETTERS 2024; 17:73. [PMID: 39601916 PMCID: PMC11602938 DOI: 10.1007/s40820-024-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Bioactive molecules have shown great promise for effectively regulating various bone formation processes, rendering them attractive therapeutics for bone regeneration. However, the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo. Hydrogels have emerged as ideal carriers to address these challenges, offering the potential to prolong retention times at lesion sites, extend half-lives in vivo and mitigate side effects, avoid burst release, and promote adsorption under physiological conditions. This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration, encompassing applications in cranial defect repair, femoral defect repair, periodontal bone regeneration, and bone regeneration with underlying diseases. Additionally, this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery, carrier-assisted delivery, and sequential delivery. Finally, this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
Collapse
Affiliation(s)
- Xiao Wang
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Jia Zeng
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Kun Ling
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Mingfang He
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yongping Lu
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| |
Collapse
|
19
|
Pan S, Li Y, Wang L, Guan Y, Xv K, Li Q, Feng G, Hu Y, Lan X, Qin S, Gui L, Li L. Microenvironment-optimized gastrodin-functionalized scaffolds orchestrate asymmetric division of recruited stem cells in endogenous bone regeneration. J Nanobiotechnology 2024; 22:722. [PMID: 39563380 DOI: 10.1186/s12951-024-02886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
The regeneration of osteoporotic bone defects remains challenging as the critical stem cell function is impaired by inflammatory microenvironment. Synthetic materials that intrinsically direct osteo-differentiation versus self-renewal of recruited stem cell represent a promising alternative strategy for endogenous bone formation. Therefore, a microenvironmentally optimized polyurethane (PU) /n-HA scaffold to enable sustained delivery of gastrodin is engineered to study its effect on the osteogenic fate of stem cells. It exhibited interconnected porous networks and an elevated sequential gastrodin release pattern to match immune-osteo cascade concurrent with progressive degradation of materials. In a critical-sized femur defect model of osteoporotic rat, 5% gastrodin-PU/n-HA potently promoted neo-bone regeneration by facilitating M2 macrophage polarization and CD146+ host stem cell recruitment to defective site. The implantation time-dependently increased the bone marrow mesenchymal stem cell (BMSC) population, and further culture of BMSCs showed a robust ability of proliferation, migration, and mitochondrial resurgence. Of note, some of cell pairs produced one stemness daughter cell while the other committed to osteogenic lineage in an asymmetric cell division (ACD) manner, and a much more compelling ACD response was triggered when 5% gastrodin-PU/n-HA implanted. Further investigation revealed that one-sided concentrated presentation of aPKC and β-catenin in dividing cells effectively induced asymmetric distribution, which polarized aPKC biased the response of the daughter cells to Wnt signal. The asymmetric cell division in skeletal stem cells (SSCs) was mechanically comparable to BMSCs and also governed by distinct aPKC and β-catenin biases. Concomitantly, delayed bone loss adjacent to the implant partly alleviated development of osteoporosis. In conclusion, our findings provide insight into the regulation of macrophage polarization combined with osteogenic commitment of recruited stem cells in an ACD manner, advancing scaffold design strategy for endogenous bone regeneration.
Collapse
Affiliation(s)
- Shilin Pan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Yao Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Lu Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Yingchao Guan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Kaiyang Xv
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Guangli Feng
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Yingrui Hu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Xiaoqian Lan
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Shiyi Qin
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Li Gui
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, 650011, China.
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
20
|
Fan J, Yuan X, Lu T, Ye J. Biphasic Calcium Phosphate Ceramic Scaffold Composed of Zinc Doped β-Tricalcium Phosphate and Silicon Doped Hydroxyapatite for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:7758-7769. [PMID: 39494694 DOI: 10.1021/acsabm.4c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The rapid repair of bone defects remains a significant clinical challenge to this day. To address this issue, a 3D-printed biphasic calcium phosphate (BCP) scaffold consisting of 40 wt % hydroxyapatite (HA) and 60 wt % β-tricalcium phosphate (β-TCP) was created. Silicon and zinc were incorporated into HA and β-TCP, respectively, to enhance the angiogenic and osteogenic properties of the BCP scaffold. The physicochemical properties, in vitro cell responses, and bone defect repair efficacy of the modified BCP scaffold were comprehensively investigated. Results showed that the fabricated scaffold possessed a 3D interconnected pore structure. Zinc doping enhanced the sintering of the BCP scaffold, increased its density and strength, but decreased its degradation rate. Conversely, silicon doping had the opposite effect. The modified scaffold was capable of a gradual release of zinc/silicon ions, which promoted the proliferation and differentiation of cells. Specifically, the scaffold doped with zinc significantly promoted the osteogenic differentiation of stem cells. Moreover, co-doping with silicon and zinc synergistically promoted in vitro angiogenesis, with BCP-3 (doped with 2.5 mol % zinc and 4 mol % silicon) exhibiting the best pro-angiogenic activity. BCP-3 significantly induced regeneration of blood vessels and bone tissue in vivo, indicating its potential to accelerate the process of bone defect repair.
Collapse
Affiliation(s)
- Jiajia Fan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xinyuan Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Teliang Lu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, P.R. China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
21
|
Yang Z, Li P, Fan H, Pang L, Xia G, Duan C, Zheng L. Risperidone accelerates bone loss in mice models of schizophrenia by inhibiting osteoblast autophagy. Heliyon 2024; 10:e38559. [PMID: 39524718 PMCID: PMC11550064 DOI: 10.1016/j.heliyon.2024.e38559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Risperidone (RIS) is the first-line drug in the clinical treatment of schizophrenia, and long-term use may lead to bone loss and even osteoporosis. This study investigated whether the mechanism of RIS-induced bone loss is related to autophagy. Methods The schizophrenia mice were established with the administration of MK-801. Then, RIS were injected, or autophagy inducer rapamycin (RAPA) co-injected for 8 weeks. Cognitive performance was determined by the novel object recognition and Open field tests. Bone loss of schizophrenia mice were assessed using microCT, H&E staining, ALP staining, ARS staining and WB, respectively. Autophagy of schizophrenia mice were detected by immunofluorescence, transmission electron microscopy (TEM) and WB, respectively. In addition, osteogenic differentiation of MC3T3-E1 and BMSCs cells were assessed using H&E staining, ALP staining, ARS staining and WB, respectively. Results In the present study, we found that RIS treatment can promote bone loss in schizophrenia mice and inhibit osteogenic differentiation of MC3T3-E1 and BMSCs cells. Interesting, the number of autophagosome and autophagy-related protein expression were decreased after RIS treatment. However, the bone loss and inhibition of osteogenic differentiation induced by RIS in schizophrenia mice were reversed by autophagy inducer RAPA. Conclusion RIS significantly increased bone loss and inhibited osteogenic differentiation in schizophrenia mice; the underlying mechanism entails suppressing osteoblast autophagy.
Collapse
Affiliation(s)
| | - Peifan Li
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | - Lan Pang
- Guizhou Medical University, Guiyang, China
| | - Guangyuan Xia
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Changrong Duan
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Zheng
- Guizhou Medical University, Guiyang, China
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
22
|
Cai W, Mao S, Wang Y, Gao B, Zhao J, Li Y, Chen Y, Zhang D, Yang J, Yang G. An Engineered Hierarchical Hydrogel with Immune Responsiveness and Targeted Mitochondrial Transfer to Augmented Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406287. [PMID: 39258577 PMCID: PMC11558138 DOI: 10.1002/advs.202406287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 09/12/2024]
Abstract
Coordinating the immune response and bioenergy metabolism in bone defect environments is essential for promoting bone regeneration. Mitochondria are important organelles that control internal balance and metabolism. Repairing dysfunctional mitochondria has been proposed as a therapeutic approach for disease intervention. Here, an engineered hierarchical hydrogel with immune responsiveness can adapt to the bone regeneration environment and mediate the targeted mitochondria transfer between cells. The continuous supply of mitochondria by macrophages can restore the mitochondrial bioenergy of bone marrow mesenchymal stem cells (BMSC). Fundamentally solving the problem of insufficient energy support of BMSCs caused by local inflammation during bone repair and regeneration. This discovery provides a new therapeutic strategy for promoting bone regeneration and repair, which has research value and practical application prospects in the treatment of various diseases caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Wenjin Cai
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| | - Shihua Mao
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
- Zhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science & EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Ying Wang
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| | - Bicong Gao
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| | - Jiaying Zhao
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| | - Yongzheng Li
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| | - Yani Chen
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30318USA
| | - Jintao Yang
- Zhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science & EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Guoli Yang
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| |
Collapse
|
23
|
Liu S, Wang W, Chen Z, Wu P, Pu W, Li G, Song J, Zhang J. An Osteoimmunomodulatory Biopatch Potentiates Stem Cell Therapies for Bone Regeneration by Simultaneously Regulating IL-17/Ferroptosis Signaling Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401882. [PMID: 39024121 PMCID: PMC11425236 DOI: 10.1002/advs.202401882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/19/2024] [Indexed: 07/20/2024]
Abstract
Currently, there are still great challenges in promoting bone defect healing, a common health problem affecting millions of people. Herein an osteoimmunity-regulating biopatch capable of promoting stem cell-based therapies for bone regeneration is developed. A totally biodegradable conjugate is first synthesized, which can self-assemble into bioactive nano micelles (PPT NMs). This nanotherapy effectively improves the osteogenesis of periodontal ligament stem cells (PDLSCs) under pathological conditions, by simultaneously regulating IL-17 signaling and ferroptosis pathways. Incorporation of PPT NMs into biodegradable electrospun nanofibers affords a bioactive patch, which notably improves bone formation in two rat bone defect models. A Janus bio patch is then engineered by integrating the bioactive patch with a stem cell sheet of PDLSCs. The obtained biopatch shows additionally potentiated bone regeneration capacity, by synergistically regulating osteoimmune microenvironment and facilitating stem cell differentiation. Further surface functionalization of the biopatch with tannic acid considerably increases its adhesion to the bone defect, prolongs local retention, and sustains bioactivities, thereby offering much better repair effects in rats with mandibular or cranial bone defects. Moreover, the engineered bioactive patches display good safety. Besides bone defects, this osteoimmunity-regulating biopatch strategy can be applied to promote stem cell therapies for spinal cord injury, wound healing, and skin burns.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing Medical UniversityChongqing401147P. R. China
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Wenle Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing Medical UniversityChongqing401147P. R. China
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Department of Orthodontics IIAffiliated Stomatological Hospital of Zunyi Medical UniversityZunyi563000P. R. China
| | - Zhiyu Chen
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
| | - Peng Wu
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- College of Pharmacy and Medical TechnologyVocational and Technical CollegeHanzhongShaanxi723000P. R. China
| | - Wendan Pu
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Gang Li
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Department of StomatologySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing Medical UniversityChongqing401147P. R. China
| | - Jianxiang Zhang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- State Key Laboratory of Trauma and Chemical PoisoningThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Yu‐Yue Pathology Scientific Research Center313 Gaoteng Avenue, JiulongpoChongqing400039P. R. China
| |
Collapse
|
24
|
Li F, Li X, Dai S, Yang Z, Bao Z, Wang S, Zhang Z, Midgley AC, Fan M, Zhu MF, Dong X, Kong D. Efficient Light-Based Bioprinting via Rutin Nanoparticle Photoinhibitor for Advanced Biomedical Applications. ACS NANO 2024; 18:22104-22121. [PMID: 39102149 DOI: 10.1021/acsnano.4c05380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Digital light processing (DLP) bioprinting, known for its high resolution and speed, enables the precise spatial arrangement of biomaterials and has become integral to advancing tissue engineering and regenerative medicine. Nevertheless, inherent light scattering presents significant challenges to the fidelity of the manufactured structures. Herein, we introduce a photoinhibition strategy based on Rutin nanoparticles (Rnps), attenuating the scattering effect through concurrent photoabsorption and free radical reaction. Compared to the widely utilized biocompatible photoabsorber tartrazine (Tar), Rnps-infused bioink enhanced printing speed (1.9×), interlayer homogeneity (58% less overexposure), resolution (38.3% improvement), and print tolerance (3× high-precision range) to minimize trial-and-error. The biocompatible and antioxidative Rnps significantly improved cytocompatibility and exhibited resistance to oxidative stress-induced damage in printed constructs, as demonstrated with human induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs). The related properties of Rnps facilitate the facile fabrication of multimaterial, heterogeneous, and cell-laden biomimetic constructs with intricate structures. The developed photoinhibitor, with its profound adaptability, promises wide biomedical applications tailored to specific biological requirements.
Collapse
Affiliation(s)
- Feiyi Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
| | - Xinyue Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
| | - Shuxin Dai
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
| | - Zhuangzhuang Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
| | - Zheheng Bao
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Shuwei Wang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
| | - Zijian Zhang
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
| | - Meng Fan
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Mei Feng Zhu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin 300192, China
| | - Xianhao Dong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin 300192, China
- Institute of Transplantation Medicine, Nankai University, Tianjin 300192, China
- Nankai International Advanced Research Institute, Nankai University, Shenzhen 518045, China
- Xu Rongxiang Regeneration Life Science Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Khan MUA, Aslam MA, Abdullah MFB, Abdal-Hay A, Gao W, Xiao Y, Stojanović GM. Recent advances of bone tissue engineering: carbohydrate and ceramic materials, fundamental properties and advanced biofabrication strategies ‒ a comprehensive review. Biomed Mater 2024; 19:052005. [PMID: 39105493 DOI: 10.1088/1748-605x/ad6b8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Bone is a dynamic tissue that can always regenerate itself through remodeling to maintain biofunctionality. This tissue performs several vital physiological functions. However, bone scaffolds are required for critical-size damages and fractures, and these can be addressed by bone tissue engineering. Bone tissue engineering (BTE) has the potential to develop scaffolds for repairing critical-size damaged bone. BTE is a multidisciplinary engineered scaffold with the desired properties for repairing damaged bone tissue. Herein, we have provided an overview of the common carbohydrate polymers, fundamental structural, physicochemical, and biological properties, and fabrication techniques for bone tissue engineering. We also discussed advanced biofabrication strategies and provided the limitations and prospects by highlighting significant issues in bone tissue engineering. There are several review articles available on bone tissue engineering. However, we have provided a state-of-the-art review article that discussed recent progress and trends within the last 3-5 years by emphasizing challenges and future perspectives.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| | - Abdalla Abdal-Hay
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- School of Dentistry, University of Queensland, 288 Herston Road, Herston QLD 4006, Australia
| | - Wendong Gao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Yin Xiao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
26
|
Liang L, Wang S, Zhang X, Yan T, Pan X, Gao Y, Zhang X, Wang Q, Qu L. Multi-site enhancement of osteogenesis: peptide-functionalized GelMA hydrogels with three-dimensional cultures of human dental pulp stem cells. Regen Biomater 2024; 11:rbae090. [PMID: 39193556 PMCID: PMC11349188 DOI: 10.1093/rb/rbae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/23/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Human dental pulp stem cells (hDPSCs) have demonstrated greater proliferation and osteogenic differentiation potential in certain studies compared to other types of mesenchymal stem cells, making them a promising option for treating craniomaxillofacial bone defects. However, due to low extracting concentration and long amplifying cycles, their access is limited and utilization rates are low. To solve these issues, the principle of bone-forming peptide-1 (BFP1) in situ chemotaxis was utilized for the osteogenic differentiation of hDPSCs to achieve simultaneous and synergistic osteogenesis at multiple sites. BFP1-functionalized gelatin methacryloyl hydrogel provided a 3D culture microenvironment for stem cells. The experimental results showed that the 3D composite hydrogel scaffold constructed in this study increased the cell spread area by four times compared with the conventional GelMA scaffold. Furthermore, the problems of high stem cell dosage and low rate of utilization were alleviated by orchestrating the programmed proliferation and osteogenic differentiation of hDPSCs. In vivo, high-quality repair of critical bone defects was achieved using hDPSCs extracted from a single tooth, and multiple 'bone island'-like structures were successfully observed that rapidly induced robust bone regeneration. In conclusion, this study suggests that this kind of convenient, low-cost, island-like osteogenesis strategy involving a low dose of hDPSCs has great potential for repairing craniomaxillofacial critical-sized bone defects.
Collapse
Affiliation(s)
- Leyi Liang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Shuze Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Xiyue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Tao Yan
- Department of Orthopedics and Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, Liaoning 110016, China
| | - Xiyun Pan
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Yuzhong Gao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xing Zhang
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Liu Qu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
27
|
Xu R, Sheng R, Lin W, Jiang S, Zhang D, Liu L, Lei K, Li X, Liu Z, Zhang X, Wang Y, Seriwatanachai D, Zhou X, Yuan Q. METTL3 Modulates Ctsk + Lineage Supporting Cranial Osteogenesis via Hedgehog. J Dent Res 2024; 103:734-744. [PMID: 38752256 DOI: 10.1177/00220345241245033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
N6-methyladenosine (m6A) modification, a eukaryotic messenger RNA modification catalyzed by methyltransferase-like 3 (METTL3), plays a pivotal role in stem cell fate determination. Calvarial bone development and maintenance are orchestrated by the cranial sutures. Cathepsin K (CTSK)-positive calvarial stem cells (CSCs) contribute to mice calvarial ossification. However, the role of m6A modification in regulating Ctsk+ lineage cells during calvarial development remains elusive. Here, we showed that METTL3 was colocalized with cranial nonosteoclastic Ctsk+ lineage cells, which were also associated with GLI1 expression. During neonatal development, depletion of Mettl3 in the Ctsk+ lineage cells delayed suture formation and decreased mineralization. During adulthood maintenance, loss of Mettl3 in the Ctsk+ lineage cells impaired calvarial bone formation, which was featured by the increased bone porosity, enhanced bone marrow cavity, and decreased number of osteocytes with the less-developed cellular outline. The analysis of methylated RNA immunoprecipitation sequencing and RNA sequencing data indicated that loss of METTL3 reduced Hedgehog (Hh) signaling pathway. Restoration of Hh signaling pathway by crossing Sufufl/+ alleles or by local administration of SAG21 partially rescued the abnormity. Our data indicate that METTL3 modulates Ctsk+ lineage cells supporting calvarial bone formation by regulating the Hh signaling pathway, providing new insights for clinical treatment of skull vault osseous diseases.
Collapse
Affiliation(s)
- R Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - R Sheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - W Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - K Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - X Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Z Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - X Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Seriwatanachai
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - X Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Q Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Cui X, Xu L, Shan Y, Li J, Ji J, Wang E, Zhang B, Wen X, Bai Y, Luo D, Chen C, Li Z. Piezocatalytically-induced controllable mineralization scaffold with bone-like microenvironment to achieve endogenous bone regeneration. Sci Bull (Beijing) 2024; 69:1895-1908. [PMID: 38637224 DOI: 10.1016/j.scib.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Orderly hierarchical structure with balanced mechanical, chemical, and electrical properties is the basis of the natural bone microenvironment. Inspired by nature, we developed a piezocatalytically-induced controlled mineralization strategy using piezoelectric polymer poly-L-lactic acid (PLLA) fibers with ordered micro-nano structures to prepare biomimetic tissue engineering scaffolds with a bone-like microenvironment (pcm-PLLA), in which PLLA-mediated piezoelectric catalysis promoted the in-situ polymerization of dopamine and subsequently regulated the controllable growth of hydroxyapatite crystals on the fiber surface. PLLA fibers, as analogs of mineralized collagen fibers, were arranged in an oriented manner, and ultimately formed a bone-like interconnected pore structure; in addition, they also provided bone-like piezoelectric properties. The uniformly sized HA nanocrystals formed by controlled mineralization provided a bone-like mechanical strength and chemical environment. The pcm-PLLA scaffold could rapidly recruit endogenous stem cells, and promote their osteogenic differentiation by activating cell membrane calcium channels and PI3K signaling pathways through ultrasound-responsive piezoelectric signals. In addition, the scaffold also provided a suitable microenvironment to promote macrophage M2 polarization and angiogenesis, thereby enhancing bone regeneration in skull defects of rats. The proposed piezocatalytically-induced controllable mineralization strategy provides a new idea for the development of tissue engineering scaffolds that can be implemented for multimodal physical stimulation therapy.
Collapse
Affiliation(s)
- Xi Cui
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Xu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yizhu Shan
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxuan Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianying Ji
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Engui Wang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Baokun Zhang
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Xiaozhou Wen
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Bai
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Dan Luo
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Liu Y, Wang Y, Lin M, Liu H, Pan Y, Wu J, Guo Z, Li J, Yan B, Zhou H, Fan Y, Hu G, Liang H, Zhang S, Siu MFF, Wu Y, Bai J, Liu C. Cellular Scale Curvature in Bioceramic Scaffolds Enhanced Bone Regeneration by Regulating Skeletal Stem Cells and Vascularization. Adv Healthc Mater 2024:e2401667. [PMID: 38923234 DOI: 10.1002/adhm.202401667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Critical-sized segmental bone defects cannot heal spontaneously, leading to disability and significant increase in mortality. However, current treatments utilizing bone grafts face a variety of challenges from donor availability to poor osseointegration. Drugs such as growth factors increase cancer risk and are very costly. Here, a porous bioceramic scaffold that promotes bone regeneration via solely mechanobiological design is reported. Two types of scaffolds with high versus low pore curvatures are created using high-precision 3D printing technology to fabricate pore curvatures radius in the 100s of micrometers. While both are able to support bone formation, the high-curvature pores induce higher ectopic bone formation and increased vessel invasion. Scaffolds with high-curvature pores also promote faster regeneration of critical-sized segmental bone defects by activating mechanosensitive pathways. High-curvature pore recruits skeletal stem cells and type H vessels from both the periosteum and the marrow during the early phase of repair. High-curvature pores have increased survival of transplanted GFP-labeled skeletal stem cells (SSCs) and recruit more host SSCs. Taken together, the bioceramic scaffolds with defined micrometer-scale pore curvatures demonstrate a mechanobiological approach for orthopedic scaffold design.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hongzhi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yonghao Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jianqun Wu
- College of Medicine, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Ziyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jiawei Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Bingtong Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hang Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuanhao Fan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ganqing Hu
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Haowen Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Shibo Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Ming-Fung Francis Siu
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Yongbo Wu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
30
|
Lv Z, Ji Y, Wen G, Liang X, Zhang K, Zhang W. Structure-optimized and microenvironment-inspired nanocomposite biomaterials in bone tissue engineering. BURNS & TRAUMA 2024; 12:tkae036. [PMID: 38855573 PMCID: PMC11162833 DOI: 10.1093/burnst/tkae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Critical-sized bone defects represent a significant clinical challenge due to their inability to undergo spontaneous regeneration, necessitating graft interventions for effective treatment. The development of tissue-engineered scaffolds and regenerative medicine has made bone tissue engineering a highly viable treatment for bone defects. The physical and biological properties of nanocomposite biomaterials, which have optimized structures and the ability to simulate the regenerative microenvironment of bone, are promising for application in the field of tissue engineering. These biomaterials offer distinct advantages over traditional materials by facilitating cellular adhesion and proliferation, maintaining excellent osteoconductivity and biocompatibility, enabling precise control of degradation rates, and enhancing mechanical properties. Importantly, they can simulate the natural structure of bone tissue, including the specific microenvironment, which is crucial for promoting the repair and regeneration of bone defects. This manuscript provides a comprehensive review of the recent research developments and applications of structure-optimized and microenvironment-inspired nanocomposite biomaterials in bone tissue engineering. This review focuses on the properties and advantages these materials offer for bone repair and tissue regeneration, summarizing the latest progress in the application of nanocomposite biomaterials for bone tissue engineering and highlighting the challenges and future perspectives in the field. Through this analysis, the paper aims to underscore the promising potential of nanocomposite biomaterials in bone tissue engineering, contributing to the informed design and strategic planning of next-generation biomaterials for regenerative medicine.
Collapse
Affiliation(s)
- Zheng Lv
- Department of Radiology, Affiliated Hospital, Guilin Medical University, No. 15 Lequn Road, Guilin 541001, Guangxi, China
| | - Ying Ji
- Department of Orthopaedics, Affiliated Hospital, Guilin Medical University, No. 15 Lequn Road, Guilin 541001, Guangxi, China
| | - Guoliang Wen
- Department of Radiology, Affiliated Hospital, Guilin Medical University, No. 15 Lequn Road, Guilin 541001, Guangxi, China
| | - Xiayi Liang
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, Sichuan, China
| | - Kun Zhang
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu 610072, Sichuan, China
| | - Wei Zhang
- Department of Radiology, Liuzhou People’s Hospital, Guangxi Medical University, No. 8 Wenchang Road, Liuzhou 545006, Guangxi, China
| |
Collapse
|
31
|
Bixel MG, Sivaraj KK, Timmen M, Mohanakrishnan V, Aravamudhan A, Adams S, Koh BI, Jeong HW, Kruse K, Stange R, Adams RH. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nat Commun 2024; 15:4575. [PMID: 38834586 PMCID: PMC11150404 DOI: 10.1038/s41467-024-48579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.
Collapse
Affiliation(s)
- M Gabriele Bixel
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| | - Kishor K Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Vishal Mohanakrishnan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Anusha Aravamudhan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Bong-Ihn Koh
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Sequencing Core Facility, D-48149, Münster, Germany
| | - Kai Kruse
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Bioinformatics Service Unit, D-48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| |
Collapse
|
32
|
Xu X, Li J, Lu Y, Shan Y, Shen Z, Sun F, Zhu J, Chen W, Shi H. Extracellular Vesicles in the Repair of Bone and Cartilage Injury: From Macro‐Delivery to Micro‐Modification. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Indexed: 01/06/2025]
Abstract
AbstractExtracellular vesicles (EVs) are intermediaries in intercellular signal transmission and material exchange and have attracted significant attention from researchers in bone and cartilage repair. These nanoscale vesicles hold immense potential in facilitating bone and cartilage repair and regeneration by regulating the microenvironment at an injury site. However, their in vivo utilization is limited by their self‐clearance and random distribution. Therefore, various delivery platforms have been developed to improve EV targeting and retention rates in target organs while achieving a controlled release of EVs. Additionally, engineering modification of EVs has been proposed to effectively enhance EVs' intrinsic targeting and drug‐loading abilities and further improve their therapeutic effects on bone and cartilage injuries. This review aims to introduce the biogenesis of EVs and their regulatory mechanisms in the microenvironment of bone and cartilage injuries and comprehensively discuss the application of EV‐delivery platforms of different materials and various EV engineering modification methods in treating bone and cartilage injuries. The review's findings can help advance EV research and develop new strategies for improving the therapy of bone and cartilage injuries.
Collapse
Affiliation(s)
- Xiangyu Xu
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Jialu Li
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Yi Lu
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Yibo Shan
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Zhiming Shen
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Fei Sun
- Department of Thoracic Surgery Taizhou People's Hospital Affiliated to Nanjing Medical University Taizhou 225300 China
| | - Jianwei Zhu
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Wenxuan Chen
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Hongcan Shi
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| |
Collapse
|
33
|
Wan Z, Bai X, Wang X, Guo X, Wang X, Zhai M, Fu Y, Liu Y, Zhang P, Zhang X, Yang R, Liu Y, Lv L, Zhou Y. Mgp High-Expressing MSCs Orchestrate the Osteoimmune Microenvironment of Collagen/Nanohydroxyapatite-Mediated Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308986. [PMID: 38588510 PMCID: PMC11187922 DOI: 10.1002/advs.202308986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Activating autologous stem cells after the implantation of biomaterials is an important process to initiate bone regeneration. Although several studies have demonstrated the mechanism of biomaterial-mediated bone regeneration, a comprehensive single-cell level transcriptomic map revealing the influence of biomaterials on regulating the temporal and spatial expression patterns of mesenchymal stem cells (MSCs) is still lacking. Herein, the osteoimmune microenvironment is depicted around the classical collagen/nanohydroxyapatite-based bone repair materials via combining analysis of single-cell RNA sequencing and spatial transcriptomics. A group of functional MSCs with high expression of matrix Gla protein (Mgp) is identified, which may serve as a pioneer subpopulation involved in bone repair. Remarkably, these Mgp high-expressing MSCs (MgphiMSCs) exhibit efficient osteogenic differentiation potential and orchestrate the osteoimmune microenvironment around implanted biomaterials, rewiring the polarization and osteoclastic differentiation of macrophages through the Mdk/Lrp1 ligand-receptor pair. The inhibition of Mdk/Lrp1 activates the pro-inflammatory programs of macrophages and osteoclastogenesis. Meanwhile, multiple immune-cell subsets also exhibit close crosstalk between MgphiMSCs via the secreted phosphoprotein 1 (SPP1) signaling pathway. These cellular profiles and interactions characterized in this study can broaden the understanding of the functional MSC subpopulations at the early stage of biomaterial-mediated bone regeneration and provide the basis for materials-designed strategies that target osteoimmune modulation.
Collapse
Affiliation(s)
- Zhuqing Wan
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Xiaoqiang Bai
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Xin Wang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Xiaodong Guo
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Xu Wang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Mo Zhai
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Yang Fu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Yunsong Liu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Ping Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Xiao Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Ruili Yang
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
- Department of OrthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
| | - Yan Liu
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
- Department of OrthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
| | - Longwei Lv
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Yongsheng Zhou
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| |
Collapse
|
34
|
Lv H, Xu J, Wang Y, Liu X, Chen S, Chen J, Zhai J, Zhou Y. Isolation, identification and osteogenic capability analysis of mesenchymal stem cells derived from different layers of human maxillary sinus membrane. J Clin Periodontol 2024; 51:754-765. [PMID: 38379293 DOI: 10.1111/jcpe.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
AIM To discover the populations of mesenchymal stem cells (MSCs) derived from different layers of human maxillary sinus membrane (hMSM) and evaluate their osteogenic capability. MATERIALS AND METHODS hMSM was isolated into a monolayer using the combined method of physical separation and enzymatic digestion. The localization of MSCs in hMSM was performed by immunohistological staining and other techniques. Lamina propria layer-derived MSCs (LMSCs) and periosteum layer-derived MSCs (PMSCs) from hMSM were expanded using the explant cell culture method and identified by multilineage differentiation assays, colony formation assay, flow cytometry and so on. The biological characteristics of LMSCs and PMSCs were compared using RNA sequencing, reverse transcription and quantitative polymerase chain reaction, immunofluorescence staining, transwell assay, western blotting and so forth. RESULTS LMSCs and PMSCs from hMSMs were both CD73-, CD90- and CD105-positive, and CD34-, CD45- and HLA-DR-negative. LMSCs and PMSCs were identified as CD171+/CD90+ and CD171-/CD90+, respectively. LMSCs displayed stronger proliferation capability than PMSCs, and PMSCs presented stronger osteogenic differentiation capability than LMSCs. Moreover, PMSCs could recruit and promote osteogenic differentiation of LMSCs. CONCLUSIONS This study identified and isolated two different types of MSCs from hMSMs. Both MSCs served as good potential candidates for bone regeneration.
Collapse
Affiliation(s)
- Huixin Lv
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Jing Xu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiuyu Liu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Sheng Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingxia Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingjie Zhai
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
35
|
Wang X, Ma C, Zhang X, Yuan P, Wang Y, Fu M, Zhang Z, Shi R, Wei N, Wang J, Wu W. Mussel inspired 3D elastomer enabled rapid calvarial bone regeneration through recruiting more osteoprogenitors from the dura mater. Regen Biomater 2024; 11:rbae059. [PMID: 38911700 PMCID: PMC11193312 DOI: 10.1093/rb/rbae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Currently, the successful healing of critical-sized calvarial bone defects remains a considerable challenge. The immune response plays a key role in regulating bone regeneration after material grafting. Previous studies mainly focused on the relationship between macrophages and bone marrow mesenchymal stem cells (BMSCs), while dural cells were recently found to play a vital role in the calvarial bone healing. In this study, a series of 3D elastomers with different proportions of polycaprolactone (PCL) and poly(glycerol sebacate) (PGS) were fabricated, which were further supplemented with polydopamine (PDA) coating. The physicochemical properties of the PCL/PGS and PCL/PGS/PDA grafts were measured, and then they were implanted as filling materials for 8 mm calvarial bone defects. The results showed that a matched and effective PDA interface formed on a well-proportioned elastomer, which effectively modulated the polarization of M2 macrophages and promoted the recruitment of dural cells to achieve full-thickness bone repair through both intramembranous and endochondral ossification. Single-cell RNA sequencing analysis revealed the predominance of dural cells during bone healing and their close relationship with macrophages. The findings illustrated that the crosstalk between dural cells and macrophages determined the vertical full-thickness bone repair for the first time, which may be the new target for designing bone grafts for calvarial bone healing.
Collapse
Affiliation(s)
- Xuqiao Wang
- The College of Life Sciences, Northwest University, Xi'an, 710127, PR China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Chaoqun Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xinchi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Pingping Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yujiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Mingdi Fu
- The College of Life Sciences, Northwest University, Xi'an, 710127, PR China
| | - Zheqian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ruiying Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Na Wei
- The College of Life Sciences, Northwest University, Xi'an, 710127, PR China
| | - Juncheng Wang
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Wei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| |
Collapse
|
36
|
Liao Y, Xu J, Zheng Z, Fu R, Zhang X, Gan S, Yang S, Hou C, Xu HHK, Chen W. Novel Nonthermal Atmospheric Plasma Irradiation of Titanium Implants Promotes Osteogenic Effect in Osteoporotic Conditions. ACS Biomater Sci Eng 2024; 10:3255-3267. [PMID: 38684056 DOI: 10.1021/acsbiomaterials.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Osteoporosis is a metabolic disease characterized by bone density and trabecular bone loss. Bone loss may affect dental implant osseointegration in patients with osteoporosis. To promote implant osseointegration in osteoporotic patients, we further used a nonthermal atmospheric plasma (NTAP) treatment device previously developed by our research group. After the titanium implant (Ti) is placed into the device, the working gas flow and the electrode switches are turned on, and the treatment is completed in 30 s. Previous studies showed that this NTAP device can remove carbon contamination from the implant surface, increase the hydroxyl groups, and improve its wettability to promote osseointegration in normal conditions. In this study, we demonstrated the tremendous osteogenic enhancement effect of NTAP-Ti in osteoporotic conditions in rats for the first time. Compared to Ti, the proliferative potential of osteoporotic bone marrow mesenchymal stem cells on NTAP-Ti increased by 180% at 1 day (P = 0.004), while their osteogenic differentiation increased by 149% at 14 days (P < 0.001). In addition, the results indicated that NTAP-Ti significantly improved osseointegration in osteoporotic rats in vivo. Compared to the Ti, the bone volume fraction (BV/TV) and trabecular number (Tb.N) values of NTAP-Ti in osteoporotic rats, respectively, increased by 18% (P < 0.001) and 25% (P = 0.007) at 6 weeks and the trabecular separation (Tb.Sp) value decreased by 26% (P = 0.02) at 6 weeks. In conclusion, this study proved a novel NTAP irradiation titanium implant that can significantly promote osseointegration in osteoporotic conditions.
Collapse
Affiliation(s)
- Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyuan Zhang
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, Maryland 21201, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Lin X, Wang Y, Liu L, Du X, Wang W, Guo S, Zhang J, Ge K, Zhou G. Enhanced bone regeneration by osteoinductive and angiogenic zein/whitlockite composite scaffolds loaded with levofloxacin. RSC Adv 2024; 14:14470-14479. [PMID: 38708116 PMCID: PMC11063759 DOI: 10.1039/d4ra00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024] Open
Abstract
Promoting angiogenesis following biomaterial implantation is essential to bone tissue regeneration. Herein, the composite scaffolds composed of zein, whitlockite (WH), and levofloxacin (LEVO) were fabricated to augment bone repair by facilitating osteogenesis and angiogenesis. First, three-dimensional composite scaffolds containing zein and WH were prepared using the salt-leaching method. Then, as a model antibiotic drug, the LEVO was loaded into zein/WH scaffolds. Moreover, the addition of WH enhanced the adhesion, differentiation, and mineralization of osteoblasts. The zein/WH/LEVO composite scaffolds not only had significant osteoinductivity but also showed excellent antibacterial properties. The prepared composite scaffolds were then implanted into a calvarial defect model to evaluate their osteogenic induction effects in vivo. Micro-CT observation and histological analysis indicate that the scaffolds can accelerate bone regeneration with the contribution of endogenous cytokines. Based on amounts of data in vitro and in vivo, the scaffolds present profound effects on improving bone regeneration, especially for the favorable osteogenic, intensive angiogenic, and alleviated inflammation abilities. The results showed that the synthesized scaffolds could be a potential material for bone tissue engineering.
Collapse
Affiliation(s)
- Xue Lin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Yu Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
- College of Basic Medical Science, Hebei University Baoding 071000 P. R. China
| | - Lingyu Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
- College of Basic Medical Science, Hebei University Baoding 071000 P. R. China
| | - Xiaomeng Du
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Wenying Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
- College of Basic Medical Science, Hebei University Baoding 071000 P. R. China
| |
Collapse
|
38
|
Li X, Cheng Y, Gu P, Zhao C, Li Z, Tong L, Zeng W, Liang J, Luo E, Jiang Q, Zhou Z, Fan Y, Zhang X, Sun Y. Engineered Microchannel Scaffolds with Instructive Niches Reinforce Endogenous Bone Regeneration by Regulating CSF-1/CSF-1R Pathway. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310876. [PMID: 38321645 DOI: 10.1002/adma.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Structural and physiological cues provide guidance for the directional migration and spatial organization of endogenous cells. Here, a microchannel scaffold with instructive niches is developed using a circumferential freeze-casting technique with an alkaline salting-out strategy. Thereinto, polydopamine-coated nano-hydroxyapatite is employed as a functional inorganic linker to participate in the entanglement and crystallization of chitosan molecules. This scaffold orchestrates the advantage of an oriented porous structure for rapid cell infiltration and satisfactory immunomodulatory capacity to promote stem cell recruitment, retention, and subsequent osteogenic differentiation. Transcriptomic analysis as well as its in vitro and in vivo verification demonstrates that essential colony-stimulating factor-1 (CSF-1) factor is induced by this scaffold, and effectively bound to the target colony-stimulating factor-1 receptor (CSF-1R) on the macrophage surface to activate the M2 phenotype, achieving substantial endogenous bone regeneration. This strategy provides a simple and efficient approach for engineering inducible bone regenerative biomaterials.
Collapse
Affiliation(s)
- Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yaling Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Peiyang Gu
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Chengkun Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Zhulian Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Lei Tong
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Weinan Zeng
- Department of Orthopedic Surgery and Orthopedic Research Institution, West China Hospital, Sichuan University, 17# Gaopeng Avenue, Chengdu, 610041, P. R. China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, P. R. China
| | - En Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14#, 3rd, Section of Renmin South Road, Chengdu, 610041, P. R. China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Zongke Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institution, West China Hospital, Sichuan University, 17# Gaopeng Avenue, Chengdu, 610041, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|
39
|
Frenz-Wiessner S, Fairley SD, Buser M, Goek I, Salewskij K, Jonsson G, Illig D, Zu Putlitz B, Petersheim D, Li Y, Chen PH, Kalauz M, Conca R, Sterr M, Geuder J, Mizoguchi Y, Megens RTA, Linder MI, Kotlarz D, Rudelius M, Penninger JM, Marr C, Klein C. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat Methods 2024; 21:868-881. [PMID: 38374263 PMCID: PMC11093744 DOI: 10.1038/s41592-024-02172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
The human bone marrow (BM) niche sustains hematopoiesis throughout life. We present a method for generating complex BM-like organoids (BMOs) from human induced pluripotent stem cells (iPSCs). BMOs consist of key cell types that self-organize into spatially defined three-dimensional structures mimicking cellular, structural and molecular characteristics of the hematopoietic microenvironment. Functional properties of BMOs include the presence of an in vivo-like vascular network, the presence of multipotent mesenchymal stem/progenitor cells, the support of neutrophil differentiation and responsiveness to inflammatory stimuli. Single-cell RNA sequencing revealed a heterocellular composition including the presence of a hematopoietic stem/progenitor (HSPC) cluster expressing genes of fetal HSCs. BMO-derived HSPCs also exhibited lymphoid potential and a subset demonstrated transient engraftment potential upon xenotransplantation in mice. We show that the BMOs could enable the modeling of hematopoietic developmental aspects and inborn errors of hematopoiesis, as shown for human VPS45 deficiency. Thus, iPSC-derived BMOs serve as a physiologically relevant in vitro model of the human BM microenvironment to study hematopoietic development and BM diseases.
Collapse
Affiliation(s)
- Stephanie Frenz-Wiessner
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Savannah D Fairley
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maximilian Buser
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Isabel Goek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kirill Salewskij
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - David Illig
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedicta Zu Putlitz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Petersheim
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yue Li
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pin-Hsuan Chen
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Kalauz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Raffaele Conca
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Technical University of Munich, Munich, Germany
| | - Johanna Geuder
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Yoko Mizoguchi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Remco T A Megens
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Biomedical Engineering (BME), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Monika I Linder
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.
- Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
40
|
Luo C, Li YM, Jiang K, Wang K, Kuzmanović M, You XH, Zhang Y, Lei J, Huang SS, Xu JZ. ECM-inspired calcium/zinc laden cellulose scaffold for enhanced bone regeneration. Carbohydr Polym 2024; 331:121823. [PMID: 38388030 DOI: 10.1016/j.carbpol.2024.121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
Cellulose-based polymer scaffolds are highly diverse for designing and fabricating artificial bone substitutes. However, realizing the multi-biological functions of cellulose-based scaffolds has long been challenging. In this work, inspired by the structure and function of the extracellular matrix (ECM) of bone, we developed a novel yet feasible strategy to prepare ECM-like scaffolds with hybrid calcium/zinc mineralization. The 3D porous structure was formed via selective oxidation and freeze drying of bacterial cellulose. Following the principle of electrostatic interaction, calcium/zinc hybrid hydroxyapatite nucleated, crystallized, and precipitated on the 3D scaffold in simulated physiological conditions, which was well confirmed by morphology and composition analysis. Compared with alternative scaffold cohorts, this hybrid ion-loaded cellulose scaffold exhibited a pronounced elevation in alkaline phosphatase (ALP) activity, osteogenic gene expression, and cranial defect regeneration. Notably, the hybrid ion-loaded cellulose scaffold effectively fostered an M2 macrophage milieu and had a strong immune effect in vivo. In summary, this study developed a hybrid multifunctional cellulose-based scaffold that appropriately simulates the ECM to regulate immunomodulatory and osteogenic differentiation, setting a measure for artificial bone substitutes.
Collapse
Affiliation(s)
- Chuan Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Kai Jiang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Kai Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Maja Kuzmanović
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xuan-He You
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yao Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Jun Lei
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shi-Shu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Jia-Zhuang Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
41
|
Ghimire U, Jang SR, Adhikari JR, Kandel R, Song JH, Park CH. Conducting biointerface of spider-net-like chitosan-adorned polyurethane/SPIONs@SrO 2-fMWCNTs for bone tissue engineering and antibacterial efficacy. Int J Biol Macromol 2024; 264:130602. [PMID: 38447824 DOI: 10.1016/j.ijbiomac.2024.130602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
In pursuit of enhancing bone cell proliferation, this study delves into the fabrication of porous scaffolds through the integration of nanomaterials. Specifically, we present the development of highly conductive chitosan (CS) nanonets on fibro-porous polyurethane (PU) bio-membranes. These nanofibers comprise functionalized multiwall carbon nanotubes (fMWCNTs), well-dispersed superparamagnetic iron oxide (SPIONs), and strontium oxide (SrO2) nanoparticles. The resulting porous scaffold exhibits remarkable interfacial biocompatibility, antibacterial properties, and load-bearing capability. Through meticulous in vitro investigations, the CS-PU/SPIONs/SrO2-fMWCNTs nanofibrous scaffolds have demonstrated a propensity to promote bone cell regeneration. Notably, the integration of these nanomaterials has been found to upregulate crucial bone-related markers, including ALP, ARS, COL-I, RUNX2, and SPP-I. The evaluation of these markers, conducted through quantitative real-time polymerase chain reaction (qRT-PCR) and immunocytochemistry, substantiates the improved cell survival and enhanced osteogenic differentiation facilitated by the integrated nanomaterials. This comprehensive analysis underscores the efficacy of CS-PU/SPIONs/SrO2-fMWCNTs bioscaffolds in promoting MC3T3-E1 cell regeneration within, thereby holding promise for advancements in bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Upasana Ghimire
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Se Rim Jang
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jhalak Raj Adhikari
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Rupesh Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of IT Convergence Mechatronics Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea.
| | - Jun Hee Song
- Department of IT Convergence Mechatronics Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea.
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
42
|
He Z, Li H, Zhang Y, Gao S, Liang K, Su Y, Du Y, Wang D, Xing D, Yang Z, Lin J. Enhanced bone regeneration via endochondral ossification using Exendin-4-modified mesenchymal stem cells. Bioact Mater 2024; 34:98-111. [PMID: 38186959 PMCID: PMC10770633 DOI: 10.1016/j.bioactmat.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Nonunions and delayed unions pose significant challenges in orthopedic treatment, with current therapies often proving inadequate. Bone tissue engineering (BTE), particularly through endochondral ossification (ECO), emerges as a promising strategy for addressing critical bone defects. This study introduces mesenchymal stem cells overexpressing Exendin-4 (MSC-E4), designed to modulate bone remodeling via their autocrine and paracrine functions. We established a type I collagen (Col-I) sponge-based in vitro model that effectively recapitulates the ECO pathway. MSC-E4 demonstrated superior chondrogenic and hypertrophic differentiation and enhanced the ECO cell fate in single-cell sequencing analysis. Furthermore, MSC-E4 encapsulated in microscaffold, effectively facilitated bone regeneration in a rat calvarial defect model, underscoring its potential as a therapeutic agent for bone regeneration. Our findings advocate for MSC-E4 within a BTE framework as a novel and potent approach for treating significant bone defects, leveraging the intrinsic ECO process.
Collapse
Affiliation(s)
- Zihao He
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Hui Li
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Shuang Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yiqi Su
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Du Wang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Zhen Yang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| |
Collapse
|
43
|
He L. Biomaterials for Regenerative Cranioplasty: Current State of Clinical Application and Future Challenges. J Funct Biomater 2024; 15:84. [PMID: 38667541 PMCID: PMC11050949 DOI: 10.3390/jfb15040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Acquired cranial defects are a prevalent condition in neurosurgery and call for cranioplasty, where the missing or defective cranium is replaced by an implant. Nevertheless, the biomaterials in current clinical applications are hardly exempt from long-term safety and comfort concerns. An appealing solution is regenerative cranioplasty, where biomaterials with/without cells and bioactive molecules are applied to induce the regeneration of the cranium and ultimately repair the cranial defects. This review examines the current state of research, development, and translational application of regenerative cranioplasty biomaterials and discusses the efforts required in future research. The first section briefly introduced the regenerative capacity of the cranium, including the spontaneous bone regeneration bioactivities and the presence of pluripotent skeletal stem cells in the cranial suture. Then, three major types of biomaterials for regenerative cranioplasty, namely the calcium phosphate/titanium (CaP/Ti) composites, mineralised collagen, and 3D-printed polycaprolactone (PCL) composites, are reviewed for their composition, material properties, and findings from clinical trials. The third part discusses perspectives on future research and development of regenerative cranioplasty biomaterials, with a considerable portion based on issues identified in clinical trials. This review aims to facilitate the development of biomaterials that ultimately contribute to a safer and more effective healing of cranial defects.
Collapse
Affiliation(s)
- Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
44
|
Wang L, Wei X, He X, Xiao S, Shi Q, Chen P, Lee J, Guo X, Liu H, Fan Y. Osteoinductive Dental Pulp Stem Cell-Derived Extracellular Vesicle-Loaded Multifunctional Hydrogel for Bone Regeneration. ACS NANO 2024; 18:8777-8797. [PMID: 38488479 DOI: 10.1021/acsnano.3c11542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Stem cell-derived extracellular vesicles (EVs) show great potential for promoting bone tissue regeneration. However, normal EVs (Nor-EVs) have a limited ability to direct tissue-specific regeneration. Therefore, it is necessary to optimize the osteogenic capacity of EV-based systems for repairing extensive bone defects. Herein, we show that hydrogels loaded with osteoinductive dental pulp stem cell-derived EVs (Ost-EVs) enhanced bone tissue remodeling, resulting in a 2.23 ± 0.25-fold increase in the expression of bone morphogenetic protein 2 (BMP2) compared to the hydrogel control group. Moreover, Ost-EVs led to a higher expression of alkaline phosphatase (ALP) (1.88 ± 0.16 of Ost-EVs relative to Nor-EVs) and the formation of orange-red calcium nodules (1.38 ± 0.10 of Ost-EVs relative to Nor-EVs) in vitro. RNA sequencing revealed that Ost-EVs showed significantly high miR-1246 expression. An ideal hydrogel implant should also adhere to surrounding moist tissues. In this study, we were drawn to mussel-inspired adhesive modification, where the hydrogel carrier was crafted from hyaluronic acid (HA) and polyethylene glycol derivatives, showcasing impressive tissue adhesion, self-healing capabilities, and the ability to promote bone growth. The modified HA (mHA) hydrogel was also responsive to environmental stimuli, making it an effective carrier for delivering EVs. In an ectopic osteogenesis animal model, the Ost-EV/hydrogel system effectively alleviated inflammation, accelerated revascularization, and promoted tissue mineralization. We further used a rat femoral condyle defect model to evaluate the in situ osteogenic ability of the Ost-EVs/hydrogel system. Collectively, our results suggest that Ost-EVs combined with biomaterial-based hydrogels hold promising potential for treating bone defects.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Shengzhao Xiao
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Qiusheng Shi
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Peng Chen
- Department of Ultrasound, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Jesse Lee
- Arova Biosciences, Inc., Life Sciences Innovation Hub, Calgary Alberta T2L 1Y8, Canada
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| |
Collapse
|
45
|
Bai B, Liu Y, Huang J, Wang S, Chen H, Huo Y, Zhou H, Liu Y, Feng S, Zhou G, Hua Y. Tolerant and Rapid Endochondral Bone Regeneration Using Framework-Enhanced 3D Biomineralized Matrix Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305580. [PMID: 38127989 PMCID: PMC10916654 DOI: 10.1002/advs.202305580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Indexed: 12/23/2023]
Abstract
Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.
Collapse
Affiliation(s)
- Baoshuai Bai
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
- Department of OrthopaedicsAdvanced Medical Research InstituteQilu Hospital of Shangdong University Centre for OrthopaedicsShandong UniversityJinanShandong250100P. R. China
- Department of OrthopaedicsCheeloo College of MedicineThe Second Hospital of Shandong UniversityShandong UniversityJinanShandong250033P. R. China
| | - Yanhan Liu
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
- Department of OphthalmologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jinyi Huang
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Sinan Wang
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Hongying Chen
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Yingying Huo
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Hengxing Zhou
- Department of OrthopaedicsAdvanced Medical Research InstituteQilu Hospital of Shangdong University Centre for OrthopaedicsShandong UniversityJinanShandong250100P. R. China
- Department of OrthopaedicsCheeloo College of MedicineThe Second Hospital of Shandong UniversityShandong UniversityJinanShandong250033P. R. China
| | - Yu Liu
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Shiqing Feng
- Department of OrthopaedicsAdvanced Medical Research InstituteQilu Hospital of Shangdong University Centre for OrthopaedicsShandong UniversityJinanShandong250100P. R. China
- Department of OrthopaedicsCheeloo College of MedicineThe Second Hospital of Shandong UniversityShandong UniversityJinanShandong250033P. R. China
| | - Guangdong Zhou
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Yujie Hua
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| |
Collapse
|
46
|
Dahiya A, Chaudhari VS, Kushram P, Bose S. 3D Printed SiO 2-Tricalcium Phosphate Scaffolds Loaded with Carvacrol Nanoparticles for Bone Tissue Engineering Application. J Med Chem 2024; 67:2745-2757. [PMID: 38146876 PMCID: PMC11164277 DOI: 10.1021/acs.jmedchem.3c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Bone damage resulting from trauma or aging poses challenges in clinical settings that need to be addressed using bone tissue engineering (BTE). Carvacrol (CA) possesses anti-inflammatory, anticancer, and antibacterial properties. Limited solubility and physicochemical stability restrict its biological activity, requiring a stable carrier system for delivery. Here, we investigate the utilization of a three-dimensional printed (3DP) SiO2-doped tricalcium phosphate (TCP) scaffold functionalized with carvacrol-loaded lipid nanoparticles (CA-LNPs) to improve bone health. It exhibits a negative surface charge with an entrapment efficiency of ∼97% and size ∼129 nm with polydispersity index (PDI) and zeta potential values of 0.18 and -16 mV, respectively. CA-LNPs exhibit higher and long-term release over 35 days. The CA-LNP loaded SiO2-doped TCP scaffold demonstrates improved antibacterial properties against Staphylococcus aureus and Pseudomonas aeruginosa by >90% reduction in bacterial growth. Functionalized scaffolds result in 3-fold decrease and 2-fold increase in osteosarcoma and osteoblast cell viability, respectively. These findings highlight the therapeutic potential of the CA-LNP loaded SiO2-doped TCP scaffold for bone defect treatment.
Collapse
Affiliation(s)
- Aditi Dahiya
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Susmita Bose
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
47
|
Liu T, You Z, Shen F, Yang P, Chen J, Meng S, Wang C, Xiong D, You C, Wang Z, Shi Y, Ye L. Tricarboxylic Acid Cycle Metabolite-Coordinated Biohydrogels Augment Cranial Bone Regeneration Through Neutrophil-Stimulated Mesenchymal Stem Cell Recruitment and Histone Acetylation-Mediated Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5486-5503. [PMID: 38284176 DOI: 10.1021/acsami.3c15473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Cranial bone defects remain a major clinical challenge, increasing patients' life burdens. Tricarboxylic acid (TCA) cycle metabolites play crucial roles in facilitating bone tissue regeneration. However, the development of TCA cycle metabolite-modified biomimetic grafts for skull bone regeneration still needs to be improved. The mechanism underlying the release of TCA cycle metabolites from biomaterials in regulating immune responses and mesenchymal stem cell (MSC) fate (migration and differentiation) remains unknown. Herein, this work constructs biomimetic hydrogels composed of gelatin and chitosan networks covalently cross-linked by genipin (CGG hydrogels). A series of TCA cycle metabolite-coordinated CGG hydrogels with strong mechanical and antiswelling performances are subsequently developed. Remarkably, the citrate (Na3Cit, Cit)-coordinated CGG hydrogels (CGG-Cit hydrogels) with the highest mechanical modulus and strength significantly promote skull bone regeneration in rat and murine cranial defects. Mechanistically, using a transgenic mouse model, bulk RNA sequencing, and single-cell RNA sequencing, this work demonstrates that CGG-Cit hydrogels promote Gli1+ MSC migration via neutrophil-secreted oncostatin M. Results also indicate that citrate improves osteogenesis via enhanced histone H3K9 acetylation on osteogenic master genes. Taken together, the immune microenvironment- and MSC fate-regulated CGG-Cit hydrogels represent a highly efficient and facile approach toward skull bone tissue regeneration with great potential for bench-to-bedside translation.
Collapse
Affiliation(s)
- Tingjun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ziying You
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Puying Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhuai Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ding Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengjia You
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Zheng W, Wu D, Zhang Y, Luo Y, Yang L, Xu X, Luo F. Multifunctional modifications of polyetheretherketone implants for bone repair: A comprehensive review. BIOMATERIALS ADVANCES 2023; 154:213607. [PMID: 37651963 DOI: 10.1016/j.bioadv.2023.213607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Polyetheretherketone (PEEK) has emerged as a highly promising orthopedic implantation material due to its elastic modulus which is comparable to that of natural bone. This polymer exhibits impressive properties for bone implantation such as corrosion resistance, fatigue resistance, self-lubrication and chemical stability. Significantly, compared to metal-based implants, PEEK implants have mechanical properties that are closer to natural bone, which can mitigate the "stress shielding" effect in bone implantation. Nevertheless, PEEK is incapable of inducing osteogenesis due to its bio-inert molecular structure, thereby hindering the osseointegration process. To optimize the clinical application of PEEK, researchers have been working on promoting its bioactivity and endowing this polymer with beneficial properties, such as antibacterial, anti-inflammatory, anti-tumor, and angiogenesis-promoting capabilities. Considering the significant growth of research on PEEK implants over the past 5 years, this review aims to present a timely update on PEEK's modification methods. By highlighting the latest advancements in PEEK modification, we hope to provide guidance and inspiration for researchers in developing the next generation bone implants and optimizing their clinical applications.
Collapse
Affiliation(s)
- Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongxu Wu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiangrui Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
49
|
Smeriglio P, Zalc A. Cranial Neural Crest Cells Contribution to Craniofacial Bone Development and Regeneration. Curr Osteoporos Rep 2023; 21:624-631. [PMID: 37421571 DOI: 10.1007/s11914-023-00804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize (i) the latest evidence on cranial neural crest cells (CNCC) contribution to craniofacial development and ossification; (ii) the recent discoveries on the mechanisms responsible for their plasticity; and (iii) the newest procedures to ameliorate maxillofacial tissue repair. RECENT FINDINGS CNCC display a remarkable differentiation potential that exceeds the capacity of their germ layer of origin. The mechanisms by which they expand their plasticity was recently described. Their ability to participate to craniofacial bone development and regeneration open new perspectives for treatments of traumatic craniofacial injuries or congenital syndromes. These conditions can be life-threatening, require invasive maxillofacial surgery and can leave deep sequels on our health or quality of life. With accumulating evidence showing how CNCC-derived stem cells potential can ameliorate craniofacial reconstruction and tissue repair, we believe a deeper understanding of the mechanisms regulating CNCC plasticity is essential to ameliorate endogenous regeneration and improve tissue repair therapies.
Collapse
Affiliation(s)
- Piera Smeriglio
- Centre de Recherche en Myologie, Institut de Myologie, INSERM, Sorbonne Université, 75013, Paris, France.
| | - Antoine Zalc
- Institut Cochin, CNRS, INSERM, Université Paris Cité, 75014, Paris, France.
| |
Collapse
|
50
|
Hao H, Xue Y, Wu Y, Wang C, Chen Y, Wang X, Zhang P, Ji J. A paradigm for high-throughput screening of cell-selective surfaces coupling orthogonal gradients and machine learning-based cell recognition. Bioact Mater 2023; 28:1-11. [PMID: 37214260 PMCID: PMC10192934 DOI: 10.1016/j.bioactmat.2023.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The combinational density of immobilized functional molecules on biomaterial surfaces directs cell behaviors. However, limited by the low efficiency of traditional low-throughput experimental methods, investigation and optimization of the combinational density remain daunting challenges. Herein, we report a high-throughput screening set-up to study biomaterial surface functionalization by integrating photo-controlled thiol-ene surface chemistry and machine learning-based label-free cell identification and statistics. Through such a strategy, a specific surface combinational density of polyethylene glycol (PEG) and arginine-glutamic acid-aspartic acid-valine peptide (REDV) leads to high endothelial cell (EC) selectivity against smooth muscle cell (SMC) was identified. The composition was translated as a coating formula to modify medical nickel-titanium alloy surfaces, which was then proved to improve EC competitiveness and induce endothelialization. This work provided a high-throughput method to investigate behaviors of co-cultured cells on biomaterial surfaces modified with combinatorial functional molecules.
Collapse
Affiliation(s)
- Hongye Hao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Yunfan Xue
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Yuhui Wu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Cong Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Yifeng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Xingwang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| |
Collapse
|