1
|
Liu L, Wu J. Stem cell-based models of early human development. Development 2025; 152:dev204543. [PMID: 40242957 PMCID: PMC12045636 DOI: 10.1242/dev.204543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Stem cell-based embryo models (SCBEMs) are structures generated from three-dimensional (3D) culture of pluripotent stem cells and their derivatives, utilizing mechanical and/or chemical cues to facilitate lineage differentiation, self-organization and morphogenesis. These models partially mimic early embryos, which would otherwise be difficult to access. SCBEMs have been established in mice, livestock, nonhuman primates and humans. Here, we focus on recently developed human models, with an emphasis on the peri-implantation stage and the aspects of human development these SCBEMs recapitulate.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
2
|
Cearlock A, Mysliwiec H, Agarsheva M, Krzyspiak J, Ozair MZ, Brivanlou AH, Yang M. Exploring and validating the marmoset as a primate model for chromosomal instability in early development. Mol Hum Reprod 2025; 31:gaaf012. [PMID: 40193493 DOI: 10.1093/molehr/gaaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Aneuploidy in embryos poses a major barrier to successful human reproduction, contributing to nearly 50% of early miscarriages. Despite its high prevalence in human embryos, the molecular mechanisms regulating aneuploid cell fate during development remain poorly understood. This knowledge gap persists due to ethical constraints in human embryo research and the limitations of existing animal models. In this study, we identified the New World primate marmoset (Callithrix jacchus) as a suitable model for investigating aneuploidy. By calling copy number variants from single-cell RNA-sequencing data of marmoset embryonic cells, we identified heterogeneous aneuploidy, indicating chromosomal instability (CIN) in marmoset preimplantation embryos. Furthermore, marmoset aneuploidy displayed lineage-specific behavior during gastruloid differentiation, similar to humans, suggesting a conserved regulatory mechanism in lineage specification. To develop a more pluripotent cell line to study early specification, we established an efficient approach for generating naïve-like marmoset pluripotent stem cells (cjPSCs). These cells resemble preimplantation epiblast-like cells and exhibit inherent CIN. Transcriptome analysis identified potential pathways contributing to aneuploidy during early embryogenesis, including the downregulation of cell cycle checkpoint signaling and the upregulation of autophagy pathways. Additionally, we found no significant effect of spontaneously occurring aneuploidy in cjPSCs on blastoid formation, suggesting that the consequences of aneuploidy become evident only after gastrulation, with preimplantation lineages exhibiting a higher tolerance for genomic instability. Unexpectedly, aneuploidy enhanced cavity formation during blastoid development, suggesting a potential role in facilitating efficient trophectoderm differentiation. Our findings validate the marmoset as a valuable model for studying CIN during early primate development and provide insight into the mechanisms underlying the prevalence of aneuploidy in primates. Naïve-like cjPSCs recapitulate key phenotypic traits of early embryonic cells, providing a robust system for studying post-implantation aneuploid cell fates in vivo and serving as a foundation for future research in this field.
Collapse
Affiliation(s)
- Andrew Cearlock
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Hubert Mysliwiec
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, NY, USA
| | - Margarita Agarsheva
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, NY, USA
| | - Joanna Krzyspiak
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, NY, USA
| | - Mohammad Zeeshan Ozair
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, NY, USA
- Department of Radiation Oncology, Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, NY, USA
| | - Ali H Brivanlou
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, NY, USA
| | - Min Yang
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Washington National Primate Center, Seattle, WA, USA
| |
Collapse
|
3
|
Huang T, Radley A, Yanagida A, Ren Z, Carlisle F, Tahajjodi S, Kim D, O'Neill P, Clarke J, Lancaster MA, Heckhausen Z, Zhuo J, de Sousa JPA, Hajkova P, von Meyenn F, Imai H, Nakauchi H, Guo G, Smith A, Masaki H. Inhibition of PRC2 enables self-renewal of blastoid-competent naive pluripotent stem cells from chimpanzee. Cell Stem Cell 2025; 32:627-639.e8. [PMID: 40015279 DOI: 10.1016/j.stem.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Naive pluripotent stem cells (PSCs) are counterparts of early epiblast in the mammalian embryo. Mouse and human naive PSCs differ in self-renewal requirements and extraembryonic lineage potency. Here, we investigated the generation of chimpanzee naive PSCs. Colonies generated by resetting or reprogramming failed to propagate. We discovered that self-renewal is enabled by inhibition of Polycomb repressive complex 2 (PRC2). Expanded cells show global transcriptome proximity to human naive PSCs and embryo pre-implantation epiblast, with shared expression of a subset of pluripotency transcription factors. Chimpanzee naive PSCs can transition to multilineage competence or can differentiate into trophectoderm and hypoblast, forming tri-lineage blastoids. They thus provide a higher primate comparative model for studying pluripotency and early embryogenesis. Genetic deletions confirm that PRC2 mediates growth arrest. Further, inhibition of PRC2 overcomes a roadblock to feeder-free propagation of human naive PSCs. Therefore, excess deposition of chromatin modification H3K27me3 is an unexpected barrier to naive PSC self-renewal.
Collapse
Affiliation(s)
- Tao Huang
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Arthur Radley
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ayaka Yanagida
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan; Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Zhili Ren
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | | | | | - Dongwan Kim
- Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science, Tokyo 113-8510, Japan
| | - Paul O'Neill
- University of Exeter Sequencing Facility, University of Exeter, Exeter EX4 4QD, UK
| | - James Clarke
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Zoe Heckhausen
- MRC Laboratory of Medical Sciences (LMS), Du Cane Rd, London W12 0HS, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, W12 0NN, UK
| | - Jingran Zhuo
- Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | | | - Petra Hajkova
- MRC Laboratory of Medical Sciences (LMS), Du Cane Rd, London W12 0HS, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, W12 0NN, UK
| | - Ferdinand von Meyenn
- Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science, Tokyo 113-8510, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ge Guo
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| | - Hideki Masaki
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science, Tokyo 113-8510, Japan.
| |
Collapse
|
4
|
Canizo JR, Zhao C, Petropoulos S. The guinea pig serves as an alternative model to study human preimplantation development. Nat Cell Biol 2025; 27:696-710. [PMID: 40185949 PMCID: PMC11991919 DOI: 10.1038/s41556-025-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/20/2025] [Indexed: 04/07/2025]
Abstract
Preimplantation development is an important window of human embryogenesis. However, ethical constraints and the limitations involved in studying human embryos often necessitate the use of alternative model systems. Here we identify the guinea pig as a promising small animal model to study human preimplantation development. Using single-cell RNA-sequencing, we generated an atlas of guinea pig preimplantation development, revealing its close resemblance to early human embryogenesis in terms of the timing of compaction, early-, mid- and late-blastocyst formation, and implantation, and the spatio-temporal expression of key lineage markers. We also show conserved roles of Hippo, MEK-ERK and JAK-STAT signalling. Furthermore, multi-species analysis highlights the spatio-temporal expression of conserved and divergent genes during preimplantation development and pluripotency. The guinea pig serves as a valuable animal model for advancing preimplantation development and stem cell research, and can be leveraged to better understand the longer-term impact of early exposures on offspring outcomes.
Collapse
Affiliation(s)
- Jesica Romina Canizo
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montréal, Canada
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, Canada
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montréal, Canada.
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, Canada.
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden.
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Sozen B, Tam PPL, Pera MF. Pluripotent cell states and fates in human embryo models. Development 2025; 152:dev204565. [PMID: 40171916 PMCID: PMC11993252 DOI: 10.1242/dev.204565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Pluripotency, the capacity to generate all cells of the body, is a defining property of a transient population of epiblast cells found in pre-, peri- and post-implantation mammalian embryos. As development progresses, the epiblast cells undergo dynamic transitions in pluripotency states, concurrent with the specification of extra-embryonic and embryonic lineages. Recently, stem cell-based models of pre- and post-implantation human embryonic development have been developed using stem cells that capture key properties of the epiblast at different developmental stages. Here, we review early primate development, comparing pluripotency states of the epiblast in vivo with cultured pluripotent cells representative of these states. We consider how the pluripotency status of the starting cells influences the development of human embryo models and, in turn, what we can learn about the human pluripotent epiblast. Finally, we discuss the limitations of these models and questions arising from the pioneering studies in this emerging field.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
| | - Patrick P. L. Tam
- Embryology Research Unit, Children's Medical Research Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Martin F. Pera
- The Jackson Laboratory, Mammalian Genetics, Bar Harbor, ME 04609, USA
| |
Collapse
|
6
|
Kim YY, Kwak J, Kang BC, Ku SY. Non-human primate: the new frontier model of female reproductive engineering. Front Bioeng Biotechnol 2025; 13:1536750. [PMID: 40242357 PMCID: PMC12001037 DOI: 10.3389/fbioe.2025.1536750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Reproductive engineering encompasses a range of advanced tissue engineering techniques aimed at addressing infertility that is non-curable with current assisted reproductive technology (ART). The use of animal models has been crucial for these advancements, with a notable preference for non-human primates (NHPs) given their genetic, anatomical, and physiological similarities to humans. Therefore, NHPs are invaluable for studying reproductive engineering. Thus, in reproductive studies, NHPs bridge the anatomical and physiological gaps between rodent models and humans. Their shared features with humans, such as menstrual cycles, placentation, and hormonal regulation, allow for more accurate modeling of reproductive physiology and pathology. These traits make NHPs indispensable in the exploration of reproductive engineering, including infertility treatments, genetic engineering, and uterine transplantation. Reproductive engineering is a transformative field that addresses infertility and enhances reproductive health. By leveraging the unique traits of NHPs, researchers can deepen their understanding of reproductive processes and refine ART techniques for human use. Advances in genetic engineering have enabled the creation of transgenic NHP models, which have been used to modify genes to investigate roles for various purposes, and the process, as mentioned earlier, is closely related to the ART technique, including fertility, embryogenesis, and pregnancy. Therefore, the relation to reproductive studies and the necessity of the NHP model are prerequisites for reproductive engineering. The engineering of NHPs is critically related to integrating ethical practices and exploring complementary methodologies. This review overviews the types of NHP frequently used and studies using NHP for reproductive engineering. These studies may suggest a broader way to use NHP for reproductive engineering.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jina Kwak
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul, Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Masamsetti VP, Salehin N, Kim HJ, Santucci N, Weatherstone M, McMahon R, Marshall LL, Knowles H, Sun J, Studdert JB, Aryamanesh N, Wang R, Jing N, Yang P, Osteil P, Tam PPL. Lineage contribution of the mesendoderm progenitors in the gastrulating mouse embryo. Dev Cell 2025:S1534-5807(25)00120-0. [PMID: 40132585 DOI: 10.1016/j.devcel.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/08/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
A population of putative mesendoderm progenitors that can contribute cellular descendants to both mesoderm and endoderm lineages is identified in the gastrulating mouse embryo. These progenitor cells are localized to the posterior epiblast, primitive streak, and nascent mesoderm of mid-streak- (E7.0) to late-streak-stage (E7.5) embryos. Lineage tracing in vivo identified that putative mesendoderm progenitors contribute descendants to the definitive endoderm and the axial mesendoderm of E7.75 embryos and to the endoderm of the foregut and hindgut of the E8.5-8.75 embryos. Differentiation of mouse epiblast stem cells identified that the choice between endoderm and mesoderm cell fates depends on the timing of Mixl1 activation upon exit from pluripotency. The knowledge gained on the spatiotemporal distribution of mesendoderm progenitors and the molecular drivers underpinning the divergence of cell lineages in these progenitors enriches our mechanistic understanding of the allocation of the tissue progenitors to germ layer derivatives in early development.
Collapse
Affiliation(s)
- V Pragathi Masamsetti
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Nazmus Salehin
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Nicole Santucci
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Megan Weatherstone
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Riley McMahon
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lee L Marshall
- Bioinformatics Group, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Hilary Knowles
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Jane Sun
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Josh B Studdert
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Nader Aryamanesh
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Bioinformatics Group, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Ran Wang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Pengyi Yang
- Computational Systems Biology Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Pierre Osteil
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Dimova T, Alexandrova M, Vangelov I, You Y, Mor G. The modeling of human implantation and early placentation: achievements and perspectives. Hum Reprod Update 2025; 31:133-163. [PMID: 39673726 DOI: 10.1093/humupd/dmae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/29/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Successful implantation is a critical step for embryo survival. The major losses in natural and assisted human reproduction appeared to occur during the peri-implantation period. Because of ethical constraints, the fascinating maternal-fetal crosstalk during human implantation is difficult to study and thus, the possibility for clinical intervention is still limited. OBJECTIVE AND RATIONALE This review highlights some features of human implantation as a unique, ineffective and difficult-to-model process and summarizes the pros and cons of the most used in vivo, ex vivo and in vitro models. We point out the variety of cell line-derived models and how these data are corroborated by well-defined primary cells of the same nature. Important aspects related to the handling, standardization, validation, and modus operandi of the advanced 3D in vitro models are widely discussed. Special attention is paid to blastocyst-like models recapitulating the hybrid phenotype and HLA profile of extravillous trophoblasts, which are a unique yet poorly understood population with a major role in the successful implantation and immune mother-embryo recognition. Despite raising new ethical dilemmas, extended embryo cultures and synthetic embryo models are also in the scope of our review. SEARCH METHODS We searched the electronic database PubMed from inception until March 2024 by using a multi-stage search strategy of MeSH terms and keywords. In addition, we conducted a forward and backward reference search of authors mentioned in selected articles. OUTCOMES Primates and rodents are valuable in vivo models for human implantation research. However, the deep interstitial, glandular, and endovascular invasion accompanied by a range of human-specific factors responsible for the survival of the fetus determines the uniqueness of the human implantation and limits the cross-species extrapolation of the data. The ex vivo models are short-term cultures, not relevant to the period of implantation, and difficult to standardize. Moreover, the access to tissues from elective terminations of pregnancy raises ethical and legal concerns. Easy-to-culture cancer cell lines have many limitations such as being prone to spontaneous transformation and lacking decent tissue characteristics. The replacement of the original human explants, primary cells or cancer cell lines with cultures of immortalized cell lines with preserved stem cell characteristics appears to be superior for in vitro modeling of human implantation and early placentation. Remarkable advances in our understanding of the peri-implantation stages have also been made by advanced three dimensional (3D) models i.e. spheroids, organoids, and assembloids, as placental and endometrial surrogates. Much work remains to be done for the optimization and standardization of these integrated and complex models. The inclusion of immune components in these models would be an asset to delineate mechanisms of immune tolerance. Stem cell-based embryo-like models and surplus IVF embryos for research bring intriguing possibilities and are thought to be the trend for the next decade for in vitro modeling of human implantation and early embryogenesis. Along with this research, new ethical dilemmas such as the moral status of the human embryo and the potential exploitation of women consenting to donate their spare embryos have emerged. The careful appraisal and development of national legal and ethical frameworks are crucial for better regulation of studies using human embryos and embryoids to reach the potential benefits for human reproduction. WIDER IMPLICATIONS We believe that our data provide a systematization of the available information on the modeling of human implantation and early placentation and will facilitate further research in this field. A strict classification of the advanced 3D models with their pros, cons, applicability, and availability would help improve the research quality to provide reliable outputs.
Collapse
Affiliation(s)
- Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marina Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivaylo Vangelov
- Institute of Biology and Immunology of Reproduction "Acad. Kiril Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yuan You
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI, USA
| |
Collapse
|
9
|
Nehme E, Panda A, Migeotte I, Pasque V. Extra-embryonic mesoderm during development and in in vitro models. Development 2025; 152:DEV204624. [PMID: 40085077 DOI: 10.1242/dev.204624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 03/16/2025]
Abstract
Extra-embryonic tissues provide protection and nutrition in vertebrates, as well as a connection to the maternal tissues in mammals. The extra-embryonic mesoderm is an essential and understudied germ layer present in amniotes. It is involved in hematopoiesis, as well as in the formation of extra-embryonic structures such as the amnion, umbilical cord and placenta. The origin and specification of extra-embryonic mesoderm are not entirely conserved across species, and the molecular mechanisms governing its formation and function are not fully understood. This Review begins with an overview of the embryonic origin and function of extra-embryonic mesoderm in vertebrates from in vivo studies. We then compare in vitro models that generate extra-embryonic mesoderm-like cells. Finally, we discuss how insights from studying both embryos and in vitro systems can aid in designing even more advanced stem cell-based embryo models.
Collapse
Affiliation(s)
- Eliana Nehme
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Amitesh Panda
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Isabelle Migeotte
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Wan J, Xu Y, Qi T, Xue X, Li Y, Huang M, Guo Y, Guo Q, Lu Y, Huang Y. AG73-GelMA/AlgMA hydrogels provide a stable microenvironment for the generation of pancreatic progenitor organoids. J Nanobiotechnology 2025; 23:149. [PMID: 40016740 PMCID: PMC11866579 DOI: 10.1186/s12951-025-03266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Patient specific induced pluripotent stem cells (iPSCs) derived β cells represent an effective means for disease modeling and autologous diabetes cell replacement therapy. In this study, an AG73-5%gelatin methacryloyl (GelMA) /2% alginate methacrylate (AlgMA) hydrogel was employed to generate pancreatic progenitor (PP) organoids and improve stem cell-derived β (SC-β) cell differentiation protocol. The laminin-derived homolog AG73, which mimics certain cell‒matrix interactions, facilitates AKT signaling pathway activation to promote PDX1+/NKX6.1+ PP organoid formation and effectively modulates subsequent epithelial-mesenchymal transition (EMT) in the endocrine lineage. The 5%GelMA/2%AlgMA hydrogel mimics the physiological stiffness of the pancreas, providing the optimal mechanical stress and spatial structure for PP organoid differentiation. The Syndecan-4 (SDC4)-ITGAV complex plays a pivotal role in the early stages of pancreatic development by facilitating the formation of SOX9+/PDX1+ bipotent PPs. Our findings demonstrate that AG73-GelMA/AlgMA hydrogel-derived SC-β cells exhibit enhanced insulin secretion and accelerated hyperglycemia reversal in vivo. This study presents a cost-effective, stable, and efficient alternative for the comprehensive 3D culture of SC-β cells in vitro by mitigating the uncertainties associated with conventional culture methods.
Collapse
Affiliation(s)
- Jian Wan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yang Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Tianmu Qi
- Medical School of Nantong University, Nantong, China
| | - Xiaoxia Xue
- Department of Nephrology, Rugao Hospital of Traditional Chinese Medicine, Nantong, China
| | - Yuxi Li
- Medical School of Nantong University, Nantong, China
| | - Minjie Huang
- Medical School of Nantong University, Nantong, China
| | - Yuchen Guo
- Medical School of Nantong University, Nantong, China
| | - Qingsong Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co- Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
11
|
Cui L, Lin S, Yang X, Xie X, Wang X, He N, Yang J, Zhang X, Lu X, Yan X, Guo Y, Zhang B, Li R, Miao H, Ji M, Zhang R, Yu L, Xiao Z, Wei Y, Guo J. Spatial transcriptomic characterization of a Carnegie stage 7 human embryo. Nat Cell Biol 2025; 27:360-369. [PMID: 39794460 DOI: 10.1038/s41556-024-01597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Gastrulation marks a pivotal stage in mammalian embryonic development, establishing the three germ layers and body axis through lineage diversification and morphogenetic movements. However, studying human gastrulating embryos is challenging due to limited access to early tissues. Here we show the use of spatial transcriptomics to analyse a fully intact Carnegie stage 7 human embryo at single-cell resolution, along with immunofluorescence validations in a second embryo. Employing 82 serial cryosections and Stereo-seq technology, we reconstructed a three-dimensional model of the embryo. Our findings reveal early specification of distinct mesoderm subtypes and the presence of the anterior visceral endoderm. Notably, primordial germ cells were located in the connecting stalk, and haematopoietic stem cell-independent haematopoiesis was observed in the yolk sac. This study advances our understanding of human gastrulation and provides a valuable dataset for future research in early human development.
Collapse
Affiliation(s)
- Lina Cui
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Sirui Lin
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaolong Yang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinwei Xie
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyu Yang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xin Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaojian Lu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaodi Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yifei Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bailing Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ran Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hefan Miao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mei Ji
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runzhao Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Leqian Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Zhenyu Xiao
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Yulei Wei
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China.
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| | - Jingtao Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Zhao C, Plaza Reyes A, Schell JP, Weltner J, Ortega NM, Zheng Y, Björklund ÅK, Baqué-Vidal L, Sokka J, Trokovic R, Cox B, Rossant J, Fu J, Petropoulos S, Lanner F. A comprehensive human embryo reference tool using single-cell RNA-sequencing data. Nat Methods 2025; 22:193-206. [PMID: 39543283 PMCID: PMC11725501 DOI: 10.1038/s41592-024-02493-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024]
Abstract
Stem cell-based embryo models offer unprecedented experimental tools for studying early human development. The usefulness of embryo models hinges on their molecular, cellular and structural fidelities to their in vivo counterparts. To authenticate human embryo models, single-cell RNA sequencing has been utilized for unbiased transcriptional profiling. However, an organized and integrated human single-cell RNA-sequencing dataset, serving as a universal reference for benchmarking human embryo models, remains unavailable. Here we developed such a reference through the integration of six published human datasets covering development from the zygote to the gastrula. Lineage annotations are contrasted and validated with available human and nonhuman primate datasets. Using stabilized Uniform Manifold Approximation and Projection, we constructed an early embryogenesis prediction tool, where query datasets can be projected on the reference and annotated with predicted cell identities. Using this reference tool, we examined published human embryo models, highlighting the risk of misannotation when relevant references are not utilized for benchmarking and authentication.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Alvaro Plaza Reyes
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Department of Integrative Pathophysiology and Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - John Paul Schell
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Jere Weltner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Nicolás M Ortega
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA
| | - Åsa K Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Laura Baqué-Vidal
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Joonas Sokka
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Ras Trokovic
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Brian Cox
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montreal, Quebec, Canada.
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Ming Wai Lau Center for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Robles-Garcia M, Thimonier C, Angoura K, Ozga E, MacPherson H, Blin G. In vitro modelling of anterior primitive streak patterning with human pluripotent stem cells identifies the path to notochord progenitors. Development 2024; 151:dev202983. [PMID: 39611739 DOI: 10.1242/dev.202983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Notochord progenitors (NotoPs) represent a scarce yet crucial embryonic cell population, playing important roles in embryo patterning and eventually giving rise to the cells that form and maintain intervertebral discs. The mechanisms regulating NotoPs emergence are unclear. This knowledge gap persists due to the inherent complexity of cell fate patterning during gastrulation, particularly within the anterior primitive streak (APS), where NotoPs first arise alongside neuro-mesoderm and endoderm. To gain insights into this process, we use micropatterning together with FGF and the WNT pathway activator CHIR9901 to guide the development of human embryonic stem cells into reproducible patterns of APS cell fates. We show that CHIR9901 dosage dictates the downstream dynamics of endogenous TGFβ signalling, which in turn controls cell fate decisions. While sustained NODAL signalling defines endoderm and NODAL inhibition is imperative for neuro-mesoderm emergence, timely inhibition of NODAL signalling with spatial confinement potentiates WNT activity and enables us to generate NotoPs efficiently. Our work elucidates the signalling regimes underpinning NotoP emergence and provides insights into the regulatory mechanisms controlling the balance of APS cell fates during gastrulation.
Collapse
Affiliation(s)
- Miguel Robles-Garcia
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Chloë Thimonier
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Konstantina Angoura
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Ewa Ozga
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Heather MacPherson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| |
Collapse
|
14
|
Firsanov D, Zacher M, Tian X, Sformo TL, Zhao Y, Tombline G, Lu JY, Zheng Z, Perelli L, Gurreri E, Zhang L, Guo J, Korotkov A, Volobaev V, Biashad SA, Zhang Z, Heid J, Maslov A, Sun S, Wu Z, Gigas J, Hillpot E, Martinez J, Lee M, Williams A, Gilman A, Hamilton N, Haseljic E, Patel A, Straight M, Miller N, Ablaeva J, Tam LM, Couderc C, Hoopman M, Moritz R, Fujii S, Hayman DJ, Liu H, Cai Y, Leung AKL, Simons MJP, Zhang Z, Nelson CB, Abegglen LM, Schiffman JD, Gladyshev VN, Modesti M, Genovese G, Vijg J, Seluanov A, Gorbunova V. DNA repair and anti-cancer mechanisms in the long-lived bowhead whale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.07.539748. [PMID: 39574710 PMCID: PMC11580846 DOI: 10.1101/2023.05.07.539748] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
At over 200 years, the maximum lifespan of the bowhead whale exceeds that of all other mammals. The bowhead is also the second-largest animal on Earth, reaching over 80,000 kg1. Despite its very large number of cells and long lifespan, the bowhead is not highly cancer-prone, an incongruity termed Peto's Paradox2. This phenomenon has been explained by the evolution of additional tumor suppressor genes in other larger animals, supported by research on elephants demonstrating expansion of the p53 gene3-5. Here we show that bowhead whale fibroblasts undergo oncogenic transformation after disruption of fewer tumor suppressors than required for human fibroblasts. However, analysis of DNA repair revealed that bowhead cells repair double strand breaks (DSBs) and mismatches with uniquely high efficiency and accuracy compared to other mammals. The protein CIRBP, implicated in protection from genotoxic stress, was present in very high abundance in the bowhead whale relative to other mammals. We show that CIRBP and its downstream protein RPA2, also present at high levels in bowhead cells, increase the efficiency and fidelity of DNA repair in human cells. These results indicate that rather than possessing additional tumor suppressor genes as barriers to oncogenesis, the bowhead whale relies on more accurate and efficient DNA repair to preserve genome integrity. This strategy which does not eliminate damaged cells but repairs them may be critical for the long and cancer-free lifespan of the bowhead whale.
Collapse
Affiliation(s)
- Denis Firsanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Max Zacher
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Xiao Tian
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Todd L. Sformo
- Department of Wildlife Management, North Slope Borough, Utqiaġvik (Barrow), AK 99723, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Greg Tombline
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - J. Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Luigi Perelli
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enrico Gurreri
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Guo
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Anatoly Korotkov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Johanna Heid
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alex Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zhuoer Wu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jonathan Gigas
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Eric Hillpot
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - John Martinez
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Minseon Lee
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Alyssa Williams
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Abbey Gilman
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Ena Haseljic
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Avnee Patel
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Maggie Straight
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Nalani Miller
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Lok Ming Tam
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Chloé Couderc
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Shingo Fujii
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | | | - Hongrui Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cross-Disciplinary Graduate Program in Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuxuan Cai
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - C. Bradley Nelson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Lisa M. Abegglen
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Joshua D. Schiffman
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
15
|
Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell 2024; 31:1398-1418. [PMID: 39366361 PMCID: PMC7617107 DOI: 10.1016/j.stem.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
The use of stem cells to model the early human embryo promises to transform our understanding of developmental biology and human reproduction. In this review, we present our current knowledge of the first 2 weeks of human embryo development. We first focus on the distinct cell lineages of the embryo and the derivation of stem cell lines. We then discuss the intercellular crosstalk that guides early embryo development and how this crosstalk is recapitulated in vitro to generate stem cell-based embryo models. We highlight advances in this fast-developing field, discuss current limitations, and provide a vision for the future.
Collapse
Affiliation(s)
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Leuven Stem Cell Institute & Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium.
| |
Collapse
|
16
|
Siriwardena D, Munger C, Penfold C, Kohler TN, Weberling A, Linneberg-Agerholm M, Slatery E, Ellermann AL, Bergmann S, Clark SJ, Rawlings TM, Brickman JM, Reik W, Brosens JJ, Zernicka-Goetz M, Sasaki E, Behr R, Hollfelder F, Boroviak TE. Marmoset and human trophoblast stem cells differ in signaling requirements and recapitulate divergent modes of trophoblast invasion. Cell Stem Cell 2024; 31:1427-1446.e8. [PMID: 39321797 PMCID: PMC7616712 DOI: 10.1016/j.stem.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Early human trophoblast development has remained elusive due to the inaccessibility of the early conceptus. Non-human primate models recapitulate many features of human development and allow access to early postimplantation stages. Here, we tracked the pre- to postimplantation transition of the trophoblast lineage in superficially implanting marmoset embryos in vivo. We differentiated marmoset naive pluripotent stem cells into trophoblast stem cells (TSCs), which exhibited trophoblast-specific transcriptome, methylome, differentiation potential, and long-term self-renewal. Notably, human TSC culture conditions failed to support marmoset TSC derivation, instead inducing an extraembryonic mesoderm-like fate in marmoset cells. We show that combined MEK, TGF-β/NODAL, and histone deacetylase inhibition stabilizes a periimplantation trophoblast-like identity in marmoset TSCs. By contrast, these conditions differentiated human TSCs toward extravillous trophoblasts. Our work presents a paradigm to harness the evolutionary divergence in implantation strategies to elucidate human trophoblast development and invasion.
Collapse
Affiliation(s)
- Dylan Siriwardena
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Clara Munger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Erin Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Stephen J Clark
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Altos Labs Cambridge Institute, Cambridge, UK; Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Thomas M Rawlings
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (renew), University of Copenhagen, Copenhagen, Denmark
| | - Wolf Reik
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Altos Labs Cambridge Institute, Cambridge, UK; Epigenetics Programme, Babraham Institute, Cambridge, UK; Wellcome Trust Sanger Institute, Cambridge, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Rüdiger Behr
- German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany
| | | | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Chen S, Hayoun-Neeman D, Nagar M, Pinyan S, Hadad L, Yaacobov L, Alon L, Shachar LE, Swissa T, Kryukov O, Gershoni-Yahalom O, Rosental B, Cohen S, Lichtenstein RG. Terminal α1,2-fucosylation of glycosphingolipids by FUT1 is a key regulator in early cell-fate decisions. EMBO Rep 2024; 25:4433-4464. [PMID: 39256596 PMCID: PMC11467398 DOI: 10.1038/s44319-024-00243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
The embryonic cell surface is rich in glycosphingolipids (GSLs), which change during differentiation. The reasons for GSL subgroup variation during early embryogenesis remain elusive. By combining genomic approaches, flow cytometry, confocal imaging, and transcriptomic data analysis, we discovered that α1,2-fucosylated GSLs control the differentiation of human pluripotent cells (hPCs) into germ layer tissues. Overexpression of α1,2-fucosylated GSLs disrupts hPC differentiation into mesodermal lineage and reduces differentiation into cardiomyocytes. Conversely, reducing α1,2-fucosylated groups promotes hPC differentiation and mesoderm commitment in response to external signals. We find that bone morphogenetic protein 4 (BMP4), a mesodermal gene inducer, suppresses α1,2-fucosylated GSL expression. Overexpression of α1,2-fucosylated GSLs impairs SMAD activation despite BMP4 presence, suggesting α-fucosyl end groups as BMP pathway regulators. Additionally, the absence of α1,2-fucosylated GSLs in early/late mesoderm and primitive streak stages in mouse embryos aligns with the hPC results. Thus, α1,2-fucosylated GSLs may regulate early cell-fate decisions and embryo development by modulating cell signaling.
Collapse
Affiliation(s)
- Saray Chen
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Dana Hayoun-Neeman
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Michal Nagar
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Sapir Pinyan
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Limor Hadad
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liat Yaacobov
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Lilach Alon
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liraz Efrat Shachar
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Tair Swissa
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Olga Kryukov
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Orly Gershoni-Yahalom
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Benyamin Rosental
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Smadar Cohen
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rachel G Lichtenstein
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
18
|
Sekulovski N, Carleton AE, Rengarajan AA, Lin CW, Juga LN, Whorton AE, Schmidt JK, Golos TG, Taniguchi K. Temporally resolved single cell transcriptomics in a human model of amniogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556553. [PMID: 39026707 PMCID: PMC11257495 DOI: 10.1101/2023.09.07.556553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Amniogenesis is triggered in a collection of pluripotent epiblast cells as the human embryo implants. To gain insights into the critical but poorly understood transcriptional machinery governing amnion fate determination, we examined the evolving transcriptome of a developing human pluripotent stem cell-derived amnion model at the single cell level. This analysis revealed several continuous amniotic fate progressing states with state-specific markers, which include a previously unrecognized CLDN10+ amnion progenitor state. Strikingly, we found that expression of CLDN10 is restricted to the amnion-epiblast boundary region in the human post-implantation amniotic sac model as well as in a peri-gastrula cynomolgus macaque embryo, bolstering the growing notion that, at this stage, the amnion-epiblast boundary is a site of active amniogenesis. Bioinformatic analysis of published primate peri-gastrula single cell sequencing data further confirmed that CLDN10 is expressed in cells progressing to amnion. Additionally, our loss of function analysis shows that CLDN10 promotes amniotic but suppresses primordial germ cell-like fate. Overall, this study presents a comprehensive amniogenic single cell transcriptomic resource and identifies a previously unrecognized CLDN10+ amnion progenitor population at the amnion-epiblast boundary of the primate peri-gastrula.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E. Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anusha A. Rengarajan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lauren N. Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison E. Whorton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine, Madison, WI USA
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
19
|
Yu J, Yan Y, Li S, Xu Y, Parolia A, Rizvi S, Wang W, Zhai Y, Xiao R, Li X, Liao P, Zhou J, Okla K, Lin H, Lin X, Grove S, Wei S, Vatan L, Hu J, Szumilo J, Kotarski J, Freeman ZT, Skala S, Wicha M, Cho KR, Chinnaiyan AM, Schon S, Wen F, Kryczek I, Wang S, Chen L, Zou W. Progestogen-driven B7-H4 contributes to onco-fetal immune tolerance. Cell 2024; 187:4713-4732.e19. [PMID: 38968937 PMCID: PMC11344674 DOI: 10.1016/j.cell.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/09/2024] [Accepted: 06/09/2024] [Indexed: 07/07/2024]
Abstract
Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.
Collapse
Affiliation(s)
- Jiali Yu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Yijian Yan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shasha Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ying Xu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Syed Rizvi
- Department of Chemical Engineering, University of Michigan School of Engineering, Ann Arbor, MI, USA
| | - Weichao Wang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Yiwen Zhai
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rongxin Xiao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Xiong Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Peng Liao
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiajia Zhou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Karolina Okla
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Heng Lin
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Xun Lin
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiantao Hu
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Justyna Szumilo
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Zachary T Freeman
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Skala
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Max Wicha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathleen R Cho
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samantha Schon
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan School of Engineering, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Dittrich M, Bernhardt L, Penfold CA, Boroviak TE, Drummer C, Behr R, Müller T, Haaf T. Age-related and species-specific methylation changes in the protein-coding marmoset sperm epigenome. Aging Cell 2024; 23:e14200. [PMID: 38757354 PMCID: PMC11320356 DOI: 10.1111/acel.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
The sperm epigenome is thought to affect the developmental programming of the resulting embryo, influencing health and disease in later life. Age-related methylation changes in the sperm of old fathers may mediate the increased risks for reproductive and offspring medical problems. The impact of paternal age on sperm methylation has been extensively studied in humans and, to a lesser extent, in rodents and cattle. Here, we performed a comparative analysis of paternal age effects on protein-coding genes in the human and marmoset sperm methylomes. The marmoset has gained growing importance as a non-human primate model of aging and age-related diseases. Using reduced representation bisulfite sequencing, we identified age-related differentially methylated transcription start site (ageTSS) regions in 204 marmoset and 27 human genes. The direction of methylation changes was the opposite, increasing with age in marmosets and decreasing in humans. None of the identified ageTSS was differentially methylated in both species. Although the average methylation levels of all TSS regions were highly correlated between marmosets and humans, with the majority of TSS being hypomethylated in sperm, more than 300 protein-coding genes were endowed with species-specifically (hypo)methylated TSS. Several genes of the glycosphingolipid (GSL) biosynthesis pathway, which plays a role in embryonic stem cell differentiation and regulation of development, were hypomethylated (<5%) in human and fully methylated (>95%) in marmoset sperm. The expression levels and patterns of defined sets of GSL genes differed considerably between human and marmoset pre-implantation embryo stages and blastocyst tissues, respectively.
Collapse
Affiliation(s)
- Marcus Dittrich
- Institute of Human GeneticsJulius Maximilians UniversityWürzburgGermany
- Department of BioinformaticsJulius Maximilians UniversityWürzburgGermany
| | - Laura Bernhardt
- Institute of Human GeneticsJulius Maximilians UniversityWürzburgGermany
| | - Christopher A. Penfold
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Thorsten E. Boroviak
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
- Wellcome Trust – Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Charis Drummer
- Platform Degenerative DiseasesGerman Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany
- DZHK (German Centre for Cardiovascular Research)GöttingenGermany
| | - Rüdiger Behr
- Platform Degenerative DiseasesGerman Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany
- DZHK (German Centre for Cardiovascular Research)GöttingenGermany
| | - Tobias Müller
- Department of BioinformaticsJulius Maximilians UniversityWürzburgGermany
| | - Thomas Haaf
- Institute of Human GeneticsJulius Maximilians UniversityWürzburgGermany
| |
Collapse
|
21
|
Ming J, Lin L, Li J, Wu L, Fang S, Huang T, Fu Y, Liu D, Zhang W, Li C, Yang Y, Huang Y, Qin Y, Kuang J, Huang X, Guo L, Zhang X, Liu J, Chen J, Zhao C, Wang B, Pei D. Cell fate decision by a morphogen-transcription factor-chromatin modifier axis. Nat Commun 2024; 15:6365. [PMID: 39075094 PMCID: PMC11286941 DOI: 10.1038/s41467-024-50144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Cell fate decisions remain poorly understood at the molecular level. Embryogenesis provides a unique opportunity to analyze molecular details associated with cell fate decisions. Works based on model organisms have provided a conceptual framework of genes that specify cell fate control, for example, transcription factors (TFs) controlling processes from pluripotency to immunity1. How TFs specify cell fate remains poorly understood. Here we report that SALL4 relies on NuRD (nucleosome-remodeling and deacetylase complex) to interpret BMP4 signal and decide cell fate in a well-controlled in vitro system. While NuRD complex cooperates with SALL4 to convert mouse embryonic fibroblasts or MEFs to pluripotency, BMP4 diverts the same process to an alternative fate, PrE (primitive endoderm). Mechanistically, BMP4 signals the dissociation of SALL4 from NuRD physically to establish a gene regulatory network for PrE. Our results provide a conceptual framework to explore the rich landscapes of cell fate choices intrinsic to development in higher organisms involving morphogen-TF-chromatin modifier pathways.
Collapse
Affiliation(s)
- Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lihui Lin
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiajun Li
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Linlin Wu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Shicai Fang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tao Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yu Fu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dong Liu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wenhui Zhang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chen Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongzheng Yang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Huang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Liman Guo
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Zhejiang University of Science and Technology, School of Information and Electronic Engineering, Hangzhou, Zhejiang, China.
- Key Laboratory of Biomedical Intelligent Computing Technology of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
22
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early bone morphogenetic protein-driven transcriptional cascade during human amnion specification. eLife 2024; 12:RP89367. [PMID: 39051990 PMCID: PMC11272160 DOI: 10.7554/elife.89367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Jenna C Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Amber E Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Lauren N Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Linnea E Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
- Versiti Blood Research InstituteMilwaukeeUnited States
| | - Jenna K Schmidt
- Wisconsin National Primate Research CenterMilwaukeeUnited States
| | - Thaddeus G Golos
- Wisconsin National Primate Research CenterMilwaukeeUnited States
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public HealthMadisonUnited States
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary MedicineMadisonUnited States
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
23
|
Qiu L, Liu Z, Chen S, Wu Y, Yan J. LIM homeobox 1 (LHX1) induces endoplasmic reticulum stress and promotes preterm birth. Heliyon 2024; 10:e32457. [PMID: 39027525 PMCID: PMC467042 DOI: 10.1016/j.heliyon.2024.e32457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Background Premature birth (PTB) is a major cause of neonatal mortality and has enduring consequences. LIM Homeobox 1 (LHX1) is vital in embryonic organogenesis, while Inositol-Requiring Enzyme 1 (IRE-1) regulates endoplasmic reticulum stress (ERS). This study explores whether IRE-1 impacts PTB via LHX1 modulation. Methods We analyzed LHX1 expression in placental samples from PTB patients and examined its impact on the viability, migration, invasion, and apoptosis of the human placental trophoblast cell line HTR8/Svneo, particularly when treated with the ERS inducer tunicamycin (TM). We also assessed the levels of ERS-related genes and autophagy activation in response to LHX1 deficiency. To gain mechanistic insights, we evaluated the ERS-mediated activation of the IRE-1/XBP1/CHOP signaling pathway in LHX1-silenced HTR8/Svneo cells. Additionally, we examined the transcriptional activation of IRE-1 and the binding of LHX1 to the IRE-1 promoter in HTR8/Svneo cells. We overexpressed IRE-1 in LHX1-silenced HTR8/Svneo cells to assess its effects on cell viability, migration, invasion, apoptosis, and autophagy. Finally, we induced LHX1 knockdown in mice through intraperitoneal injections of tunicamycin (TM) and Sh-LHX1 over a 24-h period to evaluate PTB symptoms. Results We observed LHX1 overexpression in placental tissue from PTB cases and TM-induced HTR8/Svneo cells. LHX1 depletion enhanced cell viability, migration, and invasion while reducing autophagy and apoptosis. This reduction in LHX1 led to decreased levels of IRE-1, XBP1, CHOP, and other ERS-related genes, indicating LHX1's role in ERS induction and the activation of the IRE-1/XBP1/CHOP pathway. Mechanistically, LHX1 was found to bind to the IRE-1 promoter, inducing its transcriptional activation. Notably, overexpressing IRE-1 counteracted the impact of LHX1 depletion on trophoblast cell behavior, suggesting that LHX1 modulates IRE-1. In line with our in vitro studies, LHX1 knockdown ameliorated PTB symptoms in TM-treated mice. Conclusion LHX1 contributes to the progression of PTB by regulating the IRE-1-XBP1-CHOP pathway.
Collapse
Affiliation(s)
- Liyin Qiu
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Zhaozhen Liu
- Department of Histology and Embryology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Shouzhen Chen
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yiting Wu
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Jianying Yan
- Department of Obstetrics, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, China
| |
Collapse
|
24
|
Dattani A, Corujo-Simon E, Radley A, Heydari T, Taheriabkenar Y, Carlisle F, Lin S, Liddle C, Mill J, Zandstra PW, Nichols J, Guo G. Naive pluripotent stem cell-based models capture FGF-dependent human hypoblast lineage specification. Cell Stem Cell 2024; 31:1058-1071.e5. [PMID: 38823388 DOI: 10.1016/j.stem.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The hypoblast is an essential extraembryonic tissue set aside within the inner cell mass in the blastocyst. Research with human embryos is challenging. Thus, stem cell models that reproduce hypoblast differentiation provide valuable alternatives. We show here that human naive pluripotent stem cell (PSC) to hypoblast differentiation proceeds via reversion to a transitional ICM-like state from which the hypoblast emerges in concordance with the trajectory in human blastocysts. We identified a window when fibroblast growth factor (FGF) signaling is critical for hypoblast specification. Revisiting FGF signaling in human embryos revealed that inhibition in the early blastocyst suppresses hypoblast formation. In vitro, the induction of hypoblast is synergistically enhanced by limiting trophectoderm and epiblast fates. This finding revises previous reports and establishes a conservation in lineage specification between mice and humans. Overall, this study demonstrates the utility of human naive PSC-based models in elucidating the mechanistic features of early human embryogenesis.
Collapse
Affiliation(s)
- Anish Dattani
- Living Systems Institute, University of Exeter, Exeter, UK; Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Elena Corujo-Simon
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Arthur Radley
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Tiam Heydari
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Simeng Lin
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Corin Liddle
- Bioimaging Centre, University of Exeter, Exeter, UK
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Peter W Zandstra
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Ge Guo
- Living Systems Institute, University of Exeter, Exeter, UK; Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
25
|
Ikeda H, Miyao S, Yamada N, Sugimoto S, Kimura F, Kurimoto K. Protocol for high-quality single-cell RNA-seq from tissue sections with DRaqL. STAR Protoc 2024; 5:103050. [PMID: 38703368 PMCID: PMC11088347 DOI: 10.1016/j.xpro.2024.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) combined with laser capture microdissection (LCM) offers a versatile framework for comprehensive transcriptomics from tissue sections. Here, we present a detailed protocol for DRaqL (direct RNA recovery and quenching for LCM) in combination with Smart-seq2 (DRaqL-Smart-seq2), which enables high-quality RNA sequencing for single cells obtained from alcohol-fixed murine ovarian sections. Additionally, we provide an optional procedure for scRNA-seq from formalin-fixed sections (DRaqL-Protease-Smart-seq2). We outline key steps for cell lysis, cDNA amplification, and sequencing library preparation. For complete details on the use and execution of this protocol, please refer to Ikeda et al.1.
Collapse
Affiliation(s)
- Hiroki Ikeda
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shintaro Miyao
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Nanami Yamada
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Sumire Sugimoto
- Department of Obstetrics and Gynecology, School of Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Fuminori Kimura
- Department of Obstetrics and Gynecology, School of Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kazuki Kurimoto
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
26
|
Simpson L, Strange A, Klisch D, Kraunsoe S, Azami T, Goszczynski D, Le Minh T, Planells B, Holmes N, Sang F, Henson S, Loose M, Nichols J, Alberio R. A single-cell atlas of pig gastrulation as a resource for comparative embryology. Nat Commun 2024; 15:5210. [PMID: 38890321 PMCID: PMC11189408 DOI: 10.1038/s41467-024-49407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Cell-fate decisions during mammalian gastrulation are poorly understood outside of rodent embryos. The embryonic disc of pig embryos mirrors humans, making them a useful proxy for studying gastrulation. Here we present a single-cell transcriptomic atlas of pig gastrulation, revealing cell-fate emergence dynamics, as well as conserved and divergent gene programs governing early porcine, primate, and murine development. We highlight heterochronicity in extraembryonic cell-types, despite the broad conservation of cell-type-specific transcriptional programs. We apply these findings in combination with functional investigations, to outline conserved spatial, molecular, and temporal events during definitive endoderm specification. We find early FOXA2 + /TBXT- embryonic disc cells directly form definitive endoderm, contrasting later-emerging FOXA2/TBXT+ node/notochord progenitors. Unlike mesoderm, none of these progenitors undergo epithelial-to-mesenchymal transition. Endoderm/Node fate hinges on balanced WNT and hypoblast-derived NODAL, which is extinguished upon endodermal differentiation. These findings emphasise the interplay between temporal and topological signalling in fate determination during gastrulation.
Collapse
Affiliation(s)
- Luke Simpson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Andrew Strange
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Sophie Kraunsoe
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Takuya Azami
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Daniel Goszczynski
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Triet Le Minh
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Benjamin Planells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Nadine Holmes
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Sonal Henson
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.
| |
Collapse
|
27
|
Kurlovich J, Rodriguez Polo I, Dovgusha O, Tereshchenko Y, Cruz CRV, Behr R, Günesdogan U. Generation of marmoset primordial germ cell-like cells under chemically defined conditions. Life Sci Alliance 2024; 7:e202302371. [PMID: 38499329 PMCID: PMC10948935 DOI: 10.26508/lsa.202302371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of sperm and oocytes, which transmit genetic/epigenetic information across generations. Mouse PGC and subsequent gamete development can be fully reconstituted in vitro, opening up new avenues for germ cell studies in biomedical research. However, PGCs show molecular differences between rodents and humans. Therefore, to establish an in vitro system that is closely related to humans, we studied PGC development in vivo and in vitro in the common marmoset monkey Callithrix jacchus (cj). Gonadal cjPGCs at embryonic day 74 express SOX17, AP2Ɣ, BLIMP1, NANOG, and OCT4A, which is reminiscent of human PGCs. We established transgene-free induced pluripotent stem cell (cjiPSC) lines from foetal and postnatal fibroblasts. These cjiPSCs, cultured in defined and feeder-free conditions, can be differentiated into precursors of mesendoderm and subsequently into cjPGC-like cells (cjPGCLCs) with a transcriptome similar to human PGCs/PGCLCs. Our results not only pave the way for studying PGC development in a non-human primate in vitro under experimentally controlled conditions, but also provide the opportunity to derive functional marmoset gametes in future studies.
Collapse
Affiliation(s)
- Julia Kurlovich
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Ignacio Rodriguez Polo
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- German Primate Center-Leibniz Institute for Primate Research, Research Platform Degenerative Diseases, Göttingen, Germany
- Stem Cell and Human Development Laboratory, The Francis Crick Institute, London, UK
| | - Oleksandr Dovgusha
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Yuliia Tereshchenko
- German Primate Center-Leibniz Institute for Primate Research, Research Platform Degenerative Diseases, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Carmela Rieline V Cruz
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Research Platform Degenerative Diseases, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ufuk Günesdogan
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Department for Molecular Developmental Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
28
|
Dai L, Ye Y, Mugaany J, Hu Z, Huang J, Lu C. Leveraging pQTL-based Mendelian randomization to identify new treatment prospects for primary biliary cholangitis and primary sclerosing cholangitis. Aging (Albany NY) 2024; 16:9228-9250. [PMID: 38809509 PMCID: PMC11164478 DOI: 10.18632/aging.205867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/15/2024] [Indexed: 05/30/2024]
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are autoimmune disorders characterized by progressive and chronic damage to the bile ducts, presenting clinicians with significant challenges. The objective of this study is to identify potential druggable targets to offer new avenues for treatment. A Mendelian randomization analysis was performed to identify druggable targets for PBC and PSC. This involved obtaining Cis-protein quantitative trait loci (Cis-pQTL) data from the deCODE database to serve as exposure. Outcome data for PBC (557 cases and 281,127 controls) and PSC (1,715 cases and 330,903 controls) were obtained from the FINNGEN database. Colocalization analysis was conducted to determine whether these features share the same associated SNPs. Validation of the expression level of druggable targets was done using the GSE119600 dataset and immunohistochemistry for clinical samples. Lastly, the DRUGBANK database was used to predict potential drugs. The MR analysis identified eight druggable targets each for PBC and PSC. Subsequent summary-data-based MR and colocalization analyses showed that LEFTY2 had strong evidence as a therapeutic candidate for PBC, while HSPB1 had moderate evidence. For PSC, only FCGR3B showed strong evidence as a therapeutic candidate. Additionally, upregulated expression of these genes was validated in PBC and PSC groups by GEO dataset and clinical samples. This study identifies two novel druggable targets with strong evidence for therapeutic candidates for PBC (LEFTY2 and HSPB1) and one for PSC (FCGR3B). These targets offer new therapeutic opportunities to address the challenging nature of PBC and PSC treatment.
Collapse
Affiliation(s)
- Lei Dai
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yunyan Ye
- Department of Ophthalmology, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Joseph Mugaany
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zetong Hu
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jing Huang
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Changjiang Lu
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| |
Collapse
|
29
|
Xiao Z, Cui L, Yuan Y, He N, Xie X, Lin S, Yang X, Zhang X, Shi P, Wei Z, Li Y, Wang H, Wang X, Wei Y, Guo J, Yu L. 3D reconstruction of a gastrulating human embryo. Cell 2024; 187:2855-2874.e19. [PMID: 38657603 DOI: 10.1016/j.cell.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Progress in understanding early human development has been impeded by the scarcity of reference datasets from natural embryos, particularly those with spatial information during crucial stages like gastrulation. We conducted high-resolution spatial transcriptomics profiling on 38,562 spots from 62 transverse sections of an intact Carnegie stage (CS) 8 human embryo. From this spatial transcriptomic dataset, we constructed a 3D model of the CS8 embryo, in which a range of cell subtypes are identified, based on gene expression patterns and positional register, along the anterior-posterior, medial-lateral, and dorsal-ventral axis in the embryo. We further characterized the lineage trajectories of embryonic and extra-embryonic tissues and associated regulons and the regionalization of signaling centers and signaling activities that underpin lineage progression and tissue patterning during gastrulation. Collectively, the findings of this study provide insights into gastrulation and post-gastrulation development of the human embryo.
Collapse
Affiliation(s)
- Zhenyu Xiao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lina Cui
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yang Yuan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Sirui Lin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolong Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peifu Shi
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhifeng Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoyan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Yulei Wei
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jingtao Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Leqian Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
30
|
Dupont C. A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models. Front Cell Dev Biol 2024; 12:1386739. [PMID: 38715920 PMCID: PMC11074781 DOI: 10.3389/fcell.2024.1386739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore in vivo. The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
31
|
Chen P, Long J, Hua T, Zheng Z, Xiao Y, Chen L, Yu K, Wu W, Zhang S. Transcriptome and open chromatin analysis reveals the process of myocardial cell development and key pathogenic target proteins in Long QT syndrome type 7. J Transl Med 2024; 22:307. [PMID: 38528561 PMCID: PMC10964537 DOI: 10.1186/s12967-024-05125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE Long QT syndrome type 7 (Andersen-Tawil syndrome, ATS), which is caused by KCNJ2 gene mutation, often leads to ventricular arrhythmia, periodic paralysis and skeletal malformations. The development, differentiation and electrophysiological maturation of cardiomyocytes (CMs) changes promote the pathophysiology of Long QT syndrome type 7(LQT7). We aimed to specifically reproduce the ATS disease phenotype and study the pathogenic mechanism. METHODS AND RESULTS We established a cardiac cell model derived from human induced pluripotent stem cells (hiPSCs) to the phenotypes and electrophysiological function, and the establishment of a human myocardial cell model that specifically reproduces the symptoms of ATS provides a reliable platform for exploring the mechanism of this disease or potential drugs. The spontaneous pulsation rate of myocardial cells in the mutation group was significantly lower than that in the repair CRISPR group, the action potential duration was prolonged, and the Kir2.1 current of the inward rectifier potassium ion channel was decreased, which is consistent with the clinical symptoms of ATS patients. Only ZNF528, a chromatin-accessible TF related to pathogenicity, was continuously regulated beginning from the cardiac mesodermal precursor cell stage (day 4), and continued to be expressed at low levels, which was identified by WGCNA method and verified with ATAC-seq data in the mutation group. Subsequently, it indicated that seven pathways were downregulated (all p < 0.05) by used single sample Gene Set Enrichment Analysis to evaluate the overall regulation of potassium-related pathways enriched in the transcriptome and proteome of late mature CMs. Among them, the three pathways (GO: 0008076, GO: 1990573 and GO: 0030007) containing the mutated gene KCNJ2 is involved that are related to the whole process by which a potassium ion enters the cell via the inward rectifier potassium channel to exert its effect were inhibited. The other four pathways are related to regulation of the potassium transmembrane pathway and sodium:potassium exchange ATPase (p < 0.05). ZNF528 small interfering (si)-RNA was applied to hiPSC-derived cardiomyocytes for CRISPR group to explore changes in potassium ion currents and growth and development related target protein levels that affect disease phenotype. Three consistently downregulated proteins (KCNJ2, CTTN and ATP1B1) associated with pathogenicity were verificated through correlation and intersection analysis. CONCLUSION This study uncovers TFs and target proteins related to electrophysiology and developmental pathogenicity in ATS myocardial cells, obtaining novel targets for potential therapeutic candidate development that does not rely on gene editing.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianrui Hua
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhifa Zheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Xiao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lianfeng Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Kang Yu
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
32
|
Rodriguez-Polo I, Moris N. Using Embryo Models to Understand the Development and Progression of Embryonic Lineages: A Focus on Primordial Germ Cell Development. Cells Tissues Organs 2024; 213:503-522. [PMID: 38479364 PMCID: PMC7616515 DOI: 10.1159/000538275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Recapitulating mammalian cell type differentiation in vitro promises to improve our understanding of how these processes happen in vivo, while bringing additional prospects for biomedical applications. The establishment of stem cell-derived embryo models and embryonic organoids, which have experienced explosive growth over the last few years, opens new avenues for research due to their scale, reproducibility, and accessibility. Embryo models mimic various developmental stages, exhibit different degrees of complexity, and can be established across species. Since embryo models exhibit multiple lineages organized spatially and temporally, they are likely to provide cellular niches that, to some degree, recapitulate the embryonic setting and enable "co-development" between cell types and neighbouring populations. One example where this is already apparent is in the case of primordial germ cell-like cells (PGCLCs). SUMMARY While directed differentiation protocols enable the efficient generation of high PGCLC numbers, embryo models provide an attractive alternative as they enable the study of interactions of PGCLCs with neighbouring cells, alongside the regulatory molecular and biophysical mechanisms of PGC competency. Additionally, some embryo models can recapitulate post-specification stages of PGC development (including migration or gametogenesis), mimicking the inductive signals pushing PGCLCs to mature and differentiate and enabling the study of PGCLC development across stages. Therefore, in vitro models may allow us to address questions of cell type differentiation, and PGC development specifically, that have hitherto been out of reach with existing systems. KEY MESSAGE This review evaluates the current advances in stem cell-based embryo models, with a focus on their potential to model cell type-specific differentiation in general and in particular to address open questions in PGC development and gametogenesis.
Collapse
Affiliation(s)
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| |
Collapse
|
33
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early BMP-driven transcriptional cascade during human amnion specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.19.545574. [PMID: 38496419 PMCID: PMC10942271 DOI: 10.1101/2023.06.19.545574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that BMP signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hours after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jenna C. Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E. Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lauren N. Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Linnea E. Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI 53226 USA
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI USA
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
34
|
Weatherbee BAT, Weberling A, Gantner CW, Iwamoto-Stohl LK, Barnikel Z, Barrie A, Campbell A, Cunningham P, Drezet C, Efstathiou P, Fishel S, Vindel SG, Lockwood M, Oakley R, Pretty C, Chowdhury N, Richardson L, Mania A, Weavers L, Christie L, Elder K, Snell P, Zernicka-Goetz M. Distinct pathways drive anterior hypoblast specification in the implanting human embryo. Nat Cell Biol 2024; 26:353-365. [PMID: 38443567 PMCID: PMC10940163 DOI: 10.1038/s41556-024-01367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- Center for Stem Cell and Organoid Medicine, Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Antonia Weberling
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- All Souls College, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Carlos W Gantner
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | - Lisa K Iwamoto-Stohl
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lucy Richardson
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, UK
| | | | | | | | - Kay Elder
- Bourn Hall Fertility Clinic, Bourn, UK
| | | | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
- Stem Cells Self-Organization Group, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
35
|
Hislop J, Song Q, Keshavarz F K, Alavi A, Schoenberger R, LeGraw R, Velazquez JJ, Mokhtari T, Taheri MN, Rytel M, Chuva de Sousa Lopes SM, Watkins S, Stolz D, Kiani S, Sozen B, Bar-Joseph Z, Ebrahimkhani MR. Modelling post-implantation human development to yolk sac blood emergence. Nature 2024; 626:367-376. [PMID: 38092041 PMCID: PMC10849971 DOI: 10.1038/s41586-023-06914-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3-5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6-16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling.
Collapse
Affiliation(s)
- Joshua Hislop
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qi Song
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kamyar Keshavarz F
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amir Alavi
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rayna Schoenberger
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy J Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tahere Mokhtari
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad Naser Taheri
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Rytel
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donna Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samira Kiani
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Denker HW. Embryoids, models, embryos? We need to take a new look at legal norms concerning the beginning of organismic development. Mol Hum Reprod 2023; 30:gaad047. [PMID: 38113415 DOI: 10.1093/molehr/gaad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Indexed: 12/21/2023] Open
|
37
|
Stringa B, Solnica-Krezel L. Signaling mechanisms that direct cell fate specification and morphogenesis in human embryonic stem cells-based models of human gastrulation. Emerg Top Life Sci 2023; 7:383-396. [PMID: 38087898 DOI: 10.1042/etls20230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
During mammalian gastrulation, a mass of pluripotent cells surrounded by extraembryonic tissues differentiates into germ layers, mesoderm, endoderm, and ectoderm. The three germ layers are then organized into a body plan with organ rudiments via morphogenetic gastrulation movements of emboly, epiboly, convergence, and extension. Emboly is the most conserved gastrulation movement, whereby mesodermal and endodermal progenitors undergo epithelial-to-mesenchymal transition (EMT) and move via a blastopore/primitive streak beneath the ectoderm. Decades of embryologic, genetic, and molecular studies in invertebrates and vertebrates, delineated a BMP > WNT > NODAL signaling cascade underlying mesoderm and endoderm specification. Advances have been made in the research animals in understanding the cellular and molecular mechanisms underlying gastrulation morphogenesis. In contrast, little is known about human gastrulation, which occurs in utero during the third week of gestation and its investigations face ethical and methodological limitations. This is changing with the unprecedented progress in modeling aspects of human development, using human pluripotent stem cells (hPSCs), including embryonic stem cells (hESC)-based embryo-like models (SCEMs). In one approach, hESCs of various pluripotency are aggregated to self-assemble into structures that resemble pre-implantation or post-implantation embryo-like structures that progress to early gastrulation, and some even reach segmentation and neurulation stages. Another approach entails coaxing hESCs with biochemical signals to generate germ layers and model aspects of gastrulation morphogenesis, such as EMT. Here, we review the recent advances in understanding signaling cascades that direct germ layers specification and the early stages of gastrulation morphogenesis in these models. We discuss outstanding questions, challenges, and opportunities for this promising area of developmental biology.
Collapse
Affiliation(s)
- Blerta Stringa
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, U.S.A
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, U.S.A
| |
Collapse
|
38
|
Teague S, Yao L, Heemskerk I. The many dimensions of germline competence. Curr Opin Cell Biol 2023; 85:102259. [PMID: 37852152 PMCID: PMC11123554 DOI: 10.1016/j.ceb.2023.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/20/2023]
Abstract
Primordial germ cell (PGC) specification is the first step in the development of the germline. Recent work has elucidated human-mouse differences in PGC differentiation and identified cell states with enhanced competency for PGC-like cell (PGCLC) differentiation in vitro in both species. However, it remains a subject of debate how different PGC competent states in vitro relate to each other, to embryonic development, and to the origin of PGCs in vivo. Here we review recent literature on human PGCLC differentiation in the context of mouse and non-human primate models. In contrast to what was previously thought, recent work suggests human pluripotent stem cells (hPSCs) are highly germline competent. We argue that paradoxical observations regarding the origin and signaling requirements of hPGCLCs may be due to local cell interactions. These confound assays of competence by generating endogenous signaling gradients and spatially modulating the ability to receive exogenous inductive signals. Furthermore, combinatorial signaling suggests that there is no unique germline competent state: rather than a one-dimensional spectrum of developmental progression, competence should be considered in a higher dimensional landscape of cell states.
Collapse
Affiliation(s)
- Seth Teague
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - LiAng Yao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Idse Heemskerk
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA; Center for Cell Plasticity and Organ Design, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Physics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Perera M, Brickman JM. In vitro models of human hypoblast and mouse primitive endoderm. Curr Opin Genet Dev 2023; 83:102115. [PMID: 37783145 DOI: 10.1016/j.gde.2023.102115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
The primitive endoderm (PrE, also named hypoblast), a predominantly extraembryonic epithelium that arises from the inner cell mass (ICM) of the mammalian pre-implantation blastocyst, plays a fundamental role in embryonic development, giving rise to the yolk sac, establishing the anterior-posterior axis and contributing to the gut. PrE is specified from the ICM at the same time as the epiblast (Epi) that will form the embryo proper. While in vitro cell lines resembling the pluripotent Epi have been derived from a variety of conditions, only one model system currently exists for the PrE, naïve extraembryonic endoderm (nEnd). As a result, considerably more is known about the gene regulatory networks and signalling requirements of pluripotent stem cells than nEnd. In this review, we describe the ontogeny and differentiation of the PrE or hypoblast in mouse and primate and then discuss in vitro cell culture models for different extraembryonic endodermal cell types.
Collapse
Affiliation(s)
- Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark. https://twitter.com/@MartaPrera
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
40
|
Xu H, Wang S, Fang M, Luo S, Chen C, Wan S, Wang R, Tang M, Xue T, Li B, Lin J, Qu K. SPACEL: deep learning-based characterization of spatial transcriptome architectures. Nat Commun 2023; 14:7603. [PMID: 37990022 PMCID: PMC10663563 DOI: 10.1038/s41467-023-43220-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
Spatial transcriptomics (ST) technologies detect mRNA expression in single cells/spots while preserving their two-dimensional (2D) spatial coordinates, allowing researchers to study the spatial distribution of the transcriptome in tissues; however, joint analysis of multiple ST slices and aligning them to construct a three-dimensional (3D) stack of the tissue still remain a challenge. Here, we introduce spatial architecture characterization by deep learning (SPACEL) for ST data analysis. SPACEL comprises three modules: Spoint embeds a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot in a single ST slice; Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify spatial domains that are transcriptomically and spatially coherent across multiple ST slices; and Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a 3D architecture of the tissue. Comparisons against 19 state-of-the-art methods using both simulated and real ST datasets from various tissues and ST technologies demonstrate that SPACEL outperforms the others for cell type deconvolution, for spatial domain identification, and for 3D alignment, thus showcasing SPACEL as a valuable integrated toolkit for ST data processing and analysis.
Collapse
Affiliation(s)
- Hao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shuyan Wang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
- School of Data Science, University of Science and Technology of China, Hefei, 230027, China
| | - Minghao Fang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
| | - Songwen Luo
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Chunpeng Chen
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Siyuan Wan
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China
- School of Data Science, University of Science and Technology of China, Hefei, 230027, China
| | - Rirui Wang
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Meifang Tang
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Tian Xue
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Bin Li
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Jun Lin
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- School of Data Science, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
41
|
Anwised P, Moorawong R, Samruan W, Somredngan S, Srisutush J, Laowtammathron C, Aksoy I, Parnpai R, Savatier P. An expedition in the jungle of pluripotent stem cells of non-human primates. Stem Cell Reports 2023; 18:2016-2037. [PMID: 37863046 PMCID: PMC10679654 DOI: 10.1016/j.stemcr.2023.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
For nearly three decades, more than 80 embryonic stem cell lines and more than 100 induced pluripotent stem cell lines have been derived from New World monkeys, Old World monkeys, and great apes. In this comprehensive review, we examine these cell lines originating from marmoset, cynomolgus macaque, rhesus macaque, pig-tailed macaque, Japanese macaque, African green monkey, baboon, chimpanzee, bonobo, gorilla, and orangutan. We outline the methodologies implemented for their establishment, the culture protocols for their long-term maintenance, and their basic molecular characterization. Further, we spotlight any cell lines that express fluorescent reporters. Additionally, we compare these cell lines with human pluripotent stem cell lines, and we discuss cell lines reprogrammed into a pluripotent naive state, detailing the processes used to attain this. Last, we present the findings from the application of these cell lines in two emerging fields: intra- and interspecies embryonic chimeras and blastoids.
Collapse
Affiliation(s)
- Preeyanan Anwised
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ratree Moorawong
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Worawalan Samruan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Somredngan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jittanun Srisutush
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Irene Aksoy
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Pierre Savatier
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
42
|
Ikeda H, Miyao S, Nagaoka S, Takashima T, Law SM, Yamamoto T, Kurimoto K. High-quality single-cell transcriptomics from ovarian histological sections during folliculogenesis. Life Sci Alliance 2023; 6:e202301929. [PMID: 37722727 PMCID: PMC10507249 DOI: 10.26508/lsa.202301929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
High-quality, straightforward single-cell RNA sequencing (RNA-seq) with spatial resolution remains challenging. Here, we developed DRaqL (direct RNA recovery and quenching for laser capture microdissection), an experimental approach for efficient cell lysis of tissue sections, directly applicable to cDNA amplification. Single-cell RNA-seq combined with DRaqL allowed transcriptomic profiling from alcohol-fixed sections with efficiency comparable with that of profiling from freshly dissociated cells, together with effective exon-exon junction profiling. The combination of DRaqL with protease treatment enabled robust and efficient single-cell transcriptome analysis from formalin-fixed tissue sections. Applying this method to mouse ovarian sections, we were able to predict the transcriptome of oocytes by their size and identified an anomaly in the size-transcriptome relationship relevant to growth retardation of oocytes, in addition to detecting oocyte-specific splice isoforms. Furthermore, we identified differentially expressed genes in granulosa cells in association with their proximity to the oocytes, suggesting distinct epigenetic regulations and cell-cycle activities governing the germ-soma relationship. Thus, DRaqL is a versatile, efficient approach for high-quality single-cell RNA-seq from tissue sections, thereby revealing histological heterogeneity in folliculogenic transcriptome.
Collapse
Affiliation(s)
- Hiroki Ikeda
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Shintaro Miyao
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - So Nagaoka
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Takashima
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Sze-Ming Law
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kazuki Kurimoto
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
- Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| |
Collapse
|
43
|
Kubiura-Ichimaru M, Penfold C, Kojima K, Dollet C, Yabukami H, Semi K, Takashima Y, Boroviak T, Kawaji H, Woltjen K, Minoda A, Sasaki E, Watanabe T. mRNA-based generation of marmoset PGCLCs capable of differentiation into gonocyte-like cells. Stem Cell Reports 2023; 18:1987-2002. [PMID: 37683645 PMCID: PMC10656353 DOI: 10.1016/j.stemcr.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
Primate germ cell development remains largely unexplored due to limitations in sample collection and the long duration of development. In mice, primordial germ cell-like cells (PGCLCs) derived from pluripotent stem cells (PSCs) can develop into functional gametes by in vitro culture or in vivo transplantation. Such PGCLC-mediated induction of mature gametes in primates is highly useful for understanding human germ cell development. Since marmosets generate functional sperm earlier than other species, recapitulating the whole male germ cell development process is technically more feasible. Here, we induced the differentiation of iPSCs into gonocyte-like cells via PGCLCs in marmosets. First, we developed an mRNA transfection-based method to efficiently generate PGCLCs. Subsequently, to promote PGCLC differentiation, xenoreconstituted testes (xrtestes) were generated in the mouse kidney capsule. PGCLCs show progressive DNA demethylation and stepwise expression of developmental marker genes. This study provides an efficient platform for the study of marmoset germ cell development.
Collapse
Affiliation(s)
- Musashi Kubiura-Ichimaru
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Division of Molecular Genetics & Epigenetics, Department of Biomolecular Science, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, UK; Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Kazuaki Kojima
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Constance Dollet
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Haruka Yabukami
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Katsunori Semi
- Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Thorsten Boroviak
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Erika Sasaki
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Toshiaki Watanabe
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; National Center for Child Health and Development, Tokyo 157-8535, Japan.
| |
Collapse
|
44
|
Pedroza M, Gassaloglu SI, Dias N, Zhong L, Hou TCJ, Kretzmer H, Smith ZD, Sozen B. Self-patterning of human stem cells into post-implantation lineages. Nature 2023; 622:574-583. [PMID: 37369348 PMCID: PMC10584676 DOI: 10.1038/s41586-023-06354-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro1-13. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development. Our system reproducibly captures spontaneous differentiation and co-development of embryonic epiblast-like and extra-embryonic hypoblast-like lineages, establishes key signalling hubs with secreted modulators and undergoes symmetry breaking-like events. Single-cell transcriptomics confirms differentiation into diverse cell states of the perigastrulating human embryo14,15 without establishing placental cell types, including signatures of post-implantation epiblast, amniotic ectoderm, primitive streak, mesoderm, early extra-embryonic endoderm, as well as initial yolk sac induction. Collectively, our system captures key features of human embryonic development spanning from Carnegie stage16 4-7, offering a reproducible, tractable and scalable experimental platform to understand the basic cellular and molecular mechanisms that underlie human development, including new opportunities to dissect congenital pathologies with high throughput.
Collapse
Affiliation(s)
- Monique Pedroza
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Seher Ipek Gassaloglu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Nicolas Dias
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Liangwen Zhong
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tien-Chi Jason Hou
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
45
|
Oldak B, Wildschutz E, Bondarenko V, Comar MY, Zhao C, Aguilera-Castrejon A, Tarazi S, Viukov S, Pham TXA, Ashouokhi S, Lokshtanov D, Roncato F, Ariel E, Rose M, Livnat N, Shani T, Joubran C, Cohen R, Addadi Y, Chemla M, Kedmi M, Keren-Shaul H, Pasque V, Petropoulos S, Lanner F, Novershtern N, Hanna JH. Complete human day 14 post-implantation embryo models from naive ES cells. Nature 2023; 622:562-573. [PMID: 37673118 PMCID: PMC10584686 DOI: 10.1038/s41586-023-06604-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation1. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking1,2. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs)3. Here we extend those findings to humans using only genetically unmodified human naive embryonic stem cells (cultured in human enhanced naive stem cell medium conditions)4. Such human fully integrated and complete SEMs recapitulate the organization of nearly all known lineages and compartments of post-implantation human embryos, including the epiblast, the hypoblast, the extra-embryonic mesoderm and the trophoblast layer surrounding the latter compartments. These human complete SEMs demonstrated developmental growth dynamics that resemble key hallmarks of post-implantation stage embryogenesis up to 13-14 days after fertilization (Carnegie stage 6a). These include embryonic disc and bilaminar disc formation, epiblast lumenogenesis, polarized amniogenesis, anterior-posterior symmetry breaking, primordial germ-cell specification, polarized yolk sac with visceral and parietal endoderm formation, extra-embryonic mesoderm expansion that defines a chorionic cavity and a connecting stalk, and a trophoblast-surrounding compartment demonstrating syncytium and lacunae formation. This SEM platform will probably enable the experimental investigation of previously inaccessible windows of human early post implantation up to peri-gastrulation development.
Collapse
Affiliation(s)
- Bernardo Oldak
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Emilie Wildschutz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Vladyslav Bondarenko
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Mehmet-Yunus Comar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Cheng Zhao
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | | | - Shadi Tarazi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Viukov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Thi Xuan Ai Pham
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, Leuven, Belgium
| | - Shahd Ashouokhi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dmitry Lokshtanov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Roncato
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Ariel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Max Rose
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Livnat
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Shani
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Carine Joubran
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Muriel Chemla
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Keren-Shaul
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, Leuven, Belgium
| | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Département de Médecine, Université de Montreal, Montreal, Quebec, Canada
- Centre de Recherche du Centre, Hospitalier de l'Université de Montréal Axe Immunopathologie, Montreal, Quebec, Canada
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Ming Wai Lau Center for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden
| | - Noa Novershtern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Ai Z, Niu B, Yin Y, Xiang L, Shi G, Duan K, Wang S, Hu Y, Zhang C, Zhang C, Rong L, Kong R, Chen T, Guo Y, Liu W, Li N, Zhao S, Zhu X, Mai X, Li Y, Wu Z, Zheng Y, Fu J, Ji W, Li T. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids. Cell Res 2023; 33:661-678. [PMID: 37460804 PMCID: PMC10474050 DOI: 10.1038/s41422-023-00846-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/24/2023] [Indexed: 09/03/2023] Open
Abstract
Studies of cultured embryos have provided insights into human peri-implantation development. However, detailed knowledge of peri-implantation lineage development as well as underlying mechanisms remains obscure. Using 3D-cultured human embryos, herein we report a complete cell atlas of the early post-implantation lineages and decipher cellular composition and gene signatures of the epiblast and hypoblast derivatives. In addition, we develop an embryo-like assembloid (E-assembloid) by assembling naive hESCs and extraembryonic cells. Using human embryos and E-assembloids, we reveal that WNT, BMP and Nodal signaling pathways synergistically, but functionally differently, orchestrate human peri-implantation lineage development. Specially, we dissect mechanisms underlying extraembryonic mesoderm and extraembryonic endoderm specifications. Finally, an improved E-assembloid is developed to recapitulate the epiblast and hypoblast development and tissue architectures in the pre-gastrulation human embryo. Our findings provide insights into human peri-implantation development, and the E-assembloid offers a useful model to disentangle cellular behaviors and signaling interactions that drive human embryogenesis.
Collapse
Affiliation(s)
- Zongyong Ai
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China.
| | - Baohua Niu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yu Yin
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Lifeng Xiang
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Gaohui Shi
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Kui Duan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Sile Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Yingjie Hu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Chi Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Chengting Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Lujuan Rong
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ruize Kong
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Tingwei Chen
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yixin Guo
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Wanlu Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Nan Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Shumei Zhao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Xiaoqing Zhu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China
| | - Xuancheng Mai
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yonggang Li
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ze Wu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China.
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
- Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
47
|
Abstract
Male germ cells undergo a complex sequence of developmental events throughout fetal and postnatal life that culminate in the formation of haploid gametes: the spermatozoa. Errors in these processes result in infertility and congenital abnormalities in offspring. Male germ cell development starts when pluripotent cells undergo specification to sexually uncommitted primordial germ cells, which act as precursors of both oocytes and spermatozoa. Male-specific development subsequently occurs in the fetal testes, resulting in the formation of spermatogonial stem cells: the foundational stem cells responsible for lifelong generation of spermatozoa. Although deciphering such developmental processes is challenging in humans, recent studies using various models and single-cell sequencing approaches have shed new insight into human male germ cell development. Here, we provide an overview of cellular, signaling and epigenetic cascades of events accompanying male gametogenesis, highlighting conserved features and the differences between humans and other model organisms.
Collapse
Affiliation(s)
- John Hargy
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Xu Z, Feng Y, Yan Y, Jin H, Chen Y, Han Y, Huang S, Feng F, Fu H, Yin Y, Huang Y, Wang H, Cheng W. HHEX suppresses advanced thyroid cancer by interacting with TLE3. Mol Cell Endocrinol 2023; 574:111988. [PMID: 37302518 DOI: 10.1016/j.mce.2023.111988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Haematopoietically Expressed Homeobox (HHEX) gene is highly expressed in the thyroid gland and plays critical roles in the development and differentiation of the thyroid gland. While it has been indicated to be downregulated in thyroid cancer, its function and the underlying mechanism remain unclear. Herein, we observed low expression and aberrant cytoplasmic localization of HHEX in thyroid cancer cell lines. Knockdown of HHEX significantly enhanced cell proliferation, migration and invasion, while overexpression of HHEX showed the opposite effects in vitro and in vivo. These data provide evidence that HHEX is a tumor suppressor in thyroid cancer. Additionally, our results showed that HHEX overexpression upregulated the expression of sodium iodine symporter (NIS) mRNA and also enhanced NIS promoter activity, suggesting a favorable effect of HHEX in promoting thyroid cancer differentiation. Mechanistically, HHEX exerted a regulatory effect on the expression of transducin-like enhancer of split 3 (TLE3) protein, which inhibited the Wnt/β-catenin signaling pathway. Nuclear localized HHEX bound to and upregulated TLE3 expression by preventing TLE3 protein from being distributed to the cytoplasm and being ubiquitinated. In conclusion, our study suggested that restoring HHEX expression has the potential to be a new strategy in the treatment of advanced thyroid cancer.
Collapse
Affiliation(s)
- Zhongyun Xu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yiyuan Feng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yeqing Yan
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Hongfu Jin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yali Han
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China; Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Shuo Huang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Fang Feng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Hongliang Fu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yueye Huang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China; Shanghai Center of Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| |
Collapse
|
49
|
Abele TJ, Billman ZP, Li L, Harvest CK, Bryan AK, Magalski GR, Lopez JP, Larson HN, Yin XM, Miao EA. Apoptotic signaling clears engineered Salmonella in an organ-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539681. [PMID: 37205464 PMCID: PMC10187329 DOI: 10.1101/2023.05.06.539681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pyroptosis and apoptosis are two forms of regulated cell death that can defend against intracellular infection. Although pyroptosis and apoptosis have distinct signaling pathways, when a cell fails to complete pyroptosis, backup pathways will initiate apoptosis. Here, we investigated the utility of apoptosis compared to pyroptosis in defense against an intracellular bacterial infection. We previously engineered Salmonella enterica serovar Typhimurium to persistently express flagellin, and thereby activate NLRC4 during systemic infection in mice. The resulting pyroptosis clears this flagellin-engineered strain. We now show that infection of caspase-1 or gasdermin D deficient macrophages by this flagellin-engineered S. Typhimurium induces apoptosis in vitro. Additionally, we also now engineer S. Typhimurium to translocate the pro-apoptotic BH3 domain of BID, which also triggers apoptosis in macrophages in vitro. In both engineered strains, apoptosis occurred somewhat slower than pyroptosis. During mouse infection, the apoptotic pathway successfully cleared these engineered S. Typhimurium from the intestinal niche, but failed to clear the bacteria in the myeloid niche in the spleen or lymph nodes. In contrast, the pyroptotic pathway was beneficial in defense of both niches. In order to clear an infection, distinct cell types may have specific tasks that they must complete before they die. In some cells, either apoptotic or pyroptotic signaling may initiate the same tasks, whereas in other cell types these modes of cell death may lead to different tasks that may not be identical in defense against infection. We recently suggested that such diverse tasks can be considered as different cellular 'bucket lists' to be accomplished before a cell dies.
Collapse
|
50
|
Castillo-Venzor A, Penfold CA, Morgan MD, Tang WW, Kobayashi T, Wong FC, Bergmann S, Slatery E, Boroviak TE, Marioni JC, Surani MA. Origin and segregation of the human germline. Life Sci Alliance 2023; 6:e202201706. [PMID: 37217306 PMCID: PMC10203729 DOI: 10.26508/lsa.202201706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Human germline-soma segregation occurs during weeks 2-3 in gastrulating embryos. Although direct studies are hindered, here, we investigate the dynamics of human primordial germ cell (PGCs) specification using in vitro models with temporally resolved single-cell transcriptomics and in-depth characterisation using in vivo datasets from human and nonhuman primates, including a 3D marmoset reference atlas. We elucidate the molecular signature for the transient gain of competence for germ cell fate during peri-implantation epiblast development. Furthermore, we show that both the PGCs and amnion arise from transcriptionally similar TFAP2A-positive progenitors at the posterior end of the embryo. Notably, genetic loss of function experiments shows that TFAP2A is crucial for initiating the PGC fate without detectably affecting the amnion and is subsequently replaced by TFAP2C as an essential component of the genetic network for PGC fate. Accordingly, amniotic cells continue to emerge from the progenitors in the posterior epiblast, but importantly, this is also a source of nascent PGCs.
Collapse
Affiliation(s)
- Aracely Castillo-Venzor
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Christopher A Penfold
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Michael D Morgan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridgeshire, UK
| | - Walfred Wc Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Frederick Ck Wong
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Sophie Bergmann
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Erin Slatery
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Thorsten E Boroviak
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridgeshire, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridgeshire, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|