1
|
Yang S, Penna V, Lavine KJ. Functional diversity of cardiac macrophages in health and disease. Nat Rev Cardiol 2025; 22:431-442. [PMID: 39743564 DOI: 10.1038/s41569-024-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/04/2025]
Abstract
Macrophages make up a substantial portion of the stromal compartment of the heart in health and disease. In the past decade, the origins of these cardiac macrophages have been established as two broad populations derived from either embryonic or definitive haematopoiesis and that can be distinguished by the expression of CC-motif chemokine receptor 2 (CCR2). These cardiac macrophage populations are transcriptionally distinct and have differing cell surface markers and divergent roles in cardiac homeostasis and disease. Embryonic-derived CCR2- macrophages are a tissue-resident population that participates in tissue development, repair and maintenance, whereas CCR2+ macrophages are derived from definitive haematopoiesis and contribute to inflammation and tissue damage. Studies from the past 5 years have leveraged single-cell RNA sequencing technologies to expand our understanding of cardiac macrophage diversity, particularly of the monocyte-derived macrophage populations that reside in the injured and diseased heart. Emerging technologies in spatial transcriptomics have enabled the identification of distinct disease-associated cellular neighbourhoods consisting of macrophages, other immune cells and fibroblasts, highlighting the involvement of macrophages in cell-cell communication. Together, these discoveries lend new insights into the role of specific macrophage populations in the pathogenesis of cardiac disease, which can pave the way for the identification of new therapeutic targets and the development of diagnostic tools. In this Review, we discuss the developmental origin of cardiac macrophages and describe newly identified cell states and associated cellular neighbourhoods in the steady state and injury settings. We also discuss various contributions and effector functions of cardiac macrophages in homeostasis and disease.
Collapse
Affiliation(s)
- Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vinay Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Rajak P. Immune checkpoint inhibitors: From friend to foe. Toxicol Rep 2025; 14:102033. [PMID: 40353246 PMCID: PMC12063143 DOI: 10.1016/j.toxrep.2025.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/14/2025] Open
Abstract
Immune checkpoints are crucial in regulating the activation of cell-mediated and humoral immune responses. However, cancer cells hijack this mechanism to evade the immune surveillance and anti-cancer response. Typically, receptors like PD-1 and CTLA4, expressed on immune cells, prevent the activation and differentiation of T cells. They also inhibit the development of autoimmune reactions. However, ligands such as PD-L1 for the receptor PD-1 are also expressed on the surface of cancer cells that help prevent the activation of anti-cancer immune responses by blocking the signalling pathways mediated by PD-1 and CTLA4. Immune checkpoint inhibitors (ICIs) have promising therapeutic efficacy for treating several cancers by activating T cells and their differentiation into effector cells against tumours. Nonetheless, hyperactivated immune cells usually contribute to detrimental issues, also known as immune-related adverse effects (IrAE). IrAEs have been observed in multiple organs, leading to neurological issues, colitis, endocrine dysfunction, renal issues, hepatitis, pneumonitis, and dermatitis. The interplay between hyperactivated T cells and Treg cells helps in orchestrating the development of autoimmunity. Moreover, the crosstalk between proinflammatory interleukins and the development of autoantibodies also mediates the multiorgan effects of ICIs in cancer patients. IrAEs are generally managed by terminating the ICI therapy, reducing the ICI dose, and by using corticosteroids to subvert inflammation. Therefore, the present review aims to delineate the impacts of ICIs on the development of autoimmune diseases and inflammatory outcomes in cancer patients. In addition, mechanistic insight involving immune cells, cytokines, and autoantibodies for ICI-mediated IrAEs will also be discussed with updated findings in this field.
Collapse
Affiliation(s)
- Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
3
|
Sun B, Xun Z, Zhou Z, Zhang N, Piao M, Li C, Li J, Li S, Zhang L, Chen X, Wang H, Zhao H. Single-cell transcriptomic analysis deciphers the inflammatory microenvironment characterized by CXCL9+ fibroblasts and ACKR1+ endothelial cells in immune-related myocarditis. J Transl Med 2025; 23:555. [PMID: 40380233 PMCID: PMC12084926 DOI: 10.1186/s12967-025-06551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 05/04/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Immune-related myocarditis induced by immune checkpoint inhibitors (ICIs) is a rare immune-related adverse event (irAE) but is characterized by a high mortality rate. However, the specific pathological mechanisms underlying immune-related myocarditis remain largely unclear. In this study, we aimed to elucidate the inflammatory microenvironment within cardiac tissues affected by immune-related myocarditis at the single-cell level to identify potential therapeutic targets. METHODS We performed single-cell RNA sequencing (scRNA-seq) on an endomyocardial biopsy specimen obtained from a patient with pancreatic neuroendocrine carcinoma who developed immune-related myocarditis following treatment with ICIs. Additionally, the scRNA-seq data of heart specimens from deceased donors without cardiovascular diseases were collected and applied as normal control. To validate our findings and assess their specificity to ICI-related pathology, we analyzed mouse scRNA-seq data, including controls, ICI-related myocarditis, viral myocarditis, and autoimmune myocarditis. RESULTS We found elevated proportions of lymphocytes, myeloid cells, and fibroblasts in the irAE group, suggesting an intensified inflammatory microenvironment in human immune-related myocarditis. Within the lymphocyte compartment, increased proportions of CD8 + T exhausted cells and CD8 + T proliferative cells were observed in the irAE group. The upregulated differentially expressed genes in myeloid cells in the irAE group were enriched in pro-inflammatory pathways, consistent with the observed metabolic shift from oxidative phosphorylation to glycolysis. CXCL9 + fibroblasts, characterized by the production of multiple pro-inflammatory cytokines and enriched in the JAK-STAT and TNFα signaling pathways, were predominantly found in the irAE group. Venous endothelial cells specifically expressing atypical chemokine receptor-1 (ACKR1) interacted with myeloid cells and CXCL9 + fibroblasts through the CXCL signaling pathway, facilitating chemokine transcytosis and leukocyte recruitment. Analysis of murine scRNA-seq data further supported these findings, revealing that exhausted CD8 + T cells and pro-inflammatory fibroblasts were uniquely enriched in ICI-related myocarditis, reflecting its distinct inflammatory microenvironment. CONCLUSIONS We elucidated the unique inflammatory microenvironment of immune-related myocarditis at the single-cell level. Our work revealed key cell subpopulations that were significantly implicated in inflammation, thus offering potential therapeutic targets.
Collapse
Affiliation(s)
- Boyu Sun
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Zixiang Zhou
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Mingjian Piao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Chengjie Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Jiongyuan Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Shuofeng Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Longhao Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Xiangqi Chen
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Hanping Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China.
| |
Collapse
|
4
|
Fankhauser RG, Johnson DB, Moslehi JJ, Balko JM. Preclinical mouse models of immune checkpoint inhibitor-associated myocarditis. NATURE CARDIOVASCULAR RESEARCH 2025; 4:526-538. [PMID: 40335724 DOI: 10.1038/s44161-025-00640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/10/2025] [Indexed: 05/09/2025]
Abstract
In this Review, we present a comprehensive analysis of preclinical models used to study immune checkpoint inhibitor-associated myocarditis (hereafter ICI-myocarditis), a potentially lethal immune-related adverse event. We begin by providing an overview of immune checkpoint inhibitors, highlighting how their efficacy in cancer treatment is counterbalanced by their predisposition to cause immune-related adverse events. Next, we draw from human data to identify disease features that an effective mouse model should ideally mimic. After that, we present a critical evaluation of a wide variety of existing mouse models including genetic, pharmacological and humanized models. We summarize insights gathered about the underlying mechanisms of ICI-myocarditis and the role of mouse models in these discoveries. We conclude with a perspective on the future of preclinical models, highlighting potential model improvements and research directions that could strengthen our understanding of ICI-myocarditis, ultimately improving patient outcomes.
Collapse
Grants
- 5R01HL156021-04 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 5R01HL155990-04 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 5R01HL141466-05 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NIH P01 HL141084 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NIH R01 HL160688 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 5R01CA227481-05 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- 5P30CA068485-29 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- T32GM007347 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- 25PRE1375723 American Heart Association (American Heart Association, Inc.)
Collapse
Affiliation(s)
- Reilly G Fankhauser
- Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Javid J Moslehi
- Section of Cardio-Oncology and Immunology, Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Justin M Balko
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Zheng Y, Liu Z, Chen D, Zhang J, Yuan M, Zhang Y, Liu S, Zhang G, Yang G. The Cardiotoxicity Risk of Immune Checkpoint Inhibitors Compared with Chemotherapy: A Systematic Review and Meta-analysis of Observational Studies. Cardiovasc Toxicol 2025; 25:805-819. [PMID: 40053271 DOI: 10.1007/s12012-025-09979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/21/2025] [Indexed: 04/24/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated favorable outcomes in various cancers. However, it has been observed that ICIs may induce life-threatening cardiovascular toxicity. In this study, a meta-analysis was conducted to determine the risk of cardiovascular toxicities in patients exposed to ICIs or in combination with chemotherapy. PubMed, Cochrane Library, and Embase databases were searched from inception to September 24, 2023. This study was conducted in accordance with the PRISMA guidelines. A meta-analysis was conducted on the risk of cardiotoxicity in cancer patients. Data were pooled with a random-effect model. This protocol was registered prospectively in PROSPERO (CRD42023467319). The primary outcome was cardiotoxicity risk in observational studies with ICIs or combined with chemotherapy. The risk factors that affected the occurrence of cardiovascular toxicities were also examined. ICIs or combined with chemotherapy increased the cardiotoxicity risk compared with mono-chemotherapy (OR 1.47; 95% CI 1.05-2.06, p = 0.024). The risk of pericardial disease in cardiotoxic events (OR 1.99; 95% CI 1.23-3.22, p = 0.005) and thromboembolic events (OR 1.34; 95% CI 1.04-1.72, p = 0.025) was significantly increased. Smoking (OR 1.25; 95% CI 1.12-1.39, p < 0.001), previous heart disease (OR 2.01; 95% CI 1.64-2.46, p < 0.001), and lung cancer (OR 1.46; 95% CI 1.26-1.69, p < 0.001) were risk factors worthy of attention. ICIs or combined with chemotherapy show an elevated risk of cardiovascular toxicities. Patients who are smoking, diagnosed lung cancer, and having prior medical history of heart diseases need more attention.
Collapse
Affiliation(s)
- Yingying Zheng
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zishen Liu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dong Chen
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingzhi Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Mengqi Yuan
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yutong Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shiyu Liu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ganlin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Guowang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1226-1282. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Zheng J, Yi Y, Tian T, Luo S, Liang X, Bai Y. ICI-induced cardiovascular toxicity: mechanisms and immune reprogramming therapeutic strategies. Front Immunol 2025; 16:1550400. [PMID: 40356915 PMCID: PMC12066601 DOI: 10.3389/fimmu.2025.1550400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, offering life-saving benefits to tumor patients. However, the utilize of ICI agents is often accompanied by immune-related adverse events (irAEs), among which cardiovascular toxicities have attracted more and more attention. ICI induced cardiovascular toxicities predominantly present as acute myocarditis and chronic atherosclerosis, both of which are driven by excessive immune activation. Reprogramming of T cells and macrophages has been demonstrated as a pivotal factor in the pathogenesis of these complications. Therapeutic strategies targeting glycolysis, fatty acid oxidation, reactive oxygen species (ROS) production and some other key signaling have shown promise in mitigating immune hyperactivation and inflammation. In this review, we explored the intricate mechanisms underlying ICI-induced cardiovascular toxicities and highlighted the protective potential of immune reprogramming. We emphasize the roles of T cell and macrophage reprogramming in the heart and vasculature, showcasing their contributions to both short-term and long-term regulation of cardiovascular health. Ultimately, a deeper understanding of these processes will not only enhance the safety of ICIs but also pave the way for innovative strategies to manage immune-related toxicities in cancers therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Bai
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Lerch M, Ramanathan S. The pathogenesis of neurological immune-related adverse events following immune checkpoint inhibitor therapy. Semin Immunol 2025; 78:101956. [PMID: 40294474 DOI: 10.1016/j.smim.2025.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. The development of immune checkpoint inhibitors (ICI) has revolutionised cancer therapy, and patients who were previously incurable can now have excellent responses. These therapies work by blocking inhibitory immune pathways, like cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death-1 (PD-1), its ligand PD-L1, and lymphocyte activation gene 3 (LAG-3); which leads to increased anti-tumour immune responses. However, their use can lead to the development of immune-related adverse events (irAEs), which may result in severe disability, interruption of cancer therapy, and even death. Neurological autoimmune sequelae occur in 1-10 % of patients treated with ICIs and can be fatal. They encompass a broad spectrum of diseases, may affect the central and the peripheral nervous system, and include syndromes like encephalitis, cerebellitis, neuropathy, and myositis. In some cases, neurological irAEs can be associated with autoantibodies recognising neuronal or glial targets. In this review, we first describe the key targets in ICI therapy, followed by a formulation of irAEs and their clinical presentations, where we focus on neurological syndromes. We comprehensively formulate the current literature evaluating cell surface and intracellular autoantibodies, cytokines, chemokines, leukocyte patterns, other blood derived biomarkers, and immunogenetic profiles; and highlight their impact on our understanding of the pathogenesis of neurological irAEs. Finally, we describe therapeutic pathways and patient outcomes, and provide an overview on future aspects of ICI cancer therapy.
Collapse
Affiliation(s)
- Magdalena Lerch
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Sudarshini Ramanathan
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Neurology and Concord Clinical School, Concord Hospital, Sydney, Australia.
| |
Collapse
|
9
|
Patel S, Dave K, Garcia MJ, Gongora CA, Travin MI, Zhang L. Multimodal Imaging of Immune Checkpoint Inhibitor Myocarditis. J Clin Med 2025; 14:2850. [PMID: 40283680 PMCID: PMC12028134 DOI: 10.3390/jcm14082850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically changed the landscape of cancer treatment and are increasingly used either as monotherapy or in combination with other ICIs, chemotherapy, and molecularly targeted agents. ICI myocarditis is a rare but potentially fatal irAE associated with the use of ICI characterized by T-cell mediated cardiomyocyte death. Diagnosing ICI myocarditis can be intricate as its atypical presentations. Multimodal imaging plays a crucial role in the diagnosis and risk stratification of ICI myocarditis. Current management strategies for ICI myocarditis include corticosteroids and immunosuppressants. Multidisciplinary collaboration is vital in these cases-combining oncology expertise with cardiology insights.
Collapse
Affiliation(s)
- Shreyans Patel
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (M.J.G.); (C.A.G.); (L.Z.)
| | - Kartikeya Dave
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA;
| | - Mario J. Garcia
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (M.J.G.); (C.A.G.); (L.Z.)
| | - Carlos A. Gongora
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (M.J.G.); (C.A.G.); (L.Z.)
| | - Mark I. Travin
- Division of Nuclear Medicine, Department of Radiology, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA;
| | - Lili Zhang
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (M.J.G.); (C.A.G.); (L.Z.)
| |
Collapse
|
10
|
Sun J, Wu W, Wang Y, Zhang J, Qiu S, Guan Z, Shi C, Ma J, Xu Y. MLKL-Mediated Necroptosis Predominantly Contributes to Immune-Associated Myocardial Damage. Inflammation 2025:10.1007/s10753-025-02298-1. [PMID: 40195182 DOI: 10.1007/s10753-025-02298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Activated T cells and macrophages play a critical role in immune-associated myocarditis. However, the molecular and cellular mechanisms driving cardiomyocyte damage by immune cells remain poorly understood. In this study, we co-cultured human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with activated human peripheral blood mononuclear cells (aPBMCs) to recapitulate myocardial infiltration of immune cells. Our results demonstrated that aPBMCs induced hiPSC-CMs death in a dose- and time-dependent manner. Transcriptome analysis revealed the activation of several death pathways, including pyroptosis, apoptosis and necroptosis. The time course of immunofluorescence staining of key proteins related to different death pathways demonstrated that necroptosis was the earliest activated pathway. Pharmacological blockade of necroptosis by targeting mixed lineage kinase domain-like protein (MLKL), receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein RIPK1 kinase 3 (RIPK3) protected hiPSC-CMs against injury induced by aPBMCs, while inhibitors of pyroptosis and apoptosis showed no protective effect. Moreover, MLKL knockdown in hiPSC-CMs prevented cell death due to aPBMCs challenge. Additionally, we validated the cardioprotective effects of blocking necroptosis in a mouse model of immune checkpoint inhibitors (ICIs)-related myocarditis using a combination of long-term anti-programmed cell death 1 (PD- 1) and anti-cytotoxic T-lymphocyte antigen- 4 (CTLA- 4) antibodies. ICIs led to elevation of myocardial injury markers in serum and activated immune cells infiltration. Furthermore, in vivo administration of a MLKL inhibitor prevented ICIs-induced myocardial injury. In conclusion, our findings suggested that MLKL-mediated necroptosis predominantly contributed to cardiomyocyte death resulting from activated immune cells. Suppressing necroptosis may be an effective therapeutic approach against myocardial damage in myocarditis.
Collapse
Affiliation(s)
- Jinglei Sun
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Wenting Wu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- Department of Clinical Pharmacy, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Yi Wang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Jiali Zhang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Suhua Qiu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Zhengkun Guan
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Chenxia Shi
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Jingtao Ma
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
11
|
Zhang L, Liu K, Duan X, Zhou S, Jia H, You Y, Han B. CXCL12/CXCR4 axis mediates CD8 + T cell overactivation in the progression of viral myocarditis. J Transl Med 2025; 23:399. [PMID: 40186195 PMCID: PMC11969836 DOI: 10.1186/s12967-025-06394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Myocarditis is a common inflammatory heart disease in children and young adults, with fulminant myocarditis (FM) being the most severe form due to its rapid onset and high mortality rate. However, the precise pathological immune subsets and molecular change in myocarditis, particularly FM, remain unknown. METHODS We performed single-cell RNA sequencing of pediatric peripheral blood mononuclear cells during the acute and recovery phases of FM. A viral myocarditis (MC) mouse model was established using CVB3. Deletion and adoptive transfer of CD8+T cells, as well as blockade of CXCR4, were conducted in vivo. CD8+T cells were sorted and cultivated in vitro, then stimulated with CXCL12 and CXCR4 antagonists to investigate the mechanism of CD8+T cell overactivation. RESULTS CD8+T cells show significant activation, amplification, enhanced cytotoxicity, and increased chemotactic ability in FM. Deletion of CD8+T cells alleviates myocardial injury and improves cardiac function in MC mice, while adoptive transfer of CD8+T cells from MC mice aggravates myocardial inflammation and injury. The transcriptomic analysis reveals elevated CXCR4 expression in CD8+T cells in acute FM. In vitro experiments demonstrate that the CXCL12/CXCR4 axis drives the overactivation and cytotoxicity of CD8+T cells. In vivo treatment with a CXCR4 antagonist effectively reduces CD8+T cell accumulation in the heart, alleviates myocardial inflammation, and improves cardiac function in MC mice. CONCLUSIONS These findings provide deeper insights into the immune landscape of pediatric FM, uncovering a novel role of the CXCL12/CXCR4 axis in driving CD8+T cell responses in myocarditis. Furthermore, they highlight the CXCL12/CXCR4 axis as a promising therapeutic target for myocarditis treatment.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease office, Shandong Provincial Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Keyu Liu
- Department of Pediatric Cardiology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiuyun Duan
- Department of Pediatric Cardiology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shan Zhou
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hailin Jia
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease office, Shandong Provincial Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yingnan You
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease office, Shandong Provincial Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Department of Pediatric Cardiology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Children's Health and Disease office, Shandong Provincial Hospital, Jinan, Shandong, China.
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
12
|
Khera R, Asnani AH, Krive J, Addison D, Zhu H, Vasbinder A, Fleming MR, Arnaout R, Razavi P, Okwuosa TM. Artificial Intelligence to Enhance Precision Medicine in Cardio-Oncology: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2025; 18:e000097. [PMID: 39989357 DOI: 10.1161/hcg.0000000000000097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Artificial intelligence is poised to transform cardio-oncology by enabling personalized care for patients with cancer, who are at a heightened risk of cardiovascular disease due to both the disease and its treatments. The rising prevalence of cancer and the availability of multiple new therapeutic options has resulted in improved survival among patients with cancer and has expanded the scope of cardio-oncology to not only short-term but also long-term cardiovascular risks resulting from both cancer and its treatments. However, there is considerable heterogeneity in cardiovascular risk, driven by the nature of the malignancy as well as each individual's unique characteristics. The use of novel therapies, such as targeted therapies and immune checkpoint inhibitors, across multiple cancer groups has also broadened the populations among which cardiotoxicity has become an important consideration of therapy. Therefore, the ability to understand and personalize cardiovascular risk management in patients with cancer is a key target for artificial intelligence, which can deduce and respond to complex patterns within the data. These advances necessitate an overview of established biomarkers of risk, spanning advanced imaging, diagnostic testing, and multi-omics, the evidence supporting their use, and the proven and proposed role of artificial intelligence in refining this risk to attain greater precision in risk prediction and management in cardio-oncologic care.
Collapse
|
13
|
Jensen G, Wang X, Kuempel J, Palaskas N, Chen Z, Yu W, Chen Y, Mohammad H, Luo W, Chang J. Immune checkpoint inhibitor-associated myocarditis: a historical and comprehensive review. Am J Physiol Heart Circ Physiol 2025; 328:H734-H751. [PMID: 39925096 DOI: 10.1152/ajpheart.00687.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025]
Abstract
The most fatal side effect associated with revolutionary immune checkpoint inhibitor (ICI) cancer therapies is myocarditis, a rare and devastating complication with a mortality rate approaching 40%. This review comprehensively examines the limited knowledge surrounding this recently recognized condition, emphasizing the absence of evidence-based therapeutic strategies, diagnostic modalities, and reliable biomarkers that hinder effective management. It explores advancements in preclinical models that are uncovering disease mechanisms and enabling the identification of therapeutic targets. These efforts have informed the design of early clinical trials aimed at reducing mortality. With the growing prevalence of ICI therapies in oncology, addressing critical gaps, such as long-term outcomes and risk stratification, has become increasingly urgent. By synthesizing current evidence, this work seeks to enhance understanding and guide the development of strategies to improve patient outcomes and ensure the continued safe use of ICIs in cancer care.
Collapse
Affiliation(s)
- Garrett Jensen
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Xinjie Wang
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Jacob Kuempel
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Nicolas Palaskas
- Department of Cardiology, MD Anderson Cancer Center, Houston, Texas, United States
| | - Zhishi Chen
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Wei Yu
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Yanping Chen
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Haseeb Mohammad
- Texas A&M University College of Medicine, Houston, Texas, United States
| | - Weijia Luo
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| | - Jiang Chang
- Institute for Biosciences and Technology, Center for Genomics and Precision Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
14
|
Jimenez J, Amrute J, Ma P, Wang X, Das S, Dai R, Komaru Y, Herrlich A, Mack M, Lavine KJ. The immune checkpoint regulator CD40 potentiates myocardial inflammation. NATURE CARDIOVASCULAR RESEARCH 2025; 4:458-472. [PMID: 40217124 DOI: 10.1038/s44161-025-00633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 03/05/2025] [Indexed: 04/15/2025]
Abstract
Immune checkpoint therapeutics including CD40 agonists have tremendous promise to elicit antitumor responses in patients resistant to current therapies. Conventional immune checkpoint inhibitors (PD-1, PD-L1 and CTLA-4 antagonists) are associated with serious adverse cardiac events including life-threatening myocarditis. However, little is known regarding the potential for CD40 agonists to trigger myocardial inflammation or myocarditis. Here we leverage genetic mouse models, single-cell sequencing and cell depletion studies to show that an anti-CD40 agonist antibody reshapes the cardiac immune landscape through activation of CCR2+ macrophages and subsequent recruitment of effector memory CD8+ T cells. We identify a positive feedback loop between CCR2+ macrophages (positive for the chemokine receptor CCR2) and CD8+ T cells driven by IL-12b, TNF and IFNγ signaling that promotes myocardial inflammation and show that previous exposure to CD40 agonists sensitizes the heart to secondary insults and accelerates left ventricular remodeling. Collectively, these findings highlight the potential for CD40 agonists to promote myocardial inflammation and potentiate heart failure pathogenesis.
Collapse
Affiliation(s)
- Jesus Jimenez
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
- Cardio-Oncology Center of Excellence, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Junedh Amrute
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Pan Ma
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoran Wang
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Shibali Das
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Yohei Komaru
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- John Cochran Division, VA Saint Louis Health Care System, St. Louis, MO, USA
| | - Andreas Herrlich
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- John Cochran Division, VA Saint Louis Health Care System, St. Louis, MO, USA
| | - Matthias Mack
- Division of Nephrology, Department of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Kory J Lavine
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Kohlgruber AC, Dezfulian MH, Sie BM, Wang CI, Kula T, Laserson U, Larman HB, Elledge SJ. High-throughput discovery of MHC class I- and II-restricted T cell epitopes using synthetic cellular circuits. Nat Biotechnol 2025; 43:623-634. [PMID: 38956325 PMCID: PMC11994455 DOI: 10.1038/s41587-024-02248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/16/2024] [Indexed: 07/04/2024]
Abstract
Antigen discovery technologies have largely focused on major histocompatibility complex (MHC) class I-restricted human T cell receptors (TCRs), leaving methods for MHC class II-restricted and mouse TCR reactivities relatively undeveloped. Here we present TCR mapping of antigenic peptides (TCR-MAP), an antigen discovery method that uses a synthetic TCR-stimulated circuit in immortalized T cells to activate sortase-mediated tagging of engineered antigen-presenting cells (APCs) expressing processed peptides on MHCs. Live, tagged APCs can be directly purified for deconvolution by sequencing, enabling TCRs with unknown specificity to be queried against barcoded peptide libraries in a pooled screening context. TCR-MAP accurately captures self-reactivities or viral reactivities with high throughput and sensitivity for both MHC class I-restricted and class II-restricted TCRs. We elucidate problematic cross-reactivities of clinical TCRs targeting the cancer/testis melanoma-associated antigen A3 and discover targets of myocarditis-inciting autoreactive T cells in mice. TCR-MAP has the potential to accelerate T cell antigen discovery efforts in the context of cancer, infectious disease and autoimmunity.
Collapse
Affiliation(s)
- Ayano C Kohlgruber
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Brandon M Sie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Charlotte I Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Tomasz Kula
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard University Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
16
|
Chen YC, Dolladille C, Rao A, Palaskas NL, Deswal A, Lehmann L, Cautela J, Courand PY, Hayek S, Zhu H, Cheng RK, Alexandre J, Baldassarre LA, Roubille F, Laufer-Perl M, Asnani A, Ederhy S, Tamura Y, Francis S, Gaughan EM, Johnson DB, Flint DL, Rainer PP, Bailly G, Ewer SM, Aras MA, Arangalage D, Cariou E, Florido R, Peretto G, Itzhaki Ben Zadok O, Akhter N, Narezkina A, Levenson JE, Liu Y, Crusz SM, Issa N, Piriou N, Leong D, Sandhu S, Turker I, Moliner P, Obeid M, Heinzerling L, Chang WT, Stewart A, Venkatesh V, Du Z, Yadavalli A, Kim D, Chandra A, Zhang KW, Power JR, Moslehi J, Salem JE, Zaha VG. Immune Checkpoint Inhibitor Myocarditis and Left Ventricular Systolic Dysfunction. JACC CardioOncol 2025; 7:234-248. [PMID: 40246381 PMCID: PMC12046861 DOI: 10.1016/j.jaccao.2025.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, but ICI myocarditis (ICI-M) remains a potentially fatal complication. The clinical implications and predictors of left ventricular ejection fraction (LVEF) <50% in ICI-M are not well understood. OBJECTIVES The aim of this study was to identify factors associated with LVEF <50% vs ≥50% at the time of hospitalization for ICI-M. A secondary objective was to evaluate the relationship between LVEF and 30-day all-cause mortality. METHODS The International ICI-Myocarditis Registry, a retrospective, international, multicenter database, included 757 patients hospitalized with ICI-M. Patients were stratified by LVEF as reduced LVEF (<50%) or preserved LVEF (≥50%) on admission. Cox proportional hazards models were used to assess the associations between LVEF and clinical events, and multivariable logistic regression was conducted to examine factors linked to LVEF. RESULTS Of 757 patients, 707 had documented LVEFs on admission: 244 (35%) with LVEF <50% and 463 (65%) with LVEF ≥50%. Compared with patients with LVEF ≥50%, those with LVEF <50% were younger (<70 years), had a body mass index of <25 kg/m2, and were more likely to have received chest radiation (24.2% vs 13.5%; P < 0.001). Multivariable analysis identified predictors of LVEF <50%, including exposure to v-raf murine sarcoma viral oncogene homolog B1/mitogen-activated protein kinase inhibitors, pre-existing heart failure, dyspnea at presentation, and at least 40 days from ICI initiation to ICI-M onset. Conversely, myositis symptoms were associated with LVEF ≥50%. LVEF <50% was marginally associated with 30-day all-cause mortality (unadjusted log-rank P = 0.062; adjusted for age, cancer types, and ICI therapy, HR: 1.50; 95% CI: 1.02-2.20). CONCLUSIONS Dyspnea, time from ICI initiation, a history of heart failure, and prior cardiotoxic therapy may be predictors of an initial LVEF <50% in patients with ICI-M.
Collapse
Affiliation(s)
- Yen-Chou Chen
- Division of Cardiology, University of California-San Francisco, San Francisco, California, USA; Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
| | - Charles Dolladille
- Normandie Université, UNICAEN, INSERM U1086 ANTICIPE, Caen, France; Caen-Normandy University Hospital, PICARO Cardio-Oncology Program, Department of Pharmacology, Caen, France; Department of Pharmacology, Sorbonne University, INSERM, CIC-1901, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anjali Rao
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicolas L Palaskas
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lorenz Lehmann
- Department of Cardiology, Angiology, and Pneumology, University Hospital of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, partner site Heidelberg/Mannheim, Mannheim, Germany; German Cancer Research Center, Heidelberg, Germany
| | - Jennifer Cautela
- Department of Cardiology, University Mediterranean Centre of CardioOncology, Nord Hospital, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Pierre-Yves Courand
- Fédération de Cardiologie, Hôpital de la Croix-Rousse et Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France; Université de Lyon, Université Claude Bernard, Lyon, France
| | - Salim Hayek
- Department of Cardiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Han Zhu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Richard K Cheng
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Joachim Alexandre
- Normandie Université, UNICAEN, INSERM U1086 ANTICIPE, Caen, France; Caen-Normandy University Hospital, PICARO Cardio-Oncology Program, Department of Pharmacology, Caen, France
| | | | - François Roubille
- Department of Cardiology, INI-CRT, CHU de Montpellier, PhyMedExp, Université de Montpellier, Inserm, CNRS, Montpellier, France
| | - Michal Laufer-Perl
- Department of Cardiology, Tel Aviv Sourasky Medical Center, affiliated to the Tel Aviv University Faculty of Medicine, Tel Aviv-Yafo, Israel
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Stephane Ederhy
- Cardiology Department, Hospital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Yuichi Tamura
- Cardiovascular Center, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Sanjeev Francis
- Cardiovascular Service Line, Maine Medical Center, Portland, Maine, USA
| | - Elizabeth M Gaughan
- Division of Hematology and Oncology, University of Virginia, Charlottesville, Virginia, USA
| | - Douglas B Johnson
- Division of Hematology and Oncology, Vanderbilt University, Nashville, Tennessee, USA
| | - Danette L Flint
- Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz Austria; BioTechMed Graz, Graz, Austria; St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Guillaume Bailly
- Assistance Publique-Hôpitaux de Paris Hôpital Lariboisière, Paris, France
| | - Steven M Ewer
- Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mandar A Aras
- Division of Cardiology, University of California-San Francisco, San Francisco, California, USA
| | - Dimitri Arangalage
- Department of Cardiology, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, UMRS1148, INSERM, Paris, France; Université de Paris, Paris, France
| | - Eve Cariou
- Department of Cardiology, Rangueil University Hospital, Toulouse, France
| | - Roberta Florido
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Giovanni Peretto
- Disease Unit for Myocarditis and Arrhythmogenic Cardiomyopathies, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Nausheen Akhter
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anna Narezkina
- Division of Cardiovascular Medicine, University of California-San Diego, San Diego, California, USA
| | - Joshua E Levenson
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yan Liu
- Division of Cardiology, Department of Internal Medicine, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Shanthini M Crusz
- Barts Health NHS Trust, University College London Hospital, London, United Kingdom
| | - Nahema Issa
- Bordeaux University Hospital, Bordeaux, France
| | - Nicolas Piriou
- Nantes Univesrité, CHU Nantes, Centre de Reference Cardiomyopathies, l'Institut du Thorax, Nantes, France
| | - Darryl Leong
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Shahneen Sandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Isik Turker
- Department of Cardiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Pedro Moliner
- Bellvitge University Hospital, Catalan Institute of Oncology, Cardiology Department, Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute, CIBER CV, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Michel Obeid
- Centre Hospitalier Universitaire Vaudois, University of Lausanne, LCIT Center, Immunology and Allergy Service, Lausanne, Switzerland
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
| | | | - Andrew Stewart
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vishnu Venkatesh
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zoe Du
- University of Texas at Dallas, Dallas, Texas, USA
| | | | - Dohyeong Kim
- University of Texas at Dallas, Dallas, Texas, USA
| | - Alvin Chandra
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kathleen W Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John R Power
- Division of Cardiology, University of California-San Francisco, San Francisco, California, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Javid Moslehi
- Division of Cardiology, University of California-San Francisco, San Francisco, California, USA
| | - Joe-Elie Salem
- Department of Pharmacology, Sorbonne University, INSERM, CIC-1901, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vlad G Zaha
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
17
|
Itzhaki Ben Zadok O, O'Hare MJ, Nohria A. Immune Checkpoint Inhibitor-Related Myocarditis With or Without Concomitant Myopathy: Clinical Findings and Cardiovascular Outcomes. JACC CardioOncol 2025; 7:252-264. [PMID: 40246383 PMCID: PMC12046767 DOI: 10.1016/j.jaccao.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Data on cardiovascular outcomes in patients with both immune checkpoint inhibitor-induced immune-related myocarditis (irMyocarditis) and immune-related myopathy (irMyopathy) are limited. OBJECTIVES The aim of this study was to describe clinical characteristics and cardiovascular outcomes in patients with isolated irMyocarditis vs those with concomitant irMyocarditis and irMyopathy. METHODS A retrospective cohort study was conducted among patients diagnosed with irMyocarditis at Massachusetts General Brigham between 2015 and 2023. Clinical, laboratory, and imaging characteristics were evaluated, and cardiovascular outcomes were compared between patients with and those without concomitant irMyopathy. The outcomes assessed included acute heart failure requiring diuresis, significant arrhythmias (ventricular arrhythmias and high-degree atrioventricular block), and cardiovascular and all-cause mortality during the index hospitalization. RESULTS Among 101 patients with irMyocarditis, 32 (31.7%) had concomitant irMyopathy. Patients with irMyocarditis and irMyopathy had higher high-sensitivity troponin T (median 716 ng/L vs 75 ng/L; P < 0.001) and creatine kinase levels (median 3441 U/L vs 232 U/L; P < 0.001) and were more likely to present with significant arrhythmias (HR: 2.12; 95% CI: 1.13-3.97; P = 0.019). Conversely, patients with isolated irMyocarditis had higher N-terminal prohormone of brain natriuretic peptide levels (median 2043 pg/mL vs 606 pg/mL; P = 0.007), lower left ventricular ejection fractions (median 56% vs 65%; P = 0.008), and a higher likelihood of acute decompensated heart failure (HR: 5.88; 95% CI: 1.45-25; P = 0.013). Cardiovascular and all-cause death during admission were numerically higher in patients with concomitant irMyopathy but were not significantly different between the 2 groups. CONCLUSIONS Patients with irMyocarditis and irMyopathy and those with isolated irMyocarditis have distinct biomarker profiles and cardiovascular complications. These differences should be confirmed in larger prospective cohorts to guide tailored management strategies.
Collapse
Affiliation(s)
- Osnat Itzhaki Ben Zadok
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Meabh J O'Hare
- Division of Neuromuscular Medicine, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anju Nohria
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Li FX, Cai JX, Li JB, Luo KJ, Wang SY, Meng WH, Sha F, Yang ZR, Hackshaw A, Tang JL. Immune checkpoint inhibitors and myocarditis in advanced non-small cell lung cancer: a nationwide cohort study. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2025; 11:33. [PMID: 40165308 PMCID: PMC11956456 DOI: 10.1186/s40959-025-00325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE Evidence suggests immune checkpoint inhibitor (ICI) can increase the risk of myocarditis. We investigated it in a large national cohort in China. METHODS Patients with stage IIIB-IV non-small cell lung cancer (NSCLC) using data from China's National Anti-Tumor Drug Surveillance System between January 2013 and December 2021. Exposure density sampling was applied to control for immortal time bias. Multivariate Cox regression with time-dependent exposures was used to examine the association between ICI therapy and the incidence of myocarditis while controlling for confounders. RESULTS 55,219 patients were included. The median age was 61 years, and 62% were males. At one-year follow-up (median 335 days), there were 26 cases of myocarditis among ICI users and 28 cases among ICI non-users (a cumulative incidence of 4.8 and 0.6 per 1000 person-years respectively). The adjusted hazard ratio (HR) of myocarditis for ICI users was 7.41 (95% confidence interval [CI]: 3.29-16.67). For programmed cell death protein 1 inhibitor users the HR was 8.39 (95% CI: 3.56-19.77). No significant interactions were observed in subgroup analysis. The results remained unchanged in sensitivity analyses. CONCLUSIONS This study showed that ICI therapy considerably increased the risk of myocarditis, supporting the need for closer monitoring of patients receiving ICI therapies.
Collapse
Affiliation(s)
- Fu-Xiao Li
- Department of Computational Biology and Medical Big Data, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Jia-Xin Cai
- Department of Computational Biology and Medical Big Data, Shenzhen University of Advanced Technology, Shenzhen, China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Ji-Bin Li
- Department of Clinical Research, Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kong-Jia Luo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shi-Yu Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei-Hua Meng
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Feng Sha
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Zhi-Rong Yang
- Department of Computational Biology and Medical Big Data, Shenzhen University of Advanced Technology, Shenzhen, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - Allan Hackshaw
- CRUK & UCL Trials Centre, University College London, 5 Floor, 90 Tottenham Court Road, London, UK
| | - Jin-Ling Tang
- Department of Computational Biology and Medical Big Data, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
19
|
Nardone V, Ruggiero D, Chini MG, Bruno I, Lauro G, Terracciano S, Nebbioso A, Bifulco G, Cappabianca S, Reginelli A. From Bench to Bedside: Translational Approaches to Cardiotoxicity in Breast Cancer, Lung Cancer, and Lymphoma Therapies. Cancers (Basel) 2025; 17:1059. [PMID: 40227572 PMCID: PMC11987928 DOI: 10.3390/cancers17071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Cardiotoxicity represents a critical challenge in cancer therapy, particularly in the treatment of thoracic tumors, such as lung cancer and lymphomas, as well as breast cancer. These malignancies stand out for their high prevalence and the widespread use of cardiotoxic treatments, such as chemotherapy, radiotherapy, and immunotherapy. This work underscores the importance of preclinical models in uncovering the mechanisms of cardiotoxicity and developing targeted prevention and mitigation strategies. In vitro models provide valuable insights into cellular processes, enabling the observation of changes in cell viability and function following exposure to various drugs or ionizing radiation. Complementarily, in vivo animal models offer a broader perspective, allowing for evaluating of both short- and long-term effects and a better understanding of chronic toxicity and cardiac diseases. By integrating these approaches, researchers can identify potential mechanisms of cardiotoxicity and devise effective prevention strategies. This analysis highlights the central role of preclinical models in advancing knowledge of cardiotoxic effects associated with common therapeutic regimens for thoracic and breast cancers.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Dafne Ruggiero
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| |
Collapse
|
20
|
Losurdo A, Panico C, Catalano C, Serio S, Giordano L, Monti L, Catapano F, Figliozzi S, D'Andrea C, Dipasquale A, Persico P, Di Muzio A, Cremonesi M, Marchese A, Tronconi MC, Perrino M, Finocchiaro G, Lugli E, Francone M, Santoro A, Condorelli G, Simonelli M, Kallikourdis M. Cardiac MRI study of adverse events in patients treated with immune checkpoint inhibitors: a prospective cohort study of cardiac adverse events. J Immunother Cancer 2025; 13:e010568. [PMID: 40107671 PMCID: PMC11927457 DOI: 10.1136/jitc-2024-010568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) revolutionized cancer therapy, yet require management of immune-related adverse events (irAEs). Fulminant myocarditis is a rare irAE, but lower-severity cardiac events are being reported more frequently, leading to an unmet need for irAE prevention, early diagnosis, and treatment, especially for long-life-expectancy patients. We recruited 57 patients, stratified according to therapy regime (monotherapy (30%) or combination (33%) cohort) or history of cardiac disease or presence of at least two cardiovascular risk factors other than prior or active smoking (cardiovascular cohort (37%)). We performed a complete cardiological assessment with clinical visit, 12-lead ECG, multiparametric cardiac MRI as well as peripheral blood mononuclear cell immunophenotyping, prior to ICI initiation and around 2 months later. ICI treatment was associated with a significant left ventricular ejection function (LVEF) reduction pre-ICI versus post-ICI treatment (60.1±8% to 58.1±8%, p=0.002, paired t-test) and more than 3% LVEF loss in a substantial proportion of patients (18; 32%). These patients also showed significantly higher T2 values (p=0.037, unpaired t-test), putative sign of cardiac edema. The loss of cardiac function did not differ among patients with different tumor types, therapy regimes or history of cardiac disease. Immunophenotyping analyses showed a reduction of programmed cell death protein 1 staining on both CD4+ and CD8+ T cells, and an upregulation of HLA-DR on CD8+ T cells. Using a very sensitive and comprehensive approach in patients unselected for cardiac history, we found a subclinical but significant LVEF decrease. These findings may inform ongoing discussions on optimal management of cardiac irAEs in patients undergoing ICI treatment and warrant further evaluation.
Collapse
Affiliation(s)
- Agnese Losurdo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Cristina Panico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Cardiology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Chiara Catalano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Adaptive Immunity Laboratory, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Simone Serio
- Cardiology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
- Institute of Genetic and Biomedical Research (IRGB), National Research Council of Italy, Milan, Italy
| | - Laura Giordano
- Biostatistics Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Lorenzo Monti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Radiology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Federica Catapano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Radiology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Stefano Figliozzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Radiology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Carla D'Andrea
- Cardiology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Pasquale Persico
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Antonio Di Muzio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
| | - Marco Cremonesi
- Adaptive Immunity Laboratory, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | | | - Maria Chiara Tronconi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Matteo Perrino
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Giovanna Finocchiaro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Radiology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Cardiology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Adaptive Immunity Laboratory, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| |
Collapse
|
21
|
Majocchi S, Lloveras P, Nouveau L, Legrand M, Viandier A, Malinge P, Charreton M, Raymond C, Pace EA, Millard BL, Svensson LA, Kelpšas V, Anceriz N, Salgado-Pires S, Daubeuf B, Magistrelli G, Gueneau F, Moine V, Masternak K, Shang L, Fischer N, Ferlin WG. NI-3201 Is a Bispecific Antibody Mediating PD-L1-Dependent CD28 Co-stimulation on T Cells for Enhanced Tumor Control. Cancer Immunol Res 2025; 13:365-383. [PMID: 39760515 PMCID: PMC11876958 DOI: 10.1158/2326-6066.cir-24-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Despite advances in cancer immunotherapy, such as targeting the PD-1/PD-L1 axis, a substantial number of patients harbor tumors that are resistant or relapse. Selective engagement of T-cell co-stimulatory molecules with bispecific antibodies may offer novel therapeutic options by enhancing signal 1-driven activation occurring via T-cell receptor engagement. In this study, we report the development and preclinical characterization of NI-3201, a PD-L1×CD28 bispecific antibody generated on the κλ-body platform that was designed to promote T-cell activity and antitumor function through a dual mechanism of action. We confirmed that NI-3201 blocks the PD-L1/PD-1 immune checkpoint pathway and conditionally provides T-cell co-stimulation via CD28 (signal 2) when engaging PD-L1+ tumors or immune cells. In systems with signal 1-primed T cells, NI-3201 enhanced potent effector functionality: in vitro through antigen-specific recall assays with cytomegalovirus-specific T cells and in vivo by inducing tumor regression and immunologic memory in tumor-associated antigen-expressing MC38 syngeneic mouse models. When T-cell engagers were used to provide synthetic signal 1, the combination with NI-3201 resulted in synergistic T cell-dependent cytotoxicity and potent antitumor activity in two humanized mouse tumor models. Nonhuman primate safety assessments showed favorable tolerability and pharmacokinetics at pharmacologically active doses. Quantitative systems pharmacology modeling predicted that NI-3201 exposure results in antitumor activity in patients, but this remains to be investigated. Overall, this study suggests that by combining PD-L1 blockade with safe and effective CD28 co-stimulation, NI-3201 has the potential to improve cancer immunotherapy outcomes, and the clinical development of NI-3201 for PD-L1+ solid tumors is planned.
Collapse
Affiliation(s)
- Sara Majocchi
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | - Lise Nouveau
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | | | | | - Maud Charreton
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | - Cecile Raymond
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | | | | | | | - Nadia Anceriz
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | - Bruno Daubeuf
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | - Franck Gueneau
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | - Valéry Moine
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | - Limin Shang
- Light Chain Bioscience – Novimmune SA, Geneva, Switzerland
| | | | | |
Collapse
|
22
|
Cao Z, Zhang Y, Jia H, Sun X, Feng Y, Wu H, Xu B, Wei Z. Immune checkpoint inhibitors mediate myocarditis by promoting macrophage polarization via cGAS/STING pathway. Cytokine 2025; 187:156873. [PMID: 39884185 DOI: 10.1016/j.cyto.2025.156873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors has opened up new avenues for cancer treatment, but serious cardiac injury has emerged in their use. A large number of data have shown that abnormal activation of cytosolic DNA-sensing cyclic GMP-AMP synthase-interferon gene activator pathway is closely related to cardiovascular inflammation and autoimmune diseases. However, the pathophysiological function of the cGAS-STING cascade in myocarditis induced by Immune checkpoint inhibitors is unclear. METHODS In order to establish a Immune checkpoint inhibitors-associated myocarditis model, BALB/c mice were injected with mouse cardiac troponin I peptide and anti-mouse programmed death 1 antibody. Echocardiography and HE staining were then performed to assess cardiac function and inflammation. Macrophages and damaged DNA in mouse heart tissue were detected by immunofluorescence. The mitochondrial damage of macrophages was observed by electron microscope. In vitro experiments, RAW264.7 was used to detect macrophage polarization after anti-PD-1 antibody induction and STING inhibition by qPCR and flow cytometry. Mitochondrial damage was detected by immunofluorescence, and activation of the cGAS-STING signaling pathway was evaluated by protein imprinting analysis. RESULTS In the Immune checkpoint inhibitors-associated myocarditis model, DNA damage was found to activate the cGAS-STING pathway and macrophages were polarized to M1 type. In vitro experiments, anti-PD-1 antibody activate the cGAS-STING pathway through the release of damaged DNA from macrophage mitochondrial damage, causing macrophage polarization into a pro-inflammatory phenotype leading to autoimmune myocarditis. CONCLUSION Our results suggested that the cGAS-STING pathway played a key role in myocarditis caused by immune checkpoint inhibitors. It provided a new possibility for Immune checkpoint inhibitors to be widely used in clinic.
Collapse
Affiliation(s)
- Zhenzhu Cao
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Yu Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Huihui Jia
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China
| | - Yuting Feng
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China
| | - Han Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China.
| | - Zhonghai Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China; Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China.
| |
Collapse
|
23
|
Travers S, Alexandre J, Baldassarre LA, Salem JE, Mirabel M. Diagnosis of cancer therapy-related cardiovascular toxicities: A multimodality integrative approach and future developments. Arch Cardiovasc Dis 2025; 118:185-198. [PMID: 39947997 DOI: 10.1016/j.acvd.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Diagnosing cancer therapy-related cardiovascular toxicities may be a challenge. The interplay between cancer and cardiovascular diseases, beyond shared cardiovascular and cancer risk factors, and the increasingly convoluted cancer therapy schemes have complicated cardio-oncology. Biomarkers used in cardio-oncology include serum, imaging and rhythm modalities to ensure proper diagnosis and prognostic stratification of cardiovascular toxicities. For now, troponin and natriuretic peptides, multimodal cardiovascular imaging (led by transthoracic echocardiography combined with cardiac magnetic resonance or computed tomography angiography) and electrocardiography (12-lead or Holter monitor) are cornerstones in cardio-oncology. However, the imputability of cancer therapies is sometimes difficult to assess, and more refined biomarkers are currently being studied to increase diagnostic accuracy. Advances reside partly in pathophysiology-based serum biomarkers, improved cardiovascular imaging through new technical developments and remote monitoring for rhythm disorders. A multiparametric omics approach, enhanced by deep-learning techniques, should open a new era for biomarkers in cardio-oncology in the years to come.
Collapse
Affiliation(s)
- Simon Travers
- INSERM UMR-S 1180, Université Paris-Saclay, 91400 Orsay, France; Laboratoire de Biochimie, DMU BioPhyGen, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| | - Joachim Alexandre
- INSERM U1086 ANTICIPE, Biology-Research Building, UNICAEN, Normandie University Group, 14000 Caen, France; Department of Pharmacology, Biology-Research Building, PICARO Cardio-Oncology Programme, Caen-Normandy University Hospital, 14000 Caen, France.
| | - Lauren A Baldassarre
- Cardiovascular Medicine, Yale School of Medicine, 06510 New Haven CT, United States of America.
| | - Joe Elie Salem
- CIC-1901, Department of Pharmacology, Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, INSERM, 75013 Paris, France.
| | - Mariana Mirabel
- Cardiology Department, Institut Mutualiste Montsouris, 75014 Paris, France.
| |
Collapse
|
24
|
Huang YV, Sun Y, Chou H, Wagner N, Vitale MR, Bayer AL, Xu B, Lee D, Lin Z, Branche C, Waliany S, Neal JW, Wakelee HA, Witteles RM, Nguyen PK, Graves EE, Berry GJ, Alcaide P, Wu SM, Zhu H. Novel Therapeutic Approach Targeting CXCR3 to Treat Immunotherapy Myocarditis. Circ Res 2025; 136:473-490. [PMID: 39931812 PMCID: PMC11867805 DOI: 10.1161/circresaha.124.325652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are successful in treating many cancers but may cause immune-related adverse events. ICI-mediated myocarditis has a high fatality rate with severe cardiovascular consequences. Targeted therapies for ICI myocarditis are currently limited. METHODS We used a genetic mouse model of PD1 deletion (MRL/Pdcd1-/-) along with a novel drug-treated ICI myocarditis mouse model to recapitulate the disease phenotype. We performed single-cell RNA-sequencing, single-cell T-cell receptor sequencing, and cellular indexing of transcriptomes and epitopes on immune cells isolated from MRL and MRL/Pdcd1-/- mice at serial time points. We assessed the impact of macrophage deletion in MRL/Pdcd1-/- mice, then inhibited CXCR3 (C-X-C motif chemokine receptor 3) in ICI-treated mice to assess the therapeutic effect on myocarditis phenotype. Furthermore, we delineated the functional and mechanistic effects of CXCR3 blockade on T-cell and macrophage interactions. We then correlated the results in human single-cell multiomics data from blood and heart biopsy data from patients with ICI myocarditis. RESULTS Single-cell multiomics demonstrated expansion of CXCL (C-X-C motif chemokine ligand) 9/10+CCR2+ macrophages and CXCR3hi (C-X-C motif chemokine receptor 3 high-expressing) CD8+ (cluster of differentiation) effector T lymphocytes in the hearts of MRL/Pdcd1-/- mice correlating with onset of myocarditis development. Both depletion of CXCL9/10+CCR2+ (C-C motif chemokine receptor) macrophages and CXCR3 blockade, respectively, led to decreased CXCR3hi CD8+ T-cell infiltration into the heart and significantly improved survival. Transwell migration assays demonstrated that the selective blockade of CXCR3 and its ligand, CXCL10, reduced CXCR3+CD8+ T-cell migration toward macrophages, implicating this interaction in T-cell cardiotropism toward cardiac macrophages. Furthermore, cardiomyocyte apoptosis was induced by CXCR3hi CD8+ T cells. Cardiac biopsies from patients with confirmed ICI myocarditis demonstrated infiltrating CXCR3+ T cells and CXCL9+/CXCL10+ macrophages. Both mouse cardiac immune cells and patient peripheral blood immune cells revealed expanded TCRs (T-cell receptors) correlating with CXCR3hi CD8+ T cells in ICI myocarditis samples. CONCLUSIONS These findings bring forth the CXCR3-CXCL9/10 axis as an attractive therapeutic target for ICI myocarditis treatment, and more broadly as a druggable pathway in cardiac inflammation.
Collapse
Affiliation(s)
- Yuhsin Vivian Huang
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Yin Sun
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Harrison Chou
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Noah Wagner
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Maria Rosaria Vitale
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | | | - Bruce Xu
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Daniel Lee
- F. Edward Hebert School of Medicine at Uniformed Services University, Bethesda, MD (D.L.)
| | - Zachary Lin
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Corynn Branche
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Sarah Waliany
- Division of Cardiovascular Medicine, Stanford, CA (S.W., R.M.W., P.K.N., S.M.W., H.Z.)
- Massachusetts General Hospital Cancer Center, Boston, MA (S.W.)
| | - Joel W. Neal
- Division of Oncology, Stanford, CA (J.W.N., H.A.W.)
- Stanford Cancer Institute, CA (J.W.N., H.A.W.)
| | - Heather A. Wakelee
- Division of Oncology, Stanford, CA (J.W.N., H.A.W.)
- Stanford Cancer Institute, CA (J.W.N., H.A.W.)
| | - Ronald M. Witteles
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
- Division of Cardiovascular Medicine, Stanford, CA (S.W., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Patricia K. Nguyen
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
- Division of Cardiovascular Medicine, Stanford, CA (S.W., R.M.W., P.K.N., S.M.W., H.Z.)
| | | | | | - Pilar Alcaide
- Tufts University School of Medicine, Boston, MA (A.L.B., P.A.)
| | - Sean M. Wu
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
- Division of Cardiovascular Medicine, Stanford, CA (S.W., R.M.W., P.K.N., S.M.W., H.Z.)
| | - Han Zhu
- Stanford Cardiovascular Institute, CA (Y.V.H., Y.S., H.C., N.W., M.R.V., B.X., Z.L., C.B., R.M.W., P.K.N., S.M.W., H.Z.)
- Division of Cardiovascular Medicine, Stanford, CA (S.W., R.M.W., P.K.N., S.M.W., H.Z.)
| |
Collapse
|
25
|
Li H, Chen X, Wang JJ, Shen J, Abuduwufuer K, Zhang Z, Dong Z, Wen Z, He J, Chen S, Li W, Chen C, Li F, Fang X, Wang DW. Spatiotemporal transcriptomics elucidates the pathogenesis of fulminant viral myocarditis. Signal Transduct Target Ther 2025; 10:59. [PMID: 39924580 PMCID: PMC11808084 DOI: 10.1038/s41392-025-02143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/11/2025] Open
Abstract
Fulminant myocarditis (FM) is a severe inflammatory condition of the myocardium that often results in sudden death, particularly in young individuals. In this study, we employed single-nucleus and spatial transcriptomics to perform a comprehensive analysis of coxsackievirus B3 (CVB3)-induced FM in A/J mice, spanning seven distinct time points pre- and post-treatment. Our findings reveal that mesothelial cells play a critical role in the early stage of myocarditis by acting as primary targets for CVB3 infection. This triggers the activation of macrophages, initiating a cascade of inflammation. Subsequently, pro-inflammatory Inflammatory_Mac and T cells infiltrate the myocardium, driving tissue damage. We also identified Cd8+ effector T cells as key mediators of cardiomyocyte injury. These cells release cytotoxic molecules, particularly IFN-γ, which modulates the expression of Spi1, a factor implicated in exacerbating cardiomyocyte death and amplifying disease progression. Therapeutic interventions targeting the IFN-γ/Spi1 axis demonstrated significant efficacy in FM models. Notably, intravenous immunoglobulin (IVIG) treatment reduced mortality, suppressed viral proliferation, and mitigated the hyperinflammatory state of FM. IVIG therapy also downregulated IFN-γ and Spi1 expression, underscoring its immunomodulatory and therapeutic potential. This comprehensive spatiotemporal transcriptomic analysis provides profound insights into the pathogenesis of FM and highlights actionable therapeutic targets, paving the way for more effective management strategies for this life-threatening condition.
Collapse
Affiliation(s)
- Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xueting Chen
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - James Jiqi Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Juan Shen
- BGI Research, Shenzhen, China
- Lars Bolund Institute of Regenerative Medicine Qingdao-Europe Advanced Institute for LifeSciences, BGI Research, Qingdao, China
| | - Kudusi Abuduwufuer
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zhao Zhang
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | | | - Silian Chen
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Fan Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiaodong Fang
- BGI Research, Sanya, China.
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| |
Collapse
|
26
|
Tsurui T, Hamada K, Mura E, Suzuki R, Iriguchi N, Ishiguro T, Hirasawa Y, Ohkuma R, Shimokawa M, Ariizumi H, Kubota Y, Horiike A, Wada S, Yoshimura K, Tsuji M, Kiuchi Y, Tsunoda T. Evaluation of patient immunocompetence for immune checkpoint inhibitor therapy using the psoas muscle index: a retrospective cohort study. Front Oncol 2025; 15:1499650. [PMID: 39980541 PMCID: PMC11839410 DOI: 10.3389/fonc.2025.1499650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction In patients with cancer, sarcopenia is an indicator of poor prognosis and is associated with an increased risk of chemotherapy-related adverse events. Skeletal muscle interacts with the immune system, and sarcopenia is associated with immune senescence. However, the association between sarcopenia and the response to immune checkpoint inhibitor (ICI) therapy remains unclear. Methods This retrospective study included patients with advanced or recurrent non-small cell lung cancer treated with nivolumab or pembrolizumab monotherapy. The association between the psoas muscle index (PMI) and both clinical response and immune-related adverse events (irAEs) was assessed using logistic regression. The PMI was calculated as the cross-sectional area of the psoas muscle divided by the square of the height based on computed tomography scans performed before the initial administration of ICI therapy. Results A total of 67 patients were included in the analysis. Logistic regression analysis showed that PMI was associated with the overall response (odds ratio [OR]: 1.52; 95% confidence interval [CI]: 1.04-2.22; p = 0.030) and the risk of severe irAEs (OR: 1.72; 95% CI: 1.05-2.80; p = 0.031). Conclusion These findings suggest that PMI is both an indicator of prognosis and a surrogate marker of immunocompetence in predicting the clinical response to ICI therapy.
Collapse
Affiliation(s)
- Toshiaki Tsurui
- Division of Medical Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Kazuyuki Hamada
- Department of Chest Surgery, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Emiko Mura
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Risako Suzuki
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Nana Iriguchi
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Tomoyuki Ishiguro
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Hirasawa
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Ryotaro Ohkuma
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Shimokawa
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Hirotsugu Ariizumi
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Yutaro Kubota
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Horiike
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Wada
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Diagnostic Oncology, Clinical Research Institute of Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Department of Clinical Immuno-Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Yuji Kiuchi
- Division of Medical Pharmacology, Showa University Graduate School of Medicine, Tokyo, Japan
- Pharmacological Research Center, Showa University, Tokyo, Japan
| | - Takuya Tsunoda
- Department of Medical Oncology, Showa University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Buehning F, Lerchner T, Vogel J, Hendgen-Cotta UB, Totzeck M, Rassaf T, Michel L. Preclinical models of cardiotoxicity from immune checkpoint inhibitor therapy. Basic Res Cardiol 2025; 120:171-185. [PMID: 39039301 PMCID: PMC11790694 DOI: 10.1007/s00395-024-01070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapy represents a ground-breaking paradigm in cancer treatment, harnessing the immune system to combat malignancies by targeting checkpoints such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). The use of ICI therapy generates distinctive immune-related adverse events (irAEs) including cardiovascular toxicity, necessitating targeted research efforts. This comprehensive review explores preclinical models dedicated to ICI-mediated cardiovascular complications including myocarditis. Tailored preclinical models of ICI-mediated myocardial toxicities highlight the key role of CD8+ T cells, emphasizing the profound impact of immune checkpoints on maintaining cardiac integrity. Cytokines and macrophages were identified as possible driving factors in disease progression, and at the same time, initial data on possible cardiac antigens responsible are emerging. The implications of contributing factors including thoracic radiation, autoimmune disorder, and the presence of cancer itself are increasingly understood. Besides myocarditis, mouse models unveiled an accelerated progression of atherosclerosis, adding another layer for a thorough understanding of the diverse processes involving cardiovascular immune checkpoint signalling. This review aims to discuss current preclinical models of ICI cardiotoxicity and their potential for improving enhanced risk assessment and diagnostics, offering potential targets for innovative cardioprotective strategies. Lessons from ICI therapy can drive novel approaches in cardiovascular research, extending insights to areas such as myocardial infarction and heart failure.
Collapse
Affiliation(s)
- Florian Buehning
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tobias Lerchner
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Julia Vogel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
28
|
Brauer J, Tumani M, Frey N, Lehmann LH. The cardio-oncologic burden of breast cancer: molecular mechanisms and importance of preclinical models. Basic Res Cardiol 2025; 120:91-112. [PMID: 39621070 PMCID: PMC11790711 DOI: 10.1007/s00395-024-01090-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 02/04/2025]
Abstract
Breast cancer, the most prevalent cancer affecting women worldwide, poses a significant cardio-oncological burden. Despite advancements in novel therapeutic strategies, anthracyclines, HER2 antagonists, and radiation remain the cornerstones of oncological treatment. However, each carries a risk of cardiotoxicity, though the molecular mechanisms underlying these adverse effects differ. Common mechanisms include DNA damage response, increased reactive oxygen species, and mitochondrial dysfunction, which are key areas of ongoing research for potential cardioprotective strategies. Since these mechanisms are also essential for effective tumor cytotoxicity, we explore tumor-specific effects, particularly in hereditary breast cancer linked to BRCA1 and BRCA2 mutations. These genetic variants impair DNA repair mechanisms, increase the risk of tumorigenesis and possibly for cardiotoxicity from treatments such as anthracyclines and HER2 antagonists. Novel therapies, including immune checkpoint inhibitors, are used in the clinic for triple-negative breast cancer and improve the oncological outcomes of breast cancer patients. This review discusses the molecular mechanisms underlying BRCA dysfunction and the associated pathological pathways. It gives an overview of preclinical models of breast cancer, such as genetically engineered mouse models, syngeneic murine models, humanized mouse models, and various in vitro and ex vivo systems and models to study cardiovascular side effects of breast cancer therapies. Understanding the underlying mechanism of cardiotoxicity and developing cardioprotective strategies in preclinical models are essential for improving treatment outcomes and reducing long-term cardiovascular risks in breast cancer patients.
Collapse
Affiliation(s)
- J Brauer
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - M Tumani
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - N Frey
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - L H Lehmann
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
29
|
Gergely TG, Drobni ZD, Sayour NV, Ferdinandy P, Varga ZV. Molecular fingerprints of cardiovascular toxicities of immune checkpoint inhibitors. Basic Res Cardiol 2025; 120:187-205. [PMID: 39023770 PMCID: PMC11790702 DOI: 10.1007/s00395-024-01068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy by unleashing the power of the immune system against malignant cells. However, their use is associated with a spectrum of adverse effects, including cardiovascular complications, which can pose significant clinical challenges. Several mechanisms contribute to cardiovascular toxicity associated with ICIs. First, the dysregulation of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1) and its ligand (PD-L1), and molecular mimicry with cardiac autoantigens, leads to immune-related adverse events, including myocarditis and vasculitis. These events result from the aberrant activation of T cells against self-antigens within the myocardium or vascular endothelium. Second, the disruption of immune homeostasis by ICIs can lead to autoimmune-mediated inflammation of cardiac tissues, manifesting as cardiac dysfunction and heart failure, arrhythmias, or pericarditis. Furthermore, the upregulation of inflammatory cytokines, particularly tumor necrosis factor-alpha, interferon-γ, interleukin-1β, interleukin-6, and interleukin-17 contributes to cardiac and endothelial dysfunction, plaque destabilization, and thrombosis, exacerbating cardiovascular risk on the long term. Understanding the intricate mechanisms of cardiovascular side effects induced by ICIs is crucial for optimizing patient care and to ensure the safe and effective integration of immunotherapy into a broader range of cancer treatment protocols. The clinical implications of these mechanisms underscore the importance of vigilant monitoring and early detection of cardiovascular toxicity in patients receiving ICIs. Future use of these key pathological mediators as biomarkers may aid in prompt diagnosis of cardiotoxicity and will allow timely interventions.
Collapse
Affiliation(s)
- Tamás G Gergely
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zsófia D Drobni
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Nabil V Sayour
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Péter Ferdinandy
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary.
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary.
| |
Collapse
|
30
|
Li S, Tajiri K, Yuan Z, Murakata Y, Song Z, Mizuno S, Xu D, Murakoshi N. 4E-BP3 deficiency impairs dendritic cell activation and CD4 + T cell differentiation and attenuates α-myosin-specific T cell-mediated myocarditis in mice. Basic Res Cardiol 2025; 120:225-240. [PMID: 39516410 DOI: 10.1007/s00395-024-01089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Immune checkpoint inhibitor (ICI)-associated myocarditis is a rare but potentially fatal immune-related adverse event. Previously, we reported a case of ICI-associated myocarditis with elevated autoantibodies to 4E-binding protein 3 (4E-BP3). Recent studies have suggested that 4E-BP3 may play an important role in tumor development. However, its role in cardiac diseases including myocarditis is unknown. We investigated the role of 4E-BP3 in an autoimmune myocarditis mouse model. Myocarditis was induced in wild-type and 4E-BP3 knockout mice by immunization with murine α-myosin peptide. 4E-BP3 gene expression was upregulated in the heart of myocarditis mouse. We found that genetic deletion of 4E-BP3 attenuated myocardial inflammation, reduced fibrosis area, and improved cardiac function in myocarditis mice. Studies in bone marrow-chimeric mice demonstrated that immune cell-derived 4E-BP3 plays a pivotal role in the pathogenesis of myocarditis. Immune cell transfer experiments revealed that 4E-BP3 deficiency in dendritic cells and CD4+ T cells decreased disease severity in recipient mice. Furthermore, dendritic cells that were deficient in 4E-BP3 exhibited a diminished capacity to produce IL-6 and IL-1β. Naive CD4+ T cells lacking 4E-BP3 had a reduced ability to differentiate into T-helper (Th)1 and Th17 cells. These findings suggest that 4E-BP3 in dendritic cells and CD4+ T cells may be critically involved in the pathogenesis of α-myosin-specific T cell-mediated myocarditis. Thus, 4E-BP3 could be a possible therapeutic target for myocarditis.
Collapse
Affiliation(s)
- Siqi Li
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Tajiri
- Tsukuba Life Science Innovation Program (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan.
- Department of Cardiology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan.
| | - Zixun Yuan
- Stanley and Judith Frankel Institute for Heart & Brain Health, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yoshiko Murakata
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Zonghu Song
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Dongzhu Xu
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Tsukuba Life Science Innovation Program (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
31
|
Salem JE, Ederhy S, Belin L, Zahr N, Tubach F, Procureur A, Allenbach Y, Rosenzwjag M, Bretagne M. Abatacept dose-finding phase II triaL for immune checkpoint inhibitors myocarditis (ACHLYS) trial design. Arch Cardiovasc Dis 2025; 118:106-115. [PMID: 39743436 DOI: 10.1016/j.acvd.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI)-induced myocarditis is a life-threatening adverse drug reaction. Abatacept (a CTLA-4-immunoglobulin fusion protein) has been proposed as a compassionate-use treatment for ICI myocarditis (in combination with corticosteroids and ruxolitinib) but no clinical trial has yet been performed. The abatacept dose can be adjusted using real-time assessment of its target, the CD86 receptor occupancy on circulating monocytes (CD86RO). METHODS The ACHLYS trial is an ongoing dose-finding, Phase II, randomized, double-blind trial in which three different abatacept doses are being tested, aiming to reach CD86RO≥80% after the first dose and sustainably during the first 3 weeks of ICI myocarditis treatment (primary outcome). Adult patients with cancer presenting severe or corticosteroid-resistant ICI myocarditis have been included. ICI are withheld after inclusion and for the study duration. Abatacept is administered by intravenous injection on Days 1, 5±2 and 14±2 at 10, 20 or 25mg/kg depending on the randomization arm (n=7 per arm) with concomitant ruxolitinib and corticosteroids. After evaluation of the primary outcome on Day 21, complementary injections of abatacept (for≤3 months) and a ruxolitinib/corticosteroids weaning strategy are standardized depending on criteria evaluating resolution of ICI myocarditis severity (troponin T level and clinical assessment). Secondary objectives compare immunological, myocardial and muscular proxies of treatment response between randomization arms, and cancer progression-free and overall survivals up to 1 year. CONCLUSION The ACHLYS trial will define the most appropriate starting dose of abatacept to treat life-threatening ICI myocarditis, in combination with ruxolitinib and corticosteroids. CLINICALTRIALS GOV: NCT05195645.
Collapse
Affiliation(s)
- Joe-Elie Salem
- Department of pharmacology, Sorbonne Université, Inserm, CIC-1901, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France.
| | - Stephane Ederhy
- Department of Cardiology, AP-HP, Hôpital Saint-Antoine, 75012 Paris, France
| | - Lisa Belin
- Département de santé publique, unité de recherche clinique PSL-CFX, CIC-1901, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Noel Zahr
- Department of pharmacology, Sorbonne Université, Inserm, CIC-1901, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Florence Tubach
- Département de santé publique, unité de recherche clinique PSL-CFX, CIC-1901, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Adrien Procureur
- Department of pharmacology, Sorbonne Université, Inserm, CIC-1901, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Yves Allenbach
- Department of Internal Medicine, Sorbonne Université, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Michelle Rosenzwjag
- Department of pharmacology, Sorbonne Université, Inserm, CIC-1901, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Marie Bretagne
- Department of pharmacology, Sorbonne Université, Inserm, CIC-1901, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
32
|
Makwana B, Malode A, Khadke S, Patel V, Shah R, Patel M, Parikh A, Dani SS, Ganatra S. Cardiac Complications of Immune Checkpoint Inhibitors and Chimeric Antigen Receptor T Cell Therapy. Cardiol Clin 2025; 43:151-167. [PMID: 39551556 DOI: 10.1016/j.ccl.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy have revolutionized cancer treatment but can cause life-threatening cardiovascular toxicities through immune-related adverse events. Myocarditis is the most common and potentially fatal toxicity with immune checkpoint inhibitors. T-cell therapies can potentially lead to cytokine release syndrome. Diagnosis of ICI-myocarditis requires a multimodal approach, including biomarkers, imaging, and endomyocardial biopsy, while CRS is characterized by a clinical syndrome resembling distributive shock. Management involves discontinuing the offending therapy, immunosuppression with corticosteroids for ICI-myocarditis, and interleukin-6 antagonists for CRS. Collaboration between oncologists and cardiologists is crucial for early recognition and prompt treatment.
Collapse
Affiliation(s)
- Bhargav Makwana
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Aishwarya Malode
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Sumanth Khadke
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Vahin Patel
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Rushin Shah
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Manav Patel
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Aneri Parikh
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Sourbha S Dani
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Sarju Ganatra
- Division of Cardiology, Department of Internal Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA; Department of Medicine (Research), Cardio-Oncology Program, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA.
| |
Collapse
|
33
|
Panuccio G, Correale P, d'Apolito M, Mutti L, Giannicola R, Pirtoli L, Giordano A, Labate D, Macheda S, Carabetta N, Abdelwahed YS, Landmesser U, Tassone P, Tagliaferri P, De Rosa S, Torella D. Immuno-related cardio-vascular adverse events associated with immuno-oncological treatments: an under-estimated threat for cancer patients. Basic Res Cardiol 2025; 120:153-169. [PMID: 39225869 PMCID: PMC11790807 DOI: 10.1007/s00395-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy represents an emergent and heterogeneous group of anticancer treatments harnessing the human immune-surveillance system, including immune-checkpoint inhibitor monoclonal antibodies (mAbs), Chimeric Antigen Receptor T Cells (CAR-T) therapy, cancer vaccines and lymphocyte activation gene-3 (LAG-3) therapy. While remarkably effective against several malignancies, these therapies, often in combination with other cancer treatments, have showed unforeseen toxicity, including cardiovascular complications. The occurrence of immuno-mediated adverse (irAEs) events has been progressively reported in the last 10 years. These irAEs present an extended range of severity, from self-limiting to life-threatening conditions. Although recent guidelines in CardioOncology have provided important evidence in managing cancer treatments, they often encompass general approaches. However, a specific focus is required due to the particular etiology, unique risk factors, and associated side effects of immunotherapy. This review aims to deepen the understanding of the prevalence and nature of cardiovascular issues in patients undergoing immunotherapy, offering insights into strategies for risk stratification and management.
Collapse
Affiliation(s)
- Giuseppe Panuccio
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany.
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Pierpaolo Correale
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Maria d'Apolito
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Applied Sciences and Biotechnology, Università dell'Aquila, L'Aquila, Italy
| | - Rocco Giannicola
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, 53100, Siena, Italy
| | - Demetrio Labate
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Youssef S Abdelwahed
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), 10785, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), 10785, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
34
|
Martín P, Sánchez-Madrid F. T cells in cardiac health and disease. J Clin Invest 2025; 135:e185218. [PMID: 39817455 PMCID: PMC11735099 DOI: 10.1172/jci185218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, with inflammation playing a pivotal role in its pathogenesis. T lymphocytes are crucial components of the adaptive immune system that have emerged as key mediators in both cardiac health and the development and progression of CVD. This Review explores the diverse roles of T cell subsets, including Th1, Th17, γδ T cells, and Tregs, in myocardial inflammatory processes such as autoimmune myocarditis and myocardial infarction. We discuss the contribution of T cells to myocardial injury and remodeling, with emphasis on specific immune receptors, e.g., CD69, that have a critical role in regulating immune tolerance and maintaining the balance between T cell subsets in the heart. Additionally, we offer a perspective on recent advances in T cell-targeted therapies and their potential to modulate immune responses and improve clinical outcomes in patients with CVD and in heart transplant recipients. Understanding the intricate interplay between T cells and cardiovascular pathology is essential for developing novel immunotherapeutic strategies against CVD.
Collapse
Affiliation(s)
- Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Immunology, IIS Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
35
|
Lu Y, Gao J, Hou Y, Yang H, Wang D, Zhang G, Qin Z, Du P, Wang Z, Wang Y, Chen Q, Sun Z, Li P, Zhang J, Tang J. Targeting the NLRP3 inflammasome abrogates cardiotoxicity of immune checkpoint blockers. J Immunother Cancer 2025; 13:e010127. [PMID: 39773567 PMCID: PMC11749606 DOI: 10.1136/jitc-2024-010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many malignant tumors. However, ICI-induced hyper-immune activation causes cardiotoxicity. Traditional treatments such as glucocorticoids and immunosuppressants have limited effectiveness and may even accelerate tumor growth. This study aimed to identify approaches that effectively reduce cardiotoxicity and simultaneously preserve or enhance the antitumor immunity of ICI therapy. METHODS ICI injection in melanoma-bearing C57BL/6J female mice was used to simulate cardiotoxicity in patients with tumor undergoing immune therapy. MCC950 was used to block nod-like receptor protein 3 (NLRP3) inflammasome activity. Echocardiography, immunofluorescence, flow cytometry, and reverse transcription quantitative polymerase chain reaction were used to assess cardiac function, immune cell populations, and inflammatory factor levels. Bulk and single-cell RNA sequencing was used to detect the changes in cardiac transcriptome and immunological network. RESULTS NLRP3 inhibition reduced inflammatory response and improved cardiac function. Notably, NLRP3 inhibition also resulted in a pronounced suppression of tumor growth. Single-cell RNA sequencing elucidated that MCC950 treatment reduced the cardiac infiltration of pathogenic macrophages, cytotoxic T cells, activated T cells, and their production of inflammatory cytokines, while enhancing the presence of reparative macrophages and naive T cells. In addition, MCC950 attenuated cardiotoxicity induced by dual programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) immunotherapy and promoted tumor regression, and showed efficacy in treating established cardiotoxicity. CONCLUSIONS Our findings provide a promising clinical approach for preventing and treating cardiotoxicity induced by ICIs, dissociating the antitumor efficacy of ICI-based therapies from their cardiotoxic side effects.
Collapse
Affiliation(s)
- Yang Lu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jiamin Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yachen Hou
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Han Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Dashuai Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zhen Qin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Pengchong Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zhenwei Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yunzhe Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Quanzhou Chen
- Department of Nutrition, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaowei Sun
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Ping Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| |
Collapse
|
36
|
Schoenherr C, Pietzsch S, Barca C, Müller FE, Bahr FS, Kasten M, Zeug A, Erschow S, Falk CS, Ponimaskin E, Thackeray JT, Hilfiker-Kleiner D, Ricke-Hoch M. Immune-checkpoint-inhibitor therapy directed against PD-L1 is tolerated in the heart without manifestation of cardiac inflammation in a preclinical reversible melanoma mouse model. FRONTIERS IN MOLECULAR MEDICINE 2025; 4:1487526. [PMID: 39834851 PMCID: PMC11743445 DOI: 10.3389/fmmed.2024.1487526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Immune-checkpoint-inhibitors (ICI) target key regulators of the immune system expressed by cancer cells that mask those from recognition by the immune system. They have improved the outcome for patients with various cancer types, such as melanoma. ICI-based therapy is frequently accompanied by immune-related adverse side effects (IRAEs). The reversible melanoma cancer mouse model (B16F10 cells stably expressing a ganciclovir (GCV)-inducible suicide gene in C57BL/6N mice: B16F10-GCV) allows chemotherapy-free tumor elimination in advanced disease stage and demonstrates almost complete recovery of the mouse heart from cancer-induced atrophy, molecular impairment and heart failure. Thus, enabling the study of anti-cancer-therapy effects. Here, we analyzed potential cardiac side effects of antibody-mediated PD-L1 inhibition in the preclinical B16F10-GCV mouse model after tumor elimination and 2 weeks recovery (50 days after tumor inoculation). Anti-PD-L1 treatment was associated with improved survival as compared to isotype control (Ctrl) treated mice. Surviving anti-PD-L1 and Ctrl mice showed similar cardiac function, dimensions and the expression of cardiac stress and hypertrophy markers. Although anti-PD-L1 treatment was associated with increased troponin I type 3 cardiac (TNNI3) blood levels, cardiac mRNA expression of macrophage markers and elevated cardiac levels of secreted inflammatory factors compared to Ctrl treatment, both groups showed a comparable density of inflammatory cells in the heart (using CXCR4-ligand 68Ga-Pentixafor in PET-CT and immunohistochemistry). Thus, anti-PD-L1 therapy improved survival in mice with advanced melanoma cancer with no major cardiac phenotype or inflammation 50 days after tumor inoculation. Without a second hit that triggers the inflammatory response, anti-PD-L1 treatment appears to be safe for the heart in the preclinical melanoma mouse model.
Collapse
Affiliation(s)
- Caroline Schoenherr
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Stefan Pietzsch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Cristina Barca
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Franziska E. Müller
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Frauke S. Bahr
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Martina Kasten
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Sergej Erschow
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Christine S. Falk
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - James T. Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Complications of Oncologic Therapies, Medical Faculty of the Philipps University Marburg, Marburg, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
37
|
Xu Q, Hu J, Wang Y, Wang Z. The role of tumor types in immune-related adverse events. Clin Transl Oncol 2024:10.1007/s12094-024-03798-6. [PMID: 39738878 DOI: 10.1007/s12094-024-03798-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/13/2024] [Indexed: 01/02/2025]
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that block inhibitors of T cell activation and function. With the widespread use of ICIs in cancer therapy, immune-related adverse events (irAEs) have gradually emerged as urgent clinical issues. Tumors not only exhibit high heterogeneity, and their response to ICIs varies, with "hot" tumors showing better anti-tumor effects but also a higher susceptibility to irAEs. The manifestation of irAEs displays a tumor-heterogeneous pattern, correlating with the tumor type in terms of the affected organs, incidence, median onset time, and severity. Understanding the mechanisms underlying the pathogenic patterns of irAEs can provide novel insights into the prevention and management of irAEs, guide the development of biomarkers, and contribute to a deeper understanding of the toxicological characteristics of ICIs. In this review, we explore the impact of tumor type on the therapeutic efficacy of ICIs and further elucidate how these tumor types influence the occurrence of irAEs. Finally, we assess key candidate biomarkers and their relevance to proposed irAE mechanisms. This paper also outlines management strategies for patients with various types of tumors, based on their disease patterns.
Collapse
Affiliation(s)
- Qian Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Jing Hu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Yan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| | - Zhaohui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| |
Collapse
|
38
|
Pi JK, Chen XT, Zhang YJ, Chen XM, Wang YC, Xu JY, Zhou JH, Yu SS, Wu SS. Insight of immune checkpoint inhibitor related myocarditis. Int Immunopharmacol 2024; 143:113559. [PMID: 39536487 DOI: 10.1016/j.intimp.2024.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
As the understanding of immune-related mechanisms in the development and progression of cancer advances, immunotherapies, notably Immune Checkpoint Inhibitors (ICIs), have become integral in comprehensive cancer treatment strategies. ICIs reactivate T-cell cytotoxicity against tumors by blocking immune suppressive signals on T cells, such as Programmed Death-1 (PD-1) and Cytotoxic T-lymphocyte Antigen-4 (CTLA-4). Despite their beneficial effects, ICIs are associated with immune-related adverse events (irAEs), manifesting as autoimmune side effects across various organ systems. A particularly alarming irAE is life-threatening myocarditis. This rare but severe side effect of ICIs leads to significant long-term cardiac complications, including arrhythmias and heart failure, and has been observed to have a mortality rate of up to 50% in affected patients. This greatly limits the clinical application of ICI-based immunotherapy. In this review, we provide a comprehensive summary of the current knowledge regarding the diagnosis and management of ICI-related myocarditis. We also discuss the utility of preclinical mouse models in understanding and addressing this critical challenge.
Collapse
Affiliation(s)
- Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiao-Ting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan-Jing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue-Mei Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yin-Chan Wang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jia-Yi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jin-Han Zhou
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shuai-Shuai Yu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Si-Si Wu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
39
|
Fan H, Tan X, Xu S, Zeng Y, Zhang H, Shao T, Zhao R, Zhou P, Bo X, Fan J, Fu Y, Ding X, Zhou Y. Identification and validation of differentially expressed disulfidptosis-related genes in hypertrophic cardiomyopathy. Mol Med 2024; 30:249. [PMID: 39701955 DOI: 10.1186/s10020-024-01024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most common cardiovascular diseases with no effective treatment due to its complex pathogenesis. A novel cell death, disulfidptosis, has been extensively studied in the cancer field but rarely in cardiovascular diseases. This study revealed the potential relationship between disulfidptosis and hypertrophic cardiomyopathy and put forward a predictive model containing disulfidptosis-associated genes (DRGs) of GYS1, MYH10, PDMIL1, SLC3A2, CAPZB, showing excellent performance by SVM machine learning model. The results were further validated by western blot, RNA sequencing and immunohistochemistry in a TAC mice model. In addition, resveratrol was selected as a therapeutic drug targeting core genes using the CTD database. In summary, this study provides new perspectives for exploring disulfidptosis-related biomarkers and potential therapeutic targets for hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Huimin Fan
- Center of Translational Medicine and Clinical Laboratory, Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital to Soochow University, Suzhou, 215000, China
| | - Xin Tan
- Department of Cardiology, Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, 215000, China
- Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Shuai Xu
- Department of Cardiology, Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, 215000, China
- Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Yiyao Zeng
- Department of Cardiology, Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, 215000, China
- Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Hailong Zhang
- Center of Translational Medicine and Clinical Laboratory, Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital to Soochow University, Suzhou, 215000, China
| | - Tong Shao
- Center of Translational Medicine and Clinical Laboratory, Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital to Soochow University, Suzhou, 215000, China
| | - Runze Zhao
- Center of Translational Medicine and Clinical Laboratory, Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital to Soochow University, Suzhou, 215000, China
| | - Peng Zhou
- Center of Translational Medicine and Clinical Laboratory, Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital to Soochow University, Suzhou, 215000, China
| | - Xiaohong Bo
- Department of Cardiovascular Disease, Taihe County People's Hospital, Fuyang, 236600, China
| | - Jili Fan
- Department of Cardiovascular Disease, Taihe County People's Hospital, Fuyang, 236600, China
| | - Yangjun Fu
- Department of Neurology, The Third People's Hospital of Hefei, Hefei City, Anhui Province, 230041, China
| | - Xulong Ding
- Center of Translational Medicine and Clinical Laboratory, Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital to Soochow University, Suzhou, 215000, China.
| | - Yafeng Zhou
- Department of Cardiology, Suzhou Dushu Lake Hospital, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou, 215000, China.
- Institute for Hypertension, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
40
|
Beecher G, Pinal-Fernandez I, Mammen AL, Liewluck T. Immune Checkpoint Inhibitor Myopathy: The Double-Edged Sword of Cancer Immunotherapy. Neurology 2024; 103:e210031. [PMID: 39514829 DOI: 10.1212/wnl.0000000000210031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of several malignancies, with improved survival. These monoclonal antibodies target immune checkpoints, including cytotoxic T-lymphocyte-associated protein 4 (ipilimumab and tremelimumab), programmed death 1 (nivolumab, pembrolizumab, cemiplimab, and dostarlimab), programmed death ligand 1 (atezolizumab, avelumab, and durvalumab), and lymphocyte activation gene 3 (relatlimab), and effectively augment the immune response against tumor cells. Releasing the brakes on the immune system has consequences, however, in the form of immune-related adverse events (irAEs), which may affect any organ. Neurologic irAEs represent 1%-3% of all irAEs, with immune-mediated myopathy (ICI myopathy) being the most common manifestation. Recent large patient series and systematic reviews have established the key features and highlighted new insights into ICI myopathy. ICI myopathy is characterized by an acute or subacute onset of oculobulbar and/or proximal limb weakness, with or without associated respiratory insufficiency and myocarditis. Creatine kinase elevation is common. Oculobulbar presentations with or without respiratory failure may be misattributed to neuromuscular junction disorders, particularly because acetylcholine receptor antibodies are present in up to 40% of patients; however, an electrodiagnostic evidence of a defect of neuromuscular transmission is often absent even in patients with severe weakness, highlighting that the myopathic process is the driving force behind these presentations. Muscle histopathology commonly demonstrates a unique signature of multifocal clusters of necrotic and regenerating fibers, differentiating ICI myopathy from other autoimmune myopathies. Transcriptomic analysis has uncovered distinct subgroups within ICI myopathy, revealing varying degrees of type 1 and type 2 interferon pathway activation alongside notable upregulation of the interleukin (IL)-6 pathway in affected muscle tissue. This discovery presents a promising avenue for intervention through the use of therapies that suppress the interferon pathway and target IL-6 or its receptor. Despite clinical improvements with immunomodulatory therapy, with corticosteroids the mainstay of treatment, mortality remains high, particularly in those with associated myocarditis or respiratory failure requiring intubation, where mortality occurs in up to 50%. ICI withdrawal can lead to cancer progression and death, highlighting a need for improved approaches to ICI rechallenge, performed in limited patients with variable success to date.
Collapse
Affiliation(s)
- Grayson Beecher
- From the Division of Neurology (G.B.), Department of Medicine, University of Alberta, Edmonton, Canada; Muscle Disease Section (I.P.-F., A.L.M.), National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda; Department of Neurology (I.P.-F., A.L.M.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (T.L.), Mayo Clinic, Rochester, MN
| | - Iago Pinal-Fernandez
- From the Division of Neurology (G.B.), Department of Medicine, University of Alberta, Edmonton, Canada; Muscle Disease Section (I.P.-F., A.L.M.), National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda; Department of Neurology (I.P.-F., A.L.M.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (T.L.), Mayo Clinic, Rochester, MN
| | - Andrew L Mammen
- From the Division of Neurology (G.B.), Department of Medicine, University of Alberta, Edmonton, Canada; Muscle Disease Section (I.P.-F., A.L.M.), National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda; Department of Neurology (I.P.-F., A.L.M.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (T.L.), Mayo Clinic, Rochester, MN
| | - Teerin Liewluck
- From the Division of Neurology (G.B.), Department of Medicine, University of Alberta, Edmonton, Canada; Muscle Disease Section (I.P.-F., A.L.M.), National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda; Department of Neurology (I.P.-F., A.L.M.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (T.L.), Mayo Clinic, Rochester, MN
| |
Collapse
|
41
|
Huang N, Ortega J, Kimbrell K, Lee J, Scott LN, Peluso EM, Wang SJ, Kao E, Kim K, Olay J, Quandt Z, Angell TE, Su MA, Lechner MG. Polyfunctional IL-21 + IFNG + T follicular helper cells contribute to checkpoint inhibitor diabetes mellitus and can be targeted by JAK inhibitor therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625710. [PMID: 39677814 PMCID: PMC11642801 DOI: 10.1101/2024.11.27.625710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized cancer therapy, but their use is limited by the development of autoimmunity in healthy tissues as a side effect of treatment. Such immune-related adverse events (IrAE) contribute to hospitalizations, cancer treatment interruption and even premature death. ICI-induced autoimmune diabetes mellitus (ICI-T1DM) is a life-threatening IrAE that presents with rapid pancreatic beta-islet cell destruction leading to hyperglycemia and life-long insulin dependence. While prior reports have focused on CD8+ T cells, the role for CD4+ T cells in ICI-T1DM is less understood. Here, we identify expansion CD4+ T follicular helper (Tfh) cells expressing interleukin 21 (IL-21) and interferon gamma (IFNG) as a hallmark of ICI-T1DM. Furthermore, we show that both IL-21 and IFNG are critical cytokines for autoimmune attack in ICI-T1DM. Because IL-21 and IFNG both signal through JAK-STAT pathways, we reasoned that JAK inhibitors (JAKi) may protect against ICI-T1DM. Indeed, JAKi provide robust in vivo protection against ICI-T1DM in a mouse model that is associated with decreased islet-infiltrating Tfh cells. Moreover, JAKi therapy impaired Tfh cell differentiation in patients with ICI-T1DM. These studies highlight CD4+ Tfh cells as underrecognized but critical mediators of ICI-T1DM that may be targeted with JAKi to prevent this grave IrAE.
Collapse
Affiliation(s)
- Nicole Huang
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | | | - Kyleigh Kimbrell
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | - Joah Lee
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | | | - Esther M. Peluso
- UCLA/California Institute of Technology Medical Scientist Training Program, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
| | - Sarah J. Wang
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | - Ellie Kao
- California State Polytechnic University, Pomona, CA 91768
| | - Kristy Kim
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| | - Jarod Olay
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
| | - Zoe Quandt
- Division of Endocrinology and Metabolism, University of California San Francisco Medical School, San Francisco, CA 94143
| | - Trevor E. Angell
- Division of Endocrinology and Diabetes, University of Southern California Keck School of Medicine; Los Angeles, CA 90033
| | - Maureen A. Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Division of Pediatric Endocrinology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Melissa G. Lechner
- Division of Endocrinology, Diabetes, and Metabolism, University of California Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA 90095
| |
Collapse
|
42
|
Blum SM, Zlotoff DA, Smith NP, Kernin IJ, Ramesh S, Zubiri L, Caplin J, Samanta N, Martin S, Wang M, Tirard A, Song Y, Xu KH, Barth J, Sen P, Slowikowski K, Tantivit J, Manakongtreecheep K, Arnold BY, Nasrallah M, Pinto CJ, McLoughlin D, Jackson M, Chan P, Lawless A, Michaud WA, Sharova T, Nieman LT, Gainor JF, Wu CJ, Juric D, Mino-Kenudson M, Oliveira G, Sullivan RJ, Boland GM, Stone JR, Thomas MF, Neilan TG, Reynolds KL, Villani AC. Immune responses in checkpoint myocarditis across heart, blood and tumour. Nature 2024; 636:215-223. [PMID: 39506125 DOI: 10.1038/s41586-024-08105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Immune checkpoint inhibitors are widely used anticancer therapies1 that can cause morbid and potentially fatal immune-related adverse events such as immune-related myocarditis (irMyocarditis)2-5. The pathogenesis of irMyocarditis and its relationship to antitumour immunity remain poorly understood. Here we sought to define immune responses in heart, tumour and blood in patients with irMyocarditis by leveraging single-cell RNA sequencing coupled with T cell receptor (TCR) sequencing, microscopy and proteomics analyses of samples from 28 patients with irMyocarditis and 41 unaffected individuals. Analyses of 84,576 cardiac cells by single-cell RNA sequencing combined with multiplexed microscopy demonstrated increased frequencies and co-localization of cytotoxic T cells, conventional dendritic cells and inflammatory fibroblasts in irMyocarditis heart tissue. Analyses of 366,066 blood cells revealed decreased frequencies of plasmacytoid dendritic cells, conventional dendritic cells and B lineage cells but an increased frequency of other mononuclear phagocytes in irMyocarditis. Fifty-two heart-expanded TCR clones from eight patients did not recognize the putative cardiac autoantigens α-myosin, troponin I or troponin T. Additionally, TCRs enriched in heart tissue were largely nonoverlapping with those enriched in paired tumour tissue. The presence of heart-expanded TCRs in a cycling blood CD8 T cell population was associated with fatal irMyocarditis case status. Collectively, these findings highlight crucial biology driving irMyocarditis and identify putative biomarkers.
Collapse
Affiliation(s)
- Steven M Blum
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Mass General Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel A Zlotoff
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Isabela J Kernin
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Swetha Ramesh
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Leyre Zubiri
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Mass General Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Joshua Caplin
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nandini Samanta
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sidney Martin
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mike Wang
- Mass General Cancer Center, Boston, MA, USA
| | - Alice Tirard
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yuhui Song
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine H Xu
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jaimie Barth
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Pritha Sen
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Transplant, Oncology and Immunocompromised Host Program, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Rheumatology, North Shore Physicians Group, Department of Medicine, Mass General Brigham Healthcare Center, Lynn, MA, USA
| | - Kamil Slowikowski
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kasidet Manakongtreecheep
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin Y Arnold
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mazen Nasrallah
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Rheumatology, North Shore Physicians Group, Department of Medicine, Mass General Brigham Healthcare Center, Lynn, MA, USA
| | - Christopher J Pinto
- Mass General Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel McLoughlin
- Mass General Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Monica Jackson
- Mass General Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - PuiYee Chan
- Mass General Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Aleigha Lawless
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - William A Michaud
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Tatyana Sharova
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Linda T Nieman
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Justin F Gainor
- Mass General Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Catherine J Wu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dejan Juric
- Mass General Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Giacomo Oliveira
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ryan J Sullivan
- Mass General Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Genevieve M Boland
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - James R Stone
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Molly F Thomas
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Oregon Health and Sciences University, Portland, OR, USA
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA
| | - Tomas G Neilan
- Harvard Medical School, Boston, MA, USA
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kerry L Reynolds
- Mass General Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
43
|
Zhou B, Qin Q, Fang Y, Liu X, Zhang M, Wang S, Zhong L, Guo R. Exosomes from human bone marrow MSCs alleviate PD-1/PD-L1 inhibitor-induced myocardial injury in melanoma mice by regulating macrophage polarization and pyroptosis. Life Sci 2024; 358:123108. [PMID: 39374773 DOI: 10.1016/j.lfs.2024.123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Myocarditis, which can be triggered by immune checkpoint inhibitor (ICI) treatment, represents a critical and severe adverse effect observed in cancer therapy. Thus, elucidating the underlying mechanism and developing effective strategies to mitigate its harmful impact is of utmost importance. The objective of this study is to investigate the potential role and regulatory mechanism of exosomes derived from human bone marrow mesenchymal stem cells (hBMSC-Exos) in providing protection against myocardial injury induced by ICIs. We observed that the administration of programmed death 1/programmed death-ligand 1 (PD-1/PD-L1) inhibitor BMS-1 in tumor-bearing mice led to evident cardiac dysfunction and myocardial injury, which were closely associated with M1 macrophage polarization and cardiac pyroptosis. Remarkably, these adverse effects were significantly alleviated through tail-vein injection of hBMSC-Exos. Moreover, either BMS-1 or hBMSC-Exos alone demonstrated the ability to reduce tumor size, while the combination of hBMSC-Exos with BMS-1 treatment not only effectively improved the probability of tumor inhibition but also alleviated cardiac anomalies induced by BMS-1.
Collapse
Affiliation(s)
- Bingqian Zhou
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Qin Qin
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yue Fang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xiaoyu Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Mengyu Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shuo Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
44
|
Yan P, Yang S, Wang T. Management Status of Myocarditis-Related Sudden Cardiac Death. Rev Cardiovasc Med 2024; 25:452. [PMID: 39742233 PMCID: PMC11683716 DOI: 10.31083/j.rcm2512452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 01/03/2025] Open
Abstract
Myocarditis, a life-threatening disease that can result in cardiac arrest and sudden cardiac death, has garnered significant attention in recent years. This review provides a comprehensive overview of the management of myocarditis-related sudden cardiac death, encompassing its pathology, diagnostic methods, therapeutic strategies, preventive measures, prognostic factors, and risk stratification. Additionally, the review highlights current challenges and future directions in this field. The aim is to enhance understanding of myocarditis-related sudden cardiac death and inform clinical practice, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Ping Yan
- Department of General Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510062 Guangzhou, Guangdong, China
| | - Shujun Yang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, 518033 Shenzhen, Guangdong, China
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, 518033 Shenzhen, Guangdong, China
| |
Collapse
|
45
|
Jensen G, Wang X, Kuempel J, Chen Z, Yu W, Palaskas N, Sobieski M, Nguyen N, Powell RT, Stephan C, Luo W, Chang J. Modeling immune checkpoint inhibitor associated myocarditis in vitro and its therapeutic implications. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 10:100122. [PMID: 39742339 PMCID: PMC11687339 DOI: 10.1016/j.jmccpl.2024.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Immune checkpoint inhibitor-associated myocarditis is the most lethal side effect of immune checkpoint blockade. Myocarditis leads to persistently increased mortality and lacks effective treatments. The development of patient-relevant disease models may enable disease prediction, increased understanding of disease pathophysiology, and the development of effective treatment strategies. Here, we report a new method to model immune checkpoint inhibitor-associated myocarditis in vitro via a co-culture of activated primary human immune cells, human induced pluripotent stem cell-derived cardiomyocytes, and FDA-approved immune checkpoint inhibitors to recapitulate myocarditis in vitro. Significant cardiomyocyte necrosis, arrhythmia development, and sarcomere destruction occur, replicating clinical findings from myocarditis. This tissue culture myocarditis phenotype may rely on an induced pluripotent stem cell-derived cardiomyocyte antigen-specific CD8+ T cell response. The administration of dexamethasone rescued cardiomyocyte viability, morphology, and electrophysiology and suppressed inflammatory cytokine production. In conclusion, we detail how this platform can effectively model and provide critical information about the morphological and electrophysiological changes induced by immune checkpoint inhibitor-associated myocarditis. We have also validated the ability of this platform to screen potential medications to treat immune checkpoint inhibitor-associated myocarditis. This work establishes a robust, scalable model for identifying new therapies and risk factors, which is valuable in delineating the nature of interactions between the immune system and the heart during myocarditis.
Collapse
Affiliation(s)
- Garrett Jensen
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Xinjie Wang
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Jacob Kuempel
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Zhishi Chen
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Wei Yu
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Nicolas Palaskas
- The MD Anderson Cancer Center Department of Cardiology, United States of America
| | - Mary Sobieski
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Nghi Nguyen
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Reid T. Powell
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Clifford Stephan
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Weijia Luo
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Jiang Chang
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| |
Collapse
|
46
|
Mallidi J, Baylis R, Song EJ. Management of Cancer Therapy-Related Cardiac Dysfunction: A Case-Based Review. Am J Cardiol 2024; 231:20-31. [PMID: 39233062 DOI: 10.1016/j.amjcard.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
With an ever-expanding repertoire of cancer therapies, cardiologists increasingly encounter patients with cancer therapy-related cardiac dysfunction. This can range from asymptomatic mild left ventricular dysfunction to severe symptomatic congestive heart failure. A multidisciplinary approach involving oncologists and cardiologists is needed in the management of these patients. This case-based review provides a practical guide for clinicians regarding the diagnosis and management of cancer therapy-related cardiac dysfunction associated with commonly used cancer treatments: anthracyclines, human epidermal receptor 2-targeted therapies, and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Jaya Mallidi
- Division of Cardiology, Department of Medicine, Zuckerberg San Francisco General Hospital; Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California.
| | - Richard Baylis
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Evelyn J Song
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
47
|
Vergara A, De Felice M, Cesaro A, Gragnano F, Pariggiano I, Golia E, De Pasquale A, Blasi E, Fimiani F, Monda E, Limongelli G, Calabrò P. Immune-Checkpoint Inhibitor-Related Myocarditis: Where We Are and Where We Will Go. Angiology 2024; 75:909-920. [PMID: 37699402 DOI: 10.1177/00033197231201929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are specific monoclonal antibodies directed against inhibitory targets of the immune system, mainly represented by programmed death-1 (PD1) ligand-1 (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4), thus enabling an amplified T-cell-mediated immune response against cancer cells. These drugs have significantly improved prognosis in patients with advanced metastatic cancer (e.g., melanoma, non-small cell lung cancer, renal cell carcinoma). However, uncontrolled activation of anti-tumor T-cells could trigger an excessive immune response, possibly responsible for multi-organ damage, including, among others, lymphocytic myocarditis. The incidence of ICIs-induced myocarditis is underestimated and the patients affected are poorly characterized. The diagnosis and management of this condition are mainly based on expert opinion and case reports. EKG and ultrasound are tests that can help identify patients at risk of myocarditis during treatment by red flags, such as QRS complex enlargement and narrowing of global longitudinal strain (GLS). Therapy of ICI-related myocarditis is based on immunosuppressors, monoclonal antibodies and fusion proteins. A future strategy could involve the use of microRNAs. This review considers the current state of the art of immune-related adverse cardiovascular events, focusing on histological and clinical features, diagnosis and management, including current treatments and future pharmacological targets.
Collapse
Affiliation(s)
- Andrea Vergara
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Marco De Felice
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Division of Oncology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Ivana Pariggiano
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Enrica Golia
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Antonio De Pasquale
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Ettore Blasi
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| | - Fabio Fimiani
- Unit of Inherited and Rare Cardiovascular Diseases, A.O.R.N. Dei Colli "V. Monaldi", Naples, Italy
| | - Emanuele Monda
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Unit of Inherited and Rare Cardiovascular Diseases, A.O.R.N. Dei Colli "V. Monaldi", Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Unit of Inherited and Rare Cardiovascular Diseases, A.O.R.N. Dei Colli "V. Monaldi", Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Caserta, Italy
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta, Italy
| |
Collapse
|
48
|
Jia Y, Wu Q, Yang Z, Sun R, Zhang K, Guo X, Xu R, Guo Y. Mechanisms of myocardial toxicity of antitumor drugs and potential therapeutic strategies: A review of the literature. Curr Probl Cardiol 2024; 49:102782. [PMID: 39134104 DOI: 10.1016/j.cpcardiol.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
With the successive development of chemotherapy drugs, good results have been achieved in clinical application. However, myocardial toxicity is the biggest challenge. Anthracyclines, immune checkpoint inhibitors, and platinum drugs are widely used. Targeted drug delivery, nanomaterials and dynamic imaging evaluation are all emerging research directions. This article reviews the recent literature on the use of targeted nanodrug delivery and imaging techniques to evaluate the myocardial toxicity of antineoplastic drugs, and discusses the potential mechanisms.
Collapse
Affiliation(s)
- Yang Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Qihong Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhigang Yang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu 610041, China
| | - Ran Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Kun Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Xia Guo
- Department of Hematology, West China Second University Hospital, Sichuan University; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Rong Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
49
|
Liu S, Wang Y, Feng J, Liu Z, Zhou S. Building an Organ-Wide Macroscopic View of Cancer Hallmarks. Cancer Discov 2024; 14:2041-2046. [PMID: 39485247 DOI: 10.1158/2159-8290.cd-24-0833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 11/03/2024]
Abstract
Despite an increasingly detailed understanding of cancer hallmarks at molecular or atomic resolution, most studies, however, fall short of investigating the systemic interactions of cancer with the human body. We propose to investigate the hallmarks of cancer from an organ-wide macroscopic view, discuss the challenges in preclinical and clinical research to study the cross-organ regulation of cancer together with potential directions to overcome these challenges, and foresee how this holistic view may be translated into more effective therapies.
Collapse
Affiliation(s)
- Suling Liu
- State Key Laboratory of Genetic Engineering, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Cancer Institutes, Shanghai, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiawen Feng
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
50
|
Wang C, Fan P, Wang Q. Evolving therapeutics and ensuing cardiotoxicities in triple-negative breast cancer. Cancer Treat Rev 2024; 130:102819. [PMID: 39216183 DOI: 10.1016/j.ctrv.2024.102819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Defined as scarce expression of hormone receptors and human epidermal growth factor receptor 2, triple-negative breast cancer (TNBC) is labeled as the most heterogeneous subtype of breast cancer with poorest prognosis. Despite rapid advancements in precise subtyping and tailored therapeutics, the ensuing cancer therapy-related cardiovascular toxicity (CTR-CVT) could exert detrimental impacts to TNBC survivors. Nowadays, this interdisciplinary issue is incrementally concerned by cardiologists, oncologists and other pertinent experts, propelling cardio-oncology as a booming field focusing on the whole-course management of cancer patients with potential cardiovascular threats. Here in this review, we initially profile the evolving molecular subtyping and therapeutic landscape of TNBC. Further, we introduce various monitoring approaches of CTR-CVT. In the main body, we elaborate on typical cardiotoxicities ensuing anti-TNBC treatments in detail, ranging from chemotherapy (especially anthracyclines), surgery, anesthetics, radiotherapy to immunotherapy, with future perspectives on promising directions in the era of artificial intelligence and traditional Chinese medicine.
Collapse
Affiliation(s)
- Chongyu Wang
- Department of Medicine, Xinglin College, Nantong University, Nantong 226007, Jiangsu, China
| | - Pinchao Fan
- The First Clinical Medical College, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Sir Run Run Hospital, Nanjing Medical University, Nanjing 211112, Jiangsu, China
| | - Qingqing Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|