1
|
Kharkivska Y, Kim DH, Shkel O, Lee SH, Jeong YT, Kim YK, Song CS, Lee JS. Dual effects of Korean red ginseng extract and its fractions on influenza A virus infectivity in lung-derived cell lines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156683. [PMID: 40203471 DOI: 10.1016/j.phymed.2025.156683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/26/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Influenza infections are significantly affected by the genetics of the viruses and the cells they infect. Our previous studies showed that various influenza A subtypes uniquely infect different cell lines, offering insights into viral infection mechanisms. Meanwhile, Korean red ginseng extract (RGE) is known for its anti-influenza properties, attributed to its rich composition of saponin and non-saponin components. PURPOSE This study evaluates the antiviral effects of RGE and its non-saponin (GNSF) and saponin (GSF) fractions against H1N1 and H9N2 influenza A subtypes in diverse cell lines. STUDY DESIGN Using various cell types and specialized assays, we explored the effect of pretreatment and continuous treatment with RGE and its fractions on viral infectivity and subsequent cellular responses. METHODS We treated several cell lines with varying concentrations of RGE, GNSF, and GSF and measured the cytotoxic effect, viral infectivity, oxidative stress levels, immune responses, autophagy activity, and changes in cellular structure. RESULTS Our findings demonstrate that RGE and its fractions significantly reduced H9N2 infection levels across multiple cell lines under pretreatment and continuous treatment conditions. However, continuous treatment elicited variable responses to H1N1, with increased infection levels in certain cell lines. Additionally, it elevated the production of reactive oxygen species and altered inflammatory responses, especially in A549 and NCI-H292 cells. GSF also modulated autophagy activity and MUC1 expression in response to H1N1. CONCLUSION These findings highlight the potential of ginseng components as targeted influenza treatment, with cell line-specific responses that could guide treatment approaches.
Collapse
Affiliation(s)
- Yevheniia Kharkivska
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, South Korea; Brain Disorders Research Center, Brain Science Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Dong Hoon Kim
- Department of Pharmacology, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Olha Shkel
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, South Korea; Brain Disorders Research Center, Brain Science Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Sun-Hak Lee
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Young Taek Jeong
- Department of Pharmacology, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Yun Kyung Kim
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, South Korea; Brain Disorders Research Center, Brain Science Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea.
| | - Chang Sun Song
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea.
| | - Jun-Seok Lee
- Department of Pharmacology, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
2
|
Larrous P, Garnier C, Morel M, Martin MM, Zarrouk K, Maesen S, Matkovic R, Cimarelli A, Etienne L, Margottin-Goguet F. Deciphering lentiviral Vpr/Vpx determinants required for HUSH and SAMHD1 antagonism highlights the molecular plasticity of these evolutionary conflicts. J Virol 2025:e0019825. [PMID: 40261013 DOI: 10.1128/jvi.00198-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/22/2025] [Indexed: 04/24/2025] Open
Abstract
SAMHD1 and the HUSH complex constitute two blocks during primate lentivirus infection, the first by limiting reverse transcription and the second by inhibiting proviral expression. Vpr and Vpx of specific lentiviral lineages have evolved to antagonize these antiviral proteins. While the antagonism of SAMHD1 has been well characterized, the evolutionary and molecular determinants of the antagonism against HUSH are unknown. We used chimeric Vpr proteins between SIVagm.Ver and SIVagm.Gri lentiviruses infecting two African green monkey species to investigate viral determinants involved in HUSH and SAMHD1 antagonisms. We found that different interfaces of closely related Vpr proteins are engaged to degrade different SAMHD1 haplotypes. In addition, we identified distinct viral determinants in SIVagm.Ver Vpr for SAMHD1 and HUSH degradation. The substitution of one residue in SIVagm.Gri Vpr is sufficient to gain the capacity to degrade SAMHD1, while the substitution of α-helix 3 confers HUSH antagonism. We also found that Vpx proteins of HIV-2 from people living with HIV have different abilities to degrade HUSH. These phenotypes rely on small changes in either the N or C terminal part of Vpx, depending on the context. On the host side, we found that HIV-2 and SIVsmm Vpx degrading HUSH from human and vervet monkey cells cannot degrade HUSH in owl monkey cells, suggesting some host species specificity. Altogether, we highlight the molecular plasticity and constraints of viral proteins to adapt to host restrictions. HUSH, like SAMHD1, may have been engaged in ancient and more recent coevolution conflicts with lentiviruses and a player in viral fitness.IMPORTANCEAntiviral host proteins, the so-called restriction factors, block lentiviruses at different steps of their viral replication cycle. In return, primate lentiviruses may counteract these immune proteins to efficiently spread in vivo. HIV-2 and some simian immunodeficiency viruses (SIVs), but not HIV-1, inactivate SAMHD1 and HUSH, two host antiviral proteins, thanks to their Vpx or Vpr viral proteins. First, we uncovered viral determinants involved in the function of closely related Vpr proteins from SIVs of African green monkeys and of HIV-2 Vpx alleles from people living with HIV-2. We show how these small viral proteins differently adapted to SAMHD1 polymorphism or to HUSH restriction and highlight their molecular plasticity. Finally, the capacity of divergent lentiviral proteins, including HIV-2 Vpx, to induce the degradation of HUSH depends on the cell/host species. Altogether, our results suggest that HUSH has been engaged in a molecular arms race along evolution, and therefore is a key player in host-pathogen interaction.
Collapse
Affiliation(s)
- Pauline Larrous
- Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR8104, Paris, France
| | - Cassandre Garnier
- Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR8104, Paris, France
| | - Marina Morel
- Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR8104, Paris, France
| | - Michael M Martin
- Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR8104, Paris, France
| | - Karima Zarrouk
- Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR8104, Paris, France
| | - Sarah Maesen
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Roy Matkovic
- Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR8104, Paris, France
| | - Andrea Cimarelli
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Lucie Etienne
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | | |
Collapse
|
3
|
Alexakis L, Buczkowski H, Ducatez M, Fusaro A, Gonzales JL, Kuiken T, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Melo M, Kohnle L. Avian influenza overview December 2024-March 2025. EFSA J 2025; 23:e9352. [PMID: 40236376 PMCID: PMC11997622 DOI: 10.2903/j.efsa.2025.9352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
Between 7 December 2024 and 7 March 2025, 743 highly pathogenic avian influenza (HPAI) A(H5) virus detections were reported in domestic (239) and wild (504) birds across 31 countries in Europe. HPAI A(H5N1) virus detections were predominant and mainly located in central, western and south-eastern Europe. Most HPAI A(H5) virus detections in wild birds concerned waterfowl, particularly mute swans, barnacle geese and greylag geese. Limited secondary spread was observed among the poultry outbreaks, and outdoor poultry access remained an important risk factor at the interface between wild and domestic birds. HPAI A(H5N5) outbreaks occurred only in wild birds and were increasingly reported in waterfowl. For the first time since spring 2024, several HPAI virus detections were reported in domestic cats and wild carnivores in Europe. In the United States of America (USA), the number of dairy cattle farms reportedly affected rose to almost 1000 in 17 States, and a different HPAI A(H5N1) virus genotype (D1.1) was reported in this species. Between 12 December 2024 and 7 March 2025, 22 new cases of avian influenza virus infection in humans were reported in the USA (12 A(H5) cases), Cambodia (two A(H5N1) cases), United Kingdom (one A(H5N1) case), and China (six A(H9N2) cases and one A(H10N3) case). Most of the A(H5) human cases (93%, n = 14/15) had reported exposure to poultry or dairy cattle prior to avian influenza virus detection or onset of illness. Considering the widespread circulation of avian influenza viruses in animal populations, human infections with avian influenza viruses remain infrequent. No evidence of human-to-human transmission has been documented during the reporting period. The risk of infection with the avian A(H5) influenza viruses of clade 2.3.4.4b currently circulating in Europe remains low for the general public in the European Union/European Economic Area (EU/EEA). The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.
Collapse
|
4
|
Zoladek J, Cannac M, Seite M, Davies E, Quellec J, Barthelemy J, Gorna K, Desgraupes S, Bribes I, Salinas S, Coulpier M, Arhel NJ, Palmarini M, Simonin Y, Wilson SJ, Nisole S. MITD1 is a brain-specific interferon-inducible factor that inhibits flavivirus replication. Proc Natl Acad Sci U S A 2025; 122:e2502064122. [PMID: 40112111 PMCID: PMC11962514 DOI: 10.1073/pnas.2502064122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are closely related mosquito-borne neurotropic flaviviruses that share common transmission cycle and can infect humans. However, while human infections by WNV are widespread, infections by USUV are comparatively less frequent, less severe, and currently limited to Africa and Europe. To identify human host factors that contribute to the pathogenic signatures of these two flaviviruses, we carried out an arrayed expression screen of over 1,300 interferon-stimulated genes (ISGs). Several ISGs known to target flaviviruses, including IFI6, SHFL, and RTP4 were among the strongest hits. Interestingly, we also found MITD1, an ISG with no previously reported antiviral activity, among the strongest hits. We demonstrated that the antiviral activity of MITD1 was not limited to USUV and WNV, since it also inhibited Zika and dengue virus replication. We found MITD1 to interfere with viral RNA replication by sequestering specific endosomal sorting complexes required for transport-III (ESCRT-III) proteins involved in the formation of viral replication factories. MITD1 expression was not increased by type I interferon (IFN-I) in most human cells and mouse tissues that we examined, although WNV and USUV replication was strongly inhibited by IFN-I. Strikingly, MITD1 was induced in the brain of USUV-infected mice and importantly, in human monocyte-derived microglia. Using human microglial-like cells, we confirmed that MITD1 is an essential mediator of the anti-flavivirus activity of IFN-I in these cells. We conclude that MITD1 plays a key role in the cellular defenses against neurotropic flaviviruses.
Collapse
Affiliation(s)
- Jim Zoladek
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
| | - Marion Cannac
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Établissement français du sang (EFS), Université de Montpellier, Montpellier34394, France
| | - Maël Seite
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
| | - Emma Davies
- Medical Research Council-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Jordan Quellec
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Établissement français du sang (EFS), Université de Montpellier, Montpellier34394, France
- Animal, Santé, Territoires, Risques et Ecosystèmes, UMR 117, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université de Montpellier, Montpellier34398, France
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Établissement français du sang (EFS), Université de Montpellier, Montpellier34394, France
| | - Kamila Gorna
- UMR Virologie, Laboratoire de Santé Animale, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Anses, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort94700, France
| | - Sophie Desgraupes
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
| | - Ines Bribes
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Établissement français du sang (EFS), Université de Montpellier, Montpellier34394, France
| | - Muriel Coulpier
- UMR Virologie, Laboratoire de Santé Animale, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Anses, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort94700, France
| | - Nathalie J. Arhel
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
| | - Massimo Palmarini
- Medical Research Council-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, Établissement français du sang (EFS), Université de Montpellier, Montpellier34394, France
| | - Sam J. Wilson
- Medical Research Council-University of Glasgow Centre for Virus Research, GlasgowG61 1QH, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, Montpellier34090, France
| |
Collapse
|
5
|
Chenavier F, Zarkadas E, Freslon LL, Stelfox A, Schoehn G, Ruigrok RH, Ballandras-Colas A, Crépin T. Influenza a virus antiparallel helical nucleocapsid-like pseudo-atomic structure. Nucleic Acids Res 2025; 53:gkae1211. [PMID: 39673795 PMCID: PMC11797009 DOI: 10.1093/nar/gkae1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/29/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024] Open
Abstract
Influenza A viruses are responsible for human seasonal epidemics and severe animal pandemics with a risk of zoonotic transmission to humans. The viral segmented RNA genome is encapsidated by nucleoproteins (NP) and attached to the heterotrimeric polymerase, forming the viral ribonucleoproteins (vRNPs). Flexible helical vRNPs are central for viral transcription and replication. In this study, we present an advanced biological tool, the antiparallel helical RNP-like complex, assembled from recombinant N-terminally truncated NP and short synthetic RNA. The 3.0 Å cryo-electron microscopy structure details for the first time the whole RNA pathway across NP as well as NP-NP interactions that drive the antiparallel helical assembly accommodating major and minor grooves. Our findings show that the surface of the protein can harbour several conformations of the RNA, confirming that the number of nucleobases that binds to NP is not fixed, but ranges probably between 20 and 24. Taking all together, our data provide details to further understand the genome encapsidation and explain the inherent flexibility of influenza A virus vRNPs.
Collapse
Affiliation(s)
- Florian Chenavier
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Eleftherios Zarkadas
- Univ. Grenoble Alpes, CNRS, CEA, EMBL, ISBG, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Lily-Lorette Freslon
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Alice J Stelfox
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Rob W H Ruigrok
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | | | - Thibaut Crépin
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
6
|
Ankerhold J, Kessler S, Beer M, Schwemmle M, Ciminski K. Replication Restriction of Influenza A(H5N1) Clade 2.3.4.4b Viruses by Human Immune Factor, 2023-2024. Emerg Infect Dis 2025; 31:199-202. [PMID: 39657579 DOI: 10.3201/eid3101.241236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
We show that human myxovirus resistance protein 1 (MxA) suppresses replication of highly pathogenic avian influenza A(H5N1) viruses isolated from mammals in vitro and in MxA-transgenic mice. However, H5N1 can evade MxA restriction through replacement of individual viral polymerase complex components from a human-adapted MxA-resistant strain in vitro.
Collapse
|
7
|
Alexakis L, Buczkowski H, Ducatez M, Fusaro A, Gonzales JL, Kuiken T, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Melo M, Kohnle L. Avian influenza overview September-December 2024. EFSA J 2025; 23:e9204. [PMID: 39802641 PMCID: PMC11719707 DOI: 10.2903/j.efsa.2025.9204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Between 21 September and 6 December 2024, 657 highly pathogenic avian influenza (HPAI) A(H5N1) and A(H5N5) virus detections were reported in domestic (341) and wild (316) birds across 27 countries in Europe. Many HPAI outbreaks in domestic birds were clustered in areas with high poultry density and characterised by secondary farm-to-farm spread. Waterfowl, particularly the mute swan, were primarily affected during this reporting period, with HPAI virus detections focused on south-eastern Europe. Notably, A(H5N5) viruses expanded their geographic and host range, resulting in a surge in detections and mortality events described in gulls and crows. No new HPAI virus detections in mammals were reported in Europe during this reporting period, but the number of dairy cattle farms reportedly affected in the United States of America (USA) rose to >800 in 16 States, and HPAI virus was identified in two pigs in a mixed-species farm. Between 21 September and 11 December 2024, 56 new human cases with avian influenza virus infection were reported from North America (45 A(H5N1) cases), Viet Nam (one A(H5)) and China (ten A(H9N2) cases). Most of the A(H5) human cases in North America (95.6%, n = 43/45) had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no evidence of human-to-human transmission has been documented in the reporting period. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the European Union/European Economic Area (EU/EEA). The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.
Collapse
|
8
|
Peacock TP, Moncla L, Dudas G, VanInsberghe D, Sukhova K, Lloyd-Smith JO, Worobey M, Lowen AC, Nelson MI. The global H5N1 influenza panzootic in mammals. Nature 2025; 637:304-313. [PMID: 39317240 DOI: 10.1038/s41586-024-08054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Influenza A viruses have caused more documented global pandemics in human history than any other pathogen1,2. High pathogenicity avian influenza viruses belonging to the H5N1 subtype are a leading pandemic risk. Two decades after H5N1 'bird flu' became established in poultry in Southeast Asia, its descendants have resurged3, setting off a H5N1 panzootic in wild birds that is fuelled by: (1) rapid intercontinental spread, reaching South America and Antarctica for the first time4,5; (2) fast evolution via genomic reassortment6; and (3) frequent spillover into terrestrial7,8 and marine mammals9. The virus has sustained mammal-to-mammal transmission in multiple settings, including European fur farms10,11, South American marine mammals12-15 and US dairy cattle16-19, raising questions about whether humans are next. Historically, swine are considered optimal intermediary hosts that help avian influenza viruses adapt to mammals before jumping to humans20. However, the altered ecology of H5N1 has opened the door to new evolutionary pathways. Dairy cattle, farmed mink or South American sea lions may have the potential to serve as new mammalian gateways for transmission of avian influenza viruses to humans. In this Perspective, we explore the molecular and ecological factors driving the sudden expansion in H5N1 host range and assess the likelihood of different zoonotic pathways leading to an H5N1 pandemic.
Collapse
Affiliation(s)
- Thomas P Peacock
- The Pirbright Institute, Pirbright, Woking, UK
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Louise Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gytis Dudas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - David VanInsberghe
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA
| | - Ksenia Sukhova
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, GA, USA
| | - Martha I Nelson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
9
|
Alvarez J, Boklund A, Dippel S, Dórea F, Figuerola J, Herskin MS, Michel V, Miranda Chueca MÁ, Nannoni E, Nielsen SS, Nonno R, Riber AB, Stegeman JA, Ståhl K, Thulke H, Tuyttens F, Winckler C, Brugerolles C, Wolff T, Parys A, Lindh E, Latorre‐Margalef N, Rameix Welti M, Dürrwald R, Trebbien R, Van der Werf S, Gisslén M, Monne I, Fusaro A, Guinat C, Bortolami A, Alexakis L, Enkirch T, Svartstrom O, Willgert K, Baldinelli F, Preite L, Grant M, Broglia A, Melidou A. Preparedness, prevention and control related to zoonotic avian influenza. EFSA J 2025; 23:e9191. [PMID: 39882189 PMCID: PMC11775931 DOI: 10.2903/j.efsa.2025.9191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
A risk assessment framework was developed to evaluate the zoonotic potential of avian influenza (AI), focusing on virus mutations linked to phenotypic traits related to mammalian adaptation identified in the literature. Virus sequences were screened for the presence of these mutations and their geographical, temporal and subtype-specific trends. Spillover events to mammals (including humans) and human seroprevalence studies were also reviewed. Thirty-four mutations associated with five phenotypic traits (increased receptor specificity, haemagglutinin stability, neuraminidase specificity, enhanced polymerase activity and evasion of innate immunity) were shortlisted. AI viruses (AIVs) carrying multiple adaptive mutations and traits belonged to both low and highly pathogenic subtypes, mainly to A(H9N2), A(H7N9), A(H5N6) and A(H3N8), were sporadic and primarily detected in Asia. In the EU/EEA, H5Nx viruses of clade 2.3.4.4b, which have increased opportunities for evolution due to widespread circulation in birds and occasional cases/outbreaks in mammals, have acquired the highest number of zoonotic traits. Adaptive traits, such as enhanced polymerase activity and immune evasion, were frequently acquired, while receptor-specific mutations remained rare. Globally, human cases remain rare, with the majority overall due to A(H5N1), A(H5N6), A(H7N9) and A(H9N2) that are among the subtypes that tend to have a higher number of adaptive traits. The main drivers of mammalian adaptation include virus and host characteristics, and external factors increasing AIV exposure of mammals and humans to wild and domestic birds (e.g. human activities and ecological factors). Comprehensive surveillance of AIVs targeting adaptive mutations with whole genome sequencing in animals and humans is essential for early detection of zoonotic AIVs and efficient implementation of control measures. All preparedness, preventive and control measures must be implemented under a One Health framework and tailored to the setting and the epidemiological situation; in particular, enhanced monitoring, biosecurity, genomic surveillance and global collaboration are critical for mitigating the zoonotic risks of AIV.
Collapse
Affiliation(s)
| | | | - Julio Alvarez
- EFSA Panel on Animal Health and Animal Welfare members
| | | | - Sabine Dippel
- EFSA Panel on Animal Health and Animal Welfare members
| | | | | | | | | | | | | | | | - Romolo Nonno
- EFSA Panel on Animal Health and Animal Welfare members
| | - Anja B. Riber
- EFSA Panel on Animal Health and Animal Welfare members
| | | | - Karl Ståhl
- EFSA Panel on Animal Health and Animal Welfare members
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Paludan SR, Pradeu T, Pichlmair A, Wray KB, Mikkelsen JG, Olagnier D, Mogensen TH. Early host defense against virus infections. Cell Rep 2024; 43:115070. [PMID: 39675007 DOI: 10.1016/j.celrep.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
Early host defense eliminates many viruses before infections are established while clearing others so they remain subclinical or cause only mild disease. The field of immunology has been shaped by broad concepts, including the pattern recognition theory that currently dominates innate immunology. Focusing on early host responses to virus infections, we analyze the literature to build a working hypothesis for the principles that govern the early line of cellular antiviral defense. Aiming to ultimately arrive at a criteria-based theory with strong explanatory power, we propose that both controlling infection and limiting inflammation are key drivers for the early cellular antiviral response. This response, which we suggest is exerted by a set of "microbe- and inflammation-restricting mechanisms," directly restrict viral replication while also counteracting inflammation. Exploring the mechanisms and physiological importance of the early layer of cellular antiviral defense may open further lines of research in immunology.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Chapman University, Orange, CA, USA
| | - Andreas Pichlmair
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - K Brad Wray
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Centre for Science Studies, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Zhang H, Li C, Sun R, Zhang X, Li Z, Hua D, Yin B, Yang L, Zhang L, Huang J. NEIL1 block IFN-β production and enhance vRNP function to facilitate influenza A virus proliferation. NPJ VIRUSES 2024; 2:57. [PMID: 40295715 PMCID: PMC11721407 DOI: 10.1038/s44298-024-00065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/14/2024] [Indexed: 04/30/2025]
Abstract
Influenza A virus (IAV) has developed multiple tactics to hinder the innate immune response including the epigenetic regulation during IAV infection, but the novel epigenetic factors and their mechanism in innate immunity remain well studied. Here, through a non-biased high-throughput sgRNA screening of 1041 known epigenetic modifiers in a cellular model of IAV-induced interferon-beta (IFN-β) production, we identified nei endonuclease VIII-like 1 (NEIL1) as a critical regulator of IFN-β in response to viral infection. Further studies showed that NEIL1 promoted the replication of the influenza virus by regulating the methylation of cytonuclear IFN-β promoter (mainly CpG-345), inhibiting the expression of IFN-β and IFN-stimulating genes. The structural domains of NEIL1, especially the catalytic domain, were critical for the suppression of IFN-β production, but the enzymatic activity of NEIL1 was dispensable. Furthermore, our results revealed that NEIL1 relied on interactions with the N- and C-terminus of the nucleoprotein (NP) of IAV, and NEIL1 expression facilitated the entry of the NP into the nucleus, which further enhanced the stability of the viral ribonucleoprotein (vRNP) complex and thus contributed to IAV replication and transcription. These findings reveal an enzyme-independent mechanism of host NEIL1 that negatively regulates IFN-β expression, thereby facilitating IAV propagation. Our study provides new insights into the roles of NEIL1, both in directly promoting virus replication and in evading innate immunity in IAV infection.
Collapse
Affiliation(s)
- Huixia Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Changyan Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xinyi Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zexing Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Deping Hua
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Boxuan Yin
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Liu Yang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China.
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China.
| |
Collapse
|
12
|
Dadonaite B, Ahn JJ, Ort JT, Yu J, Furey C, Dosey A, Hannon WW, Vincent Baker AL, Webby RJ, King NP, Liu Y, Hensley SE, Peacock TP, Moncla LH, Bloom JD. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. PLoS Biol 2024; 22:e3002916. [PMID: 39531474 PMCID: PMC11584116 DOI: 10.1371/journal.pbio.3002916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
H5 influenza is considered a potential pandemic threat. Recently, H5 viruses belonging to clade 2.3.4.4b have caused large outbreaks in avian and multiple nonhuman mammalian species. Previous studies have identified molecular phenotypes of the viral hemagglutinin (HA) protein that contribute to pandemic potential in humans, including cell entry, receptor preference, HA stability, and reduced neutralization by polyclonal sera. However, prior experimental work has only measured how these phenotypes are affected by a handful of the >10,000 different possible amino-acid mutations to HA. Here, we use pseudovirus deep mutational scanning to measure how all mutations to a 2.3.4.4b H5 HA affect each phenotype. We identify mutations that allow HA to better bind α2-6-linked sialic acids and show that some viruses already carry mutations that stabilize HA. We also measure how all HA mutations affect neutralization by sera from mice and ferrets vaccinated against or infected with 2.3.4.4b H5 viruses. These antigenic maps enable rapid assessment of when new viral strains have acquired mutations that may create mismatches with candidate vaccine virus, and we show that a mutation present in some recent H5 HAs causes a large antigenic change. Overall, the systematic nature of deep mutational scanning combined with the safety of pseudoviruses enables comprehensive measurements of the phenotypic effects of mutations that can inform real-time interpretation of viral variation observed during surveillance of H5 influenza.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
| | - Jenny J Ahn
- Department of Microbiology, University of Washington, Seattle, Washington, DC, United States of America
| | - Jordan T Ort
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jin Yu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Colleen Furey
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, Washington, DC, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, DC, United States of America
| | - William W Hannon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, United States of America
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, Washington, DC, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, DC, United States of America
| | - Yan Liu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thomas P Peacock
- The Pirbright Institute, Pirbright, Woking, United Kingdom
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, United Kingdom
| | - Louise H Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, DC, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, DC, United States of America
| |
Collapse
|
13
|
He X, Zhang S, Zou Z, Gao P, Yang L, Xiang B. Antiviral Effects of Avian Interferon-Stimulated Genes. Animals (Basel) 2024; 14:3062. [PMID: 39518785 PMCID: PMC11545081 DOI: 10.3390/ani14213062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Interferons (IFNs) stimulate the expression of numerous IFN-stimulating genes via the Janus kinase-signal transducers and activators of the transcription (JAK-STAT) signaling pathway, which plays an important role in the host defense against viral infections. In mammals, including humans and mice, a substantial number of IFN-stimulated genes (ISGs) have been identified, and their molecular mechanisms have been elucidated. It is important to note that avian species are phylogenetically distant from mammals, resulting in distinct IFN-induced ISGs that may have different functions. At present, only a limited number of avian ISGs have been identified. In this review, we summarized the identified avian ISGs and their antiviral activities. As gene-editing technology is widely used in avian breeding, the identification of avian ISGs and the elucidation of their molecular mechanism may provide important support for the breeding of avians for disease resistance.
Collapse
Affiliation(s)
- Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyuan Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ziheng Zou
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453000, China;
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
14
|
Yang Y, Xu C, Zhang N, Wan Y, Wu Y, Meng F, Chen Y, Yang H, Liu L, Qiao C, Chen H. Two amino acid residues in the N-terminal region of the polymerase acidic protein determine the virulence of Eurasian avian-like H1N1 swine influenza viruses in mice. J Virol 2024; 98:e0129324. [PMID: 39212447 PMCID: PMC11495010 DOI: 10.1128/jvi.01293-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Reassortant Eurasian avian-like H1N1 (rEA H1N1) viruses carrying the internal genes of H1N1/2009 virus have been circulating in pigs for more than 10 years and have caused sporadic human infections. The enhanced virulence phenotype of the rEA H1N1 viruses highlights potential risks to public health. However, the molecular mechanism underlying the viral pathogenicity of the currently circulating rEA H1N1 viruses remains unclear. In this study, we found that two naturally isolated rEA H1N1 swine influenza viruses, A/swine/Liaoning/FX38/2017 (FX38) and A/swine/Liaoning/SY72/2018 (SY72), possessed similar genetic characteristics but exhibited significantly different pathogenicity in a mouse model. Using reverse genetics, we demonstrated that amino acid mutations at positions 100 and 122 in the polymerase acidic (PA) protein had individual and synergistic effects on the polymerase activity and viral replication capacity in vitro, as well as the viral pathogenicity in mice. Furthermore, we revealed that amino acid residue 100 in PA influenced the transcription of viral RNA (vRNA) by altering the endonuclease activity, and amino acid residue 122 affected the synthesis of complementary RNA and messenger RNA by altering the RNA-binding ability and endonuclease activity of the PA protein. Taken together, we identified that two naturally occurring amino acid mutations in PA derived from H1N1/2009 virus are crucial determinants of the virulence of rEA H1N1 viruses and revealed the differential mechanism by which these two mutations affect the transcription and replication of vRNA. These findings will extend our understanding of the roles of PA in the virulence of influenza A viruses.IMPORTANCEMultiple genetic determinants are involved in the virulence of influenza A viruses. In this study, we identified two naturally occurring amino acid mutations, located at residues 100 and 122 in the polymerase acidic (PA) protein, which are associated with viral polymerase activity, replication competence, and pathogenicity in mice. In particular, we clarified the specific mechanism by which the two residues play an important role in viral transcription and replication. These findings will help to improve understanding the functions of amino acid residues in the N-terminal region of the PA protein involved in the pathogenicity of influenza A viruses.
Collapse
Affiliation(s)
- Yuying Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Chengzhi Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Naixin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Yunfei Wan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Yunpu Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Fei Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Yan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Huanliang Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Chuanling Qiao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academic Agricultural Sciences, Harbin, China
| |
Collapse
|
15
|
Alexakis L, Buczkowski H, Ducatez M, Fusaro A, Gonzales JL, Kuiken T, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Delacourt R, Kohnle L. Avian influenza overview June-September 2024. EFSA J 2024; 22:e9057. [PMID: 39434784 PMCID: PMC11492803 DOI: 10.2903/j.efsa.2024.9057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Between 15 June and 20 September 2024, 75 highly pathogenic avian influenza (HPAI) A(H5) and A(H7) virus detections were reported in domestic (16) and wild (59) birds across 11 countries in Europe. Although the overall number of detections in Europe continued to be low compared to previous epidemiological years, an increase in cases along the Atlantic, North Sea and Baltic coasts was notable, particularly an increase in the detection of HPAI viruses in colony-breeding seabirds. Besides EA-2022-BB and other circulating genotypes, these detections also included EA-2023-DT, a new genotype that may transmit more efficiently among gulls. In Germany, HPAI A(H7N5) virus emerged in a poultry establishment near the border with the Netherlands. No new HPAI virus detections in mammals were reported in Europe during this period, but the number of reportedly affected dairy cattle establishments in the United States of America (USA) rose to >230 in 14 states, and HPAI virus was identified in three new mammal species. Between 21 June and 20 September 2024, 19 new human cases with avian influenza virus infection were reported from the USA (six A(H5N1) cases and five A(H5) cases), Cambodia (five A(H5N1) cases, including one fatal), China (one fatal A(H5N6) case and one A(H9N2) case), and Ghana (one A(H9N2) case). Most of the human cases (90%, n = 17/19) had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no evidence of human-to-human transmission has been documented in the reporting period. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the European Union/European Economic Area (EU/EEA). The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.
Collapse
|
16
|
Xu L, Yu D, Xu M, Liu Y, Yang LX, Zou QC, Feng XL, Li MH, Sheng N, Yao YG. Primate-specific BTN3A2 protects against SARS-CoV-2 infection by interacting with and reducing ACE2. EBioMedicine 2024; 107:105281. [PMID: 39142074 PMCID: PMC11367481 DOI: 10.1016/j.ebiom.2024.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is an immune-related disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The complete pathogenesis of the virus remains to be determined. Unraveling the molecular mechanisms governing SARS-CoV-2 interactions with host cells is crucial for the formulation of effective prophylactic measures and the advancement of COVID-19 therapeutics. METHODS We analyzed human lung single-cell RNA sequencing dataset to discern the association of butyrophilin subfamily 3 member A2 (BTN3A2) expression with COVID-19. The BTN3A2 gene edited cell lines and transgenic mice were infected by live SARS-CoV-2 in a biosafety level 3 (BSL-3) laboratory. Immunoprecipitation, flow cytometry, biolayer interferometry and competition ELISA assays were performed in BTN3A2 gene edited cells. We performed quantitative real-time PCR, histological and/or immunohistochemical analyses for tissue samples from mice with or without SARS-CoV-2 infection. FINDINGS The BTN3A2 mRNA level was correlated with COVID-19 severity. BTN3A2 expression was predominantly identified in epithelial cells, elevated in pathological epithelial cells from COVID-19 patients and co-occurred with ACE2 expression in the same lung cell subtypes. BTN3A2 targeted the early stage of the viral life cycle by inhibiting SARS-CoV-2 attachment through interactions with the receptor-binding domain (RBD) of the Spike protein and ACE2. BTN3A2 inhibited ACE2-mediated SARS-CoV-2 infection by reducing ACE2 in vitro and in vivo. INTERPRETATION These results reveal a key role of BTN3A2 in the fight against COVID-19. Identifying potential monoclonal antibodies which mimic BTN3A2 may facilitate disruption of SARS-CoV-2 infection, providing a therapeutic avenue for COVID-19. FUNDING This study was supported by the National Natural Science Foundation of China (32070569, U1902215, and 32371017), the CAS "Light of West China" Program, and Yunnan Province (202305AH340006).
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
| | - Dandan Yu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Min Xu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yamin Liu
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Lu-Xiu Yang
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China
| | - Qing-Cui Zou
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Xiao-Li Feng
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Ming-Hua Li
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Nengyin Sheng
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.
| | - Yong-Gang Yao
- Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China; National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
| |
Collapse
|
17
|
Focosi D, Maggi F. Avian Influenza Virus A(H5Nx) and Prepandemic Candidate Vaccines: State of the Art. Int J Mol Sci 2024; 25:8550. [PMID: 39126117 PMCID: PMC11312817 DOI: 10.3390/ijms25158550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Avian influenza virus has been long considered the main threat for a future pandemic. Among the possible avian influenza virus subtypes, A(H5N1) clade 2.3.4.4b is becoming enzootic in mammals, representing an alarming step towards a pandemic. In particular, genotype B3.13 has recently caused an outbreak in US dairy cattle. Since pandemic preparedness is largely based on the availability of prepandemic candidate vaccine viruses, in this review we will summarize the current status of the enzootics, and challenges for H5 vaccine manufacturing and delivery.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56100 Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy;
| |
Collapse
|
18
|
Roach SN, Shepherd FK, Mickelson CK, Fiege JK, Thielen BK, Pross LM, Sanders AE, Mitchell JS, Robertson M, Fife BT, Langlois RA. Tropism for ciliated cells is the dominant driver of influenza viral burst size in the human airway. Proc Natl Acad Sci U S A 2024; 121:e2320303121. [PMID: 39008691 PMCID: PMC11295045 DOI: 10.1073/pnas.2320303121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/26/2024] [Indexed: 07/17/2024] Open
Abstract
Influenza viruses pose a significant burden on global human health. Influenza has a broad cellular tropism in the airway, but how infection of different epithelial cell types impacts replication kinetics and burden in the airways is not fully understood. Using primary human airway cultures, which recapitulate the diverse epithelial cell landscape of the human airways, we investigated the impact of cell type composition on virus tropism and replication kinetics. Cultures were highly diverse across multiple donors and 30 independent differentiation conditions and supported a range of influenza replication. Although many cell types were susceptible to influenza, ciliated and secretory cells were predominantly infected. Despite the strong tropism preference for secretory and ciliated cells, which consistently make up 75% or more of infected cells, only ciliated cells were associated with increased virus production. Surprisingly, infected secretory cells were associated with overall reduced virus output. The disparate response and contribution to influenza virus production could be due to different pro- and antiviral interferon-stimulated gene signatures between ciliated and secretory populations, which were interrogated with single-cell RNA sequencing. These data highlight the heterogeneous outcomes of influenza virus infections in the complex cellular environment of the human airway and the disparate impacts of infected cell identity on multiround burst size, even among preferentially infected cell types.
Collapse
Affiliation(s)
- Shanley N. Roach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Frances K. Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Clayton K. Mickelson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Jessica K. Fiege
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Beth K. Thielen
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, University of Minnesota, Minneapolis, MN55455
| | - Lauren M. Pross
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Autumn E. Sanders
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Jason S. Mitchell
- Center for Immunology, University of Minnesota, Minneapolis, MN55455
| | - Mason Robertson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Brian T. Fife
- Center for Immunology, University of Minnesota, Minneapolis, MN55455
- Department of Medicine, University of Minnesota, Minneapolis, MN55455
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
19
|
Alexakis L, Fusaro A, Kuiken T, Mirinavičiūtė G, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Delacourt R, Goudjihounde SM, Grant M, Tampach S, Kohnle L. Avian influenza overview March-June 2024. EFSA J 2024; 22:e8930. [PMID: 39036773 PMCID: PMC11258884 DOI: 10.2903/j.efsa.2024.8930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Between 16 March and 14 June 2024, 42 highly pathogenic avian influenza (HPAI) A(H5) virus detections were reported in domestic (15) and wild (27) birds across 13 countries in Europe. Although the overall number of detections in Europe has not been this low since the 2019-2020 epidemiological year, HPAI viruses continue to circulate at a very low level. Most detections in poultry were due to indirect contact with wild birds, but there was also secondary spread. Outside Europe, the HPAI situation intensified particularly in the USA, where a new A(H5N1) virus genotype (B3.13) has been identified in >130 dairy herds in 12 states. Infection in cattle appears to be centred on the udder, with milk from infected animals showing high viral loads and representing a new vehicle of transmission. Apart from cattle, HPAI viruses were identified in two other mammal species (alpaca and walrus) for the first time. Between 13 March and 20 June 2024, 14 new human cases with avian influenza virus infection were reported from Vietnam (one A(H5N1), one A(H9N2)), Australia (with travel history to India, one A(H5N1)), USA (three A(H5N1)), China (two A(H5N6), three A(H9N2), one A(H10N3)), India (one A(H9N2)), and Mexico (one fatal A(H5N2) case). The latter case was the first laboratory-confirmed human infection with avian influenza virus subtype A(H5N2). Most of the human cases had reported exposure to poultry, live poultry markets, or dairy cattle prior to avian influenza virus detection or onset of illness. Human infections with avian influenza viruses remain rare and no human-to-human transmission has been observed. The risk of infection with currently circulating avian A(H5) influenza viruses of clade 2.3.4.4b in Europe remains low for the general public in the EU/EEA. The risk of infection remains low-to-moderate for those occupationally or otherwise exposed to infected animals or contaminated environments.
Collapse
|
20
|
Gadzhiev A, Petherbridge G, Sharshov K, Sobolev I, Alekseev A, Gulyaeva M, Litvinov K, Boltunov I, Teymurov A, Zhigalin A, Daudova M, Shestopalov A. Pinnipeds and avian influenza: a global timeline and review of research on the impact of highly pathogenic avian influenza on pinniped populations with particular reference to the endangered Caspian seal ( Pusa caspica). Front Cell Infect Microbiol 2024; 14:1325977. [PMID: 39071164 PMCID: PMC11273096 DOI: 10.3389/fcimb.2024.1325977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/21/2024] [Indexed: 07/30/2024] Open
Abstract
This study reviews chronologically the international scientific and health management literature and resources relating to impacts of highly pathogenic avian influenza (HPAI) viruses on pinnipeds in order to reinforce strategies for the conservation of the endangered Caspian seal (Pusa caspica), currently under threat from the HPAI H5N1 subtype transmitted from infected avifauna which share its haul-out habitats. Many cases of mass pinniped deaths globally have occurred from HPAI spill-overs, and are attributed to infected sympatric aquatic avifauna. As the seasonal migrations of Caspian seals provide occasions for contact with viruses from infected migratory aquatic birds in many locations around the Caspian Sea, this poses a great challenge to seal conservation. These are thus critical locations for the surveillance of highly pathogenic influenza A viruses, whose future reassortments may present a pandemic threat to humans.
Collapse
Affiliation(s)
- Alimurad Gadzhiev
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
| | - Guy Petherbridge
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
- Caspian Centre for Nature Conservation, International Institute of Ecology and Sustainable Development, Association of Universities and Research Centers of Caspian Region States, Makhachkala, Russia
| | - Kirill Sharshov
- Research Institute of Virology, Federal Research Centre for Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Ivan Sobolev
- Research Institute of Virology, Federal Research Centre for Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Alekseev
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
- Research Institute of Virology, Federal Research Centre for Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Marina Gulyaeva
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Kirill Litvinov
- Laboratory of Ecological and Biological Research, Astrakhan State Nature Biosphere Reserve, Astrakhan, Russia
| | - Ivan Boltunov
- Department of Vertebrate Zoology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Abdulgamid Teymurov
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
| | - Alexander Zhigalin
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
| | - Madina Daudova
- Institute of Ecology and Sustainable Development, Dagestan State University, Makhachkala, Russia
| | - Alexander Shestopalov
- Research Institute of Virology, Federal Research Centre for Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
21
|
Liao Q, Wang F, Zhou W, Liao G, Zhang H, Shu Y, Chen Y. Identification of Causal Relationships between Gut Microbiota and Influenza a Virus Infection in Chinese by Mendelian Randomization. Microorganisms 2024; 12:1170. [PMID: 38930552 PMCID: PMC11205835 DOI: 10.3390/microorganisms12061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Numerous studies have reported a correlation between gut microbiota and influenza A virus (IAV) infection and disease severity. However, the causal relationship between these factors remains inadequately explored. This investigation aimed to assess the influence of gut microbiota on susceptibility to human infection with H7N9 avian IAV and the severity of influenza A (H1N1)pdm09 infection. A two-sample Mendelian randomization analysis was conducted, integrating our in-house genome-wide association study (GWAS) on H7N9 susceptibility and H1N1pdm09 severity with a metagenomics GWAS dataset from a Chinese population. Twelve and fifteen gut microbiotas were causally associated with H7N9 susceptibility or H1N1pdm09 severity, separately. Notably, Clostridium hylemonae and Faecalibacterium prausnitzii were negative associated with H7N9 susceptibility and H1N1pdm09 severity, respectively. Moreover, Streptococcus peroris and Streptococcus sanguinis were associated with H7N9 susceptibility, while Streptococcus parasanguini and Streptococcus suis were correlated with H1N1pdm09 severity. These results provide novel insights into the interplay between gut microbiota and IAV pathogenesis as well as new clues for mechanism research regarding therapeutic interventions or IAV infections. Future studies should concentrate on clarifying the regulatory mechanisms of gut microbiota and developing efficacious approaches to reduce the incidence of IAV infections, which could improve strategy for preventing and treating IAV infection worldwide.
Collapse
Affiliation(s)
- Qijun Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
- BGI Genomics, Shenzhen 518085, China
| | - Fuxiang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
| | - Wudi Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
| | - Haoyang Zhang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China;
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Q.L.); (F.W.); (W.Z.); (G.L.)
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Yongkun Chen
- Guangdong Provincial Key Laboratory of Infection Immunity and Inflammation, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
22
|
Fusaro A, Zecchin B, Giussani E, Palumbo E, Agüero-García M, Bachofen C, Bálint Á, Banihashem F, Banyard AC, Beerens N, Bourg M, Briand FX, Bröjer C, Brown IH, Brugger B, Byrne AMP, Cana A, Christodoulou V, Dirbakova Z, Fagulha T, Fouchier RAM, Garza-Cuartero L, Georgiades G, Gjerset B, Grasland B, Groza O, Harder T, Henriques AM, Hjulsager CK, Ivanova E, Janeliunas Z, Krivko L, Lemon K, Liang Y, Lika A, Malik P, McMenamy MJ, Nagy A, Nurmoja I, Onita I, Pohlmann A, Revilla-Fernández S, Sánchez-Sánchez A, Savic V, Slavec B, Smietanka K, Snoeck CJ, Steensels M, Svansson V, Swieton E, Tammiranta N, Tinak M, Van Borm S, Zohari S, Adlhoch C, Baldinelli F, Terregino C, Monne I. High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe-Why trends of virus evolution are more difficult to predict. Virus Evol 2024; 10:veae027. [PMID: 38699215 PMCID: PMC11065109 DOI: 10.1093/ve/veae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.
Collapse
Affiliation(s)
- Alice Fusaro
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Bianca Zecchin
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Edoardo Giussani
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Elisa Palumbo
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Montserrat Agüero-García
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Claudia Bachofen
- Federal Department of Home Affairs FDHA Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern 3147, Switzerland
| | - Ádám Bálint
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Fereshteh Banihashem
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ashley C Banyard
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Nancy Beerens
- Department of Virology Wageningen Bioveterinary Research, Houtribweg 39, Lelystad 8221 RA, The Netherlands
| | - Manon Bourg
- Luxembourgish Veterinary and Food Administration (ALVA), State Veterinary Laboratory, 1 Rue Louis Rech, Dudelange 3555, Luxembourg
| | - Francois-Xavier Briand
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Caroline Bröjer
- Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ian H Brown
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Brigitte Brugger
- Icelandic Food and Veterinary Authority, Austurvegur 64, Selfoss 800, Iceland
| | - Alexander M P Byrne
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Armend Cana
- Kosovo Food and Veterinary Agency, Sector of Serology and Molecular Diagnostics, Kosovo Food and Veterinary Laboratory, Str Lidhja e Pejes, Prishtina 10000, Kosovo
| | - Vasiliki Christodoulou
- Laboratory for Animal Health Virology Section Veterinary Services (1417), 79, Athalassa Avenue Aglantzia, Nicosia 2109, Cyprus
| | - Zuzana Dirbakova
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Teresa Fagulha
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Laura Garza-Cuartero
- Department of Agriculture, Food and the Marine, Central Veterinary Research Laboratory (CVRL), Backweston Campus, Stacumny Lane, Celbridge, Co. Kildare W23 X3PH, Ireland
| | - George Georgiades
- Thessaloniki Veterinary Centre (TVC), Department of Avian Diseases, 26th October Street 80, Thessaloniki 54627, Greece
| | - Britt Gjerset
- Immunology & Virology department, Norwegian Veterinary Institute, Arboretveien 57, Oslo Pb 64, N-1431 Ås, Norway
| | - Beatrice Grasland
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Oxana Groza
- Republican Center for Veterinary Diagnostics (NRL), 3 street Murelor, Chisinau 2051, Republic of Moldova
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Ana Margarida Henriques
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Charlotte Kristiane Hjulsager
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, Copenhagen DK-2300, Denmark
| | - Emiliya Ivanova
- National Reference Laboratory for Avian Influenza and Newcastle Disease, National Diagnostic and Research Veterinary Medical Institute (NDRVMI), 190 Lomsko Shose Blvd., Sofia 1231, Bulgaria
| | - Zygimantas Janeliunas
- National Food and Veterinary Risk Assessment Institute (NFVRAI), Kairiukscio str. 10, Vilnius 08409, Lithuania
| | - Laura Krivko
- Institute of Food Safety, Animal Health and Environment (BIOR), Laboratory of Microbilogy and Pathology, 3 Lejupes Street, Riga 1076, Latvia
| | - Ken Lemon
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Yuan Liang
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, Frederiksberg 1870, Denmark
| | - Aldin Lika
- Animal Health Department, Food Safety and Veterinary Institute, Rruga Aleksandër Moisiu 10, Tirana 1001, Albania
| | - Péter Malik
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Michael J McMenamy
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Alexander Nagy
- Department of Molecular Biology, State Veterinary Institute Prague, Sídlištní 136/24, Praha 6-Lysolaje 16503, Czech Republic
| | - Imbi Nurmoja
- National Centre for Laboratory Research and Risk Assessment (LABRIS), Kreutzwaldi 30, Tartu 51006, Estonia
| | - Iuliana Onita
- Institute for Diagnosis and Animal Health (IDAH), Str. Dr. Staicovici 63, Bucharest 050557, Romania
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Sandra Revilla-Fernández
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control, Robert Koch Gasse 17, Mödling 2340, Austria
| | - Azucena Sánchez-Sánchez
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Vladimir Savic
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, Zagreb 10000, Croatia
| | - Brigita Slavec
- University of Ljubljana – Veterinary Faculty/National Veterinary Institute, Gerbičeva 60, Ljubljana 1000, Slovenia
| | - Krzysztof Smietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Chantal J Snoeck
- Luxembourg Institute of Health (LIH), Department of Infection and Immunity, 29 Rue Henri Koch, Esch-sur-Alzette 4354, Luxembourg
| | - Mieke Steensels
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Vilhjálmur Svansson
- Biomedical Center, Institute for Experimental Pathology, University of Iceland, Keldnavegi 3 112 Reykjavík Ssn. 650269 4549, Keldur 851, Iceland
| | - Edyta Swieton
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Niina Tammiranta
- Finnish Food Authority, Animal Health Diagnostic Unit, Veterinary Virology, Mustialankatu 3, Helsinki FI-00790, Finland
| | - Martin Tinak
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Steven Van Borm
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Gustav III:s boulevard 40, Solna 169 73, Sweden
| | | | - Calogero Terregino
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Isabella Monne
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| |
Collapse
|
23
|
Baid K, Irving AT, Jouvenet N, Banerjee A. The translational potential of studying bat immunity. Trends Immunol 2024; 45:188-197. [PMID: 38453577 DOI: 10.1016/j.it.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Molecular studies in bats have led to the discovery of antiviral adaptations that may explain how some bat species have evolved enhanced immune tolerance towards viruses. Accumulating data suggest that some bat species have also evolved remarkable features of longevity and low rates of cancer. Furthermore, recent research strongly suggests that discovering immune adaptations in bat models can be translated to develop immune modulators and recognize alternate therapeutic strategies for diseases affecting humans. We posit that research in bat immunology will lead to discoveries that can potentially be translated to improve health outcomes in humans.
Collapse
Affiliation(s)
- Kaushal Baid
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Aaron T Irving
- Department of Clinical Laboratory Studies, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; BIMET - Biomedical and Health Translational Research Centre of Zhejiang Province; College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus Sensing and Signaling Unit, Paris, France
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
24
|
Gu C, Fan S, Dahn R, Babujee L, Chiba S, Guan L, Maemura T, Pattinson D, Neumann G, Kawaoka Y. Characterization of a human H3N8 influenza virus. EBioMedicine 2024; 101:105034. [PMID: 38408394 PMCID: PMC10904230 DOI: 10.1016/j.ebiom.2024.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND In 2022 and 2023, novel reassortant H3N8 influenza viruses infected three people, marking the first human infections with viruses of this subtype. METHODS Here, we generated one of these viruses (A/Henan/4-10CNIC/2022; hereafter called A/Henan/2022 virus) by using reverse genetics and characterized it. FINDINGS In intranasally infected mice, reverse genetics-generated A/Henan/2022 virus caused weight loss in all five animals (one of which had to be euthanized) and replicated efficiently in the respiratory tract. Intranasal infection of ferrets resulted in minor weight loss and moderate fever but no mortality. Reverse genetics-generated A/Henan/2022 virus replicated efficiently in the upper respiratory tract of ferrets but was not detected in the lungs. Virus transmission via respiratory droplets occurred in one of four pairs of ferrets. Deep-sequencing of nasal swab samples from inoculated and exposed ferrets revealed sequence polymorphisms in the haemagglutinin protein that may affect receptor-binding specificity. We also tested 90 human sera for neutralizing antibodies against reverse genetics-generated A/Henan/2022 virus and found that some of them possessed neutralizing antibody titres, especially sera from older donors with likely exposure to earlier human H3N2 viruses. INTERPRETATION Our data demonstrate that reverse genetics-generated A/Henan/2022 virus is a low pathogenic influenza virus (of avian influenza virus descent) with some antigenic resemblance to older human H3N2 viruses and limited respiratory droplet transmissibility in ferrets. FUNDING This work was supported by the Japan Program for Infectious Diseases Research and Infrastructure (JP23wm0125002), and the Japan Initiative for World-leading Vaccine Research and Development Centers (JP233fa627001) from the Japan Agency for Medical Research and Development (AMED).
Collapse
Affiliation(s)
- Chunyang Gu
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Randall Dahn
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Tadashi Maemura
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - David Pattinson
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA.
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; Pandemic Preparedness, Infection and Advanced Research Center, University of Tokyo, Tokyo 162-8655, Japan.
| |
Collapse
|
25
|
Fusaro A, Gonzales JL, Kuiken T, Mirinavičiūtė G, Niqueux É, Ståhl K, Staubach C, Svartström O, Terregino C, Willgert K, Baldinelli F, Delacourt R, Georganas A, Kohnle L. Avian influenza overview December 2023-March 2024. EFSA J 2024; 22:e8754. [PMID: 38550271 PMCID: PMC10977096 DOI: 10.2903/j.efsa.2024.8754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024] Open
Abstract
Between 2 December 2023 and 15 March 2024, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (227) and wild (414) birds across 26 countries in Europe. Compared to previous years, although still widespread, the overall number of HPAI virus detections in birds was significantly lower, among other reasons, possibly due to some level of flock immunity in previously affected wild bird species, resulting in reduced contamination of the environment, and a different composition of circulating A(H5N1) genotypes. Most HPAI outbreaks reported in poultry were primary outbreaks following the introduction of the virus by wild birds. Outside Europe, the majority of outbreaks in poultry were still clustered in North America, while the spread of A(H5) to more naïve wild bird populations on mainland Antarctica is of particular concern. For mammals, A(H5N5) was reported for the first time in Europe, while goat kids in the United States of America represented the first natural A(H5N1) infection in ruminants. Since the last report and as of 12 March 2024, five human avian influenza A(H5N1) infections, including one death, three of which were clade 2.3.2.1c viruses, have been reported by Cambodia. China has reported two human infections, including one fatal case, with avian influenza A(H5N6), four human infections with avian influenza A(H9N2) and one fatal case with co-infection of seasonal influenza A(H3N2) and avian influenza A(H10N5). The latter case was the first documented human infection with avian influenza A(H10N5). Human infections with avian influenza remain rare and no sustained human-to-human infection has been observed. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for those occupationally or otherwise exposed to infected animals.
Collapse
|
26
|
Reuschl AK, Thorne LG, Whelan MVX, Ragazzini R, Furnon W, Cowton VM, De Lorenzo G, Mesner D, Turner JLE, Dowgier G, Bogoda N, Bonfanti P, Palmarini M, Patel AH, Jolly C, Towers GJ. Evolution of enhanced innate immune suppression by SARS-CoV-2 Omicron subvariants. Nat Microbiol 2024; 9:451-463. [PMID: 38228858 PMCID: PMC10847042 DOI: 10.1038/s41564-023-01588-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human adaptation resulted in distinct lineages with enhanced transmissibility called variants of concern (VOCs). Omicron is the first VOC to evolve distinct globally dominant subvariants. Here we compared their replication in human cell lines and primary airway cultures and measured host responses to infection. We discovered that subvariants BA.4 and BA.5 have improved their suppression of innate immunity when compared with earlier subvariants BA.1 and BA.2. Similarly, more recent subvariants (BA.2.75 and XBB lineages) also triggered reduced innate immune activation. This correlated with increased expression of viral innate antagonists Orf6 and nucleocapsid, reminiscent of VOCs Alpha to Delta. Increased Orf6 levels suppressed host innate responses to infection by decreasing IRF3 and STAT1 signalling measured by transcription factor phosphorylation and nuclear translocation. Our data suggest that convergent evolution of enhanced innate immune antagonist expression is a common pathway of human adaptation and link Omicron subvariant dominance to improved innate immune evasion.
Collapse
Affiliation(s)
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
- Department of Infectious Diseases, St Mary's Medical School, Imperial College London, London, UK
| | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London, UK
| | - Roberta Ragazzini
- Division of Infection and Immunity, University College London, London, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Dejan Mesner
- Division of Infection and Immunity, University College London, London, UK
| | - Jane L E Turner
- Division of Infection and Immunity, University College London, London, UK
| | - Giulia Dowgier
- Division of Infection and Immunity, University College London, London, UK
- COVID Surveillance Unit, The Francis Crick Institute, London, UK
| | - Nathasha Bogoda
- Division of Infection and Immunity, University College London, London, UK
| | - Paola Bonfanti
- Division of Infection and Immunity, University College London, London, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | | | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, UK.
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
27
|
Nagy A, Stará M, Černíková L, Kličková E, Horák O, Hofmannová L, Sedlák K. Enzootic Circulation, Massive Gull Mortality and Poultry Outbreaks during the 2022/2023 High-Pathogenicity Avian Influenza H5N1 Season in the Czech Republic. Viruses 2024; 16:221. [PMID: 38399998 PMCID: PMC10892573 DOI: 10.3390/v16020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
In 2022/2023, Europe experienced its third consecutive season of high-pathogenicity avian influenza. During this period, the Czech Republic was again severely affected. For the first time, the number of culled birds approached one million, which was three times higher than in previous seasons. In parallel to the outbreaks in poultry, mass die-offs of gulls were also observed. In the present study, we performed whole-genome sequencing and phylogenetic analysis of 137 H5N1 strains collected in the Czech Republic in 2022/2023 (94.6% of all outbreaks or locations). The analysis revealed four distinct genotypes: AB, CH, BB and AF. Phylogenetic analysis suggested that the AF genotype persisted from the previous H5N1 season without reassortment. In addition, the genotype BB, which was detected mainly in gulls, showed a noticeable strain diversity at the local level. This virus was also responsible for a single outbreak in commercially bred turkeys. Finally, an interesting spatio-temporal cluster with three co-circulating H5N1 genotypes, AB, CH and AF, was identified with no evidence of intrasubtype reassortment. Highly sensitive molecular surveillance and the timely sharing of genomic sequences and associated metadata could greatly assist in tracking the spread and detecting molecular changes associated with the increased virulence of this potentially zoonotic pathogen.
Collapse
Affiliation(s)
- Alexander Nagy
- State Veterinary Institute Prague, Sídlištní 136/24, 165 03 Prague, Czech Republic; (M.S.); (L.Č.); (E.K.); (O.H.); (L.H.); (K.S.)
| | | | | | | | | | | | | |
Collapse
|
28
|
Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024; 13:127. [PMID: 38392865 PMCID: PMC10893265 DOI: 10.3390/pathogens13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
29
|
Chenavier F, Estrozi LF, Teulon JM, Zarkadas E, Freslon LL, Pellequer JL, Ruigrok RW, Schoehn G, Ballandras-Colas A, Crépin T. Cryo-EM structure of influenza helical nucleocapsid reveals NP-NP and NP-RNA interactions as a model for the genome encapsidation. SCIENCE ADVANCES 2023; 9:eadj9974. [PMID: 38100595 PMCID: PMC10848707 DOI: 10.1126/sciadv.adj9974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Influenza virus genome encapsidation is essential for the formation of a helical viral ribonucleoprotein (vRNP) complex composed of nucleoproteins (NP), the trimeric polymerase, and the viral genome. Although low-resolution vRNP structures are available, it remains unclear how the viral RNA is encapsidated and how NPs assemble into the helical filament specific of influenza vRNPs. In this study, we established a biological tool, the RNP-like particles assembled from recombinant influenza A virus NP and synthetic RNA, and we present the first subnanometric cryo-electron microscopy structure of the helical NP-RNA complex (8.7 to 5.3 Å). The helical RNP-like structure reveals a parallel double-stranded conformation, allowing the visualization of NP-NP and NP-RNA interactions. The RNA, located at the interface of neighboring NP protomers, interacts with conserved residues previously described as essential for the NP-RNA interaction. The NP undergoes conformational changes to enable RNA binding and helix formation. Together, our findings provide relevant insights for understanding the mechanism for influenza genome encapsidation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | | | - Thibaut Crépin
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| |
Collapse
|
30
|
Corneillie L, Lemmens I, Weening K, De Meyer A, Van Houtte F, Tavernier J, Meuleman P. Virus-Host Protein Interaction Network of the Hepatitis E Virus ORF2-4 by Mammalian Two-Hybrid Assays. Viruses 2023; 15:2412. [PMID: 38140653 PMCID: PMC10748205 DOI: 10.3390/v15122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout their life cycle, viruses interact with cellular host factors, thereby influencing propagation, host range, cell tropism and pathogenesis. The hepatitis E virus (HEV) is an underestimated RNA virus in which knowledge of the virus-host interaction network to date is limited. Here, two related high-throughput mammalian two-hybrid approaches (MAPPIT and KISS) were used to screen for HEV-interacting host proteins. Promising hits were examined on protein function, involved pathway(s), and their relation to other viruses. We identified 37 ORF2 hits, 187 for ORF3 and 91 for ORF4. Several hits had functions in the life cycle of distinct viruses. We focused on SHARPIN and RNF5 as candidate hits for ORF3, as they are involved in the RLR-MAVS pathway and interferon (IFN) induction during viral infections. Knocking out (KO) SHARPIN and RNF5 resulted in a different IFN response upon ORF3 transfection, compared to wild-type cells. Moreover, infection was increased in SHARPIN KO cells and decreased in RNF5 KO cells. In conclusion, MAPPIT and KISS are valuable tools to study virus-host interactions, providing insights into the poorly understood HEV life cycle. We further provide evidence for two identified hits as new host factors in the HEV life cycle.
Collapse
Affiliation(s)
- Laura Corneillie
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karin Weening
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
31
|
Tian L, Li M, Fan H. The determinants associated with zoonotic potential of influenza A viruses: BTN3A3 evasion mediated by residue mutation in the nucleoprotein. MedComm (Beijing) 2023; 4:e441. [PMID: 38045831 PMCID: PMC10693302 DOI: 10.1002/mco2.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Mutation of residue 313 in the viral nucleoprotein from F/L to Y/V (or substitutions to N, H, or Q in the nucleoprotein residue 52 adjacent to residue 313) facilitates IAVs to escape from BTN3A3 restriction on virus replication.
Collapse
Affiliation(s)
- Lili Tian
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Maochen Li
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Huahao Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
32
|
Liao Q, Shen J, Chen Y, Shu Y. Mendelian randomization study on the causal effect of serum IgA levels on H7N9 avian influenza A virus susceptibility. J Med Virol 2023; 95:e29266. [PMID: 38009617 DOI: 10.1002/jmv.29266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Avian influenza A viruses (IAVs) that cross the species barrier to infect humans have the potential to initiate a new pandemic. However, the host factors influencing avian IAV infection remain poorly understood. To address this knowledge gap, we conducted a two-sample Mendelian randomization (MR) analysis by integrating our in-house genome-wide association study (GWAS) of avian IAV H7N9 susceptibility (with 217 cases and 116 controls) with the largest GWAS of serum IgA levels to date (sample size 41 263). Using the inverse-variance weighted (IVW) method, we discovered that genetically decreased serum IgA levels were associated with an increased risk of H7N9 infection (β = -2.528, 95% confidence interval [CI]: -4.572 to -0.484; p = 0.015). Consistent results were obtained from three other MR methods, including robust IVW estimation (β = -2.506, 95% CI: -4.109 to -0.902; p = 0.002), generalized summary-data-based MR (GSMR) (β = -2.238, 95% CI: -4.106 to -0.602; p = 0.019), and MR-pleiotropy residual sum and outlier (MR-PRESSO) (β = -2.528, 95% CI: -4.396 to -0.892; p = 0.026). In conclusion, our analysis provided compelling evidence support a causal relationship between genetically predicted serum IgA levels and avian IAV H7N9 susceptibility.
Collapse
Affiliation(s)
- Qijun Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, People's Republic of China
- BGI Research, Shenzhen, People's Republic of China
| | - Juan Shen
- BGI Research, Shenzhen, People's Republic of China
| | - Yongkun Chen
- Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen, People's Republic of China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, People's Republic of China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
33
|
Gamble A, Olarte-Castillo XA, Whittaker GR. Backyard zoonoses: The roles of companion animals and peri-domestic wildlife. Sci Transl Med 2023; 15:eadj0037. [PMID: 37851821 DOI: 10.1126/scitranslmed.adj0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
The spillover of human infectious diseases from animal reservoirs is now well appreciated. However, societal and climate-related changes are affecting the dynamics of such interfaces. In addition to the disruption of traditional wildlife habitats, in part because of climate change and human demographics and behavior, there is an increasing zoonotic disease risk from companion animals. This includes such factors as the awareness of animals kept as domestic pets and increasing populations of free-ranging animals in peri-domestic environments. This review presents background and commentary focusing on companion and peri-domestic animals as disease risk for humans, taking into account the human-animal interface and population dynamics between the animals themselves.
Collapse
Affiliation(s)
- Amandine Gamble
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ximena A Olarte-Castillo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gary R Whittaker
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Atkinson Center for Sustainability, Cornell University, Ithaca, NY, USA
| |
Collapse
|
34
|
Gilbertson B, Duncan M, Subbarao K. Role of the viral polymerase during adaptation of influenza A viruses to new hosts. Curr Opin Virol 2023; 62:101363. [PMID: 37672875 DOI: 10.1016/j.coviro.2023.101363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
As a group, influenza-A viruses (IAV) infect a wide range of animal hosts, however, they are constrained to infecting selected host species by species-specific interactions between the host and virus, that are required for efficient replication of the viral RNA genome. When IAV cross the species barrier, they acquire mutations in the viral genome to enable interactions with the new host factors, or to compensate for their loss. The viral polymerase genes polymerase basic 1, polymerase basic 2, and polymerase-acidic are important sites of host adaptation. In this review, we discuss why the viral polymerase is so vital to the process of host adaptation, look at some of the known viral mutations, and host factors involved in adaptation, particularly of avian IAV to mammalian hosts.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Melanie Duncan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
35
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Mirinavičiūtė G, Niqueux É, Staubach C, Terregino C, Baldinelli F, Rusinà A, Kohnle L. Avian influenza overview June-September 2023. EFSA J 2023; 21:e08328. [PMID: 37809353 PMCID: PMC10552073 DOI: 10.2903/j.efsa.2023.8328] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Between 24 June and 1 September 2023, highly pathogenic avian influenza (HPAI) A(H5) outbreaks were reported in domestic (25) and wild (482) birds across 21 countries in Europe. Most of these outbreaks appeared to be clustered along coastlines with only few HPAI virus detections inland. In poultry, all HPAI outbreaks were primary and sporadic with most of them occurring in the United Kingdom. In wild birds, colony-breeding seabirds continued to be most heavily affected, but an increasing number of HPAI virus detections in waterfowl is expected in the coming weeks. The current epidemic in wild birds has already surpassed the one of the previous epidemiological year in terms of total number of HPAI virus detections. As regards mammals, A(H5N1) virus was identified in 26 fur animal farms in Finland. Affected species included American mink, red and Arctic fox, and common raccoon dog. The most likely source of introduction was contact with gulls. Wild mammals continued to be affected worldwide, mostly red foxes and different seal species. Since the last report and as of 28 September 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans have been reported by the United Kingdom, and three human infections with A(H5N6) and two with A(H9N2) were reported from China, respectively. No human infection related to the avian influenza detections in animals on fur farms in Finland or in cats in Poland have been reported, and human infections with avian influenza remain a rare event. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA. The risk of infection remains low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated); this assessment covers different situations that depend on the level of exposure.
Collapse
|
36
|
Du Toit A. Avian influenza takes flight in humans by evading restriction. Nat Rev Microbiol 2023; 21:551. [PMID: 37407721 DOI: 10.1038/s41579-023-00943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
|
37
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Melidou A, Mirinavičiūtė G, Niqueux É, Ståhl K, Staubach C, Terregino C, Baldinelli F, Broglia A, Kohnle L. Avian influenza overview April - June 2023. EFSA J 2023; 21:e08191. [PMID: 37485254 PMCID: PMC10358191 DOI: 10.2903/j.efsa.2023.8191] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Between 29 April and 23 June 2023, highly pathogenic avian influenza (HPAI) A(H5N1) virus (clade 2.3.4.4b) outbreaks were reported in domestic (98) and wild (634) birds across 25 countries in Europe. A cluster of outbreaks in mulard ducks for foie gras production was concentrated in Southwest France, whereas the overall A(H5N1) situation in poultry in Europe and worldwide has eased. In wild birds, black-headed gulls and several new seabird species, mostly gulls and terns (e.g. sandwich terns), were heavily affected, with increased mortality being observed in both adults and juveniles after hatching. Compared to the same period last year, dead seabirds have been increasingly found inland and not only along European coastlines. As regards mammals, A(H5N1) virus was identified in 24 domestic cats and one caracal in Poland between 10 and 30 June 2023. Affected animals showed neurological and respiratory signs, sometimes mortality, and were widely scattered across nine voivodeships in the country. All cases are genetically closely related and identified viruses cluster with viruses detected in poultry (since October 2022, but now only sporadic) and wild birds (December 2022-January 2023) in the past. Uncertainties still exist around their possible source of infection, with no feline-to-feline or feline-to-human transmission reported so far. Since 10 May 2023 and as of 4 July 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans were reported from the United Kingdom, and two A(H9N2) and one A(H5N6) human infections in China. In addition, one person infected with A(H3N8) in China has died. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA, low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated).
Collapse
|