1
|
MacDonald TL, Ryback B, Aparecida da Silva Pereira J, Wei S, Mendez B, Cai EP, Ishikawa Y, Arbeau M, Weir G, Bonner-Weir S, Kissler S, Yi P. Renalase inhibition defends against acute and chronic β cell stress by regulating cell metabolism. Mol Metab 2025; 95:102115. [PMID: 39988068 PMCID: PMC11981795 DOI: 10.1016/j.molmet.2025.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025] Open
Abstract
OBJECTIVE Renalase (Rnls) is annotated as an oxidase enzyme. It has been implicated in Type 1 diabetes (T1D) risk via genome-wide association studies (GWAS). We previously discovered through CRISPR screening and validation experiments that Rnls inhibition prevents or delays T1D in multiple mouse models of diabetes in vivo, and protects pancreatic β cells against autoimmune killing, ER and oxidative stress in vitro. The molecular biochemistry and functions of Rnls are largely uncharted. Here we studied the mechanisms of Rnls inhibition that underlie β cell protection during diabetogenic stress. METHODS Akita mice were treated with oral Pargyline (PG) in vivo to bind and inhibit Rnls, and pancreas or islets were harvested for β cell mass and β cell function analyses. Genetic and pharmacological tools were used to inhibit Rnls in β cell lines. RNA sequencing, metabolomics and metabolic function experiments were conducted in vitro in NIT-1 mouse β cell lines and human stem cell-derived β cells. RESULTS In vivo, PG improved glycemia and mildly preserved β cell mass and function in females. Genetic strategies to mutate (Rnlsmut) or knockout (Rnls KO) Rnls induced a robust metabolic shift towards glycolysis in both mouse and human β cell lines, in vitro. Stress protection was abolished when glycolysis was blocked with 2-deoxyglucose (2-DG). Pharmacological Rnls inhibition with PG did not strongly mimic these newly identified metabolic mechanisms. CONCLUSIONS Our work illustrates a role for Rnls in regulating cell metabolism. We show that inhibiting Rnls protects against chronic stress in vivo, and shields against acute stress in β cell lines in vitro by rewiring cell metabolism towards glycolysis.
Collapse
Affiliation(s)
- Tara L MacDonald
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, USA; Section for Immunobiology, Joslin Diabetes Center, Boston, USA; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Birgitta Ryback
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | - Jéssica Aparecida da Silva Pereira
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Siying Wei
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bryhan Mendez
- Section for Immunobiology, Joslin Diabetes Center, Boston, USA
| | - Erica P Cai
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yuki Ishikawa
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Meagan Arbeau
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gordon Weir
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Diabetes Program, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Susan Bonner-Weir
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Diabetes Program, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stephan Kissler
- Section for Immunobiology, Joslin Diabetes Center, Boston, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Diabetes Program, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Peng Yi
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Diabetes Program, Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
2
|
Memon B, Aldous N, Elsayed AK, Ijaz S, Hayat S, Abdelalim EM. RFX3 is essential for the generation of functional human pancreatic islets from stem cells. Diabetologia 2025:10.1007/s00125-025-06424-4. [PMID: 40263183 DOI: 10.1007/s00125-025-06424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/19/2025] [Indexed: 04/24/2025]
Abstract
AIMS/HYPOTHESIS The role of regulatory factor X 3 (RFX3) in human pancreatic islet development has not been explored. This study aims to investigate the function of RFX3 in human pancreatic islet development using human islet organoids derived from induced pluripotent stem cells (iPSCs), hypothesising that RFX3 regulates human islet cell differentiation. METHODS We generated RFX3 knockout (RFX3 KO) iPSC lines using CRISPR/Cas9 and differentiated them into pancreatic islet organoids. Various techniques were employed to assess gene expression, cell markers, apoptosis, proliferation and glucose-stimulated insulin secretion. Single-cell RNA-seq datasets from human embryonic stem cell-derived pancreatic islet differentiation were re-analysed to investigate RFX3 expression in specific cell populations at various developmental stages. Furthermore, bulk RNA-seq was conducted to further assess transcriptomic changes. RFX3 overexpression was implemented to reverse dysregulated gene expression. RESULTS RFX3 was found to be highly expressed in pancreatic endocrine cell populations within pancreatic progenitors (PPs), endocrine progenitors (EPs) and mature islet stages derived from iPSCs. Single-cell RNA-seq further confirmed RFX3 expression across different endocrine cell clusters during differentiation. The loss of RFX3 disrupted pancreatic endocrine gene regulation, reduced the number of hormone-secreting islet cells and impaired beta cell function and insulin secretion. Despite a significant reduction in the expression levels of pancreatic islet hormones, the pan-endocrine marker chromogranin A remained unchanged at both EP and islet stages, likely due to an increase in the abundance of enterochromaffin cells (ECs). This was supported by our findings of high EC marker expression levels in RFX3 KO EPs and islets. In addition, RFX3 loss led to smaller islet organoids, elevated thioredoxin-interacting protein levels and increased apoptosis in EPs and islets. Furthermore, RFX3 overexpression rescued the expression of dysregulated genes in RFX3 KO at the PP and EP stages. CONCLUSIONS/INTERPRETATION These findings underscore the crucial role of RFX3 in regulating human islet cell differentiation and its role in suppressing EC specification. These insights into RFX3 function have implications for understanding islet biology and potential diabetes susceptibility. DATA AVAILABILITY The RNA-seq datasets have been submitted to the Zenodo repository and can be accessed via the following links: DOI https://doi.org/10.5281/zenodo.13647651 (PPs); and DOI https://doi.org/10.5281/zenodo.13762055 (SC-islets).
Collapse
Affiliation(s)
- Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Noura Aldous
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Pluripotent Stem Cell Disease Modeling Lab, Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed K Elsayed
- Pluripotent Stem Cell Disease Modeling Lab, Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Sadaf Ijaz
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sikander Hayat
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
- Pluripotent Stem Cell Disease Modeling Lab, Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
3
|
Bal T. Scaffold-free endocrine tissue engineering: role of islet organization and implications in type 1 diabetes. BMC Endocr Disord 2025; 25:107. [PMID: 40259265 PMCID: PMC12010671 DOI: 10.1186/s12902-025-01919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/17/2025] [Indexed: 04/23/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic hyperglycemia disorder emerging from beta-cell (insulin secreting cells of the pancreas) targeted autoimmunity. As the blood glucose levels significantly increase and the insulin secretion is gradually lost, the entire body suffers from the complications. Although various advances in the insulin analogs, blood glucose monitoring and insulin application practices have been achieved in the last few decades, a cure for the disease is not obtained. Alternatively, pancreas/islet transplantation is an attractive therapeutic approach based on the patient prognosis, yet this treatment is also limited mainly by donor shortage, life-long use of immunosuppressive drugs and risk of disease transmission. In research and clinics, such drawbacks are addressed by the endocrine tissue engineering of the pancreas. One arm of this engineering is scaffold-free models which often utilize highly developed cell-cell junctions, soluble factors and 3D arrangement of islets with the cellular heterogeneity to prepare the transplant formulations. In this review, taking T1D as a model autoimmune disease, techniques to produce so-called pseudoislets and their applications are studied in detail with the aim of understanding the role of mimicry and pointing out the promising efforts which can be translated from benchside to bedside to achieve exogenous insulin-free patient treatment. Likewise, these developments in the pseudoislet formation are tools for the research to elucidate underlying mechanisms in pancreas (patho)biology, as platforms to screen drugs and to introduce immunoisolation barrier-based hybrid strategies.
Collapse
Affiliation(s)
- Tugba Bal
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, 34662, Turkey.
| |
Collapse
|
4
|
Salehi Babadi P, Dayer D, Jafarinia M, Forouzanfar M. Do human adipose stem cell-derived artificial insulin-producing cells develop tumorigenic characteristics throughout differentiation? Mol Biol Rep 2025; 52:404. [PMID: 40253677 DOI: 10.1007/s11033-025-10432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/11/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Artificial insulin-producing cells (IPCs) used to treat diabetes mellitus type 1 (DMT1) are naturally hampered by their carcinogenicity. This in vitro study aimed to examine the carcinogenic potential of IPCs produced by the differentiation of human adipose tissue-derived mesenchymal stem cells (hADSCs). METHODS AND RESULTS hADSCs were transformed into IPCs by administering insulin-transferrin, selenium (ITS), and nicotinamide in a 14-day differentiation protocol. The cells were transfected with 20 μg of pure Pdx1-pIRES recombinant vector on the tenth day of differentiation. The successful transfection was confirmed by Pdx1 overexpression and GFP fluorescence activity. The differentiated cells' capacity to release insulin and glucose-dependent C-peptide was used to evaluate their functionality. Gene expression was assessed using real-time PCR. Meanwhile, protein expression was investigated using western blotting. The transfected cells exhibited fluorescence activity and Pdx1 overexpression. The differentiated IPCs were able to secrete C-peptide and insulin. The artificial IPCs showed significantly reduced Oct4 and Nanog expression. However, the differentiation process induced a noticeable elevation in tPA expression. The artificial IPCs expressed much lower c-MYC expression compared to undifferentiated hADSCs. The differentiated cells exhibited a significant elevation in Glut2, MMP-2, CD24, P16, and P21 expression. CONCLUSIONS The differentiation technique used in this work produced functional beta-like cells devoid of typical markers of stem cells. The synthetic IPCs displayed characteristics of newly generated β-like cells. The artificial IPCs showed no signs of expressing tumor-associated markers. The findings imply that the artificial IPC cells lack tumor characteristics in vitro.
Collapse
Affiliation(s)
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mohsen Forouzanfar
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
5
|
Engström M, Westholm E, Wendt A, Eliasson L. The role of islet CFTR in the development of cystic fibrosis-related diabetes: A semi-systematic review. J Cyst Fibros 2025:S1569-1993(25)00772-6. [PMID: 40254519 DOI: 10.1016/j.jcf.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Cystic fibrosis related diabetes (CFRD) is the most common comorbidity of cystic fibrosis (CF) still, its pathogenesis is poorly understood. Recent studies have suggested that although pancreatic insufficiency is an important explanation for CFRD development, inherent pancreatic islet cell dysfunction may play a role. This study aimed to systematically compile current data regarding the impact of pancreatic islet cell dysfunction on the development of CFRD. METHODS A systematic search was conducted in PubMed and Embase. The resulting articles were screened for relevant experimental design and outcomes. Articles underwent data extraction and quality assessment before compilation and analysis of the results. RESULTS A total of 268 articles were initially screened and 19 studies conducted between 2006-2022 were finally included in this review. Half of the studies in human tissue and most of the studies in animal tissue could detect CFTR in the islets. Similarly, half of the publications in human islets and most studies in animal islets detect decreased insulin secretion with inhibition/mutation of CFTR. CONCLUSIONS The literature on the role of islet CFTR is contradictory. However, a pattern emerges where CFTR loss-of-function mutations have the potential to negatively affect islet cell function in a way that, together with previously described exocrine damage occurring in CF, could play a part in the development of CFRD.
Collapse
Affiliation(s)
- Matilda Engström
- Islet Cell Exocytosis, Lund University Diabetes Centre (LUDC), Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden; Clinical Research Centre (CRC), Skåne University Hospital, Malmö, Sweden
| | - Efraim Westholm
- Islet Cell Exocytosis, Lund University Diabetes Centre (LUDC), Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden; Clinical Research Centre (CRC), Skåne University Hospital, Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre (LUDC), Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden; Clinical Research Centre (CRC), Skåne University Hospital, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre (LUDC), Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden; Clinical Research Centre (CRC), Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
6
|
Breunig M, Hohwieler M, Haderspeck J, von Zweydorf F, Hauff N, Pasquini LP, Wiegreffe C, Zimmer E, Mulaw MA, Julier C, Simon E, Gloeckner CJ, Liebau S, Kleger A. PPDPF is not a key regulator of human pancreas development. PLoS Genet 2025; 21:e1011657. [PMID: 40193385 DOI: 10.1371/journal.pgen.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/16/2025] [Indexed: 04/09/2025] Open
Abstract
Given their capability to differentiate into each cell type of the human body, human pluripotent stem cells (hPSCs) provide a unique platform for developmental studies. In the current study, we employed this cell system to understand the role of pancreatic progenitor differentiation and proliferation factor (PPDPF), a protein that has been little explored so far. While the zebrafish orthologue exdpf is essential for exocrine pancreas specification, its importance for mammalian and human development has not been studied yet. We implemented a four times CRISPR/Cas9 nicking approach to knockout PPDPF in human embryonic stem cells (hESCs) and differentiated PPDPFKO/KO and PPDPFWT/WT cells towards the pancreatic lineage. In contrast to data obtained from zebrafish, a very modest effect of the knockout was observed in the development of pancreatic progenitors in vitro, not affecting lineage specification upon orthotopic transplantation in vivo. The modest effect is in line with the finding that genetic variants near PPDPF are associated with random glucose levels in humans, but not with type 2 diabetes risk, supporting that dysregulation of this gene may only result in minor alterations of glycaemic balance in humans. In addition, PPDPF is less organ- and cell type specifically expressed in higher vertebrates and its so far reported functions appear highly context-dependent.
Collapse
Affiliation(s)
- Markus Breunig
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | - Meike Hohwieler
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | - Jasmin Haderspeck
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Natalie Hauff
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | - Lino-Pascal Pasquini
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | | | - Eleni Zimmer
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | - Medhanie A Mulaw
- Central Unit Single Cell Sequencing, Medical Faculty, Ulm University, Ulm, Germany
| | - Cécile Julier
- Institut Cochin, Inserm U1016-CNRS UMR8104-Université Paris Descartes, Paris, France
| | - Eric Simon
- Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
- Computational Biology & Genomics, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Christian Johannes Gloeckner
- DZNE-German Center for Neurodegenerative Diseases, Tübingen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
7
|
Ribezzi D, Català P, Pignatelli C, Citro A, Levato R. Bioprinting and synthetic biology approaches to engineer functional endocrine pancreatic constructs. Trends Biotechnol 2025:S0167-7799(25)00090-3. [PMID: 40185667 DOI: 10.1016/j.tibtech.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Diabetes is a complex disease affecting over 500 million people worldwide. Traditional approaches, such as insulin delivery, are mainstay treatments, but do not cure the disease. Recent advances in biofabrication and synthetic biology offer new hope for the development of tissue constructs recapitulating salient organ functions. Here, we discuss recent progress in bioprinting a functional endocrine pancreas, ranging from cell sources to main advances in biomaterials. We review innovative areas for the development of this field, with a particular focus on the convergence of synthetic biology and cell engineering with bioprinting, which opens new avenues for developing advanced in vitro models and regenerative, transplantable grafts, with the potential to provide independence from exogenous insulin administration.
Collapse
Affiliation(s)
- Davide Ribezzi
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pere Català
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Zhu D, Chen Z, Guo K, Xie Q, Zou Y, Mou Q, Zhou Z, Jin G. Enhanced viability and functional maturity of iPSC-derived islet organoids by collagen-VI-enriched ECM scaffolds. Cell Stem Cell 2025; 32:547-563.e7. [PMID: 39999846 DOI: 10.1016/j.stem.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/10/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Islet organoids derived from pluripotent stem cells offer a promising solution for the shortage of cadaveric donors in diabetes treatment. However, challenges remain in improving their differentiation, viability, functional maturity, and engraftment. Here, we generated improved islet organoids with high viability and functionality by employing extracellular matrix (ECM) hydrogel of decellularized amniotic membrane (dAM). The dAM sheet facilitates islet organoid engraftment and rapidly restores normoglycemia in diabetic mice, accompanied by increased body weight and augmented insulin release in response to glucose. Interestingly, collagen VI (Col VI) was identified as a key component of islet niche, enhancing islet cell viability and biological function. Col-VI-based biomimetic ECM recapitulates the native environment and exhibits superior physiological properties. Importantly, the cellular composition and endocrine function of optimized induced pluripotent stem cell (iPSC)-derived islet organoids are comparable with those of human islets. Our findings offer a valuable platform for future endeavors in organoid-transplantation-based therapy of diabetes.
Collapse
Affiliation(s)
- Deliang Zhu
- Guangdong Cardiovascular Institute, Medical Research Institute, School of Basic Medical Science, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Zixin Chen
- Guangdong Cardiovascular Institute, Medical Research Institute, School of Basic Medical Science, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kaimin Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510627, China
| | - Qingqiang Xie
- Guangdong Cardiovascular Institute, Medical Research Institute, School of Basic Medical Science, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuxiu Zou
- Guangdong Cardiovascular Institute, Medical Research Institute, School of Basic Medical Science, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qizheng Mou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.
| | - Guoxiang Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, School of Basic Medical Science, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
9
|
Rajaei B, Garcia AM, Juksar J, Doppenberg JB, Paz-Barba M, Boot F, de Vos W, Mulder AA, Lambregtse F, Daleman L, de Leeuw AE, Nieveen MC, Engelse MA, Rabelink T, de Koning EJP, Carlotti F. Clinically compliant enrichment of human pluripotent stem cell-derived islets. Sci Transl Med 2025; 17:eadl4390. [PMID: 40173261 DOI: 10.1126/scitranslmed.adl4390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/28/2024] [Accepted: 03/10/2025] [Indexed: 04/04/2025]
Abstract
Human pluripotent stem cell-derived islet (SC-islet) transplantation is a promising β cell replacement therapy for patients with type 1 diabetes, offering a potential unlimited cell supply. Yet, the heterogeneity of the final cell product containing non-target cell types has relevant implications for SC-islet function, transplant volume, and cell product safety. Here, we present a clinically compliant, full three-dimensional differentiation protocol that includes a purification step of endocrine cell-rich clusters, relying on the principle of isopycnic centrifugation (density gradient separation). Enriched SC-islets displayed signs of functionality in vitro and in vivo. In contrast with antibody-based single-cell sorting approaches, this method does not destroy the islet cytoarchitecture associated with alterations of islet function and cell loss. Furthermore, it is fast, is easily scalable to large cell volumes, and can be applied during cell manufacturing. This method may also contribute to the generation of improved cell-based therapies for regenerative medicine purposes beyond the SC-islet field.
Collapse
Affiliation(s)
- Bahareh Rajaei
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Amadeo Muñoz Garcia
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Juri Juksar
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Jason B Doppenberg
- LUMC Transplant Center, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Miriam Paz-Barba
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Fransje Boot
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Willemijn de Vos
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Aat A Mulder
- Department of Cell and Chemistry Biology, Electron Microscopy Facility, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Ferdy Lambregtse
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Lizanne Daleman
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Anne E de Leeuw
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Maaike C Nieveen
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Marten A Engelse
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Ton Rabelink
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2333ZA, Netherlands
| |
Collapse
|
10
|
Imada T, Sasaki S, Yamaguchi H, Ueda A, Kawamori D, Katakami N, Shimomura I. Imeglimin, unlike metformin, does not perturb differentiation of human induced pluripotent stem cells towards pancreatic β-like cells and rather enhances gain in β cell identity gene sets. J Diabetes Investig 2025; 16:584-597. [PMID: 39829307 PMCID: PMC11970301 DOI: 10.1111/jdi.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
AIMS/INTRODUCTION Metformin treatment for hyperglycemia in pregnancy (HIP) beneficially improves maternal glucose metabolism and reduces perinatal complications. However, metformin could impede pancreatic β cell development via impaired mitochondrial function. A new anti-diabetes drug imeglimin, developed based on metformin, improves mitochondrial function. Here we examine the effect of imeglimin on β cell differentiation using human induced pluripotent stem cell (iPSC)-derived pancreatic islet-like spheroid (SC-islet) models. MATERIALS AND METHODS Human iPSCs are differentiated into SC-islets by three-dimensional culture with and without imeglimin or metformin. Differentiation efficiencies of SC-islets were analyzed by flow cytometry, immunostaining, quantitative PCR, and insulin secretion assay. RNA sequencing and oxygen consumption rate were obtained for further characterization of SC-islets. SC-islets were cultured with proinflammatory cytokines, in part mimicking the uterus environment in HIP. RESULTS Metformin perturbed SC-islet differentiation while imeglimin did not alter it. Furthermore, imeglimin enhanced the gene expressions of β cell lineage markers. Maintenance of mitochondrial function and optimization of TGF-β and Wnt signaling were considered potential mechanisms for augmented β cell maturation by imeglimin. In the presence of proinflammatory cytokines, imeglimin ameliorated β cell differentiation impaired by cytokines and metformin. CONCLUSIONS Imeglimin does not perturb differentiation of SC-islet cells and rather enhances gain in β cell identity gene sets in contrast to metformin. This may lead to the improvement of in vitro β cell differentiation protocols.
Collapse
Affiliation(s)
- Tasuku Imada
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Shugo Sasaki
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Hiroki Yamaguchi
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Ayaka Ueda
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Dan Kawamori
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
- Medical Education Center, Faculty of MedicineOsaka UniversityOsakaJapan
- Postgraduate Medical Training CenterOsaka University Hospital, Osaka UniversityOsakaJapan
| | - Naoto Katakami
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Iichiro Shimomura
- Department of Metabolic MedicineOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
11
|
Piemonti L. The Last Mile in Beta-Cell Replacement Therapy for Type 1 Diabetes: Time to Grow Up. Transpl Int 2025; 38:14565. [PMID: 40236754 PMCID: PMC11998595 DOI: 10.3389/ti.2025.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
Beta cell replacement therapy for type 1 diabetes (T1D) is undergoing a transformative shift, driven by advances in stem cell biology, gene editing, and tissue engineering. While islet transplantation has demonstrated proof-of-concept success in restoring endogenous insulin production, its clinical impact remains limited by donor scarcity, immune rejection, and procedural complexities. The emergence of stem cell-derived beta-like cells represents a paradigm shift, with initial clinical trials showing promising insulin secretion in vivo. However, translating these breakthroughs into scalable, widely accessible treatments poses significant challenges. Drawing parallels to space exploration, this paper argues that while scientific feasibility has been demonstrated, true accessibility remains elusive. Without a strategic shift, beta cell therapy risks becoming an elite intervention, restricted by cost and infrastructure. Lessons from gene and cell therapies for rare diseases highlight the dangers of unsustainable pricing and limited market viability. To bridge the "last mile" a Quality by Design approach is proposed, emphasizing scalability, ease of use, and economic feasibility from the outset. By emphasizing practical implementation over academic achievements, corporate interests, market economics, or patent constraints, beta cell therapy can progress from proof-of-concept to a viable, widely accessible treatment.
Collapse
Affiliation(s)
- Lorenzo Piemonti
- Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
12
|
Berney T, Thaunat O, Berishvili E. Allogeneic Islet Transplantation: Chronicle of a Death Foretold? Transpl Int 2025; 38:14598. [PMID: 40236755 PMCID: PMC11998596 DOI: 10.3389/ti.2025.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
Innovative solutions have entered the routine management of patients with type 1 diabetes or are making the headlines and this is shaking the world of beta cell replacement therapies. Above all, allogeneic islet transplantation is enthusiastically doomed to extinction by the aficionados of "closed loop" artificial insulin delivery systems or those convinced of the imminent large scale availability of stem-cell derived insulin-producing tissues. This opinion paper will propose that neither will be a universal solution in the very near future and will argue that xenogeneic islet transplantation may be a serious outsider in the race for new therapies. In the meantime, the odds are in favor of allogeneic islet (and pancreas) transplantation remaining first line options in the treatment of complicated type 1 diabetes. There is no question that "closed loop" systems have already greatly improved the management of type 1 diabetes, but, while "unlimited" sources of insulin-producing cells are jockeying for approval as standard-of-care, these improvements are more likely to drive a shift of indications -from islet transplant alone to simultaneous islet-kidney transplantation- than to herald the demise of islet transplantation.
Collapse
Affiliation(s)
- Thierry Berney
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France
- Lyon-Est Faculty of Medicine, Claude Bernard University (Lyon 1), Villeurbanne, France
| | - Ekaterine Berishvili
- Faculty Diabetes Center, University of Geneva Medical Center, University of Geneva, Geneva, Switzerland
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
- Department of Surgery, Laboratory of Tissue Engineering and Organ Regeneration, University of Geneva, Geneva, Switzerland
- Department of Surgery, Cell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Chen S, Wang W, Shen L, Liu H, Luo J, Ren Y, Cui S, Ye Y, Shi G, Cheng F, Su X, Dai L, Gou M, Deng H. A 3D-printed microdevice encapsulates vascularized islets composed of iPSC-derived β-like cells and microvascular fragments for type 1 diabetes treatment. Biomaterials 2025; 315:122947. [PMID: 39547136 DOI: 10.1016/j.biomaterials.2024.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Transplantation of insulin-secreting cells provides a promising method for re-establishing the autonomous blood glucose control ability of type 1 diabetes (T1D) patients, but the low survival of the transplanted cells hinder the therapeutic efficacy. In this study, we 3D-printed an encapsulation system containing β-like cells and microvascular fragments (MVF), to create a retrivable microdevice with vascularized islets in vivo for T1D therapy. The functional β-like cells were differentiated from the urine epithelial cell-derived induced pluripotent stem cells (UiPSCs). Single-cell RNA sequencing provided an integrative study and macroscopic developmental analyses of the entire process of differentiation, which revealed the developmental trajectory of differentiation in vitro follows the developmental pattern of embryonic pancreas in vivo. The MVF were isolated from the epididymal fat pad. The microdevice with a groove structure were rapidly fabricated by the digital light processing (DLP)-3D printing technology. The β-like cells and MVF were uniformly distributed in the device. After subcutaneous transplantation into C57BL/6 mice, the microdevice have less collagen accumulation and low immune cell infiltration. Moreover, the microdevice encapsulated vascularized islets reduced hyperglycemia in 33 % of the treated mice for up to 100 days without immunosuppressants, and the humanized C-peptide was also detected in the serum of the mice. In summary, we described the microdevice-protected vascularized islets for long-term treatment of T1D, with high safety and potential clinical transformative value, and may therefore provide a translatable solution to advance the research progress of β cell replacement therapy for T1D.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenshuang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lanlin Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yushuang Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Susu Cui
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yixin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolan Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Liu P, Ponnienselvan K, Nyalile T, Oikemus S, Joynt AT, Iyer S, Kelly K, Guo D, Kyawe PP, Vanderleeden E, Redick SD, Huang L, Chen Z, Lee JM, Schiffer CA, Harlan DM, Wang JP, Emerson CP, Lawson ND, Watts JK, Sontheimer EJ, Luban J, Wolfe SA. Increasing intracellular dNTP levels improves prime editing efficiency. Nat Biotechnol 2025; 43:539-544. [PMID: 39322763 DOI: 10.1038/s41587-024-02405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
In primary cell types, intracellular deoxynucleotide triphosphate (dNTP) levels are tightly regulated in a cell cycle-dependent manner. We report that prime editing efficiency is increased by mutations that improve the enzymatic properties of Moloney murine leukemia virus reverse transcriptase and treatments that increase intracellular dNTP levels. In combination, these modifications produce substantial increases in precise editing rates.
Collapse
Affiliation(s)
- Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karthikeyan Ponnienselvan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Thomas Nyalile
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sarah Oikemus
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Anya T Joynt
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sukanya Iyer
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dongsheng Guo
- Department of Neurology, Wellstone Program, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pyae P Kyawe
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Emma Vanderleeden
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sambra D Redick
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lei Huang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeong Min Lee
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - David M Harlan
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Charles P Emerson
- Department of Neurology, Wellstone Program, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik J Sontheimer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
15
|
Rafi FR, Heya NR, Hafiz MS, Jim JR, Kabir MM, Mridha MF. A systematic review of single-cell RNA sequencing applications and innovations. Comput Biol Chem 2025; 115:108362. [PMID: 39919386 DOI: 10.1016/j.compbiolchem.2025.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/26/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Bulk RNA sequencing is one type of RNA sequencing technique, as well as targeted RNA sequencing and whole transcriptome sequencing. It provides valuable insights into gene expression in specific cell populations or regions. However, these methods often miss the diversity of cells within complex tissues. This restriction is overcome by single-cell RNA sequencing, which records gene expression at the single-cell level. It offers a detailed picture of the diversity of cells. It is essential to study glucose homeostasis. It offers thorough explanations of cellular variation. Networks and Governance Dynamics The use of scRNA-seq in islet cells is reviewed in this study, along with sample preparation, sequencing, and computational analysis. It highlights advances in understanding cell types. Gene activity and cell interactions. Along with the challenges and limitations of scRNA-seq, this review highlights the importance of scRNA-seq in understanding complex biological processes and diseases. It is an essential resource for future research and method development in this field, which will help to build personalized treatment.
Collapse
Affiliation(s)
- Fahamidur Rahaman Rafi
- Department of Computer Science and Engineering, Daffodil International University, Dhaka 1340, Bangladesh.
| | - Nafeya Rahman Heya
- Department of Computer Science and Engineering, Daffodil International University, Dhaka 1340, Bangladesh.
| | - Md Sadman Hafiz
- Institute of Information and Communication Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Jamin Rahman Jim
- Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh.
| | - Md Mohsin Kabir
- Department of Computer Science & Engineering, Bangladesh University of Business & Technology, Dhaka 1216, Bangladesh.
| | - M F Mridha
- Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh.
| |
Collapse
|
16
|
Montaser H, Leppänen S, Vähäkangas E, Bäck N, Grace A, Eurola S, Ibrahim H, Lithovius V, Stephens SB, Barsby T, Balboa D, Saarimäki-Vire J, Otonkoski T. IER3IP1 Mutations Cause Neonatal Diabetes Due to Impaired Proinsulin Trafficking. Diabetes 2025; 74:514-527. [PMID: 39441964 PMCID: PMC11926274 DOI: 10.2337/db24-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
ARTICLE HIGHLIGHTS IER3IP1 mutations are linked to the development of microcephaly, epilepsy, and early-onset diabetes syndrome 1. However, the underlying molecular mechanisms of cell dysfunction are unknown. Using targeted genome editing, we generated specific IER3IP1 mutations in human embryonic stem cell lines that were differentiated into pancreatic islet lineages. Loss of IER3IP1 resulted in a threefold reduction in endoplasmic reticulum-to-Golgi trafficking of proinsulin in stem cell-derived β-cells, leading to β-cell dysfunction both in vitro and in vivo. Loss of IER3IP1 also triggered increased markers of endoplasmic reticulum stress, indicating the pivotal role of the endoplasmic reticulum-to-Golgi trafficking pathway for β-cell homeostasis and function.
Collapse
Affiliation(s)
- Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sonja Leppänen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eliisa Vähäkangas
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nils Bäck
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Alicia Grace
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Solja Eurola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Samuel B Stephens
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Sali S, Azzam L, Jaro T, Ali AAG, Mardini A, Al-Dajani O, Khattak S, Butler AE, Azeez JM, Nandakumar M. A perfect islet: reviewing recent protocol developments and proposing strategies for stem cell derived functional pancreatic islets. Stem Cell Res Ther 2025; 16:160. [PMID: 40165291 PMCID: PMC11959787 DOI: 10.1186/s13287-025-04293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The search for an effective cell replacement therapy for diabetes has driven the development of "perfect" pancreatic islets from human pluripotent stem cells (hPSCs). These hPSC-derived pancreatic islet-like β cells can overcome the limitations for disease modelling, drug development and transplantation therapies in diabetes. Nevertheless, challenges remain in generating fully functional and mature β cells from hPSCs. This review underscores the significant efforts made by researchers to optimize various differentiation protocols aimed at enhancing the efficiency and quality of hPSC-derived pancreatic islets and proposes methods for their improvement. By emulating the natural developmental processes of pancreatic embryogenesis, specific growth factors, signaling molecules and culture conditions are employed to guide hPSCs towards the formation of mature β cells capable of secreting insulin in response to glucose. However, the efficiency of these protocols varies greatly among different human embryonic stem cell (hESC) and induced pluripotent stem cell (hiPSC) lines. This variability poses a particular challenge for generating patient-specific β cells. Despite recent advancements, the ultimate goal remains to develop a highly efficient directed differentiation protocol that is applicable across all genetic backgrounds of hPSCs. Although progress has been made, further research is required to optimize the protocols and characterization methods that could ensure the safety and efficacy of hPSC-derived pancreatic islets before they can be utilized in clinical settings.
Collapse
Affiliation(s)
- Sujitha Sali
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Leen Azzam
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Taraf Jaro
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ahmed Ali Gebril Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ali Mardini
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Omar Al-Dajani
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Shahryar Khattak
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alexandra E Butler
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain.
| | - Juberiya M Azeez
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Manjula Nandakumar
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| |
Collapse
|
18
|
Zhu F, Nie G. Cell reprogramming: methods, mechanisms and applications. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:12. [PMID: 40140235 PMCID: PMC11947411 DOI: 10.1186/s13619-025-00229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Cell reprogramming represents a powerful approach to achieve the conversion cells of one type into cells of another type of interest, which has substantially changed the landscape in the field of developmental biology, regenerative medicine, disease modeling, drug discovery and cancer immunotherapy. Cell reprogramming is a complex and ordered process that involves the coordination of transcriptional, epigenetic, translational and metabolic changes. Over the past two decades, a range of questions regarding the facilitators/barriers, the trajectories, and the mechanisms of cell reprogramming have been extensively investigated. This review summarizes the recent advances in cell reprogramming mediated by transcription factors or chemical molecules, followed by elaborating on the important roles of biophysical cues in cell reprogramming. Additionally, this review will detail our current understanding of the mechanisms that govern cell reprogramming, including the involvement of the recently discovered biomolecular condensates. Finally, the review discusses the broad applications and future directions of cell reprogramming in developmental biology, disease modeling, drug development, regenerative/rejuvenation therapy, and cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Zhu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Olaniru OE, Toczyska K, Guccio N, Giera S, Piao X, King AJF, Jones PM, Persaud SJ. Spatiotemporal profiling of adhesion G protein-coupled receptors in developing mouse and human pancreas reveals a role for GPR56 in islet development. Cell Mol Life Sci 2025; 82:129. [PMID: 40137991 PMCID: PMC11947406 DOI: 10.1007/s00018-025-05659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION G protein-coupled receptors (GPCRs) are cell-surface proteins that are targeted therapeutically for a range of disorders, including diabetes. Adhesion GPCRs (aGPCRs) are the second largest class of the GPCR superfamily and some members of this family have been implicated in appropriate organ development. However, the role of aGPCRs in endocrine pancreas specification is not yet known. METHODS Here, we systematically characterised expression of mRNAs encoding aGPCRs and their ligands in developing mouse and human pancreas using our own and publicly available single-cell RNA sequencing and spatial transcriptomics data, and we conducted qPCR analysis of aGPCR expression in human pancreas at different gestational stages. We then investigated the role of GPR56 (ADGRG1), the most abundant aGPCR in pancreatic endocrine progenitors, in islet development using Gpr56 null mice and their wildtype littermates. RESULTS We demonstrated that aGPCRs are dynamically expressed during mouse and human pancreas development, with specific aGPCR mRNAs expressed in distinct endocrine, endothelial, mesenchymal, acinar, ductal, and immune cell clusters. aGPCR ligand mRNAs were mostly expressed by non-endocrine cells, and the most highly expressed receptor-ligand interacting mRNA pairs were those encoding GPR56 and COL3A1. Deletion of Gpr56 in neonatal mice was associated with an altered α-/β-/δ-cell ratio and reduced β-cell proliferation. CONCLUSION Our data show that aGPCRs are expressed at key stages of human and mouse pancreas endocrine lineage decisions, and analysis of pancreases from Gpr56 knockout mice implicate this aGPCR in the development of a full complement of β-cells.
Collapse
Affiliation(s)
- Oladapo E Olaniru
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Klaudia Toczyska
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Nunzio Guccio
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Stefanie Giera
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xianhua Piao
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pediatrics, University of California at San Francisco, San Francisco, CA, USA
| | - Aileen J F King
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Peter M Jones
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
20
|
Wang Y, Gulati N, Regeenes R, Migliorini A, Oakie A, Nostro MC, Rocheleau JV. Modulating the Kinetics of a Fluorescence Anisotropy Immunoassay Using Tracer Point Mutations to Measure Human C-Peptide Secretion On-Chip. ACS OMEGA 2025; 10:11595-11606. [PMID: 40160725 PMCID: PMC11947798 DOI: 10.1021/acsomega.5c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Fluorescence anisotropy immunoassays (FAIAs) are widely used to quantify the concentration of target proteins based on competitive binding to a monoclonal antibody with a tracer. We recently designed an FAIA to measure mouse C-peptide secretion from living islets in a continuous-flow microfluidic device (InsC-chip). To develop a similar assay for human C-peptide, we selected two monoclonal antibodies (Ab1 and Ab2) that initially showed a low dynamic range and slow kinetics. One option to measure this assay on-chip was to extend the length of the mixing channels. However, this strategy would increase dispersion and ultimately lower the temporal resolution of secreted C-peptide. To shorten the time-to-reach equilibrium for Ab1, we reengineered the tracer based on a comparison between the human and mouse C-peptide sequences, resulting in >30-fold shorter time-to-reach equilibrium. To increase the relatively small dynamic range for Ab2, we used partial epitope mapping and targeted point mutations to increase the dynamic range by 45%. Finally, we validated both FAIAs by measuring depolarization-induced secretion from individual human stem cell-derived islets in our InsC-chip. These data demonstrate a strategy to optimize FAIA kinetics to be measured in continuous-flow microfluidic devices.
Collapse
Affiliation(s)
- Yufeng Wang
- Advanced
Diagnostics, Toronto General Hospital Research
Institute, Toronto M5G 1L7, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto M5S 3G9, Canada
| | - Nitya Gulati
- Advanced
Diagnostics, Toronto General Hospital Research
Institute, Toronto M5G 1L7, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto M5S 3G9, Canada
| | - Romario Regeenes
- Advanced
Diagnostics, Toronto General Hospital Research
Institute, Toronto M5G 1L7, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto M5S 3G9, Canada
| | - Adriana Migliorini
- McEwen
Stem Cell Institute, University Health Network, Toronto M5G 1L7, Canada
| | - Amanda Oakie
- McEwen
Stem Cell Institute, University Health Network, Toronto M5G 1L7, Canada
| | - Maria Cristina Nostro
- McEwen
Stem Cell Institute, University Health Network, Toronto M5G 1L7, Canada
- Departments
of Medicine and Physiology, University of
Toronto, Toronto M5S 1A8, Canada
| | - Jonathan V. Rocheleau
- Advanced
Diagnostics, Toronto General Hospital Research
Institute, Toronto M5G 1L7, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto M5S 3G9, Canada
- Departments
of Medicine and Physiology, University of
Toronto, Toronto M5S 1A8, Canada
| |
Collapse
|
21
|
Waite EL, Tigue M, Yu M, Lahori D, Kelly K, May CL, Naji A, Roman J, Doliba N, Avrahami D, Nguyen-Ngoc KV, Sander M, Glaser B, Kaestner KH. The IsletTester Mouse: An Immunodeficient Model With Stable Hyperglycemia for the Study of Human Islets. Diabetes 2025; 74:332-342. [PMID: 39571094 PMCID: PMC11842601 DOI: 10.2337/db23-0887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/18/2024] [Indexed: 02/22/2025]
Abstract
The gold standard for assessing the function of human islets or β-like cells derived from stem cells involves their engraftment under the kidney capsule of hyperglycemic, immunodeficient mice. Current models, such as streptozotocin treatment of severely immunodeficient mice or the NRG-Akita strain, are limited due to unstable and variable hyperglycemia and/or high morbidity. To address these limitations, we developed the IsletTester mouse via CRISPR/Cas9-mediated gene editing of glucokinase (Gck), the glucose sensor of the β-cells, directly in NSG zygotes. IsletTester mice are heterozygous for an Arg345→stop mutation in Gck and present with stable random hyperglycemia (∼250 mg/dL [14 mmol/L]), normal lifespan, and fertility. We demonstrate the utility of this model through functional engraftment of both human islets and human embryonic stem cell-derived β-like cells. The IsletTester mouse will enable the study of human islet biology over time and under different physiological conditions and can provide a useful preclinical platform to determine the functionality of stem cell-derived islet products. ARTICLE HIGHLIGHTS Current mouse models for assessing islet function in vivo are limited due to unstable and variable hyperglycemia and/or high morbidity. We derived the IsletTester mouse to address these limitations. Leveraging a previously characterized glucokinase mutation and CRISPR/Cas9 technology, we successfully developed a moderately hyperglycemic and immunodeficient mouse model for the in vivo assessment of islet function. Our IsletTester mouse has stable, moderate hyperglycemia that can be corrected with primary human islets or stem cell-derived insulin-producing cells. The IsletTester mouse provides a reliable, easy-to-use platform for the preclinical assessment of stem cell-derived islet products or islet-targeted drugs.
Collapse
Affiliation(s)
- Eric L. Waite
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mark Tigue
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ming Yu
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Deeksha Lahori
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Kelly
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Catherine Lee May
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ali Naji
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Jeffrey Roman
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nicolai Doliba
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dana Avrahami
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Kim-Vy Nguyen-Ngoc
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA
- Max Delbruck Center, Berlin, Germany
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Klaus H. Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Campo F, Neroni A, Pignatelli C, Pellegrini S, Marzinotto I, Valla L, Manenti F, Policardi M, Lampasona V, Piemonti L, Citro A. Bioengineering of a human iPSC-derived vascularized endocrine pancreas for type 1 diabetes. Cell Rep Med 2025; 6:101938. [PMID: 39922198 DOI: 10.1016/j.xcrm.2025.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/18/2024] [Accepted: 01/13/2025] [Indexed: 02/10/2025]
Abstract
Intrahepatic islet transplantation in patients with type 1 diabetes is limited by donor availability and lack of engraftment. Alternative β cell sources and transplantation sites are needed. We demonstrate the feasibility to repurpose a decellularized lung as an endocrine pancreas for β cell replacement. We bioengineer an induced pluripotent stem cell (iPSC)-based version, fabricating a human iPSC-based vascularized endocrine pancreas (iVEP) using iPSC-derived β cells (iPSC-derived islets [SC-islets]) and endothelial cells (iECs). SC-islets and iECs are aggregated into vascularized iβ spheroids (ViβeSs), and over 7 days of culture, spheroids integrate into the bioengineered vasculature, generating a functional, perfusable human endocrine organ. In vitro, the vascularized extracellular matrix (ECM) sustained SC-islet engraftment and survival with a significantly preserved β cell mass and a physiologic insulin release. In vivo, iVEP restores normoglycemia in diabetic NSG mice. We report a human iVEP providing a controlled in vitro insulin-secreting phenotype and in vivo function.
Collapse
Affiliation(s)
- Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Pellegrini
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Marzinotto
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Libera Valla
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Fabio Manenti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Policardi
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
23
|
Hogrebe NJ, Schmidt MD, Augsornworawat P, Gale SE, Shunkarova M, Millman JR. Depolymerizing F-actin accelerates the exit from pluripotency to enhance stem cell-derived islet differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.21.618465. [PMID: 39484596 PMCID: PMC11526947 DOI: 10.1101/2024.10.21.618465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In this study, we demonstrate that cytoskeletal state at the onset of directed differentiation is critical for the specification of human pluripotent stem cells (hPSCs) to all three germ layers. In particular, a polymerized actin cytoskeleton facilitates directed ectoderm differentiation, while depolymerizing F-actin promotes mesendoderm lineages. Applying this concept to a stem cell-derived islet (SC-islet) differentiation protocol, we show that depolymerizing F-actin with latrunculin A (latA) during the first 24 hours of definitive endoderm formation facilitates rapid exit from pluripotency and alters Activin/Nodal, BMP, JNK-JUN, and WNT pathway signaling dynamics. These signaling changes influence downstream patterning of the gut tube, leading to improved pancreatic progenitor identity and decreased expression of markers associated with other endodermal lineages. Continued differentiation generates islets containing a higher percentage of β cells that exhibit improved maturation, insulin secretion, and ability to reverse hyperglycemia. Furthermore, this latA treatment reduces enterochromaffin cells in the final cell population and corrects differentiations from hPSC lines that otherwise fail to consistently produce pancreatic islets, highlighting the importance of cytoskeletal signaling at the onset of directed differentiation.
Collapse
Affiliation(s)
- Nathaniel J. Hogrebe
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Mason D. Schmidt
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Punn Augsornworawat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sarah E. Gale
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Mira Shunkarova
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey R. Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
24
|
Kim M, Cho S, Hwang DG, Shim IK, Kim SC, Jang J, Jang J. Bioprinting of bespoke islet-specific niches to promote maturation of stem cell-derived islets. Nat Commun 2025; 16:1430. [PMID: 39920133 PMCID: PMC11805982 DOI: 10.1038/s41467-025-56665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
Pancreatic islets are densely packed cellular aggregates containing various hormonal cell types essential for blood glucose regulation. Interactions among these cells markedly affect the glucoregulatory functions of islets along with the surrounding niche and pancreatic tissue-specific geometrical organization. However, stem cell (SC)-derived islets generated in vitro often lack the three-dimensional extracellular microenvironment and peri-vasculature, which leads to the immaturity of SC-derived islets, reducing their ability to detect glucose fluctuations and insulin release. Here, we bioengineer the in vivo-like pancreatic niches by optimizing the combination of pancreatic tissue-specific extracellular matrix and basement membrane proteins and utilizing bioprinting-based geometrical guidance to recreate the spatial pattern of islet peripheries. The bioprinted islet-specific niche promotes coordinated interactions between islets and vasculature, supporting structural and functional features resembling native islets. Our strategy not only improves SC-derived islet functionality but also offers significant potential for advancing research on islet development, maturation, and diabetic disease modeling, with future implications for translational applications.
Collapse
Affiliation(s)
- Myungji Kim
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Seungyeun Cho
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - In Kyong Shim
- Asan Institute for Life Science, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| | - Song Cheol Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| | - Jiwon Jang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jinah Jang
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Schaaf C, Sussel L. A Cure for Type 1 Diabetes: Are We There Yet? Diabetes Technol Ther 2025. [PMID: 39911033 DOI: 10.1089/dia.2024.0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Type 1 diabetes (T1D) affects over 2 million people in the United States and has no known cure. The discovery and first use of insulin in humans 102 years ago marked a revolutionary course of treatment for the disease, and although the formulations and delivery systems have advanced, insulin administration remains the standard of care today. While improved treatment options represent notable progress in T1D management, finding a functional cure for the disease remains the ultimate goal. Approaches to curing T1D have historically focused on blunting the autoimmune response, although sustained effects of immune modulation have proven elusive. Islet transplant therapies have also proven effective, although a lack of available donor tissue and the need for immunosuppression to prevent both host-graft rejection and the autoimmune response have reserved such treatments for those who already require immunosuppressive regimens for other reasons or undergo severe hypoglycemic events in conjunction with hypoglycemic unawareness. With the advent of human stem cell research, the focus has shifted toward generating an abundance of allogeneic, functional beta-like cells that can be transplanted into the patients. Immunoisolation devices have also shown some promise as a method of preventing immune rejection and the autoimmune destruction of transplanted cells. Finally, advances in new immune therapies, if used in the early stages of T1D progression, have proven to delay the onset of diabetes. Stem cell-based therapies are a promising approach to curing T1D. The ongoing clinical trials show some success, although they currently require immunosuppressant agents. Encapsulation devices provide a method of immunoisolation that does not require immunosuppression; however, the devices tested thus far eventually lead to cell death and fibrotic tissue growth. Substantial research efforts are underway to develop new approaches to protect the stem cell-derived beta cells upon transplantation.
Collapse
Affiliation(s)
- Christopher Schaaf
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Denver, Colorado, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Denver, Colorado, USA
| |
Collapse
|
26
|
Mohammadian S, Hosseni SJ, Negad Dehbashi F, Dayer D. The Insulin-Producing Cells Generated from Rat Adipose Tissue Mesenchymal Stem Cells via Pdx1 Overexpression Activate an Immune Response both in Vitro and in Vivo. IRANIAN JOURNAL OF MEDICAL SCIENCES 2025; 50:112-123. [PMID: 40026296 PMCID: PMC11870862 DOI: 10.30476/ijms.2024.101162.3378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/25/2024] [Accepted: 04/19/2024] [Indexed: 03/05/2025]
Abstract
Background The current work investigated the immunological features of insulin-producing cells (IPCs) generated from rat adipose-derived mesenchymal stem cells (ADSCs) both in vitro and in vivo. Methods The research was carried out at Ahvaz Jundishapur University of Medical Sciences in 2023. ADSCs were derived from rat adipose tissues and differentiated into IPCs. The control group included undifferentiated ADSCs. The amount of secreted insulin was measured using ELISA. The expression of major histocompatibility complex-I (MHC-I) and MHC-II, cluster of differentiation 40 (CD40), and CD80 by IPCs in vitro was assessed using Western Blot analysis. The in vivo study was performed on 10 male diabetic rats. The experimental group received 107 IPCs in the peritoneal cavity. The control group received 107 undifferentiated ADSCs. After 4 hours, the expression of CD3a and CD45 by immune cells collected from the peritoneal cavity was measured using flow cytometry. All parameters were statistically analyzed using a t test. Results The differentiated cells secreted much higher amounts of insulin than the control group (P=0.04). IPCs exhibited higher expression of MHC-I and MHC-II, CD40, and CD80 (P=0.02, P=0.008, P=0.07, and P=0.02, respectively). The experimental group showed higher levels of CD3a and CD45 expression than the control group (P=0.07, P=0.04, respectively). Conclusion Functional IPCs generated by ADSCs differentiation exhibited immunogenic activity both in vitro and in vivo. Immune-modulating strategies are required for the effective transplantation of the differentiated IPCs generated in our study.
Collapse
Affiliation(s)
- Shadab Mohammadian
- Group of Biotechnology, Institute of Persian Gulf, Persian Gulf University, Bushehr, Iran
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Javad Hosseni
- Group of Biotechnology, Institute of Persian Gulf, Persian Gulf University, Bushehr, Iran
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
| | - Fereshte Negad Dehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
27
|
Blaszczyk K, Jedrzejak AP, Ziojla N, Shcheglova E, Szarafin K, Jankowski A, Beamish CA, Chmielowiec J, Sabek OM, Balasubramanyam A, Patel S, Borowiak M. SPOCK2 controls the proliferation and function of immature pancreatic β-cells through MMP2. Exp Mol Med 2025; 57:131-150. [PMID: 39741186 PMCID: PMC11799530 DOI: 10.1038/s12276-024-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 01/02/2025] Open
Abstract
Human pluripotent stem cell-derived β-cells (SC-β-cells) represent an alternative cell source for transplantation in diabetic patients. Although mitogens could in theory be used to expand β-cells, adult β-cells very rarely replicate. In contrast, newly formed β-cells, including SC-β-cells, display higher proliferative capacity and distinct transcriptional and functional profiles. Through bidirectional expression modulation and single-cell RNA-seq, we identified SPOCK2, an ECM protein, as an inhibitor of immature β-cell proliferation. Human β-cells lacking SPOCK2 presented elevated MMP2 expression and activity, leading to β-integrin-FAK-c-JUN pathway activation. Treatment with the MMP2 protein resulted in pronounced short- and long-term SC-β-cell expansion, significantly increasing glucose-stimulated insulin secretion in vitro and in vivo. These findings suggest that SPOCK2 mediates fetal β-cell proliferation and maturation. In summary, we identified a molecular mechanism that specifically regulates SC-β-cell proliferation and function, highlighting a unique signaling milieu of SC-β-cells with promise for the robust derivation of fully functional cells for transplantation.
Collapse
Affiliation(s)
- Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Anna P Jedrzejak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Natalia Ziojla
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Karolina Szarafin
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Artur Jankowski
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland
| | - Christine A Beamish
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Jolanta Chmielowiec
- Collegium Medicum, University of Warmia and Mazury, Aleja Warszawska 30, Olsztyn, 11-082, Poland
| | - Omaima M Sabek
- Department of Surgery, Methodist Research Institute, Houston, TX, 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sanjeet Patel
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland.
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Mar S, Filatov E, Sasaki S, Mojibian M, Zhang D, Yang A, Nian C, Lynn FC. Tracking Insulin- and Glucagon-Expressing Cells In Vitro and In Vivo Using a Double-Reporter Human Embryonic Stem Cell Line. Diabetes 2025; 74:188-198. [PMID: 39561351 PMCID: PMC11755683 DOI: 10.2337/db24-0756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
ARTICLE HIGHLIGHTS Differentiation protocols used to generate stem cell-derived islet cells yield heterogenous cell populations. We generated a human embryonic stem cell line that reports insulin- and glucagon-expressing cells in vitro and in vivo without altering their differentiation or function. We showed some insulin- and glucagon-expressing bihormonal cells are cell-autonomously fated to become α-like cells. This reporter cell line can be used to further study and improve stem cell-derived islet differentiation and transplantation.
Collapse
Affiliation(s)
- Samantha Mar
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ekaterina Filatov
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shugo Sasaki
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dahai Zhang
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela Yang
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cuilan Nian
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francis C. Lynn
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Karampelias C, Liu KC, Tengholm A, Andersson O. Mechanistic insights and approaches for beta cell regeneration. Nat Chem Biol 2025:10.1038/s41589-024-01822-y. [PMID: 39881214 DOI: 10.1038/s41589-024-01822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms. We group the pathways according to the cellular processes they affect, that is, proliferation, conversion of other mature cell types to beta cells and beta cell differentiation from progenitor-like populations. We also suggest assays for assessing the functionality of the regenerated beta cells. Although regeneration processes differ between animal models, such as zebrafish, mice and pigs, regenerative mechanisms identified in any one animal model may be translatable to humans. Overall, chemical biology-based approaches in beta cell regeneration give hope that specific molecular pathways can be targeted to enhance beta cell regeneration.
Collapse
Affiliation(s)
- Christos Karampelias
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ka-Cheuk Liu
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Olov Andersson
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.
| |
Collapse
|
30
|
Li Y, Zhu J, Yue C, Song S, Tian L, Wang Y. Recent advances in pancreatic α-cell transdifferentiation for diabetes therapy. Front Immunol 2025; 16:1551372. [PMID: 39911402 PMCID: PMC11794509 DOI: 10.3389/fimmu.2025.1551372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
As the global prevalence of diabetes mellitus rises, traditional treatments like insulin therapy and oral hypoglycemic agents often fail to achieve optimal glycemic control, leading to severe complications. Recent research has focused on replenishing pancreatic β-cells through the transdifferentiation of α-cells, offering a promising therapeutic avenue. This review explores the molecular mechanisms underlying α-cell to β-cell transdifferentiation, emphasizing key transcription factors such as Dnmt1, Arx, Pdx1, MafA, and Nkx6.1. The potential clinical applications, especially in type 1 and type 2 diabetes characterized by significant β-cell dysfunction, are addressed. Challenges, including low transdifferentiation efficiency, cell stability, and safety concerns, are also included. Future research directions include optimizing molecular pathways, enhancing transdifferentiation efficiency, and ensuring the long-term stability of β-cell identity. Overall, the ability to convert α-cells into β-cells represents a transformative strategy for diabetes treatment, offering hope for more effective and sustainable therapies for patients with severe β-cell loss.
Collapse
Affiliation(s)
- Yanjiao Li
- Department of Pharmacy, Qionglai Hospital of Traditional Chinese Medicine, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jinyu Zhu
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Congyang Yue
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Limin Tian
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Geriatrics and Endocrinology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Hu M, Liu T, Huang H, Ogi D, Tan Y, Ye K, Jin S. Extracellular matrix proteins refine microenvironments for pancreatic organogenesis from induced pluripotent stem cell differentiation. Theranostics 2025; 15:2229-2249. [PMID: 39990212 PMCID: PMC11840725 DOI: 10.7150/thno.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
Rationale: The current understanding on manipulating signaling pathways to generate mature human islet organoids with all major hormone-secreting endocrine cell types (i.e., α, β, δ, and γ cells) from induced pluripotent stem cells (iPSCs) is insufficient. However, donor islet shortage necessitates that we produce functional islets in vitro. In this study, we aimed to find decellularized pancreatic extracellular matrix (dpECM) proteins that leverage signaling pathways and promote functional iPSC islet organogenesis. Methods: We performed proteomic analysis to identify key islet promoting factors from porcine and rat dpECM. With this, we identified collagen type II (COL2) as a potential biomaterial cue that endorses islet development from iPSCs. Using global transcriptome profiling, gene set enrichment analysis, immunofluorescence microscopy, flow cytometry, Western blot, and glucose-stimulated hormonal secretion analysis, we examined COL2's role in regulating iPSC pancreatic lineage specification and signaling pathways, critical to islet organogenesis and morphogenesis. Results: We discovered COL2 acts as a functional biomaterial that augments islet development from iPSCs, similar to collagen type V (COL5) as reported in our earlier study. COL2 substantially stimulates the formation of endocrine progenitors and subsequent islet organoids with significantly elevated expressions of pancreatic signature genes and proteins. Furthermore, it enhances islets' glucose sensitivity for hormonal secretion. A cluster of gene expressions associated with various signaling pathways, including but not limited to oxidative phosphorylation, insulin secretion, cell cycle, the canonical WNT, hypoxia, and interferon-γ response, were considerably affected by COL2 and COL5 cues. Conclusion: We demonstrated dpECM's crucial role in refining stem cell differentiation microenvironments for organoid development and maturation. Our findings on biomaterial-stimulated signaling for stem cell specification, organogenesis, and maturation open up a new way to increase the differentiation efficacy of endocrine tissues that can contribute to the production of biologically functional islets.
Collapse
Affiliation(s)
- Ming Hu
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Tianzheng Liu
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Hui Huang
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Derek Ogi
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| |
Collapse
|
32
|
Cheung P, Persson J, Zhang B, Vasylovska S, Lau J, Invast S, Korsgren O, Ståhl S, Löfblom J, Eriksson O. DGCR2 targeting affibody molecules for delivery of drugs and imaging reagents to human beta cells. Sci Rep 2025; 15:417. [PMID: 39747317 PMCID: PMC11695922 DOI: 10.1038/s41598-024-84574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
A distinctive feature of both type 1 and type 2 diabetes is the waning of insulin-secreting beta cells in the pancreas. New methods for direct and specific targeting of the beta cells could provide platforms for delivery of pharmaceutical reagents. Imaging techniques such as Positron Emission Tomography (PET) rely on the efficient and specific delivery of imaging reagents, and could greatly improve our understanding of diabetes etiology as well as providing biomarkers for viable beta-cell mass in tissue, in both pancreas and in islet grafts.The DiGeorge Syndrome Critical Region Gene 2 (DGCR2) protein has been suggested as a beta-cell specific protein in the pancreas, but so far there has been a lack of available high-affinity binders suitable for targeted drug delivery or molecular imaging. Affibody molecules belong to a class of small affinity proteins with excellent properties for molecular imaging. Here, we further validate the presence of DGCR2 in pancreatic and stem cell (SC)-derived beta cells, and then describe the generation and selection of several Affibody molecules candidates that target human DGCR2. Using an in-house developed directed evolution method, new DGCR2-binding Affibody molecules were generated and evaluated for thermal stability and affinity. The Affibody molecules variants were further developed as targeting agents for delivering imaging reagents to beta cell. The Affibody molecule ZDGCR2:AM106 displayed nanomolar affinity, suitable stability and biodistribution, with negligible toxicity to islets, qualifying it as a suitable lead candidate for further development as a tool for specific delivery of drugs and imaging reagents to beta cells.
Collapse
Affiliation(s)
- Pierre Cheung
- Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Persson
- Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Department of Protein Science, Division of Protein Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bo Zhang
- Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sofie Invast
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stefan Ståhl
- Department of Protein Science, Division of Protein Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, Division of Protein Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
- KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Olof Eriksson
- Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
- Uppsala University, Uppsala, Sweden.
| |
Collapse
|
33
|
Grattoni A, Korbutt G, Tomei AA, García AJ, Pepper AR, Stabler C, Brehm M, Papas K, Citro A, Shirwan H, Millman JR, Melero-Martin J, Graham M, Sefton M, Ma M, Kenyon N, Veiseh O, Desai TA, Nostro MC, Marinac M, Sykes M, Russ HA, Odorico J, Tang Q, Ricordi C, Latres E, Mamrak NE, Giraldo J, Poznansky MC, de Vos P. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat Rev Endocrinol 2025; 21:14-30. [PMID: 39227741 PMCID: PMC11938328 DOI: 10.1038/s41574-024-01029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis. Therapeutic intervention for T1DM requires a complex regimen of glycaemic monitoring and the administration of exogenous insulin to regulate blood glucose levels. Advances in continuous glucose monitoring and algorithm-driven insulin delivery devices have improved the quality of life of patients. Despite this, mimicking islet function and complex physiological feedback remains challenging. Pancreatic islet transplantation represents a potential functional cure for T1DM but is hindered by donor scarcity, variability in harvested cells, aggressive immunosuppressive regimens and suboptimal clinical outcomes. Current research is directed towards generating alternative cell sources, improving transplantation methods, and enhancing cell survival without chronic immunosuppression. This Review maps the progress in cell replacement therapies for T1DM and outlines the remaining challenges and future directions. We explore the state-of-the-art strategies for generating replenishable β cells, cell delivery technologies and local targeted immune modulation. Finally, we highlight relevant animal models and the regulatory aspects for advancing these technologies towards clinical deployment.
Collapse
Affiliation(s)
- Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| | - Gregory Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Cherie Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Michael Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Klearchos Papas
- Department of Surgery, The University of Arizona, Tucson, AZ, USA
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Haval Shirwan
- Department of Pediatrics, Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Juan Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Michael Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Norma Kenyon
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Tejal A Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA, USA
- Brown University, School of Engineering, Providence, RI, USA
| | - M Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Megan Sykes
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Department of Surgery, Columbia University, New York, NY, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jon Odorico
- UW Health Transplant Center, Madison, WI, USA
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qizhi Tang
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California San Francisco, San Francisco, CA, US
- Gladstone Institute of Genomic Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esther Latres
- Research Department, Breakthrough T1D, New York, NY, USA
| | | | - Jaime Giraldo
- Research Department, Breakthrough T1D, New York, NY, USA.
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
34
|
Verhoeff K, Cuesta-Gomez N, Maghera J, Dadheech N, Pawlick R, Smith N, O'Gorman D, Razavy H, Marfil-Garza B, Young LG, Thiesen A, MacDonald PE, Shapiro AMJ. Scalable Bioreactor-based Suspension Approach to Generate Stem Cell-derived Islets From Healthy Donor-derived iPSCs. Transplantation 2025; 109:e22-e35. [PMID: 39656525 DOI: 10.1097/tp.0000000000005108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) offer the potential to generate autologous iPSC-derived islets (iPSC islets), however, remain limited by scalability and product safety. METHODS Herein, we report stagewise characterization of cells generated following a bioreactor-based differentiation protocol. Cell characteristics were assessed using flow cytometry, quantitative reverse transcription polymerase chain reaction, patch clamping, functional assessment, and in vivo functional and immunohistochemistry evaluation. Protocol yield and costs are assessed to determine scalability. RESULTS Differentiation was capable of generating 90.4% PDX1 + /NKX6.1 + pancreatic progenitors and 100% C-peptide + /NKX6.1 + iPSC islet cells. However, 82.1%, 49.6%, and 0.9% of the cells expressed SOX9 (duct), SLC18A1 (enterochromaffin cells), and CDX2 (gut cells), respectively. Explanted grafts contained mature monohormonal islet-like cells, however, CK19 + ductal tissues persist. Using this protocol, semi-planar differentiation using 150 mm plates achieved 5.72 × 10 4 cells/cm 2 (total 8.3 × 10 6 cells), whereas complete suspension differentiation within 100 mL Vertical-Wheel bioreactors significantly increased cell yield to 1.1 × 10 6 cells/mL (total 105.0 × 10 6 cells), reducing costs by 88.8%. CONCLUSIONS This study offers a scalable suspension-based approach for iPSC islet differentiation within Vertical-Wheel bioreactors with thorough characterization of the ensuing product to enable future protocol comparison and evaluation of approaches for off-target cell elimination. Results suggest that bioreactor-based suspension differentiation protocols may facilitate scalability and clinical implementation of iPSC islet therapies.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Nerea Cuesta-Gomez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Jasmine Maghera
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Nidheesh Dadheech
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Rena Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Nancy Smith
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Doug O'Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Haide Razavy
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Braulio Marfil-Garza
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
- CHRISTUS-LatAm Hub-Excellence and Innovation Center, Monterrey, Mexico
| | | | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - A M James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Wu C, Huang Z, Chen J, Li N, Cai Y, Chen J, Ruan G, Han W, Ding C, Lu Y. Efficiently directing differentiation and homing of mesenchymal stem cells to boost cartilage repair in osteoarthritis via a nanoparticle and peptide dual-engineering strategy. Biomaterials 2025; 312:122720. [PMID: 39084098 DOI: 10.1016/j.biomaterials.2024.122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.
Collapse
Affiliation(s)
- Cuixi Wu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenwen Huang
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianmao Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Li
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Cai
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Jieli Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangfeng Ruan
- Clinical Research Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weiyu Han
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Changhai Ding
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Yao Lu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
Moeun BN, Lemaire F, Smink AM, Ebrahimi Orimi H, Leask RL, de Vos P, Hoesli CA. Oxygenation and function of endocrine bioartificial pancreatic tissue constructs under flow for preclinical optimization. J Tissue Eng 2025; 16:20417314241284826. [PMID: 39866963 PMCID: PMC11758540 DOI: 10.1177/20417314241284826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 01/28/2025] Open
Abstract
Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment. Many strategies have achieved reversal of hyperglycemia in diabetic rodents. So far, the results have been less promising when transitioning to humans and larger animal models due to challenges in oxygenation and insulin delivery. We propose a versatile in vitro perfusion system to culture and experimentally study the function of centimeter-scale tissues and devices for insulin-secreting cell delivery. The system accommodates various tissue geometries, experimental readouts, and oxygenation tensions reflective of potential transplantation sites. We highlight the system's applications by using case studies to explore three prominent bioartificial endocrine pancreas (BAP) configurations: (I) with internal flow, (II) with internal flow and microvascularized, and (III) without internal flow. Oxygen concentration profiles modeled computationally were analogous to viability gradients observed experimentally through live/dead endpoint measurements and in case I, time-lapse fluorescence imaging was used to monitor the viability of GFP-expressing cells in real time. Intervascular BAPs were cultured under flow for up to 3 days and BAPs without internal flow for up to 7 days, showing glucose-responsive insulin secretion quantified through at-line non-disruptive sampling. This system can complement other preclinical platforms to de-risk and optimize BAPs and other artificial tissue designs prior to clinical studies.
Collapse
Affiliation(s)
- Brenden N Moeun
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Florent Lemaire
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Richard L Leask
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
37
|
van Allen KA, Gang N, Hoyeck MP, Perera I, Zhang D, Atlas E, Lynn FC, Bruin JE. Characterizing the effects of Dechlorane Plus on β-cells: a comparative study across models and species. Islets 2024; 16:2361996. [PMID: 38833523 DOI: 10.1080/19382014.2024.2361996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
Epidemiological studies consistently link environmental toxicant exposure with increased Type 2 diabetes risk. Our study investigated the diabetogenic effects of a widely used flame retardant, Dechlorane Plus (DP), on pancreatic β-cells using rodent and human model systems. We first examined pancreas tissues from male mice exposed daily to oral gavage of either vehicle (corn oil) or DP (10, 100, or 1000 μg/kg per day) and fed chow or high fat diet for 28-days in vivo. DP exposure did not affect islet size or endocrine cell composition in either diet group. Next, we assessed the effect of 48-hour exposure to vehicle (DMSO) or DP (1, 10, or 100 nM) in vitro using immortalized rat β-cells (INS-1 832/3), primary mouse and human islets, and human stem-cell derived islet-like cells (SC-islets). In INS-1 832/3 cells, DP did not impact glucose-stimulated insulin secretion (GSIS) but significantly decreased intracellular insulin content. DP had no effect on GSIS in mouse islets or SC-islets but had variable effects on GSIS in human islets depending on the donor. DP alone did not affect insulin content in mouse islets, human islets, or SC-islets, but mouse islets co-exposed to DP and glucolipotoxic (GLT) stress conditions (28.7 mM glucose + 0.5 mM palmitate) had reduced insulin content compared to control conditions. Co-exposure of mouse islets to DP + GLT amplified the upregulation of Slc30a8 compared to GLT alone. Our study highlights the importance and challenges of using different in vitro models for studying chemical toxicity.
Collapse
Affiliation(s)
- Kyle A van Allen
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Noa Gang
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Myriam P Hoyeck
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Dahai Zhang
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Andersson-Rolf A, Groot K, Korving J, Begthel H, Hanegraaf MAJ, VanInsberghe M, Salmén F, van den Brink S, Lopez-Iglesias C, Peters PJ, Krueger D, Beumer J, Geurts MH, Alemany A, Gehart H, Carlotti F, de Koning EJP, Chuva de Sousa Lopes SM, van Oudenaarden A, van Es JH, Clevers H. Long-term in vitro expansion of a human fetal pancreas stem cell that generates all three pancreatic cell lineages. Cell 2024; 187:7394-7413.e22. [PMID: 39626658 DOI: 10.1016/j.cell.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 12/29/2024]
Abstract
The mammalian pancreas consists of three epithelial compartments: the acini and ducts of the exocrine pancreas and the endocrine islets of Langerhans. Murine studies indicate that these three compartments derive from a transient, common pancreatic progenitor. Here, we report derivation of 18 human fetal pancreas organoid (hfPO) lines from gestational weeks 8-17 (8-17 GWs) fetal pancreas samples. Four of these lines, derived from 15 to 16 GWs samples, generate acinar-, ductal-, and endocrine-lineage cells while expanding exponentially for >2 years under optimized culture conditions. Single-cell RNA sequencing identifies rare LGR5+ cells in fetal pancreas and in hfPOs as the root of the developmental hierarchy. These LGR5+ cells share multiple markers with adult gastrointestinal tract stem cells. Organoids derived from single LGR5+ organoid-derived cells recapitulate this tripotency in vitro. We describe a human fetal tripotent stem/progenitor cell capable of long-term expansion in vitro and of generating all three pancreatic cell lineages.
Collapse
Affiliation(s)
- Amanda Andersson-Rolf
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| | - Kelvin Groot
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Maaike A J Hanegraaf
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Michael VanInsberghe
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Fredrik Salmén
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Stieneke van den Brink
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carmen Lopez-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, 6229 ER Maastricht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, 6229 ER Maastricht, the Netherlands
| | - Daniel Krueger
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Joep Beumer
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche innovation Centre, 4070 Basel, Switzerland
| | - Maarten H Geurts
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Princess Maxima Centre for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Anna Alemany
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2333 ZA Leiden, the Netherlands
| | - Helmuth Gehart
- ETH Zurich, Institute of Molecular Health Sciences, 8093 Zürich, Schweiz
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Alexander van Oudenaarden
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Johan H van Es
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Princess Maxima Centre for Pediatric Oncology, 3584 CS Utrecht, the Netherlands; Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche innovation Centre, 4070 Basel, Switzerland.
| |
Collapse
|
39
|
de Koning EJP, Carlotti F. Stem cell islet replacement in type 1 diabetes: From "shelf" to "self". Cell Stem Cell 2024; 31:1727-1729. [PMID: 39642862 DOI: 10.1016/j.stem.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Recently in Cell, Wang and colleagues1 report the functional cure of a patient with type 1 diabetes after transplantation of autologous, induced pluripotent stem cell (iPSC)-derived islets in the rectus abdominis muscle.
Collapse
Affiliation(s)
- Eelco J P de Koning
- Department of Internal Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, the Netherlands.
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, the Netherlands
| |
Collapse
|
40
|
Qadir MMF, Elgamal RM, Song K, Kudtarkar P, Sakamuri SSVP, Katakam PV, El-Dahr SS, Kolls JK, Gaulton KJ, Mauvais-Jarvis F. Sex-specific regulatory architecture of pancreatic islets from subjects with and without type 2 diabetes. EMBO J 2024; 43:6364-6382. [PMID: 39567827 PMCID: PMC11649919 DOI: 10.1038/s44318-024-00313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Patients with type 2 and type 1 diabetes (T2D and T1D) exhibit sex-specific differences in insulin secretion, the mechanisms of which are unknown. We examined sex differences in human pancreatic islets from 52 donors with and without T2D combining single cell RNA-sequencing (scRNA-seq) and single nucleus ATAC-sequencing (snATAC-seq) with assays probing hormone secretion and bioenergetics. In non-diabetic (ND) donors, sex differences in islet cell chromatin accessibility and gene expression predominantly involved sex chromosomes. In contrast, islets from T2D donors exhibited similar sex differences in sex chromosome-encoded differentially expressed genes (DEGs) as ND donors, but also exhibited sex differences in autosomal genes. Comparing β cells from T2D and ND donors, gene enrichment of female β cells showed suppression in mitochondrial respiration, while male β cells exhibited suppressed insulin secretion, suggesting a role for mitochondrial failure in females in the transition to T2D. We finally performed cell type-specific, sex stratified, GWAS restricted to differentially accessible chromatin peaks across T2D, fasting glucose, and fasting insulin traits. We identified that differentially accessible regions overlap with T2D-associated variants in a sex- and cell type-specific manner.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
- Tulane Center of Excellence in Sex-Based Precision Medicine, New Orleans, LA, USA
| | - Ruth M Elgamal
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samir S El-Dahr
- Department of Pediatrics, Tulane University, School of Medicine, New Orleans, LA, USA
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
- Tulane Center of Excellence in Sex-Based Precision Medicine, New Orleans, LA, USA.
| |
Collapse
|
41
|
Tornabene P, Wells JM. Exploring optimal protocols for generating and preserving glucose-responsive insulin-secreting progenitor cells derived from human pluripotent stem cells. Eur J Cell Biol 2024; 103:151464. [PMID: 39486145 PMCID: PMC11840517 DOI: 10.1016/j.ejcb.2024.151464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024] Open
Abstract
Human pluripotent stem cells (hPSCs) represent an unlimited source of β-like cells for both disease modeling and cellular therapy for diabetes. Numerous protocols have been published describing the differentiation of hPSCs into β-like cells that secret insulin in response to a glucose challenge. However, among the most widely used protocols it is not clear which yield the most functional cells with reproducible glucose-stimulated insulin-secretion (GSIS). Moreover, the technical challenges in culturing and differentiating hPSCs is a barrier for many researchers. In this study, we performed a side-by-side functional comparison based on three widely used methods to generate insulin expressing cells and identified optimal stages and conditions for cryopreserving and reconstituting stem cell (SC)-derived islets with a robust GSIS. Despite the fact that each protocol yields SC-islets consisting of insulin and glucagon-expressing cells, the SC-islets obtained from the two more recent revised protocols were more functional as measured by robust and reproducible GSIS. Moreover, we demonstrate that pancreatic progenitors and differentiated endocrine cells that have been cryopreserved for up to 10 months, can be reconstituted into glucose responsive SC-islets. These findings should enable the use of human PSC-derived β-like cells technologies even by groups with minimal PSC culture experience.
Collapse
Affiliation(s)
- Patrizia Tornabene
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati OH 45229, USA; Center for Stem Cell and Organoids Medicine (CuSTOM), CCHMC, Cincinnati OH 45229, USA.
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati OH 45229, USA; Center for Stem Cell and Organoids Medicine (CuSTOM), CCHMC, Cincinnati OH 45229, USA; Division of Endocrinology, CCHMC, Cincinnati OH 45229, USA.
| |
Collapse
|
42
|
Huang Q, Monzel AS, Rausser S, Haahr R, Devine J, Liu CC, Kelly C, Thompson E, Kurade M, Michelson J, Li S, Engelstad K, Tanji K, Lauriola V, Wang T, Wang S, Marsland AL, Kaufman BA, St-Onge MP, Sloan R, Juster RP, Gouspillou G, Hirano M, Picard M, Trumpff C. The Energetic Stress Marker GDF15 is Induced by Acute Psychosocial Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590241. [PMID: 38659958 PMCID: PMC11042343 DOI: 10.1101/2024.04.19.590241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
GDF15 (growth differentiation factor 15) is a marker of cellular and mitochondrial energetic stress linked to physical-mental illness, aging, and mortality. Here, we describe the psychobiological regulation of plasma and saliva GDF15 in four human studies including 3,599 samples from 148 healthy individuals. We report two main observations establishing GDF15 as a novel tractable biomarker of psychosocial stress. 1) In two experimental laboratory studies, socio-evaluative stress rapidly elevates GDF15 and lactate, two molecular markers of energetic/reductive stress. 2) Similar to other stress-related metabolic hormones, we also find that saliva GDF15 exhibit a robust awakening response, being highest at the time of waking up and declining by ~42-92% within 30-45 minutes. These data position GDF15 as a dynamic biomarker of psychosocial stress accessible in human blood and saliva, pointing towards a shared psychobiological pathway linking mental and mitochondrial energetic stress. These foundational observations open the door to large-scale studies using GDF15 to non-invasively probe how acute psychosocial factors promote cellular and mitochondrial and energetic stress contributing to the stress-disease cascade across the lifespan.
Collapse
Affiliation(s)
- Qiuhan Huang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S. Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Shannon Rausser
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Rachel Haahr
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Devine
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Cynthia C. Liu
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Catherine Kelly
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth Thompson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Mangesh Kurade
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeremy Michelson
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Shufang Li
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| | - Kris Engelstad
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| | - Kurenai Tanji
- Department of pathology and cell biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Vincenzo Lauriola
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Tian Wang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Shuang Wang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brett A Kaufman
- Department of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA United States
| | - Marie-Pierre St-Onge
- Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, USA
| | - Richard Sloan
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, QC, Canada
| | - Gilles Gouspillou
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC, Canada
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
43
|
Merz S, Senée V, Philippi A, Oswald F, Shaigan M, Führer M, Drewes C, Allgöwer C, Öllinger R, Heni M, Boland A, Deleuze JF, Birkhofer F, Gusmao EG, Wagner M, Hohwieler M, Breunig M, Rad R, Siebert R, Messerer DAC, Costa IG, Alvarez F, Julier C, Kleger A, Heller S. A ONECUT1 regulatory, non-coding region in pancreatic development and diabetes. Cell Rep 2024; 43:114853. [PMID: 39427318 DOI: 10.1016/j.celrep.2024.114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
In a patient with permanent neonatal syndromic diabetes clinically similar to cases with ONECUT1 biallelic mutations, we identified a disease-causing deletion located upstream of ONECUT1. Through genetic, genomic, and functional studies, we identified a crucial regulatory region acting as an enhancer of ONECUT1 specifically during pancreatic development. This enhancer region contains a low-frequency variant showing a strong association with type 2 diabetes and other glycemic traits, thus extending the contribution of this region to common forms of diabetes. Clinical relevance is provided by experimentally tailored therapy options for patients carrying ONECUT1 coding or regulatory mutations.
Collapse
Affiliation(s)
- Sarah Merz
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Valérie Senée
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Anne Philippi
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Franz Oswald
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Mina Shaigan
- Institute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Marita Führer
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Cosima Drewes
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Chantal Allgöwer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Heni
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany; Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Franziska Birkhofer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Eduardo G Gusmao
- Centre of Informatics, Federal University of Pernambuco, Recife, Brazil
| | - Martin Wagner
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Meike Hohwieler
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Markus Breunig
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany; Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Fernando Alvarez
- Division of Gastroenterology, Hepatology & Nutrition, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Cécile Julier
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany; Division of Interdisciplinary Pancreatology, Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany; Core Facility Organoids, Ulm University, Ulm, Germany.
| | - Sandra Heller
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany.
| |
Collapse
|
44
|
Kelley AB, Shunkarova M, Maestas MM, Gale SE, Hogrebe NJ, Millman JR. Controlling human stem cell-derived islet composition using magnetic sorting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624394. [PMID: 39605713 PMCID: PMC11601561 DOI: 10.1101/2024.11.19.624394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Stem cell-derived islets (SC-islets) consists of multiple hormone-producing cell types and offer a promising therapeutic avenue for treating type 1 diabetes (T1D). Currently, the composition of cell types generated within these SC-islets currently cannot be controlled via soluble factors during this differentiation process and consist of off-target cell types. In this study, we devised a magnetic-activated cell sorting (MACS) protocol to enrich SC-islets for CD49a, a marker associated with functional insulin-producing β cells. SC-islets were generated from human pluripotent stem cells (hPSCs) using an adherent differentiation protocol and then sorted and aggregated into islet-like clusters to produce CD49a-enriched, CD49a-depleted, and unsorted SC-islets. Single-cell RNA sequencing (scRNA-seq) and immunostaining revealed that CD49a-enriched SC-islets had higher proportions of β cells and improved transcriptional identity compared to other cell types. Functional assays demonstrated that CD49a-enriched SC-islets exhibited enhanced glucose-stimulated insulin secretion both in vitro and in vivo following transplantation into diabetic mice. These findings suggest that CD49a-based sorting significantly improves β cell identity and the overall function of SC-islets, improving their effectiveness for T1D cell replacement therapies.
Collapse
Affiliation(s)
- Allison B. Kelley
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Mira Shunkarova
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Marlie M. Maestas
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110 USA
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Sarah E. Gale
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Nathaniel J. Hogrebe
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Jeffrey R. Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110 USA
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130 USA
| |
Collapse
|
45
|
Bandral M, Sussel L, Lorberbaum DS. Retinoid signaling in pancreas development, islet function, and disease. Curr Top Dev Biol 2024; 161:297-318. [PMID: 39870436 DOI: 10.1016/bs.ctdb.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
All-trans retinoic acid (ATRA) signaling is essential in numerous different biological contexts. This review highlights the diverse roles of ATRA during development, function, and diseases of the pancreas. ATRA is essential to specify pancreatic progenitors from gut tube endoderm, endocrine and exocrine differentiation, and adult islet function. ATRA concentration must be carefully regulated during the derivation of islet-like cells from human pluripotent stem cells (hPSCs) to optimize the expression of key pancreatic transcription factors while mitigating adverse and unwanted cell-types in these cultures. The ATRA pathway is integral to the pancreas and here we will present selected studies from decades of research that has laid the essential groundwork for ongoing projects dedicated to unraveling the complexities of ATRA signaling in the pancreas.
Collapse
Affiliation(s)
- Manuj Bandral
- University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States
| | - Lori Sussel
- University of Colorado Denver Anschutz Medical Campus, Barbara Davis Center for Diabetes, Aurora, CO, United States
| | - David S Lorberbaum
- University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States.
| |
Collapse
|
46
|
Migliorini A, Ge S, Atkins MH, Oakie A, Sambathkumar R, Kent G, Huang H, Sing A, Chua C, Gehring AJ, Keller GM, Notta F, Nostro MC. Embryonic macrophages support endocrine commitment during human pancreatic differentiation. Cell Stem Cell 2024; 31:1591-1611.e8. [PMID: 39406230 DOI: 10.1016/j.stem.2024.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 11/10/2024]
Abstract
Organogenesis is a complex process that relies on a dynamic interplay between extrinsic factors originating from the microenvironment and tissue-specific intrinsic factors. For pancreatic endocrine cells, the local niche consists of acinar and ductal cells as well as neuronal, immune, endothelial, and stromal cells. Hematopoietic cells have been detected in human pancreas as early as 6 post-conception weeks, but whether they play a role during human endocrinogenesis remains unknown. To investigate this, we performed single-nucleus RNA sequencing (snRNA-seq) of the second-trimester human pancreas and identified a wide range of hematopoietic cells, including two distinct subsets of tissue-resident macrophages. Leveraging this discovery, we developed a co-culture system of human embryonic stem cell-derived endocrine-macrophage organoids to model their interaction in vitro. Here, we show that macrophages support the differentiation and viability of endocrine cells in vitro and enhance tissue engraftment, highlighting their potential role in tissue engineering strategies for diabetes.
Collapse
Affiliation(s)
- Adriana Migliorini
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Sabrina Ge
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael H Atkins
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Amanda Oakie
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Gregory Kent
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Haiyang Huang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Angel Sing
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Conan Chua
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
47
|
Ma H, Xu L, Wu S, Wang S, Li J, Ai S, Yang Z, Mo R, Lin L, Li Y, Wang S, Gao J, Li C, Kong D. Supragel-mediated efficient generation of pancreatic progenitor clusters and functional glucose-responsive islet-like clusters. Bioact Mater 2024; 41:1-14. [PMID: 39101030 PMCID: PMC11292262 DOI: 10.1016/j.bioactmat.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Although several synthetic hydrogels with defined stiffness have been developed to facilitate the proliferation and maintenance of human pluripotent stem cells (hPSCs), the influence of biochemical cues in lineage-specific differentiation and functional cluster formation has been rarely reported. Here, we present the application of Supragel, a supramolecular hydrogel formed by synthesized biotinylated peptides, for islet-like cluster differentiation. We observed that Supragel, with a peptide concentration of 5 mg/mL promoted spontaneous hPSCs formation into uniform clusters, which is mainly attributable to a supporting stiffness of ∼1.5 kPa as provided by the Supragel matrix. Supragel was also found to interact with the hPSCs and facilitate endodermal and subsequent insulin-secreting cell differentiation, partially through its components: the sequences of RGD and YIGSR that interacts with cell membrane molecules of integrin receptor. Compared to Matrigel and suspension culturing conditions, more efficient differentiation of the hPSCs was also observed at the stages 3 and 4, as well as the final stage toward generation of insulin-secreting cells. This could be explained by 1) suitable average size of the hPSCs clusters cultured on Supragel; 2) appropriate level of cell adhesive sites provided by Supragel during differentiation. It is worth noting that the Supragel culture system was more tolerance in terms of the initial seeding densities and less demanding, since a standard static cell culture condition was sufficient for the entire differentiation process. Our observations demonstrate a positive role of Supragel for hPSCs differentiation into islet-like cells, with additional potential in facilitating germ layer differentiation.
Collapse
Affiliation(s)
- Hongmeng Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lilin Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shengjie Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songdi Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sifan Ai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuangzhuang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Rigen Mo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Lin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, China
| |
Collapse
|
48
|
Rutter GA, Gresch A, Delgadillo Silva L, Benninger RKP. Exploring pancreatic beta-cell subgroups and their connectivity. Nat Metab 2024; 6:2039-2053. [PMID: 39117960 DOI: 10.1038/s42255-024-01097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Functional pancreatic islet beta cells are essential to ensure glucose homeostasis across species from zebrafish to humans. These cells show significant heterogeneity, and emerging studies have revealed that connectivity across a hierarchical network is required for normal insulin release. Here, we discuss current thinking and areas of debate around intra-islet connectivity, cellular hierarchies and potential "controlling" beta-cell populations. We focus on methodologies, including comparisons of different cell preparations as well as in vitro and in vivo approaches to imaging and controlling the activity of human and rodent islet preparations. We also discuss the analytical approaches that can be applied to live-cell data to identify and study critical subgroups of cells with a disproportionate role in control Ca2+ dynamics and thus insulin secretion (such as "first responders", "leaders" and "hubs", as defined by Ca2+ responses to glucose stimulation). Possible mechanisms by which this hierarchy is achieved, its physiological relevance and how its loss may contribute to islet failure in diabetes mellitus are also considered. A glossary of terms and links to computational resources are provided.
Collapse
Affiliation(s)
- Guy A Rutter
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada.
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Anne Gresch
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luis Delgadillo Silva
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
49
|
Bayly CL, Dai XQ, Nian C, Orban PC, Verchere CB, MacDonald PE, Lynn FC. An INSULIN and IAPP dual reporter enables tracking of functional maturation of stem cell-derived insulin producing cells. Mol Metab 2024; 89:102017. [PMID: 39182839 PMCID: PMC11415652 DOI: 10.1016/j.molmet.2024.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Human embryonic stem cell (hESC; SC)-derived pancreatic β cells can be used to study diabetes pathologies and develop cell replacement therapies. Although current differentiation protocols yield SCβ cells with varying degrees of maturation, these cells still differ from deceased donor human β cells in several respects. We sought to develop a reporter cell line that could be used to dynamically track SCβ cell functional maturation. METHODS To monitor SCβ cell maturation in vitro, we created an IAPP-2A-mScar and INSULIN-2A-EGFP dual fluorescent reporter (INS2A-EGFP/+;IAPP2A-mScarlet/+) hESC line using CRISPR/Cas9. Pluripotent SC were then differentiated using a 7-stage protocol to islet-like cells. Immunohistochemistry, flow cytometry, qPCR, GSIS and electrophysiology were used to characterise resulting cell populations. RESULTS We observed robust expression of EGFP and mScarlet fluorescent proteins in insulin- and IAPP-expressing cells without any compromise to their differentiation. We show that the proportion of insulin-producing cells expressing IAPP increases over a 4-week maturation period, and that a subset of insulin-expressing cells remain IAPP-free. Compared to this IAPP-free population, we show these insulin- and IAPP-expressing cells are less polyhormonal, more glucose-sensitive, and exhibit decreased action potential firing in low (2.8 mM) glucose. CONCLUSIONS The INS2A-EGFP/+;IAPP2A-mScarlet/+ hESC line provides a useful tool for tracking populations of maturing hESC-derived β cells in vitro. This tool has already been shared with 3 groups and is freely available to all.
Collapse
Affiliation(s)
- Carmen L Bayly
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Cuilan Nian
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Paul C Orban
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - C Bruce Verchere
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Centre of Molecular Medicine and Therapeutics, Vancouver BC, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
50
|
Kahraman S, De Jesus DF, Wei J, Brown NK, Zou Z, Hu J, Pirouz M, Gregory RI, He C, Kulkarni RN. m 6A mRNA methylation by METTL14 regulates early pancreatic cell differentiation. EMBO J 2024; 43:5445-5468. [PMID: 39322760 PMCID: PMC11574190 DOI: 10.1038/s44318-024-00213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant chemical modification in mRNA and plays important roles in human and mouse embryonic stem cell pluripotency, maintenance, and differentiation. We have recently reported that m6A is involved in the postnatal control of β-cell function in physiological states and in type 1 and 2 diabetes. However, the precise mechanisms by which m6A acts to regulate the development of human and mouse pancreas are unexplored. Here, we show that the m6A landscape is dynamic during human pancreas development, and that METTL14, one of the m6A writer complex proteins, is essential for the early differentiation of both human and mouse pancreatic cells.
Collapse
Affiliation(s)
- Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Dario F De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Natalie K Brown
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Zhongyu Zou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA
| | - Mehdi Pirouz
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Richard I Gregory
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|