1
|
Walter Z, Li M, Molho M, Berish L, Isopi A, O'Mara M, Dittmar M, Nwaezeapu C, Richards A, McCullagh M, Krogan NJ, Cherry S, Johnson JR, Ramage H. An integrated proteomics approach identifies phosphorylation sites on viral and host proteins that regulate West Nile virus infection. Cell Rep 2025; 44:115728. [PMID: 40381193 DOI: 10.1016/j.celrep.2025.115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 03/22/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Upon infection, viruses alter the proteome, creating a hospitable environment for infection. Cells respond to limit viral replication, including through protein regulation by post-translational modifications. We use mass spectrometry to define proteome alterations during West Nile virus (WNV) infection. Our studies identify upregulation of HERPUD1, which restricts WNV replication through a mechanism independent of its role in endoplasmic reticulum (ER)-associated degradation (ERAD). We also identify modifications on viral proteins, including a WNV NS3 phosphorylation site that impacts viral replication. Finally, we reveal activation of two host kinases with antiviral activity. We identify phosphorylation at S108 of AMPKβ1, a non-catalytic subunit that regulates activity of the AMPK complex. We also show activation of PAK2 by phosphorylation at S141, which restricts translation of the viral genome. This work contributes to our understanding of the interplay between host and virus while providing a resource to define the changes to the proteome that regulate viral infection.
Collapse
Affiliation(s)
- Zachary Walter
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Minghua Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Melissa Molho
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lauren Berish
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew Isopi
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mary O'Mara
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark Dittmar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chike Nwaezeapu
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alicia Richards
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; The J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jeffrey R Johnson
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Holly Ramage
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
2
|
Battisti P, Ykema MR, Kasal DN, Jennewein MF, Beaver S, Weight AE, Hanson D, Singh J, Bakken J, Cross N, Fusco P, Archer J, Reed S, Gerhardt A, Julander JG, Casper C, Voigt EA. A bivalent self-amplifying RNA vaccine against yellow fever and Zika viruses. Front Immunol 2025; 16:1569454. [PMID: 40364846 PMCID: PMC12069283 DOI: 10.3389/fimmu.2025.1569454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Yellow fever (YFV) and Zika (ZIKV) viruses cause significant morbidity and mortality, despite the existence of an approved YFV vaccine and the development of multiple ZIKV vaccine candidates to date. New technologies may improve access to vaccines against these pathogens. We previously described a nanostructured lipid carrier (NLC)-delivered self-amplifying RNA (saRNA) vaccine platform with excellent thermostability and immunogenicity, appropriate for prevention of tropical infectious diseases. Methods YFV and ZIKV prM-E antigen-expressing saRNA constructs were created using a TC-83 strain Venezuelan equine encephalitis virus-based replicon and complexed with NLC by simple mixing. Monovalent and bivalent vaccine formulations were injected intramuscularly into C57BL/6 mice and Syrian golden hamsters, and the magnitude, durability, and protective efficacy of the resulting immune responses were then characterized. Results and discussion Monovalent vaccines established durable neutralizing antibody responses to their respective flaviviral targets, with little evidence of cross-neutralization. Both vaccines additionally elicited robust antigen-reactive CD4+ and CD8+ T cell populations. Notably, humoral responses to YFV saRNA-NLC vaccination were comparable to those in YF-17D-vaccinated animals. Bivalent formulations established humoral and cellular responses against both viral targets, commensurate to those established by monovalent vaccines, without evidence of saRNA interference or immune competition. Finally, both monovalent and bivalent vaccines completely protected mice and hamsters against lethal ZIKV and YFV challenge. We present a bivalent saRNA-NLC vaccine against YFV and ZIKV capable of inducing robust and efficacious neutralizing antibody and cellular immune responses against both viruses. These data support the development of other multivalent saRNA-based vaccines against infectious diseases.
Collapse
Affiliation(s)
- Peter Battisti
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Matthew R. Ykema
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Darshan N. Kasal
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Madeleine F. Jennewein
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Samuel Beaver
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Abbie E. Weight
- Institute for Antiviral Research, Utah State University, Logan, UT, United States
| | - Derek Hanson
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Jasneet Singh
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Julie Bakken
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Noah Cross
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Pauline Fusco
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Jacob Archer
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Sierra Reed
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Alana Gerhardt
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Justin G. Julander
- Institute for Antiviral Research, Utah State University, Logan, UT, United States
| | - Corey Casper
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, United States
| | - Emily A. Voigt
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| |
Collapse
|
3
|
Rocha RF, Coimbra LD, Fontoura MA, Ribeiro G, Sotorilli GE, Gomes GF, Borin A, Felipe J, Slowikowski E, Greison WSS, Cunha TM, Marques PE, Vieira PMM, Marques RE. Usutu virus-induced meningoencephalitis in immunocompetent mice is characterized by the recruitment of mononuclear cells and a proinflammatory T helper 1 response. J Virol 2025; 99:e0172424. [PMID: 39907280 PMCID: PMC11915786 DOI: 10.1128/jvi.01724-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Usutu virus (USUV) is an arbovirus and has emerged as a potential cause of encephalitis in humans and other vertebrates. The increasing detection of USUV in mosquitoes and birds across Africa and Central Europe, along with the lack of specific treatments or vaccines for many encephalitic orthoflaviviruses, underscores the need for focused research. In this study, we developed a USUV infection model in immunocompetent C57BL/6 mice (8-12 weeks old) to characterize disease development and associated inflammatory mechanisms. Mice were intracranially infected with 104 PFU of USUV, leading to neurological symptoms such as hunched posture, paralysis, conjunctivitis, and eventual death by day 6 post-infection. Meningeal cell infiltration and microglia activation were most prevalent in mouse brains; however, neuronal loss was not observed at the peak of the disease, which coincided with increased viral load and leukocyte infiltration. The immune response in the brain was marked by the systematic recruitment and activation of macrophages, neutrophils, and T lymphocytes. A noticeable shift was seen in CD4+ T cells toward T helper 1 (Th1) polarization, which corroborates a massive increase in the expression of Th1-associated cytokines and chemokines at the peak of infection, indicative of an augmented proinflammatory state. Additionally, a rise in regulatory T cells was observed, peaking on day 6 post-infection. These findings highlight the dynamic nature of the host response to USUV infection, enhance our understanding of the disease pathogenesis, and address the scarcity of immunocompetent experimental models for the investigation of neglected emerging flaviviruses.IMPORTANCEMosquito-borne viruses, including USUV, are maintained in nature through complex cycles involving arthropod vectors and vertebrate hosts. A comprehensive understanding of USUV biology and host-pathogen interactions is crucial for developing effective treatments, which necessitates reliable experimental models (G. J. Sips, J. Wilschut, and J. M. Smit, Rev Med Virol 22:69-87, 2012, https://doi.org/10.1002/rmv.712; T. C. Pierson and M. S. Diamond, Nat Microbiol 5:796-812, 2020, https://doi.org/10.1038/s41564-020-0714-0). The establishment of a USUV infection model in immunocompetent adult mice brings new perspectives on the inflammatory component of viral encephalitis, which is difficult to study in mice lacking antiviral interferon responses. Moreover, USUV is an emerging viral disease lacking therapeutic and preventive measures. The interplay of USUV pathogenesis and the host's immune response indicates that lymphocytes and monocytes participate in USUV infection in this model and could be explored in search of treatments targeting immunopathogenic processes triggered by infection.
Collapse
Affiliation(s)
- Rebeca Froes Rocha
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Laís D. Coimbra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Marina A. Fontoura
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
- Graduate Program in Molecular and Morphofunctional Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Guilherme Ribeiro
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Giuliana Eboli Sotorilli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Giovanni F. Gomes
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Alexandre Borin
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Jaqueline Felipe
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Emily Slowikowski
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Flanders, Belgium
| | - Wilias Silva Santos Greison
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
- Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Pedro Elias Marques
- Department of Microbiology, Immunology, and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Flanders, Belgium
| | - Pedro M. M. Vieira
- Graduate Program in Genetics and Molecular Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Volz A, Clever S, Tscherne A, Freudenstein A, Jany S, Schwarz JH, Limpinsel L, Valiant WG, Kalodimou G, Sutter G, Mattapallil JJ. Efficacy of emergency maternal MVA-ZIKV vaccination in a rapid challenge model of lethal Zika infection. NPJ Vaccines 2025; 10:44. [PMID: 40044709 PMCID: PMC11882785 DOI: 10.1038/s41541-025-01094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Zika virus (ZIKV) outbreak of 2015 was associated with microcephaly and congenital birth defects in children born to pregnant women infected with ZIKV. Using the highly susceptible Type I Interferon Receptor-deficient mouse-model, we demonstrate that a single emergency vaccination with a non-replicating MVA-ZIKV vaccine, when administered as early as 2-days before challenge fully protected non-pregnant and pregnant mice and fetuses against lethal ZIKV-infection. Early protection was associated with the rapid emergence of ZIKV-specific CD8+ T cell responses; depletion of CD8+ T cells resulted in the loss of protection supporting a critical role for CD8+ T cells in the early protective efficacy of MVA-ZIKV. Neutralizing antibody responses were induced later than the CD8+ T cell responses, suggesting that it may play a role in later stages of infection. Our results suggest that MVA-ZIKV induces potent anamnestic cellular immunity early after infection, contributing to its protective efficacy against rapid ZIKV challenge.
Collapse
Affiliation(s)
- Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany.
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Braunschweig, Germany.
| | - Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Jan H Schwarz
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - William G Valiant
- Dept. of Microbiology & Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Joseph J Mattapallil
- Dept. of Microbiology & Immunology, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
5
|
Wang Y, Zheng X, Yang Y, Zhao X, Li M, Huang J, Zhang Q, Qin X, Yu Y, Pan Q, Cao Z. Effect of the CSFV NS5A protein on key proteins in the MAPK and PI3K-mTOR signaling pathways in porcine macrophages. Front Microbiol 2025; 16:1559840. [PMID: 40078537 PMCID: PMC11897277 DOI: 10.3389/fmicb.2025.1559840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Classical swine fever (CSF) is a highly contagious disease caused by classical swine fever virus (CSFV). NS5A, a non-structural protein of CSFV, plays an important role in regulating viral replication and protein translation. The purpose of this study was to investigate the effects of the CSFV NS5A protein on key proteins in the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR) pathways in porcine macrophages. In this study, an NS5A lentivirus was constructed, and 3D4/21 cells were infected. The cells infected for 48 h were collected for proteomic analysis to screen the differential proteins in the two signaling pathways in the NS5A/control group, and the expression levels of key proteins were verified by Western blotting (Wb). CSFV NS5A lentivirus was successfully constructed and used to infect porcine macrophages, and 23 upregulated proteins and 16 downregulated proteins were found in the MAPK signaling pathway, whereas 5 upregulated and 15 downregulated proteins were found in the PI3K-mTOR signaling pathway. The results revealed that with increasing infection time, the expression of IKBKG, AKT1, CDC37, MAP3K2, and PKN2 decreased, whereas the expression of MAP3K7 and KRAS2 increased. The 3D4/21 cells infected with NS5A lentivirus and classical swine fever virus were inoculated, and the differential protein expression was verified via Wb. With increasing time, the protein expression levels of IKBKG and KRAS2 increased, whereas the protein expression levels of MAP3K7, MAP3K2, AKT1, CDC37, and PKN2 decreased. This study provides data for revealing the mechanism by which CSFV evades host antiviral immune clearance and has important scientific significance and potential application value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qing Pan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Hein LD, Castillo IN, Medina FA, Vila F, Segovia-Chumbez B, Muñoz-Jordán JL, Whitehead SS, Adams LE, Paz-Bailey G, de Silva AM, Premkumar L. Multiplex sample-sparing assay for detecting type-specific antibodies to Zika and dengue viruses: an assay development and validation study. THE LANCET. MICROBE 2025; 6:100951. [PMID: 39730005 DOI: 10.1016/j.lanmic.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Serology for dengue viruses (DENV) and Zika virus (ZIKV) has been hindered by antibody cross-reactivity, which limits the utility of these tests for surveillance and assessment of sero-status. Our aim was to develop a multiplexed IgG-based assay with increased accuracy to assess the history of previous DENV and ZIKV infections. METHODS We developed and assessed the analytical performance of a sample-sparing, multiplexed, microsphere-based serological assay using domain III of the envelope protein (EDIII) of DENV serotypes 1-4 and ZIKV, the most variable region between each virus. We used a reference panel of well-characterised serum samples from US-based travellers or residents of southeast Asia, central America, or Puerto Rico, who were naive or immune to either or both DENV and ZIKV, to develop an algorithm for detecting previous exposure to DENV and ZIKV and identify optimal positivity cutoffs to maximise assay performance. To independently confirm the performance of the assay and algorithm, we used a second test set of previously collected samples from healthy children (aged 9-16 years) living in Puerto Rico, whose DENV and ZIKV serostatus had been defined using the gold-standard virus neutralisation assay. We evaluated the performance of the multiplex assay compared with the gold-standard assay by estimating sensitivity and specificity for identification of past exposure to ZIKV and DENV. FINDINGS The multiplexed EDIII assay showed reproducible results over different days and a linearity range from μg to pg levels for various EDIII antigens. Using a reference panel of serum samples from individuals who were DENV naive (n=136), DENV immune (n=38), ZIKV naive (n=67), and ZIKV immune (n=28), we optimised the assay and developed a testing algorithm that was 94·9% (95% CI 83·1-99·1) sensitive and 97·1% (92·7-98·9) specific for identifying previous exposure to DENV, and 100% (95% CI 88·0-100) sensitive and 97·0% (89·8-99·5) specific for identifying previous exposure to ZIKV. In an analysis with an independent test set of 389 samples, the assay and algorithm had 94·2% (89·9-97·1) sensitivity and 92·9% (87·3-96·5) specificity for DENV, and 94·1% (88·7-97·4) sensitivity and 95·0% (90·0-98·0) specificity for ZIKV. INTERPRETATION The multiplexed EDIII serology assay can accurately identify the history of previous infection with either DENV or ZIKV. This high-throughput and sample-sparing assay is a promising new tool for supporting flavivirus surveillance, epidemiological and clinical studies, and serological testing for dengue vaccine eligibility. Further studies are needed to reduce the cost of the assay, eliminate high background in some samples, and to assess performance in DENV-endemic and ZIKV-endemic countries. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
- Lindsay Dahora Hein
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Freddy A Medina
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Frances Vila
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Bruno Segovia-Chumbez
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jorge L Muñoz-Jordán
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Stephen S Whitehead
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Laura E Adams
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Gabriela Paz-Bailey
- Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Wullimann D, Sandberg JT, Akber M, Löfling M, Gredmark-Russ S, Michaëlsson J, Buggert M, Blom K, Ljunggren HG. Antigen-specific T cell responses following single and co-administration of tick-borne encephalitis, Japanese encephalitis, and yellow fever virus vaccines: Results from an open-label, non-randomized clinical trial-cohort. PLoS Negl Trop Dis 2025; 19:e0012693. [PMID: 40019865 PMCID: PMC11893121 DOI: 10.1371/journal.pntd.0012693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/10/2025] [Accepted: 02/03/2025] [Indexed: 03/12/2025] Open
Abstract
BACKGROUND Flavivirus infections pose a significant global health burden, highlighting the need for safe and effective vaccination strategies. Co-administration of different vaccines, including licensed flavivirus vaccines, is commonly practiced providing protection against multiple pathogens while also saving time and reducing visits to healthcare units. However, how co-administration of different flavivirus vaccines de facto affects immunogenicity, particularly with respect to T cell responses, is only partially understood. METHODS AND FINDINGS Antigen-specific T cell responses were assessed in study participants enrolled in a previously conducted open-label, non-randomized clinical trial. In the trial, vaccines against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV), or yellow fever virus (YFV) were administered either individually or concomitantly in different combinations in healthy study participants. Peripheral blood samples were collected before vaccination and at multiple time points afterward. To analyze antigen-specific CD4+ and CD8+ T cell responses, PBMCs were stimulated with overlapping peptide pools from TBEV, JEV, YFV, and Zika virus (ZIKV) envelope (E), capsid (C), and non-structural protein 5 (NS5) viral antigens. A flow cytometry-based activation-induced marker (AIM) assay was used to quantify antigen-specific T cell responses. The results revealed remarkably similar frequencies of CD4+ and CD8+ T cell responses, regardless of whether vaccines were administered individually or concomitantly. In addition, administering the vaccines in the same or different upper arms did not markedly affect T cell responses. Finally, limited cross-reactivity was observed between the TBEV, JEV, and YFV vaccines, and related ZIKV-specific antigens. CONCLUSIONS TBEV or JEV vaccines can be co-administered with the live attenuated YFV vaccine without any markedly altered antigen-specific CD4+ and CD8+ T cell responses to the respective flaviviruses. Additionally, the vaccines can be delivered in the same or different upper arms without any significant altered influence on the T cell response. From a broader perspective, these results provide valuable insights into the outcome of immune responses following simultaneous administration of different vaccines for different but related pathogens.
Collapse
Affiliation(s)
- David Wullimann
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - John Tyler Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mira Akber
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Löfling
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kim Blom
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Nedumpun T, Rungprasert K, Ninvilai P, Limcharoen B, Tunterak W, Prakairungnamthip D, Techakriengkrai N, Banlunara W, Suradhat S, Thontiravong A. Dynamics of immune responses following duck Tembusu virus infection in adult laying ducks reveal the effect of age-related immune variation on disease severity. Poult Sci 2025; 104:104731. [PMID: 39740493 PMCID: PMC11750524 DOI: 10.1016/j.psj.2024.104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
Duck Tembusu virus (DTMUV), an emerging avian pathogenic flavivirus, is notably associated with neurological disorders and acute egg drop syndrome in ducks. We previously demonstrated that the susceptibility of ducks to DTMUV infection varies significantly with age, with younger ducks (4-week-old) exhibiting more severe disease than older ducks (27-week-old). However, the immunological mechanisms underlying these age-related differences in disease severity remain unclear. In this study, we investigated the dynamics of immune responses following DTMUV infection in adult laying ducks (27-week-old) and compared them to our previous findings on young ducks (4 weeks old). The numbers of T helper, cytotoxic T, B, and non-T and B lymphocytes, as well as neutralizing antibody levels, were measured in parallel with DTMUV loads in the blood and target organs. Our results revealed that the number of non-T and B lymphocytes/myeloid cells in 27-week-old adult laying ducks infected with DTMUV remained consistently stable throughout the observation period, in contrast to findings in 4-week-old younger ducks, where myeloid cell responses were implicated in disease progression. Regarding lymphocyte responses, unlike in 4-week-old younger ducks, only cytotoxic T lymphocyte responses in 27-week-old older ducks showed a significant negative correlation with the reduction of viremia and viral loads in target organs, indicating their role in controlling viral replication in older ducks. Additionally, 27-week-old adult laying ducks infected with DTMUV exhibited high levels of neutralizing antibodies, which were significantly correlated with reduced viral loads in blood and target organs. Overall, the presence of robust DTMUV-specific neutralizing antibody and CTL responses, along with a finely tuned myeloid cell response likely plays a significant role in controlling severe neurological outcomes in 27-week-old adult laying ducks. This study highlights the age-related differences in immune responses following DTMUV infection, which potentially contribute to the varying disease severity among ducks of different ages. Understanding the interplay between the host and DTMUV provides significant implications for disease management strategies and vaccine development.
Collapse
Affiliation(s)
- Teerawut Nedumpun
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Kanana Rungprasert
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| | | | - Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Wikanda Tunterak
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Duangduean Prakairungnamthip
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Aunyaratana Thontiravong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, 10330.
| |
Collapse
|
9
|
Stegeman SK, Kourko O, Amsden H, Pellizzari Delano IE, Mamatis JE, Roth M, Colpitts CC, Gee K. RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm? J Innate Immun 2025; 17:126-153. [PMID: 39820070 PMCID: PMC11845175 DOI: 10.1159/000543608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs. BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs.
Collapse
Affiliation(s)
- Sophia K Stegeman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Heather Amsden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madison Roth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
10
|
Martínez-Rojas PP, Monroy-Martínez V, Ruiz-Ordaz BH. Role of extracellular vesicles in the pathogenesis of mosquito-borne flaviviruses that impact public health. J Biomed Sci 2025; 32:4. [PMID: 39754219 PMCID: PMC11699717 DOI: 10.1186/s12929-024-01096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/08/2024] [Indexed: 01/06/2025] Open
Abstract
Mosquito-borne flaviviruses represent a public health challenge due to the high-rate endemic infections, severe clinical outcomes, and the potential risk of emerging global outbreaks. Flavivirus disease pathogenesis converges on cellular factors from vectors and hosts, and their interactions are still unclear. Exosomes and microparticles are extracellular vesicles released from cells that mediate the intercellular communication necessary for maintaining homeostasis; however, they have been shown to be involved in disease establishment and progression. This review focuses on the roles of extracellular vesicles in the pathogenesis of mosquito-borne flavivirus diseases: how they contribute to viral cycle completion, cell-to-cell transmission, and cellular responses such as inflammation, immune suppression, and evasion, as well as their potential use as biomarkers or therapeutics (antiviral or vaccines). We highlight the current findings concerning the functionality of extracellular vesicles in different models of dengue virus, Zika virus, yellow fever virus, Japanese encephalitis virus, and West Nile virus infections and diseases. The available evidence suggests that extracellular vesicles mediate diverse functions between hosts, constituting novel effectors for understanding the pathogenic mechanisms of flaviviral diseases.
Collapse
Affiliation(s)
- Pedro Pablo Martínez-Rojas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Verónica Monroy-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Blanca H Ruiz-Ordaz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
11
|
Grabski H, Grabska S, Abagyan R. Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic Flaviviridae. Viruses 2024; 17:6. [PMID: 39861795 PMCID: PMC11769402 DOI: 10.3390/v17010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development. Promising allosteric binding sites were identified in two conformationally distinct inactive states and characterized for five flaviviruses and four Dengue virus subtypes. Their shapes, druggability, inter-viral similarity, sequence variation, and susceptibility to drug-resistant mutations have been studied. Two identified allosteric inactive state pockets appear to be feasible alternatives to a larger closed pocket near the active site, and they can be targeted with specific drug-like small-molecule inhibitors. Virus-specific sequence and structure implications and the feasibility of multi-viral inhibitors are discussed.
Collapse
Affiliation(s)
- Hovakim Grabski
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA;
- L.A. Orbeli Institute of Physiology, National Academy of Sciences, Yerevan 0028, Armenia
| | - Siranuysh Grabska
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA;
- L.A. Orbeli Institute of Physiology, National Academy of Sciences, Yerevan 0028, Armenia
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA;
| |
Collapse
|
12
|
Porier DL, Adam A, Kang L, Michalak P, Tupik J, Santos MA, Tanelus M, López K, Auguste DI, Lee C, Allen IC, Wang T, Auguste AJ. Humoral and T-cell-mediated responses to an insect-specific flavivirus-based Zika virus vaccine candidate. PLoS Pathog 2024; 20:e1012566. [PMID: 39388457 PMCID: PMC11495591 DOI: 10.1371/journal.ppat.1012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/22/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Flaviviruses represent a significant global health threat and relatively few licensed vaccines exist to protect against them. Insect-specific flaviviruses (ISFVs) are incapable of replication in humans and have emerged as a novel and promising tool for flavivirus vaccine development. ISFV-based flavivirus vaccines have shown exceptional safety, immunogenicity, and efficacy, however, a detailed assessment of the correlates of protection and immune responses induced by these vaccines are still needed for vaccine optimization. Here, we explore the mechanisms of protective immunity induced by a previously created pre-clinical Zika virus (ZIKV) vaccine candidate, called Aripo/Zika (ARPV/ZIKV). In brief, immunocompromised IFN-αβR-/- mice passively immunized with ARPV/ZIKV immune sera experienced protection after lethal ZIKV challenge, although this protection was incomplete. ARPV/ZIKV-vaccinated IFN-αβR-/- mice depleted of CD4+ or CD8+ T-cells at the time of ZIKV challenge showed no morbidity or mortality. However, the adoptive transfer of ARPV/ZIKV-primed T-cells into recipient IFN-αβR-/- mice resulted in a two-day median increase in survival time compared to controls. Altogether, these results suggest that ARPV/ZIKV-induced protection is primarily mediated by neutralizing antibodies at the time of challenge and that T-cells may play a comparatively minor but cumulative role in the protection observed. Lastly, ARPV/ZIKV-vaccinated Tcra KO mice, which are deficient in T-cell responses, experienced significant mortality post-challenge. These results suggest that ARPV/ZIKV-induced cell-mediated responses are critical for development of protective immune responses at vaccination. Despite the strong focus on neutralizing antibody responses to novel flavivirus vaccine candidates, these results suggest that cell-mediated responses induced by ISFV-based vaccines remain important to overall protective responses.
Collapse
Affiliation(s)
- Danielle L. Porier
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lin Kang
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, United States of America
| | - Pawel Michalak
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Juselyn Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Matthew A. Santos
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Manette Tanelus
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Krisangel López
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Dawn I. Auguste
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Christy Lee
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Albert J. Auguste
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
13
|
Kim D, Jeong S, Park SM. Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:403-411. [PMID: 39198221 PMCID: PMC11362000 DOI: 10.4196/kjpp.2024.28.5.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 09/01/2024]
Abstract
The global spread of flaviviruses has triggered major outbreaks worldwide, significantly impacting public health, society, and economies. This has intensified research efforts to understand how flaviviruses interact with their hosts and manipulate the immune system, underscoring the need for advanced research tools. RNA-sequencing (RNA-seq) technologies have revolutionized our understanding of flavivirus infections by offering transcriptome analysis to dissect the intricate dynamics of virus-host interactions. Bulk RNA-seq provides a macroscopic overview of gene expression changes in virus-infected cells, offering insights into infection mechanisms and host responses at the molecular level. Single-cell RNA sequencing (scRNAseq) provides unprecedented resolution by analyzing individual infected cells, revealing remarkable cellular heterogeneity within the host response. A particularly innovative advancement, virus-inclusive single-cell RNA sequencing (viscRNA-seq), addresses the challenges posed by non-polyadenylated flavivirus genomes, unveiling intricate details of virus-host interactions. In this review, we discuss the contributions of bulk RNA-seq, scRNA-seq, and viscRNA-seq to the field, exploring their implications in cell line experiments and studies on patients infected with various flavivirus species. Comprehensive transcriptome analyses from RNA-seq technologies are pivotal in accelerating the development of effective diagnostics and therapeutics, paving the way for innovative treatments and enhancing our preparedness for future outbreaks.
Collapse
Affiliation(s)
- Doyeong Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Seonghun Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
14
|
Aregay A, Slunečko J, Korva M, Bogovic P, Resman Rus K, Knap N, Beicht J, Kubinski M, Saletti G, Avšič-Županc T, Steffen I, Strle F, Osterhaus ADME, Rimmelzwaan GF. Tick-borne encephalitis vaccine breakthrough infections induce aberrant T cell and antibody responses to non-structural proteins. NPJ Vaccines 2024; 9:141. [PMID: 39112523 PMCID: PMC11306791 DOI: 10.1038/s41541-024-00936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) vaccine breakthrough (VBT) infections are not uncommon in endemic areas. The clinical and immunological outcomes have been poorly investigated. We assessed the magnitude and specificity of virus-specific antibody and T cell responses after TBE in previously vaccinated subjects and compared the results with those of unvaccinated TBE patients and study subjects that received vaccination without VBT infection. Symptomatic TBEV infection of unvaccinated study subjects induced virus-specific antibody responses to the E protein and non-structural protein 1 (NS1) as well as T cell responses to structural and other non-structural (NS) proteins. After VBT infections, significantly impaired NS1-specific antibody responses were observed, while the virus-specific T cell responses to the NS proteins were relatively strong. VBT infection caused predominantly moderate to severe disease during hospitalization. The level of TBEV EDIII- and NS1-specific antibodies in unvaccinated convalescent patients inversely correlated with TBE severity and neurological symptoms early after infection.
Collapse
Affiliation(s)
- Amare Aregay
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jan Slunečko
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovic
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Resman Rus
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tatjana Avšič-Županc
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Imke Steffen
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
15
|
Xie S, Yang X, Yang X, Cao Z, Wei N, Lin X, Shi M, Cao R. Japanese encephalitis virus NS1 and NS1' proteins induce vimentin rearrangement via the CDK1-PLK1 axis to promote viral replication. J Virol 2024; 98:e0019524. [PMID: 38656209 PMCID: PMC11092344 DOI: 10.1128/jvi.00195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 04/26/2024] Open
Abstract
The host cytoskeleton plays crucial roles in various stages of virus infection, including viral entry, transport, replication, and release. However, the specific mechanisms by which intermediate filaments are involved in orthoflavivirus infection have not been well understood. In this study, we demonstrate that the Japanese encephalitis virus (JEV) remodels the vimentin network, resulting in the formation of cage-like structures that support viral replication. Mechanistically, JEV NS1 and NS1' proteins induce the translocation of CDK1 from the nucleus to the cytoplasm and interact with it, leading to the phosphorylation of vimentin at Ser56. This phosphorylation event recruits PLK1, which further phosphorylates vimentin at Ser83. Consequently, these phosphorylation modifications convert the typically filamentous vimentin into non-filamentous "particles" or "squiggles." These vimentin "particles" or "squiggles" are then transported retrogradely along microtubules to the endoplasmic reticulum, where they form cage-like structures. Notably, NS1' is more effective than NS1 in triggering the CDK1-PLK1 cascade response. Overall, our study provides new insights into how JEV NS1 and NS1' proteins manipulate the vimentin network to facilitate efficient viral replication. IMPORTANCE Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus that causes severe encephalitis in humans, particularly in Asia. Despite the availability of a safe and effective vaccine, JEV infection remains a significant public health threat due to limited vaccination coverage. Understanding the interactions between JEV and host proteins is essential for developing more effective antiviral strategies. In this study, we investigated the role of vimentin, an intermediate filament protein, in JEV replication. Our findings reveal that JEV NS1 and NS1' proteins induce vimentin rearrangement, resulting in the formation of cage-like structures that envelop the viral replication factories (RFs), thus facilitating efficient viral replication. Our research highlights the importance of the interplay between the cytoskeleton and orthoflavivirus, suggesting that targeting vimentin could be a promising approach for the development of antiviral strategies to inhibit JEV propagation.
Collapse
Affiliation(s)
- Shengda Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiao Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingmiao Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ziyu Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ning Wei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Miaolei Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Samri A, Bandeira AC, Gois LL, Silva CGR, Rousseau A, Corneau A, Tarantino N, Maucourant C, Queiroz GAN, Vieillard V, Yssel H, Campos GS, Sardi S, Autran B, Rios Grassi MF. Comprehensive analysis of early T cell responses to acute Zika Virus infection during the first epidemic in Bahia, Brazil. PLoS One 2024; 19:e0302684. [PMID: 38722858 PMCID: PMC11081376 DOI: 10.1371/journal.pone.0302684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND In most cases, Zika virus (ZIKV) causes a self-limited acute illness in adults, characterized by mild clinical symptoms that resolve within a few days. Immune responses, both innate and adaptive, play a central role in controlling and eliminating virus-infected cells during the early stages of infection. AIM To test the hypothesis that circulating T cells exhibit phenotypic and functional activation characteristics during the viremic phase of ZIKV infection. METHODS A comprehensive analysis using mass cytometry was performed on peripheral blood mononuclear cells obtained from patients with acute ZIKV infection (as confirmed by RT-PCR) and compared with that from healthy donors (HD). The frequency of IFN-γ-producing T cells in response to peptide pools covering immunogenic regions of structural and nonstructural ZIKV proteins was quantified using an ELISpot assay. RESULTS Circulating CD4+ and CD8+ T lymphocytes from ZIKV-infected patients expressed higher levels of IFN-γ and pSTAT-5, as well as cell surface markers associated with proliferation (Ki-67), activation ((HLA-DR, CD38) or exhaustion (PD1 and CTLA-4), compared to those from HD. Activation of CD4+ and CD8+ memory T cell subsets, including Transitional Memory T Cells (TTM), Effector Memory T cells (TEM), and Effector Memory T cells Re-expressing CD45RA (TEMRA), was prominent among CD4+ T cell subset of ZIKV-infected patients and was associated with increased levels of IFN-γ, pSTAT-5, Ki-67, CTLA-4, and PD1, as compared to HD. Additionally, approximately 30% of ZIKV-infected patients exhibited a T cell response primarily directed against the ZIKV NS5 protein. CONCLUSION Circulating T lymphocytes spontaneously produce IFN-γ and express elevated levels of pSTAT-5 during the early phase of ZIKV infection whereas recognition of ZIKV antigen results in the generation of virus-specific IFN-γ-producing T cells.
Collapse
Affiliation(s)
- Assia Samri
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des Maladies Infectieuses, Cimi, Paris, France
| | - Antonio Carlos Bandeira
- Secretaria de Saúde da Bahia, Salvador, Bahia, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Luana Leandro Gois
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
- Departamento de Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Alice Rousseau
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des Maladies Infectieuses, Cimi, Paris, France
| | - Aurelien Corneau
- Faculté de Médecine Pierre et Marie Curie, Plateforme de Cytométrie (CyPS), UMS30–LUMIC, Paris, France
| | - Nadine Tarantino
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des Maladies Infectieuses, Cimi, Paris, France
| | - Christopher Maucourant
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des Maladies Infectieuses, Cimi, Paris, France
| | - Gabriel Andrade Nonato Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| | - Vincent Vieillard
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des Maladies Infectieuses, Cimi, Paris, France
| | - Hans Yssel
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des Maladies Infectieuses, Cimi, Paris, France
| | - Gubio Soares Campos
- Departamento de Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Silvia Sardi
- Departamento de Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Brigitte Autran
- Sorbonne-Université, Inserm 1135, CNRS ERL8255, Centre d’immunologie et des Maladies Infectieuses, Cimi, Paris, France
| | - Maria Fernanda Rios Grassi
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
17
|
Fan YC, Chen JM, Chen YY, Ke YD, Chang GJJ, Chiou SS. Epitope(s) involving amino acids of the fusion loop of Japanese encephalitis virus envelope protein is(are) important to elicit protective immunity. J Virol 2024; 98:e0177323. [PMID: 38530012 PMCID: PMC11019926 DOI: 10.1128/jvi.01773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Dengue vaccine candidates have been shown to improve vaccine safety and efficacy by altering the residues or accessibility of the fusion loop on the virus envelope protein domain II (DIIFL) in an ex vivo animal study. The current study aimed to comprehensively investigate the impact of DIIFL mutations on the antigenicity, immunogenicity, and protective efficacy of Japanese encephalitis virus (JEV) virus-like particles (VLPs) in mice. We found the DIIFL G106K/L107D (KD) and W101G/G106K/L107D (GKD) mutations altered the binding activity of JEV VLP to cross-reactive monoclonal antibodies but had no effect on their ability to elicit total IgG antibodies in mice. However, JEV VLPs with KD or GKD mutations induced significantly less neutralizing antibodies against JEV. Only 46% and 31% of the KD and GKD VLPs-immunized mice survived compared to 100% of the wild-type (WT) VLP-immunized mice after a lethal JEV challenge. In passive protection experiments, naïve mice that received sera from WT VLP-immunized mice exhibited a significantly higher survival rate of 46.7% compared to those receiving sera from KD VLP- and GKD VLP-immunized mice (6.7% and 0%, respectively). This study demonstrated that JEV DIIFL is crucial for eliciting potently neutralizing antibodies and protective immunity against JEV. IMPORTANCE Introduction of mutations into the fusion loop is one potential strategy for generating safe dengue and Zika vaccines by reducing the risk of severe dengue following subsequent infections, and for constructing live-attenuated vaccine candidates against newly emerging Japanese encephalitis virus (JEV) or Japanese encephalitis (JE) serocomplex virus. The monoclonal antibody studies indicated the fusion loop of JE serocomplex viruses primarily comprised non-neutralizing epitopes. However, the present study demonstrates that the JEV fusion loop plays a critical role in eliciting protective immunity in mice. Modifications to the fusion loop of JE serocomplex viruses might negatively affect vaccine efficacy compared to dengue and zika serocomplex viruses. Further studies are required to assess the impact of mutant fusion loop encoded by commonly used JEV vaccine strains on vaccine efficacy or safety after subsequent dengue virus infection.
Collapse
Affiliation(s)
- Yi-Chin Fan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Degree Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jo-Mei Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yuan-Dun Ke
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Gwong-Jen J. Chang
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort, Fort Collins, Colorado, USA
| | - Shyan-Song Chiou
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
18
|
Song J, Hong J, Yang C, Zhang Y, Li Z, He P, Ding Q. Recapitulation of the Powassan virus life cycle in cell culture. mBio 2024; 15:e0346823. [PMID: 38411112 PMCID: PMC11005349 DOI: 10.1128/mbio.03468-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
Powassan virus (POWV) is a tick-borne flavivirus known for causing fatal neuroinvasive diseases in humans. Recently, there has been a noticeable increase in POWV infections, emphasizing the urgency of understanding viral replication, pathogenesis, and developing interventions. Notably, there are no approved vaccines or therapeutics for POWV, and its classification as a biosafety level-3 (BSL-3) agent hampers research. To overcome these obstacles, we developed a replicon system, a self-replicating RNA lacking structural proteins, making it safe to operate in a BSL-2 environment. We constructed a POWV replicon carrying the Gaussia luciferase (Gluc) reporter gene and blasticidin (BSD) selectable marker. Continuous BSD selection led to obtain a stable POWV replicon-carrying Huh7 cell lines. We identified cell culture adaptive mutations G4079A, G4944T and G6256A, resulting in NS2AR195K, NS3G122G, and NS3V560M, enhancing RNA replication. We demonstrated the utility of the POWV replicon system for high-throughput screening (HTS) assay to identify promising antivirals against POWV replication. We further explored the applications of the POWV replicon system, generating single-round infectious particles (SRIPs) by transfecting Huh7-POWV replicon cells with plasmids encoding viral capsid (C), premembrane (prM), and envelope (E) proteins, and revealed the distinct antigenic profiles of POWV with ZIKV. In summary, the POWV replicon and SRIP systems represent crucial platforms for genetic and functional analysis of the POWV life cycle and facilitating the discovery of antiviral drugs.IMPORTANCEIn light of the recent surge in human infections caused by POWV, a biosafety level-3 (BSL-3) classified virus, there is a pressing need to understand the viral life cycle and the development of effective countermeasures. To address this, we have pioneered the establishment of a POWV RNA replicon system and a replicon-based POWV SRIP system. Importantly, these systems are operable in BSL-2 laboratories, enabling comprehensive investigations into the viral life cycle and facilitating antiviral screening. In summary, these useful tools are poised to advance our understanding of the POWV life cycle and expedite the development of antiviral interventions.
Collapse
Affiliation(s)
- Jingwei Song
- School of Medicine, Tsinghua University, Beijing, China
| | - Jiayao Hong
- School of Medicine, Tsinghua University, Beijing, China
| | - Chen Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Yu Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhuoyang Li
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Tsinghua University, Beijing, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Wang ZJ, Zhang RR, Wu M, Zhao H, Li XF, Ye Q, Qin CF. Development of a live-attenuated chimeric vaccine against the emerging Usutu virus. Vaccine 2024; 42:1363-1371. [PMID: 38310016 DOI: 10.1016/j.vaccine.2024.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Usutu virus (USUV) is an emerging arthropod-borne flavivirus that has expanded into multiple European countries during the past several decades. USUV infection in human has been linked to severe neurological complications, and no vaccine is now available against USUV. In this work, we develop a live-attenuated chimeric USUV vaccine (termed ChinUSUV) based on the full-length infectious cDNA clone of the licensed Japanese encephalitis virus (JEV) vaccine strain SA14-14-2. In vitro studies demonstrate that ChinUSUV replicates efficiently and maintains its genetic stability. Remarkably, ChinUSUV exhibits a significant attenuation phenotype in multiple mouse models even compared with the licensed JEV vaccine. A single immunization with ChinUSUV elicits potent IgG and neutralizing antibody responses as well as T cell response. Passive transfer of sera from ChinUSUV-immunized mice confers significant protection against lethal homologous challenge in suckling mice. Taken together, our results suggest that ChinUSUV represents a potential USUV vaccine candidate that merits further development.
Collapse
Affiliation(s)
- Zheng-Jian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Mei Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, China.
| |
Collapse
|
20
|
Lin CS, Lu CH, Lin TH, Kiu YT, Kan JY, Chang YJ, Hung PY, Koval'skaya AV, Tsypyshev DO, Tsypysheva IP, Lin CW. Inhibition of dengue viruses by N-methylcytisine thio derivatives through targeting viral envelope protein and NS2B-NS3 protease. Bioorg Med Chem Lett 2024; 99:129623. [PMID: 38242331 DOI: 10.1016/j.bmcl.2024.129623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Dengue virus (DENV) is a significant global health threat, causing millions of cases worldwide each year. Developing antiviral drugs for DENV has been a challenging endeavor. Our previous study identified anti-DENV properties of two (-)-cytisine derivatives contained substitutions within the 2-pyridone core from a pool of 19 (-)-cytisine derivatives. This study aimed to expand on the previous research by investigating the antiviral potential of N-methylcytisine thio (mCy thio) derivatives against DENV, understanding the molecular mechanisms of antiviral activity for the active thio derivatives. The inhibitory assays on DENV-2-induced cytopathic effect and infectivity revealed that mCy thio derivatives 3 ((1R,5S)-3-methyl-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocine-8-thione) and 6 ((1S,5R)-3-methyl-2-thioxo-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one) were identified as the active compounds against both DENV-1 and DENV-2. Derivative 6 displayed robust antiviral activity against DENV-2, with EC50 values ranging from 0.002 to 0.005 μM in different cell lines. Derivative 3 also exhibited significant antiviral activity against DENV-2. The study found that these compounds are effective at inhibiting DENV-2 at both the entry stage (including virus attachment) and post-entry stages of the viral life cycle. The study also investigated the inhibition of the DENV-2 NS2B-NS3 protease activity by these compounds. Derivative 6 demonstrated notably stronger inhibition compared to mCy thio 3, revealing its dual antiviral action at both the entry and post-entry stages. Molecular docking simulations indicated that mCy thio derivatives 3 and 6 bind to the domain I and III of the DENV E protein, as well as the active of NS2B-NS3 protease, suggesting their molecular interactions with the virus. The study demonstrates the antiviral efficacy of N-methylcytisine thio derivatives against DENV. It provides valuable insights into the potential interactions between these compounds and viral target proteins, which could be useful in the development of antiviral drugs for DENV.
Collapse
Affiliation(s)
- Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, No. 117, Shatian Rd, Shalu District, Taichung City 433, Taiwan
| | - Chih-Hao Lu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Tsai-Hsiu Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yan-Tung Kiu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| | - Ju-Ying Kan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan; The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Yu-Jen Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Ping-Yi Hung
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| | - Alena V Koval'skaya
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation
| | - Dmitry O Tsypyshev
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation
| | - Inna P Tsypysheva
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation.
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan; The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung41354, Taiwan.
| |
Collapse
|
21
|
Zhu S, Tang Y, Diao Y. Development and biochemical characteristics of a monoclonal antibody against prM protein of Tembusu virus. Poult Sci 2023; 102:103065. [PMID: 37751643 PMCID: PMC10522996 DOI: 10.1016/j.psj.2023.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Tembusu virus (TMUV), a pathogenic member of the Flavivirus family, is an infectious diseases that seriously jeopardize duck health in 2010 in China. TMUV disease causes significant economic losses to the duck industry. This study aimed to prepare monoclonal antibodies against TMUV prM protein and to identify their epitopes. The 501bp prM gene was amplified to the pET-32a prokaryotic expression vector and expressed as a recombinant protein of size 38 KD in Escherichia coli. The purified recombinant proteins were inoculated into BALB/c mice to generate splenic lymphocytes capable of secreting anti-prM antibodies, and hybridoma cells were obtained after fusion with SP2/0 cells. A new hybridoma cell line named B27, which stably secreted IgG1-antibody against TMUV prM with high antibody titers up to 1:1:3,276,800 was screened. This monoclonal antibody (mAb) is well specific and can be used for ELISA/Western-blot (WB)/indirect fluorescence assay (IFA) etc. The mAb B27 has poor neutralization ability and concentration dependence, with a maximum neutralization degree of 23.87% at antibody dilution 10-6. Next, we truncated prM gene and expressed the truncated protein to screen antigen epitopes. The mAb's linear antigen epitope of the TMUV prM protein was first identified and was accurate to 6 consecutive amino acids 59GYEPED64, which located in the pr protein. Bioinformatic analysis showed that this antigenic epitope was located on the surface of the antigen, which was conducive to the direct contact of antigen antibody and conformed to the properties of antigenic epitopes. In addition, its 6 amino acids are highly homologous among 27 published TMUV strains, indicating that its epitope is stable. This study will help to further understand the protein structure and the function of prM, and lay the foundation for establishing specific prM detection methods and the mechanistic study of TMUV prM protein.
Collapse
Affiliation(s)
- Siming Zhu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease, Tai'an, Shandong, 271018, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease, Tai'an, Shandong, 271018, China.
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease, Tai'an, Shandong, 271018, China
| |
Collapse
|
22
|
Illarionova V, Rogova A, Tuchynskaya K, Volok V, Rogova Y, Baryshnikova V, Turchenko Y, Litov A, Kalyanova A, Siniugina A, Ishmukhametov A, Karganova G. Inapparent Tick-Borne Orthoflavivirus Infection in Macaca fascicularis: A Model for Antiviral Drug and Vaccine Research. Vaccines (Basel) 2023; 11:1754. [PMID: 38140159 PMCID: PMC10747564 DOI: 10.3390/vaccines11121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) and Powassan virus (POWV) are neurotropic tick-borne orthoflaviviruses. They cause mostly asymptomatic infections in hosts, but severe forms with CNS involvement can occur. Studying the early stages of viral infections in humans is challenging, and appropriate animal models are essential for understanding the factors determining the disease severity and for developing emergency prophylaxis and treatment options. In this work, we assessed the model of the early stages of TBEV and POWV mono- and co-infections in Macaca fascicularis. Serological, biochemical, and virological parameters were investigated to describe the infection, including its impact on animal behavior. Viremia, neutralizing antibody dynamics, and viral load in organs were chosen as the main parameters distinguishing early-stage orthoflavivirus infection. Levels of IFNα, monocyte count, and cognitive test scores were proposed as additional informative indicators. An assessment of a tick-borne encephalitis vaccine using this model showed that it provided partial protection against POWV infection in Macaca fascicularis without signs of antibody-dependent enhancement of infection.
Collapse
Affiliation(s)
- Victoria Illarionova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1 bd. 3, Moscow 119991, Russia
| | - Anastasia Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Ksenia Tuchynskaya
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Viktor Volok
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Research Institute for Systems Biology and Medicine (RISBM), Laboratory of Infectious Immunology, Moscow 117246, Russia
| | - Yulia Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Victoria Baryshnikova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biochemistry, Moscow 108819, Russia; (V.B.); (Y.T.)
| | - Yuriy Turchenko
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biochemistry, Moscow 108819, Russia; (V.B.); (Y.T.)
| | - Alexander Litov
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Anna Kalyanova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Alexandra Siniugina
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia;
| | - Aydar Ishmukhametov
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia;
| | - Galina Karganova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| |
Collapse
|
23
|
Roßbacher L, Malafa S, Huber K, Thaler M, Aberle SW, Aberle JH, Heinz FX, Stiasny K. Effect of previous heterologous flavivirus vaccinations on human antibody responses in tick-borne encephalitis and dengue virus infections. J Med Virol 2023; 95:e29245. [PMID: 38009693 PMCID: PMC10952712 DOI: 10.1002/jmv.29245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Arthropod-borne flaviviruses include a number of medically relevant human pathogens such as the mosquito-borne dengue (DEN), Zika, and yellow fever (YF) viruses as well as tick-borne encephalitis virus (TBEV). All flaviviruses are antigenically related and anamnestic responses due to prior immunity can modulate antibody specificities in subsequent infections or vaccinations. In our study, we analyzed the induction of broadly flavivirus cross-reactive antibodies in tick-borne encephalitis (TBE) and DEN patients without or with prior flavivirus exposure through TBE and/or YF vaccination, and determined the contribution of these antibodies to TBE and dengue virus (DENV) neutralization. In addition, we investigated the formation of cross-reactive antibodies in TBE-vaccination breakthroughs (VBTs). A TBEV infection without prior YF or TBE vaccination induced predominantly type-specific antibodies. In contrast, high levels of broadly cross-reactive antibodies were found in samples from TBE patients prevaccinated against YF as well as in DEN patients prevaccinated against TBE and/or YF. While these cross-reactive antibodies did not neutralize TBEV, they were effective in neutralizing DENV. This discrepancy points to structural differences between the two viruses and indicates that broadly cross-reactive epitopes are less accessible in TBEV than in DENV. In TBE VBT infections, type-specific antibodies dominated the antibody response, thus revealing no difference from that of unvaccinated TBE patients. Our results emphasize significant differences in the structural properties of different flaviviruses that have an impact on the induction of broadly cross-reactive antibodies and their functional activities in virus neutralization.
Collapse
Affiliation(s)
- Lena Roßbacher
- Center for VirologyMedical University of ViennaViennaAustria
| | - Stefan Malafa
- Center for VirologyMedical University of ViennaViennaAustria
| | - Kristina Huber
- Division of Infectious Diseases and Tropical MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Melissa Thaler
- Center for VirologyMedical University of ViennaViennaAustria
- Present address:
Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | | | | | - Franz X. Heinz
- Center for VirologyMedical University of ViennaViennaAustria
| | - Karin Stiasny
- Center for VirologyMedical University of ViennaViennaAustria
| |
Collapse
|
24
|
Ormundo LF, Barreto CT, Tsuruta LR. Development of Therapeutic Monoclonal Antibodies for Emerging Arbovirus Infections. Viruses 2023; 15:2177. [PMID: 38005854 PMCID: PMC10675117 DOI: 10.3390/v15112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Antibody-based passive immunotherapy has been used effectively in the treatment and prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne viruses (arboviruses) represent a global public health problem due to their rapid spread, urging measures and the treatment of infected individuals to combat them. Preparedness in advances in developing antivirals and relevant epidemiological studies protect us from damage and losses. Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in combating infectious diseases and various other illnesses. Recent advances in mAb discovery techniques have allowed the development and approval of a wide number of therapeutic mAbs. This review focuses on the technological approaches available to select neutralizing mAbs for emerging arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs. The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue, Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective effect demonstrated in animal model studies.
Collapse
Affiliation(s)
- Leonardo F. Ormundo
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Carolina T. Barreto
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Lilian R. Tsuruta
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
| |
Collapse
|
25
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
26
|
Zeng Q, Liu J, Li Z, Zhang Y, Zu S, Ding X, Zhang H. Japanese encephalitis virus NS4B inhibits interferon beta production by targeting TLR3 and TRIF. Vet Microbiol 2023; 284:109849. [PMID: 37597377 DOI: 10.1016/j.vetmic.2023.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus transmitted by mosquitoes, causing epidemics of encephalitis in humans and reproductive disorders in pigs. This virus is predominantly distributed in Asian countries and causes tens of thousands of infections in humans annually. Interferon (IFN) is an essential component of host defense against viral infection. Multiple studies have indicated that multifunctional nonstructural proteins of flaviviruses suppress the host IFN response via various strategies to facilitate viral replication. The flaviviruses encoded nonstructural protein 4B (NS4B) is a multifunctional hydrophobic nonstructural protein widely involved in viral replication, pathogenesis and host immune evasion. In this study, we demonstrated that NS4B of JEV suppressed the induction of IFN-β production, mainly through targeting the TLR3 and TRIF (a TIR domain-containing linker that induces IFN-β) proteins in the TLR3 pathway. In a dual-luciferase reporter assay, JEV NS4B significantly inhibited the activation of IFN-β promoter induced by TLR3 and simultaneously treated with poly (I:C). Moreover, NS4B also inhibited the activation of IFN-β promoter triggered by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in TLR3 signaling pathway. Furthermore, NS4B inhibited the phosphorylation of IRF3 under the stimulation of TLR3 and TRIF molecules. Mechanistically, JEV NS4B interacts with TLR3 and TRIF and confirmed by co-localization and co-immunoprecipitation assay, thereby inhibiting the activation of downstream sensors in the TLR3-mediated pathway. Overall, our results provide a novel mechanism by which JEV NS4B interferes with the host's antiviral response through targeting TLR3 receptor signaling pathway.
Collapse
Affiliation(s)
- Quan Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jiaqi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Zhaoyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yucan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Shaopo Zu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450002, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Xueyan Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450002, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Honglei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou 450002, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China.
| |
Collapse
|
27
|
Nemirov K, Authié P, Souque P, Moncoq F, Noirat A, Blanc C, Bourgine M, Majlessi L, Charneau P. Preclinical proof of concept of a tetravalent lentiviral T-cell vaccine against dengue viruses. Front Immunol 2023; 14:1208041. [PMID: 37654495 PMCID: PMC10466046 DOI: 10.3389/fimmu.2023.1208041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Dengue virus (DENV) is responsible for approximately 100 million cases of dengue fever annually, including severe forms such as hemorrhagic dengue and dengue shock syndrome. Despite intensive vaccine research and development spanning several decades, a universally accepted and approved vaccine against dengue fever has not yet been developed. The major challenge associated with the development of such a vaccine is that it should induce simultaneous and equal protection against the four DENV serotypes, because past infection with one serotype may greatly increase the severity of secondary infection with a distinct serotype, a phenomenon known as antibody-dependent enhancement (ADE). Using a lentiviral vector platform that is particularly suitable for the induction of cellular immune responses, we designed a tetravalent T-cell vaccine candidate against DENV ("LV-DEN"). This vaccine candidate has a strong CD8+ T-cell immunogenicity against the targeted non-structural DENV proteins, without inducing antibody response against surface antigens. Evaluation of its protective potential in the preclinical flavivirus infection model, i.e., mice knockout for the receptor to the type I IFN, demonstrated its significant protective effect against four distinct DENV serotypes, based on reduced weight loss, viremia, and viral loads in peripheral organs of the challenged mice. These results provide proof of concept for the use of lentiviral vectors for the development of efficient polyvalent T-cell vaccine candidates against all DENV serotypes.
Collapse
Affiliation(s)
- Kirill Nemirov
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Iversen PL, Kipshidze N, Kipshidze N, Dangas G, Ramacciotti E, Kakabadze Z, Fareed J. A novel therapeutic vaccine targeting the soluble TNFα receptor II to limit the progression of cardiovascular disease: AtheroVax™. Front Cardiovasc Med 2023; 10:1206541. [PMID: 37534280 PMCID: PMC10392828 DOI: 10.3389/fcvm.2023.1206541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
The burden of atherosclerotic cardiovascular disease contributes to a large proportion of morbidity and mortality, globally. Vaccination against atherosclerosis has been proposed for over 20 years targeting different mediators of atherothrombosis; however, these have not been adequately evaluated in human clinical trials to assess safety and efficacy. Inflammation is a driver of atherosclerosis, but inflammatory mediators are essential components of the immune response. Only pathogenic forms of sTNFR2 are acted upon while preserving the membrane-bound (wild-type) TNFR2 contributions to a non-pathogenic immune response. We hypothesize that the inhibition of sTNRF2 will be more specific and offer long-term treatment options. Here we describe pre-clinical findings of an sTNFR2-targeting peptide vaccine (AtheroVax™) in a mouse model. The multiple pathways to synthesis of the soluble TNFRII receptor (sTNFRII) were identified as sTNFRII(PC), sTNFRII(Δ7), and sTNFRII(Δ7,9). The sTNFRII(Δ7) peptide, NH2-DFALPVEKPLCLQR-COOH is specific to sTNFR2 based on an mRNA splice-variant in which exon 6 is joined to exon 8. The role of sTNFRII(Δ7) as a mediator of prolonged TNFα activity by preventing degradation and clearance was investigated. Inflammation is a critical driver of onset, progression and expansion of atherosclerosis. The TNFα ligand represents a driver of inflammation that is mediated by a splice variant of TNFR2, referred to as sTNFRII(Δ7). The multiple forms of TNFRII, both membrane bound and soluble, are associated with distinctly different phenotypes. sTNFRII(PC) and sTNFRII(Δ7) are not equivalent to etanercept because they lack a clearance mechanism. The unique peptide associated with sTNFRII(Δ7) contains a linear B-cell epitope with amino acids from both exon 6 and exon 8 supporting the vaccine design. Animal studies to evaluate the vaccine are ongoing, and results will be forthcoming. We describe a peptide vaccine targeting sTNFR2 in limiting the progression of atherosclerosis. A therapeutic vaccine limiting the progression of atherosclerosis will greatly contribute to the reduction in morbidity and mortality from cardiovascular disease. It is likely the vaccine will be used in combination with the current standards of care and lifestyle modifications.
Collapse
Affiliation(s)
- Patrick L. Iversen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | | | - Nodar Kipshidze
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - George Dangas
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Zurab Kakabadze
- Head Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | - Jawed Fareed
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL, United States
| |
Collapse
|
29
|
de Bellegarde de Saint Lary C, Kasbergen LM, Bruijning-Verhagen PC, van der Jeugd H, Chandler F, Hogema BM, Zaaijer HL, van der Klis FR, Barzon L, de Bruin E, ten Bosch Q, Koopmans MP, Sikkema RS, Visser LG. Assessing West Nile virus (WNV) and Usutu virus (USUV) exposure in bird ringers in the Netherlands: a high-risk group for WNV and USUV infection? One Health 2023; 16:100533. [PMID: 37363259 PMCID: PMC10288042 DOI: 10.1016/j.onehlt.2023.100533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction In 2020, the first Dutch West Nile virus (WNV) infected birds were detected through risk-targeted surveillance of songbirds. Retrospective testing of patients with unexplained neurological disease revealed human WNV infections in July and August 2020. Bird ringers are highly exposed to mosquito bites and possibly avian excrements during ringing activities. This study therefore investigates whether bird ringers are at higher risk of exposure to WNV and Usutu virus (USUV). Methods Dutch bird ringers were asked to provide a single serum sample (May - September 2021) and to fill out a survey. Sera were screened by protein microarray for presence of specific IgG against WNV and USUV non-structural protein 1 (NS1), followed by focus reduction virus neutralization tests (FRNT). Healthcare workers (2009-2010), the national immunity cohort (2016-2017) and blood donors (2021) were used as control groups without this occupational exposure. Results The majority of the 157 participating bird ringers was male (132/157, 84%) and the median age was 62 years. Thirty-seven participants (37/157, 23.6%) showed WNV and USUV IgG microarray signals above background, compared to 6.4% (6/94) in the community cohort and 2.1% (2/96) in blood donors (p < 0.01). Two seroreactive bird ringers were confirmed WNV or USUV positive by FRNT. The majority of seroreactive bird ringers travelled to EU countries with reported WNV human cases (30/37, 81%) (p = 0.07). No difference was observed between bird ringers with and without previous yellow fever vaccination. Discussion The higher frequency of WNV and/or USUV IgG reactive bird ringers indicates increased flavivirus exposure compared to the general population, suggesting that individuals with high-exposure professions may be considered to complement existing surveillance systems. However, the complexity of serological interpretation in relation to location-specific exposure (including travel), and antibody cross-reactivity, remain a challenge when performing surveillance of emerging flaviviruses in low-prevalence settings.
Collapse
Affiliation(s)
- Chiara de Bellegarde de Saint Lary
- Department of Infectious Diseases, LUMC, Leiden, the Netherlands
- Julius Centre for Health Sciences and Primary Care, Department of Epidemiology, UMCU, Utrecht, the Netherlands
| | | | | | - Henk van der Jeugd
- Vogeltrekstation, Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Wageningen, the Netherlands
- Department of Animal Ecology, NIOO-KNAW, Wageningen, the Netherlands
| | | | | | | | | | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padua, Italy
- Microbiology and Virology Unit, Padova University Hospital, Padua, Italy
| | - Erwin de Bruin
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Quirine ten Bosch
- Quantitative Veterinary Epidemiology, WUR, Wageningen, the Netherlands
| | | | - Reina S. Sikkema
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- Vogeltrekstation, Dutch Centre for Avian Migration and Demography, NIOO-KNAW, Wageningen, the Netherlands
| | - Leo G. Visser
- Department of Infectious Diseases, LUMC, Leiden, the Netherlands
| |
Collapse
|
30
|
Norris GT, Ames JM, Ziegler SF, Oberst A. Oligodendrocyte-derived IL-33 functions as a microglial survival factor during neuroinvasive flavivirus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536332. [PMID: 37090518 PMCID: PMC10120631 DOI: 10.1101/2023.04.11.536332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In order to recover from infection, organisms must balance robust immune responses to pathogens with the tolerance of immune-mediated pathology. This balance is particularly critical within the central nervous system, whose complex architecture, essential function, and limited capacity for self-renewal render it susceptible to both pathogen- and immune-mediated pathology. Here, we identify the alarmin IL-33 and its receptor ST2 as critical for host survival to neuroinvasive flavivirus infection. We identify oligodendrocytes as the critical source of IL-33, and microglia as the key cellular responders. Notably, we find that the IL-33/ST2 axis does not impact viral control or adaptive immune responses; rather, it is required to promote the activation and survival of microglia. In the absence of intact IL-33/ST2 signaling in the brain, neuroinvasive flavivirus infection triggered aberrant recruitment of monocyte-derived peripheral immune cells, increased neuronal stress, and neuronal cell death, effects that compromised organismal survival. These findings identify IL-33 as a critical mediator of CNS tolerance to pathogen-initiated immunity and inflammation.
Collapse
Affiliation(s)
- Geoffrey T. Norris
- Department of Immunology, University of Washington, Seattle WA 98109, USA
| | - Joshua M. Ames
- Department of Immunology, University of Washington, Seattle WA 98109, USA
| | - Steven F. Ziegler
- Department of Immunology, University of Washington, Seattle WA 98109, USA
- Immunology Program, Benaroya Research Institute, Seattle WA 98101, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle WA 98109, USA
- Lead Contact
| |
Collapse
|
31
|
Stiasny K, Medits I, Roßbacher L, Heinz FX. Impact of structural dynamics on biological functions of flaviviruses. FEBS J 2023; 290:1973-1985. [PMID: 35246954 PMCID: PMC10952610 DOI: 10.1111/febs.16419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Flaviviruses comprise a number of mosquito- or tick-transmitted human pathogens of global public health importance. Advances in structural biology techniques have contributed substantially to our current understanding of the life cycle of these small enveloped RNA viruses and led to deep insights into details of virus assembly, maturation and cell entry. In addition to large-scale conformational changes and oligomeric rearrangements of envelope proteins during these processes, there is increasing evidence that smaller-scale protein dynamics (referred to as virus "breathing") can confer extra flexibility to these viruses for the fine-tuning of their interactions with the immune system and possibly with cellular factors they encounter in their complex ecological cycles in arthropod and vertebrate hosts. In this review, we discuss how work with tick-borne encephalitis virus has extended our view on flavivirus breathing, leading to the identification of a novel mechanism of antibody-mediated infection enhancement and demonstrating breathing intermediates of the envelope protein in the process of membrane fusion. These data are discussed in the context of other flaviviruses and the perspective of a potential role of virus breathing to cope with the requirements of adaptation and replication in evolutionarily very different hosts.
Collapse
Affiliation(s)
- Karin Stiasny
- Center for VirologyMedical University of ViennaAustria
| | - Iris Medits
- Center for VirologyMedical University of ViennaAustria
| | | | | |
Collapse
|
32
|
Dutta SK, Langenburg T. A Perspective on Current Flavivirus Vaccine Development: A Brief Review. Viruses 2023; 15:v15040860. [PMID: 37112840 PMCID: PMC10142581 DOI: 10.3390/v15040860] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The flavivirus genus contains several clinically important pathogens that account for tremendous global suffering. Primarily transmitted by mosquitos or ticks, these viruses can cause severe and potentially fatal diseases ranging from hemorrhagic fevers to encephalitis. The extensive global burden is predominantly caused by six flaviviruses: dengue, Zika, West Nile, yellow fever, Japanese encephalitis and tick-borne encephalitis. Several vaccines have been developed, and many more are currently being tested in clinical trials. However, flavivirus vaccine development is still confronted with many shortcomings and challenges. With the use of the existing literature, we have studied these hurdles as well as the signs of progress made in flavivirus vaccinology in the context of future development strategies. Moreover, all current licensed and phase-trial flavivirus vaccines have been gathered and discussed based on their vaccine type. Furthermore, potentially relevant vaccine types without any candidates in clinical testing are explored in this review as well. Over the past decades, several modern vaccine types have expanded the field of vaccinology, potentially providing alternative solutions for flavivirus vaccines. These vaccine types offer different development strategies as opposed to traditional vaccines. The included vaccine types were live-attenuated, inactivated, subunit, VLPs, viral vector-based, epitope-based, DNA and mRNA vaccines. Each vaccine type offers different advantages, some more suitable for flaviviruses than others. Additional studies are needed to overcome the barriers currently faced by flavivirus vaccine development, but many potential solutions are currently being explored.
Collapse
|
33
|
Gaspar-Castillo C, Rodríguez MH, Ortiz-Navarrete V, Alpuche-Aranda CM, Martinez-Barnetche J. Structural and immunological basis of cross-reactivity between dengue and Zika infections: Implications in serosurveillance in endemic regions. Front Microbiol 2023; 14:1107496. [PMID: 37007463 PMCID: PMC10063793 DOI: 10.3389/fmicb.2023.1107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Dengue and Zika are arthropod-borne viral diseases present in more than 100 countries around the world. In the past decade, Zika emerged causing widespread outbreaks in new regions, where dengue has been endemic-epidemic for a long period. The wide and extensive dissemination of the mosquito vectors, Aedes aegypti, and Ae. albopictus, favor the co-existence of both infections in the same regions. Together with an important proportion of asymptomatic infections, similar clinical manifestations, and a short time window for acute infection confirmatory tests, it is difficult to differentially estimate both dengue and Zika incidence and prevalence. DENV and ZIKV flavivirus share high structural similarity, inducing a cross-reactive immune response that leads to false positives in serological tests particularly in secondary infections. This results in overestimation of recent Zika outbreaks seroprevalence in dengue endemic regions. In this review, we address the biological basis underlying DENV and ZIKV structural homology; the structural and cellular basis of immunological cross reactivity; and the resulting difficulties in measuring dengue and Zika seroprevalence. Finally, we offer a perspective about the need for more research to improve serological tests performance.
Collapse
Affiliation(s)
- Carlos Gaspar-Castillo
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Mario H. Rodríguez
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Celia M. Alpuche-Aranda
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
- Celia M. Alpuche-Aranda,
| | - Jesus Martinez-Barnetche
- Center for Infectious Diseases Research, National Institute of Public Health, Cuernavaca, Mexico
- *Correspondence: Jesus Martinez-Barnetche,
| |
Collapse
|
34
|
Porier DL, Adam A, Kang L, Michalak P, Tupik J, Santos MA, Lee C, Allen IC, Wang T, Auguste AJ. Humoral and T-cell-mediated responses to a pre-clinical Zika vaccine candidate that utilizes a unique insect-specific flavivirus platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530296. [PMID: 36909623 PMCID: PMC10002724 DOI: 10.1101/2023.03.01.530296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Vaccination is critical for the control and prevention of viral outbreaks, yet conventional vaccine platforms may involve trade-offs between immunogenicity and safety. Insect-specific viruses have emerged as a novel vaccine platform to overcome this challenge. Detailed studies of humoral and T-cell responses induced by new insect-specific flavivirus (ISFV)-based vaccine platforms are needed to better understand correlates of protection and improve vaccine efficacy. Previously, we used a novel ISFV called Aripo virus (ARPV) to create a Zika virus (ZIKV) vaccine candidate (designated ARPV/ZIKV). ARPV/ZIKV demonstrated exceptional safety and single-dose efficacy, completely protecting mice from a lethal ZIKV challenge. Here, we explore the development of immune responses induced by ARPV/ZIKV immunization and evaluate its correlates of protection. Passive transfer of ARPV/ZIKV-induced immune sera to naïve mice prior to challenge emphasized the importance of neutralizing antibodies as a correlate of protection. Depletion of T-cells in vaccinated mice and adoptive transfer of ARPV/ZIKV-primed T-cells to naïve mice prior to challenge indicated that ARPV/ZIKV-induced CD4 + and CD8 + T-cell responses contribute to the observed protection but may not be essential for protection during ZIKV challenge. However, vaccination of Rag1 KO, Tcra KO, and muMt - mice demonstrated the critical role for ARPV/ZIKV-induced T-cells in developing protective immune responses following vaccination. Overall, both humoral and T-cell-mediated responses induced by ISFV-based vaccines are important for comprehensive immunity, and ISFV platforms continue to be a promising method for future vaccine development.
Collapse
|
35
|
Fowler A, Ye C, Clarke EC, Pascale JM, Peabody DS, Bradfute SB, Frietze KM, Chackerian B. A method for mapping the linear epitopes targeted by the natural antibody response to Zika virus infection using a VLP platform technology. Virology 2023; 579:101-110. [PMID: 36623351 PMCID: PMC9904412 DOI: 10.1016/j.virol.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Zika virus (ZIKV), a mosquito-borne pathogen, is associated with neurological complications in adults and congenital abnormalities in newborns. There are no vaccines or treatments for ZIKV infection. Understanding the specificity of natural antibody responses to ZIKV could help inform vaccine efforts. Here, we used a technology called Deep Sequence-Coupled Biopanning to map the targets of the human antibody responses to ZIKV infection. A bacteriophage virus-like particle (VLP) library displaying overlapping linear peptides derived from the ZIKV polyprotein was generated. The library was panned using IgG from 23 ZIKV-infected patients from Panama and deep sequencing identified common targets of anti-ZIKV antibodies within the ZIKV envelope glycoprotein. These included epitopes within the fusion loop within domain II and four epitopes within domain III. Additionally, we showed that VLPs displaying selected epitopes elicited antibodies that bound to native ZIKV envelope protein but failed to prevent infection in a mouse challenge model.
Collapse
Affiliation(s)
- Alexandra Fowler
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| | - Chunyan Ye
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Elizabeth C Clarke
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | | | - David S Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Kathryn M Frietze
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
36
|
Jurisic L, Malatesta D, Zaccaria G, Di Teodoro G, Bonfini B, Valleriani F, Teodori L, Bencivenga F, Leone A, Ripà P, D'Innocenzo V, Rossi E, Lorusso A. Immunization with Usutu virus and with a chimeric West Nile virus (WNV) harboring Usutu-E protein protects immunocompetent adult mice against lethal challenges with different WNV lineage 1 and 2 strains. Vet Microbiol 2023; 277:109636. [PMID: 36580873 DOI: 10.1016/j.vetmic.2022.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
West Nile virus (WNV) and Usutu virus (USUV), two antigenically related flaviviruses co-circulating in Europe, can cause severe neurological disease in animals and humans. The immune response against USUV and WNV and their immunopathogenesis are still poorly investigated. Here we present results upon sequential infections of adult immunocompetent CD-1 and BALB/c mice primed with two different doses (high dose, HD or low dose, LD) of an USUV isolate and challenged with HD or LD of three different WNV isolates. CD-1 and BALB/c LD USUV-primed mice, regardless of the dose, are largely protected from lethal WNV challenges despite showing no detectable neutralizing antibodies. Furthermore, mice immunized with a chimeric virus harboring the E protein of USUV within the WNV backbone (WNVE-USUV) are protected against a lethal challenge with WNV. We believe these findings could contribute to understanding the dynamics of the interaction during sequential infection of these two flaviviruses.
Collapse
Affiliation(s)
- Lucija Jurisic
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Daniela Malatesta
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Guendalina Zaccaria
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Barbara Bonfini
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | | | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Paola Ripà
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Vincenzo D'Innocenzo
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale Teramo (IZS-Te), Campo Boario, Teramo, Italy.
| |
Collapse
|
37
|
Dengue virus infection - a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res 2023; 324:199018. [PMID: 36493993 DOI: 10.1016/j.virusres.2022.199018] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/19/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
The transmission of dengue virus (DENV) from an infected Aedes mosquito to a human, causes illness ranging from mild dengue fever to fatal dengue shock syndrome. The similar conserved structure and sequence among distinct DENV serotypes or different flaviviruses has resulted in the occurrence of cross reaction followed by antibody-dependent enhancement (ADE). Thus far, the vaccine which can provide effective protection against infection by different DENV serotypes remains the biggest hurdle to overcome. Therefore, deep investigation is crucial for the potent and effective therapeutic drugs development. In addition, the cross-reactivity of flaviviruses that leads to false diagnosis in clinical settings could result to delay proper intervention management. Thus, the accurate diagnostic with high specificity and sensitivity is highly required to provide prompt diagnosis in respect to render early treatment for DENV infected individuals. In this review, the recent development of neutralizing antibodies, antiviral agents, and vaccine candidates in therapeutic platform for DENV infection will be discussed. Moreover, the discovery of antigenic cryptic epitopes, principle of molecular mimicry, and application of single-chain or single-domain antibodies towards DENV will also be presented.
Collapse
|
38
|
Hu D, Zou H, Chen W, Li Y, Luo Z, Wang X, Guo D, Meng Y, Liao F, Wang W, Zhu Y, Wu J, Li G. ZDHHC11 Suppresses Zika Virus Infections by Palmitoylating the Envelope Protein. Viruses 2023; 15:144. [PMID: 36680184 PMCID: PMC9863066 DOI: 10.3390/v15010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Zika virus (ZIKV) is an RNA-enveloped virus that belongs to the Flavivirus genus, and ZIKV infections potentially induce severe neurodegenerative diseases and impair male fertility. Palmitoylation is an important post-translational modification of proteins that is mediated by a series of DHHC-palmitoyl transferases, which are implicated in various biological processes and viral infections. However, it remains to be investigated whether palmitoylation regulates ZIKV infections. In this study, we initially observed that the inhibition of palmitoylation by 2-bromopalmitate (2-BP) enhanced ZIKV infections, and determined that the envelope protein of ZIKV is palmitoylated at Cys308. ZDHHC11 was identified as the predominant enzyme that interacts with the ZIKV envelope protein and catalyzes its palmitoylation. Notably, ZDHHC11 suppressed ZIKV infections in an enzymatic activity-dependent manner and ZDHHC11 knockdown promoted ZIKV infection. In conclusion, we proposed that the envelope protein of ZIKV undergoes a novel post-translational modification and identified a distinct mechanism in which ZDHHC11 suppresses ZIKV infections via palmitoylation of the ZIKV envelope protein.
Collapse
Affiliation(s)
- Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Haimei Zou
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Weijie Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Yuting Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziqing Luo
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xianyang Wang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dekuan Guo
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yu Meng
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Feng Liao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenbiao Wang
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Geng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
39
|
Li D, Long M, Li T, Shu Y, Shan X, Zhang J, Ma D, Long S, Wang X, Jia F, Pan Y, Chen J, Liu P, Sun Q. The whole-genome sequencing of prevalent DENV-1 strains during the largest dengue virus outbreak in Xishuangbanna Dai autonomous prefecture in 2019. J Med Virol 2023; 95:e28115. [PMID: 36059257 DOI: 10.1002/jmv.28115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
In 2019, a serious dengue virus (DENV) infection broke out in the Xishuangbanna Dai Autonomous Prefecture, China. Therefore, we conducted a molecular epidemiological analysis in people that contracted DENV serotype 1 (DENV-1) during this year. We analyzed the molecular epidemiology of six DENV-1 epidemic strains in 2019 by full-length genome sequencing, amino acid mutation site analysis, evolutionary tree analysis, and recombination site comparison analysis. Through the analysis of amino acid mutation sites, it was found that DENV-1 strain (MW386867) was different from the other five epidemic DENV-1 strains in Xishuangbanna in 2019. MW386867 had unique mutation sites at six loci. The six epidemic DENV-1 strains in Xishuangbanna in 2019 were divided into two clusters. MW386867 was highly similar to the MG679800 (Myanmar 2017), MG679801 (Myanmar 2017), and KC172834 (Laos 2008), and the other five strains were highly similar to JQ045660 (Vietnam 2011), FJ176780 (GuangDong 2006). Genetic recombination analysis revealed that there was no recombination signal in the six epidemic DENV-1 strains in Xishuangbanna in 2019. We speculate that the DENV-1 epidemic in 2019 has a co-epidemic of local strains and cross-border strains.
Collapse
Affiliation(s)
- Daiying Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - MingWang Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Tingting Li
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Yun Shu
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Xiyun Shan
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Juan Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China.,Institute of Medical Biology, Kunming Medical University, Kunming, People's Republic of China
| | - Dehong Ma
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Shuying Long
- Institute of Medical Biology, Kunming Medical University, Kunming, People's Republic of China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Fan Jia
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China.,Institute of Medical Biology, Kunming Medical University, Kunming, People's Republic of China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| | - Pinghua Liu
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Xishuangbanna, People's Republic of China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.,Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming, People's Republic of China
| |
Collapse
|
40
|
Shin M, Kim K, Lee HJ, Jung YJ, Park J, Hahn TW. Vaccination with a Zika virus envelope domain III protein induces neutralizing antibodies and partial protection against Asian genotype in immunocompetent mice. Trop Med Health 2022; 50:91. [PMID: 36471432 PMCID: PMC9721077 DOI: 10.1186/s41182-022-00485-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) is a mosquito-borne flavivirus classified in Flaviviridae family such as dengue (DENV), yellow fever, and West Nile virus. An outbreak of ZIKV infection can pose a major public health risk because the contagion is unpredictable and induces severe pathology such as Guillan-Barre syndrome and neonatal microcephaly. However, an authorized ZIKV vaccine is not yet available, while several vaccine candidates are under development. METHODS In this study, we constructed a recombinant ZIKV vaccine (Z_EDIII) that includes ZIKV envelope protein domain III using E. coli expression system. Then both humoral and cellular immunity were examined in C57BL/6 (female, 8-weeks-old) mice via Indirect ELISA assay, PRNT, ELISpot and cytokine detection for IFN-γ, TNF-α, and IL-12. In addition, the cross protection against DENV was evaluated in pups from Z_EDIII vaccinated and infected dam. RESULTS Mice immunized by Z_EDIII produced a significant amount of ZIKV EDIII-specific and neutralizing antibodies. Together with antibodies, effector cytokines, such as IFN-γ, TNF-α, and IL-12 were induced. Moreover, vaccinated females delivered the adaptive immunity to neonates who are protective against ZIKV and DENV challenge. CONCLUSIONS This study observed Z-EDIII-induced humoral and cellular immunity that protected hosts from both ZIKV and DENV challenges. The result suggests that our ZIKV EDIII recombinant vaccine has potential to provide a new preventive strategy against ZIKV infection.
Collapse
Affiliation(s)
- Minna Shin
- INNOVAC, Chuncheon, 24341 Republic of Korea
| | - Kiju Kim
- INNOVAC, Chuncheon, 24341 Republic of Korea ,grid.412010.60000 0001 0707 9039College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Hyo-Ji Lee
- grid.412010.60000 0001 0707 9039College of Biological Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Yu-Jin Jung
- grid.412010.60000 0001 0707 9039College of Biological Sciences, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Jeongho Park
- grid.412010.60000 0001 0707 9039College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Tae-Wook Hahn
- INNOVAC, Chuncheon, 24341 Republic of Korea ,grid.412010.60000 0001 0707 9039College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
41
|
Khare B, Kuhn RJ. The Japanese Encephalitis Antigenic Complex Viruses: From Structure to Immunity. Viruses 2022; 14:2213. [PMID: 36298768 PMCID: PMC9607441 DOI: 10.3390/v14102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
In the last three decades, several flaviviruses of concern that belong to different antigenic groups have expanded geographically. This has resulted in the presence of often more than one virus from a single antigenic group in some areas, while in Europe, Africa and Australia, additionally, multiple viruses belonging to the Japanese encephalitis (JE) serogroup co-circulate. Morphological heterogeneity of flaviviruses dictates antibody recognition and affects virus neutralization, which influences infection control. The latter is further impacted by sequential infections involving diverse flaviviruses co-circulating within a region and their cross-reactivity. The ensuing complex molecular virus-host interplay leads to either cross-protection or disease enhancement; however, the molecular determinants and mechanisms driving these outcomes are unclear. In this review, we provide an overview of the epidemiology of four JE serocomplex viruses, parameters affecting flaviviral heterogeneity and antibody recognition, host immune responses and the current knowledge of the cross-reactivity involving JE serocomplex flaviviruses that leads to differential clinical outcomes, which may inform future preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
42
|
Peinado RDS, Eberle RJ, Arni RK, Coronado MA. A Review of Omics Studies on Arboviruses: Alphavirus, Orthobunyavirus and Phlebovirus. Viruses 2022; 14:2194. [PMID: 36298749 PMCID: PMC9607206 DOI: 10.3390/v14102194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Since the intricate and complex steps in pathogenesis and host-viral interactions of arthropod-borne viruses or arboviruses are not completely understood, the multi-omics approaches, which encompass proteomics, transcriptomics, genomics and metabolomics network analysis, are of great importance. We have reviewed the omics studies on mosquito-borne viruses of the Togaviridae, Peribuyaviridae and Phenuiviridae families, specifically for Chikungunya, Mayaro, Oropouche and Rift Valley Fever viruses. Omics studies can potentially provide a new perspective on the pathophysiology of arboviruses, contributing to a better comprehension of these diseases and their effects and, hence, provide novel insights for the development of new antiviral drugs or therapies.
Collapse
Affiliation(s)
- Rafaela dos S. Peinado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Sao Paulo State University, Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Raphael J. Eberle
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, Sao Paulo State University, Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Mônika A. Coronado
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
43
|
Long M, Wang H, Ning X, Jia F, Zhang L, Pan Y, Chen J, Wang X, Feng K, Cao X, Liu Y, Sun Q. Functional analysis of differentially expressed long non-coding RNAs in DENV-3 infection and antibody-dependent enhancement of viral infection. Virus Res 2022; 319:198883. [PMID: 35934257 DOI: 10.1016/j.virusres.2022.198883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Dengue fever, as a mosquito-borne viral disease widely spread in tropical and subtropical regions, remarkably threatens public health, while the mechanism involved in host-DENV interaction has not been fully elucidated. Firstly, we analyzed the expression levels of long non-coding RNAs (lncRNAs) in THP-1 cells after DENV-3 infection and Antibody- Dependent Enhancement of viral infection (ADE-VI) by RNA-Seq. Secondly, through the RT-qPCR to confirm those differentially expressed (DE) lncRNAs. Then, we also analyzed the competitive endogenous RNA (CeRNA) regulatory network of DE lncRNAs. Finally, we predicted the encode ability of DE lncRNAs. It was found that on the X and Y chromosomes, the expression levels of lncRNAs in THP-1 cells after ADE-VI were significantly different from those in the negative control and the DENV-3 infection groups. There were 71 DE lncRNAs after DENV-3 infection, including 42 up-regulated and 29 down-regulated lncRNAs. A total of 70 DE lncRNAs after ADE-VI were detected, including 38 up-regulated and 32 down- regulated lncRNAs. After ADE-VI and DENV-3 infection, there were 35 DE lncRNAs, including 11 up-regulated and 24 down-regulated lncRNAs. The analysis of the CeRNA regulatory network of DE lncRNAs revealed that, TRIM29, STC2, and IGFBP5 were correlated with the ADE-VI. Additionally, it was found that lncRNAs not only participated in the CeRNA regulatory network, but also maybe encoded small peptides. Our findings provided clues for further investigation into the lncRNAs associated antiviral mechanism of ADE-VI and DENV-3 infection.
Collapse
Affiliation(s)
- Mingwang Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiaolinglu no. 935, Kunming, YunNan Province, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China; Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Han Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiaolinglu no. 935, Kunming, YunNan Province, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China; Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Xuelei Ning
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiaolinglu no. 935, Kunming, YunNan Province, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China; Yunnan University, Kunming, China
| | - Fan Jia
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiaolinglu no. 935, Kunming, YunNan Province, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China; Kunming Medical University, Kunming, China
| | - Li Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiaolinglu no. 935, Kunming, YunNan Province, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China; Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiaolinglu no. 935, Kunming, YunNan Province, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China; Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiaolinglu no. 935, Kunming, YunNan Province, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China; Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiaolinglu no. 935, Kunming, YunNan Province, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China; Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Kai Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiaolinglu no. 935, Kunming, YunNan Province, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China; Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Xiaoyue Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiaolinglu no. 935, Kunming, YunNan Province, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China; Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China
| | - Yanhui Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiaolinglu no. 935, Kunming, YunNan Province, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China; Yunnan University, Kunming, China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiaolinglu no. 935, Kunming, YunNan Province, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, China; Yunnan Key Laboratory of Vector-borne Infectious Disease, Kunming, China.
| |
Collapse
|
44
|
ZIKV-envelope proteins induce specific humoral and cellular immunity in distinct mice strains. Sci Rep 2022; 12:15733. [PMID: 36131132 PMCID: PMC9492693 DOI: 10.1038/s41598-022-20183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Recent outbreaks of Zika virus (ZIKV) infection have highlighted the need for a better understanding of ZIKV-specific immune responses. The ZIKV envelope glycoprotein (EZIKV) is the most abundant protein on the virus surface and it is the main target of the protective immune response. EZIKV protein contains the central domain (EDI), a dimerization domain containing the fusion peptide (EDII), and a domain that binds to the cell surface receptor (EDIII). In this study, we performed a systematic comparison of the specific immune response induced by different EZIKV recombinant proteins (EZIKV, EDI/IIZIKV or EDIIIZIKV) in two mice strains. Immunization induced high titers of E-specific antibodies which recognized ZIKV-infected cells and neutralized the virus. Furthermore, immunization with EZIKV, EDI/IIZIKV and EDIIIZIKV proteins induced specific IFNγ-producing cells and polyfunctional CD4+ and CD8+ T cells. Finally, we identified 4 peptides present in the envelope protein (E1-20, E51-70, E351-370 and E361-380), capable of inducing a cellular immune response to the H-2Kd and H-2Kb haplotypes. In summary, our work provides a detailed assessment of the immune responses induced after immunization with different regions of the ZIKV envelope protein.
Collapse
|
45
|
Can Modern Molecular Modeling Methods Help Find the Area of Potential Vulnerability of Flaviviruses? Int J Mol Sci 2022; 23:ijms23147721. [PMID: 35887069 PMCID: PMC9316223 DOI: 10.3390/ijms23147721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Flaviviruses are single-stranded RNA viruses that have emerged in recent decades and infect up to 400 million people annually, causing a variety of potentially severe pathophysiological processes including hepatitis, encephalitis, hemorrhagic fever, tissues and capillaries damage. The Flaviviridae family is represented by four genera comprising 89 known virus species. There are no effective therapies available against many pathogenic flaviviruses. One of the promising strategies for flavivirus infections prevention and therapy is the use of neutralizing antibodies (NAb) that can disable the virus particles from infecting the host cells. The envelope protein (E protein) of flaviviruses is a three-domain structure that mediates the fusion of viral and host membranes delivering the infectious material. We previously developed and characterized 10H10 mAb which interacts with the E protein of the tick-borne encephalitis virus (TBEV) and many other flaviviruses’ E proteins. The aim of this work was to analyze the structure of E protein binding sites recognized by the 10H10 antibody, which is reactive with different flavivirus species. Here, we present experimental data and 3D modeling indicating that the 10H10 antibody recognizes the amino acid sequence between the two cysteines C92-C116 of the fusion loop (FL) region of flaviviruses’ E proteins. Overall, our results indicate that the antibody-antigen complex can form a rigid or dynamic structure that provides antibody cross reactivity and efficient interaction with the fusion loop of E protein.
Collapse
|
46
|
Ward D, Gomes AR, Tetteh KKA, Sepúlveda N, Gomez LF, Campino S, Clark TG. Sero-epidemiological study of arbovirus infection following the 2015-2016 Zika virus outbreak in Cabo Verde. Sci Rep 2022; 12:11719. [PMID: 35810191 PMCID: PMC9271056 DOI: 10.1038/s41598-022-16115-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
In November 2015, cases of Zika virus infection were recorded in Cabo Verde (Africa), originating from Brazil. The outbreak subsided after seven months with 7580 suspected cases. We performed a serological survey (n = 431) in Praia, the capital city, 3 months after transmission ceased. Serum samples were screened for arbovirus antibodies using ELISA techniques and revealed seroconverted individuals with Zika (10.9%), dengue (1-4) (12.5%), yellow fever (0.2%) and chikungunya (2.6%) infections. Zika seropositivity was predominantly observed amongst females (70%). Using a logistic model, risk factors for increased odds of Zika seropositivity included age, self-reported Zika infection, and dengue seropositivity. Serological data from Zika and dengue virus assays were strongly correlated (Spearman's rs = 0.80), which reduced when using a double antigen binding ELISA (Spearman's rs = 0.54). Overall, our work improves an understanding of how Zika and other arboviruses have spread throughout the Cabo Verde population. It also demonstrates the utility of serological assay formats for outbreak investigations.
Collapse
Affiliation(s)
- Daniel Ward
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Nuno Sepúlveda
- Warsaw University of Technology, Warsaw, Poland
- Universidade de Lisboa, Lisbon, Portugal
| | | | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Taane G Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
47
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
48
|
Luria-Pérez R, Sánchez-Vargas LA, Muñoz-López P, Mellado-Sánchez G. Mucosal Vaccination: A Promising Alternative Against Flaviviruses. Front Cell Infect Microbiol 2022; 12:887729. [PMID: 35782117 PMCID: PMC9241634 DOI: 10.3389/fcimb.2022.887729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae are a family of positive-sense, single-stranded RNA enveloped viruses, and their members belong to a single genus, Flavivirus. Flaviviruses are found in mosquitoes and ticks; they are etiological agents of: dengue fever, Japanese encephalitis, West Nile virus infection, Zika virus infection, tick-borne encephalitis, and yellow fever, among others. Only a few flavivirus vaccines have been licensed for use in humans: yellow fever, dengue fever, Japanese encephalitis, tick-borne encephalitis, and Kyasanur forest disease. However, improvement is necessary in vaccination strategies and in understanding of the immunological mechanisms involved either in the infection or after vaccination. This is especially important in dengue, due to the immunological complexity of its four serotypes, cross-reactive responses, antibody-dependent enhancement, and immunological interference. In this context, mucosal vaccines represent a promising alternative against flaviviruses. Mucosal vaccination has several advantages, as inducing long-term protective immunity in both mucosal and parenteral tissues. It constitutes a friendly route of antigen administration because it is needle-free and allows for a variety of antigen delivery systems. This has promoted the development of several ways to stimulate immunity through the direct administration of antigens (e.g., inactivated virus, attenuated virus, subunits, and DNA), non-replicating vectors (e.g., nanoparticles, liposomes, bacterial ghosts, and defective-replication viral vectors), and replicating vectors (e.g., Salmonella enterica, Lactococcus lactis, Saccharomyces cerevisiae, and viral vectors). Because of these characteristics, mucosal vaccination has been explored for immunoprophylaxis against pathogens that enter the host through mucosae or parenteral areas. It is suitable against flaviviruses because this type of immunization can stimulate the parenteral responses required after bites from flavivirus-infected insects. This review focuses on the advantages of mucosal vaccine candidates against the most relevant flaviviruses in either humans or animals, providing supporting data on the feasibility of this administration route for future clinical trials.
Collapse
Affiliation(s)
- Rosendo Luria-Pérez
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
| | - Luis A. Sánchez-Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Paola Muñoz-López
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de México, Mexico
| |
Collapse
|
49
|
Cimini E, Agrati C. γδ T Cells in Emerging Viral Infection: An Overview. Viruses 2022; 14:v14061166. [PMID: 35746638 PMCID: PMC9230790 DOI: 10.3390/v14061166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
New emerging viruses belonging to the Coronaviridae, Flaviviridae, and Filoviridae families are serious threats to public health and represent a global concern. The surveillance to monitor the emergence of new viruses and their transmission is an important target for public health authorities. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an excellent example of a pathogen able to cause a pandemic. In a few months, SARS-CoV-2 has spread globally from China, and it has become a world health problem. Gammadelta (γδ) T cell are sentinels of innate immunity and are able to protect the host from viral infections. They enrich many tissues, such as the skin, intestines, and lungs where they can sense and fight the microbes, thus contributing to the protective immune response. γδ T cells perform their direct antiviral activity by cytolytic and non-cytolytic mechanisms against a wide range of viruses, and they are able to orchestrate the cellular interplay between innate and acquired immunity. For their pleiotropic features, γδ T cells have been proposed as a target for immunotherapies in both cancer and viral infections. In this review, we analyzed the role of γδ T cells in emerging viral infections to define the profile of the response and to better depict their role in the host protection.
Collapse
|
50
|
Taslem Mourosi J, Awe A, Jain S, Batra H. Nucleic Acid Vaccine Platform for DENGUE and ZIKA Flaviviruses. Vaccines (Basel) 2022; 10:834. [PMID: 35746442 PMCID: PMC9229673 DOI: 10.3390/vaccines10060834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Dengue virus and Zika virus are mosquito-borne, single-stranded, positive-sense RNA viruses that belong to the Flaviviridae family. Both the viruses are closely related and have similarities with other flaviviruses. Dengue virus (DENV) causes a severe febrile illness with fever, joint pain, and rash leading to a life-threatening condition in severe cases. While Zika virus (ZIKV) primarily causes mild fever, it can be passed from a pregnant mother to her fetus, resulting in severe birth defect microcephaly and even causing a rare autoimmune disease-Guillain-Barre syndrome. To date, there are no approved DENV and ZIKA vaccines available, except a Dengue vaccine (Dengvaxia, Sanofi Pasteur Inc., Lyon, France) recently approved to be used only for 9-16 years of age groups living in endemic areas and having a previous record of confirmed dengue infection. There are several potential vaccine candidates in the clinical trials based on multiple vaccine platforms, such as live attenuated, subunit, nucleic acid, and viral vector-based vaccines. In the current review, we have focused exclusively on the nucleic acid vaccine platform and discussed the progress of all the DNA/RNA vaccine candidates under preclinical and clinical studies for DENV and ZIKA viruses. Additionally, we have described a brief history of the emergence of these flaviviruses, major structural similarities between them, prominent vaccine targets, and the mechanism of virus entry and infection.
Collapse
Affiliation(s)
- Jarin Taslem Mourosi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (J.T.M.); (A.A.)
| | - Ayobami Awe
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (J.T.M.); (A.A.)
| | - Swati Jain
- Department of Surgery (Head and Neck Service), Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Himanshu Batra
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|