1
|
Aguiar VRC, Franco ME, Abdel-Aziz N, Fernandez-Salinas D, Chinas M, Colantuoni M, Xiao Q, Hackert N, Liao Y, Cervantes-Diaz R, Todd M, Wauford B, Wactor A, Prahalad V, Laza-Briviesca R, Darbousset R, Wang Q, Jenks S, Cashman KS, Zumaquero E, Zhu Z, Case J, Cejas P, Gomez M, Ainsworth H, Marion M, Benamar M, Lee P, Henderson L, Chang M, Wei K, Long H, Langefeld CD, Gewurz BE, Sanz I, Sparks JA, Meidan E, Nigrovic PA, Gutierrez-Arcelus M. A multi-omics resource of B cell activation reveals genetic mechanisms for immune-mediated diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.22.25328104. [PMID: 40475139 PMCID: PMC12140513 DOI: 10.1101/2025.05.22.25328104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Most genetic variants that confer risk of complex immune-mediated diseases (IMDs) affect gene regulation in specific cell types. Their target genes and focus cell types are often unknown, partially because some effects are hidden in untested cell states. B cells play central roles in IMDs, including autoimmune, allergic, infectious, and cancer-related diseases. Despite this established importance, B cell activation states are underrepresented in functional genomics studies. In this study, we obtained B cells from 26 healthy female donors and stimulated them in vitro with six activation conditions targeting key pathways: the B cell receptor (BCR), Toll-like receptor 7 (TLR7), TLR9, CD40, and a cocktail that promotes differentiation into double negative 2 (DN2) IgD- CD27- CD11c+ CD21- B cells, a likely pathogenic subset implicated in autoimmunity and infection. We profiled up to 24 B cell activation states and up to 5 control conditions using RNA-seq, single-cell RNA-seq with surface protein markers (CITE-seq), and ATAC-seq. We characterize how IMD-associated genes respond to stimuli and group into distinct functional programs. High-depth RNA-seq data reveals widespread splicing effects during B cell activation. Using single-cell data, we describe stimulus-dependent B cell fates. Chromatin data reveal transcription factors likely involved in B cell activation, and activation-dependent open chromatin regions that are enriched in IMD genetic risk. We experimentally validate a lupus risk variant in a stimulus-specific open chromatin region that regulates TNFSF4 expression, highlighting the relevance of studying B cell activation to elucidate disease association. These data are shared via an interactive browser that can be used to query the dynamics of gene regulation and B cell differentiation during activation by different stimuli, enhancing further investigation of B cells and their role in IMDs: https://mgalab.shinyapps.io/bcellactivation.
Collapse
|
2
|
Zhu X, Yu Y, Li Y, Wang P, Li Y, McCabe C, Chen S, Langenfeld HE, Hanson AC, Sharp BE, Woltzen A, Crowson CS, Markovic SN, Davis JM, Dong H, Thanarajasingam U, Zeng H. Inflammatory arthritis immune related adverse events represent a unique autoimmune disease entity primarily driven by T cells, but likely not autoantibodies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.06.06.25328991. [PMID: 40502578 PMCID: PMC12154995 DOI: 10.1101/2025.06.06.25328991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
Although the current paradigm posits that autoreactive T and B cells both contribute to inflammatory arthritis (IA), the existence of antibody-independent arthritis remains contentious. The immunological nature of IA immune related adverse events (irAE) following anti-PD-1/PD-L1 mediated immune checkpoint inhibition (ICI) therapy remains incompletely understood. Here, we analyzed the peripheral immunological phenotypes of a large cohort of IA irAE patients in comparison to serologically matched rheumatoid arthritis (RA) controls, ICI controls (patients treated with anti-PD-1/PD-L1 without developing irAE) and healthy controls, Our data revealed that IA irAE CD4+ T cells are distinguished by reduced CXCR3 and CCR6 expression, and irAE CD8+ T cells are distinguished by increased cytotoxic molecule expression, while both exhibit increased metabolic activity. We did not observe any significant alterations in humoral immunity in IA irAE patients compared to control groups. In contrast, seronegative RA controls exhibited significantly increased CD11c+ CD21- atypical B cell frequency and autoantibody levels. Furthermore, IA irAE patients are characterized by highly elevated levels of inflammatory cytokines and chemokines. We identified IL-6, IL-12 and IFNα as potential soluble factors contributing to some of the IA irAE immunological alterations. Altogether, our results suggest that IA irAE is an immunologically distinct disease entity with a potential segregation of T and B cell immunity, indicating that autoantibodies may not be necessary to break systemic immune tolerance in humans.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Yue Yu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Panwen Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Arizona, Florida
| | - Ying Li
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
| | - Chantal McCabe
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Shiju Chen
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Immunology and Rheumatology, The First Affiliated Hospital of Xiamen University, Xiamen, People’s Republic of China
| | | | - Andrew C. Hanson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Brenna E. Sharp
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Amber Woltzen
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Cynthia S. Crowson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Svetomir N. Markovic
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - John M. Davis
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, Minnesota
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Uma Thanarajasingam
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
Nitschke E, Dang VD, Rincon-Arevalo H, Szelinski F, Ritter J, Schrezenmeier E, Alexander T, Le TA, Chen Y, Wiedemann A, Gonzalez JB, Lino AC, Stefanski AL, Dörner T. Phosphatidylcholine-specific B cells are enriched among atypical CD11c high and CD21 low memory B cells in antiphospholipid syndrome. Front Immunol 2025; 16:1585953. [PMID: 40529352 PMCID: PMC12170621 DOI: 10.3389/fimmu.2025.1585953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/21/2025] [Indexed: 06/20/2025] Open
Abstract
Background Patients with antiphospholipid syndrome (APS) carry an increased risk of thrombosis and adverse pregnancy outcomes due to the presence of antiphospholipid autoantibodies (aPL). However, the pathogenesis of the disease remains incompletely understood regarding various aPL and the role of autoreactive B cells as precursors of antibody-secreting plasma cells (PC). Objective To assess B-cell dysregulation in APS, with a focus on the distribution of B cell subsets and phosphatidylcholine (PtC)-specific cells. Methods We used flow cytometry to study B cell subsets in peripheral blood mononuclear cells (PBMCs) from 20 healthy controls (HCs), 21 patients with primary APS (pAPS), and 16 patients with secondary APS (sAPS). A novel fluorescent liposome-based method was used to identify PtC-specific B cells in these subsets. Data were analyzed using manual gating and unsupervised clustering. We quantified aPtC antibody serum levels using ELISA and conducted correlation analyses between PtC-specific B cell subsets and aPL titers. Results Patients with pAPS and sAPS exhibited significantly increased frequencies of atypical CD21low and CD11chigh B cells, including PtC-specific B cells. Notably, both total and unswitched memory PtC-specific B cells were elevated in pAPS patients and correlated with aPL antibody titers. Unsupervised clustering further highlighted the increased frequencies of PtC-specific CD21lowCD11chigh unswitched and switched memory B cells in both pAPS and sAPS. Conclusion The enrichment of PtC-specific B cells among CD21low and CD11chigh atypical memory subsets, along with their correlation with aPL serum levels, suggest a linkage between these atypical memory B cell subsets and autoantibody producing cells in APS.
Collapse
Affiliation(s)
- Eduard Nitschke
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
| | - Van Duc Dang
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Hector Rincon-Arevalo
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
- Grupo de Inmunologiía Celular e Inmunogeneítica, Facultad de Medicina, Universidad de Antioquia UdeA, Instituto de Investigaciones Meídicas, Medelliín, Colombia
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Szelinski
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
| | - Jacob Ritter
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
| | - Eva Schrezenmeier
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health | Chariteí – Universitaütsmedizin Berlin, BIH Academy, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
| | - Tuan Anh Le
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
| | - Yidan Chen
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
| | - Annika Wiedemann
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
| | - Jose-Bernardino Gonzalez
- Clinical Chemistry and Pathobiochemistry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Laboratory Medicine, Berlin, Germany
- Laboratoriumsmedizin & Toxikologie, Labor Berlin—Charité Vivantes GmbH, Berlin, Germany
| | - Andreia C. Lino
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
| | - Ana-Luisa Stefanski
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre, German Rheumatism Research Centre, Berlin, Germany
| |
Collapse
|
4
|
Wilbrink R, Neys SF, Hendriks RW, Spoorenberg A, Kroese FG, Corneth OB, Verstappen GM. Aberrant B cell receptor signaling responses in circulating double-negative 2 B cells from radiographic axial spondyloarthritis patients. J Transl Autoimmun 2025; 10:100270. [PMID: 39974741 PMCID: PMC11835616 DOI: 10.1016/j.jtauto.2025.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
Objective Radiographic axial spondyloarthritis (r-axSpA) is a chronic rheumatic disease in which innate immune cells and T cells are thought to play a major role. However, recent studies also hint at B cell involvement. Here, we performed an in-depth analysis on alterations within the B-cell compartment from r-axSpA patients. Methods We performed immune gene expression profiling on total peripheral blood B cells from 8 r-axSpA patients and 8 healthy controls (HCs). Next, we explored B cell subset distribution and B-cell receptor (BCR) signaling responses in circulating B cells from 28 r-axSpA patients and 15 HCs, by measuring spleen tyrosine kinase, phosphoinositide 3-kinase and extracellular signal regulated kinase 1/2 phosphorylation upon α-Ig stimulation using phosphoflow cytometry. Results Immune gene expression profiling indicated an elevated pathway score for BCR signaling in total B cells from r-axSpA patients compared with HCs. Flow cytometric analysis revealed an increase in frequency of both total and double-negative 2 (DN2) B cells in r-axSpA patients compared with HCs. In r-axSpA patients, DN2 B cells displayed an isotype shift towards IgA. Remarkably, where DN2 B cells from HCs were hyporesponsive, these cells displayed significant proximal BCR signaling responses in r-axSpA patients. Enhanced BCR signaling responses were also observed in the transitional and naïve B cell population from r-axSpA patients compared with HCs. The enhanced BCR signaling responses in DN2 B cells correlated with clinical disease parameters. Conclusion In r-axSpA patients, circulating DN2 B cells are expanded and, together with transitional and naïve B cells, display significantly enhanced BCR signaling responses upon stimulation. Together, our data suggest B cell involvement in the pathogenesis of r-axSpA.
Collapse
Affiliation(s)
- Rick Wilbrink
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan F.H. Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Anneke Spoorenberg
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frans G.M. Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Odilia B.J. Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gwenny M.P.J. Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Vlachonikola E, Pechlivanis N, Karakatsoulis G, Degano M, Psomopoulos F, Crisanti A, Tonon G, Ghia P, Stamatopoulos K, Lavezzo E, Chatzidimitriou A. Imprints of somatic hypermutation on B-cell receptor immunoglobulins post-infection versus post-vaccination against SARS-CoV-2. Immunohorizons 2025; 9:vlaf021. [PMID: 40489958 DOI: 10.1093/immhor/vlaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 06/11/2025] Open
Abstract
Published evidence supports significant heterogeneity of immune responses among individuals infected with or vaccinated against SARS-CoV-2. This highlights the need for in-depth investigation of the implicated processes toward refined understanding and improved management of COVID-19. The main objective of the present study was to investigate the dynamics of B cell responses to SARS-CoV-2, focusing on how initial infection and subsequent vaccination influence the immunoglobulin gene repertoire, with special emphasis on the impact of somatic hypermutation (SHM) on antibody maturation. Samples were collected from 81 individuals infected by SARS-CoV-2 in the municipality of Vo' during the first pandemic wave in 2020. For 25 of them, sampling was repeated 7 d after completing the primary vaccination series. Deep immunogenetic analysis of the B-cell receptor immunoglobulin (BcR IG) gene repertoire was performed using targeted next-generation sequencing. Bioinformatics analysis focused on repertoire metrics, prediction of IG antigen specificity, and detailed profiling of the SHM patterns. Significant expansions of unmutated sequences early post-infection suggest extrafollicular B cell maturation. In contrast, vaccination promoted SHM acquisition, indicating a germinal center-dependent response, and pronounced repertoire renewal. Restricted SHMs in SARS-homologous clonotypes along with preferential targeting of specific codons within the VH domain post-vaccination support ongoing affinity maturation within germinal centers. Differences in the BcR IG profiles post-infection versus post-vaccination allude to distinct trajectories in B cell maturation. Distinct profiles of SHM targeting reflect ongoing affinity maturation post-vaccination, with implications for optimizing preventive and therapeutic interventions against COVID-19.
Collapse
Affiliation(s)
- Elisavet Vlachonikola
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Nikolaos Pechlivanis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Karakatsoulis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Andrea Crisanti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giovanni Tonon
- Università Vita-Salute San Raffaele, Milan, Italy
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Anastasia Chatzidimitriou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Nehar-Belaid D, Mejías A, Xu Z, Marches R, Yerrabelli R, Chen G, Mertz S, Ye F, Sánchez PJ, Tsang JS, Aydillo T, Miorin L, Cupic A, García-Sastre A, Ucar D, Banchereau JF, Pascual V, Ramilo O. SARS-CoV-2 induced immune perturbations in infants vary with disease severity and differ from adults' responses. Nat Commun 2025; 16:4562. [PMID: 40379618 PMCID: PMC12084365 DOI: 10.1038/s41467-025-59411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/22/2025] [Indexed: 05/19/2025] Open
Abstract
Differences in immune profiles of children and adults with COVID-19 have been previously described. However, no systematic studies have been reported from infants hospitalized with severe disease. We applied a multidimensional approach to decipher the immune responses of SARS-CoV-2 infected infants (n = 26; 10 subacute, 11 moderate and 5 severe disease; median age = 1.6 months) and matched controls (n = 14; median age = 2 months). Single cell (scRNA-seq) profiling of PBMCs revealed substantial alterations in cell composition in SARS-CoV-2 infected infants; with most cell-types switching to an interferon-stimulated gene (ISGhi) state including: (i) CD14+ monocytes co-expressing ISGs and inflammasome-related molecules, (ii) ISGhi naive CD4+ T cells, (iii) ISGhi proliferating cytotoxic CD8+ T cells, and (iv) ISGhi naive and transitional B cells. We observe increased serum concentrations of both interferons and inflammatory cytokines in infected infants. Antibody responses to SARS-CoV-2 are also consistently detected in the absence of anti-IFN autoantibodies. Compared with infected adults, infants display a similar ISG signature in monocytes but a markedly enhanced ISG signature in T and B cells. These findings provide insights into the distinct immune responses to SARS-CoV-2 in the first year of life and underscore the importance of further defining the unique features of early life immunity.
Collapse
Affiliation(s)
| | - Asunción Mejías
- Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Zhaohui Xu
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Rushil Yerrabelli
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Guo Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Sara Mertz
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Fang Ye
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Pablo J Sánchez
- Department of Pediatrics, Division of Neonatology and Center for Perinatal Research, Ohio Perinatal Research Network, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - John S Tsang
- Center for Systems and Engineering Immunology, Departments of Immunobiology and Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Chan Zuckerberg Biohub NY, New Haven, CT, USA
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Anastasija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, One Gustave L. Levy Place, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jacques F Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Immunoledge LLC, Montclair, NJ, USA.
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| | - Octavio Ramilo
- Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA.
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
7
|
Luo Q, Song Q, Li Y, Zong K, Liu T, He J, Mei G, Du H, Xia Z, Liu M, Song J, Gao C, Xia D, Xue G, Tian W, Qu Y, Kou Z, Dong Z, Han J. Reduced immune response to SARS-CoV-2 infection in the elderly after 6 months. Front Immunol 2025; 16:1596065. [PMID: 40416973 PMCID: PMC12098630 DOI: 10.3389/fimmu.2025.1596065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 05/27/2025] Open
Abstract
Objectives To evaluate the immune persistence and cross-immune response of elderly individuals after Omicron BA.5 infections. Method The neutralizing antibodies against WT, BA.5, XBB.1 and EG.5 strains were analyzed. The T/B-cell subsets' responses were tested through intracellular cytokine staining and flow cytometry. Results The neutralizing antibodies titers against WT and BA.5 strain, remaining high level for at least 6 months, were higher than that of both XBB.1 and EG.5 variants. The neutralizing antibodies of WT, BA.5, XBB.1, and EG.5 strains in the elderly were slightly lower than those in middle-age. The memory B cells decreased rapidly in the elderly, and Tfh, Th17 cells of the elderly continued to increase for only 3 months, while Tfh and Th17 cells increased in the middle-aged for over 6 months. For the elderly, after peptide stimulation, unswitched/switched memory B cells decreased, while double negative B cells displayed higher proliferation. The proportions of both naïve and Temra cells in CD4+ and CD8+ T cells declined, whereas those of Tcm and Tem cells elevated. In the meantime, both CD69+ and CD38+ T cells decreased, but the frequencies of PD-1+ and CTLA-4+ of CD4+ and CD8+ T cells showed an increasing trend. The proportions of PD-1+ and CTLA-4+ cells also increased in older people with long COVID symptoms at 3m post-infection. Conclusions Omicron BA.5 infection induced lower neutralizing antibodies against XBB.1 and EG.5 variant. The decrease of memory B cells, CD69+ and CD38+T cells, as well as the increase of PD-1+, CTLA-4+ of CD4+/CD8+T cells and double negative B cells, indicate that sustained immune responses against BA.5 infection may wane more rapidly in elderly populations.
Collapse
Affiliation(s)
- Qin Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qinqin Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Li
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Intelligent Monitoring, Early Warning, and Prevention and Control of Infectious Diseases, Shandong Institute of Preventive Medicine, Jinan, China
| | - Kexin Zong
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ti Liu
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Intelligent Monitoring, Early Warning, and Prevention and Control of Infectious Diseases, Shandong Institute of Preventive Medicine, Jinan, China
| | - Junming He
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Guoyong Mei
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haijun Du
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiqiang Xia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mi Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong Xia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guangyu Xue
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenyan Tian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yinli Qu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zengqiang Kou
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Intelligent Monitoring, Early Warning, and Prevention and Control of Infectious Diseases, Shandong Institute of Preventive Medicine, Jinan, China
| | - Zhongjun Dong
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Jun Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Fouza A, Fylaktou A, Daoudaki M, Talimtzi P, Tagkouta A, Vagiotas L, Katsanos G, Tsoulfas G, Antoniadis N. Can Double-Negative B Cells and Marginal Zone B Cells Have a Potential Impact on the Outcome of Kidney Transplantation? J Clin Med 2025; 14:3312. [PMID: 40429307 PMCID: PMC12112073 DOI: 10.3390/jcm14103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Objectives/Background: B lymphocytes are involved in both graft function and rejection. The role of double-negative (DN) and marginal zone B (MZB) lymphocytes in transplantation remains unclear. This study aims to investigate their role one year after transplant. Methods: The frequency and absolute numbers of DN and MZB cells were determined by flow cytometry before transplantation and at 3, 6 and 12 months after transplant. They were correlated with graft function and rejection. Results: Both the frequency and absolute number of MZB and DN cells increased 12 months after transplantation. Variations were observed in the populations studied at different time points. The observed decrease in the frequency of MZB lymphocytes in kidney recipients with rejection at 12 months, the end of follow-up, was associated with rejection episodes. On ROC curve analysis, a cut-off value of <20.6% could be a predictor of rejection risk in the first 12 months after transplantation (sensitivity 72.7%, specificity 69.6%). No relationship was found between the frequencies and absolute numbers of cell populations and graft function at any time point. Conclusions: The kinetics of B cells (DN and MZB) were determined over the course of 12 months after kidney transplantation. The frequency of MZ B cells was associated with rejection episodes.
Collapse
Affiliation(s)
- Ariadni Fouza
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Maria Daoudaki
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Persefoni Talimtzi
- Department of Hygiene, Social-Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anneta Tagkouta
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Lampros Vagiotas
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| | - Georgios Katsanos
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| | - Georgios Tsoulfas
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| | - Nikolaos Antoniadis
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| |
Collapse
|
9
|
Bracken SJ, Poe JC, Sarantopoulos S. What's atypical about human B cells after allogeneic stem cell transplantation? J Leukoc Biol 2025; 117:qiaf048. [PMID: 40273381 PMCID: PMC12089796 DOI: 10.1093/jleuko/qiaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025] Open
Abstract
Atypical B cells or age-associated B cells represent an alternative lineage of memory B cells. Emerging evidence suggests that context influences the apparent functional heterogeneity of age-associated B cells. While data support a protective role for age-associated B cells in the setting of infection, multiple other studies suggest that these cells play a pathogenic role in the setting of autoimmunity. After treatment with allogeneic hematopoietic stem cell transplantation, the memory B-cell compartment is altered in patients who develop an autoimmune-like syndrome called chronic graft-versus-host disease. Patients with chronic graft-versus-host disease have significantly increased proportions of CD11c+ age-associated B cells within the peripheral compartment that develop under constant exposure to host alloantigens and persist under conditions when B-cell tolerance is not achieved. Herein, we review what is currently known about the molecular alterations in the heterogeneous memory B-cell compartment of hematopoietic stem cell transplantation patients, especially patients with chronic graft-versus-host disease who have developed autoimmune manifestations. In this mini-review, we summarize intrinsic factors in age-associated B cells found in autoimmune states that likely influence their extrafollicular localization, differentiation potential into autoantibody-secreting cells, and function. We highlight lessons from B-cell studies in chronic graft-versus-host disease to provide unique insights into the molecular underpinnings of the diverse functions of age-associated B cells.
Collapse
Affiliation(s)
- Sonali J Bracken
- Division of Rheumatology and Immunology, Duke University School of Medicine, 40 Duke Medicine Circle, Durham, NC 27710, United States
| | - Jonathan C Poe
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, 2400 Pratt Street, Durham, NC 27705, United States
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, 2400 Pratt Street, Durham, NC 27705, United States
- Department of Integrative Immunobiology, Duke University School of Medicine, 207 Research Drive Suite 156, Durham, NC 27706, United States
- Duke Cancer Institute, Duke University School of Medicine, DUMC Box 3917, Durham, NC 27710, United States
| |
Collapse
|
10
|
Rovito R, Bono V, Coianiz N, Cazzetta V, Franzese S, Mikulak J, Di Vito C, Bai F, Beaudoin-Bussières G, Tauzin A, Augello M, Tincati C, Santoro A, Borghi E, Marozin S, Finzi A, Della Bella S, Mavilio D, Marchetti G. Multi-layered deep immune profiling, SARS-CoV-2 RNAemia and inflammation in unvaccinated COVID-19 individuals with persistent symptoms. COMMUNICATIONS MEDICINE 2025; 5:155. [PMID: 40325175 PMCID: PMC12052991 DOI: 10.1038/s43856-025-00832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Long-COVID immunopathogenesis involves diverse factors. We longitudinally characterize hospitalized COVID-19 patients, examining the role of SARS-CoV-2 RNAemia and inflammation in immune dysregulation. METHODS Hospitalized patients are evaluated during acute infection (T0), 3 months post-symptom onset (T1), and 3 years if symptoms persisted (T2). Immune profile includes characterization of SARS-CoV-2-specific/non-specific T/B cells (flow cytometry) and antibodies (ELISA, neutralization, ADCC). RNAemia and cytokines are quantified (RT-PCR, cytometric beads array) and correlated. STATISTICS non-parametric cross-sectional, longitudinal and correlation analyses. RESULTS Here we show 48 hospitalized individuals during acute COVID-19, 38 exhibit early persistent symptoms (EPS+) 3 months post-symptoms onset, 10 do not (EPS-). Groups are comparable for age, sex, co-morbidities. The EPS+ shows fatigue, dyspnoea, anosmia/dysgeusia, diarrhea, chronic pain, mnestic disorders. Over time, they show a reduction of neutralization ability and total SARS-CoV-2-specific CD4 T cells, with increased total CD4 TEMRA, and failure to increase RBD-specific B cells and IgA+ MBCs. EPS+ patients show higher levels of T0-IFN-γ + CD4 TEMRA, T1-IL-2 + CD4 TEM and T1-TNF-α + CD4 cTfh. In EPS+, baseline SARS-CoV-2 RNAemia positively correlates with CD4 TEMRA, follow-up SARS-CoV-2 RNAemia with ADCC. Among 38 EPS+ individuals at T1, 33 are evaluated 3 years after infection, 5 are lost at follow-up. 10/33 EPS+ show long-term symptoms (late persistent symptoms, EPS + LPS+), whereas 23/33 fully recover (EPS + LPS-). Antibodies, RNAemia, and cytokines show no differences between/within groups at any time point. CONCLUSIONS Early persistent symptoms are associated with multi-layered SARS-CoV-2-specific/non-SARS-CoV-2-specific immune dysregulation. The shift towards non-Ag-specific TEMRA and ADCC trigger in EPS+ may relate to SARS-CoV-2 RNAemia. Early immune dysregulation does not associate with long-term persistent symptoms. Further research on SARS-CoV-2 RNAemia and early immune dysregulation is needed.
Collapse
Affiliation(s)
- Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Nicolò Coianiz
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Innate Lymphoid Cells and Cancer, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Franzese
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Clara Di Vito
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Francesca Bai
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrea Santoro
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Elisa Borghi
- Clinical Microbiology, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Sabrina Marozin
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrés Finzi
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Silvia Della Bella
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy.
| |
Collapse
|
11
|
Sadighi Akha AA, Csomós K, Ujházi B, Walter JE, Kumánovics A. Evolving Approach to Clinical Cytometry for Immunodeficiencies and Other Immune Disorders. Immunol Allergy Clin North Am 2025; 45:205-221. [PMID: 40287169 DOI: 10.1016/j.iac.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Primary immunodeficiencies were initially identified on the basis of recurrent, severe or unusual infections. Subsequently, it was noted that these diseases can also manifest with autoimmunity, autoinflammation, allergy, lymphoproliferation and malignancy, hence a conceptual change and their renaming as inborn errors of immunity. Ongoing advances in flow cytometry provide the opportunity to expand or modify the utility and scope of existing laboratory tests in this field to mirror this conceptual change. Here we have used the B cell subset, variably known as CD21low B cells, age-associated B cells and T-bet+ B cells, as an example to demonstrate this possibility.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Krisztián Csomós
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Boglárka Ujházi
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jolán E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Elsner RA, Shlomchik MJ. Coordinated Regulation of Extrafollicular B Cell Responses by IL-12 and IFNγ. Immunol Rev 2025; 331:e70027. [PMID: 40211749 PMCID: PMC11986407 DOI: 10.1111/imr.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Upon activation, B cells undergo either the germinal center (GC) or extrafollicular (EF) response. While GC are known to generate high-affinity memory B cells and long-lived plasma cells, the role of the EF response is less well understood. Initially, it was thought to be limited to that of a source of fast but lower-quality antibodies until the GC can form. However, recent evidence strongly supports the EF response as an important component of the humoral response to infection. EF responses are now also recognized as a source of pathogenic B cells in autoimmune diseases. The EF response itself is dynamic and regulated by pathways that are only recently being uncovered. We have identified that the cytokine IL-12 acts as a molecular switch, enhancing the EF response and suppressing GC through multiple mechanisms. These include direct effects on both B cells themselves and the coordinated differentiation of helper CD4 T cells. Here, we explore this pathway in relation to other recent advancements in our understanding of the EF response's role and highlight areas for future research. A better understanding of how the EF response forms and is regulated is essential for advancing treatments for many disease states.
Collapse
Affiliation(s)
- Rebecca A. Elsner
- Department of ImmunologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mark J. Shlomchik
- Department of ImmunologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
13
|
Castro-Trujillo S, Castro-Meneses J, Rojas MC, Castro-Amaya M, Lastra G, Narváez CF. Regulatory cytokines modulate early isotype-specific response associated with COVID-19 survival. Front Immunol 2025; 16:1543626. [PMID: 40342417 PMCID: PMC12058664 DOI: 10.3389/fimmu.2025.1543626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/01/2025] [Indexed: 05/11/2025] Open
Abstract
Identifying immune markers driving early and effective antibody response in patients with severe coronavirus disease 2019 (COVID-19) is critical due to the threat of future coronavirus pandemics, incomplete global vaccination, and suboptimal booster coverage. Patients with life-threatening severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by dysregulated thromboinflammation and cytokine storm that could influence the isotype virus-specific antibody response and the subsequent clinical outcome. We investigated the association between COVID-19-related mortality with the dynamics, magnitude, and relative avidity of nucleoprotein (N), spike (S), and receptor-binding domain (RBD)-specific IgM, IgA, and IgG in circulation. We also assessed the relationship between the virus-specific antibody responses and cytokine patterns, as well as systemic and pulmonary thromboinflammation markers. This multicenter study included COVID-19 patients hospitalized early in the pandemic, classified as survivors (n=62) and non-survivors (n=17). We developed indirect enzyme-linked immunosorbent assays (ELISAs) to evaluate each virus-specific isotype using well-characterized outpatient COVID-19 (n=180) and pre-pandemic cohorts (n=111). The pro-inflammatory interleukin (IL)-6 and tumor necrosis factor (TNF)-α, as well as the regulatory IL-10, transforming growth factor (TGF)-β1, and soluble tumor necrosis factor receptor I (sTNFRI) levels were evaluated. The ELISAs performed highly for all virus-specific isotypes, although modest for IgM-N. Non-survivors increased N-specific, but no S-specific, IgM and IgA responses throughout the disease course and, more notably, a delayed class switching to IgG-S and IgG-RBD compared to survivors. No differences were observed in the virus-specific IgG relative avidity. Survivors exhibited an antibody response proportional to the degree of systemic and pulmonary thromboinflammation, whereas non-survivors showed those dissociated because of their uncontrolled severe thromboinflammation. Only the survivors showed a dominant regulatory cytokine pattern in the early phase of infection (<10 days after symptoms onset), which strongly correlated with developing IgG-S and IgG-RBD protective antibodies. We developed easy-to-use immune assays that enable patient monitoring and identify at-risk populations in low- to middle-income regions. Non-survivors displayed an ineffective N-mediated antibody response, marked by an inability to control inflammation and a compromised time-dependent class switching toward S and RBD-specific IgG. The regulatory cytokine axis, including TGF-β1, maybe a critical immune correlate of effective antibody-mediated immunity in COVID-19.
Collapse
Affiliation(s)
- Sebastián Castro-Trujillo
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Juanita Castro-Meneses
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Programa de Biología Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - María Clemencia Rojas
- Dirección Laboratorio de Salud Pública, Secretaría de Salud Departamental, Gobernación del Huila, Neiva, Huila, Colombia
| | - Marcela Castro-Amaya
- Departamento de Medicina Interna, E.S.E. Hospital Universitario de Neiva. Programa de Medicina, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Giovani Lastra
- Departamento de Medicina Interna, E.S.E. Hospital Universitario de Neiva. Programa de Medicina, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Neumología, E.S.E. Hospital Universitario de Neiva. Programa de Medicina, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Carlos F. Narváez
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| |
Collapse
|
14
|
Qiu X, Wen R, Wu F, Mao J, Azad T, Wang Y, Zhu J, Zhou X, Xie H, Hong K, Li B, Zhang L, Wen C. The role of double-negative B cells in the pathogenesis of systemic lupus erythematosus. Autoimmun Rev 2025; 24:103821. [PMID: 40274006 DOI: 10.1016/j.autrev.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
B cells are essential to the pathophysiology of systemic lupus erythematosus (SLE), a chronic autoimmune illness. IgD-CD27-double negative B cells (DNB cells) are one of the aberrant B cell subsets linked to SLE that have attracted much scientific interest. There is growing evidence that DNB cells play a significant role in the development of the disease and are strongly linked to the activity of lupus. These cells play a pivotal role in the pathogenesis of SLE by producing a diverse array of autoantibodies, which form immune complexes that drive target organ damage. A comprehensive understanding of SLE pathophysiology necessitates in-depth investigation into DNB cells, not only to elucidate their mechanistic contributions but also to uncover novel therapeutic strategies. According to available data, treatments that target B cells have proven effective in managing SLE; nevertheless, a significant breakthrough in precision medicine for SLE may come from targeting DNB cells specifically. Despite growing interest in DNB cells, their precise characteristics, developmental trajectories, and regulatory mechanisms remain incompletely defined, posing significant challenges to the field. A comprehensive investigation of the regulatory mechanisms governing DNB cell differentiation and expansion in SLE may facilitate novel therapeutic discoveries. This review aims to provide an updated synthesis of current research on DNB cells, with a focus on their origins, developmental trajectories in SLE, and potential as precision therapeutic targets.
Collapse
Affiliation(s)
- Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China; The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha 410007, Hunan, China
| | - RuiFan Wen
- Medical School, Hunan University of Chinese Medicine, No.300 Xueshi Road, Hanpu Science & Education District, Changsha, Hunan 410208, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Tasnim Azad
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Liang Zhang
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha 410007, Hunan, China; Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha 410007, Hunan, China.
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China.
| |
Collapse
|
15
|
Perugino CA, Liu H, Feldman J, Marbourg J, Guy TV, Hui A, Ingram N, Liebaert J, Chaudhary N, Tao W, Jacob-Dolan C, Hauser BM, Mian Z, Nathan A, Zhao Z, Kaseke C, Tano-Menka R, Getz MA, Senjobe F, Berrios C, Ofoman O, Manickas-Hill Z, Wesemann DR, Lemieux JE, Goldberg MB, Nündel K, Moormann A, Marshak-Rothstein A, Larocque RC, Ryan ET, Iafrate JA, Lingwood D, Gaiha G, Charles R, Balazs AB, Pandit A, Naranbhai V, Schmidt AG, Pillai S. Two distinct durable human class-switched memory B cell populations are induced by vaccination and infection. Cell Rep 2025; 44:115472. [PMID: 40173042 DOI: 10.1016/j.celrep.2025.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/21/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025] Open
Abstract
Memory lymphocytes are durable cells that persist in the absence of antigen, but few human B cell subsets have been characterized in terms of durability. The relative durability of eight non-overlapping human B cell sub-populations covering 100% of all human class-switched B cells was interrogated. Only two long-lived B cell populations persisted in the relative absence of antigen. In addition to canonical germinal center-derived switched-memory B cells with an IgD-CD27+CXCR5+ phenotype, a second, non-canonical, but distinct memory population of IgD-CD27-CXCR5+ DN1 B cells was also durable, exhibited a unique TP63-linked transcriptional and anti-apoptotic signature, had low levels of somatic hypermutation, but was more clonally expanded than canonical switched-memory B cells. DN1 B cells likely evolved to preserve immunological breadth and may represent the human counterparts of rodent extrafollicular memory B cells that, unlike canonical memory B cells, can enter germinal centers and facilitate B cell and antibody evolution.
Collapse
Affiliation(s)
- Cory A Perugino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Rheumatology Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hang Liu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jess Marbourg
- Abbvie Cambridge Research Center, Cambridge, MA 02139, USA
| | - Thomas V Guy
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Anson Hui
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Nicole Ingram
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Julian Liebaert
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Neha Chaudhary
- Abbvie Cambridge Research Center, Cambridge, MA 02139, USA
| | - Weiyang Tao
- Abbvie Cambridge Research Center, Cambridge, MA 02139, USA
| | - Catherine Jacob-Dolan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Monash University, Melbourne, VIC 3800, Australia
| | - Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zayd Mian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Anusha Nathan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zezhou Zhao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Clarety Kaseke
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rhoda Tano-Menka
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew A Getz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Fernando Senjobe
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Cristhian Berrios
- Department of Pathology, Massachusetts Hospital, Boston, MA 02114, USA
| | - Onosereme Ofoman
- Department of Pathology, Massachusetts Hospital, Boston, MA 02114, USA
| | | | - Duane R Wesemann
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jacob E Lemieux
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Marcia B Goldberg
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kerstin Nündel
- University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ann Moormann
- University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Regina C Larocque
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA
| | - Edward T Ryan
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA
| | - John A Iafrate
- MGH Cancer Center, Massachusetts Hospital, Boston, MA 02114, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Gaurav Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Gastrointestinal Unit, Massachusetts Hospital, Boston, MA 02114, USA
| | - Richelle Charles
- Infectious Diseases Division, Massachusetts Hospital, Boston, MA 02114, USA
| | | | | | - Vivek Naranbhai
- MGH Cancer Center, Massachusetts Hospital, Boston, MA 02114, USA; Monash University, Melbourne, VIC 3800, Australia; Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Aaaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Guthmiller JJ, Yu-Ling Lan L, Li L, Fu Y, Nelson SA, Henry C, Stamper CT, Utset HA, Freyn AW, Han J, Stovicek O, Wang J, Zheng NY, Huang M, Dugan HL, Tepora ME, Zhu X, Chen YQ, Palm AKE, Shaw DG, Loganathan M, Francis BF, Sun J, Chervin J, Troxell C, Meade P, Leung NHL, Valkenburg SA, Cobey S, Cowling BJ, Wilson IA, García-Sastre A, Nachbagauer R, Ward AB, Coughlan L, Krammer F, Wilson PC. Long-lasting B cell convergence to distinct broadly reactive epitopes following vaccination with chimeric influenza virus hemagglutinins. Immunity 2025; 58:980-996.e7. [PMID: 40132593 PMCID: PMC11981830 DOI: 10.1016/j.immuni.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/18/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
In a phase 1 clinical trial, a chimeric hemagglutinin (cHA) immunogen induced antibody responses against the conserved hemagglutinin (HA) stalk domain as designed. Here, we determined the specificity, function, and subsets of B cells induced by cHA vaccination by pairing single-cell RNA sequencing and B cell receptor repertoire sequencing. We have shown that the cHA-inactivated vaccine with a squalene-based adjuvant induced a robust activated B cell and memory B cell (MBC) phenotype against two broadly neutralizing epitopes in the stalk domain. The overall specificities of the acute plasmablast (PB) and MBC responses clonally overlapped, suggesting B cell convergence to these broadly protective epitopes. At 1 year post immunization, we identified that cHA vaccination reshaped the HA-specific MBC pool to enrich for stalk-binding B cells. Altogether, these data indicate the cHA vaccine induced robust and durable B cell responses against broadly protective epitopes of the HA stalk domain, in line with serological data.
Collapse
Affiliation(s)
- Jenna J Guthmiller
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Department on Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Linda Yu-Ling Lan
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Lei Li
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yanbin Fu
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sean A Nelson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carole Henry
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | | | - Henry A Utset
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Alec W Freyn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Olivia Stovicek
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Jiaolong Wang
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Nai-Ying Zheng
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Min Huang
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Haley L Dugan
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Micah E Tepora
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yao-Qing Chen
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Anna-Karin E Palm
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Dustin G Shaw
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Madhumathi Loganathan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin F Francis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Sun
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jordan Chervin
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Chloe Troxell
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy H L Leung
- WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong, China
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Benjamin J Cowling
- WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
17
|
Dhawan M, Thakur N, Sharma M, Rabaan AA. The comprehensive insights into the B-cells-mediated immune response against COVID-19 infection amid the ongoing evolution of SARS-CoV-2. Biomed Pharmacother 2025; 185:117936. [PMID: 40056829 DOI: 10.1016/j.biopha.2025.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/10/2025] Open
Abstract
The antibody-mediated immune response is crucial for the development of protective immunity against SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Understanding the interaction between SARS-CoV-2 and the immune system is critical because new variants emerge as a result of the virus's ongoing evolution. Understanding the function of B cells in the SARS-CoV-2 infection process is critical for developing effective and long-lasting vaccines against this virus. Triggered by the innate immune response, B cells transform into memory B cells (MBCs). It is fascinating to observe how MBCs provide enduring immune defence, not only eradicating the infection but also safeguarding against future reinfection. If there is a lack of B cell activation or if the B cells are not functioning properly, it can lead to a serious manifestation of the disease and make immunisation less effective. Individuals with disruptions in the B cells have shown increased production of cytokines and chemokines, resulting in a poor prognosis for the disease. Therefore, we have developed an updated review article to gain insight into the involvement of B cells in SARS-CoV-2 infection. The discussion has covered the generation, functioning, and dynamics of neutralising antibodies (nAbs). Furthermore, we have emphasised immunotherapeutics that rely on nAbs.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004, India; Trafford College, Altrincham, Altrincham, Manchester WA14 5PQ, UK.
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Ali A Rabaan
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| |
Collapse
|
18
|
Talwar S, Harker JA, Openshaw PJM, Thwaites RS. Autoimmunity in long COVID. J Allergy Clin Immunol 2025; 155:1082-1094. [PMID: 39956285 DOI: 10.1016/j.jaci.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Long COVID (also termed postacute sequelae of SARS-CoV-2, or PASC) affects up to 10% of people recovering from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis is hampered by diffuse symptomatology, lack of biomarkers, incomplete understanding of pathogenesis, and lack of validated treatments. In terms of pathogenesis, hypothesized causes include virus persistence, the legacy of endotheliitis and thrombosis, low-grade tissue-based inflammation and/or scarring, perturbation of the host virome/microbiome, or triggering of autoimmunity. Several studies show preexisting and/or de novo production of autoantibodies after infection with SARS-CoV-2, but the persistence of these antibodies and their role in causing long COVID is debated. Here, we review the mechanisms through which autoimmune responses can arise during and after viral infection, focusing on the evidence for B-cell dysregulation and autoantibody production in acute and long COVID.
Collapse
Affiliation(s)
- Shubha Talwar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - James A Harker
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
19
|
Gossez M, Vigneron C, Vandermoeten A, Lepage M, Courcol L, Coudereau R, Paidassai H, Jallades L, Lopez J, Kandara K, Ortillon M, Mommert M, Fabri A, Peronnet E, Grosjean C, Buisson M, Lukaszewicz AC, Rimmelé T, Argaud L, Cour M, Py BF, Thaunat O, Defrance T, Monneret G, Venet F. PD-L1 + plasma cells suppress T lymphocyte responses in patients with sepsis and mouse sepsis models. Nat Commun 2025; 16:3030. [PMID: 40155394 PMCID: PMC11953283 DOI: 10.1038/s41467-025-57706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 02/28/2025] [Indexed: 04/01/2025] Open
Abstract
Sepsis, a leading cause of death in intensive care units, is associated with immune alterations that increase the patients' risk of secondary infections and mortality, so better understandings of the pathophysiology of sepsis-induced immunosuppression is essential for the development of therapeutic strategies. In a murine model of sepsis that recapitulates immune alterations observed in patients, here we demonstrate that PD-L1+CD44+B220LowCD138+IgM+ regulatory plasma cells are induced in spleen and regulate ex vivo proliferation and IFNɣ secretion induced by stimulation of T splenocytes. This effect is mediated both by cell-cell contact through increased PD-L1 expression on plasma cells and by production of a soluble factor. These observations are recapitulated in three cohorts of critically ill patients with bacterial and viral sepsis in association with increased mortality. Our findings thus reveal the function of regulatory plasma cells in the pathophysiology of sepsis-induced immune alterations, and present a potential therapeutic target for improving immune cell function impaired by sepsis.
Collapse
Affiliation(s)
- Morgane Gossez
- Hospices Civils de Lyon, Immunology Laboratory, Lyon-Sud & Edouard Herriot University Hospitals, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Clara Vigneron
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Alexandra Vandermoeten
- Service Commun des Animaleries de Rockefeller (SCAR) - Université Claude Bernard lyon1, Structure Fédérative de Recherche (SFR) Santé Lyon Est, Lyon, France
| | - Margot Lepage
- Hospices Civils de Lyon, Immunology Laboratory, Lyon-Sud & Edouard Herriot University Hospitals, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Louise Courcol
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Remy Coudereau
- Hospices Civils de Lyon, Immunology Laboratory, Lyon-Sud & Edouard Herriot University Hospitals, Lyon, France
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux), Lyon, France
| | - Helena Paidassai
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Laurent Jallades
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Hospices Civils de Lyon, Lyon Sud University Hospital, Hematology Laboratory, Pierre-Bénite, France
| | - Jonathan Lopez
- Hospices Civils de Lyon, Biochemistry and Molecular Biology department, Lyon Est Faculty of Medicine, Université Claude Bernard Lyon 1, Université de Lyon, Lyon Sud University Hospital, Pierre-Bénite, France
| | - Khalil Kandara
- Hospices Civils de Lyon, Immunology Laboratory, Lyon-Sud & Edouard Herriot University Hospitals, Lyon, France
| | - Marine Ortillon
- Hospices Civils de Lyon, Immunology Laboratory, Lyon-Sud & Edouard Herriot University Hospitals, Lyon, France
| | - Marine Mommert
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux), Lyon, France
| | - Astrid Fabri
- Hospices Civils de Lyon, Immunology Laboratory, Lyon-Sud & Edouard Herriot University Hospitals, Lyon, France
| | - Estelle Peronnet
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux), Lyon, France
| | - Clémence Grosjean
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux), Lyon, France
| | - Marielle Buisson
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Anne-Claire Lukaszewicz
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux), Lyon, France
- Hospices Civils de Lyon, Anesthesia and Critical Care Medicine Department, Edouard Herriot Hospital, Lyon, France
| | - Thomas Rimmelé
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux), Lyon, France
- Hospices Civils de Lyon, Anesthesia and Critical Care Medicine Department, Edouard Herriot Hospital, Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Medical Intensive Care Department, Edouard Herriot Hospital, Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Medical Intensive Care Department, Edouard Herriot Hospital, Lyon, France
| | - Bénédicte F Py
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Thierry Defrance
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Immunology Laboratory, Lyon-Sud & Edouard Herriot University Hospitals, Lyon, France
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1, Hospices Civils de Lyon, bioMérieux), Lyon, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Immunology Laboratory, Lyon-Sud & Edouard Herriot University Hospitals, Lyon, France.
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.
| |
Collapse
|
20
|
Tarasco MC, Iacomino N, Mantegazza R, Cavalcante P. COVID-19, Epstein-Barr virus reactivation and autoimmunity: Casual or causal liaisons? JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00076-3. [PMID: 40175252 DOI: 10.1016/j.jmii.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 virus infection, has been associated with a substantial risk of autoimmune disease development or exacerbation. The postulated pathophysiological mechanisms linking COVID-19 with autoimmunity include reactivation of latent Epstein-Barr virus (EBV), whose dysregulated infection in the host can trigger or promote an autoimmune response. This review summarizes recent studies highlighting a potential immunopathogenetic link between SARS-CoV-2 infection and EBV reactivation, which could underlie autoimmunity onset or worsening, as well as immune-related long COVID manifestations in COVID-19 patients. We offer our perspective on the direction that research should take to disentangle the nature (whether causal or casual) of the "COVID-19-EBV-autoimmunity" liaisons. Further advances in this research area may be crucial for designing strategies to prevent or treat EBV reactivation-related autoimmune conditions in COVID-19 patients, or patients with inflammatory co-infectious diseases, at the same time promising to improve our knowledge on the viral contribution to autoimmune phenomena.
Collapse
Affiliation(s)
- Maria Cristina Tarasco
- Neurology 4 - Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Ph.D. Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Nicola Iacomino
- Neurology 4 - Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology 4 - Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Cavalcante
- Neurology 4 - Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
21
|
Shull T, Bhimalli P, Welninski S, Cho BK, Mattamana B, Arivalagan J, Tarhoni I, Goo YA, Schneider JA, Agrawal S, Bennett DA, Leurgans S, Patel MB, Ely EW, Kelleher NL, Borgia JA, Schneider JR, Al-Harthi L. Elevated neuroinflammation, autoimmunity, and altered IgG glycosylation profile in the cerebral spinal fluid of severe COVID-19 patients. Brain Behav Immun 2025; 128:289-302. [PMID: 40157461 DOI: 10.1016/j.bbi.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND AND OBJECTIVES A spectrum of neurologic complications associated with COVID-19 are well documented. While neuroinflammation in the brain of COVID-19 patients likely contributes to these complications, the mechanisms of neuroinflammation and correlates of neurologic complications remain elusive, especially since the etiologic pathogen of COVID-19, SARS-CoV-2, minimally invades the CNS. This study aimed to evaluate markers of neuroinflammation, IgG glycosylation patterns indicative of pro- or anti-inflammatory state, and prevalence of brain auto-reactive antibodies in the CSF of COVID-19 patients and their relationship to brain neuropathology. METHODS We evaluated the CSF of 11 deceased unvaccinated COVID-19 donors and 13 matched non-COVID-19 controls. Markers of neuroinflammation, IgG glycosylation patterns, and brain auto-reactive antibodies were assessed, along with their correlation to brain neuropathology. Statistical analyses were performed to compare groups and assess relationships between variables, using non-parametric tests and bootstrap analysis. RESULTS COVID-19 CSF showed higher levels of neopterin and ANNA-1, markers of neuroinflammation and autoimmunity, respectively, and lower IFN response compared to non-COVID-19 donors. In brain regions of high microglial activation, IL4 and RANTES were significantly increased. SARS-CoV-2 was undetectable in the CSF and brain of COVID-19 donors, yet anti-SARS-CoV-2 CSF antibodies were detected. Fucosylated IgG were associated with Spike IgG, CSF protein, and soluble CD14, whereas afucosylated bisecting IgG were inversely correlated with Spike IgG. Sialic acid containing IgG were positively correlated with IL1β and TNFα. These associations were not found in non-COVID-19 donors. Inflammatory agalactosylated fucosylated IgG (G0F) were associated with infiltrating CD4 + T cells in the brains of COVID-19 donors. COVID-19 donor CSF displayed higher levels of auto-reactive antibodies to human brain antigens compared to non-COVID-19 donors and donors with positive autoantibodies showed higher levels of neopterin. DISCUSSION These data describe increased neuroinflammation and autoreactive antibody markers in the CSF of COVID-19 donors and suggest that IgG glycosylation and autoimmunity may contribute to COVID-19 pathology, highlighting potential mechanisms underlying the neurologic complications associated with COVID-19.
Collapse
Affiliation(s)
- Tanner Shull
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Pavan Bhimalli
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Samantha Welninski
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Byoung-Kyu Cho
- Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Basil Mattamana
- Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Jaison Arivalagan
- Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Imad Tarhoni
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Young Ah Goo
- Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sonal Agrawal
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sue Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mayur B Patel
- Critical Illness, Brain dysfunction and Survivorship (CIBS) Center, Vanderbilt University Medical Center, and the Veteran's Affairs Tennessee Valley Geriatric Research Education Clinical Center (GRECC), Nashville, TN 37203, USA
| | - E Wesley Ely
- Critical Illness, Brain dysfunction and Survivorship (CIBS) Center, Vanderbilt University Medical Center, and the Veteran's Affairs Tennessee Valley Geriatric Research Education Clinical Center (GRECC), Nashville, TN 37203, USA
| | - Neil L Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Jeffrey A Borgia
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jeffrey R Schneider
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
22
|
Ansari A, Sachan S, Ahuja J, Venkadesan S, Nikam B, Kumar V, Jain S, Singh BP, Coshic P, Sikka K, Wig N, Sette A, Weiskopf D, Mohanty D, Soneja M, Gupta N. Distinct features of a peripheral T helper subset that drives the B cell response in dengue virus infection. Cell Rep 2025; 44:115366. [PMID: 40073863 PMCID: PMC12032839 DOI: 10.1016/j.celrep.2025.115366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/28/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Dengue-virus-induced humoral immunity can increase the risk of severe disease, but the factors influencing this response are poorly understood. Here, we investigate the contribution of CD4+ T cells to B cell responses in human dengue infection. We identify a dominant peripheral PD-1+ T cell subset that accumulates in severe patients and could induce B cell differentiation via interleukin-21 (IL-21)-related pathway. Single-cell analyses reveal heterogeneity within PD-1+ cells, demonstrating the coexistence of subsets with "helper" (IL-21+) or "cytotoxic" characteristics. The IL-21+ subset displays a distinct clonotypic and transcriptomic signature compared to follicular helper T cells and persists as a memory in lymph nodes. Notably, we show that the IL-21+ subset seems to majorly drive the extrafollicular B cell responses in dengue. Our study establishes the peripheral IL-21+ subset as a potential determinant of the humoral response to dengue virus infection. These findings provide important insights into the T-cell-dependent regulation of humoral responses and can inform the design of effective dengue vaccines.
Collapse
Affiliation(s)
- Asgar Ansari
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Shilpa Sachan
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Jatin Ahuja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Bhushan Nikam
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Vinod Kumar
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shweta Jain
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bhanu Pratap Singh
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Poonam Coshic
- Department of Transfusion Medicine, AIIMS, New Delhi 110029, India
| | - Kapil Sikka
- Department of Otorhinolaryngology, Head and Neck Surgery, AIIMS, New Delhi 110029, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology, New Delhi 110067, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India.
| |
Collapse
|
23
|
Piano Mortari E, Ferrucci F, Zografaki I, Carsetti R, Pacelli L. T and B cell responses in different immunization scenarios for COVID-19: a narrative review. Front Immunol 2025; 16:1535014. [PMID: 40170841 PMCID: PMC11959168 DOI: 10.3389/fimmu.2025.1535014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/25/2025] [Indexed: 04/03/2025] Open
Abstract
Vaccines against COVID-19 have high efficacy and low rates of adverse events. However, none of the available vaccines provide sterilizing immunity, and reinfections remain possible. This review aims to summarize the immunological responses elicited by different immunization strategies, examining the roles of homologous and heterologous vaccination and hybrid immunity. Homologous vaccination regimens exhibit considerable variation in immune responses depending on the vaccine platform, particularly concerning antibody titers, B cell activation, and T cell responses. mRNA vaccines, such as mRNA-1273 and BNT162b2, consistently generate higher and more durable levels of neutralizing antibodies and memory B cells compared to adenovirus-based vaccines like Ad26.COV2.S and ChAdOx1. The combination of two distinct vaccine platforms, each targeting different immune pathways, seems to be more effective in promoting long-lasting B cell responses and potent T cell responses. The high heterogeneity of the available studies, the different dosing schemes, the succession of new variants, and the subjects' immunological background do not allow for a definitive conclusion. Overall, heterologous vaccination strategies, combining sequentially viral vector and mRNA may deliver a more balanced and robust humoral and cellular immune response compared to homologous regimens. Hybrid immunity, which arises from SARS-CoV-2 infection preceded or followed by vaccination produces markedly stronger immune responses than either vaccination or infection alone. The immune response to SARS-CoV-2 variants of concern varies depending on both the vaccine platform and prior infection status. Hybrid immunity leads to a broader antibody repertoire, providing enhanced neutralization of variants of concern. Heterologous vaccination and hybrid immunity may provide further opportunities to enhance immune responses, offering broader protection and greater durability of immunity. However, from all-cause mortality, symptomatic or severe COVID, and serious adverse events at present it is not possible to infer different effects between homologous and heterologous schemes. Next-generation vaccines could involve tweaks to these designs or changes to delivery mechanisms that might improve performance.
Collapse
Affiliation(s)
- Eva Piano Mortari
- B Lymphocytes Unit, Bambino Gesù Children’s Hospital, istituto di ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | | | - Irini Zografaki
- mRNA & Antivirals Medical & Scientific Affairs International Developed Markets, Pfizer, Athens, Greece
| | - Rita Carsetti
- B Lymphocytes Unit, Bambino Gesù Children’s Hospital, istituto di ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Luciano Pacelli
- Medical Department, Internal Medicine, Pfizer s.r.l., Rome, Italy
| |
Collapse
|
24
|
Staniek J, Rizzi M. Signaling Activation and Modulation in Extrafollicular B Cell Responses. Immunol Rev 2025; 330:e70004. [PMID: 39917832 PMCID: PMC11803499 DOI: 10.1111/imr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The differentiation of naive follicular B cells into either the germinal center (GC) or extrafollicular (EF) pathway plays a critical role in shaping the type, affinity, and longevity of effector B cells. This choice also governs the selection and survival of autoreactive B cells, influencing their potential to enter the memory compartment. During the first 2-3 days following antigen encounter, initially activated B cells integrate activating signals from T cells, Toll-like receptors (TLRs), and cytokines, alongside inhibitory signals mediated by inhibitory receptors. This integration modulates the intensity of signaling, particularly of the PI3K/AKT/mTOR pathway, which plays a central role in guiding developmental decisions. These early signaling events determine whether B cells undergo GC maturation or differentiate rapidly into antibody-secreting cells (ASCs) via the EF pathway. Dysregulation of these signaling pathways-whether through excessive activation or defective regulatory mechanisms-can disrupt the balance between GC and EF fates, predisposing individuals to autoimmunity. Accordingly, aberrant PI3K/AKT/mTOR signaling has been implicated in the defective selection of autoreactive B cells, increasing the risk of autoimmune disease. This review focuses on the signaling events in newly activated B cells, with an emphasis on the induction and regulation of the PI3K/AKT/mTOR pathway. It also highlights gaps in our understanding of how alternative B cell fates are regulated. Both the physiological context and the implications of inborn errors of immunity (IEIs) and complex autoimmune conditions will be discussed in this regard.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- CIBSS—Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| |
Collapse
|
25
|
Zhu DYD, Castrillon C, Carroll MC. Innate Immune Receptors as Dynamic Modulators of Extrafollicular Autoimmune B Cell Response. Immunol Rev 2025; 330:e70005. [PMID: 39917856 DOI: 10.1111/imr.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 05/08/2025]
Abstract
The immune system relies on carefully calibrated cellular machineries to enable distinction between endogenous and foreign molecules, with autoimmunity arising when this balance is disrupted. As potent autoantibody factories, B cells are major drivers of many autoimmune diseases. A significant fraction of patients affected by chronic autoimmune diseases such as systemic lupus erythematosus (SLE) exhibit pathogenic accumulation of B-cell subsets that are believed to be derived from the extrafollicular (EF) differentiation pathway. These B-cell subsets, although variously named and exhibiting intrinsic heterogeneity, are all poised producers of autoantibodies that correlate with patient pathophysiology. In addition, they are often characterized by biomarkers known to drive the innate immune response, including toll-like receptors and complement receptors. Although many innate receptors have well-established functions in myeloid cells and other immune cell types, their B cell-specific functions are still under active investigation and are crucial for understanding the molecular pathways that drive B-cell breaks of tolerance. In this review, we summarize studies on innate immune receptors that serve prominent roles in regulating EF B-cell activation in health and autoimmunity. By discussing independent and collaborative functions of these receptors, we hope to provide new perspectives in autoimmune disease signature research.
Collapse
Affiliation(s)
- Danni Yi-Dan Zhu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Graduate Program in Virology, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Castrillon
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Hromić-Jahjefendić A, Sezer A, Mahmuljin I. The impact of COVID-19 on autoimmune diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:315-345. [PMID: 40246348 DOI: 10.1016/bs.pmbts.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Various autoantibodies, such as antinuclear antibodies (ANA), anti-Ro/SSA, rheumatoid factor, lupus anticoagulant, and antibodies against interferon type I (IFN-I), have been frequently detected in COVID-19 patients, indicating a significant prevalence of autoimmune reactions following viral exposure. Additionally, the identification of human proteins with structural similarities to SARS-CoV-2 peptides as potential autoantigens underscores the complex interplay between the virus and the immune system in triggering autoimmunity. The chapter discusses probable pathways contributing to COVID-19-related autoimmunity, including bystander activation due to hyperinflammatory states, viral persistence, and the formation of neutrophil extracellular traps. These mechanisms illuminate a spectrum of autoimmune-related symptoms that can manifest, ranging from organ-specific to systemic autoimmune and inflammatory diseases. Importantly, there is emerging evidence of de novo autoimmunity arising after COVID-19 infection or vaccination, where new autoimmune conditions develop in previously healthy individuals. While various COVID-19 vaccines have received emergency use authorization, concerns regarding potential autoimmune side effects persist. Ongoing research is crucial to clarify these relationships and enhance our understanding of the risks associated with COVID-19 infections and vaccinations.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Abas Sezer
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Irma Mahmuljin
- Association of Biologists in Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
27
|
Claireaux M, Elias G, Kerster G, Kuijper LH, Duurland MC, Paul AGA, Burger JA, Poniman M, Olijhoek W, de Jong N, de Jongh R, Wynberg E, van Willigen HDG, Prins M, De Bree GJ, de Jong MD, Kuijpers TW, Eftimov F, van der Schoot CE, Rispens T, Garcia-Vallejo JJ, ten Brinke A, van Gils MJ, van Ham SM. Deep profiling of B cells responding to various pathogens uncovers compartments in IgG memory B cell and antibody-secreting lineages. SCIENCE ADVANCES 2025; 11:eado1331. [PMID: 39970201 PMCID: PMC11837990 DOI: 10.1126/sciadv.ado1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Improving our understanding of B cell transition to memory B cells (MBCs) and antibody-secreting cells (ASCs) is crucial for clinical monitoring and vaccine strategies. To explore these dynamics, we compared prepandemic antigen responses (influenza hemagglutinin, respiratory syncytial virus fusion glycoprotein, and tetanus toxoid) with recently encountered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen responses in convalescent COVID-19 patients using spectral flow cytometry. Our analysis revealed the CD43+CD71+IgG+ activated B cell subset, highly enriched for SARS-CoV-2 specificities, as a juncture for ASC and MBC differentiation, with CD86+ phenotypically similar to ASCs and CD86- to IgG+ MBCs. Moreover, subpopulations within IgG+ MBCs were further identified based on CD73 and CD24 expression. Activated MBCs (CD73-/CD24lo) were predominantly SARS-CoV-2-specific, while resting MBCs (CD73+/CD24hi) recognized prepandemic antigens. A CD95- subcluster within resting MBCs accounted for over 40% of prepandemic-specific cells, indicating long-lasting memory. These findings advance our understanding of IgG+ MBC and ASC development stages, shedding light on the decision-making process guiding their differentiation.
Collapse
Affiliation(s)
- Mathieu Claireaux
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - George Elias
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Gius Kerster
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Lisan H. Kuijper
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Mariël C. Duurland
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | | | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Wouter Olijhoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Nina de Jong
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Rivka de Jongh
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Elke Wynberg
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, Netherlands
| | - Hugo D. G. van Willigen
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Maria Prins
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Godelieve J. De Bree
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - C. Ellen van der Schoot
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Juan J. Garcia-Vallejo
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Molecular Cell Biology & Immunology, Amsterdam University Medical Center (VUmc location), Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
| | - S. Marieke van Ham
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Hatayama Y, Miyakawa K, Kimura Y, Horikawa K, Hirahata K, Kimura H, Kato H, Goto A, Ryo A. Identification of Putative Serum Autoantibodies Associated with Post-Acute Sequelae of COVID-19 via Comprehensive Protein Array Analysis. Int J Mol Sci 2025; 26:1751. [PMID: 40004214 PMCID: PMC11855120 DOI: 10.3390/ijms26041751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Post-acute sequelae of SARS-CoV-2 infection (PASC), commonly known as "Long COVID", represents a significant clinical challenge characterized by persistent symptoms following acute COVID-19 infection. We conducted a comprehensive retrospective cohort study to identify serum autoantibody biomarkers associated with PASC. Initial screening using a protein bead array comprising approximately 20,000 human proteins identified several candidate PASC-associated autoantibodies. Subsequent validation by enzyme-linked immunosorbent assay (ELISA) in an expanded cohort-consisting of PASC patients, non-PASC COVID-19 convalescents, and pre-pandemic healthy controls-revealed two promising biomarkers: autoantibodies targeting PITX2 and FBXO2. PITX2 autoantibodies demonstrated high accuracy in distinguishing PASC patients from both non-PASC convalescents (area under the curve [AUC] = 0.891) and healthy controls (AUC = 0.866), while FBXO2 autoantibodies showed moderate accuracy (AUC = 0.762 and 0.786, respectively). Notably, the levels of these autoantibodies were associated with several PASC symptoms, including fever, dyspnea, palpitations, loss of appetite, and brain fog. The identification of PITX2 and FBXO2 autoantibodies as biomarkers not only enhances our understanding of PASC pathophysiology but also provides promising candidates for further investigation.
Collapse
Affiliation(s)
- Yasuyoshi Hatayama
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama 208-0011, Japan;
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan;
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan;
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama 208-0011, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan; (Y.K.); (K.H.)
| | - Kazuo Horikawa
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan; (Y.K.); (K.H.)
| | | | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki 370-0006, Japan;
| | - Hideaki Kato
- Infection Prevention and Control Department, Yokohama City University Hospital, Yokohama 236-0004, Japan;
| | - Atsushi Goto
- Department of Public Health, Yokohama City University School of Medicine, Yokohama 236-0004, Japan;
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama 208-0011, Japan;
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan;
| |
Collapse
|
29
|
Ruffin AT, Casey AN, Kunning SR, MacFawn IP, Liu Z, Arora C, Rohatgi A, Kemp F, Lampenfeld C, Somasundaram A, Rappocciolo G, Kirkwood JM, Duvvuri U, Seethala R, Bao R, Huang Y, Cillo AR, Ferris RL, Bruno TC. Dysfunctional CD11c -CD21 - extrafollicular memory B cells are enriched in the periphery and tumors of patients with cancer. Sci Transl Med 2025; 17:eadh1315. [PMID: 39970232 PMCID: PMC12183695 DOI: 10.1126/scitranslmed.adh1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 02/07/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Many patients with recurrent and metastatic cancer fail to produce a durable response to immunotherapy, highlighting the need for additional therapeutic targets to improve the immune landscape in tumors. Recent studies have highlighted the importance of B cells in the antitumor response, with memory B cells (MBCs) being prognostic in a variety of solid tumors. MBCs are a heterogenous B cell subset and can be generated through both germinal center reactions and extrafollicular (EF) responses. EF-derived MBCs have been recently linked to poor prognosis and treatment resistance in solid tumors and thus may represent candidate biomarkers or immunotherapy targets. EF-derived MBCs, termed "double-negative" (DN) MBCs may be further classified on the basis of surface expression of CD11c and CD21 into DN1, DN2, and DN3 MBCs. CD11c-CD21+ DN1 MBCs and CD11c+CD21- DN2 MBCs have been well studied across inflammatory diseases; however, the biology and clinical relevance of CD11c-CD21- DN3 MBCs remain unknown. Here, we report an accumulation of DN3 MBCs in the blood and tumors of patients with head and neck squamous cell carcinoma (HNSCC) and an increase in DN3 MBCs in locally advanced HNSCC tumors. Circulating and intratumoral DN3 MBCs were hyporesponsive to antigen stimulation, had low antibody production, and failed to differentiate into antibody-secreting cells. Moreover, DN3 MBCs accumulated selectively outside of tertiary lymphoid structures. Last, circulating DN3 MBCs correlated with poor therapeutic response, advanced disease, and worse outcomes in patients with HNSCC and melanoma, supporting further assessment of EF-derived MBCs as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ayana T. Ruffin
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Allison N. Casey
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- Molecular Genetics and Developmental Biology Graduate Program, Pittsburgh, PA 15213, USA
| | - Sheryl R. Kunning
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Ian P. MacFawn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Zhentao Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Charu Arora
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Anjali Rohatgi
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Felicia Kemp
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Caleb Lampenfeld
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Ashwin Somasundaram
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | | | - John M. Kirkwood
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Raja Seethala
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yufei Huang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pharmaceutical Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anthony R. Cillo
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert L. Ferris
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Tullia C. Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
30
|
Naiditch H, Betts MR, Larman HB, Levi M, Rosenberg AZ. Immunologic and inflammatory consequences of SARS-CoV-2 infection and its implications in renal disease. Front Immunol 2025; 15:1376654. [PMID: 40012912 PMCID: PMC11861071 DOI: 10.3389/fimmu.2024.1376654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
The emergence of the COVID-19 pandemic made it critical to understand the immune and inflammatory responses to the SARS-CoV-2 virus. It became increasingly recognized that the immune response was a key mediator of illness severity and that its mechanisms needed to be better understood. Early infection of both tissue and immune cells, such as macrophages, leading to pyroptosis-mediated inflammasome production in an organ system critical for systemic oxygenation likely plays a central role in the morbidity wrought by SARS-CoV-2. Delayed transcription of Type I and Type III interferons by SARS-CoV-2 may lead to early disinhibition of viral replication. Cytokines such as interleukin-1 (IL-1), IL-6, IL-12, and tumor necrosis factor α (TNFα), some of which may be produced through mechanisms involving nuclear factor kappa B (NF-κB), likely contribute to the hyperinflammatory state in patients with severe COVID-19. Lymphopenia, more apparent among natural killer (NK) cells, CD8+ T-cells, and B-cells, can contribute to disease severity and may reflect direct cytopathic effects of SARS-CoV-2 or end-organ sequestration. Direct infection and immune activation of endothelial cells by SARS-CoV-2 may be a critical mechanism through which end-organ systems are impacted. In this context, endovascular neutrophil extracellular trap (NET) formation and microthrombi development can be seen in the lungs and other critical organs throughout the body, such as the heart, gut, and brain. The kidney may be among the most impacted extrapulmonary organ by SARS-CoV-2 infection owing to a high concentration of ACE2 and exposure to systemic SARS-CoV-2. In the kidney, acute tubular injury, early myofibroblast activation, and collapsing glomerulopathy in select populations likely account for COVID-19-related AKI and CKD development. The development of COVID-19-associated nephropathy (COVAN), in particular, may be mediated through IL-6 and signal transducer and activator of transcription 3 (STAT3) signaling, suggesting a direct connection between the COVID-19-related immune response and the development of chronic disease. Chronic manifestations of COVID-19 also include systemic conditions like Multisystem Inflammatory Syndrome in Children (MIS-C) and Adults (MIS-A) and post-acute sequelae of COVID-19 (PASC), which may reflect a spectrum of clinical presentations of persistent immune dysregulation. The lessons learned and those undergoing continued study likely have broad implications for understanding viral infections' immunologic and inflammatory consequences beyond coronaviruses.
Collapse
Affiliation(s)
- Hiam Naiditch
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael R. Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
31
|
Allard-Chamard H, Hillier K, Ramseier ML, Bertocchi A, Kaneko N, Premo K, Yuen G, Karpel M, Mahajan VS, Tsekeri C, Hong JS, Vencic J, Crotty R, Sharda AV, Barmettler S, Westermann-Clark E, Walter JE, Ghebremichael M, Shalek AK, Farmer JR, Pillai S. Congenital T-cell activation impairs transitional-to-follicular B-cell maturation in humans. Blood Adv 2025; 9:520-532. [PMID: 39626280 PMCID: PMC11814514 DOI: 10.1182/bloodadvances.2024013267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/28/2024] [Indexed: 01/31/2025] Open
Abstract
ABSTRACT Patients with cytotoxic T-lymphocyte-associated protein 4 (CTLA4) deficiency exhibit profound humoral immune dysfunction, yet the basis for the B-cell defect is not known. We observed a marked reduction in transitional-to-follicular (FO) B-cell development in patients with CTLA4 deficiency, correlating with decreased CTLA4 function in regulatory T cells, increased CD40L levels in effector CD4+ T cells, and increased mammalian target of rapamycin complex 1 (mTORC1) signaling in transitional B cells (TrBs). Treatment of TrBs with CD40L was sufficient to induce mTORC1 signaling and inhibit FO B-cell maturation in vitro. Frequent cell-to-cell contacts between CD40L+ T cells and immunoglobulin D-positive CD27- B cells were observed in patient lymph nodes. FO B-cell maturation in patients with CTLA4 deficiency was partially rescued after CTLA4 replacement therapy in vivo. We conclude that functional regulatory T cells and the containment of excessive T-cell activation may be required for human TrBs to mature and attain metabolic quiescence at the FO B-cell stage.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
- Division of Rheumatology, Faculté de médecine et des sciences de la santé de l'Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, QC, Canada
| | - Kirsty Hillier
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Hassenfeld Children's Hospital at New York University Langone Health, New York University Grossman School of Medicine, New York, NY
| | - Michelle L. Ramseier
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA
- Institute for Medical Engineering and Science, Koch Institute for Integrative Cancer Research, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
- Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, MA
| | - Alice Bertocchi
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
| | - Naoki Kaneko
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Katherine Premo
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
| | - Grace Yuen
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
| | - Marshall Karpel
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
- Cell Signaling Technology, Danvers, MA
| | - Vinay S. Mahajan
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Christina Tsekeri
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
| | - Joseph S. Hong
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA
| | - Jean Vencic
- Division of Rheumatology, Faculté de médecine et des sciences de la santé de l'Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, QC, Canada
| | - Rory Crotty
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Anish V. Sharda
- Division of Translational Hematology, Yale University School of Medicine, New Haven, CT
| | - Sara Barmettler
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA
| | - Emma Westermann-Clark
- Division of Allergy and Immunology, Johns Hopkins All Children's Hospital, St. Petersburg, FL
- Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jolan E. Walter
- Division of Allergy and Immunology, Johns Hopkins All Children's Hospital, St. Petersburg, FL
- Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, FL
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA
| | - Musie Ghebremichael
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
| | - Alex K. Shalek
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
- Institute for Medical Engineering and Science, Koch Institute for Integrative Cancer Research, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
- Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, MA
| | - Jocelyn R. Farmer
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
- Clinical Immunodeficiency Program of Beth Israel Lahey Health, Division of Allergy and Immunology, Lahey Hospital & Medical Center, Burlington, MA
| | - Shiv Pillai
- Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA
| |
Collapse
|
32
|
Talkington GM, Kolluru P, Gressett TE, Ismael S, Meenakshi U, Acquarone M, Solch-Ottaiano RJ, White A, Ouvrier B, Paré K, Parker N, Watters A, Siddeeque N, Sullivan B, Ganguli N, Calero-Hernandez V, Hall G, Longo M, Bix GJ. Neurological sequelae of long COVID: a comprehensive review of diagnostic imaging, underlying mechanisms, and potential therapeutics. Front Neurol 2025; 15:1465787. [PMID: 40046430 PMCID: PMC11881597 DOI: 10.3389/fneur.2024.1465787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/18/2024] [Indexed: 03/09/2025] Open
Abstract
One lingering effect of the COVID-19 pandemic created by SARS-CoV-2 is the emergence of Long COVID (LC), characterized by enduring neurological sequelae affecting a significant portion of survivors. This review provides a thorough analysis of these neurological disruptions with respect to cognitive dysfunction, which broadly manifest as chronic insomnia, fatigue, mood dysregulation, and cognitive impairments with respect to cognitive dysfunction. Furthermore, we characterize how diagnostic tools such as PET, MRI, EEG, and ultrasonography provide critical insight into subtle neurological anomalies that may mechanistically explain the Long COVID disease phenotype. In this review, we explore the mechanistic hypotheses of these neurological changes, which describe CNS invasion, neuroinflammation, blood-brain barrier disruption, and gut-brain axis dysregulation, along with the novel vascular disruption hypothesis that highlights endothelial dysfunction and hypoperfusion as a core underlying mechanism. We lastly evaluate the clinical treatment landscape, scrutinizing the efficacy of various therapeutic strategies ranging from antivirals to anti-inflammatory agents in mitigating the multifaceted symptoms of LC.
Collapse
Affiliation(s)
- Grant McGee Talkington
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Paresh Kolluru
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Timothy E. Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Saifudeen Ismael
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Umar Meenakshi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mariana Acquarone
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | | | - Amanda White
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Blake Ouvrier
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Kristina Paré
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nicholas Parker
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Amanda Watters
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Nabeela Siddeeque
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Brooke Sullivan
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Nilesh Ganguli
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | | | - Gregory Hall
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Michele Longo
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gregory J. Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
33
|
Zhu W, Zheng Y, Yu M, Witman N, Zhou L, Wei J, Zhang Y, Topchyan P, Nguyen C, Wang D, Janecke R, Padmanabhan A, Baumann Kreuziger L, White GC, Hari P, Gu T, Fields AT, Kornblith LZ, Aster R, Zhu J, Cui W, Jobe S, Graham MB, Wang D, Wen R. Prothrombotic antibodies targeting the spike protein's receptor-binding domain in severe COVID-19. Blood 2025; 145:635-647. [PMID: 39576992 PMCID: PMC11811936 DOI: 10.1182/blood.2024025010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
ABSTRACT Thromboembolic complication is common in severe coronavirus disease 2019 (COVID-19), leading to an investigation into the presence of prothrombotic antibodies akin to those found in heparin-induced thrombocytopenia (HIT). In a study of samples from 130 hospitalized patients, collected 3.6 days after COVID-19 diagnosis, 80% had immunoglobulin G (IgG) antibodies recognizing complexes of heparin and platelet factor 4 (PF4; PF4/H), and 41% had antibodies inducing PF4-dependent P-selectin expression in CpG oligodeoxynucleotide-treated normal platelets. Unlike HIT, both PF4/H-reactive and platelet-activating antibodies were found in patients with COVID-19 regardless of recent heparin exposure. Notably, PF4/H-reactive IgG antibodies correlated with those targeting the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 spike protein. Moreover, introducing exogenous RBD to or removing RBD-reactive IgG from COVID-19 plasma or IgG purified from COVID-19 plasma significantly reduced their ability to activate platelets. RBD-specific antibodies capable of platelet activation were cloned from peripheral blood B cells of patients with COVID-19. These antibodies possessed sequence motifs in the heavy-chain complementarity-determining region 3 (HCDR3), resembling those identified in pathogenic HIT antibodies. Furthermore, IgG+ B cells having these HCDR3 signatures were markedly expanded in patients with severe COVID-19. Importantly, platelet-activating antibodies present in patients with COVID-19 were associated with a specific elevation of platelet α-granule proteins in the plasma and showed a positive correlation with markers for inflammation and tissue damage, suggesting a functionality of these antibodies in patients. The demonstration of functional and structural similarities between certain RBD-specific antibodies in patients with COVID-19 and pathogenic antibodies typical of HIT suggests a novel mechanism by which RBD-specific antibodies might contribute to thrombosis in COVID-19.
Collapse
Affiliation(s)
- Wen Zhu
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Mei Yu
- Versiti Blood Research Institute, Milwaukee, WI
| | - Nathan Witman
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Lu Zhou
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Jianhui Wei
- Versiti Blood Research Institute, Milwaukee, WI
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yongguang Zhang
- Versiti Blood Research Institute, Milwaukee, WI
- Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Paytsar Topchyan
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Christine Nguyen
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - David Wang
- School of Art and Science Undergraduate Program, Washington University in St. Louis, St. Louis, MO
| | - Rae Janecke
- Versiti Blood Research Institute, Milwaukee, WI
| | - Anand Padmanabhan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Lisa Baumann Kreuziger
- Versiti Blood Research Institute, Milwaukee, WI
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | | | - Parameswaran Hari
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Tongjun Gu
- Versiti Blood Research Institute, Milwaukee, WI
| | - Alexander T. Fields
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Lucy Z. Kornblith
- Department of Surgery, University of California San Francisco, San Francisco, CA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Richard Aster
- Versiti Blood Research Institute, Milwaukee, WI
- Division of Hematology Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Shawn Jobe
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Mary Beth Graham
- Division of Infectious Disease, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Renren Wen
- Versiti Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
34
|
Pozdnyakova V, Weber B, Cheng S, Ebinger JE. Review of Immunologic Manifestations of COVID-19 Infection and Vaccination. Rheum Dis Clin North Am 2025; 51:111-121. [PMID: 39550100 DOI: 10.1016/j.rdc.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
We herein summarize currently available and clinically relevant information regarding the human immune responses to SARS-CoV-2 infection and vaccination, in relation to COVID-19 outcomes with a focus on acute respiratory distress syndrome (ARDS) and myocarditis.
Collapse
Affiliation(s)
- Valeriya Pozdnyakova
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, D4005, Los Angeles, CA 90048, USA
| | - Brittany Weber
- Carl J. and Ruth Shapiro Cardiovascular Center, Brigham and Women's Hospital, 70 Francis Street, Boston, MA 02115, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 South Vicente Boulevard, Suite A3100, Los Angeles, CA 90048, USA
| | - Joseph E Ebinger
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 South Vicente Boulevard, Suite A3100, Los Angeles, CA 90048, USA.
| |
Collapse
|
35
|
de Vries C, Huang W, Sharma RK, Wangriatisak K, Turcinov S, Cîrciumaru A, Rönnblom L, Grönwall C, Hensvold A, Lundberg K, Malmström V. Rheumatoid Arthritis Related B-Cell Changes Are Found Already in the Risk-RA Phase. Eur J Immunol 2025; 55:e202451391. [PMID: 39931747 PMCID: PMC11811808 DOI: 10.1002/eji.202451391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025]
Abstract
Anti-cyclic citrullinated peptide2 (CCP2) antibody positivity in rheumatoid arthritis (RA) and in the predisease phase, together with the success of B-cell depletion, support a crucial role for B cells in RA pathogenesis. Yet, knowledge of B cells in the transition from autoimmunity to RA is limited, and therefore we here investigated B-cell changes during the risk-RA phase. B-cell phenotypes in 18 CCP2-positive risk-RA individuals with musculoskeletal complaints were studied, parallel with ten CCP2-positive RA patients and nine healthy controls. Nine of the risk-RA individuals progressed to RA. B-cell phenotypes were investigated using spectral flow cytometry. The results demonstrate that unswitched and switched memory B-cell frequencies in the risk-RA cohort were more similar to controls than RA patients. Yet, risk-RA progressors displayed an early activation profile amongst naïve B cells. Deeper characterization of the memory compartment revealed expansion of CD27-negative IgG+ B cells both in RA compared with controls (p = 0.0172) and in risk-RA progressors versus non-progressors (p = 0.0295). Overall, we demonstrate that the phenotypic distribution of B cells is altered in the risk-RA phase. This includes changes in CD27-negative class-switched B cells, which have been attributed to autoreactive and anergic features implicating a possible contribution to RA development.
Collapse
Affiliation(s)
- Charlotte de Vries
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Wenqi Huang
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Ravi Kumar Sharma
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Kittikorn Wangriatisak
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Sara Turcinov
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Alexandra Cîrciumaru
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
- Center for RheumatologyAcademic Specialist Center, Stockholm Health ServicesRegion StockholmSweden
| | - Lars Rönnblom
- Department of Medical SciencesRheumatology, Science for Life LaboratoryUppsalaSweden
| | - Caroline Grönwall
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Aase Hensvold
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
- Center for RheumatologyAcademic Specialist Center, Stockholm Health ServicesRegion StockholmSweden
| | - Karin Lundberg
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Vivianne Malmström
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| |
Collapse
|
36
|
Kim NH, Sim SJ, Han HG, Yoon JH, Han YH. Immunosenescence and age-related immune cells: causes of age-related diseases. Arch Pharm Res 2025; 48:132-149. [PMID: 39725853 DOI: 10.1007/s12272-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Immunosenescence is a weakening of the immune system due to aging, characterized by changes in immune cells and dysregulated immune function. Age-related immune cells are increasing with aging. They are associated with chronic prolonged inflammation, causing tissue dysfunction and age-related diseases. Here, we discuss increased pro-inflammatory activity of aged macrophages, accumulation of lymphocytes with an age-associated phenotype, and specific alterations in both functions and characteristics of these immune cells. These cellular changes are associated with development of age-related diseases. Additionally, we reviewed various therapeutic strategies targeting age-related immunosenescence, providing pathways to mitigate effects of age-related diseases.
Collapse
Affiliation(s)
- Nam-Hee Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - So-Jin Sim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hong-Gyu Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Jeong-Hyuk Yoon
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea.
- Multidimentional Genomics Research Center, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
37
|
Zhong Z, Quiñones-Pérez M, Dai Z, Juarez VM, Bhatia E, Carlson CR, Shah SB, Patel A, Fang Z, Hu T, Allam M, Hicks SL, Gupta M, Gupta SL, Weeks E, Vagelos SD, Molina A, Mulero-Russe A, Mora-Boza A, Joshi DJ, Sekaly RP, Sulchek T, Goudy SL, Wrammert J, Roy K, Boss JM, Coskun AF, Scharer CD, García AJ, Koff JL, Singh A. Human immune organoids to decode B cell response in healthy donors and patients with lymphoma. NATURE MATERIALS 2025; 24:297-311. [PMID: 39506098 PMCID: PMC11866935 DOI: 10.1038/s41563-024-02037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Antibodies are produced when naive B cells differentiate into plasma cells within germinal centres (GCs) of lymphoid tissues. Patients with B cell lymphoma on effective immunotherapies exhibit diminished antibody production, leading to higher infection rates and reduced vaccine efficacy, even after B cell recovery. Current ex vivo models fail to sustain long-term GC reactions and effectively test B cell responses. Here we developed synthetic hydrogels mimicking the lymphoid tissue microenvironment, enabling human GCs from tonsils and peripheral blood mononuclear cell-derived B cells. Immune organoids derived from peripheral blood mononuclear cells maintain GC B cells and plasma cells longer than tonsil-derived ones and exhibit unique B cell programming, including GC compartments, somatic hypermutation, immunoglobulin class switching and B cell clones. Chemical inhibition of transcriptional and epigenetic processes enhances plasma cell formation. While integrating polarized CXCL12 protein in a lymphoid organ-on-chip modulates GC responses in healthy donor B cells, it fails with B cells derived from patients with lymphoma. Our system allows rapid, controlled modelling of immune responses and B cell disorders.
Collapse
Affiliation(s)
- Zhe Zhong
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Manuel Quiñones-Pérez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhonghao Dai
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Valeria M Juarez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eshant Bhatia
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christopher R Carlson
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shivem B Shah
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anjali Patel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhou Fang
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas Hu
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mayar Allam
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Mansi Gupta
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Sneh Lata Gupta
- Emory Vaccine Center, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Ethan Weeks
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephanie D Vagelos
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alejandro Molina
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adriana Mulero-Russe
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ana Mora-Boza
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Devyani J Joshi
- Emory Vaccine Center, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Rafick P Sekaly
- Emory Vaccine Center, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Todd Sulchek
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Steven L Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Otolaryngology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Jens Wrammert
- Emory Vaccine Center, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Krishnendu Roy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jean L Koff
- Winship Cancer Center, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Ankur Singh
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
38
|
Prazanowska KH, Kim TH, Kang JW, Jin YH, Kwon S, Lim SB. A single-cell RNA sequencing dataset of peripheral blood cells in long COVID patients on herbal therapy. Sci Data 2025; 12:177. [PMID: 39885244 PMCID: PMC11782672 DOI: 10.1038/s41597-025-04510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Following the coronavirus disease 2019 (COVID-19) pandemic, the rise of long COVID, characterized by persistent respiratory and cognitive dysfunctions, has become a significant health concern. This leads to an increased role of complementary and alternative medicine in addressing this condition. However, our comprehension of the effectiveness and safety of herbal medicines for long COVID remains limited. Here, we present a single-cell RNA sequencing (scRNA-seq) dataset of peripheral whole blood cells derived from participants in a clinical study involving three commercially available herbal medicines, targeting fatigue and brain fog in long COVID. The dataset comprises 181,205 quality control (QC)-passed cells, along with clinical metadata, enabling a comparative analysis of immune cell populations before and after treatment. To ensure the technical validity of our dataset, we implemented rigorous quality checks throughout stages of the study, including sample preparation, sequencing, and bioinformatic data analysis levels. This transcriptomic data may serve as a resource to deepen our insights into the role of herbal medicines in management of long COVID.
Collapse
Affiliation(s)
- Karolina Hanna Prazanowska
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, 16499, South Korea
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Tae-Hun Kim
- Korean Medicine Clinical Trial Center, Korean Medicine Hospital, Kyung Hee University, Seoul, 02447, South Korea
| | - Jung Won Kang
- Department of Acupuncture & Moxibustion, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Young-Hee Jin
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, South Korea.
| | - Sunoh Kwon
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea.
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea.
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, 16499, South Korea.
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea.
| |
Collapse
|
39
|
Sachinidis A, Trachana M, Taparkou A, Gavriilidis G, Vasileiou V, Keisaris S, Verginis P, Adamichou C, Boumpas D, Psomopoulos F, Garyfallos A. Characterization of T-bet expressing B cells in lupus patients indicates a putative prognostic and therapeutic value of these cells for the disease. Clin Exp Immunol 2025; 219:uxaf008. [PMID: 39918986 PMCID: PMC12062963 DOI: 10.1093/cei/uxaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/02/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025] Open
Abstract
OBJECTIVE To investigate whether T-bet+ B cells, as well as age-associated B cells/ABCs (CD19 + CD21-CD11c + T-bet+) and double-negative B cells/DN (CD19 + IgD-CD27- CXCR5-T-bet+), serve as prognostic and/or therapeutic tools for systemic lupus erythematosus (SLE) in humans. METHODS Flow cytometry was used for enumerating T-bet+ B cells and ABCs/DN subsets, found in the peripheral blood of 10 healthy donors and 22 active SLE patients. Whole blood assay cultures, combined with in vitro pharmacological treatments, were performed to evaluate the effects of hydroxychloroquine, anifrolumab, and fasudil (a ROCK kinase inhibitor) on T-bet+ B cells' percentage. Moreover, previously published single-cell RNA sequencing (scRNA-seq) data were used in a meta-analysis to allow characterization of genes and pathways associated with the biology of T-bet in B cells. RESULTS T-bet+ B cells displayed an expansion in SLE patients [1.47 (1.9-0.7) vs 10.85 (37.4-3.6)]. Similarly, both ABCs and DN were found to be expanded. Interestingly, percentages of T-bet+ B cells positively correlated with patients' SLEDAI scores (rs = 0.55, P = 0.007). Cell culture experiments conducted revealed that all three agents tested can deplete T-bet + B cells (without affecting the cell viability of lymphocytes, T cells, and B cells). According to bioinformatics analyses, T-bet is highly expressed in two B-cell clusters with pathogenic characteristics for SLE (designated as atypical memory B cells and activated naïve B cells). These clusters can be targeted for therapeutic interventions. CONCLUSIONS T-bet+ B cells can serve as a putative prognostic biomarker of lupus severity. Circumstantial data suggest that these cells may promote disease pathogenesis and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Trachana
- Paediatric Immunology and Rheumatology Referral Centre, 1st Paediatric Department, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Taparkou
- Paediatric Immunology and Rheumatology Referral Centre, 1st Paediatric Department, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Gavriilidis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Vasileios Vasileiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Sofoklis Keisaris
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Christina Adamichou
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Boumpas
- 4th Department of Internal Medicine, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotis Psomopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
40
|
Gemander N, Kemlin D, Depickère S, Kelkar NS, Sharma S, Pannus P, Waegemans A, Olislagers V, Georges D, Dhondt E, Braga M, Heyndrickx L, Michiels J, Thiriard A, Lemy A, Baudoux T, Vandevenne M, Goossens ME, Matagne A, Desombere I, Ariën KK, Ackerman ME, Le Moine A, Marchant A. COVID-19 vaccine responses are influenced by distinct risk factors in naive and SARS-CoV-2 experienced hemodialysis recipients. Vaccine 2025; 44:126544. [PMID: 39608249 DOI: 10.1016/j.vaccine.2024.126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Clinical risk factors of deficient immune responses to COVID-19 mRNA vaccination in SARS-CoV-2 naive hemodialysis recipients (HDR) have already been identified. Clinical factors influencing hybrid immunity induced by SARS-CoV-2 infection and vaccination in HDR have not been reported. METHODS A comprehensive analysis of antibody (Ab) and T cell responses to two doses of BNT162b2 mRNA vaccination was performed in 103 HDR, including 75 SARS-CoV-2 naive and 28 experienced patients, and in 106 healthy controls (HC) not undergoing HD, including 40 SARS-CoV-2 naive and 66 experienced subjects. Clinical risk factors associated with lower humoral and cellular immunity were analyzed in SARS-CoV-2 naive and experienced HDR by univariate and multivariate analyses. RESULTS Naive HDR had lower neutralizing and non-neutralizing antibody responses to vaccination than naive HC; lower vaccine responses were correlated with previous transplantation, immunosuppressive treatment, corticosteroid treatment, hypoalbuminemia, older age, hypertension, and negative response to hepatitis B vaccination. In contrast, vaccine responses of SARS-CoV-2 experienced HDR were similar to those of HC and were correlated with time between infection and vaccination and with previous transplantation, but not with the other risk factors associated with lower vaccine responses in naive HDR. CONCLUSION COVID-19 vaccine responses are influenced by distinct risk factors in SARS-CoV-2 naive and experienced HDR. These observations have important implications for the understanding of vaccine-induced immunity and for the management of this vulnerable patient population.
Collapse
Affiliation(s)
- Nicolas Gemander
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Delphine Kemlin
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Stéphanie Depickère
- Platform for Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Natasha S Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Shilpee Sharma
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Pieter Pannus
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Alexandra Waegemans
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Véronique Olislagers
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Daphnée Georges
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Emilie Dhondt
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Margarida Braga
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Johan Michiels
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Anaïs Thiriard
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anne Lemy
- Department of Nephrology, Marie Curie Hospital, Charleroi, Belgium
| | - Thomas Baudoux
- Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Maria E Goossens
- Platform for Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Liège, Belgium
| | - Isabelle Desombere
- Laboratory of Immune Response, Scientific Direction Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Alain Le Moine
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium; Department of Nephrology, Dialysis and Transplantation, Erasme Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles (ULB), Brussels and ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
41
|
Guerrera G, Sambucci M, Timperi E, Picozza M, Misiti A, Placido R, Corbisiero S, D’Orso S, Termine A, Fabrizio C, Gargano F, Eleuteri S, Marchioni L, Bordoni V, Coppola L, Iannetta M, Agrati C, Borsellino G, Battistini L. Identification of an immunological signature of long COVID syndrome. Front Immunol 2025; 15:1502937. [PMID: 39845978 PMCID: PMC11750999 DOI: 10.3389/fimmu.2024.1502937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Acute COVID-19 infection causes significant alterations in the innate and adaptive immune systems. While most individuals recover naturally, some develop long COVID (LC) syndrome, marked by persistent or new symptoms weeks to months after SARS-CoV-2 infection. Despite its prevalence, there are no clinical tests to distinguish LC patients from those fully recovered. Understanding the immunological basis of LC is essential for improving diagnostic and treatment approaches. Methods We performed deep immunophenotyping and functional assays to examine the immunological profiles of LC patients, individuals with active COVID-19, recovered patients, and healthy donors. This analysis assessed both innate and adaptive immune features, identifying potential biomarkers for LC syndrome. A Binomial Generalized Linear Model (BGLM) was used to pinpoint immune features characterizing LC. Results COVID-19 patients exhibited depletion of innate immune cell subsets, including plasmacytoid and conventional dendritic cells, classical, non-classical, and intermediate monocytes, and monocyte-derived inflammatory dendritic cells. Elevated basal inflammation was observed in COVID-19 patients compared to LC patients, whose immune profiles were closer to those of healthy donors and recovered individuals. However, LC patients displayed persistent immune alterations, including reduced T cell subsets (CD4, CD8, Tregs) and switched memory B cells, similar to COVID-19 patients. Through BGLM, a unique adaptive immune signature for LC was identified, featuring memory CD8 and gd T cells with low proliferative capacity and diminished expression of activation and homing receptors. Discussion The findings highlight a unique immunological signature associated with LC syndrome, characterized by persistent adaptive immune dysregulation. While LC patients displayed recovery in innate immune profiles comparable to healthy and Recovered individuals, deficits in T cell and memory B cell populations were evident, differentiating LC from full recovery. These findings provide insights into LC pathogenesis and may support the development of diagnostic tools and targeted therapies.
Collapse
Affiliation(s)
| | - Manolo Sambucci
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Mario Picozza
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Andrea Misiti
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
- Data Science Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Roberta Placido
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Silvia D’Orso
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Andrea Termine
- Data Science Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Carlo Fabrizio
- Data Science Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Sharon Eleuteri
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Luisa Marchioni
- UOS Terapia Intensiva Postoperatoria e Assistenza Subintensiva, National Institute for Infectious Diseases IRCCS Lazzaro Spallanzani, Rome, Italy
| | - Veronica Bordoni
- Unit of Pathogen specific Immunity, Research Area of Hematology and Oncology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Luigi Coppola
- Infectious disease Clinic, Policlinico Tor Vergata of Rome, Rome, Italy
| | - Marco Iannetta
- Department of Systems Medicine, Infectious Disease Clinic, Tor Vergata University, Rome, Italy
| | - Chiara Agrati
- Unit of Pathogen specific Immunity, Research Area of Hematology and Oncology, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | - Luca Battistini
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
42
|
Wang H, Gao H, Li M, Cheng L, Zhang X, Zhang X, Zhan H, Liu Y, Wang Y, Ren J, Hu D, He F, Dai E, Li Y, Yu X. Proteome-Wide Analysis of Antibody Responses in Asymptomatic Omicron BA.2-Infected Individuals at the Amino Acid Resolution. J Proteome Res 2025; 24:189-201. [PMID: 39661118 DOI: 10.1021/acs.jproteome.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Humoral immunity plays a critical role in clearing SARS-CoV-2 during viral invasion. However, the proteome-wide characteristics of antibody responses in individuals infected with Omicron variant, both asymptomatic and symptomatic, remain poorly understood. We profiled the serum antibodies from 108 individuals, including healthy controls and those infected with Omicron BA.2, using a SARS-CoV-2 proteome microarray at the amino acid resolution. We constructed a landscape of B-cell epitopes across the SARS-CoV-2 proteome in symptomatic and asymptomatic individuals. Immunodominant epitopes were mainly derived from S, N, Nsp3, M, and ORF3a proteins, with some epitopes overlapping with T-cell epitopes. Using machine learning, we identified a proteomic signature capable of distinguishing asymptomatic individuals from healthy controls in both training and validation cohorts, achieving AUCs of 0.988 and 0.857, respectively. These findings provide crucial immunological insights into BA.2 infections of the Omicron and have implications for future COVID-19 diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hongye Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Mansheng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xin Zhang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Xiaomei Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Haoting Zhan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yongmei Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yuling Wang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Jing Ren
- ProteomicsEra Medical Co., Ltd, Beijing 102206, China
| | - Di Hu
- ProteomicsEra Medical Co., Ltd, Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang 050021, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xiaobo Yu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
43
|
Apostolidis SA, Locci M. SLE B cells take an extrafollicular detour after mRNA vaccination. Nat Immunol 2025; 26:4-6. [PMID: 39730724 DOI: 10.1038/s41590-024-02035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Affiliation(s)
- Sokratis A Apostolidis
- Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michela Locci
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Faliti CE, Van TTP, Anam FA, Cheedarla N, Williams ME, Mishra AK, Usman SY, Woodruff MC, Kraker G, Runnstrom MC, Kyu S, Sanz D, Ahmed H, Ghimire M, Morrison-Porter A, Quehl H, Haddad NS, Chen W, Cheedarla S, Neish AS, Roback JD, Antia R, Hom J, Tipton CM, Lindner JM, Ghosn E, Khurana S, Scharer CD, Khosroshahi A, Lee FEH, Sanz I. Disease-associated B cells and immune endotypes shape adaptive immune responses to SARS-CoV-2 mRNA vaccination in human SLE. Nat Immunol 2025; 26:131-145. [PMID: 39533072 PMCID: PMC11695260 DOI: 10.1038/s41590-024-02010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 mRNA vaccination has reduced effectiveness in certain immunocompromised individuals. However, the cellular mechanisms underlying these defects, as well as the contribution of disease-induced cellular abnormalities, remain largely unexplored. In this study, we conducted a comprehensive serological and cellular analysis of patients with autoimmune systemic lupus erythematosus (SLE) who received the Wuhan-Hu-1 monovalent mRNA coronavirus disease 2019 vaccine. Our findings revealed that patients with SLE exhibited reduced avidity of anti-receptor-binding domain antibodies, leading to decreased neutralization potency and breadth. We also observed a sustained anti-spike response in IgD-CD27- 'double-negative (DN)' DN2/DN3 B cell populations persisting during memory responses and with greater representation in the SLE cohort. Additionally, patients with SLE displayed compromised anti-spike T cell immunity. Notably, low vaccine efficacy strongly correlated with higher values of a newly developed extrafollicular B and T cell score, supporting the importance of distinct B cell endotypes. Finally, we found that anti-BAFF blockade through belimumab treatment was associated with poor vaccine immunogenicity due to inhibition of naive B cell priming and an unexpected impact on circulating T follicular helper cells.
Collapse
Affiliation(s)
- Caterina E Faliti
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Trinh T P Van
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Fabliha A Anam
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - M Elliott Williams
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ashish Kumar Mishra
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD, USA
| | - Sabeena Y Usman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | | | - Martin C Runnstrom
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Shuya Kyu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Daniel Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Midushi Ghimire
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Andrea Morrison-Porter
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Hannah Quehl
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Natalie S Haddad
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
- MicroB-plex, Inc., Atlanta, GA, USA
| | - Weirong Chen
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Suneethamma Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jennifer Hom
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | | | - Eliver Ghosn
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Arezou Khosroshahi
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA.
| |
Collapse
|
45
|
Hu H, Zhou F, Ma X, Brokstad KA, Kolmar L, Girardot C, Benes V, Cox RJ, Merten CA. Targeted barcoding of variable antibody domains and individual transcriptomes of the human B-cell repertoire using Link-Seq. PNAS NEXUS 2025; 4:pgaf006. [PMID: 39867668 PMCID: PMC11759286 DOI: 10.1093/pnasnexus/pgaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025]
Abstract
Here, we present Link-Seq, a highly efficient droplet microfluidic method for combined sequencing of antibody-encoding genes and the transcriptome of individual B cells at large scale. The method is based on 3' barcoding of the transcriptome and subsequent single-molecule PCR in droplets, which freely shift the barcode along specific gene regions, such as the antibody heavy- and light-chain genes. Using the immune repertoire of COVID-19 patients and healthy donors as a model system, we obtain up to 91.7% correctly paired immunoglobulin heavy and light chains. Furthermore, we map the V(D)J usage and obtain sensitivities comparable with the current gold-standard 10× Genomics commercial systems while offering full flexibility in experimental setup and significant cost savings. A further unique feature of Link-Seq is the possibility of barcoding multiple target genes in a site-specific manner. Based on the open character of the platform and its conceptual advantages, we expect Link-Seq to become a versatile tool for single-cell analysis, especially for applications requiring additional processing steps that cannot be implemented on commercially available platforms.
Collapse
Affiliation(s)
- Hongxing Hu
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117 Germany
| | - Fan Zhou
- Department of Clinical Sciences, Influenza Centre, University of Bergen, Bergen, N5021, Norway
| | - Xiaoli Ma
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Karl Albert Brokstad
- Department of Clinical Sciences, Influenza Centre, University of Bergen, Bergen, N5021, Norway
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences (HVL), Bergen, N5020, Norway
| | - Leonie Kolmar
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Charles Girardot
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117 Germany
| | - Vladimir Benes
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117 Germany
| | - Rebecca J Cox
- Department of Clinical Sciences, Influenza Centre, University of Bergen, Bergen, N5021, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, N5021, Norway
| | - Christoph A Merten
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Ayers KN, Lauver MD, Alexander KM, Jin G, Paraiso K, Ochetto A, Garg S, Goetschius DJ, Hafenstein SL, Wang JCY, Lukacher AE. The CD4 T cell-independent IgG response during persistent virus infection favors emergence of neutralization-escape variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629980. [PMID: 39763786 PMCID: PMC11703251 DOI: 10.1101/2024.12.22.629980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
How changes in the quality of anti-viral antibody (Ab) responses due to pre-existing or acquired CD4 T cell insufficiency affect virus evolution during persistent infection are unknown. Using mouse polyomavirus (MuPyV), we found that CD4 T cell depletion before infection results in short-lived plasma cells secreting low-avidity antiviral IgG with limited BCR diversity and weak virus-neutralizing ability. CD4 T cell deficiency during persistent infection incurs a shift from a T-dependent (TD) to T-independent (TI) Ab response, resembling the pre-existing TI Ab response. CD4 T cell loss before infection or during persistent infection is conducive for emergence of Ab-escape variants. Cryo-EM reconstruction of complexes of MuPyV virions with polyclonal IgG directly from infected mice with pre-existing or acquired CD4 T cell deficiency enabled visualization of shortfalls in TI IgG binding. By debilitating the antiviral IgG response, CD4 T cell deficiency sets the stage for outgrowth of variant viruses resistant to neutralization.
Collapse
Affiliation(s)
- Katelyn N Ayers
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Matthew D Lauver
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kalynn M Alexander
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Alyssa Ochetto
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sonal Garg
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
47
|
Hirano H, Asada H. Exponential decline, ceiling effect, downregulation, and T-cell response in immunoglobulin G antibody levels after messenger RNA vaccine boosters: a case report. J Med Case Rep 2024; 18:631. [PMID: 39707550 DOI: 10.1186/s13256-024-04889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/09/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Vaccine protection against severe acute respiratory syndrome coronavirus 2 infection reduces gradually over time, requiring administration of updated boosters. However, long-term immune response following up to the sixth dose of the messenger RNA vaccine has not been well studied. CASE PRESENTATION We longitudinally determined anti-spike protein immunoglobulin G antibody levels in a 69-year-old Japanese man 76 times (first to sixth dose) to investigate their dynamics. Regarding the messenger RNA BNT162b2 vaccine, first to fourth doses were identical monovalent vaccines, and fifth and sixth doses were identical bivalent vaccines. T-cell responses after fourth and fifth doses were studied using T-SPOT. Immunoglobulin G levels peaked at 1-2 weeks after second to sixth dose, declining exponentially after each dose. The decline was approximated using the formula f (t) = Ae-t/τ + C. Time constant τ increased with each booster vaccination, indicating a decreasing rate of antibody titer decay with increasing number of doses. Baseline and peak immunoglobulin G levels were similar in the second and third dose. Conversely, baseline immunoglobulin G levels after the fourth dose increased over fivefold over the second and third dose; however, peak immunoglobulin G levels after fourth dose decreased to 60% of those after the third dose. Baseline immunoglobulin G levels after the sixth dose increased 1.4-fold over the fifth dose; however, peak immunoglobulin G levels after the sixth dose decreased to 56% of those after the fifth dose. Dynamics of T-cell responses differed from those of immunoglobulin G antibodies. T cell responses increased gradually; however, their peak level was difficult to determine. CONCLUSIONS Ceiling effect or downregulation of peak immunoglobulin G levels was clearly observed after messenger RNA booster vaccination. After peaking, the IgG level declined exponentially, and the rate of decay decreased with each subsequent booster. Although this was a single-case study, this data may provide a generalized mathematical decay model for humoral immunity in healthy older adults. Moreover, our study provides insights into the immunogenicity after booster vaccination with messenger RNA vaccines.
Collapse
Affiliation(s)
- Harukazu Hirano
- Koyo Seikyo Clinic, Fukui Health Cooperative Association, 3-9-23 Koyo, Fukui, 910-0026, Japan.
| | - Hiroshi Asada
- Department of Applied Physics, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
48
|
Kuijper LH, Kreher C, Elias G, Claireaux M, Kerster G, Bos AV, Duurland MC, Konijn VAL, Paul AGA, de Jong N, de Jongh R, Steenhuis M, Garcia-Vallejo JJ, van Gils MJ, Kuijpers TW, Eftimov F, Rispens T, van der Schoot CE, van Ham SM, ten Brinke A. Longevity of antibody responses is associated with distinct antigen-specific B cell subsets early after infection. Front Immunol 2024; 15:1505719. [PMID: 39742271 PMCID: PMC11686410 DOI: 10.3389/fimmu.2024.1505719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Upon infection, T cell-driven B cell responses in GC reactions induce memory B cells and antibody-secreting cells that secrete protective antibodies. How formation of specifically long-lived plasma cells is regulated via the interplay between specific B and CD4+ T cells is not well understood. Generally, antibody levels decline over time after clearance of the primary infection. Method In this study, convalescent individuals with stable RBD antibody levels (n=14, "sustainers") were compared with donors (n=13) with the greatest antibody decline from a cohort of 132. To investigate the role of the cellular immune compartment in the maintenance of antibody levels, SARS-CoV-2-specific responses at 4 to 6 weeks post-mild COVID-19 infection were characterized using deep immune profiling. Results Both groups had similar frequencies of total SARS-CoV-2-specific B and CD4+ T cells. Sustainers had fewer Spike-specific IgG+ memory B cells early after infection and increased neutralizing capacity of RBD antibodies over time, unlike the declining group. However, declining IgG titers correlated with lower frequency of Spike-specific CD4+ T cells. Conclusion These data suggest that "sustainers" have unique dynamics of GC reactions, yield different outputs of terminally differentiating cells, and improve the quality of protective antibodies over time. This study helps identify factors controlling formation of long-lived PC and sustained antibody responses.
Collapse
Affiliation(s)
- Lisan H. Kuijper
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christine Kreher
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - George Elias
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mathieu Claireaux
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Gius Kerster
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Amélie V. Bos
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mariël C. Duurland
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Veronique A. L. Konijn
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alberta G. A. Paul
- Cytek Biosciences, Inc., Fremont, CA, United States
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, Netherlands
| | - Nina de Jong
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rivka de Jongh
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maurice Steenhuis
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Juan J. Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity and Cancer Center Amsterdam, Amsterdam University Medical Centers, Free University of Amsterdam, Amsterdam, Netherlands
| | - Marit J. van Gils
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Department of Neurology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - C. Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S. Marieke van Ham
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
49
|
Aubergeon L, Felten R, Gottenberg JE, Dumortier H, Monneaux F. Subset of DN Memory B Cells Expressing Low Levels of Inhibitory Receptor BTLA Is Enriched in SLE Patients. Cells 2024; 13:2063. [PMID: 39768154 PMCID: PMC11674271 DOI: 10.3390/cells13242063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The dialogue between T and B cells can be regulated by different mechanisms, such as co-inhibitory receptors, which therefore play a crucial role in preventing autoimmune diseases such as systemic lupus erythematosus (SLE). B and T lymphocyte attenuator (BTLA) is a co-inhibitory receptor expressed on many myeloid and lymphoid cells. Although peripheral B cells express a very high amount of BTLA, previous works in the context of autoimmunity mainly focused on T cells, and whether BTLA expression on B cells plays a role in the lupus pathogenesis is still unclear. In the present study, we examine the expression of BTLA, as well as its ligand HVEM (Herpesvirus Entry Mediator), on various B cell subsets in lupus patients compared to healthy controls (HCs). We evidenced the existence of double-negative (DN; IgD-CD27-) memory B cells expressing very low levels of BTLA, which are enhanced in active lupus patients. An in-depth analysis revealed that these BTLAlow DN cells mainly correspond to the newly reported DN3 B cell subset, originally described in the context of SARS-CoV2 infection. These cells display an activated and antibody-secreting cell phenotype, and we propose that their low BTLA expression may favor their expansion and rapid differentiation into plasmablasts in lupus patients.
Collapse
Affiliation(s)
- Lucie Aubergeon
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
| | - Renaud Felten
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
- Rheumatology Department, National Reference Center for Autoimmune Diseases, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Jacques-Eric Gottenberg
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
- Rheumatology Department, National Reference Center for Autoimmune Diseases, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Hélène Dumortier
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
| | - Fanny Monneaux
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
| |
Collapse
|
50
|
Faliti CE, Mesina M, Choi J, Bélanger S, Marshall MA, Tipton CM, Hicks S, Chappa P, Cardenas MA, Abdel-Hakeem M, Thinnes TC, Cottrell C, Scharer CD, Schief WR, Nemazee D, Woodruff MC, Lindner JM, Sanz I, Crotty S. Interleukin-2-secreting T helper cells promote extra-follicular B cell maturation via intrinsic regulation of a B cell mTOR-AKT-Blimp-1 axis. Immunity 2024; 57:2772-2789.e8. [PMID: 39612915 PMCID: PMC11675998 DOI: 10.1016/j.immuni.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/03/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024]
Abstract
During antigen-driven responses, B cells can differentiate at extra-follicular (EF) sites or initiate germinal centers (GCs) in processes that involve interactions with T cells. Here, we examined the roles of interleukin (IL)-2 secreted by T helper (Th) cells during cognate interactions with activated B cells. IL-2 boosted the expansion of EF plasma cells and the secretion of low-mutated immunoglobulin G (IgG). Conversely, genetically disrupting IL-2 expression by CD4+ T cells, or IL-2 receptor (CD25) expression by B cells, promoted B cell entry into the GC and high-affinity antibody secretion. Mechanistically, IL-2 induced early mTOR activity, expression of the transcriptional regulator IRF4, and metabolic changes in B cells required to form Blimp-1-expressing plasma cells. Thus, T cell help via IL-2 regulates an mTOR-AKT-Blimp-1 axis in activated B cells, providing insight into the mechanisms that determine EF versus GC fates and positioning IL-2 as an early switch controlling plasma cell versus GC B cell commitment.
Collapse
Affiliation(s)
- Caterina E Faliti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Maria Mesina
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jinyong Choi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Simon Bélanger
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; VIR Biotechnology, San Francisco, CA 94158, USA
| | - Monique A Marshall
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Sakeenah Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Prashanti Chappa
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Theresa C Thinnes
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA
| | - Christopher Cottrell
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - William R Schief
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - David Nemazee
- Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | | | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA; Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|