1
|
Zhang X, Liu H, Cai P, Huang Z, Ma J, Luo L. Mdka produced by the activated HSCs drives bipotential progenitor cell redifferentiation during zebrafish biliary-mediated liver regeneration. Hepatology 2025; 81:1400-1415. [PMID: 39188045 DOI: 10.1097/hep.0000000000001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND AIMS After extensive hepatocyte loss or impaired hepatocyte proliferation, liver regeneration occurs through trans-differentiation of biliary epithelial cells (BECs), which involves dedifferentiation of biliary epithelial cells into bipotential progenitor cells (BP-PCs) and subsequent redifferentiation of BP-PCs into nascent hepatocytes and biliary epithelial cells. Despite several studies on the redifferentiation process of BP-PCs into nascent hepatocytes, the contributions of nonparenchymal cells in this process remain poorly understood. APPROACH AND RESULTS Using the zebrafish severe liver injury model, we observed specific expression of midkine a (Mdka) in the activated HSCs through single-cell analyses and fluorescence in situ hybridization. Genetic mutation, pharmacological inhibition, whole-mount in situ hybridizations, and antibody staining demonstrated an essential role of mdka in the redifferentiation of BP-PCs during liver regeneration. Notably, we identified Nucleolin (Ncl), the potential receptor for Mdka, specifically expressed in BP-PCs, and its mutant recapitulated the mdka mutant phenotypes with impaired BP-PC redifferentiation. Mechanistically, the Mdka-Ncl axis drove Erk1 activation in BP-PCs during liver regeneration. Furthermore, overexpression of activated Erk1 partially rescued the defective liver regeneration in the mdka mutant. CONCLUSIONS The activated HSCs produce Mdka to drive the redifferentiation process of BP-PCs through activating Erk1 during the biliary-mediated liver regeneration, implying previously unappreciated contributions of nonparenchymal cells to this regeneration process.
Collapse
Affiliation(s)
- Xintao Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Huijuan Liu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Pengcheng Cai
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianlong Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Dai H, Yu Z, Zhao Y, Jiang K, Hang Z, Huang X, Ma H, Wang L, Li Z, Wu M, Fan J, Luo W, Qin C, Zhou W, Nie J. Integrating machine learning models with multi-omics analysis to decipher the prognostic significance of mitotic catastrophe heterogeneity in bladder cancer. Biol Direct 2025; 20:56. [PMID: 40259382 DOI: 10.1186/s13062-025-00650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/06/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Mitotic catastrophe is well-known as a major pathway of endogenous tumor death, but the prognostic significance of its heterogeneity regarding bladder cancer (BLCA) remains unclear. METHODS Our study focused on digging deeper into the TCGA and GEO databases. Through differential expression analysis as well as Weighted Gene Co-expression Network Analysis (WGCNA), we identified dysregulated mitotic catastrophe-associated genes, followed by univariate cox regression as well as ten machine learning algorithms to construct robust prognostic models. Based on prognostic stratification, we revealed intergroup differences by enrichment analysis, immune infiltration assessment, and genomic variant analysis. Subsequently by multivariate cox regression as well as survshap(t) model we screened core prognostic gene and identified it by Mendelian randomization. Integration of qRT-PCR, immunohistochemistry, and single-cell analysis explored the core gene expression landscape. In addition, we explored the ceRNA axis containing upstream non-coding RNAs after detailed analysis of pathway activation, immunoregulation, and methylation functions of the core genes. Finally, we performed drug screening and molecular docking experiments based on the core gene in the DSigDB database. RESULTS Our efforts culminated in the establishment of an accurate prognostic model containing 16 genes based on Coxboost as well as the Random Survival Forest (RSF) algorithm. Detailed analysis from multiple perspectives revealed a strong link between model scores and many key indicators: pathway activation, immune infiltration landscape, genomic variant landscape, and personalized treatment. Subsequently ANLN was identified as the core of the model, and prognostic analysis revealed that it portends a poor prognosis, further corroborated by Mendelian randomization analysis. Interestingly, ANLN expression was significantly upregulated in cancer cells and specifically clustered in epithelial cells and provided multiple pathways to mediate cell division. In addition, ANLN regulated immune infiltration patterns and was also inseparable from overall methylation levels. Further analysis revealed potential regulation of the MIR4435-2HG, hsa-miR-15a-5p, ANLN axis and highlighted a range of potential therapeutic agents including Phytoestrogens. CONCLUSION The model we developed was a powerful predictive tool for BLCA prognosis and revealed the impact of mitotic catastrophe heterogeneity on BLCA in multiple dimensions, which then guided clinical decision-making. Furthermore, we highlighted the potential of ANLN as a BLCA target.
Collapse
Affiliation(s)
- Haojie Dai
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zijie Yu
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Urology, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - You Zhao
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ke Jiang
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Zhenyu Hang
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xin Huang
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hongxiang Ma
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Li Wang
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Zihao Li
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ming Wu
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Jun Fan
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Weiping Luo
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chao Qin
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China.
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Urology, The First Affliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Weiwen Zhou
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China.
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jun Nie
- Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China.
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Zheng W, Ruan Z, Chen Y, Li X, Yao Z, Wei G. ZNF280A promotes malignant melanoma development through regulating cell proliferation, apoptosis, and cell cycle. Discov Oncol 2025; 16:563. [PMID: 40251414 PMCID: PMC12008104 DOI: 10.1007/s12672-025-02347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
Malignant melanoma (MM) is the most lethal skin cancer globally, with a high incidence of over 300,000 per year. Though constant efforts have been made to elucidate the mechanisms of MM, we are still away from a complete understanding. Recently, the essential role of zinc finger proteins in tumor development was covered, but none of these roles were explored in MM. Herein, we first identified a zinc finger protein ZNF280A that serves as the risk factor in MM prognosis and acted as a driver of MM development in vitro and in vivo. The level of ZNF280A was significantly higher in the 130 MM tissues than in 18 para-carcinoma tissues. Knockdown of ZNF280A contributed to the inhibition of cell proliferation, migration, and invasion in MM. Furthermore, the mechanism of increased apoptosis and stagnant cell cycle may be associated with p53 expression regulated by ZNF280A. In conclusion, our study first displayed that ZNF280A may promote the development of MM by regulating cell proliferation, migration, invasion, cell cycle, and apoptosis.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Dermatology and Venerology, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, China
| | - Zhuren Ruan
- Department of Dermatology and Venerology, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, China
| | - Yuanyuan Chen
- Department of Dermatology and Venerology, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, China
| | - Xianghui Li
- Department of Dermatology and Venerology, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, China.
| | - Zhijian Yao
- Department of Dermatology and Venerology, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, China.
| | - Gao Wei
- Department of Dermatology and Venerology, the First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong RD, Nanning, 530021, China.
| |
Collapse
|
4
|
Su Q, Fang L, Li C, Yue L, Yun Z, Zhang H, Liu Q, Ma R, Zhong P, Liu H, Lou Z, Chen Z, Tan Y, Hao X, Wu C. Multi-omics insights into the roles of CCNB1, PLK1, and HPSE in breast cancer progression: implications for prognosis and immunotherapy. Discov Oncol 2025; 16:471. [PMID: 40186712 PMCID: PMC11972280 DOI: 10.1007/s12672-025-02282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND This study examines the roles of Cyclin B1 (CCNB1), Polo-Like Kinase 1 (PLK1), and Heparanase (HPSE) in breast cancer progression using a multi-omics approach. These genes are known for their involvement in various cancer-related processes, but their precise contributions to breast cancer remain unclear. METHODS We employed an integrative analysis combining transcriptomics, proteomics, DNA methylation profiling, immune infiltration analysis, and single-cell RNA sequencing to investigate the expression patterns, regulatory mechanisms, and functional impacts of CCNB1, PLK1, and HPSE in breast cancer. Functional assays using si-RNA knockdown of CCNB1 and PLK1 were performed to assess their roles in cell proliferation. RESULTS CCNB1, PLK1, and HPSE are upregulated in breast tumors at the mRNA and protein levels. CCNB1 and PLK1 promote tumor growth and metastasis, while HPSE is linked to immune pathways. DNA methylation in BRCA correlates with prognosis, with PLK1 alterations protective for recurrence-free survival. High expression of these genes worsens prognosis, with CCNB1 as a risk factor for overall survival. Immune infiltration analysis associates these genes with tumor-infiltrating immune cells, highlighting HPSE's immunotherapeutic potential. Single-cell RNA sequencing confirms CCNB1 and PLK1 drive malignant proliferation and an immunosuppressive environment. Functional assays demonstrated that silencing CCNB1 and PLK1 significantly reduced breast cancer cell proliferation, indicating regulatory interactions among PLK1, CCNB1, and MKI67. CONCLUSIONS This study provides evidence that CCNB1, PLK1, and HPSE are key players in breast cancer progression and potential biomarkers for prognosis. Furthermore, their roles in immune regulation suggest they could be promising targets for immunotherapy.
Collapse
Affiliation(s)
- Qisheng Su
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Leiming Fang
- Faculty of Medicine, Dalian University of Technology, Dalian, China
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Chaofan Li
- Graduate School of Hebei North University, Zhangjiakou, China
- Department of Tuberculosis Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liang Yue
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Zhimin Yun
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Huiqiang Zhang
- Breast Cancer Department of Oncology Institute, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Liu
- Faculty of Medicine, Dalian University of Technology, Dalian, China
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Ruilin Ma
- Faculty of Medicine, Dalian University of Technology, Dalian, China
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Pengfei Zhong
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - He Liu
- Faculty of Medicine, Dalian University of Technology, Dalian, China
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Zhangrong Lou
- Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Zhi Chen
- Department of Tuberculosis Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingxia Tan
- Department of Stem Cell and Regenerative Medicine, Institute of Health Service and Transfusion Medicine, Beijing, China.
| | - Xiaopeng Hao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
- Breast Cancer Department of Oncology Institute, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Chengjun Wu
- School of Health and Life Sciences, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qinadao, 266113, China.
| |
Collapse
|
5
|
Catena X, Contreras-Alcalde M, Juan-Larrea N, Cerezo-Wallis D, Calvo TG, Mucientes C, Olmeda D, Suárez J, Oterino-Sogo S, Martínez L, Megías D, Sancho D, Tejedo C, Frago S, Dudziak D, Seretis A, Stoitzner P, Soengas MS. Systemic rewiring of dendritic cells by melanoma-secreted midkine impairs immune surveillance and response to immune checkpoint blockade. NATURE CANCER 2025:10.1038/s43018-025-00929-y. [PMID: 40155713 DOI: 10.1038/s43018-025-00929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/11/2025] [Indexed: 04/01/2025]
Abstract
Cutaneous melanomas express a high number of potential neoepitopes, yet a substantial fraction of melanomas shift into immunologically cold phenotypes. Using cellular systems, mouse models and large datasets, we identify the tumor-secreted growth factor midkine (MDK) as a multilayered inhibitor of antigen-presenting cells. Mechanistically, MDK acts systemically in primary tumors, lymph nodes and the bone marrow, promoting a STAT3-mediated impairment of differentiation, activation and function of dendritic cells (DCs), particularly, conventional type 1 DCs (cDC1s). Furthermore, MDK rewires DCs toward a tolerogenic state, impairing CD8+ T cell activation. Downregulating MDK improves DC-targeted vaccination, CD40 agonist treatment and immune checkpoint blockade in mouse models. Moreover, we present an MDK-associated signature in DCs that defines poor prognosis and immune checkpoint blockade resistance in individuals with cancer. An inverse correlation between MDK- and cDC1-associated signatures was observed in a variety of tumor types, broadening the therapeutic implications of MDK in immune-refractory malignancies.
Collapse
Affiliation(s)
- Xavier Catena
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Contreras-Alcalde
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Naiara Juan-Larrea
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniela Cerezo-Wallis
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Yale University School of Medicine, New Haven, CT, USA
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cynthia Mucientes
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigaciones Biomédicas Sols-Morreale, Madrid, Spain
| | - Javier Suárez
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sergio Oterino-Sogo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diego Megías
- Advanced Optical Microscopy Unit, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - David Sancho
- Immunobiology Lab, Centro Nacional de Investigación Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Susana Frago
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diana Dudziak
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
- Comprehensive Cancer Center Central Germany Jena/Leipzig, Jena, Germany
| | - Athanasios Seretis
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
6
|
Strijker JGM, Pascual-Pasto G, Grothusen GP, Kalmeijer YJ, Kalaitsidou E, Zhao C, McIntyre B, Matlaga S, Visser LL, Barisa M, Himsworth C, Shah R, Muller H, Schild LG, Hains PG, Zhong Q, Reddel RR, Robinson PJ, Catena X, Soengas MS, Margaritis T, Dekker FJ, Anderson J, Molenaar JJ, Bosse KR, Wu W, Wienke J. Blocking MIF secretion enhances CAR T-cell efficacy against neuroblastoma. Eur J Cancer 2025; 218:115263. [PMID: 39908652 PMCID: PMC11884407 DOI: 10.1016/j.ejca.2025.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cell therapy is a promising and innovative cancer therapy. However, immunosuppressive tumor microenvironments (TME) limit T cell persistence and durable efficacy. Here, we aimed to identify and target immunosuppressive factors in the TME of neuroblastoma, a pediatric extracranial solid tumor, to improve CAR-T efficacy. METHODS Immunosuppressive factors were identified using a multi-omics approach, including single-cell RNA sequencing (scRNA-seq) of 24 neuroblastoma tumors, published bulk-RNA sequencing datasets, and mass-spectrometry of patient-derived tumoroid models. Candidate targets were validated with functional assays in vitro and in vivo. Protein degradation of the top immunosuppressive target by PROTAC technology was used to evaluate the effect on CAR T-cell activity. RESULTS ScRNA-seq revealed 13 immunosuppressive interactions in the TME of neuroblastoma, two effectors of which, Midkine (MDK) and Macrophage Migration Inhibitory Factor (MIF), were validated as candidate targets across multiple published datasets. Both factors were among the top 6 % of most abundantly secreted factors by patient-derived tumoroid models, substantiating their potential relevance in the TME. In vitro and in vivo functional assays confirmed MIF to be a potent inhibitor of CAR T-cell activation and killing capacity. To translate these findings into a potentially clinically applicable treatment, we explored MIF targeting by PROTAC technology, which significantly enhanced activation of CAR T-cells targeting GPC2 and B7-H3. CONCLUSION By defining the immunosuppressive effects of neuroblastoma's TME on CAR T-cell efficacy, revealing the pivotal role of MIF, we provide an analytic pipeline and therapeutic strategy for improving adoptive cell therapies for this pediatric malignancy and potentially other solid tumors.
Collapse
Affiliation(s)
| | - Guillem Pascual-Pasto
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Grant P Grothusen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | | | - Elisavet Kalaitsidou
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A⁎STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chunlong Zhao
- Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Brendan McIntyre
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Stephanie Matlaga
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Lindy L Visser
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marta Barisa
- UCL Great Ormond St Institute of Child Health, London, UK
| | | | - Rivani Shah
- UCL Great Ormond St Institute of Child Health, London, UK
| | - Henrike Muller
- UCL Great Ormond St Institute of Child Health, London, UK
| | - Linda G Schild
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Peter G Hains
- ProCan, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Qing Zhong
- ProCan, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Roger R Reddel
- ProCan, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Xavier Catena
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen, Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - John Anderson
- UCL Great Ormond St Institute of Child Health, London, UK
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pharmaceutical Sciences, University Utrecht, Utrecht, the Netherlands
| | - Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A⁎STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore; Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117543, Singapore; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Wang C, Li J, Chen J, Wang Z, Zhu G, Song L, Wu J, Li C, Qiu R, Chen X, Zhang L, Li W. Multi-omics analyses reveal biological and clinical insights in recurrent stage I non-small cell lung cancer. Nat Commun 2025; 16:1477. [PMID: 39929832 PMCID: PMC11811181 DOI: 10.1038/s41467-024-55068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/26/2024] [Indexed: 02/13/2025] Open
Abstract
Post-operative recurrence rates of stage I non-small cell lung cancer (NSCLC) range from 20% to 40%. Nonetheless, the molecular mechanisms underlying recurrence hitherto remain largely elusive. Here, we generate genomic, epigenomic and transcriptomic profiles of paired tumors and adjacent tissues from 122 stage I NSCLC patients, among which 57 patients develop recurrence after surgery during follow-up. Integrated analyses illustrate that the presence of predominantly solid or micropapillary histological subtypes, increased genomic instability, and APOBEC-related signature are associated with recurrence. Furthermore, TP53 missense mutation in DNA-binding domain could contribute to shorter time to recurrence. DNA hypomethylation is pronounced in recurrent NSCLC, and PRAME is the significantly hypomethylated and overexpressed gene in recurrent lung adenocarcinoma (LUAD). Mechanistically, hypomethylation at TEAD1 binding site facilitates the transcriptional activation of PRAME. Inhibition of PRAME restrains the tumor metastasis via downregulation of epithelial-mesenchymal transition-related genes. We also identify that enrichment of AT2 cells with higher copy number variation burden, exhausted CD8 + T cells and Macro_SPP1, along with the reduced interaction between AT2 and immune cells, is essential for the formation of ecosystem in recurrent LUAD. Finally, multi-omics clustering could stratify the NSCLC patients into 4 subclusters with varying recurrence risk and subcluster-specific therapeutic vulnerabilities. Collectively, this study constitutes a promising resource enabling insights into the biological mechanisms and clinical management for post-operative recurrence of stage I NSCLC.
Collapse
Affiliation(s)
- Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jingwei Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyao Chen
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhoufeng Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guonian Zhu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lujia Song
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayang Wu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changshu Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Qiu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, China
| | - Xuelan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Liu YJ, Liu Q, Li JQ, Ye QW, Yin SY, Liu C, Liu SL, Zou X, Ji J. Comprehensive Breslow thickness (BT)-based analysis to identify biological mechanisms associated with melanoma pathogenesis. Int Immunopharmacol 2025; 147:114065. [PMID: 39809103 DOI: 10.1016/j.intimp.2025.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Breslow thickness (BT), a parameter measuring the depth of invasion of abnormally proliferating melanocytes, is a key indicator of melanoma severity and prognosis. However, the mechanisms underlying the increase in BT remain elusive. Utilizing data from The Cancer Genome Atlas (TCGA) human skin cutaneous melanoma (SKCM), we identified a set of BT-related molecules and analyzed their expression and genomic heterogeneity across pan-cancerous and normal tissues. Through consensus clustering, we identified two distinct BT phenotypes in melanoma, which exhibited significant differences in clinical, genomic, and immune infiltration characteristics. High BT molecular expression was associated with reduced CD8+ T cell infiltration and poor immunotherapy response, potentially mediated by the Macrophage Migration Inhibitory Factor (MIF) signaling pathway. In vitro experiments confirmed that BT molecules, including TRIM29, SERPINB5, and RAB25, promoted melanoma development through distinct mechanisms. Notably, fibroblast-derived TRIM29 and B-cell-derived RAB25 interacted with SPP1+ monocytes/macrophages via different pathways. Our findings suggest that genomic variations leading to imbalanced expression of BT molecules across cancers contribute to increased BT, which is closely linked to an immunosuppressive microenvironment. The involvement of multiple cell types and complex intercellular interactions underscores the importance of evaluating dynamic cellular crosstalk in the tumor microenvironment to better understand BT increases and develop more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Qing Liu
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Jia-Qi Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qian-Wen Ye
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Sheng-Yan Yin
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Second Chinese Medicine Hospital, Nanjing, Jiangsu 210029, China
| | - Cong Liu
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Shen-Lin Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jin Ji
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
9
|
Münter D, de Faria FW, Richter M, Aranda-Pardos I, Hotfilder M, Walter C, Paga E, Inserte C, Albert TK, Roy R, Rahman S, Riedel NC, Müller V, Pascher A, Wiebe K, Schmid I, Vokuhl C, Winkler B, Jüttner E, Vieth S, Mücke U, Kluiver TA, Peng WC, Rossig C, Schlué J, Madadi-Sanjani O, Sandmann S, Hartmann W, A-Gonzalez N, Soehnlein O, Kerl K. Multiomic analysis uncovers a continuous spectrum of differentiation and Wnt-MDK-driven immune evasion in hepatoblastoma. J Hepatol 2025:S0168-8278(25)00068-6. [PMID: 39900120 DOI: 10.1016/j.jhep.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND & AIMS Hepatoblastoma is the most common pediatric cancer of the liver, with the majority of cases displaying activating mutations in the Wnt/β-catenin pathway. Understanding the complex milieu of the tumor microenvironment has resulted in promising new therapies for adult cancers, but similar approaches in pediatric cancers are still lacking. We aimed to provide a comprehensive analysis of the tumor microenvironment of hepatoblastoma, unveiling its spatial architecture and key signaling mechanisms. METHODS Single-cell/-nucleus RNA-sequencing (RNA-seq) (n = 15), spatial transcriptomics (n = 22), and multiplex immunofluorescence stainings (n = 7) of treated, untreated, and metastasized pediatric hepatoblastomas were performed. An RNA-seq validation cohort (n = 110) including hepatoblastoma, non-tumor and fetal liver samples and single-cell RNA-seq data of healthy immune cells were used for further analysis. Western blotting and RNA-seq of hepatoblastoma and macrophage cell lines were conducted for experimental validation. RESULTS Of four identified transcriptional tumor programs, "Developmental" and "Metabolic" reflected different hepatic differentiation stages, while "Cycling" was enriched in undifferentiated cells and relapsed samples, and "Intermediate" displayed high activity in samples from patients with poor outcomes. We discovered an increased ratio of anti-to pro-inflammatory immune cells and evidence of immune exclusion from tumor areas. Wnt-responsive upregulation of the immunomodulator midkine in hepatoblastoma cells was associated with a change in macrophage phenotype, which could be partially reversed through midkine inhibition. CONCLUSIONS Hepatoblastoma cells exist along a continuous spectrum of hepatic differentiation and inhabit an altered immune environment. Wnt signaling augments midkine expression, which appears to be involved in shaping the immune environment by modifying macrophages to enable immune evasion, thereby providing a potential therapeutic target. IMPACT AND IMPLICATIONS Despite hepatoblastoma being the most common pediatric liver cancer, there has been a critical knowledge gap in understanding how the tumor microenvironment and immune landscape contribute to disease progression. Our novel findings, revealing a continuous spectrum of tumor differentiation states and Wnt-MDK-driven immune evasion, are significant for pediatric oncology clinicians and researchers, improving our functional understanding of the immune environment of hepatoblastoma. The identification of midkine as a tumor-specific immunomodulator suggests a potential for developing new targeted therapies, though further mechanistic and practical validation would be needed to realize clinical translation of these findings.
Collapse
Affiliation(s)
- Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | | | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Enya Paga
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Clara Inserte
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany; Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Rajanya Roy
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Shariyah Rahman
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Nicole C Riedel
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Volker Müller
- Department of Pediatric Surgery, University Hospital Münster, Münster, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplantation Surgery, University Hospital Münster, Münster, Germany
| | - Karsten Wiebe
- Department of Cardiothoracic Surgery, University Hospital Münster, Münster, Germany
| | - Irene Schmid
- Department of Pediatric Oncology and Hematology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Beate Winkler
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Jüttner
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Simon Vieth
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Urs Mücke
- Pediatric Oncology and Hematology, Medical School of Hanover, Hanover, Germany
| | - Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jerome Schlué
- Institute for Pathology, Medical School of Hanover, Hanover, Germany
| | - Omid Madadi-Sanjani
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | | | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany.
| |
Collapse
|
10
|
Wang T, Ma W, Zou Z, Zhong J, Lin X, Liu W, Sun W, Hu T, Xu Y, Chen Y. PD-1 blockade treatment in melanoma: Mechanism of response and tumor-intrinsic resistance. Cancer Sci 2025; 116:329-337. [PMID: 39601129 PMCID: PMC11786313 DOI: 10.1111/cas.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Malignant melanoma is characterized by high immunogenicity, genetic heterogeneity, and diverse pathological manifestations, affecting both skin and mucosa over the body. Pembrolizumab and nivolumab, both anti-PD-1 monoclonal antibodies, were approved by the US FDA for unresectable or metastatic melanoma in 2011 and 2014, respectively, with enduring and transformative outcomes. Despite marked clinical achievements, only a subset of patients manifested a complete response. Approximately 55% of melanoma patients exhibited primary resistance to PD-1 antibodies, with nearly 25% developing secondary resistance within 2 years of treatment. Thus, there is a critical need to comprehensively elucidate the mechanisms underlying the efficacy and resistance to PD-1 blockade. This review discusses the fundamental mechanisms of PD-1 blockade, encompassing insights from T cells and B cells, and presents resistance to anti-PD-1 with a particular focus on tumoral-intrinsic mechanisms in melanoma.
Collapse
Affiliation(s)
- Tong Wang
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wenjie Ma
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Zijian Zou
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Jingqin Zhong
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Xinyi Lin
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wanlin Liu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Wei Sun
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Tu Hu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Yu Xu
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| | - Yong Chen
- Department of Musculoskeletal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeShanghaiChina
| |
Collapse
|
11
|
Jiao J, Yin M, Wang Z, Hu B, Chi J, Lu L, Dai F, Xue L, Wang T, Wang X, Zhao J, Zhao L, Chen Q. An oriented self-assembly biosensor with built-in error-checking for precise midkine detection in cancer diagnosis and prognosis evaluation. Biosens Bioelectron 2025; 268:116905. [PMID: 39504885 DOI: 10.1016/j.bios.2024.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Midkine (MDK) is a neurotrophic growth factor highly expressed during embryogenesis, currently recognized as a multifaceted factor in cancer progression and drug resistance. MDK has demonstrated greater accuracy than existing biomarkers. Serum MDK is a valuable indicator for the non-invasive early detection of tumors. It dynamically changes following surgical tumor excision and prior to recurrence, facilitating prognosis and treatment response evaluation. However, existing methods struggle to achieve the sensitivity required for clinical applications. Herein, we developed a triple-mode biosensor with oriented self-construction and built-in error-checking for rapid, sensitive, and convenient MDK detection. The sensor construction adhered to the principle of achieving oriented and strong covalent connections to ensure high sensitivity. Biosynthesized quantum dots (BQDs) were introduced to orient antibodies, enhancing the exploration of active binding sites and significantly increasing antibody-capturing ability. To further enhance sensitivity and signal amplification, Au@Pt nanorods-Ab2 (MF-Probe) were used as multifunctional probes, incorporating an error-checking mechanism to minimize false results. Detection was feasible using an electrochemical workstation, a microplate reader, and even a mobile phone. The sensor exhibited a wide linear range from 5 fg/mL to 100 ng/mL and a low limit of detection (LOD) of 1.620 fg/mL. It accurately distinguished MDK levels in the serum of healthy donors and cancer patients. Compared to existing ELISA kits, it exhibited a lower LOD and a more sensitive response to trace MDK, suggesting it is a promising tool for cancer diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Jun Jiao
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China.
| | - Mengai Yin
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Zhijie Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Bingxin Hu
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Jiadong Chi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute & Hospital, Huan Hu Xi Road, He Xi District, Tianjin, 300060, China
| | - Lina Lu
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Fuju Dai
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Lan Xue
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Tong Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Xiangrui Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Jie Zhao
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Li Zhao
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300070, China.
| | - Qiang Chen
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China.
| |
Collapse
|
12
|
Zhang Q, Gao Z, Qiu R, Cao J, Zhang C, Qin W, Yang M, Wang X, Yang C, Li J, Yang D. Single-cell RNA sequencing elucidates cellular plasticity in esophageal small cell carcinoma following chemotherapy treatment. Front Genet 2025; 15:1477705. [PMID: 39850495 PMCID: PMC11754407 DOI: 10.3389/fgene.2024.1477705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/06/2024] [Indexed: 01/25/2025] Open
Abstract
Small cell carcinoma of the esophagus (SCCE) is a rare and aggressively progressing malignancy that presents considerable clinical challenges.Although chemotherapy can effectively manage symptoms during the earlystages of SCCE, its long-term effectiveness is notably limited, with theunderlying mechanisms remaining largely undefined. In this study, weemployed single-cell RNA sequencing (scRNA-seq) to analyze SCCE samplesfrom a single patient both before and after chemotherapy treatment. Our analysisrevealed significant cellular plasticity and alterations in the tumormicroenvironment's cellular composition. Notably, we observed an increase intumor cell diversity coupled with reductions in T cells, B cells, and myeloid-likecells. The pre-treatment samples predominantly featured carcinoma cells in amiddle transitional state, while post-treatment samples exhibited an expandedpresence of cells in terminal, initial-to-terminal (IniTerm), and universally alteredstates. Further analysis highlighted dynamic interactions between tumor cells andimmune cells, with significant changes detected in key signaling pathways, suchas TIGIT-PVR and MDK-SDC4. This study elucidates the complex dynamics of cellplasticity in SCCE following chemotherapy, providing new insights and identifyingpotential therapeutic targets to enhance treatment efficacy.
Collapse
Affiliation(s)
- Qinkai Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziyu Gao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ru Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jizhao Cao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chunxiao Zhang
- School of Laboratory Medicine, Guangzhou Health Science College, Guangzhou, China
| | - Wei Qin
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Medical College, Jiaying University, Meizhou, China
| | - Meiling Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinyue Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ciqiu Yang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongyang Yang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Oncology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Evans ST, Jani Y, Jansen CS, Yildirim A, Kalemoglu E, Bilen MA. Understanding and overcoming resistance to immunotherapy in genitourinary cancers. Cancer Biol Ther 2024; 25:2342599. [PMID: 38629578 PMCID: PMC11028033 DOI: 10.1080/15384047.2024.2342599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The introduction of novel immunotherapies has significantly transformed the treatment landscape of genitourinary (GU) cancers, even becoming the standard of care in some settings. One such type of immunotherapy, immune checkpoint inhibitors (ICIs) like nivolumab, ipilimumab, pembrolizumab, and atezolizumab play a pivotal role by disturbing signaling pathways that limit the immune system's ability to fight tumor cells. Despite the profound impact of these treatments, not all tumors are responsive. Recent research efforts have been focused on understanding how cancer cells manage to evade the immune response and identifying the possible mechanisms behind resistance to immunotherapy. In response, ICIs are being combined with other treatments to reduce resistance and attack cancer cells through multiple cellular pathways. Additionally, novel, targeted strategies are currently being investigated to develop innovative methods of overcoming resistance and treatment failure. This article presents a comprehensive overview of the mechanisms of immunotherapy resistance in GU cancers as currently described in the literature. It explores studies that have identified genetic markers, cytokines, and proteins that may predict resistance or response to immunotherapy. Additionally, we review current efforts to overcome this resistance, which include combination ICIs and sequential therapies, novel insights into the host immune profile, and new targeted therapies. Various approaches that combine immunotherapy with chemotherapy, targeted therapy, vaccines, and radiation have been studied in an effort to more effectively overcome resistance to immunotherapy. While each of these combination therapies has shown some efficacy in clinical trials, a deeper understanding of the immune system's role underscores the potential of novel targeted therapies as a particularly promising area of current research. Currently, several targeted agents are in development, along with the identification of key immune mediators involved in immunotherapy resistance. Further research is necessary to identify predictors of response.
Collapse
Affiliation(s)
- Sean T Evans
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yash Jani
- Undergraduate studies, Mercer University, Macon, GA, USA
| | - Caroline S Jansen
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ahmet Yildirim
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ecem Kalemoglu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Mehmet Asim Bilen
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
14
|
Shi Z, Qin H, Wu H. Single-Cell Transcriptome Reveals the Heterogeneity of T Cells in Mice with Systemic Lupus Erythematosus and Neuronal Inflammation. J Inflamm Res 2024; 17:11375-11402. [PMID: 39735894 PMCID: PMC11675326 DOI: 10.2147/jir.s474211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Systemic lupus erythematosus is a heterogeneous autoimmune disease. A burst of autoimmune reactions in various systems can lead to severe clinical conditions closely associated with mortality. T cells serve as mediators that drive the occurrence and maintenance of inflammatory processes. Methods In this work, we employed single-cell transcriptome sequencing (scRNA-seq) involving 27704 cells from the brain and spleen tissues of MRL/lpr mice and 25355 healthy controls from BALB/c mice to explore the heterogeneity of T cells and their migration from the spleen to the brain. Results We identified a distinct group of double-negative T cells in systemic lupus erythematosus (SLE) mice that significantly expressed Eomes and other specific markers. We used the analysis of pseudotime trajectory and enrichment to show that double-negative T cells in SLE mice are strongly associated with cellular senescence and exhaustion. Additionally, we focused on the interactions among DNT, astrocytes, and microglia in the mice brain. We observed greater expression of MDK-related ligand‒receptor pairs between astrocytes and double-negative T cells, indicating that MDK may be a therapeutic target for treating neuroinflammation in SLE. Discussion This research sheds light on the intricate dynamics of immune responses in mice with SLE, specifically highlighting the role of double-negative T cells and their connection to cellular senescence. The exploration of interactions between T cells, astrocytes, and microglia in the mice brain unveils potential avenues for therapeutic intervention, particularly in addressing neuronal inflammation in SLE.
Collapse
Affiliation(s)
- Zhijie Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Haihong Qin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Hao Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Sesarman A, Luput L, Rauca VF, Patras L, Licarete E, Meszaros MS, Dume BR, Negrea G, Toma VA, Muntean D, Porfire A, Banciu M. Targeting of M2 macrophages with IL-13-functionalized liposomal prednisolone inhibits melanoma angiogenesis in vivo. J Liposome Res 2024; 34:535-546. [PMID: 38379249 DOI: 10.1080/08982104.2024.2315452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The intricate cooperation between cancer cells and nontumor stromal cells within melanoma microenvironment (MME) enables tumor progression and metastasis. We previously demonstrated that the interplay between tumor-associated macrophages (TAMs) and melanoma cells can be disrupted by using long-circulating liposomes (LCLs) encapsulating prednisolone phosphate (PLP) (LCL-PLP) that inhibited tumor angiogenesis coordinated by TAMs. In this study, our goal was to improve LCL specificity for protumor macrophages (M2-like (i.e., TAMs) macrophages) and to induce a more precise accumulation at tumor site by loading PLP into IL-13-conjugated liposomes (IL-13-LCL-PLP), since IL-13 receptor is overexpressed in this type of macrophages. The IL-13-LCL-PLP liposomal formulation was obtained by covalent attachment of thiolated IL-13 to maleimide-functionalized LCL-PLP. C57BL/6 mice bearing B16.F10 s.c melanoma tumors were used to investigate the antitumor action of LCL-PLP and IL-13-LCL-PLP. Our results showed that IL-13-LCL-PLP formulation remained stable in biological fluids after 24h and it was preferentially taken up by M2 polarized macrophages. IL-13-LCL-PLP induced strong tumor growth inhibition compared to nonfunctionalized LCL-PLP at the same dose, by altering TAMs-mediated angiogenesis and oxidative stress, limiting resistance to apoptosis and invasive features in MME. These findings suggest IL-13-LCL-PLP might become a promising delivery platform for chemotherapeutic agents in melanoma.
Collapse
Affiliation(s)
- Alina Sesarman
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lavinia Luput
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Valentin-Florian Rauca
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Patras
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences of Babes-Bolyai University, Cluj-Napoca, Romania
| | - Marta-Szilvia Meszaros
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Bogdan Razvan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Giorgiana Negrea
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Experimental Biology and Biochemistry, nstitute of Biological Research, branch of NIRDBS Bucharest, Cluj-Napoca, Romania
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Russo M, Chen M, Mariella E, Peng H, Rehman SK, Sancho E, Sogari A, Toh TS, Balaban NQ, Batlle E, Bernards R, Garnett MJ, Hangauer M, Leucci E, Marine JC, O'Brien CA, Oren Y, Patton EE, Robert C, Rosenberg SM, Shen S, Bardelli A. Cancer drug-tolerant persister cells: from biological questions to clinical opportunities. Nat Rev Cancer 2024; 24:694-717. [PMID: 39223250 DOI: 10.1038/s41568-024-00737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The emergence of drug resistance is the most substantial challenge to the effectiveness of anticancer therapies. Orthogonal approaches have revealed that a subset of cells, known as drug-tolerant 'persister' (DTP) cells, have a prominent role in drug resistance. Although long recognized in bacterial populations which have acquired resistance to antibiotics, the presence of DTPs in various cancer types has come to light only in the past two decades, yet several aspects of their biology remain enigmatic. Here, we delve into the biological characteristics of DTPs and explore potential strategies for tracking and targeting them. Recent findings suggest that DTPs exhibit remarkable plasticity, being capable of transitioning between different cellular states, resulting in distinct DTP phenotypes within a single tumour. However, defining the biological features of DTPs has been challenging, partly due to the complex interplay between clonal dynamics and tissue-specific factors influencing their phenotype. Moreover, the interactions between DTPs and the tumour microenvironment, including their potential to evade immune surveillance, remain to be discovered. Finally, the mechanisms underlying DTP-derived drug resistance and their correlation with clinical outcomes remain poorly understood. This Roadmap aims to provide a comprehensive overview of the field of DTPs, encompassing past achievements and current endeavours in elucidating their biology. We also discuss the prospect of future advancements in technologies in helping to unveil the features of DTPs and propose novel therapeutic strategies that could lead to their eradication.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| | - Mengnuo Chen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elisa Mariella
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Haoning Peng
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Sumaiyah K Rehman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Alberto Sogari
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Tzen S Toh
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Nathalie Q Balaban
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Matthew Hangauer
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
| | | | - Jean-Christophe Marine
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Catherine A O'Brien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yaara Oren
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Elizabeth Patton
- MRC Human Genetics Unit, and CRUK Scotland Centre and Edinburgh Cancer Research, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Caroline Robert
- Oncology Department, Dermatology Unit, Villejuif, France
- Oncology Department and INSERM U981, Villejuif, France
- Paris Saclay University, Villejuif, France
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shensi Shen
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
17
|
Hu S, Hu C, Xu J, Yu P, Yuan L, Li Z, Liang H, Zhang Y, Chen J, Wei Q, Zhang S, Yang L, Su D, Du Y, Xu Z, Bai F, Cheng X. The estrogen response in fibroblasts promotes ovarian metastases of gastric cancer. Nat Commun 2024; 15:8447. [PMID: 39349474 PMCID: PMC11443007 DOI: 10.1038/s41467-024-52615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Younger premenopausal women are more prone to developing ovarian metastases (OM) of gastric cancer (GC) than metastases of other organs; however, the molecular mechanisms remain unclear. Here we perform single-cell RNA sequencing on 45 tumor samples from 18 GC patients with OM. Interestingly, fibroblasts in OM of GC express high levels of estrogen receptor (ER) and midkine (MDK), interacting with tumor cells through activating ER-MDK-LRP1 (low-density lipoprotein receptor-related protein 1) signaling axis. Functional experiments demonstrate that estrogen stimulation induces MDK secretion by ovarian fibroblasts, and binding of MDK to LRP1 increases GC cell migration and invasion. Furthermore, in vivo, estrogen stimulation remarkably augments ovarian engraftment and metastasis of LRP1+ GC cells. Collectively, our findings reveal that ER+ ovarian fibroblasts secrete MDK under estrogen influence, driving OM of GC via the MDK-LRP1 axis. Our study holds the potential to catalyze innovative therapeutic strategies aimed at intercepting and managing OM in GC.
Collapse
Affiliation(s)
- Simeng Hu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jingli Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Pengfei Yu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ziyu Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Haohong Liang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiahui Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qing Wei
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Litao Yang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dan Su
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yian Du
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
18
|
Yan M, Chen X, Li X, Liu Q, Yu B, Cen Y, Zhang W, Liu Y, Li X, Chen Y, Wang T, Li S. Transferrin receptor-targeted immunostimulant for photodynamic immunotherapy against metastatic tumors through β-catenin/CREB interruption. Acta Pharm Sin B 2024; 14:4118-4133. [PMID: 39309507 PMCID: PMC11413667 DOI: 10.1016/j.apsb.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 09/25/2024] Open
Abstract
The immunosuppressive phenotype of tumor cells extensively attenuates the immune activation effects of traditional treatments. In this work, a transferrin receptor (TfR) targeted immunostimulant (PTI) is fabricated for photodynamic immunotherapy against metastatic tumors by interrupting β-catenin signal pathway. To synthesize PTI, the photosensitizer conjugated TfR targeting peptide moiety (Palmitic-K(PpIX)-HAIYPRH) is unitized to encapsulate the transcription interrupter of ICG-001. On the one hand, the recognition of PTI and TfR can promote drug delivery into tumor cells to destruct primary tumors through photodynamic therapy and initiate an immunogenic cell death with the release of tumor-associated antigens. On the other hand, PTI will interrupt the binding between β-catenin and cAMP response element-binding protein (CREB), regulating the gene transcription to downregulate programmed death ligand 1 (PD-L1) while upregulating C-C motif chemokine ligand 4 (CCL4). Furthermore, the elevated CCL4 can recruit the dendritic cells to present tumor-specific antigens and promote T cells activation and infiltration, and the downregulated PD-L1 can avoid the immune evasion of tumor cells and activate systemic anti-tumor immunity to eradicate lung metastasis. This work may inspire the development of antibody antibody-free strategy to activate systemic immune response in consideration of immunosuppressive conditions.
Collapse
Affiliation(s)
- Mengyi Yan
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiayun Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaotong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 511436, China
| | - Qianqian Liu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Baixue Yu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Cen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Zhang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yibin Liu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xinxuan Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ying Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Respiratory Health, the first Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Shiying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
19
|
Li YS, Lai WP, Yin K, Zheng MM, Tu HY, Guo WB, Li L, Lin SH, Wang Z, Zeng L, Jiang BY, Chen ZH, Zhou Q, Zhang XC, Yang JJ, Zhong WZ, Yang XN, Wang BC, Pan Y, Chen HJ, Xiao FM, Sun H, Sun YL, Bai XY, Ke EE, Lin JX, Liu SYM, Li Y, Luo OJ, Wu YL. Lipid-associated macrophages for osimertinib resistance and leptomeningeal metastases in NSCLC. Cell Rep 2024; 43:114613. [PMID: 39116206 DOI: 10.1016/j.celrep.2024.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Leptomeningeal metastases (LMs) remain a devastating complication of non-small cell lung cancer (NSCLC), particularly following osimertinib resistance. We conducted single-cell RNA sequencing on cerebrospinal fluid (CSF) from EGFR-mutant NSCLC with central nervous system metastases. We found that macrophages of LMs displayed functional and phenotypic heterogeneity and enhanced immunosuppressive properties. A population of lipid-associated macrophages, namely RNASE1_M, were linked to osimertinib resistance and LM development, which was regulated by Midkine (MDK) from malignant epithelial cells. MDK exhibited significant elevation in both CSF and plasma among patients with LMs, with higher MDK levels correlating to poorer outcomes in an independent cohort. Moreover, MDK could promote macrophage M2 polarization with lipid metabolism and phagocytic function. Furthermore, malignant epithelial cells in CSF, particularly after resistance to osimertinib, potentially achieved immune evasion through CD47-SIRPA interactions with RNASE1_M. In conclusion, we revealed a specific subtype of macrophages linked to osimertinib resistance and LM development, providing a potential target to overcome LMs.
Collapse
Affiliation(s)
- Yang-Si Li
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Oncology, Heyuan Hospital of Guangdong Provincial People's Hospital, Heyuan People's Hospital, Heyuan 517000, China
| | - Wen-Pu Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China; Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Kai Yin
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Mei-Mei Zheng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Wei-Bang Guo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Shou-Heng Lin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Zhen Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Lu Zeng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Ben-Yuan Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhi-Hong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yi Pan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fa-Man Xiao
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hao Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yue-Li Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiao-Yan Bai
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - E-E Ke
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jia-Xin Lin
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Si-Yang Maggie Liu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080 China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
20
|
Levites Y, Dammer EB, Ran Y, Tsering W, Duong D, Abreha M, Gadhavi J, Lolo K, Trejo-Lopez J, Phillips J, Iturbe A, Erquizi A, Moore BD, Ryu D, Natu A, Dillon K, Torrellas J, Moran C, Ladd T, Afroz F, Islam T, Jagirdar J, Funk CC, Robinson M, Rangaraju S, Borchelt DR, Ertekin-Taner N, Kelly JW, Heppner FL, Johnson ECB, McFarland K, Levey AI, Prokop S, Seyfried NT, Golde TE. Integrative proteomics identifies a conserved Aβ amyloid responsome, novel plaque proteins, and pathology modifiers in Alzheimer's disease. Cell Rep Med 2024; 5:101669. [PMID: 39127040 PMCID: PMC11384960 DOI: 10.1016/j.xcrm.2024.101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/15/2024] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that develops over decades. AD brain proteomics reveals vast alterations in protein levels and numerous altered biologic pathways. Here, we compare AD brain proteome and network changes with the brain proteomes of amyloid β (Aβ)-depositing mice to identify conserved and divergent protein networks with the conserved networks identifying an Aβ amyloid responsome. Proteins in the most conserved network (M42) accumulate in plaques, cerebrovascular amyloid (CAA), and/or dystrophic neuronal processes, and overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), increases the accumulation of Aβ in plaques and CAA. M42 proteins bind amyloid fibrils in vitro, and MDK and PTN co-accumulate with cardiac transthyretin amyloid. M42 proteins appear intimately linked to amyloid deposition and can regulate amyloid deposition, suggesting that they are pathology modifiers and thus putative therapeutic targets. We posit that amyloid-scaffolded accumulation of numerous M42+ proteins is a central mechanism mediating downstream pathophysiology in AD.
Collapse
Affiliation(s)
- Yona Levites
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong Ran
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Wangchen Tsering
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Duc Duong
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Measho Abreha
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshna Gadhavi
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kiara Lolo
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Jorge Trejo-Lopez
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Jennifer Phillips
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Andrea Iturbe
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aya Erquizi
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brenda D Moore
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Danny Ryu
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Aditya Natu
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kristy Dillon
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jose Torrellas
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Corey Moran
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas Ladd
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Farhana Afroz
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Tariful Islam
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Jaishree Jagirdar
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - David R Borchelt
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nilüfer Ertekin-Taner
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL, USA; Mayo Clinic, Department of Neurology, Jacksonville, FL, USA
| | - Jeffrey W Kelly
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 110117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 110117 Berlin, Germany; Cluster of Excellence, NeuroCure, Charitéplatz, 110117 Berlin, Germany
| | - Erik C B Johnson
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Karen McFarland
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan Prokop
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Nicholas T Seyfried
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA.
| | - Todd E Golde
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
21
|
Zhou Y, Liu Z, Gong C, Zhang J, Zhao J, Zhang X, Liu X, Li B, Li R, Shi Z, Xie Y, Bao L. Targeting treatment resistance: unveiling the potential of RNA methylation regulators and TG-101,209 in pan-cancer neoadjuvant therapy. J Exp Clin Cancer Res 2024; 43:232. [PMID: 39160604 PMCID: PMC11331809 DOI: 10.1186/s13046-024-03111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Tumor recurrence and mortality rates remain challenging in cancer patients despite comprehensive treatment. Neoadjuvant chemotherapy and immunotherapy aim to eliminate residual tumor cells, reducing the risk of recurrence. However, drug resistance during neoadjuvant therapy is a significant hurdle. Recent studies suggest a correlation between RNA methylation regulators (RMRs) and response to neoadjuvant therapy. METHODS Using a multi-center approach, we integrated advanced techniques such as single-cell transcriptomics, whole-genome sequencing, RNA sequencing, proteomics, machine learning, and in vivo/in vitro experiments. Analyzing pan-cancer cohorts, the association between neoadjuvant chemotherapy/immunotherapy effectiveness and RNA methylation using single-cell sequencing was investigated. Multi-omics analysis and machine learning algorithms identified genomic variations, transcriptional dysregulation, and prognostic relevance of RMRs, revealing distinct molecular subtypes guiding pan-cancer neoadjuvant therapy stratification. RESULTS Our analysis unveiled a strong link between neoadjuvant therapy efficacy and RNA methylation dynamics, supported by pan-cancer single-cell sequencing data. Integration of omics data and machine learning algorithms identified RMR genomic variations, transcriptional dysregulation, and prognostic implications in pan-cancer. High-RMR-expressing tumors displayed increased genomic alterations, an immunosuppressive microenvironment, poorer prognosis, and resistance to neoadjuvant therapy. Molecular investigations and in vivo/in vitro experiments have substantiated that the JAK inhibitor TG-101,209 exerts notable effects on the immune microenvironment of tumors, rendering high-RMR-expressing pan-cancer tumors, particularly in pancreatic cancer, more susceptible to chemotherapy and immunotherapy. CONCLUSIONS This study emphasizes the pivotal role of RMRs in pan-cancer neoadjuvant therapy, serving as predictive biomarkers for monitoring the tumor microenvironment, patient prognosis, and therapeutic response. Distinct molecular subtypes of RMRs aid individualized stratification in neoadjuvant therapy. Combining TG-101,209 adjuvant therapy presents a promising strategy to enhance the sensitivity of high-RMR-expressing tumors to chemotherapy and immunotherapy. However, further validation studies are necessary to fully understand the clinical utility of RNA methylation regulators and their impact on patient outcomes.
Collapse
Affiliation(s)
- Yaoyao Zhou
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ziyun Liu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute, Tianjin, 300060, China
| | - Cheng Gong
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jie Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin Medical University, Ministry of Education, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Zhao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xia Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiangyu Liu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Bin Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Gastric Surgery, Key Laboratory of Digestive Cancer, Tianjin, China
| | - Rui Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhenyu Shi
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
| | - Yongjie Xie
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Li Bao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, China.
| |
Collapse
|
22
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
23
|
Shi N, Chen S, Wang D, Wu T, Zhang N, Chen M, Ding X. MDK promotes M2 macrophage polarization to remodel the tumour microenvironment in clear cell renal cell carcinoma. Sci Rep 2024; 14:18254. [PMID: 39107475 PMCID: PMC11303797 DOI: 10.1038/s41598-024-69183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
The efficacy of immunotherapy for clear cell renal cell carcinoma (ccRCC), especially advanced ccRCC, is limited, presenting a clinical challenge. This limitation is closely tied to the immune regulation network. Understanding the heterogeneity of the tumour microenvironment (TME) is crucial for developing advanced ccRCC therapies. Using publicly available ccRCC data (scRNA-seq, bulk RNA-seq, and somatic mutation data), a multiomics study was performed to explore TME heterogeneity. Three distinct ccRCC immune subtypes were identified through combined scRNA-seq and bulk RNA-seq analysis. A prognostic model based on unique cell signalling molecules in immunosuppressive tumour subtype was validated in the TCGA and CheckMate cohorts. MDK emerged as a critical regulatory gene in the immunosuppressive subtype, predicting a poor ccRCC prognosis and a poor immunotherapy response. MDK promotes M2 macrophage polarization via the MDK-LRP1 interaction, and the inhibition of MDK suppressed M2 polarization. This study revealed the heterogeneity of the ccRCC TME and a reliable prognostic model, shedding light on the vital role of MDK in the immunosuppressive TME and paving the way for optimized ccRCC immunotherapy.
Collapse
Affiliation(s)
- Naipeng Shi
- Department of Urology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Saisai Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Dong Wang
- Department of Urology, Nantong Tongzhou Hospital of Traditional Chinese Medicine, Nantong, China
| | - Tiange Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Nieke Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Xuefei Ding
- Department of Urology, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
24
|
Chen S, Liao J, Li J, Wang S. GPC2 promotes prostate cancer progression via MDK-mediated activation of PI3K/AKT signaling pathway. Funct Integr Genomics 2024; 24:127. [PMID: 39014225 PMCID: PMC11252201 DOI: 10.1007/s10142-024-01406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Prostate cancer is a major medical problem for men worldwide. Advanced prostate cancer is currently incurable. Recently, much attention was paid to the role of GPC2 in the field of oncology. Nevertheless, there have been no investigations of GPC2 and its regulatory mechanism in prostate cancer. Here, we revealed a novel action of GPC2 and a tumor promoting mechanism in prostate cancer. GPC2 was upregulated in prostate cancer tissues and cell lines. Higher expression of GPC2 was correlated with higher Gleason score, lymphatic metastasis, and worse overall survival in prostate cancer patients. Decreased expression of GPC2 inhibited cell proliferation, migration, and invasion in prostate cancer, whereas GPC2 overexpression promoted these properties. Mechanistically, GPC2 promoted the activation of PI3K/AKT signaling pathway through MDK. The rescue assay results in prostate cancer cells demonstrated that overexpression of MDK could attenuate GPC2 knockdown induced inactivation of PI3K/AKT signaling and partly reverse GPC2 knockdown induced inhibition of cell proliferation, migration, and invasion. In all, our study identified GPC2 as an oncogene in prostate cancer. GPC2 promoted prostate cancer cell proliferation, migration, and invasion via MDK-mediated activation of PI3K/AKT signaling pathway. GPC2 might be a promising prognosis predictor and potential therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Sijin Chen
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Jiaxing Liao
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Juhua Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Saihui Wang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China.
| |
Collapse
|
25
|
Li Q, Guo W, Qian Y, Li S, Li L, Zhu Z, Wang F, Tong Y, Xia Q, Liu Y. Protein O-fucosyltransferase 1 promotes PD-L1 stability to drive immune evasion and directs liver cancer to immunotherapy. J Immunother Cancer 2024; 12:e008917. [PMID: 38908854 PMCID: PMC11328658 DOI: 10.1136/jitc-2024-008917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND AND AIMS The immunosuppressive tumor microenvironment (TME) plays an essential role in cancer progression and immunotherapy response. Despite the considerable advancements in cancer immunotherapy, the limited response to immune checkpoint blockade (ICB) therapies in patients with hepatocellular carcinoma (HCC) remains a major challenge for its clinical implications. Here, we investigated the molecular basis of the protein O-fucosyltransferase 1 (POFUT1) that drives HCC immune evasion and explored a potential therapeutic strategy for enhancing ICB efficacy. METHODS De novo MYC/Trp53-/- liver tumor and the xenograft tumor models were used to evaluate the function of POFUT1 in immune evasion. Biochemical assays were performed to elucidate the underlying mechanism of POFUT1-mediated immune evasion. RESULTS We identified POFUT1 as a crucial promoter of immune evasion in liver cancer. Notably, POFUT1 promoted HCC progression and inhibited T-cell infiltration in the xenograft tumor and de novo MYC/Trp53-/- mouse liver tumor models. Mechanistically, we demonstrated that POFUT1 stabilized programmed death ligand 1 (PD-L1) protein by preventing tripartite motif containing 21-mediated PD-L1 ubiquitination and degradation independently of its protein-O-fucosyltransferase activity. In addition, we further demonstrated that PD-L1 was required for the tumor-promoting and immune evasion effects of POFUT1 in HCC. Importantly, inhibition of POFUT1 could synergize with anti-programmed death receptor 1 therapy by remodeling TME in the xenograft tumor mouse model. Clinically, POFUT1 high expression displayed a lower response rate and worse clinical outcome to ICB therapies. CONCLUSIONS Our findings demonstrate that POFUT1 functions as a novel regulator of tumor immune evasion and inhibition of POFUT1 may be a potential therapeutic strategy to enhance the efficacy of immune therapy in HCC.
Collapse
Affiliation(s)
- Qianyu Li
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyun Guo
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Qian
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songling Li
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Linfeng Li
- Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zijun Zhu
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Tong
- Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai Institute of Transplantation, Shanghai, China
| | - Yanfeng Liu
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
26
|
Bayer AL, Padilla-Rolon D, Smolgovsky S, Hinds PW, Alcaide P. Deletion of MyD88 in T Cells Improves Antitumor Activity in Melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1007-1019. [PMID: 38442804 PMCID: PMC11156157 DOI: 10.1016/j.ajpath.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
Cytotoxic CD8+ T cells are central to the antitumor immune response by releasing cytotoxic granules that kill tumor cells. They are activated by antigen-presenting cells, which become activated by DAMPs (damage associated molecular patterns) through MyD88. However, the suppressive tumor microenvironment promotes T-cell tolerance to tumor antigens, in part by enhancing the activity of immune checkpoint molecules that prevent CD8+ T-cell activation and cytotoxicity. MyD88 limits CD4+ T-cell activation during cardiac adaptation to stress. A similar mechanism is hypothesized to exist in CD8+ T cells that could be modulated to improve antitumor immunity. Herein, adoptive transfer of MyD88-/- CD8+ T cells in melanoma-bearing T-cell-deficient mice resulted in slower tumor growth, greater intratumoral T-cell accumulation, and higher melanoma cell death compared with transfer of wild-type CD8+ T cells. These findings were also observed in T-cell-specific MyD88-/- mice compared with wild-type littermates implanted with melanoma. Mechanistically, deletion of MyD88 enhanced CD8+ T-cell activation and survival, and T-cell receptor induced degranulation of cytotoxic molecules, overall improving the killing of melanoma cells. This enhanced cytotoxicity was retained in mice bearing tumors expressing the specific antigen for which cytotoxic T-cells were restricted. This study's results demonstrate a conserved mechanism for MyD88 in modulating CD8+ T-cell activation and represent a novel target in improving cancer immunotherapy.
Collapse
Affiliation(s)
- Abraham L Bayer
- Department of Immunology, Tufts University, Boston, Massachusetts
| | | | - Sasha Smolgovsky
- Department of Immunology, Tufts University, Boston, Massachusetts
| | - Philip W Hinds
- Department of Genetics, Molecular and Cell Biology, Tufts University, Boston, Massachusetts
| | - Pilar Alcaide
- Department of Immunology, Tufts University, Boston, Massachusetts.
| |
Collapse
|
27
|
Wan Z, Bai X, Wang X, Guo X, Wang X, Zhai M, Fu Y, Liu Y, Zhang P, Zhang X, Yang R, Liu Y, Lv L, Zhou Y. Mgp High-Expressing MSCs Orchestrate the Osteoimmune Microenvironment of Collagen/Nanohydroxyapatite-Mediated Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308986. [PMID: 38588510 PMCID: PMC11187922 DOI: 10.1002/advs.202308986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Activating autologous stem cells after the implantation of biomaterials is an important process to initiate bone regeneration. Although several studies have demonstrated the mechanism of biomaterial-mediated bone regeneration, a comprehensive single-cell level transcriptomic map revealing the influence of biomaterials on regulating the temporal and spatial expression patterns of mesenchymal stem cells (MSCs) is still lacking. Herein, the osteoimmune microenvironment is depicted around the classical collagen/nanohydroxyapatite-based bone repair materials via combining analysis of single-cell RNA sequencing and spatial transcriptomics. A group of functional MSCs with high expression of matrix Gla protein (Mgp) is identified, which may serve as a pioneer subpopulation involved in bone repair. Remarkably, these Mgp high-expressing MSCs (MgphiMSCs) exhibit efficient osteogenic differentiation potential and orchestrate the osteoimmune microenvironment around implanted biomaterials, rewiring the polarization and osteoclastic differentiation of macrophages through the Mdk/Lrp1 ligand-receptor pair. The inhibition of Mdk/Lrp1 activates the pro-inflammatory programs of macrophages and osteoclastogenesis. Meanwhile, multiple immune-cell subsets also exhibit close crosstalk between MgphiMSCs via the secreted phosphoprotein 1 (SPP1) signaling pathway. These cellular profiles and interactions characterized in this study can broaden the understanding of the functional MSC subpopulations at the early stage of biomaterial-mediated bone regeneration and provide the basis for materials-designed strategies that target osteoimmune modulation.
Collapse
Affiliation(s)
- Zhuqing Wan
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Xiaoqiang Bai
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Xin Wang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Xiaodong Guo
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Xu Wang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Mo Zhai
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Yang Fu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Yunsong Liu
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Ping Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Xiao Zhang
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Ruili Yang
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
- Department of OrthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
| | - Yan Liu
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
- Department of OrthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
| | - Longwei Lv
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| | - Yongsheng Zhou
- Department of ProsthodonticsPeking University School and Hospital of StomatologyHaidian DistrictBeijing100081China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital StomatologyChinese Academy of Medical SciencesHaidian DistrictBeijing100081China
| |
Collapse
|
28
|
Bao L, Li Y, Hu X, Gong Y, Chen J, Huang P, Tan Z, Ge M, Pan Z. Targeting SIGLEC15 as an emerging immunotherapy for anaplastic thyroid cancer. Int Immunopharmacol 2024; 133:112102. [PMID: 38652971 DOI: 10.1016/j.intimp.2024.112102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive subtype of thyroid cancer with few effective therapies. Though immunotherapies such as targeting PD-1/PD-L1 axis have benefited patients with solid tumor, the druggable immune checkpoints are quite limited in ATC. In our study, we focused on the anti-tumor potential of sialic acid-binding Ig-like lectins (Siglecs) in ATC. Through screening by integrating microarray datasets including 216 thyroid-cancer tissues and single-cell RNA-sequencing, SIGLEC family members CD33, SIGLEC1, SIGLEC10 and SIGLEC15 were significantly overexpressed in ATC, among which SIGLEC15 increased highest and mainly expressed on cancer cells. SIGLEC15high ATC cells are characterized by high expression of serine protease PRSS23 and cancer stem cell marker CD44. Compared with SIGLEC15low cancer cells, SIGLEC15high ATC cells exhibited higher interaction frequency with tumor microenvironment cells. Further study showed that SIGLEC15high cancer cells mainly interacted with T cells by immunosuppressive signals such as MIF-TNFRSF14 and CXCL12-CXCR4. Notably, treatment of anti-SIGLEC15 antibody profoundly increased the cytotoxic ability of CD8+ T cells in a co-culture model and zebrafish-derived ATC xenografts. Consistently, administration of anti-SIGLEC15 antibody significantly inhibited tumor growth and prolonged mouse survival in an immunocompetent model of murine ATC, which was associated with increase of M1/M2, natural killer (NK) cells and CD8+ T cells, and decrease of myeloid-derived suppressor cells (MDSCs). SIGLEC15 inhibited T cell activation by reducing NFAT1, NFAT2, and NF-κB signals. Blocking SIGLEC15 increased the secretion of IFN-γ and IL-2 in vitro and in vivo. In conclusion, our finding demonstrates that SIGLEC15 is an emerging and promising target for immunotherapy in ATC.
Collapse
Affiliation(s)
- Lisha Bao
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, China
| | - Ying Li
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiaoping Hu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, 310014, Hangzhou, China
| | - Yingying Gong
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, China
| | - Jinming Chen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, 310014, Hangzhou, China
| | - Zhuo Tan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, 310014, Hangzhou, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, 310014, Hangzhou, China.
| | - Zongfu Pan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, 310014, Hangzhou, China.
| |
Collapse
|
29
|
Hayes BH, Wang M, Zhu H, Phan SH, Dooling LJ, Andrechak JC, Chang AH, Tobin MP, Ontko NM, Marchena T, Discher DE. Chromosomal instability induced in cancer can enhance macrophage-initiated immune responses that include anti-tumor IgG. eLife 2024; 12:RP88054. [PMID: 38805560 PMCID: PMC11132682 DOI: 10.7554/elife.88054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Solid tumors generally exhibit chromosome copy number variation, which is typically caused by chromosomal instability (CIN) in mitosis. The resulting aneuploidy can drive evolution and associates with poor prognosis in various cancer types as well as poor response to T-cell checkpoint blockade in melanoma. Macrophages and the SIRPα-CD47 checkpoint are understudied in such contexts. Here, CIN is induced in poorly immunogenic B16F10 mouse melanoma cells using spindle assembly checkpoint MPS1 inhibitors that generate persistent micronuclei and diverse aneuploidy while skewing macrophages toward a tumoricidal 'M1-like' phenotype based on markers and short-term anti-tumor studies. Mice bearing CIN-afflicted tumors with wild-type CD47 levels succumb similar to controls, but long-term survival is maximized by SIRPα blockade on adoptively transferred myeloid cells plus anti-tumor monoclonal IgG. Such cells are the initiating effector cells, and survivors make de novo anti-cancer IgG that not only promote phagocytosis of CD47-null cells but also suppress tumor growth. CIN does not affect the IgG response, but pairing CIN with maximal macrophage anti-cancer activity increases durable cures that possess a vaccination-like response against recurrence.
Collapse
Affiliation(s)
- Brandon H Hayes
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Mai Wang
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Hui Zhu
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Steven H Phan
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Lawrence J Dooling
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Jason C Andrechak
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexander H Chang
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael P Tobin
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas M Ontko
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Tristan Marchena
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
| | - Dennis E Discher
- Physical Sciences Oncology Center at Penn, University of PennsylvaniaPhiladelphhiaUnited States
- Molecular and Cell Biophysics Lab, University of PennsylvaniaPhiladelphiaUnited States
- Bioengineering Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
30
|
Hashimoto M, Kojima Y, Sakamoto T, Ozato Y, Nakano Y, Abe T, Hosoda K, Saito H, Higuchi S, Hisamatsu Y, Toshima T, Yonemura Y, Masuda T, Hata T, Nagayama S, Kagawa K, Goto Y, Utou M, Gamachi A, Imamura K, Kuze Y, Zenkoh J, Suzuki A, Takahashi K, Niida A, Hirose H, Hayashi S, Koseki J, Fukuchi S, Murakami K, Yoshizumi T, Kadomatsu K, Tobo T, Oda Y, Uemura M, Eguchi H, Doki Y, Mori M, Oshima M, Shibata T, Suzuki Y, Shimamura T, Mimori K. Spatial and single-cell colocalisation analysis reveals MDK-mediated immunosuppressive environment with regulatory T cells in colorectal carcinogenesis. EBioMedicine 2024; 103:105102. [PMID: 38614865 PMCID: PMC11121171 DOI: 10.1016/j.ebiom.2024.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Cell-cell interaction factors that facilitate the progression of adenoma to sporadic colorectal cancer (CRC) remain unclear, thereby hindering patient survival. METHODS We performed spatial transcriptomics on five early CRC cases, which included adenoma and carcinoma, and one advanced CRC. To elucidate cell-cell interactions within the tumour microenvironment (TME), we investigated the colocalisation network at single-cell resolution using a deep generative model for colocalisation analysis, combined with a single-cell transcriptome, and assessed the clinical significance in CRC patients. FINDINGS CRC cells colocalised with regulatory T cells (Tregs) at the adenoma-carcinoma interface. At early-stage carcinogenesis, cell-cell interaction inference between colocalised adenoma and cancer epithelial cells and Tregs based on the spatial distribution of single cells highlighted midkine (MDK) as a prominent signalling molecule sent from tumour epithelial cells to Tregs. Interaction between MDK-high CRC cells and SPP1+ macrophages and stromal cells proved to be the mechanism underlying immunosuppression in the TME. Additionally, we identified syndecan4 (SDC4) as a receptor for MDK associated with Treg colocalisation. Finally, clinical analysis using CRC datasets indicated that increased MDK/SDC4 levels correlated with poor overall survival in CRC patients. INTERPRETATION MDK is involved in the immune tolerance shown by Tregs to tumour growth. MDK-mediated formation of the TME could be a potential target for early diagnosis and treatment of CRC. FUNDING Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Science Research; OITA Cancer Research Foundation; AMED under Grant Number; Japan Science and Technology Agency (JST); Takeda Science Foundation; The Princess Takamatsu Cancer Research Fund.
Collapse
Affiliation(s)
- Masahiro Hashimoto
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yasuhiro Kojima
- Division of Computational Bioscience, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, 573-1010, Japan.
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yusuke Nakano
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Tadashi Abe
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Kiyotaka Hosoda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of General Surgical Science, Gastroenterological Surgery, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Satoshi Higuchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yuichi Hisamatsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Takeo Toshima
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Satoshi Nagayama
- Department of Surgery, Uji-Tokushukai Medical Center, Uji, 611-0041, Japan
| | - Koichi Kagawa
- Department of Gastroenterology, Shin Beppu Hospital, Beppu, 874-8538, Japan
| | - Yasuhiro Goto
- Department of Gastroenterology, Shin Beppu Hospital, Beppu, 874-8538, Japan
| | - Mitsuaki Utou
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Ayako Gamachi
- Department of Pathology, Oita Oka Hospital, Oita, 870-0192, Japan
| | - Kiyomi Imamura
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yuta Kuze
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Junko Zenkoh
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Ayako Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Kazuki Takahashi
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Atsushi Niida
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shuto Hayashi
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jun Koseki
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Satoshi Fukuchi
- Department of Gastroenterological Medicine, Almeida Memorial Hospital, Oita, 870-1195, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Hospital, Yufu, 879-5593, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Masaki Mori
- Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Department of Computational and Systems Biology, Medical Research Insitute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-0034, Japan.
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan.
| |
Collapse
|
31
|
Long X, Zhang Z, Li Y, Deng K, Gao W, Huang M, Wang X, Lin X, She X, Zhao Y, Zhang M, Huang C, Wang S, Du Y, Du P, Chen S, Liu Q, Wu M. ScRNA-seq reveals novel immune-suppressive T cells and investigates CMV-TCR-T cells cytotoxicity against GBM. J Immunother Cancer 2024; 12:e008967. [PMID: 38688579 PMCID: PMC11086384 DOI: 10.1136/jitc-2024-008967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a fatal primary brain malignancy in adults. Previous studies have shown that cytomegalovirus (CMV) is a risk factor for tumorigenesis and aggressiveness for glioblastoma. However, little is known about how CMV infection affects immune cells in the tumor microenvironment of GBM. Furthermore, there has been almost no engineered T-cell receptor (TCR)-T targeting CMV for GBM research to date. METHODS We evaluated the CMV infection status of patients with GBM's tumor tissue by immune electron microscopy, immunofluorescence, and droplet digital PCR. We performed single-cell RNA sequencing for CMV-infected GBM to investigate the effects of CMV on the GBM immune microenvironment. CellChat was applied to analyze the interaction between cells in the GBM tumor microenvironment. Additionally, we conducted single-cell TCR/B cell receptor (BCR) sequencing and Grouping of Lymphocyte Interactions with Paratope Hotspots 2 algorithms to acquire specific CMV-TCR sequences. Genetic engineering was used to introduce CMV-TCR into primary T cells derived from patients with CMV-infected GBM. Flow cytometry was used to measure the proportion and cytotoxicity status of T cells in vitro. RESULTS We identified two novel immune cell subpopulations in CMV-infected GBM, which were bipositive CD68+SOX2+ tumor-associated macrophages and FXYD6+ T cells. We highlighted that the interaction between bipositive TAMs or cancer cells and T cells was predominantly focused on FXYD6+ T cells rather than regulatory T cells (Tregs), whereas, FXYD6+ T cells were further identified as a group of novel immunosuppressive T cells. CMV-TCR-T cells showed significant therapeutic effects on the human-derived orthotopic GBM mice model. CONCLUSIONS These findings provided an insight into the underlying mechanism of CMV infection promoting the GBM immunosuppression, and provided a novel potential immunotherapy strategy for patients with GBM.
Collapse
Affiliation(s)
- Xinmiao Long
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Zuping Zhang
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yuzhe Li
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, Hunan, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking University, Beijing, China
| | - Kun Deng
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Wei Gao
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Meng Huang
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, Hunan, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangyu Wang
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Lin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling She
- Department of Pathology in Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiming Zhao
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Minfu Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Huang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Shiyi Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Yinfei Du
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Peng Du
- Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shuai Chen
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Li L, Cheng H, Gong L, Huang Y, Yang J, Yan Q, Dai S, Wang J. Cuproptosis/OXPHOS tendency prediction of prognosis and immune microenvironment of esophageal squamous cell carcinoma: Bioinformatics analysis and experimental validation. Gene 2024; 902:148156. [PMID: 38211899 DOI: 10.1016/j.gene.2024.148156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Cuproptosis is a newly discovered cell death mechanism that relies on mitochondrial respiration, for which oxidative phosphorylation (OXPHOS) is an essential part. However, the detailed mechanisms of cuproptosis associated with OXPHOS in esophageal squamous cell carcinoma (ESCC) and how this correlation affects prognosis still remains unclear. METHODS scRNA-seq data of ESCC were downloaded from SRA (Sequence Read Archive) database. "AUCell" algorithm was used to grouping epithelial cells according to cuproptosis and OXPHOS score. Cell-cell communication, Pseudo-time Trajectory and transcription factor enrichment analysis were repectively conducted by "CellChat", "monocle3" package and "pySCENIC" algorithm. Univariate and LASSO cox regression analysis were used to construct the prognostic cuproptosis-OXPHOS signature. Finally, CCK-8 assay and DCFH-DA staining assay were respectively validated the sensitive and ROS production of elesclomol. RESULTS scRNA-seq data were analyzed to identify 10 core cell types. According to the median scores for cuproptosis and OXPHOS, malignant epithelial cells were divided into double high, double low, and mixed groups. The double high group distributed at the end of the pseudo-time trajectory and harbored HMGA1(+) as specific transcriptional regulons. Knockdown of HMGA1 partly reversed the inhibition of cell viability visualized by CCK-8 assay, while reactive oxygen species (ROS) production by elesclomol was enhanced after HMGA1 silencing. Furthermore, the immunosuppressive signal was significantly increased in the double high group detected by 'CellChat' in single-cell data and 'ssGSEA' in bulk data followed by 'CIBERSORTx' algorithm. Finally, a new cuproptosis-OXPHOS prognostic signature (CNN2, ATP6V0E1, PSMD6, CCDC25, IGFBP2, MT1E, and RPS4Y1) was constructed for the prediction of the prognosis, and a high-risk group corresponding to a more sensitive tendency to erlotinib, dasatinib, and bosutinib treatment was identified. CONCLUSIONS Our study revealed the relationship between OXPHOS and tendency of cuproptosis in ESCC, and malignant cells with this characteristic exerted immunosuppressive signals and indicated poor prognosis. Furthermore, we constructed the regulatory network in high cuproptosis-OXPHOS ESCC and identified HMGA1 as a potential regulator molecule of cuproptosis mediated by elesclomol.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China
| | - Haiyan Cheng
- Department of Gynecology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, Shandong 266042, PR China
| | - Li Gong
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China
| | - Yongcheng Huang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China
| | - Jie Yang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China
| | - Qihang Yan
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China
| | - Shuqin Dai
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China.
| | - Junye Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China.
| |
Collapse
|
33
|
Xu X, Li S, Yu W, Yao S, Fan H, Guo Z. Activation of RIG-I/MDA5 Signaling and Inhibition of CD47-SIRPα Checkpoint with a Dual siRNA-Assembled Nanoadjuvant for Robust Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202318544. [PMID: 38194267 DOI: 10.1002/anie.202318544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/10/2024]
Abstract
Antigen-presenting cells (APCs) play a crucial role in the anti-tumor immunity as they are responsible for capturing, processing, and presenting tumor antigens to T cells. However, their activation is often limited by the absence of adjuvants and the suppressive effects of immune checkpoints, such as CD47-SIRPα. Herein, we present a nanoadjuvant that is self-assembled from long RNA building blocks generated through rolling circle transcription (RCT) reaction and further modified with cationic liposomes. Owing to the high load of densely packed RNA, this nanoadjuvant could robustly activate RIG-I/MDA5 signaling in APCs, leading to the maturation of dendritic cells (DCs) and the polarization of tumor-associated macrophages (TAMs) toward an anti-tumor M1-like phenotype. In addition, with a well-designed template, the generated long RNA from RCT reaction includes two kinds of siRNA targeting both CD47 in tumor cells and SIRPα in APCs. This dual gene silencing results in efficient inhibition of the CD47-SIRPα checkpoint. Collectively, the robust activation of RIG-I/MDA5 signaling and efficient inhibition of CD47-SIRPα checkpoint enhance the phagocytic activity of APCs, which in turn promotes the cross-priming of effector T cells and the activation of anti-tumor immune responses. This study therefore provides a simple and robust RNA nanoadjuvant for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Shumeng Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wenhao Yu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
34
|
Li Z, Liu G, Yang X, Shu M, Jin W, Tong Y, Liu X, Wang Y, Yuan J, Yang Y. An atlas of cell-type-specific interactome networks across 44 human tumor types. Genome Med 2024; 16:30. [PMID: 38347596 PMCID: PMC10860273 DOI: 10.1186/s13073-024-01303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Biological processes are controlled by groups of genes acting in concert. Investigating gene-gene interactions within different cell types can help researchers understand the regulatory mechanisms behind human complex diseases, such as tumors. METHODS We collected extensive single-cell RNA-seq data from tumors, involving 563 patients with 44 different tumor types. Through our analysis, we identified various cell types in tumors and created an atlas of different immune cell subsets across different tumor types. Using the SCINET method, we reconstructed interactome networks specific to different cell types. Diverse functional data was then integrated to gain biological insights into the networks, including somatic mutation patterns and gene functional annotation. Additionally, genes with prognostic relevance within the networks were also identified. We also examined cell-cell communications to investigate how gene interactions modulate cell-cell interactions. RESULTS We developed a data portal called CellNetdb for researchers to study cell-type-specific interactome networks. Our findings indicate that these networks can be used to identify genes with topological specificity in different cell types. We also found that prognostic genes can deconvolved into cell types through analyzing network connectivity. Additionally, we identified commonalities and differences in cell-type-specific networks across different tumor types. Our results suggest that these networks can be used to prioritize risk genes. CONCLUSIONS This study presented CellNetdb, a comprehensive repository featuring an atlas of cell-type-specific interactome networks across 44 human tumor types. The findings underscore the utility of these networks in delineating the intricacies of tumor microenvironments and advancing the understanding of molecular mechanisms underpinning human tumors.
Collapse
Affiliation(s)
- Zekun Li
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Gerui Liu
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoxiao Yang
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Meng Shu
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Wen Jin
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Tong
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaochuan Liu
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Yuting Wang
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China
| | - Jiapei Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yang Yang
- Department of Bioinformatics, School of Basic Medical Sciences, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Reproductive Medicine, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Inflammatory Biology, Tianjin Medical University, Tianjin, 300070, China.
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
35
|
Qu C, Yuan H, Tian M, Zhang X, Xia P, Shi G, Hou R, Li J, Jiang H, Yang Z, Chen T, Li Z, Wang J, Yuan Y. Precise Photodynamic Therapy by Midkine Nanobody-Engineered Nanoparticles Remodels the Microenvironment of Pancreatic Ductal Adenocarcinoma and Potentiates the Immunotherapy. ACS NANO 2024; 18:4019-4037. [PMID: 38253029 DOI: 10.1021/acsnano.3c07002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance against chemotherapy and immunotherapy due to its dense desmoplastic and immunosuppressive tumor microenvironment (TME). Traditional photodynamic therapy (PDT) was also less effective for PDAC owing to poor selectivity, insufficient penetration, and accumulation of photosensitizers in tumor sites. Here, we designed a light-responsive novel nanoplatform targeting the TME of PDAC through tumor-specific midkine nanobodies (Nbs), which could efficiently deliver semiconducting polymeric nanoparticles (NPs) to the TME of PDAC and locally produce abundant reactive oxygen species (ROS) for precise photoimmunotherapy. The synthesized nanocomposite can not only achieve multimodal imaging of PDAC tumors (fluorescence and photoacoustic imaging) but also lead to apoptosis and immunogenic cell death of tumor cells via ROS under light excitation, ultimately preventing tumor progression and remodeling the immunosuppressive TME with increased infiltration of T lymphocytes. Combined with a PD-1 checkpoint blockade, the targeted PDT platform showed the best antitumor performance and markedly extended mice survival. Conclusively, this work integrating Nbs with photodynamic NPs provides a novel strategy to target formidable PDAC to achieve tumor suppression and activate antitumor immunity, creating possibilities for boosting efficacy of immunotherapy for PDAC tumors through the combination with precise local PDT.
Collapse
Affiliation(s)
- Chengming Qu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, P. R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, P. R. China
| | - Haitao Yuan
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, P. R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, P. R. China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics· Guangdong Province), Guangzhou 510630, Guangdong, P. R. China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, P. R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, P. R. China
| | - Guangwei Shi
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People' s Hospital of Shunde Foshan), Guangzhou 528300, Guangdong, P. R. China
| | - Rui Hou
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Ji Li
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong 999077, P. R. China
| | - Zhiyong Yang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, P. R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, P. R. China
| | - Tengxiang Chen
- Precision Medicine Research Institute of Guizhou Medical University, Affiliated Hospital of Guizhou Medical University, Guiyang 550009, Guizhou, P. R. China
| | - Zhijie Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jigang Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, P. R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, P. R. China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, P. R. China
| |
Collapse
|
36
|
Lee J, Kim D, Kong J, Ha D, Kim I, Park M, Lee K, Im SH, Kim S. Cell-cell communication network-based interpretable machine learning predicts cancer patient response to immune checkpoint inhibitors. SCIENCE ADVANCES 2024; 10:eadj0785. [PMID: 38295179 PMCID: PMC10830106 DOI: 10.1126/sciadv.adj0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. However, only some patients respond to ICIs, and current biomarkers for ICI efficacy have limited performance. Here, we devised an interpretable machine learning (ML) model trained using patient-specific cell-cell communication networks (CCNs) decoded from the patient's bulk tumor transcriptome. The model could (i) predict ICI efficacy for patients across four cancer types (median AUROC: 0.79) and (ii) identify key communication pathways with crucial players responsible for patient response or resistance to ICIs by analyzing more than 700 ICI-treated patient samples from 11 cohorts. The model prioritized chemotaxis communication of immune-related cells and growth factor communication of structural cells as the key biological processes underlying response and resistance to ICIs, respectively. We confirmed the key communication pathways and players at the single-cell level in patients with melanoma. Our network-based ML approach can be used to expand ICIs' clinical benefits in cancer patients.
Collapse
Affiliation(s)
- Juhun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Donghyo Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - JungHo Kong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Doyeon Ha
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhae Kim
- ImmunoBiome Inc., Pohang 166-20, Korea
| | - Minhyuk Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kwanghwan Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
- ImmunoBiome Inc., Pohang 166-20, Korea
- Institute of Convergence Science, Yonsei University, Seoul 120-749, Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
- Institute of Convergence Science, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
37
|
MUW researcher of the month. Wien Klin Wochenschr 2024; 136:126-127. [PMID: 38305880 DOI: 10.1007/s00508-024-02328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
|
38
|
Hayes BH, Wang M, Zhu H, Phan SH, Dooling LJ, Andrechak JC, Chang AH, Tobin MP, Ontko NM, Marchena T, Discher DE. Chromosomal instability can favor macrophage-mediated immune response and induce a broad, vaccination-like anti-tumor IgG response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.02.535275. [PMID: 37066426 PMCID: PMC10103980 DOI: 10.1101/2023.04.02.535275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Chromosomal instability (CIN), a state in which cells undergo mitotic aberrations that generate chromosome copy number variations, generates aneuploidy and is thought to drive cancer evolution. Although associated with poor prognosis and reduced immune response, CIN generates aneuploidy-induced stresses that could be exploited for immunotherapies. In such contexts, macrophages and the CD47-SIRPα checkpoint are understudied. Here, CIN is induced pharmacologically induced in poorly immunogenic B16F10 mouse melanoma cells, generating persistent micronuclei and diverse aneuploidy while skewing macrophages towards an anti-cancer M1-like phenotype, based on RNA-sequencing profiling, surface marker expression and short-term antitumor studies. These results further translate to in vivo efficacy: Mice bearing CIN-afflicted tumors with wild-type CD47 levels survive only slightly longer relative to chromosomally stable controls, but long-term survival is maximized when combining macrophage-stimulating anti-tumor IgG opsonization and some form of disruption of the CD47-SIRPα checkpoint. Survivors make multi-epitope, de novo anti-cancer IgG that promote macrophage-mediated phagocytosis of CD47 knockout B16F10 cells and suppress tumoroids in vitro and growth of tumors in vivo . CIN does not greatly affect the level of the IgG response compared to previous studies but does significantly increase survival. These results highlight an unexpected therapeutic benefit from CIN when paired with maximal macrophage anti-cancer activity: an anti-cancer vaccination-like antibody response that can lead to more durable cures and further potentiate cell-mediated acquired immunity.
Collapse
|
39
|
Yang J, Wan S, Zhao M, Cai H, Gao Y, Wang H. Multi-omics Analysis Identifies Hypoxia Subtypes and S100A2 as an Immunosuppressive Factor in Cervical Cancer. Reprod Sci 2024; 31:107-121. [PMID: 37648942 DOI: 10.1007/s43032-023-01304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/10/2023] [Indexed: 09/01/2023]
Abstract
Cervical cancer is a common gynecological oncology. Growing evidence indicates hypoxia plays an important role in tumor progression and immunity. However, no study has examined the hypoxia landscape in cervical cancer. In this study, using hierarchical clustering, we identified three hypoxia subtypes in cervical cancer samples from The Cancer Genome Atlas dataset according to formerly described hypoxia-related genes. The overall survival time, hypoxic features, genomics, and immunological characteristics of these subtypes existed distinct differences. We also created a hypoxia score by principle component analysis for dimension reduction. The hypoxiaScore was an effective prognostic biomarker validated by GSE44001 and was associated with immunotherapy response. Furthermore, combined with single-cell RNA-sequence (scRNA-seq) and experiments, S100A2 was identified as an immunosuppressive factor induced by hypoxia and regulated expression of PD-L1. S100A2 also served as an oncogene promoting the proliferation and migration of cervical cancer cells. These findings depicted a new hypoxia-based classification and identified S100A2 as a potential therapeutic target for cervical cancer, thereby advancing the understanding of immunotherapy resistance mechanisms and cervical cancer genetic markers.
Collapse
Affiliation(s)
- Junyuan Yang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gynecology, Maternal and ChildHealth Hospital of Hubei Province, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Shimeng Wan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Mengna Zhao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.
- Hubei Cancer Clinical Study Center, Wuhan, China.
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.
- Hubei Cancer Clinical Study Center, Wuhan, China.
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.
- Hubei Cancer Clinical Study Center, Wuhan, China.
| |
Collapse
|
40
|
Chen Y, Sun J, Liu J, Wei Y, Wang X, Fang H, Du H, Huang J, Li Q, Ren G, Wang X, Li H. Aldehyde dehydrogenase 2-mediated aldehyde metabolism promotes tumor immune evasion by regulating the NOD/VISTA axis. J Immunother Cancer 2023; 11:e007487. [PMID: 38088186 PMCID: PMC10711917 DOI: 10.1136/jitc-2023-007487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 2 (ALDH2) is a crucial enzyme involved in endogenous aldehyde detoxification and has been implicated in tumor progression. However, its role in tumor immune evasion remains unclear. METHODS Here, we analyzed the relationship between ALDH2 expression and antitumor immune features in multiple cancers. ALDH2 knockout tumor cells were then established using CRISPR/Cas9 system. In immunocompetent breast cancer EMT6 and melanoma B16-F10 mouse models, we investigated the impact of ALDH2 blockade on cytotoxic T lymphocyte function and tumor immune microenvironment by flow cytometry, mass cytometry, Luminex liquid suspension chip detection, and immunohistochemistry. Furthermore, RNA sequencing, flow cytometry, western blot, chromatin immunoprecipitation assay, and luciferase reporter assays were employed to explore the detailed mechanism of ALDH2 involved in tumor immune evasion. Lastly, the synergistic therapeutic efficacy of blocking ALDH2 by genetic depletion or its inhibitor disulfiram in combination with immune checkpoint blockade (ICB) was investigated in mouse models. RESULTS In our study, we uncovered a positive correlation between the expression level of ALDH2 and T-cell dysfunction in multiple cancers. Furthermore, blocking ALDH2 significantly suppressed tumor growth by enhancing cytotoxic activity of CD8+ T cells and reshaping the immune landscape and cytokine milieu of tumors in vivo. Mechanistically, inhibiting ALDH2-mediated metabolism of aldehyde downregulated the expression of V-domain Ig suppressor of T-cell activation (VISTA) via inactivating the nucleotide oligomerization domain (NOD)/nuclear factor kappa-B (NF-κB) signaling pathway. As a result, the cytotoxic function of CD8+ T cells was revitalized. Importantly, ALDH2 blockade markedly reinforced the efficacy of ICB treatment. CONCLUSIONS Our data delineate that ALDH2-mediated aldehyde metabolism drives tumor immune evasion by activating the NOD/NF-κB/VISTA axis. Targeting ALDH2 provides an effective combinatorial therapeutic strategy for immunotherapy.
Collapse
Affiliation(s)
- Yuru Chen
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazhou Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiying Fang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Levites Y, Dammer EB, Ran Y, Tsering W, Duong D, Abreha M, Gadhavi J, Lolo K, Trejo-Lopez J, Phillips JL, Iturbe A, Erqiuzi A, Moore BD, Ryu D, Natu A, Dillon KD, Torrellas J, Moran C, Ladd TB, Afroz KF, Islam T, Jagirdar J, Funk CC, Robinson M, Borchelt DR, Ertekin-Taner N, Kelly JW, Heppner FL, Johnson EC, McFarland K, Levey AL, Prokop S, Seyfried NT, Golde TE. Aβ Amyloid Scaffolds the Accumulation of Matrisome and Additional Proteins in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.568318. [PMID: 38076912 PMCID: PMC10705437 DOI: 10.1101/2023.11.29.568318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
We report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof. Overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), in CRND8 mice brains leads to increased accumulation of A β ; in plaques and in CAA; further, recombinant MDK and PTN enhance A β ; aggregation into amyloid. Multiple M42 proteins, annotated as heparan sulfate binding proteins, bind to fibrillar A β 42 and a non-human amyloid fibril in vitro. Supporting this binding data, MDK and PTN co-accumulate with transthyretin (TTR) amyloid in the heart and islet amyloid polypeptide (IAPP) amyloid in the pancreas. Our findings establish several critical insights. Proteomic changes in modules observed in human AD brains define an A β ; amyloid responsome that is well conserved from mouse model to human. Further, distinct amyloid structures may serve as scaffolds, facilitating the co-accumulation of proteins with signaling functions. We hypothesize that this co-accumulation may contribute to downstream pathological sequalae. Overall, this contextualized understanding of proteomic changes and their interplay with amyloid deposition provides valuable insights into the complexity of AD pathogenesis and potential biomarkers and therapeutic targets.
Collapse
|
42
|
Wang J, Harwood CA, Bailey E, Bewicke-Copley F, Anene CA, Thomson J, Qamar MJ, Laban R, Nourse C, Schoenherr C, Treanor-Taylor M, Healy E, Lai C, Craig P, Moyes C, Rickaby W, Martin J, Proby C, Inman GJ, Leigh IM. Transcriptomic analysis of cutaneous squamous cell carcinoma reveals a multigene prognostic signature associated with metastasis. J Am Acad Dermatol 2023; 89:1159-1166. [PMID: 37586461 DOI: 10.1016/j.jaad.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Metastasis of cutaneous squamous cell carcinoma (cSCC) is uncommon. Current staging methods are reported to have sub-optimal performances in metastasis prediction. Accurate identification of patients with tumors at high risk of metastasis would have a significant impact on management. OBJECTIVE To develop a robust and validated gene expression profile signature for predicting primary cSCC metastatic risk using an unbiased whole transcriptome discovery-driven approach. METHODS Archival formalin-fixed paraffin-embedded primary cSCC with perilesional normal tissue from 237 immunocompetent patients (151 nonmetastasizing and 86 metastasizing) were collected retrospectively from four centers. TempO-seq was used to probe the whole transcriptome and machine learning algorithms were applied to derive predictive signatures, with a 3:1 split for training and testing datasets. RESULTS A 20-gene prognostic model was developed and validated, with an accuracy of 86.0%, sensitivity of 85.7%, specificity of 86.1%, and positive predictive value of 78.3% in the testing set, providing more stable, accurate prediction than pathological staging systems. A linear predictor was also developed, significantly correlating with metastatic risk. LIMITATIONS This was a retrospective 4-center study and larger prospective multicenter studies are now required. CONCLUSION The 20-gene signature prediction is accurate, with the potential to be incorporated into clinical workflows for cSCC.
Collapse
Affiliation(s)
- Jun Wang
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Catherine A Harwood
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Emma Bailey
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Chinedu Anthony Anene
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Jason Thomson
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Mah Jabeen Qamar
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Rhiannon Laban
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Craig Nourse
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK
| | | | - Mairi Treanor-Taylor
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK; School of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Eugene Healy
- Dermatopharmacology, University of Southampton, Southampton General Hospital, Southampton, UK; Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Chester Lai
- Dermatopharmacology, University of Southampton, Southampton General Hospital, Southampton, UK; Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Paul Craig
- Cellular Pathology, Gloucestershire Hospitals NHS Foundation Trust, Cheltenham General Hospital, Cheltenham, UK
| | - Colin Moyes
- Queen Elizabeth University Hospital, Glasgow, Scotland
| | | | - Joanne Martin
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Charlotte Proby
- Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, Scotland
| | - Gareth J Inman
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK; School of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Irene M Leigh
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
43
|
Neumaier EE, Rothhammer V, Linnerbauer M. The role of midkine in health and disease. Front Immunol 2023; 14:1310094. [PMID: 38098484 PMCID: PMC10720637 DOI: 10.3389/fimmu.2023.1310094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Midkine (MDK) is a neurotrophic growth factor highly expressed during embryogenesis with important functions related to growth, proliferation, survival, migration, angiogenesis, reproduction, and repair. Recent research has indicated that MDK functions as a key player in autoimmune disorders of the central nervous system (CNS), such as Multiple Sclerosis (MS) and is a promising therapeutic target for the treatment of brain tumors, acute injuries, and other CNS disorders. This review summarizes the modes of action and immunological functions of MDK both in the peripheral immune compartment and in the CNS, particularly in the context of traumatic brain injury, brain tumors, neuroinflammation, and neurodegeneration. Moreover, we discuss the role of MDK as a central mediator of neuro-immune crosstalk, focusing on the interactions between CNS-infiltrating and -resident cells such as astrocytes, microglia, and oligodendrocytes. Finally, we highlight the therapeutic potential of MDK and discuss potential therapeutic approaches for the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
44
|
Huang L, Wang X, Pei S, Li X, Dong L, Bian X, Sun H, Jin L, Hou H, Shi W, Zhang X, Zhang L, Zhao S, Chen X, Yin M. Single-Cell Profiling Reveals Sustained Immune Infiltration, Surveillance, and Tumor Heterogeneity in Infiltrative Basal Cell Carcinoma. J Invest Dermatol 2023; 143:2283-2294.e17. [PMID: 37201777 DOI: 10.1016/j.jid.2023.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
Infiltrative basal cell carcinoma (iBCC) is a particularly aggressive subtype of basal cell carcinoma that tends to progress and recur after surgery, and its malignancy is closely related to the tumor microenvironment. In this study, we performed a comprehensive single-cell RNA analysis to profile 29,334 cells from iBCC and adjacent normal skin. We found active immune collaborations enriched in iBCC. Specifically, SPP1+CXCL9/10high macrophage 1 had strong BAFF signaling with plasma cells, and T follicular helper-like cells highly expressed the B-cell chemokine CXCL13. Heterogeneous proinflammatory SPP1+CXCL9/10high macrophage 1 and angiogenesis-related SPP1+CCL2high macrophage 1 were identified within the tumor microenvironment. Interestingly, we found an upregulation of major histocompatibility complex I molecules in fibroblasts in iBCC compared with those in adjacent normal skin. Moreover, MDK signals derived from malignant basal cells were markedly increased, and their expression was an independent factor in predicting the infiltration depth of iBCC, emphasizing its role in driving malignancy and remodeling the tumor microenvironment. In addition, we identified differentiation-associated SOSTDC1+IGFBP5+CTSV+ malignant basal subtype 1 and epithelial-mesenchymal transition-associated TNC+SFRP1+CHGA+ malignant basal subtype 2 cells. The high expression of malignant basal 2 cell markers was associated with the invasion and recurrence of iBCC. Altogether, our study helps to elucidate the cellular heterogeneity in iBCC and provides potential therapeutic targets for clinical research.
Collapse
Affiliation(s)
- Lingjuan Huang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Xianggui Wang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China; Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Shiyao Pei
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Xin Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Liang Dong
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Xiaohui Bian
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Hongyin Sun
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Liping Jin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Huihui Hou
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Wensheng Shi
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China; Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiyuan Zhang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Lining Zhang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China
| | - Mingzhu Yin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, China.
| |
Collapse
|
45
|
Said EA, Al-Dughaishi S, Al-Hatmi W, Al-Reesi I, Al-Balushi MS, Al-Bimani A, Al-Busaidi JZ, Al-Riyami M, Al-Khabori M, Al-Kindi S, Procopio FA, Al-Sinawi S, Al-Ansari A, Koh CY, Al-Naamani K, Al-Jabri AA. Differential Production of Midkine and Pleiotrophin by Innate APCs upon Stimulation through Nucleic Acid-Sensing TLRs. J Immunol Res 2023; 2023:7944102. [PMID: 37850119 PMCID: PMC10578979 DOI: 10.1155/2023/7944102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/26/2023] [Accepted: 08/26/2023] [Indexed: 10/19/2023] Open
Abstract
Midkine (MK) and pleiotrophin (PTN) belong to the same family of cytokines. They have similar sequences and functions. Both have important roles in cellular proliferation, tumors, and diseases. They regulate and are expressed by some immune cells. We have recently demonstrated MK production by some human innate antigen-presenting cells (iAPCs), i.e., monocyte-derived dendritic cells (MDDCs) and macrophages stimulated through Toll-like receptor (TLR)-4, and plasmacytoid dendritic cells (pDCs) stimulated through TLR 7. While PTN production was only documented in tissue macrophages. TLRs 3, 7, 8, and 9 are nucleic acid sensing (NAS) TLRs that detect nucleic acids from cell damage and infection and induce iAPC responses. We investigated whether NAS TLRs can induce MK and PTN production by human iAPCs, namely monocytes, macrophages, MDDCs, myeloid dendritic cells (mDCs), and pDCs. Our results demonstrated for the first time that PTN is produced by all iAPCs upon TLR triggering (p < 0.01). IAPCs produced more PTN than MK (p < 0.01). NAS TLRs and iAPCs had differential abilities to induce the production of MK, which was induced in monocytes and pDCs by all NAS TLRs (p < 0.05) and in MDDCs by TLRs 7/8 (p < 0.05). TLR4 induced a stronger MK production than NAS TLRs (p ≤ 0.05). Monocytes produced higher levels of PTN after differentiation to macrophages and MDDCs (p < 0.05). The production of MK and PTN differs among iAPCs, with a higher production of PTN and a selective induction of MK production by NAS TLR. This highlights the potentially important role of iAPCs in angiogenesis, tumors, infections, and autoimmunity through the differential production of MK and PTN upon TLR triggering.
Collapse
Affiliation(s)
- Elias A. Said
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Sumaya Al-Dughaishi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Wadha Al-Hatmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Iman Al-Reesi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammed S. Al-Balushi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Atika Al-Bimani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Juma Z. Al-Busaidi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Marwa Al-Riyami
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Murtadha Al-Khabori
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Salam Al-Kindi
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Francesco A. Procopio
- Service of Immunology and Allergy, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Shadia Al-Sinawi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Aliyaa Al-Ansari
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Crystal Y. Koh
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Ali A. Al-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
46
|
Kam NW, Lau CY, Che CM, Lee VHF. Nasopharynx Battlefield: Cellular Immune Responses Mediated by Midkine in Nasopharyngeal Carcinoma and COVID-19. Cancers (Basel) 2023; 15:4850. [PMID: 37835544 PMCID: PMC10571800 DOI: 10.3390/cancers15194850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Clinical evidence suggests that the severe respiratory illness coronavirus disease 2019 (COVID-19) is often associated with a cytokine storm that results in dysregulated immune responses. Prolonged COVID-19 positivity is thought to disproportionately affect cancer patients. With COVID-19 disrupting the delivery of cancer care, it is crucial to gain momentum and awareness of the mechanistic intersection between these two diseases. This review discusses the role of the cytokine midkine (MK) as an immunomodulator in patients with COVID-19 and nasopharyngeal carcinoma (NPC), both of which affect the nasal cavity. We conducted a review and analysis of immunocellular similarities and differences based on clinical studies, research articles, and published transcriptomic datasets. We specifically focused on ligand-receptor pairs that could be used to infer intercellular communication, as well as the current medications used for each disease, including NPC patients who have contracted COVID-19. Based on our findings, we recommend close monitoring of the MK axis to maintain the desirable effects of therapeutic regimens in fighting both NPC and COVID-19 infections.
Collapse
Affiliation(s)
- Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.-W.K.); (C.-Y.L.)
- Laboratory for Synthetic Chemistry and Chemical Biology Ltd., Hong Kong Science Park, New Territories, Hong Kong 999077, China;
| | - Cho-Yiu Lau
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.-W.K.); (C.-Y.L.)
- Laboratory for Synthetic Chemistry and Chemical Biology Ltd., Hong Kong Science Park, New Territories, Hong Kong 999077, China;
| | - Chi-Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology Ltd., Hong Kong Science Park, New Territories, Hong Kong 999077, China;
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong 999077, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.-W.K.); (C.-Y.L.)
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
47
|
Kohtamäki L, Leivonen SK, Mäkelä S, Juteau S, Leppä S, Hernberg M. Intra-patient evolution of tumor microenvironment in the pathogenesis of treatment-naïve metastatic melanoma patients. Acta Oncol 2023; 62:1008-1013. [PMID: 37624703 DOI: 10.1080/0284186x.2023.2248371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Affiliation(s)
- Laura Kohtamäki
- Department of Oncology, Helsinki University Hospital, Comprehensive Cancer Center, University of Helsinki, Finland
| | | | - Siru Mäkelä
- Department of Oncology, Helsinki University Hospital, Comprehensive Cancer Center, University of Helsinki, Finland
| | | | - Sirpa Leppä
- Department of Oncology, Helsinki University Hospital, Comprehensive Cancer Center, University of Helsinki, Finland
- Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Micaela Hernberg
- Department of Oncology, Helsinki University Hospital, Comprehensive Cancer Center, University of Helsinki, Finland
| |
Collapse
|
48
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
49
|
Chen X, Meng F, Xu Y, Li T, Chen X, Wang H. Chemically programmed STING-activating nano-liposomal vesicles improve anticancer immunity. Nat Commun 2023; 14:4584. [PMID: 37524727 PMCID: PMC10390568 DOI: 10.1038/s41467-023-40312-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological activation of the STING pathway does create an immunologically hot TME, however, systemic delivery might lead to undesired off-target inflammatory responses. Here, we generate a small panel of esterase-activatable pro-drugs based on the structure of the non-nucleotide STING agonist MSA-2 that are subsequently stably incorporated into a liposomal vesicle for intravenous administration. The pharmacokinetic properties and immune stimulatory capacity of pro-drugs delivered via liposomes (SAProsomes) are enhanced compared to the free drug form. By performing efficacy screening among the SAProsomes incorporating different pro-drugs in syngeneic mouse tumor models, we find that superior therapeutic performance relies on improved delivery to the desired tumor and lymphoid compartments. The best candidate, SAProsome-3, highly stimulates secretion of inflammatory cytokines and creates a tumoricidal immune landscape. Notably, upon application to breast cancer or melanoma mouse models, SAProsome-3 elicits durable remission of established tumors and postsurgical tumor-free survival while decreasing metastatic burden without significant systemic toxicity. In summary, our work establishes the proof of principle for a better targeted and more efficient and safe STING agonist therapy.
Collapse
Affiliation(s)
- Xiaona Chen
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, P. R. China
| | - Fanchao Meng
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, P. R. China
| | - Yiting Xu
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, P. R. China
| | - Tongyu Li
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, P. R. China
| | - Xiaolong Chen
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, P. R. China.
- Jinan Microecological Biomedicine Shandong Laboratory, 250117, Jinan, Shandong Province, P. R. China.
| |
Collapse
|
50
|
Fetahu IS, Esser-Skala W, Dnyansagar R, Sindelar S, Rifatbegovic F, Bileck A, Skos L, Bozsaky E, Lazic D, Shaw L, Tötzl M, Tarlungeanu D, Bernkopf M, Rados M, Weninger W, Tomazou EM, Bock C, Gerner C, Ladenstein R, Farlik M, Fortelny N, Taschner-Mandl S. Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis. Nat Commun 2023; 14:3620. [PMID: 37365178 PMCID: PMC10293285 DOI: 10.1038/s41467-023-39210-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Metastasis is the major cause of cancer-related deaths. Neuroblastoma (NB), a childhood tumor has been molecularly defined at the primary cancer site, however, the bone marrow (BM) as the metastatic niche of NB is poorly characterized. Here we perform single-cell transcriptomic and epigenomic profiling of BM aspirates from 11 subjects spanning three major NB subtypes and compare these to five age-matched and metastasis-free BM, followed by in-depth single cell analyses of tissue diversity and cell-cell interactions, as well as functional validation. We show that cellular plasticity of NB tumor cells is conserved upon metastasis and tumor cell type composition is NB subtype-dependent. NB cells signal to the BM microenvironment, rewiring via macrophage mgration inhibitory factor and midkine signaling specifically monocytes, which exhibit M1 and M2 features, are marked by activation of pro- and anti-inflammatory programs, and express tumor-promoting factors, reminiscent of tumor-associated macrophages. The interactions and pathways characterized in our study provide the basis for therapeutic approaches that target tumor-to-microenvironment interactions.
Collapse
Affiliation(s)
- Irfete S Fetahu
- St. Anna Children's Cancer Research Institute, Vienna, Austria.
| | - Wolfgang Esser-Skala
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Rohit Dnyansagar
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Samuel Sindelar
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | - Andrea Bileck
- University of Vienna, Department of Analytical Chemistry, Faculty of Chemistry, Vienna, Austria
- Joint Metabolomics Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Lukas Skos
- University of Vienna, Department of Analytical Chemistry, Faculty of Chemistry, Vienna, Austria
| | - Eva Bozsaky
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Lisa Shaw
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Marcus Tötzl
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Marie Bernkopf
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Magdalena Rados
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Wolfgang Weninger
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Eleni M Tomazou
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Christopher Gerner
- University of Vienna, Department of Analytical Chemistry, Faculty of Chemistry, Vienna, Austria
- Joint Metabolomics Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ruth Ladenstein
- St. Anna Children's Hospital and St. Anna Children's Cancer Research Institute, Department of Studies and Statistics for Integrated Research and Projects, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics, Vienna, Austria
| | - Matthias Farlik
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
| | | |
Collapse
|