1
|
Lee H, Pearse RV, Lish AM, Pan C, Augur ZM, Terzioglu G, Gaur P, Liao M, Fujita M, Tio ES, Duong DM, Felsky D, Seyfried NT, Menon V, Bennett DA, De Jager PL, Young‐Pearse TL. Contributions of Genetic Variation in Astrocytes to Cell and Molecular Mechanisms of Risk and Resilience to Late-Onset Alzheimer's Disease. Glia 2025; 73:1166-1187. [PMID: 39901616 PMCID: PMC12012329 DOI: 10.1002/glia.24677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025]
Abstract
Reactive astrocytes are associated with Alzheimer's disease (AD), and several AD genetic risk variants are associated with genes highly expressed in astrocytes. However, the contribution of genetic risk within astrocytes to cellular processes relevant to the pathogenesis of AD remains ill-defined. Here, we present a resource for studying AD genetic risk in astrocytes using a large collection of induced pluripotent stem cell (iPSC) lines from deeply phenotyped individuals with a range of neuropathological and cognitive outcomes. IPSC lines from 44 individuals were differentiated into astrocytes followed by unbiased molecular profiling using RNA sequencing and tandem mass tag-mass spectrometry. We demonstrate the utility of this resource in examining gene- and pathway-level associations with clinical and neuropathological traits, as well as in analyzing genetic risk and resilience factors through parallel analyses of iPSC-astrocytes and brain tissue from the same individuals. Our analyses reveal that genes and pathways altered in iPSC-derived astrocytes from individuals with AD are concordantly dysregulated in AD brain tissue. This includes increased levels of prefoldin proteins, extracellular matrix factors, COPI-mediated trafficking components and reduced levels of proteins involved in cellular respiration and fatty acid oxidation. Additionally, iPSC-derived astrocytes from individuals resilient to high AD neuropathology show elevated basal levels of interferon response proteins and increased secretion of interferon gamma. Correspondingly, higher polygenic risk scores for AD are associated with lower levels of interferon response proteins in astrocytes. This study establishes an experimental system that integrates genetic information with a matched iPSC lines and brain tissue data from a large cohort of individuals to identify genetic contributions to molecular pathways affecting AD risk and resilience.
Collapse
Affiliation(s)
- Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Richard V. Pearse
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Alexandra M. Lish
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Cheryl Pan
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Zachary M. Augur
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Gizem Terzioglu
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Pallavi Gaur
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Meichen Liao
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Earvin S. Tio
- Department of Psychiatry and Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Duc M. Duong
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Daniel Felsky
- Department of Psychiatry and Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental HealthTorontoOntarioCanada
| | - Nicholas T. Seyfried
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Tracy L. Young‐Pearse
- Ann Romney Center for Neurologic Diseases, Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell InstituteHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Guo X, Wang X, Wang J, Ma M, Ren Q. Current Development of iPSC-Based Modeling in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:3774. [PMID: 40332425 PMCID: PMC12027653 DOI: 10.3390/ijms26083774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Over the past two decades, significant advancements have been made in the induced pluripotent stem cell (iPSC) technology. These developments have enabled the broader application of iPSCs in neuroscience, improved our understanding of disease pathogenesis, and advanced the investigation of therapeutic targets and methods. Specifically, optimizations in reprogramming protocols, coupled with improved neuronal differentiation and maturation techniques, have greatly facilitated the generation of iPSC-derived neural cells. The integration of the cerebral organoid technology and CRISPR/Cas9 genome editing has further propelled the application of iPSCs in neurodegenerative diseases to a new stage. Patient-derived or CRISPR-edited cerebral neurons and organoids now serve as ideal disease models, contributing to our understanding of disease pathophysiology and identifying novel therapeutic targets and candidates. In this review, we examine the development of iPSC-based models in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Xiangge Guo
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Xumeng Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Jiaxuan Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Min Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
- Human Brain Bank, Hebei Medical University, Shijiazhuang 050017, China
| | - Qian Ren
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
3
|
Seah C, Sidamon-Eristoff AE, Huckins LM, Brennand KJ. Implications of gene × environment interactions in post-traumatic stress disorder risk and treatment. J Clin Invest 2025; 135:e185102. [PMID: 40026250 PMCID: PMC11870735 DOI: 10.1172/jci185102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Exposure to traumatic stress is common in the general population. Variation in the brain's molecular encoding of stress potentially contributes to the heterogeneous clinical outcomes in response to traumatic experiences. For instance, only a minority of those exposed to trauma will develop post-traumatic stress disorder (PTSD). Risk for PTSD is at least partially heritable, with a growing number of genetic factors identified through GWAS. A major limitation of genetic studies is that they capture only the genetic component of risk, whereas PTSD by definition requires an environmental traumatic exposure. Furthermore, the extent, timing, and type of trauma affects susceptibility. Here, we discuss the molecular mechanisms of PTSD risk together with gene × environment interactions, with a focus on how either might inform genetic screening for individuals at high risk for disease, reveal biological mechanisms that might one day yield novel therapeutics, and impact best clinical practices even today. To close, we discuss the interaction of trauma with sex, gender, and race, with a focus on the implications for treatment. Altogether, we suggest that predicting, preventing, and treating PTSD will require integrating both genotypic and environmental information.
Collapse
Affiliation(s)
- Carina Seah
- Department of Genetics and Genomics and
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anne Elizabeth Sidamon-Eristoff
- Department of Psychiatry, Division of Molecular Psychiatry
- Interdepartmental Neuroscience Program, Wu Tsai Institute, and
- MD-PhD Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Kristen J. Brennand
- Department of Genetics and Genomics and
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Division of Molecular Psychiatry
- Interdepartmental Neuroscience Program, Wu Tsai Institute, and
| |
Collapse
|
4
|
Cao C, Memete O, Dun Y, Zhang L, Liu F, He D, Zhou J, Shao Y, Shen J. Promoting epithelial regeneration in chemically induced acute lung injury through Sox9-positive alveolar type 2 epithelial cells. Stem Cell Res Ther 2025; 16:13. [PMID: 39849583 PMCID: PMC11756119 DOI: 10.1186/s13287-024-04124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Chemical-induced acute lung injury is characterized by impaired epithelial regenerative capacity, leading to acute pulmonary edema. Numerous studies have investigated the therapeutic potential of endogenous stem cells with particular emphasis on alveolar type 2 epithelial (AEC2) cells owing to their involvement in lung cell renewal. Sox9, a transcription factor known for its role in maintaining stem cell properties and guiding cell differentiation, marks a subset of AEC2 cells believed to contribute to epithelial repair. However, the role of Sox9+AEC2 cells in the distal lung alveolar cells and the potential roles in chemically induced acute lung injury have never been explored. METHODS In this study, we generated Sox9flox/flox;SftpcCre-ERT2 mice and examined the effects of Sox9+AEC2 cells on the pathophysiology of epithelial damage during chemical-induced acute lung injury. Subsequently, Sox9-CreERT2 Ai9 mice were used for lineage tracing to elucidate the repair mechanisms. RESULTS Our findings revealed that Sox9+AEC2 cells endowed with stem cell properties induced cell proliferation during lung injury, predominantly in the damaged alveolar region. This process is accompanied by the regulation of inflammatory responses and orderly differentiation, thereby promoting epithelial regeneration. CONCLUSION These results provide compelling in vivo genetic evidence supporting the characterization of Sox9+AEC2 cells as bona fide lung epithelial stem cells, demonstrating their multipotency and self-renewal capabilities during lung repair and regeneration. The identification of Sox9+AEC2 cells as crucial contributors to the promotion of epithelial repair underscores their potential as therapeutic targets in chemical-induced acute lung injury.
Collapse
Affiliation(s)
- Chao Cao
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 201508, China
- Fudan University Shanghai Medical College, Shanghai, 200120, China
| | - Obulkasim Memete
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 201508, China
- Fudan University Shanghai Medical College, Shanghai, 200120, China
| | - Yu Dun
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 201508, China
- Fudan University Shanghai Medical College, Shanghai, 200120, China
| | - Lin Zhang
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 201508, China
| | - Fuli Liu
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 201508, China
| | - Daikun He
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 201508, China
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China
- Fudan University Shanghai Medical College, Shanghai, 200120, China
| | - Yiru Shao
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, 201508, China.
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 201508, China.
| | - Jie Shen
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 201508, China
- Fudan University Shanghai Medical College, Shanghai, 200120, China
| |
Collapse
|
5
|
Dang R, Dalmia M, Ma Z, Jin M, Aluru K, Mirabella VR, Papetti AV, Cai L, Jiang P. Neuroligin-3 R451C induces gain-of-function gene expression in astroglia in an astroglia-enriched brain organoid model. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:1. [PMID: 39775628 PMCID: PMC11711438 DOI: 10.1186/s13619-024-00219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/07/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Astroglia are integral to brain development and the emergence of neurodevelopmental disorders. However, studying the pathophysiology of human astroglia using brain organoid models has been hindered by inefficient astrogliogenesis. In this study, we introduce a robust method for generating astroglia-enriched organoids through BMP4 treatment during the neural differentiation phase of organoid development. Our RNA sequencing analysis reveals that astroglia developed within these organoids exhibit advanced developmental characteristics and enhanced synaptic functions compared to those grown under traditional two-dimensional conditions, particularly highlighted by increased neurexin (NRXN)-neuroligin (NLGN) signaling. Cell adhesion molecules, such as NRXN and NLGN, are essential in regulating interactions between astroglia and neurons. We further discovered that brain organoids derived from human embryonic stem cells (hESCs) harboring the autism-associated NLGN3 R451C mutation exhibit increased astrogliogenesis. Notably, the NLGN3 R451C astroglia demonstrate enhanced branching, indicating a more intricate morphology. Interestingly, our RNA sequencing data suggest that these mutant astroglia significantly upregulate pathways that support neural functions when compared to isogenic wild-type astroglia. Our findings establish a novel astroglia-enriched organoid model, offering a valuable platform for probing the roles of human astroglia in brain development and related disorders.
Collapse
Affiliation(s)
- Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Mridul Dalmia
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Kushal Aluru
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Vincent R Mirabella
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ava V Papetti
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
6
|
Rizalar FS, Haucke V. Generation of Glutamatergic Human Neurons from Induced Pluripotent Stem Cells. Methods Mol Biol 2025; 2910:27-36. [PMID: 40220091 DOI: 10.1007/978-1-0716-4446-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Generation of human induced pluripotent stem cells (iPSCs) provided a unique platform for human brain development studies, in vitro disease modeling, and therapeutic strategy development. Human stem cells can be rapidly and efficiently differentiated into several distinct subpopulations of brain cells. These stem cell-derived systems are gaining acceptance as a viable alternative in the neuroscience field as they can mimic interactions between various brain cells, and help recapitulate brain regions with specific functions. Here, we describe a method to generate functional, postmitotic, excitatory cortical-like neurons from iPSCs by expressing the NGN2 transgene from a stably integrated doxycycline-inducible promoter. These induced neurons (iNs) can be utilized to study the development and function of human cortical neurons. They also allow studying disease mechanisms by comparing normal and pathophysiological conditions and enable reliable screens for testing of therapeutic approaches.
Collapse
Affiliation(s)
- Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Department of Biology, Chemistry, Pharmacy, Freie Universität, Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
7
|
He Y, Johnston APR, Pouton CW. Therapeutic applications of cell engineering using mRNA technology. Trends Biotechnol 2025; 43:83-97. [PMID: 39153909 DOI: 10.1016/j.tibtech.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
Engineering and reprogramming cells has significant therapeutic potential to treat a wide range of diseases, by replacing missing or defective proteins, to provide transcription factors (TFs) to reprogram cell phenotypes, or to provide enzymes such as RNA-guided Cas9 derivatives for CRISPR-based cell engineering. While viral vector-mediated gene transfer has played an important role in this field, the use of mRNA avoids safety concerns associated with the integration of DNA into the host cell genome, making mRNA particularly attractive for in vivo applications. Widespread application of mRNA for cell engineering is limited by its instability in the biological environment and challenges involved in the delivery of mRNA to its target site. In this review, we examine challenges that must be overcome to develop effective therapeutics.
Collapse
Affiliation(s)
- Yujia He
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Lendemeijer B, de Vrij FMS. In vitro models for human neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:213-227. [PMID: 40122626 DOI: 10.1016/b978-0-443-19104-6.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglia are a heterogenous population of cells in the nervous system. In the central nervous system, this group is classified into astrocytes, oligodendrocytes, and microglia. Neuroglia in the peripheral nervous system are divided into Schwann cells and enteric glia. These groups of cells display considerable differences in their developmental origin, morphology, function, and regional abundance. Compared to animal models, human neuroglia differ in their transcriptomic profile, morphology, and function. Investigating the physiology of healthy or diseased human neuroglia in vivo is challenging due to the inaccessibility of the tissue. Therefore, researchers have developed numerous in vitro models attempting to replicate the natural tissue environment. Earlier models made use of postmortem, postsurgical, or fetal tissue to establish human neuroglial cells in vitro, either as a pure population of the desired cell type or as organotypic slice cultures. Advancements in human stem cell differentiation techniques have greatly enhanced the possibilities for creating in vitro models of human neuroglia. This chapter provides an overview of the current models used to study the functioning and development of human neuroglia in vitro, both in health and disease.
Collapse
Affiliation(s)
- Bas Lendemeijer
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Psychiatry, Columbia University Medical Center, New York, NY, United States
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Wang M, Zhang L, Novak SW, Yu J, Gallina IS, Xu LL, Lim CK, Fernandes S, Shokhirev MN, Williams AE, Saxena MD, Coorapati S, Parylak SL, Quintero C, Molina E, Andrade LR, Manor U, Gage FH. Morphological diversification and functional maturation of human astrocytes in glia-enriched cortical organoid transplanted in mouse brain. Nat Biotechnol 2025; 43:52-62. [PMID: 38418648 PMCID: PMC11349933 DOI: 10.1038/s41587-024-02157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Astrocytes, the most abundant glial cell type in the brain, are underrepresented in traditional cortical organoid models due to the delayed onset of cortical gliogenesis. Here we introduce a new glia-enriched cortical organoid model that exhibits accelerated astrogliogenesis. We demonstrated that induction of a gliogenic switch in a subset of progenitors enabled the rapid derivation of astroglial cells, which account for 25-31% of the cell population within 8-10 weeks of differentiation. Intracerebral transplantation of these organoids reliably generated a diverse repertoire of cortical neurons and anatomical subclasses of human astrocytes. Spatial transcriptome profiling identified layer-specific expression patterns among distinct subclasses of astrocytes within organoid transplants. Using an in vivo acute neuroinflammation model, we identified a subpopulation of astrocytes that rapidly activates pro-inflammatory pathways upon cytokine stimulation. Additionally, we demonstrated that CD38 signaling has a crucial role in mediating metabolic and mitochondrial stress in reactive astrocytes. This model provides a robust platform for investigating human astrocyte function.
Collapse
Affiliation(s)
- Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lei Zhang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Iryna S Gallina
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lynne L Xu
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Christina K Lim
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maxim N Shokhirev
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Monisha D Saxena
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shashank Coorapati
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sarah L Parylak
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cristian Quintero
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elsa Molina
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
10
|
Matusova Z, Dykstra W, de Pablo Y, Zetterdahl OG, Canals I, van Gelder CAGH, Vos HR, Pérez-Sala D, Kubista M, Abaffy P, Ahlenius H, Valihrach L, Hol EM, Pekny M. Aberrant neurodevelopment in human iPS cell-derived models of Alexander disease. Glia 2025; 73:57-79. [PMID: 39308436 DOI: 10.1002/glia.24618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 12/21/2024]
Abstract
Alexander disease (AxD) is a rare and severe neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP). While the exact disease mechanism remains unknown, previous studies suggest that mutant GFAP influences many cellular processes, including cytoskeleton stability, mechanosensing, metabolism, and proteasome function. While most studies have primarily focused on GFAP-expressing astrocytes, GFAP is also expressed by radial glia and neural progenitor cells, prompting questions about the impact of GFAP mutations on central nervous system (CNS) development. In this study, we observed impaired differentiation of astrocytes and neurons in co-cultures of astrocytes and neurons, as well as in neural organoids, both generated from AxD patient-derived induced pluripotent stem (iPS) cells with a GFAPR239C mutation. Leveraging single-cell RNA sequencing (scRNA-seq), we identified distinct cell populations and transcriptomic differences between the mutant GFAP cultures and a corrected isogenic control. These findings were supported by results obtained with immunocytochemistry and proteomics. In co-cultures, the GFAPR239C mutation resulted in an increased abundance of immature cells, while in unguided neural organoids and cortical organoids, we observed altered lineage commitment and reduced abundance of astrocytes. Gene expression analysis revealed increased stress susceptibility, cytoskeletal abnormalities, and altered extracellular matrix and cell-cell communication patterns in the AxD cultures, which also exhibited higher cell death after stress. Overall, our results point to altered cell differentiation in AxD patient-derived iPS-cell models, opening new avenues for AxD research.
Collapse
Affiliation(s)
- Zuzana Matusova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Werner Dykstra
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Oskar G Zetterdahl
- Stem Cells, Aging and Neurodegeneration Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
- Glial and Neuronal Biology Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Isaac Canals
- Glial and Neuronal Biology Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Metabolism, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- ITINERARE-Innovative therapies in rare diseases, University Research Priority Program, University of Zurich, Zurich, Switzerland
| | - Charlotte A G H van Gelder
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Harmjan R Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Henrik Ahlenius
- Stem Cells, Aging and Neurodegeneration Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
11
|
Hol EM, Dykstra W, Chevalier J, Cuadrado E, Bugiani M, Aronica E, Verkhratsky A. Neuroglia in leukodystrophies. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:159-175. [PMID: 40148043 DOI: 10.1016/b978-0-443-19102-2.00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Leukodystrophies are a heterogeneous group of rare genetic neurologic disorders characterized by white matter degeneration resulting from mutations affecting glial cells. This review focuses on the primary subtypes-astroglial, oligodendroglial, and microglial leukodystrophies-offering a detailed description of their neuropathologic features and clinical manifestations. It delves into key aspects of the pathogenesis, emphasizing the distinct cellular mechanisms that drive white matter damage. Advances in disease modeling, including the development of animal models with pathologic gene expressions and patient-derived iPS-cell models, have significantly enhanced our understanding of these rare disorders. Insights into the roles of different glial cell types highlight the complexity of leukodystrophies and provide a foundation for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Werner Dykstra
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Juliette Chevalier
- Department of Child Neurology and Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eloy Cuadrado
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marianna Bugiani
- Department of Child Neurology and Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
12
|
Yi H, Zhang J, Gao K, Yan W, Chu H, Zhang J, Zhang F, Jiang Y, Wang J, Wu Y. Morphological Characteristics and Extracellular Matrix Abnormalities in Astrocytes Derived From iPSCs of Children With Alexander Disease. CNS Neurosci Ther 2025; 31:e70240. [PMID: 39868835 PMCID: PMC11770893 DOI: 10.1111/cns.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
AIMS Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations. In this study, we aimed to explore the morphological and transcriptomic characteristics of GFAP-mutant astrocytes via induced pluripotent stem cell (iPSC) models of AxD. METHODS Fibroblasts from three AxD children were reprogrammed into iPSCs. Wild-type (WT) and AxD-iPSCs were differentiated into astrocytes. We compared the morphological and transcriptomic differences between WT- and AxD iPSC-derived astrocytes. RESULTS Astrocytes induced from AxD-derived iPSCs exhibited the Rosenthal fibers (RFs), the main pathological phenotype of AxD. Compared with WT astrocytes, AxD astrocytes had shorter processes, more branches, and larger cell bodies. Transcriptomic analysis revealed that extracellular matrix (ECM) components, particularly chondroitin sulfate proteoglycans (CSPGs), were upregulated, and ECM-degrading enzymes were generally downregulated. These changes may lead to abnormalities in neurons and myelination. CONCLUSIONS We explored the morphological characteristics of AxD astrocytes via iPSC models and revealed the ECM, previously unexplored for AxD, may be an important new pathogenic mechanism of this disease.
Collapse
Affiliation(s)
- Huan Yi
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Jie Zhang
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
| | - Kai Gao
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Wei Yan
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Hongyuan Chu
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Junjiao Zhang
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Fan Zhang
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Yuwu Jiang
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Jingmin Wang
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| | - Ye Wu
- Children's Medical Center, Department of Pediatric NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic DiseasesBeijingChina
| |
Collapse
|
13
|
Razavi Z, Soltani M, Souri M, van Wijnen AJ. CRISPR innovations in tissue engineering and gene editing. Life Sci 2024; 358:123120. [PMID: 39426588 DOI: 10.1016/j.lfs.2024.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The CRISPR/Cas9 system is a powerful tool for genome editing, utilizing the Cas9 nuclease and programmable single guide RNA (sgRNA). However, the Cas9 nuclease activity can be disabled by mutation, resulting in catalytically deactivated Cas9 (dCas9). By combining the customizable sgRNA with dCas9, researchers can inhibit specific gene expression (CRISPR interference, CRISPRi) or activate the expression of a target gene (CRISPR activation, CRISPRa). In this review, we present the principles and recent advancements of these CRISPR technologies, as well as their delivery vectors. We also explore their applications in stem cell engineering and regenerative medicine, with a focus on in vitro stem cell fate manipulation and in vivo treatments. These include the prevention of retinal and muscular degeneration, neural regeneration, bone regeneration, cartilage tissue engineering, and the treatment of blood, skin, and liver diseases. Furthermore, we discuss the challenges of translating CRISPR technologies into regenerative medicine and provide future perspectives. Overall, this review highlights the potential of CRISPR in advancing regenerative medicine and offers insights into its application in various areas of research and therapy.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
14
|
Kubota Y, Shigetomi E, Saito K, Shinozaki Y, Kobayashi K, Tanaka M, Parajuli B, Tanaka KF, Koizumi S. Establishment and Use of Primary Cultured Astrocytes from Alexander Disease Model Mice. Int J Mol Sci 2024; 25:12100. [PMID: 39596168 PMCID: PMC11595037 DOI: 10.3390/ijms252212100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Alexander disease (AxD) is an intractable neurodegenerative disease caused by mutations in glial fibrillary acidic protein (GFAP), which is predominantly expressed in astrocytes. Thus, AxD is a primary astrocyte disease. However, it remains unclear how GFAP mutations affect astrocytes and cause AxD pathology. Three features are characteristic of AxD astrocytes in vivo: (1) Rosenthal fibers (RFs), the hallmark of AxD; (2) aberrant Ca2+ signals (AxCa); and (3) upregulation of disease-associated genes (AxGen). We established a primary culture system for astrocytes from an AxD transgenic mouse model, and used it to analyze the above features of AxD pathogenesis in astrocytes in vitro. We observed the formation of RFs in AxD primary cultures. The abundance of RFs was greater in AxD-transgene-homozygous compared with -hemizygous astrocytes, indicating a gene dosage effect, and this abundance increased with time in culture, indicating a developmental process effect. However, cultured AxD astrocytes did not exhibit changes in either AxCa or AxGen. We therefore conclude that RFs in astrocytes form via a cell-autonomous mechanism, whereas AxCa and AxGen are likely to occur via a non-cell-autonomous mechanism through interactions with other cells, such as neurons, microglia, and vascular cells. Although primary cultured AxD astrocytes are suitable for elucidating the mechanisms of RFs formation and for intervention studies, it should be noted that they cannot reflect the pathophysiology of non-cell-autonomous events in astrocytes.
Collapse
Affiliation(s)
- Yuto Kubota
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Kenji Kobayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Masayoshi Tanaka
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| | - Kenji F. Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan;
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.K.); (E.S.); (K.S.); (Y.S.); (K.K.); (M.T.); (B.P.)
- GLIA Center, University of Yamanashi, Chuo 409-3898, Japan
| |
Collapse
|
15
|
McKinnon JC, Balez R, Young RSE, Brown ML, Lum JS, Robinson L, Belov ME, Ooi L, Tortorella S, Mitchell TW, Ellis SR. MALDI-2-Enabled Oversampling for the Mass Spectrometry Imaging of Metabolites at Single-Cell Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2729-2742. [PMID: 39137242 DOI: 10.1021/jasms.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide valuable insights into the metabolome of complex biological systems such as organ tissues and cells. However, obtaining metabolite data at single-cell spatial resolutions presents a few technological challenges. Generally, spatial resolution is defined by the increment the sample stage moves between laser ablation spots. Stage movements less than the diameter of the focused laser beam (i.e., oversampling) can improve spatial resolution; however, such oversampling conditions result in a reduction in sensitivity. To overcome this, we combine an oversampling approach with laser postionization (MALDI-2), which allows for both higher spatial resolution and improved analyte ionization efficiencies. This approach provides significant enhancements to sensitivity for various metabolite classes (e.g., amino acids, purines, carbohydrates etc.), with mass spectral intensities from 6 to 8 μm pixel sizes (from a laser spot size of ∼13 μm) being commensurate with or higher than those obtained by conventional MALDI at 20 μm pixel sizes for many different metabolites. This technique has been used to map the distribution of metabolites throughout mouse spinal cord tissue to observe how metabolite localizations change throughout specific anatomical regions, such as those distributed to the somatosensory area of the dorsal horn, white matter, gray matter, and ventral horn. Furthermore, this method is utilized for single-cell metabolomics of human iPSC-derived astrocytes at 10 μm pixel sizes whereby many different metabolites, including nucleotides, were detected from individual cells while providing insight into cellular localizations.
Collapse
Affiliation(s)
- Jayden C McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Rachelle Balez
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Mikayla L Brown
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Jeremy S Lum
- Molecular Horizons, School of Medical, Indigenous and Health Science, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Liam Robinson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Mikhail E Belov
- Spectroglyph LLC, Kennewick, Washington 99338, United States
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Sara Tortorella
- Molecular Horizon srl, Via Montelino 30, Bettona, PG 06084, Italy
| | - Todd W Mitchell
- Molecular Horizons, School of Medical, Indigenous and Health Science, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| |
Collapse
|
16
|
Sebastian R, Song Y, Pak C. Probing the molecular and cellular pathological mechanisms of schizophrenia using human induced pluripotent stem cell models. Schizophr Res 2024; 273:4-23. [PMID: 35835709 PMCID: PMC9832179 DOI: 10.1016/j.schres.2022.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/13/2023]
Abstract
With recent advancements in psychiatric genomics, as a field, "stem cell-based disease modelers" were given the exciting yet daunting task of translating the extensive list of disease-associated risks into biologically and clinically relevant information in order to deliver therapeutically meaningful leads and insights. Despite their limitations, human induced pluripotent stem cell (iPSCs) based models have greatly aided our understanding of the molecular and cellular mechanisms underlying the complex etiology of brain disorders including schizophrenia (SCZ). In this review, we summarize the major findings from studies in the past decade which utilized iPSC models to investigate cell type-specific phenotypes relevant to idiopathic SCZ and disease penetrant alleles. Across cell type differences, several biological themes emerged, serving as potential neurodevelopmental mechanisms of SCZ, including oxidative stress and mitochondrial dysfunction, depletion of progenitor pools and insufficient differentiation potential of these progenitors, and structural and functional deficits of neurons and other supporting cells. Here, we discuss both the recent progress as well as challenges and improvements needed for future studies utilizing iPSCs as a model for SCZ and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Sebastian
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Yoonjae Song
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
17
|
Zhang Y, Li D, Cai Y, Zou R, Zhang Y, Deng X, Wang Y, Tang T, Ma Y, Wu F, Xie Y. Astrocyte allocation during brain development is controlled by Tcf4-mediated fate restriction. EMBO J 2024; 43:5114-5140. [PMID: 39300210 PMCID: PMC11535398 DOI: 10.1038/s44318-024-00218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024] Open
Abstract
Astrocytes in the brain exhibit regional heterogeneity contributing to regional circuits involved in higher-order brain functions, yet the mechanisms controlling their distribution remain unclear. Here, we show that the precise allocation of astrocytes to specific brain regions during development is achieved through transcription factor 4 (Tcf4)-mediated fate restriction based on their embryonic origin. Loss of Tcf4 in ventral telencephalic neural progenitor cells alters the fate of oligodendrocyte precursor cells to transient intermediate astrocyte precursor cells, resulting in mislocalized astrocytes in the dorsal neocortex. These ectopic astrocytes engage with neocortical neurons and acquire features reminiscent of dorsal neocortical astrocytes. Furthermore, Tcf4 functions as a suppressor of astrocyte fate during the differentiation of oligodendrocyte precursor cells derived from the ventral telencephalon, thereby restricting the fate to the oligodendrocyte lineage in the dorsal neocortex. Together, our findings highlight a previously unappreciated role for Tcf4 in regulating astrocyte allocation, offering additional insights into the mechanisms underlying neurodevelopmental disorders linked to Tcf4 mutations.
Collapse
Affiliation(s)
- Yandong Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dan Li
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuqun Cai
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rui Zou
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yilan Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Deng
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yafei Wang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tianxiang Tang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Ma
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feizhen Wu
- Laboratory of Epi-Informatics, Intelligent Medicine Institute of Fudan University, Shanghai, 200032, China
| | - Yunli Xie
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Ma S, Wang L, Zhang J, Geng L, Yang J. The role of transcriptional and epigenetic modifications in astrogliogenesis. PeerJ 2024; 12:e18151. [PMID: 39314847 PMCID: PMC11418818 DOI: 10.7717/peerj.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Astrocytes are widely distributed and play a critical role in the central nervous system (CNS) of the human brain. During the development of CNS, astrocytes provide essential nutritional and supportive functions for neural cells and are involved in their metabolism and pathological processes. Despite the numerous studies that have reported on the regulation of astrogliogenesis at the transcriptional and epigenetic levels, there is a paucity of literature that provides a comprehensive summary of the key factors influencing this process. In this review, we analyzed the impact of transcription factors (e.g., NFI, JAK/STAT, BMP, and Ngn2), DNA methylation, histone acetylation, and noncoding RNA on astrocyte behavior and the regulation of astrogliogenesis, hope it enhances our comprehension of the mechanisms underlying astrogliogenesis and offers a theoretical foundation for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lujing Geng
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Junzheng Yang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, China
| |
Collapse
|
19
|
Yi R, Chen S, Guan M, Liao C, Zhu Y, Ip JPK, Ye T, Chen Y. A single-cell transcriptomic dataset of pluripotent stem cell-derived astrocytes via NFIB/SOX9 overexpression. Sci Data 2024; 11:987. [PMID: 39256463 PMCID: PMC11387634 DOI: 10.1038/s41597-024-03823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Astrocytes, the predominant glial cells in the central nervous system, play essential roles in maintaining brain function. Reprogramming induced pluripotent stem cells (iPSCs) to become astrocytes through overexpression of the transcription factors, NFIB and SOX9, is a rapid and efficient approach for studying human neurological diseases and identifying therapeutic targets. However, the precise differentiation path and molecular signatures of induced astrocytes remain incompletely understood. Accordingly, we performed single-cell RNA sequencing analysis on 64,736 cells to establish a comprehensive atlas of NFIB/SOX9-directed astrocyte differentiation from human iPSCs. Our dataset provides detailed information about the path of astrocyte differentiation, highlighting the stepwise molecular changes that occur throughout the differentiation process. This dataset serves as a valuable reference for dissecting uncharacterized transcriptomic features of NFIB/SOX9-induced astrocytes and investigating lineage progression during astrocyte differentiation. Moreover, these findings pave the way for future studies on neurological diseases using the NFIB/SOX9-induced astrocyte model.
Collapse
Affiliation(s)
- Ran Yi
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
| | - Shuai Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingfeng Guan
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Chunyan Liao
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yao Zhu
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, the Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, China
| | - Tao Ye
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
20
|
Lam I, Ndayisaba A, Lewis AJ, Fu Y, Sagredo GT, Kuzkina A, Zaccagnini L, Celikag M, Sandoe J, Sanz RL, Vahdatshoar A, Martin TD, Morshed N, Ichihashi T, Tripathi A, Ramalingam N, Oettgen-Suazo C, Bartels T, Boussouf M, Schäbinger M, Hallacli E, Jiang X, Verma A, Tea C, Wang Z, Hakozaki H, Yu X, Hyles K, Park C, Wang X, Theunissen TW, Wang H, Jaenisch R, Lindquist S, Stevens B, Stefanova N, Wenning G, van de Berg WDJ, Luk KC, Sanchez-Pernaute R, Gómez-Esteban JC, Felsky D, Kiyota Y, Sahni N, Yi SS, Chung CY, Stahlberg H, Ferrer I, Schöneberg J, Elledge SJ, Dettmer U, Halliday GM, Bartels T, Khurana V. Rapid iPSC inclusionopathy models shed light on formation, consequence, and molecular subtype of α-synuclein inclusions. Neuron 2024; 112:2886-2909.e16. [PMID: 39079530 PMCID: PMC11377155 DOI: 10.1016/j.neuron.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/26/2023] [Accepted: 06/03/2024] [Indexed: 09/07/2024]
Abstract
The heterogeneity of protein-rich inclusions and its significance in neurodegeneration is poorly understood. Standard patient-derived iPSC models develop inclusions neither reproducibly nor in a reasonable time frame. Here, we developed screenable iPSC "inclusionopathy" models utilizing piggyBac or targeted transgenes to rapidly induce CNS cells that express aggregation-prone proteins at brain-like levels. Inclusions and their effects on cell survival were trackable at single-inclusion resolution. Exemplar cortical neuron α-synuclein inclusionopathy models were engineered through transgenic expression of α-synuclein mutant forms or exogenous seeding with fibrils. We identified multiple inclusion classes, including neuroprotective p62-positive inclusions versus dynamic and neurotoxic lipid-rich inclusions, both identified in patient brains. Fusion events between these inclusion subtypes altered neuronal survival. Proteome-scale α-synuclein genetic- and physical-interaction screens pinpointed candidate RNA-processing and actin-cytoskeleton-modulator proteins like RhoA whose sequestration into inclusions could enhance toxicity. These tractable CNS models should prove useful in functional genomic analysis and drug development for proteinopathies.
Collapse
Affiliation(s)
- Isabel Lam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Amanda J Lewis
- École Polytechnique Fédérale de Lausanne and University of Lausanne, Lausanne, Switzerland
| | - YuHong Fu
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia
| | - Giselle T Sagredo
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia
| | - Anastasia Kuzkina
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Meral Celikag
- Dementia Research Institute, University College London, London, UK
| | - Jackson Sandoe
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ricardo L Sanz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aazam Vahdatshoar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Timothy D Martin
- Harvard Medical School, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nader Morshed
- Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Charlotte Oettgen-Suazo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Theresa Bartels
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Manel Boussouf
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Max Schäbinger
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Erinc Hallacli
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Xin Jiang
- Yumanity Therapeutics, Cambridge, MA, USA
| | - Amrita Verma
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Challana Tea
- University of California, San Diego, San Diego, CA, USA
| | - Zichen Wang
- University of California, San Diego, San Diego, CA, USA
| | | | - Xiao Yu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kelly Hyles
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chansaem Park
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Xinyuan Wang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Haoyi Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Beth Stevens
- Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kelvin C Luk
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rosario Sanchez-Pernaute
- BioBizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - Daniel Felsky
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | - Nidhi Sahni
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA
| | - S Stephen Yi
- The University of Texas at Austin, Austin, TX, USA
| | | | - Henning Stahlberg
- École Polytechnique Fédérale de Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Isidro Ferrer
- The University of Barcelona, Institut d'Investigacio Biomedica de Bellvitge IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | - Stephen J Elledge
- Harvard Medical School, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Glenda M Halliday
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tim Bartels
- Dementia Research Institute, University College London, London, UK
| | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
21
|
Huang Y, Wang M, Ni H, Zhang J, Li A, Hu B, Junqueira Alves C, Wahane S, Rios de Anda M, Ho L, Li Y, Kang S, Neff R, Kostic A, Buxbaum JD, Crary JF, Brennand KJ, Zhang B, Zou H, Friedel RH. Regulation of cell distancing in peri-plaque glial nets by Plexin-B1 affects glial activation and amyloid compaction in Alzheimer's disease. Nat Neurosci 2024; 27:1489-1504. [PMID: 38802590 PMCID: PMC11346591 DOI: 10.1038/s41593-024-01664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Communication between glial cells has a profound impact on the pathophysiology of Alzheimer's disease (AD). We reveal here that reactive astrocytes control cell distancing in peri-plaque glial nets, which restricts microglial access to amyloid deposits. This process is governed by guidance receptor Plexin-B1 (PLXNB1), a network hub gene in individuals with late-onset AD that is upregulated in plaque-associated astrocytes. Plexin-B1 deletion in a mouse AD model led to reduced number of reactive astrocytes and microglia in peri-plaque glial nets, but higher coverage of plaques by glial processes, along with transcriptional changes signifying reduced neuroinflammation. Additionally, a reduced footprint of glial nets was associated with overall lower plaque burden, a shift toward dense-core-type plaques and reduced neuritic dystrophy. Altogether, our study demonstrates that Plexin-B1 regulates peri-plaque glial net activation in AD. Relaxing glial spacing by targeting guidance receptors may present an alternative strategy to increase plaque compaction and reduce neuroinflammation in AD.
Collapse
Affiliation(s)
- Yong Huang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haofei Ni
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- School of Medicine, Tongji University, Shanghai, China
| | - Jinglong Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aiqun Li
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Hu
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chrystian Junqueira Alves
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shalaka Wahane
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mitzy Rios de Anda
- Seaver Autism Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lap Ho
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuhuan Li
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Sangjo Kang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Neff
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Kostic
- Seaver Autism Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Crary
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Departments of Psychiatry and Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Lee H, Pearse RV, Lish AM, Pan C, Augur ZM, Terzioglu G, Gaur P, Liao M, Fujita M, Tio ES, Duong DM, Felsky D, Seyfried NT, Menon V, Bennett DA, De Jager PL, Young-Pearse TL. Contributions of genetic variation in astrocytes to cell and molecular mechanisms of risk and resilience to late onset Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605928. [PMID: 39211227 PMCID: PMC11361137 DOI: 10.1101/2024.07.31.605928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Reactive astrocytes are associated with Alzheimer's disease (AD), and several AD genetic risk variants are associated with genes highly expressed in astrocytes. However, the contribution of genetic risk within astrocytes to cellular processes relevant to the pathogenesis of AD remains ill-defined. Here we present a resource for studying AD genetic risk in astrocytes using a large collection of induced pluripotent stem cell (iPSC) lines from deeply phenotyped individuals with a range of neuropathological and cognitive outcomes. IPSC lines from forty-four individuals were differentiated into astrocytes followed by unbiased molecular profiling using RNA sequencing and tandem mass tag-mass spectrometry. We demonstrate the utility of this resource in examining gene- and pathway-level associations with clinical and neuropathological traits, as well as in analyzing genetic risk and resilience factors through parallel analyses of iPSC-astrocytes and brain tissue from the same individuals. Our analyses reveal that genes and pathways altered in iPSC-derived astrocytes from AD individuals are concordantly dysregulated in AD brain tissue. This includes increased prefoldin proteins, extracellular matrix factors, COPI-mediated trafficking components and reduced proteins involved in cellular respiration and fatty acid oxidation. Additionally, iPSC-derived astrocytes from individuals resilient to high AD neuropathology show elevated basal levels of interferon response proteins and increased secretion of interferon gamma. Correspondingly, higher polygenic risk scores for AD are associated with lower levels of interferon response proteins. This study establishes an experimental system that integrates genetic information with a heterogeneous set of iPSCs to identify genetic contributions to molecular pathways affecting AD risk and resilience.
Collapse
|
23
|
Maksour S, Ng N, Hulme AJ, Miellet S, Engel M, Muñoz SS, Balez R, Rollo B, Finol-Urdaneta RK, Ooi L, Dottori M. REST and RCOR genes display distinct expression profiles in neurons and astrocytes using 2D and 3D human pluripotent stem cell models. Heliyon 2024; 10:e32680. [PMID: 38975076 PMCID: PMC11226837 DOI: 10.1016/j.heliyon.2024.e32680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Repressor element-1 silencing transcription factor (REST) is a transcriptional repressor involved in neurodevelopment and neuroprotection. REST forms a complex with the REST corepressors, CoREST1, CoREST2, or CoREST3 (encoded by RCOR1, RCOR2, and RCOR3, respectively). Emerging evidence suggests that the CoREST family can target unique genes independently of REST, in various neural and glial cell types during different developmental stages. However, there is limited knowledge regarding the expression and function of the CoREST family in human neurodevelopment. To address this gap, we employed 2D and 3D human pluripotent stem cell (hPSC) models to investigate REST and RCOR gene expression levels. Our study revealed a significant increase in RCOR3 expression in glutamatergic cortical and GABAergic ventral forebrain neurons, as well as mature functional NGN2-induced neurons. Additionally, a simplified astrocyte transdifferentiation protocol resulted in a significant decrease in RCOR2 expression following differentiation. REST expression was notably reduced in mature neurons and cerebral organoids. In summary, our findings provide the first insights into the cell-type-specific expression patterns of RCOR genes in human neuronal and glial differentiation. Specifically, RCOR3 expression increases in neurons, while RCOR2 levels decrease in astrocytes. The dynamic expression patterns of REST and RCOR genes during hPSC neuronal and glial differentiation underscore the potential distinct roles played by REST and CoREST proteins in regulating the development of these cell types in humans.
Collapse
Affiliation(s)
- Simon Maksour
- School of Medical and Indigenous Health Sciences, University of Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Neville Ng
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Amy J. Hulme
- School of Medical and Indigenous Health Sciences, University of Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
| | - Sara Miellet
- School of Medical and Indigenous Health Sciences, University of Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
| | - Martin Engel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Sonia Sanz Muñoz
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Rachelle Balez
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Ben Rollo
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Rocio K. Finol-Urdaneta
- School of Medical and Indigenous Health Sciences, University of Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Mirella Dottori
- School of Medical and Indigenous Health Sciences, University of Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia
| |
Collapse
|
24
|
Jovanovic VM, Mesch KT, Tristan CA. hPSC-Derived Astrocytes at the Forefront of Translational Applications in Neurological Disorders. Cells 2024; 13:903. [PMID: 38891034 PMCID: PMC11172187 DOI: 10.3390/cells13110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Astrocytes, the most abundant glial cell type in the brain, play crucial roles in maintaining homeostasis within the central nervous system (CNS). Impairment or abnormalities of typical astrocyte functions in the CNS serve as a causative or contributing factor in numerous neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Currently, disease-modeling and drug-screening approaches, primarily focused on human astrocytes, rely on human pluripotent stem cell (hPSC)-derived astrocytes. However, it is important to acknowledge that these hPSC-derived astrocytes exhibit notable differences across studies and when compared to their in vivo counterparts. These differences may potentially compromise translational outcomes if not carefully accounted for. This review aims to explore state-of-the-art in vitro models of human astrocyte development, focusing on the developmental processes, functional maturity, and technical aspects of various hPSC-derived astrocyte differentiation protocols. Additionally, it summarizes their successful application in modeling neurological disorders. The discussion extends to recent advancements in the large-scale production of human astrocytes and their application in developing high-throughput assays conducive to therapeutic drug discovery.
Collapse
Affiliation(s)
- Vukasin M. Jovanovic
- Stem Cell Translation Laboratory (SCTL), Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA (C.A.T.)
| | | | | |
Collapse
|
25
|
Cao Z, Kong F, Ding J, Chen C, He F, Deng W. Promoting Alzheimer's disease research and therapy with stem cell technology. Stem Cell Res Ther 2024; 15:136. [PMID: 38715083 PMCID: PMC11077895 DOI: 10.1186/s13287-024-03737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent form of dementia leading to memory loss, reduced cognitive and linguistic abilities, and decreased self-care. Current AD treatments aim to relieve symptoms and slow disease progression, but a cure is elusive due to limited understanding of the underlying disease mechanisms. MAIN CONTENT Stem cell technology has the potential to revolutionize AD research. With the ability to self-renew and differentiate into various cell types, stem cells are valuable tools for disease modeling, drug screening, and cell therapy. Recent advances have broadened our understanding beyond the deposition of amyloidβ (Aβ) or tau proteins in AD to encompass risk genes, immune system disorders, and neuron-glia mis-communication, relying heavily on stem cell-derived disease models. These stem cell-based models (e.g., organoids and microfluidic chips) simulate in vivo pathological processes with extraordinary spatial and temporal resolution. Stem cell technologies have the potential to alleviate AD pathology through various pathways, including immunomodulation, replacement of damaged neurons, and neurotrophic support. In recent years, transplantation of glial cells like oligodendrocytes and the infusion of exosomes have become hot research topics. CONCLUSION Although stem cell-based models and therapies for AD face several challenges, such as extended culture time and low differentiation efficiency, they still show considerable potential for AD treatment and are likely to become preferred tools for AD research.
Collapse
Affiliation(s)
- Zimeng Cao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Fanshu Kong
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaqi Ding
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chunxia Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Fumei He
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
- School of Pharmaceutical Sciences, Dali University, Dali, 671000, China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
26
|
Nonaka H, Kondo T, Suga M, Yamanaka R, Sagara Y, Tsukita K, Mitsutomi N, Homma K, Saito R, Miyoshi F, Ohzeki H, Okuyama M, Inoue H. Induced pluripotent stem cell-based assays recapture multiple properties of human astrocytes. J Cell Mol Med 2024; 28:e18214. [PMID: 38509731 PMCID: PMC10955154 DOI: 10.1111/jcmm.18214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
The majority of the population of glial cells in the central nervous system consists of astrocytes, and impairment of astrocytes causes various disorders. It is useful to assess the multiple astrocytic properties in order to understand their complex roles in the pathophysiology. Although we can differentiate human astrocytes from induced pluripotent stem cells (iPSCs), it remains unknown how we can analyse and reveal the multiple properties of astrocytes in complexed human disease conditions. For this purpose, we tested astrocytic differentiation protocols from feeder-free iPSCs based on the previous method with some modifications. Then, we set up extra- and intracellular assessments of iPSC-derived astrocytes by testing cytokine release, calcium influx, autophagy induction and migration. The results led us to analytic methods with conditions in which iPSC-derived astrocytes behave as in vivo. Finally, we applied these methods for modelling an astrocyte-related disease, Alexander disease. An analytic system using iPSC-derived astrocytes could be used to recapture complexities in human astrocyte diseases.
Collapse
Affiliation(s)
- Hideki Nonaka
- iPSC‐based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC)KyotoJapan
- Mitsubishi Tanabe Pharma CorporationYokohamaJapan
| | - Takayuki Kondo
- iPSC‐based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC)KyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Medical‐risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP)KyotoJapan
| | - Mika Suga
- iPSC‐based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC)KyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Ryu Yamanaka
- Mitsubishi Tanabe Pharma CorporationYokohamaJapan
| | - Yukako Sagara
- iPSC‐based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC)KyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Kayoko Tsukita
- iPSC‐based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC)KyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | | | - Kengo Homma
- Mitsubishi Tanabe Pharma CorporationYokohamaJapan
| | - Ryuta Saito
- Mitsubishi Tanabe Pharma CorporationYokohamaJapan
| | | | | | | | - Haruhisa Inoue
- iPSC‐based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC)KyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Medical‐risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP)KyotoJapan
| |
Collapse
|
27
|
Marcó de la Cruz B, Campos J, Molinaro A, Xie X, Jin G, Wei Z, Acuna C, Sterky FH. Liprin-α proteins are master regulators of human presynapse assembly. Nat Neurosci 2024; 27:629-642. [PMID: 38472649 PMCID: PMC11001580 DOI: 10.1038/s41593-024-01592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
The formation of mammalian synapses entails the precise alignment of presynaptic release sites with postsynaptic receptors but how nascent cell-cell contacts translate into assembly of presynaptic specializations remains unclear. Guided by pioneering work in invertebrates, we hypothesized that in mammalian synapses, liprin-α proteins directly link trans-synaptic initial contacts to downstream steps. Here we show that, in human neurons lacking all four liprin-α isoforms, nascent synaptic contacts are formed but recruitment of active zone components and accumulation of synaptic vesicles is blocked, resulting in 'empty' boutons and loss of synaptic transmission. Interactions with presynaptic cell adhesion molecules of either the LAR-RPTP family or neurexins via CASK are required to localize liprin-α to nascent synaptic sites. Liprin-α subsequently recruits presynaptic components via a direct interaction with ELKS proteins. Thus, assembly of human presynaptic terminals is governed by a hierarchical sequence of events in which the recruitment of liprin-α proteins by presynaptic cell adhesion molecules is a critical initial step.
Collapse
Affiliation(s)
- Berta Marcó de la Cruz
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Joaquín Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Angela Molinaro
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Xingqiao Xie
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, China
| | - Gaowei Jin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyi Wei
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, China
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
| | - Fredrik H Sterky
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
28
|
Stefanakis N, Jiang J, Liang Y, Shaham S. LET-381/FoxF and its target UNC-30/Pitx2 specify and maintain the molecular identity of C. elegans mesodermal glia that regulate motor behavior. EMBO J 2024; 43:956-992. [PMID: 38360995 PMCID: PMC10943081 DOI: 10.1038/s44318-024-00049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
While most glial cell types in the central nervous system (CNS) arise from neuroectodermal progenitors, some, like microglia, are mesodermally derived. To understand mesodermal glia development and function, we investigated C. elegans GLR glia, which envelop the brain neuropil and separate it from the circulatory system cavity. Transcriptome analysis shows that GLR glia combine astrocytic and endothelial characteristics, which are relegated to separate cell types in vertebrates. Combined fate acquisition is orchestrated by LET-381/FoxF, a fate-specification/maintenance transcription factor also expressed in glia and endothelia of other animals. Among LET-381/FoxF targets, the UNC-30/Pitx2 transcription factor controls GLR glia morphology and represses alternative mesodermal fates. LET-381 and UNC-30 co-expression in naive cells is sufficient for GLR glia gene expression. GLR glia inactivation by ablation or let-381 mutation disrupts locomotory behavior and promotes salt-induced paralysis, suggesting brain-neuropil activity dysregulation. Our studies uncover mechanisms of mesodermal glia development and show that like neuronal differentiation, glia differentiation requires autoregulatory terminal selector genes that define and maintain the glial fate.
Collapse
Affiliation(s)
- Nikolaos Stefanakis
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Jessica Jiang
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yupu Liang
- Research Bioinformatics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Alexion Pharmaceuticals, Boston, MA, 02135, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
29
|
Gu J, Rollo B, Berecki G, Petrou S, Kwan P, Sumer H, Cromer B. Generation of a stably transfected mouse embryonic stem cell line for inducible differentiation to excitatory neurons. Exp Cell Res 2024; 435:113902. [PMID: 38145818 DOI: 10.1016/j.yexcr.2023.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
In vitro differentiation of stem cells into various cell lineages is valuable in developmental studies and an important source of cells for modelling physiology and pathology, particularly for complex tissues such as the brain. Conventional protocols for in vitro neuronal differentiation often suffer from complicated procedures, high variability and low reproducibility. Over the last decade, the identification of cell fate-determining transcription factors has provided new tools for cellular studies in neuroscience and enabled rapid differentiation driven by ectopic transcription factor expression. As a proneural transcription factor, Neurogenin 2 (Ngn2) expression alone is sufficient to trigger rapid and robust neurogenesis from pluripotent cells. Here, we established a stable cell line, by piggyBac (PB) transposition, that conditionally expresses Ngn2 for generation of excitatory neurons from mouse embryonic stem cells (ESCs) using an all-in-one PB construct. Our results indicate that Ngn2-induced excitatory neurons have mature and functional characteristics consistent with previous studies using conventional differentiation methods. This approach provides an all-in-one PB construct for rapid and high copy number gene delivery of dox-inducible transcription factors to induce differentiation. This approach is a valuable in vitro cell model for disease modeling, drug screening and cell therapy.
Collapse
Affiliation(s)
- Jinchao Gu
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia; Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Geza Berecki
- Ion Channels and Human Diseases Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Steven Petrou
- Ion Channels and Human Diseases Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
| | - Brett Cromer
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.
| |
Collapse
|
30
|
Jäntti H, Kistemaker L, Buonfiglioli A, De Witte LD, Malm T, Hol EM. Emerging Models to Study Human Microglia In vitro. ADVANCES IN NEUROBIOLOGY 2024; 37:545-568. [PMID: 39207712 DOI: 10.1007/978-3-031-55529-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
New in vitro models provide an exciting opportunity to study live human microglia. Previously, a major limitation in understanding human microglia in health and disease has been their limited availability. Here, we provide an overview of methods to obtain human stem cell or blood monocyte-derived microglia-like cells that provide a nearly unlimited source of live human microglia for research. We address how understanding microglial ontogeny can help modeling microglial identity and function in a dish with increased accuracy. Moreover, we categorize stem cell-derived differentiation methods into embryoid body based, growth factor driven, and coculture-driven approaches, and review novel viral approaches to reprogram stem cells directly into microglia-like cells. Furthermore, we review typical readouts used in the field to verify microglial identity and characterize functional microglial phenotypes. We provide an overview of methods used to study microglia in environments more closely resembling the (developing) human CNS, such as cocultures and brain organoid systems with incorporated or innately developing microglia. We highlight how microglia-like cells can be utilized to reveal molecular and functional mechanisms in human disease context, focusing on Alzheimer's disease and other neurodegenerative diseases as well as neurodevelopmental diseases. Finally, we provide a critical overview of challenges and future opportunities to more accurately model human microglia in a dish and conclude that novel in vitro microglia-like cells provide an exciting potential to bring preclinical research of microglia to a new era.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lois Kistemaker
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Alice Buonfiglioli
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lot D De Witte
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Khatun M, Lundin K, Naillat F, Loog L, Saarela U, Tuuri T, Salumets A, Piltonen TT, Tapanainen JS. Induced Pluripotent Stem Cells as a Possible Approach for Exploring the Pathophysiology of Polycystic Ovary Syndrome (PCOS). Stem Cell Rev Rep 2024; 20:67-87. [PMID: 37768523 PMCID: PMC10799779 DOI: 10.1007/s12015-023-10627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition among women with pleiotropic sequelae possessing reproductive, metabolic, and psychological characteristics. Although the exact origin of PCOS is elusive, it is known to be a complex multigenic disorder with a genetic, epigenetic, and environmental background. However, the pathogenesis of PCOS, and the role of genetic variants in increasing the risk of the condition, are still unknown due to the lack of an appropriate study model. Since the debut of induced pluripotent stem cell (iPSC) technology, the ability of reprogrammed somatic cells to self-renew and their potential for multidirectional differentiation have made them excellent tools to study different disease mechanisms. Recently, researchers have succeeded in establishing human in vitro PCOS disease models utilizing iPSC lines from heterogeneous PCOS patient groups (iPSCPCOS). The current review sets out to summarize, for the first time, our current knowledge of the implications and challenges of iPSC technology in comprehending PCOS pathogenesis and tissue-specific disease mechanisms. Additionally, we suggest that the analysis of polygenic risk prediction based on genome-wide association studies (GWAS) could, theoretically, be utilized when creating iPSC lines as an additional research tool to identify women who are genetically susceptible to PCOS. Taken together, iPSCPCOS may provide a new paradigm for the exploration of PCOS tissue-specific disease mechanisms.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland.
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Liisa Loog
- Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Ulla Saarela
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, 50406, Estonia
- Competence Centre of Health Technologies, Tartu, 50411, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, 14186, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
- Department of Obstetrics and Gynecology, HFR - Cantonal Hospital of Fribourg and University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
32
|
Pio T, Hill EJ, Kebede N, Andersen J, Sloan SA. Neuron-Astrocyte Interactions: A Human Perspective. ADVANCES IN NEUROBIOLOGY 2024; 39:69-93. [PMID: 39190072 DOI: 10.1007/978-3-031-64839-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
This chapter explores the intricate interactions between neurons and astrocytes within the nervous system with a particular emphasis on studies conducted in human tissue or with human cells. We specifically explore how neuron-astrocyte interactions relate to processes of cellular development, morphology, migration, synapse formation, and metabolism. These findings enrich our understanding of basic neurobiology and how disruptions in these processes are relevant to human diseases.The study of human neuron-astrocyte interactions is made possible because of transformative in vitro advancements that have facilitated the generation and sustained culture of human neural cells. In addition, the rise of techniques like sequencing at single-cell resolution has enabled the exploration of numerous human cell atlases and their comparisons to other animal model systems. Thus, the innovations outlined in this chapter illuminate the convergence and divergence of neuron-astrocyte interactions across species. As technologies progress, continually more sophisticated in vitro systems will increasingly reflect in vivo environments and deepen our command of neuron-glial interactions in human biology.
Collapse
Affiliation(s)
- Taylor Pio
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nardos Kebede
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jimena Andersen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
33
|
Chou V, Pearse RV, Aylward AJ, Ashour N, Taga M, Terzioglu G, Fujita M, Fancher SB, Sigalov A, Benoit CR, Lee H, Lam M, Seyfried NT, Bennett DA, De Jager PL, Menon V, Young-Pearse TL. INPP5D regulates inflammasome activation in human microglia. Nat Commun 2023; 14:7552. [PMID: 38016942 PMCID: PMC10684891 DOI: 10.1038/s41467-023-42819-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
Microglia and neuroinflammation play an important role in the development and progression of Alzheimer's disease (AD). Inositol polyphosphate-5-phosphatase D (INPP5D/SHIP1) is a myeloid-expressed gene genetically-associated with AD. Through unbiased analyses of RNA and protein profiles in INPP5D-disrupted iPSC-derived human microglia, we find that reduction in INPP5D activity is associated with molecular profiles consistent with disrupted autophagy and inflammasome activation. These findings are validated through targeted pharmacological experiments which demonstrate that reduced INPP5D activity induces the formation of the NLRP3 inflammasome, cleavage of CASP1, and secretion of IL-1β and IL-18. Further, in-depth analyses of human brain tissue across hundreds of individuals using a multi-analytic approach provides evidence that a reduction in function of INPP5D in microglia results in inflammasome activation in AD. These findings provide insights into the molecular mechanisms underlying microglia-mediated processes in AD and highlight the inflammasome as a potential therapeutic target for modulating INPP5D-mediated vulnerability to AD.
Collapse
Affiliation(s)
- Vicky Chou
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aimee J Aylward
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nancy Ashour
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mariko Taga
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Gizem Terzioglu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Seeley B Fancher
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alina Sigalov
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney R Benoit
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matti Lam
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
34
|
Michalski C, Wen Z. Leveraging iPSC technology to assess neuro-immune interactions in neurological and psychiatric disorders. Front Psychiatry 2023; 14:1291115. [PMID: 38025464 PMCID: PMC10672983 DOI: 10.3389/fpsyt.2023.1291115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Communication between the immune and the nervous system is essential for human brain development and homeostasis. Disruption of this intricately regulated crosstalk can lead to neurodevelopmental, psychiatric, or neurodegenerative disorders. While animal models have been essential in characterizing the role of neuroimmunity in development and disease, they come with inherent limitations due to species specific differences, particularly with regard to microglia, the major subset of brain resident immune cells. The advent of induced pluripotent stem cell (iPSC) technology now allows the development of clinically relevant models of the central nervous system that adequately reflect human genetic architecture. This article will review recent publications that have leveraged iPSC technology to assess neuro-immune interactions. First, we will discuss the role of environmental stressors such as neurotropic viruses or pro-inflammatory cytokines on neuronal and glial function. Next, we will review how iPSC models can be used to study genetic risk factors in neurological and psychiatric disorders. Lastly, we will evaluate current challenges and future potential for iPSC models in the field of neuroimmunity.
Collapse
Affiliation(s)
- Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
35
|
Spruit CM, Sweet IR, Maliepaard JCL, Bestebroer T, Lexmond P, Qiu B, Damen MJA, Fouchier RAM, Reiding KR, Snijder J, Herfst S, Boons GJ, de Vries RP. Contemporary human H3N2 influenza A viruses require a low threshold of suitable glycan receptors for efficient infection. Glycobiology 2023; 33:784-800. [PMID: 37471650 PMCID: PMC10629718 DOI: 10.1093/glycob/cwad060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
Recent human H3N2 influenza A viruses have evolved to employ elongated glycans terminating in α2,6-linked sialic acid as their receptors. These glycans are displayed in low abundancies by (humanized) Madin-Darby Canine Kidney cells, which are commonly employed to propagate influenza A virus, resulting in low or no viral propagation. Here, we examined whether the overexpression of the glycosyltransferases β-1,3-N-acetylglucosaminyltransferase and β-1,4-galactosyltransferase 1, which are responsible for the elongation of poly-N-acetyllactosamines (LacNAcs), would result in improved A/H3N2 propagation. Stable overexpression of β-1,3-N-acetylglucosaminyltransferase and β-1,4-galactosyltransferase 1 in Madin-Darby Canine Kidney and "humanized" Madin-Darby Canine Kidney cells was achieved by lentiviral integration and subsequent antibiotic selection and confirmed by qPCR and protein mass spectrometry experiments. Flow cytometry and glycan mass spectrometry experiments using the β-1,3-N-acetylglucosaminyltransferase and/or β-1,4-galactosyltransferase 1 knock-in cells demonstrated increased binding of viral hemagglutinins and the presence of a larger number of LacNAc repeating units, especially on "humanized" Madin-Darby Canine Kidney-β-1,3-N-acetylglucosaminyltransferase cells. An increase in the number of glycan receptors did, however, not result in a greater infection efficiency of recent human H3N2 viruses. Based on these results, we propose that H3N2 influenza A viruses require a low number of suitable glycan receptors to infect cells and that an increase in the glycan receptor display above this threshold does not result in improved infection efficiency.
Collapse
Affiliation(s)
- Cindy M Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Igor R Sweet
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Joshua C L Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Theo Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Boning Qiu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Mirjam J A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| |
Collapse
|
36
|
Basak I, Harfoot R, Palmer JE, Kumar A, Quiñones-Mateu ME, Schweitzer L, Hughes SM. Neuroproteomic Analysis after SARS-CoV-2 Infection Reveals Overrepresented Neurodegeneration Pathways and Disrupted Metabolic Pathways. Biomolecules 2023; 13:1597. [PMID: 38002279 PMCID: PMC10669333 DOI: 10.3390/biom13111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Besides respiratory illness, SARS-CoV-2, the causative agent of COVID-19, leads to neurological symptoms. The molecular mechanisms leading to neuropathology after SARS-CoV-2 infection are sparsely explored. SARS-CoV-2 enters human cells via different receptors, including ACE-2, TMPRSS2, and TMEM106B. In this study, we used a human-induced pluripotent stem cell-derived neuronal model, which expresses ACE-2, TMPRSS2, TMEM106B, and other possible SARS-CoV-2 receptors, to evaluate its susceptibility to SARS-CoV-2 infection. The neurons were exposed to SARS-CoV-2, followed by RT-qPCR, immunocytochemistry, and proteomic analyses of the infected neurons. Our findings showed that SARS-CoV-2 infects neurons at a lower rate than other human cells; however, the virus could not replicate or produce infectious virions in this neuronal model. Despite the aborted SARS-CoV-2 replication, the infected neuronal nuclei showed irregular morphology compared to other human cells. Since cytokine storm is a significant effect of SARS-CoV-2 infection in COVID-19 patients, in addition to the direct neuronal infection, the neurons were treated with pre-conditioned media from SARS-CoV-2-infected lung cells, and the neuroproteomic changes were investigated. The limited SARS-CoV-2 infection in the neurons and the neurons treated with the pre-conditioned media showed changes in the neuroproteomic profile, particularly affecting mitochondrial proteins and apoptotic and metabolic pathways, which may lead to the development of neurological complications. The findings from our study uncover a possible mechanism behind SARS-CoV-2-mediated neuropathology that might contribute to the lingering effects of the virus on the human brain.
Collapse
Affiliation(s)
- Indranil Basak
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Rhodri Harfoot
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand (M.E.Q.-M.)
| | - Jennifer E. Palmer
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Abhishek Kumar
- Centre for Protein Research, University of Otago, Dunedin 9016, New Zealand
| | - Miguel E. Quiñones-Mateu
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand (M.E.Q.-M.)
| | - Lucia Schweitzer
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Stephanie M. Hughes
- Brain Health Research Centre, Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
37
|
Stefanakis N, Jiang J, Liang Y, Shaham S. LET-381/FoxF and UNC-30/Pitx2 control the development of C. elegans mesodermal glia that regulate motor behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563501. [PMID: 37961181 PMCID: PMC10634723 DOI: 10.1101/2023.10.23.563501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
While most CNS glia arise from neuroectodermal progenitors, some, like microglia, are mesodermally derived. To understand mesodermal glia development and function, we investigated C. elegans GLR glia, which ensheath the brain neuropil and separate it from the circulatory-system cavity. Transcriptome analysis suggests GLR glia merge astrocytic and endothelial characteristics relegated to separate cell types in vertebrates. Combined fate acquisition is orchestrated by LET-381/FoxF, a fate-specification/maintenance transcription factor expressed in glia and endothelia of other animals. Among LET-381/FoxF targets, UNC-30/Pitx2 transcription factor controls GLR glia morphology and represses alternative mesodermal fates. LET-381 and UNC-30 co-expression in naïve cells is sufficient for GLR glia gene expression. GLR glia inactivation by ablation or let-381 mutation disrupts locomotory behavior and induces salt hypersensitivity, suggesting brain-neuropil activity dysregulation. Our studies uncover mechanisms of mesodermal glia development and show that like neurons, glia differentiation requires autoregulatory terminal selector genes that define and maintain the glial fate.
Collapse
|
38
|
Gonzalez H, Narasipura SD, Shull T, Shetty A, Teppen TL, Naqib A, Al-Harthi L. An Efficient and Cost-Effective Approach to Generate Functional Human Inducible Pluripotent Stem Cell-Derived Astrocytes. Cells 2023; 12:2357. [PMID: 37830571 PMCID: PMC10571578 DOI: 10.3390/cells12192357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
Human inducible pluripotent stem cell (hiPSC)-derived astrocytes (iAs) are critical to study astrocytes in health and disease. They provide several advantages over human fetal astrocytes in research, which include consistency, availability, disease modeling, customization, and ethical considerations. The generation of iAs is hampered by the requirement of Matrigel matrix coating for survival and proliferation. We provide a protocol demonstrating that human iAs cultured in the absence of Matrigel are viable and proliferative. Further, through a side-by-side comparison of cultures with and without Matrigel, we show significant similarities in astrocyte-specific profiling, including morphology (shape and structure), phenotype (cell-specific markers), genotype (transcriptional expression), metabolic (respiration), and functional aspects (glutamate uptake and cytokine response). In addition, we report that, unlike other CNS cell types, such as neuronal progenitor cells and neurons, iAs can withstand the absence of Matrigel coating. Our study demonstrates that Matrigel is dispensable for the culture of human iPSC-derived astrocytes, facilitating an easy, streamlined, and cost-effective method of generating these cells.
Collapse
Affiliation(s)
- Hemil Gonzalez
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush Medical College, Chicago, IL 60612, USA; (S.D.N.); (T.S.)
| | - Srinivas D. Narasipura
- Department of Microbial Pathogens and Immunity, Rush Medical College, Chicago, IL 60612, USA; (S.D.N.); (T.S.)
| | - Tanner Shull
- Department of Microbial Pathogens and Immunity, Rush Medical College, Chicago, IL 60612, USA; (S.D.N.); (T.S.)
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois, Chicago, IL 60608, USA
| | - Amogh Shetty
- Illinois Mathematics and Science Academy, Aurora, IL 60506, USA
| | - Tara L. Teppen
- Molecular Neurobiology Division, Rush Alzheimer’s Disease Center, Rush University, Chicago, IL 60612, USA
| | - Ankur Naqib
- Genome Core Facility, Rush University, Chicago, IL 60612, USA;
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush Medical College, Chicago, IL 60612, USA; (S.D.N.); (T.S.)
| |
Collapse
|
39
|
Lee H, Aylward AJ, Pearse RV, Lish AM, Hsieh YC, Augur ZM, Benoit CR, Chou V, Knupp A, Pan C, Goberdhan S, Duong DM, Seyfried NT, Bennett DA, Taga MF, Huynh K, Arnold M, Meikle PJ, De Jager PL, Menon V, Young JE, Young-Pearse TL. Cell-type-specific regulation of APOE and CLU levels in human neurons by the Alzheimer's disease risk gene SORL1. Cell Rep 2023; 42:112994. [PMID: 37611586 PMCID: PMC10568487 DOI: 10.1016/j.celrep.2023.112994] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
SORL1 is implicated in the pathogenesis of Alzheimer's disease (AD) through genetic studies. To interrogate the roles of SORL1 in human brain cells, SORL1-null induced pluripotent stem cells (iPSCs) were differentiated to neuron, astrocyte, microglial, and endothelial cell fates. Loss of SORL1 leads to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. SORL1 loss induces a neuron-specific reduction in apolipoprotein E (APOE) and clusterin (CLU) and altered lipid profiles. Analyses of iPSCs derived from a large cohort reveal a neuron-specific association between SORL1, APOE, and CLU levels, a finding validated in postmortem brain. Enhancement of retromer-mediated trafficking rescues tau phenotypes observed in SORL1-null neurons but does not rescue APOE levels. Pathway analyses implicate transforming growth factor β (TGF-β)/SMAD signaling in SORL1 function, and modulating SMAD signaling in neurons alters APOE RNA levels in a SORL1-dependent manner. Taken together, these data provide a mechanistic link between strong genetic risk factors for AD.
Collapse
Affiliation(s)
- Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aimee J Aylward
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra M Lish
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yi-Chen Hsieh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zachary M Augur
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Courtney R Benoit
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vicky Chou
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Cheryl Pan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Srilakshmi Goberdhan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Duc M Duong
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Mariko F Taga
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Jovanovic VM, Weber C, Slamecka J, Ryu S, Chu PH, Sen C, Inman J, De Sousa JF, Barnaeva E, Hirst M, Galbraith D, Ormanoglu P, Jethmalani Y, Mercado JC, Michael S, Ward ME, Simeonov A, Voss TC, Tristan CA, Singeç I. A defined roadmap of radial glia and astrocyte differentiation from human pluripotent stem cells. Stem Cell Reports 2023; 18:1701-1720. [PMID: 37451260 PMCID: PMC10444578 DOI: 10.1016/j.stemcr.2023.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Human gliogenesis remains poorly understood, and derivation of astrocytes from human pluripotent stem cells (hPSCs) is inefficient and cumbersome. Here, we report controlled glial differentiation from hPSCs that bypasses neurogenesis, which otherwise precedes astrogliogenesis during brain development and in vitro differentiation. hPSCs were first differentiated into radial glial cells (RGCs) resembling resident RGCs of the fetal telencephalon, and modulation of specific cell signaling pathways resulted in direct and stepwise induction of key astroglial markers (NFIA, NFIB, SOX9, CD44, S100B, glial fibrillary acidic protein [GFAP]). Transcriptomic and genome-wide epigenetic mapping and single-cell analysis confirmed RGC-to-astrocyte differentiation, obviating neurogenesis and the gliogenic switch. Detailed molecular and cellular characterization experiments uncovered new mechanisms and markers for human RGCs and astrocytes. In summary, establishment of a glia-exclusive neural lineage progression model serves as a unique serum-free platform of manufacturing large numbers of RGCs and astrocytes for neuroscience, disease modeling (e.g., Alexander disease), and regenerative medicine.
Collapse
Affiliation(s)
- Vukasin M Jovanovic
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA.
| | - Claire Weber
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Jaroslav Slamecka
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Seungmi Ryu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Chaitali Sen
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Jason Inman
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Juliana Ferreira De Sousa
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Elena Barnaeva
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | | | | | - Pinar Ormanoglu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Yogita Jethmalani
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Jennifer Colon Mercado
- Inherited Neurodegenerative Disease Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Sam Michael
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Michael E Ward
- Inherited Neurodegenerative Disease Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Ty C Voss
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Carlos A Tristan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health, Rockville, MD 20850, USA.
| |
Collapse
|
41
|
Dai DL, Li M, Lee EB. Human Alzheimer's disease reactive astrocytes exhibit a loss of homeostastic gene expression. Acta Neuropathol Commun 2023; 11:127. [PMID: 37533101 PMCID: PMC10398957 DOI: 10.1186/s40478-023-01624-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Astrocytes are one of the brain's major cell types and are responsible for maintaining neuronal homeostasis via regulating the extracellular environment, providing metabolic support, and modulating synaptic activity. In neurodegenerative diseases, such as Alzheimer's disease, astrocytes can take on a hypertrophic appearance. These reactive astrocytes are canonically associated with increases in cytoskeletal proteins, such as glial fibrillary acidic protein and vimentin. However, the molecular alterations that characterize astrocytes in human disease tissues have not been extensively studied with single cell resolution. Using single nucleus RNA sequencing data from normal, pathologic aging, and Alzheimer's disease brains, we identified the transcriptomic changes associated with reactive astrocytes. Deep learning-based clustering algorithms denoised expression data for 17,012 genes and clustered 15,529 astrocyte nuclei, identifying protoplasmic, gray matter and fibrous, white matter astrocyte clusters. RNA trajectory analyses revealed a spectrum of reactivity within protoplasmic astrocytes characterized by a modest increase of reactive genes and a marked decrease in homeostatic genes. Amyloid but not tau pathology correlated with astrocyte reactivity. To identify reactivity-associated genes, linear regressions of gene expression versus reactivity were used to identify the top 52 upregulated and 144 downregulated genes. Gene Ontology analysis revealed that upregulated genes were associated with cellular growth, responses to metal ions, inflammation, and proteostasis. Downregulated genes were involved in cellular interactions, neuronal development, ERBB signaling, and synapse regulation. Transcription factors were significantly enriched among the downregulated genes. Using co-immunofluorescence staining of Alzheimer's disease brain tissues, we confirmed pathologic downregulation of ERBB4 and transcription factor NFIA in reactive astrocytes. Our findings reveal that protoplasmic, gray matter astrocytes in Alzheimer's disease exist within a spectrum of reactivity that is marked by a strong loss of normal function.
Collapse
Affiliation(s)
- David L Dai
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA.
| |
Collapse
|
42
|
Yeon GB, Jeon BM, Yoo SH, Kim D, Oh SS, Park S, Shin WH, Kim HW, Na D, Kim DW, Kim DS. Differentiation of astrocytes with characteristics of ventral midbrain from human embryonic stem cells. Stem Cell Rev Rep 2023; 19:1890-1906. [PMID: 37067644 DOI: 10.1007/s12015-023-10536-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/18/2023]
Abstract
Molecular and functional diversity among region-specific astrocytes is of great interest in basic neuroscience and the study of neurological diseases. In this study, we present the generation and characterization of astrocytes from human embryonic stem cells with the characteristics of the ventral midbrain (VM). Fine modulation of WNT and SHH signaling during neural differentiation induced neural precursor cells (NPCs) with high expression of EN1 and NKX6.1, but less expression of FOXA2. Overexpression of nuclear factor IB in NPCs induced astrocytes, thereby maintaining the expression of region-specific genes acquired in the NPC stage. When cocultured with dopaminergic (DA) precursors or DA neurons, astrocytes with VM characteristics (VM-iASTs) promoted the differentiation and survival of DA neurons better than those that were not regionally specified. Transcriptomic analysis showed that VM-iASTs were more closely related to human primary midbrain astrocytes than to cortical astrocytes, and revealed the upregulation of WNT1 and WNT5A, which supports their VM identity and explains their superior activity in DA neurons. Taken together, we hope that VM-iASTs can serve to improve ongoing DA precursor transplantation for Parkinson's disease, and that their transcriptomic data provide a valuable resource for investigating regional diversity in human astrocyte populations.
Collapse
Affiliation(s)
- Gyu-Bum Yeon
- Department of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Byeong-Min Jeon
- Department of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Seo Hyun Yoo
- Department of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Dongyun Kim
- Department of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Seung Soo Oh
- Department of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Sanghyun Park
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon, 34114, Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-Integrated Science and Technology, College of Life Sciences, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| | - Dae-Sung Kim
- Department of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
- Department of Pediatrics, Korea University College of Medicine, Guro Hospital, 97 Gurodong-Gil, Guro-Gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
43
|
Baranes K, Hastings N, Rahman S, Poulin N, Tavares JM, Kuan W, Syed N, Kunz M, Blighe K, Belgard TG, Kotter MRN. Transcription factor combinations that define human astrocyte identity encode significant variation of maturity and function. Glia 2023; 71:1870-1889. [PMID: 37029764 PMCID: PMC10952910 DOI: 10.1002/glia.24372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023]
Abstract
Increasing evidence indicates that cellular identity can be reduced to the distinct gene regulatory networks controlled by transcription factors (TFs). However, redundancy exists in these states as different combinations of TFs can induce broadly similar cell types. We previously demonstrated that by overcoming gene silencing, it is possible to deterministically reprogram human pluripotent stem cells directly into cell types of various lineages. In the present study we leverage the consistency and precision of our approach to explore four different TF combinations encoding astrocyte identity, based on previously published reports. Analysis of the resulting induced astrocytes (iAs) demonstrated that all four cassettes generate cells with the typical morphology of in vitro astrocytes, which expressed astrocyte-specific markers. The transcriptional profiles of all four iAs clustered tightly together and displayed similarities with mature human astrocytes, although maturity levels differed between cells. Importantly, we found that the TF cassettes induced iAs with distinct differences with regards to their cytokine response and calcium signaling. In vivo transplantation of selected iAs into immunocompromised rat brains demonstrated long term stability and integration. In conclusion, all four TF combinations were able to induce stable astrocyte-like cells that were morphologically similar but showed subtle differences with respect to their transcriptome. These subtle differences translated into distinct differences with regards to cell function, that could be related to maturation state and/or regional identity of the resulting cells. This insight opens an opportunity to precision-engineer cells to meet functional requirements, for example, in the context of therapeutic cell transplantation.
Collapse
Affiliation(s)
- Koby Baranes
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AWUK
| | - Nataly Hastings
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AWUK
| | - Saifur Rahman
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AWUK
| | - Noah Poulin
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AWUK
| | - Joana M. Tavares
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AWUK
| | - Wei‐Li Kuan
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | - Najeeb Syed
- The Bioinformatics CROSanfordFlorida32771USA
| | - Meik Kunz
- The Bioinformatics CROSanfordFlorida32771USA
| | | | | | - Mark R. N. Kotter
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AWUK
| |
Collapse
|
44
|
Berryer MH, Tegtmeyer M, Binan L, Valakh V, Nathanson A, Trendafilova D, Crouse E, Klein JA, Meyer D, Pietiläinen O, Rapino F, Farhi SL, Rubin LL, McCarroll SA, Nehme R, Barrett LE. Robust induction of functional astrocytes using NGN2 expression in human pluripotent stem cells. iScience 2023; 26:106995. [PMID: 37534135 PMCID: PMC10391684 DOI: 10.1016/j.isci.2023.106995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023] Open
Abstract
Emerging evidence of species divergent features of astrocytes coupled with the relative inaccessibility of human brain tissue underscore the utility of human pluripotent stem cell (hPSC) technologies for the generation and study of human astrocytes. However, existing approaches for hPSC-astrocyte generation are typically lengthy or require intermediate purification steps. Here, we establish a rapid and highly scalable method for generating functional human induced astrocytes (hiAs). These hiAs express canonical astrocyte markers, respond to pro-inflammatory stimuli, exhibit ATP-induced calcium transients and support neuronal network development. Moreover, single-cell transcriptomic analyses reveal the generation of highly reproducible cell populations across individual donors, mostly resembling human fetal astrocytes. Finally, hiAs generated from a trisomy 21 disease model identify expected alterations in cell-cell adhesion and synaptic signaling, supporting their utility for disease modeling applications. Thus, hiAs provide a valuable and practical resource for the study of basic human astrocyte function and dysfunction in disease.
Collapse
Affiliation(s)
- Martin H. Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Centre for Gene Therapy and Regenerative Medicine, King’s College, London, UK
| | - Loïc Binan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vera Valakh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna Nathanson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Darina Trendafilova
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ethan Crouse
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jenny A. Klein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olli Pietiläinen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- University of Helsinki, Helsinki, Finland
| | - Francesca Rapino
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Samouil L. Farhi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Steven A. McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Lindy E. Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
45
|
Lindblad C, Neumann S, Kolbeinsdóttir S, Zachariadis V, Thelin EP, Enge M, Thams S, Brundin L, Svensson M. Stem cell-derived brainstem mouse astrocytes obtain a neurotoxic phenotype in vitro upon neuroinflammation. J Inflamm (Lond) 2023; 20:22. [PMID: 37370141 PMCID: PMC10303821 DOI: 10.1186/s12950-023-00349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Astrocytes respond to injury and disease through a process known as reactive astrogliosis, of which inflammatory signaling is one subset. This inflammatory response is heterogeneous with respect to the inductive stimuli and the afflicted central nervous system region. This is of plausible importance in e.g. traumatic axonal injury (TAI), where lesions in the brainstem carries a particularly poor prognosis. In fact, astrogliotic forebrain astrocytes were recently suggested to cause neuronal death following axotomy. We therefore sought to assess if ventral brainstem- or rostroventral spinal astrocytes exert similar effects on motor neurons in vitro. METHODS We derived brainstem/rostroventral spinal astrocyte-like cells (ES-astrocytes) and motor neurons using directed differentiation of mouse embryonic stem cells (ES). We activated the ES-astrocytes using the neurotoxicity-eliciting cytokines interleukin- (IL-) 1α and tumor necrosis factor-(TNF-)α and clinically relevant inflammatory mediators. In co-cultures with reactive ES-astrocytes and motor neurons, we assessed neurotoxic ES-astrocyte activity, similarly to what has previously been shown for other central nervous system (CNS) regions. RESULTS We confirmed the brainstem/rostroventral ES-astrocyte identity using RNA-sequencing, immunocytochemistry, and by comparison with primary subventricular zone-astrocytes. Following cytokine stimulation, the c-Jun N-terminal kinase pathway down-stream product phosphorylated c-Jun was increased, thus demonstrating ES-astrocyte reactivity. These reactive ES-astrocytes conferred a contact-dependent neurotoxic effect upon co-culture with motor neurons. When exposed to IL-1β and IL-6, two neuroinflammatory cytokines found in the cerebrospinal fluid and serum proteome following human severe traumatic brain injury (TBI), ES-astrocytes exerted similar effects on motor neurons. Activation of ES-astrocytes by these cytokines was associated with pathways relating to endoplasmic reticulum stress and altered regulation of MYC. CONCLUSIONS Ventral brainstem and rostroventral spinal cord astrocytes differentiated from mouse ES can exert neurotoxic effects in vitro. This highlights how neuroinflammation following CNS lesions can exert region- and cell-specific effects. Our in vitro model system, which uniquely portrays astrocytes and neurons from one niche, allows for a detailed and translationally relevant model system for future studies on how to improve neuronal survival in particularly vulnerable CNS regions following e.g. TAI.
Collapse
Affiliation(s)
- Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden.
| | - Susanne Neumann
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
| | | | | | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Enge
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Thams
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
46
|
Yan YW, Qian ES, Woodard LE, Bejoy J. Neural lineage differentiation of human pluripotent stem cells: Advances in disease modeling. World J Stem Cells 2023; 15:530-547. [PMID: 37424945 PMCID: PMC10324500 DOI: 10.4252/wjsc.v15.i6.530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 06/20/2023] Open
Abstract
Brain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease. One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells (hPSCs) to neural lineages including neurons, astrocytes, and oligodendrocytes. Three-dimensional models such as brain organoids have also been derived from hPSCs, offering more physiological relevance due to their incorporation of various cell types. As such, brain organoids can better model the pathophysiology of neural diseases observed in patients. In this review, we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models.
Collapse
Affiliation(s)
- Yuan-Wei Yan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Eddie S Qian
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Lauren E Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
47
|
Watson LA, Meharena HS. From neurodevelopment to neurodegeneration: utilizing human stem cell models to gain insight into Down syndrome. Front Genet 2023; 14:1198129. [PMID: 37323671 PMCID: PMC10267712 DOI: 10.3389/fgene.2023.1198129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Down syndrome (DS), caused by triplication of chromosome 21, is the most frequent aneuploidy observed in the human population and represents the most common genetic form of intellectual disability and early-onset Alzheimer's disease (AD). Individuals with DS exhibit a wide spectrum of clinical presentation, with a number of organs implicated including the neurological, immune, musculoskeletal, cardiac, and gastrointestinal systems. Decades of DS research have illuminated our understanding of the disorder, however many of the features that limit quality of life and independence of individuals with DS, including intellectual disability and early-onset dementia, remain poorly understood. This lack of knowledge of the cellular and molecular mechanisms leading to neurological features of DS has caused significant roadblocks in developing effective therapeutic strategies to improve quality of life for individuals with DS. Recent technological advances in human stem cell culture methods, genome editing approaches, and single-cell transcriptomics have provided paradigm-shifting insights into complex neurological diseases such as DS. Here, we review novel neurological disease modeling approaches, how they have been used to study DS, and what questions might be addressed in the future using these innovative tools.
Collapse
Affiliation(s)
- L. Ashley Watson
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| | - Hiruy S. Meharena
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
48
|
Canals I, Comella-Bolla A, Cepeda-Prado E, Avaliani N, Crowe JA, Oburoglu L, Bruzelius A, King N, Pajares MA, Pérez-Sala D, Heuer A, Rylander Ottosson D, Soriano J, Ahlenius H. Astrocyte dysfunction and neuronal network hyperactivity in a CRISPR engineered pluripotent stem cell model of frontotemporal dementia. Brain Commun 2023; 5:fcad158. [PMID: 37274831 PMCID: PMC10233896 DOI: 10.1093/braincomms/fcad158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second most prevalent type of early-onset dementia and up to 40% of cases are familial forms. One of the genes mutated in patients is CHMP2B, which encodes a protein found in a complex important for maturation of late endosomes, an essential process for recycling membrane proteins through the endolysosomal system. Here, we have generated a CHMP2B-mutated human embryonic stem cell line using genome editing with the purpose to create a human in vitro FTD disease model. To date, most studies have focused on neuronal alterations; however, we present a new co-culture system in which neurons and astrocytes are independently generated from human embryonic stem cells and combined in co-cultures. With this approach, we have identified alterations in the endolysosomal system of FTD astrocytes, a higher capacity of astrocytes to uptake and respond to glutamate, and a neuronal network hyperactivity as well as excessive synchronization. Overall, our data indicates that astrocyte alterations precede neuronal impairments and could potentially trigger neuronal network changes, indicating the important and specific role of astrocytes in disease development.
Collapse
Affiliation(s)
- Isaac Canals
- Correspondence to: Isaac Canals Department of Experimental Medical Science, Lund University Klinikgatan 26 BMC B10, 22184, Lund, Sweden E-mail:
| | | | | | | | - James A Crowe
- Lund Stem Cell Center, 22184, Lund, Sweden
- Glial and Neuronal Biology lab, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Leal Oburoglu
- Lund Stem Cell Center, 22184, Lund, Sweden
- Hematopoietic Stem Cell Development group, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Andreas Bruzelius
- Lund Stem Cell Center, 22184, Lund, Sweden
- Regenerative Neurophysiology group, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Naomi King
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Daniella Rylander Ottosson
- Lund Stem Cell Center, 22184, Lund, Sweden
- Regenerative Neurophysiology group, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| | - Jordi Soriano
- The Neurophysics group, Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028, Barcelona, Spain
| | - Henrik Ahlenius
- Correspondence may also be addressed to: Henrik Ahlenius E-mail:
| |
Collapse
|
49
|
Ren B, Burkovetskaya M, Jung Y, Bergdolt L, Totusek S, Martinez-Cerdeno V, Stauch K, Korade Z, Dunaevsky A. Dysregulated cholesterol metabolism, aberrant excitability and altered cell cycle of astrocytes in fragile X syndrome. Glia 2023; 71:1176-1196. [PMID: 36594399 PMCID: PMC10023374 DOI: 10.1002/glia.24331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
Fragile X syndrome (FXS), the most prevalent heritable form of intellectual disability, is caused by the transcriptional silencing of the FMR1 gene. While neuronal contribution to FXS has been extensively studied in both animal and human-based models of FXS, the roles of astrocytes, a type of glial cells in the brain, are largely unknown. Here, we generated a human-based FXS model via differentiation of astrocytes from human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) and characterized their development, function, and proteomic profiles. We identified shortened cell cycle, enhanced Ca2+ signaling, impaired sterol biosynthesis, and pervasive alterations in the proteome of FXS astrocytes. Our work identified astrocytic impairments that could contribute to the pathogenesis of FXS and highlight astrocytes as a novel therapeutic target for FXS treatment.
Collapse
Affiliation(s)
- Baiyan Ren
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maria Burkovetskaya
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yoosun Jung
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lara Bergdolt
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Steven Totusek
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, MIND Institute, and Institute for Pediatric Regenerative Medicine at UC Davis School of Medicine, and Shriners Hospitals for Children of Northern California, Sacramento, California, USA
| | - Kelly Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Zeljka Korade
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pediatrics, CHRI, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anna Dunaevsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
50
|
Hicks EM, Seah C, Cote A, Marchese S, Brennand KJ, Nestler EJ, Girgenti MJ, Huckins LM. Integrating genetics and transcriptomics to study major depressive disorder: a conceptual framework, bioinformatic approaches, and recent findings. Transl Psychiatry 2023; 13:129. [PMID: 37076454 PMCID: PMC10115809 DOI: 10.1038/s41398-023-02412-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and heterogeneous psychiatric syndrome with genetic and environmental influences. In addition to neuroanatomical and circuit-level disturbances, dysregulation of the brain transcriptome is a key phenotypic signature of MDD. Postmortem brain gene expression data are uniquely valuable resources for identifying this signature and key genomic drivers in human depression; however, the scarcity of brain tissue limits our capacity to observe the dynamic transcriptional landscape of MDD. It is therefore crucial to explore and integrate depression and stress transcriptomic data from numerous, complementary perspectives to construct a richer understanding of the pathophysiology of depression. In this review, we discuss multiple approaches for exploring the brain transcriptome reflecting dynamic stages of MDD: predisposition, onset, and illness. We next highlight bioinformatic approaches for hypothesis-free, genome-wide analyses of genomic and transcriptomic data and their integration. Last, we summarize the findings of recent genetic and transcriptomic studies within this conceptual framework.
Collapse
Affiliation(s)
- Emily M Hicks
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Alanna Cote
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Shelby Marchese
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|