1
|
Obi JO, Kihn KC, McQueen L, Fields JK, Snyder GA, Deredge DJ. Structural dynamics of the dengue virus non-structural 5 (NS5) interactions with promoter stem-loop A (SLA). NPJ VIRUSES 2025; 3:30. [PMID: 40295851 PMCID: PMC12003724 DOI: 10.1038/s44298-025-00112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
The dengue virus (DENV) NS5 protein, essential for viral RNA synthesis, is an attractive antiviral drug target. DENV NS5 interacts with the stem-loop A (SLA) promoter at the 5'-untranslated region of the viral genome to initiate negative-strand synthesis. However, the conformational dynamics of this interaction remains unclear. Our study explores the structural dynamics of DENV serotype 2 NS5 (DENV2 NS5) in complex with SLA, employing surface plasmon resonance (SPR), hydrogen-deuterium exchange mass spectrometry (HDX-MS), computational modeling, and cryoEM. Our findings reveal that DENV2 NS5 binds SLA in a closed conformation, with interdomain cooperation between its methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, critical for the interaction. SLA binding induces conformational changes in both domains, highlighting NS5's multifunctional role in viral replication. Our cryoEM results visualizes the DENV2 NS5-SLA complex, confirming a conserved SLA binding across DENV serotypes and provides key insights for antiviral strategies targeting NS5's conformational states.
Collapse
Affiliation(s)
- Juliet O Obi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Kyle C Kihn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Linfah McQueen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - James K Fields
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Greg A Snyder
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Acchioni M, Acchioni C, Hiscott J, Sgarbanti M. Origin and function of anti-interferon type I viral proteins. Virology 2025; 605:110456. [PMID: 39999585 DOI: 10.1016/j.virol.2025.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Type I interferons (IFN-I) are the most important innate immune cytokines produced by vertebrate host cells following, virus infection. Broadly speaking, detection of infecting viral nucleic acids by pattern recognition receptors (PRR) and subsequent downstream signaling triggers synthesis of a large number of IFN-I-stimulated genes (ISGs), endowed with diverse antiviral effector function. The co-evolution of virus-host interactions over million years has resulted in the emergence of viral strategies that target and inhibit host PRR-mediated detection, signal transduction pathways and IFN-I-mediated stimulation of ISGs. In this review, we illustrate the multiple mechanisms of viral immune evasion and discuss the co-evolution of anti-IFN-I viral proteins by summarizing key examples from recent literature. Due to the large number of anti-IFN-I proteins described, we provide here an evaluation of the prominent examples from different virus families. Understanding the unrelenting evolution of viral evasion strategies will provide mechanistic detail concerning these evolving interactions but will further enhance the development of tailored antiviral approaches.
Collapse
Affiliation(s)
- Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - John Hiscott
- Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy.
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
3
|
Liu J, Guo Q, Liu G, Wang W, Jin X, Hao B, Lei B. Immune pathogenic response landscape of acute posterior multifocal placoid pigment epitheliopathy revealed by scRNA sequencing. Genes Immun 2025; 26:75-90. [PMID: 39774261 PMCID: PMC12006025 DOI: 10.1038/s41435-024-00316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Acute posterior multifocal placoid pigment epitheliopathy (APMPPE) is an exceptionally rare inflammatory disorder affecting choroid and retinal pigment epithelial (RPE) cells. Although recent studies suggest an immune-driven nature, the underlying etiology of APMPPE remains elusive. In this study, we conducted a comprehensive investigation on the peripheral blood mononuclear cells (PBMCs) profile of an APMPPE patient using single-cell RNA sequencing. Our analysis revealed striking transcriptional alterations in monocytes within the PBMCs, identifying five distinct subpopulations: S100A12, CD16, pro-inflammatory, megakaryocyte-like, and NK-like monocyte subsets. Employing pseudotime inference, we observed a shift in APMPPE monocytes towards differentiation into inflammation-associated pro-inflammatory monocytes and a CD16 monocyte trajectory. Furthermore, we identified IFITM3 as a key player in the immune response driving the pathogenesis of APMPPE. Notably, two disease-relevant subgroups of monocytes, pro-inflammatory and CD16 monocytes, were implicated in APMPPE. CD16 monocytes, in particular, were involved in melanogenesis, suggesting that the abnormal expression of melanin in monocytes might result from autoimmune responses against pigment-enriched RPE cells. This study provided a comprehensive view of immune landscape in APMPPE, shedding light on the previously unrecognized contributions of pro-inflammatory and CD16 monocytes to this autoimmune condition.
Collapse
Affiliation(s)
- Jingyang Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Qingge Guo
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Guangming Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Weiping Wang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Xiuxiu Jin
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
| | - Bingtao Hao
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
- Department of Immunology, School of Basic Medical, Zhengzhou University, Zhengzhou, Henan, China.
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
- Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Sugiyama A, Minami M, Ugajin K, Inaba-Inoue S, Yabuno N, Takekawa Y, Xiaomei S, Takei S, Sasaki M, Nomai T, Jiang X, Kita S, Maenaka K, Hirose M, Yao M, Gooley PR, Moseley GW, Sugita Y, Ose T. Structural analysis reveals how tetrameric tyrosine-phosphorylated STAT1 is targeted by the rabies virus P-protein. Sci Signal 2025; 18:eads2210. [PMID: 40100957 DOI: 10.1126/scisignal.ads2210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Signal transducer and activator of transcription (STAT) family members mediate signaling in the Janus kinase (JAK)-STAT pathway and are activated by phosphorylation at a conserved tyrosine residue, resulting in dimerization through reciprocal interactions between the phosphotyrosine and a Src homology 2 (SH2) domain. Tyrosine-phosphorylated STAT (pY-STAT) then translocates to the nucleus to induce the expression of genes encoding antiviral proteins. Although the active and functional forms of STATs are conventionally considered to be dimers, STATs can undergo higher-order oligomerization, which is implicated in regulating transcriptional activity. We present the cryo-electron microscopy (cryo-EM) structure of the tetrameric form of intact pY-STAT1 in complex with DNA, which indicates that interactions between the amino-terminal domains (NTDs) of STAT1 induce oligomerization. The tetrameric structure revealed a compact conformation with a previously uncharacterized binding interface: Two DNA-bound dimers are twofold symmetrically aligned to transform into a tandem DNA-binding model without NTD dimer separation. Moreover, biochemical analyses indicated that the rabies virus P-protein selectively targeted tetrameric pY-STAT1. Combined with data showing which regions contribute to the interaction between pY-STAT1 and the P-protein, we constructed a binding model explaining how P recognizes the pY-STAT1 tetramer. These data provide insight into how pathogenic viruses target signaling pathways that mediate the host immune response.
Collapse
Affiliation(s)
- Aoi Sugiyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Miku Minami
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kaito Ugajin
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Satomi Inaba-Inoue
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nana Yabuno
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuichiro Takekawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Sun Xiaomei
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shiho Takei
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mina Sasaki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tomo Nomai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Xinxin Jiang
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gregory W Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Yukihiko Sugita
- Institute for Life and Medical Sciences, Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8507, Japan
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
5
|
Qiu M, Zhao L, Li X, Fan Y, Liu M, Hua D, Zhu Y, Liang Y, Zhang Y, Xiao W, Xu X, Li J. Decoding dengue's neurological assault: insights from single-cell CNS analysis in an immunocompromised mouse model. J Neuroinflammation 2025; 22:62. [PMID: 40038739 DOI: 10.1186/s12974-025-03383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Dengue encephalitis, a severe neurological complication of dengue virus infection, is increasingly recognized for its rising incidence and significant public health burden. Despite its growing prevalence, the underlying mechanisms and effective therapeutic strategies remain poorly understood. METHODS Cellular atlas of dengue encephalitis was determined by single-nucleus RNA sequencing. Viral load of dengue virus and the level of cytokines expression was detected by RT-qPCR. The target cells of dengue virus were verified by immunofluorescence. The cytotoxic effect of CD8+ T cell was determined by flow cytometry, immunofluorescence, in vivo CD8+ T cell depletion, adoptive transfer and CCK-8-based cell viability assay. Axonal and synaptic reduction induced by dengue virus infection was demonstrated by RT-qPCR, Western blot, transmission electron microscope and immunofluorescence. Finally, motor and sensory functions of mice were detected by open field test and hot plate test, respectively. RESULTS In this study, we utilized single-nucleus RNA sequencing on brain tissues from a dengue-infected murine model to construct a comprehensive cellular atlas of dengue encephalitis. Our findings identify neurons, particularly inhibitory GABAergic subtypes, as the primary targets of dengue virus. Additionally, immune cell infiltration was observed, contributing to significant neurological damage. Comprehensive analyses of cell-cell communication, combined with CD8+ T cell depletion and transfer restoration experiments, have elucidated the critical role of CD8+ T cells in triggering encephalitis through their interaction with neurons. These cells infiltrate the brain from peripheral circulation, interact with neurons, and induce damage of synapse and axon, accompanied by neurological dysfunction. CONCLUSION We defined cellular atlas of dengue encephalitis in mouse model and identified the primary target neuron of dengue virus. In addition, we demonstrated the significant cytotoxic effect of CD8+ T cell, which leads to apoptosis of neuron and neurological dysfunction of mice. Our study provides a molecular and cellular framework for understanding dengue encephalitis through advanced sequencing technologies. The insights gained serve as a foundation for future investigations into its pathogenesis and the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Minyue Qiu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Lixin Zhao
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Xiaojia Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yipei Fan
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Minchi Liu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Dong Hua
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yunkai Zhu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yinyin Liang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Wen Xiao
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Xiaofeng Xu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing, China.
- Institute of Immunology, Army Medical University, Chongqing, China.
| |
Collapse
|
6
|
Zhao Y, Sui L, Pan M, Jin F, Huang Y, Fang S, Wang M, Che L, Xu W, Liu N, Gao H, Hou Z, Du F, Wei Z, Bell-Sakyi L, Zhao J, Zhang K, Zhao Y, Liu Q. The segmented flavivirus Alongshan virus reduces mitochondrial mass by degrading STAT2 to suppress the innate immune response. J Virol 2025; 99:e0130124. [PMID: 39655955 PMCID: PMC11784234 DOI: 10.1128/jvi.01301-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025] Open
Abstract
Alongshan virus (ALSV) is a newly discovered pathogen in the Flaviviridae family, characterized by a unique multi-segmented genome that is distantly related to the canonical flaviviruses. Understanding the pathogenic mechanism of this emerging segmented flavivirus is crucial for the development of effective intervention strategies. In this study, we demonstrate that ALSV can infect various mammalian cells and induce the expression of antiviral genes. Furthermore, ALSV is sensitive to IFN-β, but it has developed strategies to counteract the host's type I IFN response. Mechanistically, ALSV's nonstructural protein NSP1 interacts with and degrades human STAT2 through an autophagy pathway, with species-dependent effects. This degradation directly inhibits the expression of interferon-stimulated genes (ISGs). Additionally, NSP1-mediated degradation of STAT2 disrupts mitochondrial dynamics, leading to mitophagy and inhibition of mitochondrial biogenesis. This, in turn, suppresses the host's innate immune response. Interestingly, we found that inhibiting mitophagy using 3-methyladenine and enhancing mitochondrial biogenesis with the PPARγ agonist pioglitazone can reverse NSP1-mediated inhibition of ISGs, suggesting that promoting mitochondrial mass could serve as an effective antiviral strategy. Specifically, the NSP1 methyltransferase domain binds to the key sites of F175/R176 located in the coiled-coil domain of STAT2. Our findings provide valuable insights into the intricate regulatory cross talk between ALSV and the host's innate immune response, shedding light on the pathogenesis of this emerging segmented flavivirus and offering potential intervention strategies.IMPORTANCEAlongshan virus (ALSV), a segmented flavivirus belonging to the Flaviviridae family, was first identified in individuals who had been bitten by ticks in Northeastern China. ALSV infection is responsible for causing Alongshan fever, a condition characterized by various clinical symptoms, including fever, headache, skin rash, myalgia, arthralgia, depression, and coma. There is an urgent need for effective antiviral therapies. Here, we demonstrate that ALSV is susceptible to IFN-β but has developed mechanisms to counteract the host's innate immune response. Specifically, the ALSV nonstructural protein NSP1 interacts with STAT2, leading to its degradation via an autophagy pathway that exhibits species-dependent effects. Additionally, NSP1 disrupts mitochondrial dynamics and suppresses mitochondrial biogenesis, resulting in a reduction in mitochondrial mass, which ultimately contributes to the inhibition of the host's innate immune response. Interestingly, we found that inhibiting mitophagy and promoting mitochondrial biogenesis can reverse NSP1-mediated suppression of innate immune response by increasing mitochondrial mass. These findings provide valuable insights into the molecular mechanisms of ALSV pathogenesis and suggest potential therapeutic targets against ALSV infection.
Collapse
Affiliation(s)
- Yinghua Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Liyan Sui
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Mingming Pan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Fangyu Jin
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuan Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shu Fang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Mengmeng Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lihe Che
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Xu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Haicheng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Fang Du
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jixue Zhao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Kaiyu Zhang
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yicheng Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Quan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Obi JO, Kihn KC, McQueen L, Fields JK, Snyder GA, Deredge DJ. Structural Dynamics of the Dengue Virus Non-structural 5 (NS5) Interactions with Promoter Stem Loop A (SLA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626708. [PMID: 39677779 PMCID: PMC11642867 DOI: 10.1101/2024.12.03.626708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The dengue virus (DENV) NS5 protein plays a central role in dengue viral RNA synthesis which makes it an attractive target for antiviral drug development. DENV NS5 is known to interact with the stem-loop A (SLA) promoter at the 5'-untranslated region (5'-UTR) of the viral genome as a molecular recognition signature for the initiation of negative strand synthesis at the 3' end of the viral genome. However, the conformational dynamics involved in these interactions are yet to be fully elucidated. Our study explores the structural dynamics of NS5 from DENV serotype 2 (DENV2 NS5) in complex with SLA, employing surface plasmon resonance (SPR), hydrogen - deuterium exchange coupled to mass spectrometry (HDX-MS), computational modeling, and cryoEM single particle analysis to delineate the molecular details of their interaction. Our findings indicate that DENV2 NS5 binds SLA in a closed conformation with significant interdomain cooperation between the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, a feature integral to the interaction. Our HDX-MS studies reveal SLA-induced conformational changes in both domains of DENV2 NS5, reflecting a potential mechanism for dengue NS5's multifunctional role in viral replication. Lastly, our cryoEM structure provides the first visualization of the DENV2 NS5-SLA complex, confirming a conserved SLA binding mode across DENV serotypes. These insights obtained from our study enhance our understanding of dengue NS5's complex conformational landscape, supporting the potential development of antiviral strategies targeting dengue NS5's conformational states.
Collapse
Affiliation(s)
- Juliet O. Obi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Kyle C. Kihn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Linfah McQueen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - James K. Fields
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Greg A. Snyder
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Daniel J. Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| |
Collapse
|
8
|
Wu Z, He Y, Wang T, Wang M, Cheng A, Chen S. DENV and ZIKV infection: Species specificity and broad cell tropism. Virology 2024; 600:110276. [PMID: 39467358 DOI: 10.1016/j.virol.2024.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Nearly one-third of countries worldwide have reported cases of Dengue virus (DENV) and Zika virus (ZIKV) infections, highlighting the significant threat these viruses pose to global public health. As members of the Flavivirus genus within the Flaviviridae family, DENV and ZIKV have demonstrated the ability to infect a wide range of cell lines from multiple species in vitro. However, the range of susceptible animal models is notably limited, and field studies indicate that their capacity to infect host organisms is highly restricted, with a very narrow range of target cells in vivo. The virus's ability to hijack host cellular machinery plays a crucial role in determining its cellular and species specificity. In this review, we examine how DENV and ZIKV exploit host cells to facilitate their replication, offering new insights that could inform the development of antiviral drugs and therapeutic targets.
Collapse
Affiliation(s)
- Zhen Wu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tao Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Agricultural Bioinformatics of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
9
|
de Thoisy B, Gräf T, Mansur DS, Delfraro A, Dos Santos CND. The Risk of Virus Emergence in South America: A Subtle Balance Between Increasingly Favorable Conditions and a Protective Environment. Annu Rev Virol 2024; 11:43-65. [PMID: 38848594 DOI: 10.1146/annurev-virology-100422-024648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
South American ecosystems host astonishing biodiversity, with potentially great richness in viruses. However, these ecosystems have not yet been the source of any widespread, epidemic viruses. Here we explore a set of putative causes that may explain this apparent paradox. We discuss that human presence in South America is recent, beginning around 14,000 years ago; that few domestications of native species have occurred; and that successive immigration events associated with Old World virus introductions reduced the likelihood of spillovers and adaptation of local viruses into humans. Also, the diversity and ecological characteristics of vertebrate hosts might serve as protective factors. Moreover, although forest areas remained well preserved until recently, current brutal, sudden, and large-scale clear cuts through the forest have resulted in nearly no ecotones, which are essential for creating an adaptive gradient of microbes, hosts, and vectors. This may be temporarily preventing virus emergence. Nevertheless, the mid-term effect of such drastic changes in habitats and landscapes, coupled with explosive urbanization and climate changes, must not be overlooked by health authorities.
Collapse
Affiliation(s)
- Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz PR, Curitiba, Brazil;
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia, e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Adriana Delfraro
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
10
|
Ren W, Fu C, Zhang Y, Ju X, Jiang X, Song J, Gong M, Li Z, Fan W, Yao J, Ding Q. Zika virus NS5 protein inhibits type I interferon signaling via CRL3 E3 ubiquitin ligase-mediated degradation of STAT2. Proc Natl Acad Sci U S A 2024; 121:e2403235121. [PMID: 39145933 PMCID: PMC11348293 DOI: 10.1073/pnas.2403235121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The ZIKA virus (ZIKV) evades the host immune response by degrading STAT2 through its NS5 protein, thereby inhibiting type I interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism underlying this process has remained elusive. In this study, we performed a genome-wide CRISPR/Cas9 screen, revealing that ZSWIM8 as the substrate receptor of Cullin3-RING E3 ligase is required for NS5-mediated STAT2 degradation. Genetic depletion of ZSWIM8 and CUL3 substantially impeded NS5-mediated STAT2 degradation. Biochemical analysis illuminated that NS5 enhances the interaction between STAT2 and the ZSWIM8-CUL3 E3 ligase complex, thereby facilitating STAT2 ubiquitination. Moreover, ZSWIM8 knockout endowed A549 and Huh7 cells with partial resistance to ZIKV infection and protected cells from the cytopathic effects induced by ZIKV, which was attributed to the restoration of STAT2 levels and the activation of IFN signaling. Subsequent studies in a physiologically relevant model, utilizing human neural progenitor cells, demonstrated that ZSWIM8 depletion reduced ZIKV infection, resulting from enhanced IFN signaling attributed to the sustained levels of STAT2. Our findings shed light on the role of ZIKV NS5, serving as the scaffold protein, reprograms the ZSWIM8-CUL3 E3 ligase complex to orchestrate STAT2 proteasome-dependent degradation, thereby facilitating evasion of IFN antiviral signaling. Our study provides unique insights into ZIKV-host interactions and holds promise for the development of antivirals and prophylactic vaccines.
Collapse
Affiliation(s)
- Wenlin Ren
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Chonglei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yu Zhang
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Xiaohui Ju
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Xi Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Jingwei Song
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Mingli Gong
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
| | - Zhuoyang Li
- Shanxi Medical University-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan030001, China
- School of Management, Shanxi Medical University, Taiyuan030001, China
| | - Wenchun Fan
- Life Science Institute, Zhejiang University, Hangzhou31008, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qiang Ding
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing100084, China
- Shanxi Medical University-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan030001, China
| |
Collapse
|
11
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
12
|
Veit EC, Salim MS, Jung MJ, Richardson RB, Boys IN, Quinlan M, Barrall EA, Bednarski E, Hamilton RE, Kikawa C, Elde NC, García-Sastre A, Evans MJ. Evolution of STAT2 resistance to flavivirus NS5 occurred multiple times despite genetic constraints. Nat Commun 2024; 15:5426. [PMID: 38926343 PMCID: PMC11208600 DOI: 10.1038/s41467-024-49758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Zika and dengue virus nonstructural protein 5 antagonism of STAT2, a critical interferon signaling transcription factor, to suppress the host interferon response is required for viremia and pathogenesis in a vertebrate host. This affects viral species tropism, as mouse STAT2 resistance renders only immunocompromised or humanized STAT2 mice infectable. Here, we explore how STAT2 evolution impacts antagonism. By measuring the susceptibility of 38 diverse STAT2 proteins, we demonstrate that resistance arose numerous times in mammalian evolution. In four species, resistance requires distinct sets of multiple amino acid changes that often individually disrupt STAT2 signaling. This reflects an evolutionary ridge where progressive resistance is balanced by the need to maintain STAT2 function. Furthermore, resistance may come with a fitness cost, as resistance that arose early in lemur evolution was subsequently lost in some lemur lineages. These findings underscore that while it is possible to evolve resistance to antagonism, complex evolutionary trajectories are required to avoid detrimental host fitness consequences.
Collapse
Affiliation(s)
- Ethan C Veit
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madihah S Salim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariel J Jung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Blake Richardson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ian N Boys
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Meghan Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Erika A Barrall
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eva Bednarski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachael E Hamilton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caroline Kikawa
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Division of Basic Sciences and Computational Biology Program, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Cheng C, Tan MJA, Chan KWK, Choy MMJ, Roman N, Arnold DDR, Bifani AM, Kong SYZ, Bist P, Nath BK, Swarbrick CMD, Forwood JK, Vasudevan SG. Serotype-Specific Regulation of Dengue Virus NS5 Protein Subcellular Localization. ACS Infect Dis 2024; 10:2047-2062. [PMID: 38811007 PMCID: PMC11184549 DOI: 10.1021/acsinfecdis.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Dengue virus (DENV) nonstructural protein 5 (NS5), consisting of methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, is critical for viral RNA synthesis within endoplasmic reticulum-derived replication complexes in the cytoplasm. However, a significant proportion of NS5 is localized to the nucleus of infected cells for DENV2, 3, and 4, whereas DENV1 NS5 is localized diffusely in the cytoplasm. We still have an incomplete understanding of how the DENV NS5 subcellular localization is regulated. Within NS5, two putative nuclear localization signal (NLS) sequences have been identified: NLSCentral residing in the palm of the RdRp domain as well as the recently discovered NLSC-term residing in the flexible region at the C-terminal of the RdRp domain. We have previously shown that DENV2 NS5 nuclear localization can be significantly reduced by single-point mutations to the NLSC-term. Here, we present biochemical, virological, and structural data demonstrating that the relative importance of either NLS in NS5 nuclear localization is unique to each of the four DENV serotypes. DENV1 NS5's cytoplasmic localization appears to be due to a functionally weak interaction between its NLSCentral and importin-α (IMPα), while DENV2 NS5 is almost exclusively nuclear through its NLSC-term's strong interaction with IMPα. Both NLSs of DENV3 NS5 appear to contribute to directing its nuclear localization. Lastly, in the case of DENV4, the regulation of its NS5 nuclear localization remains an enigma but appears to be associated with its NLSC-term.
Collapse
Affiliation(s)
- Colin
Xinru Cheng
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Min Jie Alvin Tan
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Kitti Wing Ki Chan
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Milly Ming Ju Choy
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Noelia Roman
- School
of Dentistry and Medical Sciences, Charles
Sturt University, Wagga
Wagga, NSW 2678, Australia
| | - Daniel D. R. Arnold
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
- School
of Dentistry and Medical Sciences, Charles
Sturt University, Wagga
Wagga, NSW 2678, Australia
| | - Amanda Makha Bifani
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Sean Yao Zu Kong
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Pradeep Bist
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Babu K. Nath
- School
of Dentistry and Medical Sciences, Charles
Sturt University, Wagga
Wagga, NSW 2678, Australia
| | - Crystall M. D. Swarbrick
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
- Biosecurity
Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Institute
for Glycomics, Griffith University, Southport 4222, Australia
| | - Jade K. Forwood
- School
of Dentistry and Medical Sciences, Charles
Sturt University, Wagga
Wagga, NSW 2678, Australia
- Biosecurity
Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Subhash G. Vasudevan
- Programme
in Emerging Infectious Diseases, Duke-NUS
Medical School, Singapore 169857, Singapore
- Department
of Microbiology and Immunology, National
University of Singapore, Singapore 117545, Singapore
- Institute
for Glycomics, Griffith University, Southport 4222, Australia
| |
Collapse
|
14
|
Martí MM, Castanha PMS, Barratt-Boyes SM. The Dynamic Relationship between Dengue Virus and the Human Cutaneous Innate Immune Response. Viruses 2024; 16:727. [PMID: 38793609 PMCID: PMC11125669 DOI: 10.3390/v16050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Dengue virus (DENV) is a continuing global threat that puts half of the world's population at risk for infection. This mosquito-transmitted virus is endemic in over 100 countries. When a mosquito takes a bloodmeal, virus is deposited into the epidermal and dermal layers of human skin, infecting a variety of permissive cells, including keratinocytes, Langerhans cells, macrophages, dermal dendritic cells, fibroblasts, and mast cells. In response to infection, the skin deploys an array of defense mechanisms to inhibit viral replication and prevent dissemination. Antimicrobial peptides, pattern recognition receptors, and cytokines induce a signaling cascade to increase transcription and translation of pro-inflammatory and antiviral genes. Paradoxically, this inflammatory environment recruits skin-resident mononuclear cells that become infected and migrate out of the skin, spreading virus throughout the host. The details of the viral-host interactions in the cutaneous microenvironment remain unclear, partly due to the limited body of research focusing on DENV in human skin. This review will summarize the functional role of human skin, the cutaneous innate immune response to DENV, the contribution of the arthropod vector, and the models used to study DENV interactions in the cutaneous environment.
Collapse
Affiliation(s)
- Michelle M. Martí
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.M.M.); (P.M.S.C.)
| | - Priscila M. S. Castanha
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.M.M.); (P.M.S.C.)
- Faculdade de Ciệncias Médicas, Universidade de Pernambuco, Recife 52171-011, Brazil
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.M.M.); (P.M.S.C.)
| |
Collapse
|
15
|
Nissly RH, Lim L, Keller MR, Bird IM, Bhushan G, Misra S, Chothe SK, Sill MC, Kumar NV, Sivakumar AVN, Naik BR, Jayarao BM, Kuchipudi SV. The Susceptibility of Chickens to Zika Virus: A Comprehensive Study on Age-Dependent Infection Dynamics and Host Responses. Viruses 2024; 16:569. [PMID: 38675911 PMCID: PMC11054531 DOI: 10.3390/v16040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Zika virus (ZIKV) remains a public health concern, with epidemics in endemic regions and sporadic outbreaks in new areas posing significant threats. Several mosquito-borne flaviviruses that can cause human illness, including West Nile, Usutu, and St. Louis encephalitis, have associations with birds. However, the susceptibility of chickens to ZIKV and their role in viral epidemiology is not currently known. We investigated the susceptibility of chickens to experimental ZIKV infection using chickens ranging from 1-day-old chicks to 6-week-old birds. ZIKV caused no clinical signs in chickens of all age groups tested. Viral RNA was detected in the blood and tissues during the first 5 days post-inoculation in 1-day and 4-day-old chicks inoculated with a high viral dose, but ZIKV was undetectable in 6-week-old birds at all timepoints. Minimal antibody responses were observed in 6-week-old birds, and while present in younger chicks, they waned by 28 days post-infection. Innate immune responses varied significantly between age groups. Robust type I interferon and inflammasome responses were measured in older chickens, while limited innate immune activation was observed in younger chicks. Signal transducer and activator of transcription 2 (STAT2) is a major driver of host restriction to ZIKV, and chicken STAT2 is distinct from human STAT2, potentially contributing to the observed resistance to ZIKV infection. The rapid clearance of the virus in older chickens coincided with an effective innate immune response, highlighting age-dependent susceptibility. Our study indicates that chickens are not susceptible to productive ZIKV infection and are unlikely to play a role in the ZIKV epidemiology.
Collapse
Affiliation(s)
- Ruth H. Nissly
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
| | - Levina Lim
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
- DermBiont, Inc., 451 D Street, Suite 908, Boston, MA 02210, USA
| | - Margo R. Keller
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
| | - Ian M. Bird
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
- Applied Biological Sciences Group, The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Gitanjali Bhushan
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
- College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Sougat Misra
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.); (S.K.C.)
| | - Shubhada K. Chothe
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.); (S.K.C.)
| | - Miranda C. Sill
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA;
| | - Nagaram Vinod Kumar
- College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517 602, Andhra Pradesh, India; (N.V.K.); (A.V.N.S.); (B.R.N.)
| | - A. V. N. Sivakumar
- College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517 602, Andhra Pradesh, India; (N.V.K.); (A.V.N.S.); (B.R.N.)
| | - B. Rambabu Naik
- College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517 602, Andhra Pradesh, India; (N.V.K.); (A.V.N.S.); (B.R.N.)
| | - Bhushan M. Jayarao
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (R.H.N.); (L.L.); (M.R.K.); (I.M.B.); (G.B.); (B.M.J.)
| | - Suresh V. Kuchipudi
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.); (S.K.C.)
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
16
|
Peng NYG, Sng JDJ, Setoh YX, Khromykh AA. Residue K28 of Zika Virus NS5 Protein Is Implicated in Virus Replication and Antagonism of STAT2. Microorganisms 2024; 12:660. [PMID: 38674605 PMCID: PMC11052099 DOI: 10.3390/microorganisms12040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The identification of four potential nonstructural 5 (NS5) residues-K28, K45, V335, and S749-that share the same amino acid preference in STAT2-interacting flaviviruses [Dengue virus (DENV) and Zika virus (ZIKV)], but not in STAT2-non-interacting flaviviruses [West Nile virus (WNV) and/or Yellow fever virus (YFV)] from an alignment of multiple flavivirus NS5 sequences, implied a possible association with the efficiency of ZIKV to antagonize the human signal transducer and activator of transcription factor 2 (STAT2). Through site-directed mutagenesis and reverse genetics, mutational impacts of these residues on ZIKV growth in vitro and STAT2 antagonism were assessed using virus growth kinetics assays and STAT2 immunoblotting. The results showed that mutations at the residue K28 significantly reduced the efficiency of ZIKV to antagonize STAT2. Further investigation involving residue K28 demonstrated its additional effects on the phenotypes of ZIKV-NS5 nuclear bodies. These findings demonstrate that K28, identified from sequence alignment, is an important determinant of replication and STAT2 antagonism by ZIKV.
Collapse
Affiliation(s)
- Nias Y. G. Peng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.D.J.S.); (Y.X.S.)
| | - Julian D. J. Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.D.J.S.); (Y.X.S.)
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.D.J.S.); (Y.X.S.)
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.D.J.S.); (Y.X.S.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Alhazmi AY, Khan FR, Rehman ZU, Hazazi A, Alotaibi BS, Alharthi NS, Alhuthali HM, Aba Alkhayl FF, Alshehri FF, Alkhoshaiban A, Al-Otaibi F. Structural and energetic analysis of NS5 protein inhibition by small molecules in Japanese encephalitis virus using machine learning and steered molecular dynamics approach. J Biomol Struct Dyn 2024:1-18. [PMID: 38407246 DOI: 10.1080/07391102.2024.2316767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
One of the viral diseases that affect millions of people around the world, particularly in developing countries, is Japanese encephalitis (JE). In this study, the conserved protein of this virus, that is, non-structural protein 5 (NS5), was used as a target protein for this study, and a compound library of 749 antiviral molecules was screened against NS5. The current study employed machine learning-based virtual screening combined with molecular docking. Here, three hits (24360, 123519051 and 213039) had lower binding energies (< -8 kcal/mol) than the control, S-Adenosyl-L-homocysteine (SAH). All the compounds showed significant H-bond interactions with functional residues, which were also observed by the control. Molecular dynamics simulation, MM/GBSA for binding free energy analysis, principal component analysis and free energy landscape were also performed to study the stability of the complex formation. All three compounds had similar root mean square deviation trends, which were comparable to the control, SAH. Post-MD, the 123519051-receptor complex had the highest number of H-bonds (4 to 5) after the control, out of which three exhibited the highest percentage occupancy (50%, 24% and 79%). Both docking and MD, 123519051 showed an H-bond with the residue Gly111, which was also found for the control-protein complex. 123519051 showed the lowest binding free energy with ΔGbind of -89 kJ/mol. Steered molecular dynamics depicted that 123519051 had the maximum magnitude of dissociation (1436.43 kJ/mol/nm), which was more than the control, validating its stable complex formation. This study concluded that 123519051 is a binder and could inhibit the protein NS5 of JE.
Collapse
Affiliation(s)
- Abdulfattah Y Alhazmi
- Pharmaceutical Practices Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences - AlQuwayiyah, Shaqra University, Saudi Arabia
| | - Zia Ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences - AlQuwayiyah, Shaqra University, Saudi Arabia
| | - Nahed S Alharthi
- Department of Medical Laboratory. College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudia Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faez Falah Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | | | - Faisal Al-Otaibi
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Saudi Arabia
| |
Collapse
|
18
|
Elliott KC, Mattapallil JJ. Zika Virus-A Reemerging Neurotropic Arbovirus Associated with Adverse Pregnancy Outcomes and Neuropathogenesis. Pathogens 2024; 13:177. [PMID: 38392915 PMCID: PMC10892292 DOI: 10.3390/pathogens13020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Zika virus (ZIKV) is a reemerging flavivirus that is primarily spread through bites from infected mosquitos. It was first discovered in 1947 in sentinel monkeys in Uganda and has since been the cause of several outbreaks, primarily in tropical and subtropical areas. Unlike earlier outbreaks, the 2015-2016 epidemic in Brazil was characterized by the emergence of neurovirulent strains of ZIKV strains that could be sexually and perinatally transmitted, leading to the Congenital Zika Syndrome (CZS) in newborns, and Guillain-Barre Syndrome (GBS) along with encephalitis and meningitis in adults. The immune response elicited by ZIKV infection is highly effective and characterized by the induction of both ZIKV-specific neutralizing antibodies and robust effector CD8+ T cell responses. However, the structural similarities between ZIKV and Dengue virus (DENV) lead to the induction of cross-reactive immune responses that could potentially enhance subsequent DENV infection, which imposes a constraint on the development of a highly efficacious ZIKV vaccine. The isolation and characterization of antibodies capable of cross-neutralizing both ZIKV and DENV along with cross-reactive CD8+ T cell responses suggest that vaccine immunogens can be designed to overcome these constraints. Here we review the structural characteristics of ZIKV along with the evidence of neuropathogenesis associated with ZIKV infection and the complex nature of the immune response that is elicited by ZIKV infection.
Collapse
Affiliation(s)
- Kenneth C. Elliott
- Department of Microbiology & Immunology, The Henry M Jackson Foundation for Military Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Department of Microbiology & Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Joseph J. Mattapallil
- Department of Microbiology & Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
19
|
Biswal M, Yao W, Lu J, Chen J, Morrison J, Hai R, Song J. A conformational selection mechanism of flavivirus NS5 for species-specific STAT2 inhibition. Commun Biol 2024; 7:76. [PMID: 38195857 PMCID: PMC10776582 DOI: 10.1038/s42003-024-05768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Flaviviruses, including Zika virus (ZIKV) and Dengue virus (DENV), rely on their non-structural protein 5 (NS5) for both replication of viral genome and suppression of host IFN signaling. DENV and ZIKV NS5s were shown to facilitate proteosome-mediated protein degradation of human STAT2 (hSTAT2). However, how flavivirus NS5s have evolved for species-specific IFN-suppression remains unclear. Here we report structure-function characterization of the DENV serotype 2 (DENV2) NS5-hSTAT2 complex. The MTase and RdRP domains of DENV2 NS5 form an extended conformation to interact with the coiled-coil and N-terminal domains of hSTAT2, thereby promoting hSTAT2 degradation in cells. Disruption of the extended conformation of DENV2/ZIKV NS5, but not the alternative compact state, impaired their hSTAT2 binding. Our comparative structural analysis of flavivirus NS5s further reveals a conserved protein-interaction platform with subtle amino-acid variations likely underpinning diverse IFN-suppression mechanisms. Together, this study uncovers a conformational selection mechanism underlying species-specific hSTAT2 inhibition by flavivirus NS5.
Collapse
Affiliation(s)
- Mahamaya Biswal
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Wangyuan Yao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Jianbin Chen
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA, USA.
| |
Collapse
|
20
|
Tan Z, Wu J, Huang L, Wang T, Zheng Z, Zhang J, Ke X, Zhang Y, Liu Y, Wang H, Tao J, Gong P. LGP2 directly interacts with flavivirus NS5 RNA-dependent RNA polymerase and downregulates its pre-elongation activities. PLoS Pathog 2023; 19:e1011620. [PMID: 37656756 PMCID: PMC10501626 DOI: 10.1371/journal.ppat.1011620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 09/14/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
LGP2 is a RIG-I-like receptor (RLR) known to bind and recognize the intermediate double-stranded RNA (dsRNA) during virus infection and to induce type-I interferon (IFN)-related antiviral innate immune responses. Here, we find that LGP2 inhibits Zika virus (ZIKV) and tick-borne encephalitis virus (TBEV) replication independent of IFN induction. Co-immunoprecipitation (Co-IP) and confocal immunofluorescence data suggest that LGP2 likely colocalizes with the replication complex (RC) of ZIKV by interacting with viral RNA-dependent RNA polymerase (RdRP) NS5. We further verify that the regulatory domain (RD) of LGP2 directly interacts with RdRP of NS5 by biolayer interferometry assay. Data from in vitro RdRP assays indicate that LGP2 may inhibit polymerase activities of NS5 at pre-elongation but not elongation stages, while an RNA-binding-defective LGP2 mutant can still inhibit RdRP activities and virus replication. Taken together, our work suggests that LGP2 can inhibit flavivirus replication through direct interaction with NS5 protein and downregulates its polymerase pre-elongation activities, demonstrating a distinct role of LGP2 beyond its function in innate immune responses.
Collapse
Affiliation(s)
- Zhongyuan Tan
- The Joint Laboratory for Translational Precision Medicine, a. Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China and b. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiqin Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Li Huang
- The Joint Laboratory for Translational Precision Medicine, a. Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China and b. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ting Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianhui Zhang
- The Joint Laboratory for Translational Precision Medicine, a. Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China and b. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xianliang Ke
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yuan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yan Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianping Tao
- The Joint Laboratory for Translational Precision Medicine, a. Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China and b. Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
21
|
Osawa T, Aoki M, Ehara H, Sekine SI. Structures of dengue virus RNA replicase complexes. Mol Cell 2023:S1097-2765(23)00470-7. [PMID: 37478848 DOI: 10.1016/j.molcel.2023.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Dengue is a mosquito-borne viral infection caused by dengue virus (DENV), a member of the flaviviruses. The DENV genome is a 5'-capped positive-sense RNA with a unique 5'-stem-loop structure (SLA), which is essential for RNA replication and 5' capping. The virus-encoded proteins NS5 and NS3 are responsible for viral genome replication, but the structural basis by which they cooperatively conduct the required tasks has remained unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of SLA-bound NS5 (PC), NS3-bound PC (PC-NS3), and an RNA-elongating NS5-NS3 complex (EC). While SLA bridges the NS5 methyltransferase and RNA-dependent RNA polymerase domains in PC, the NS3 helicase domain displaces it in elongation complex (EC). The SLA- and NS3-binding sites overlap with that of human STAT2. These structures illuminate the key steps in DENV genome replication, namely, SLA-dependent replication initiation, processive RNA elongation, and 5' capping of the nascent genomic RNA, thereby providing foundations to combat flaviviruses.
Collapse
Affiliation(s)
- Takuo Osawa
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mari Aoki
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
22
|
Lu AY, Gustin A, Newhouse D, Gale M. Viral Protein Accumulation of Zika Virus Variants Links with Regulation of Innate Immunity for Differential Control of Viral Replication, Spread, and Response to Interferon. J Virol 2023; 97:e0198222. [PMID: 37162358 PMCID: PMC10231147 DOI: 10.1128/jvi.01982-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Asian lineage Zika virus (ZIKV) strains emerged globally, causing outbreaks linked with critical clinical disease outcomes unless the virus is effectively restricted by host immunity. We have previously shown that retinoic acid-inducible gene-I (RIG-I) senses ZIKV to trigger innate immunity to direct interferon (IFN) production and antiviral responses that can control ZIKV infection. However, ZIKV proteins have been demonstrated to antagonize IFN. Here, we conducted in vitro analyses to assess how divergent prototypic ZIKV variants differ in virologic properties, innate immune regulation, and infection outcome. We comparatively assessed African lineage ZIKV/Dakar/1984/ArD41519 (ZIKV/Dakar) and Asian lineage ZIKV/Malaysia/1966/P6740 (ZIKV/Malaysia) in a human epithelial cell infection model. De novo viral sequence determination identified amino acid changes within the ZIKV/Dakar genome compared to ZIKV/Malaysia. Viral growth analyses revealed that ZIKV/Malaysia accumulated viral proteins and genome copies earlier and to higher levels than ZIKV/Dakar. Both ZIKV strains activated RIG-I/IFN regulatory factor (IRF3) and NF-κB pathways to induce inflammatory cytokine expression and types I and III IFNs. However, ZIKV/Malaysia, but not ZIKV/Dakar, potently blocked downstream IFN signaling. Remarkably, ZIKV/Dakar protein accumulation and genome replication were rescued in RIG-I knockout (KO) cells late in acute infection, resulting in ZIKV/Dakar-mediated blockade of IFN signaling. We found that RIG-I signaling specifically restricts viral protein accumulation late in acute infection where early accumulation of viral proteins in infected cells confers enhanced ability to limit IFN signaling, promoting viral replication and spread. Our results demonstrate that RIG-I-mediated innate immune signaling imparts restriction of ZIKV protein accumulation, which permits IFN signaling and antiviral actions controlling ZIKV infection. IMPORTANCE ZIKV isolates are classified under African or Asian lineages. Infection with emerging Asian lineage-derived ZIKV strains is associated with increased incidence of neurological symptoms that were not previously reported during infection with African or preemergent Asian lineage viruses. In this study, we utilized in vitro models to compare the virologic properties of and innate immune responses to two prototypic ZIKV strains from distinct lineages: African lineage ZIKV/Dakar and Asian lineage ZIKV/Malaysia. Compared to ZIKV/Dakar, ZIKV/Malaysia accumulates viral proteins earlier, replicates to higher levels, and robustly blocks IFN signaling during acute infection. Early accumulation of ZIKV/Malaysia NS5 protein confers enhanced ability to antagonize IFN signaling, dampening innate immune responses to promote viral spread. Our data identify the kinetics of viral protein accumulation as a major regulator of host innate immunity, influencing host-mediated control of ZIKV replication and spread. Importantly, these findings provide a novel framework for evaluating the virulence of emerging variants.
Collapse
Affiliation(s)
- Amy Y. Lu
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Andrew Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Daniel Newhouse
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Oliveira FBCD, Freire VPASDS, Coelho SVA, Meuren LM, Palmeira JDF, Cardoso AL, Neves FDAR, Ribeiro BM, Argañaraz GA, Arruda LBD, Argañaraz ER. ZIKV Strains Elicit Different Inflammatory and Anti-Viral Responses in Microglia Cells. Viruses 2023; 15:1250. [PMID: 37376550 DOI: 10.3390/v15061250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, the Zika Virus (ZIKV) has caused pandemic outbreaks associated with a high rate of congenital ZIKV syndrome (CZS). Although all strains associated with worldwide outbreaks derive from the Asian lineage, the reasons for their enhanced spread and severity are not fully understood. In this study, we conducted a comparative analysis of miRNAs (miRNA-155/146a/124) and their cellular targets (SOCS1/3, SHP1, TRAF6, IRAK1), as well as pro- and anti-inflammatory and anti-viral cytokines (IL-6, TNF-α, IFN-γ, IL-10, and IFN-β) and peroxisome proliferator-activated receptor γ (PPAR-γ) expression in BV2 microglia cells infected with ZIKV strains derived from African and Asian lineages (ZIKVMR766 and ZIKVPE243). BV2 cells were susceptible to both ZIKV strains, and showed discrete levels of viral replication, with delayed release of viral particles without inducing significant cytopathogenic effects. However, the ZIKVMR766 strain showed higher infectivity and replicative capacity, inducing a higher expression of microglial activation markers than the ZIKVPE243 strain. Moreover, infection with the ZIKVMR766 strain promoted both a higher inflammatory response and a lower expression of anti-viral factors compared to the ZIKVPE243 strain. Remarkably, the ZIKKPE243 strain induced significantly higher levels of the anti-inflammatory nuclear receptor-PPAR-γ. These findings improve our understanding of ZIKV-mediated modulation of inflammatory and anti-viral innate immune responses and open a new avenue to explore underlining mechanisms involved in the pathogenesis of ZIKV-associated diseases.
Collapse
Affiliation(s)
| | | | - Sharton Vinicius Antunes Coelho
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lana Monteiro Meuren
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Julys da Fonseca Palmeira
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Ana Luísa Cardoso
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | - Bergmann Morais Ribeiro
- Laboratory of Bacuolovirus, Cell Biology Department, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Gustavo Adolfo Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Luciana Barros de Arruda
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Enrique Roberto Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
24
|
Zhu Y, Chen S, Lurong Q, Qi Z. Recent Advances in Antivirals for Japanese Encephalitis Virus. Viruses 2023; 15:v15051033. [PMID: 37243122 DOI: 10.3390/v15051033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Culex mosquitoes are the primary vectors of the Japanese encephalitis virus (JEV). Since its discovery in 1935, Japanese encephalitis (JE), caused by JEV, has posed a significant threat to human health. Despite the widespread implementation of several JEV vaccines, the transmission chain of JEV in the natural ecosystem has not changed, and the vector of transmission cannot be eradicated. Therefore, JEV is still the focus of attention for flaviviruses. At present, there is no clinically specific drug for JE treatment. JEV infection is a complex interaction between the virus and the host cell, which is the focus of drug design and development. An overview of antivirals that target JEV elements and host factors is presented in this review. In addition, drugs that balance antiviral effects and host protection by regulating innate immunity, inflammation, apoptosis, or necrosis are reviewed to treat JE effectively.
Collapse
Affiliation(s)
- Yongzhe Zhu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Shenglin Chen
- Department of Clinic Laboratory Diagnostics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Qilin Lurong
- Department of Geriatrics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
25
|
Acchioni C, Acchioni M, Mancini F, Amendola A, Marsili G, Tirelli V, Gwee CP, Chan KWK, Sandini S, Bisbocci M, Mysara M, ElHefnawi M, Sanchez M, Venturi G, Barreca ML, Manfroni G, Bresciani A, Vasudevan SG, Sgarbanti M. A cellular screening platform, stably expressing DENV2 NS5, defines a novel anti-DENV mechanism of action of Apigenin based on STAT2 activation. Virology 2023; 583:1-13. [PMID: 37060797 DOI: 10.1016/j.virol.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/17/2023]
Abstract
Type I interferon (IFN-I) evasion by Dengue virus (DENV) is key in DENV pathogenesis. The non-structural protein 5 (NS5) antagonizes IFN-I response through the degradation of the signal transducer and activator of transcription 2 (STAT2). We developed a K562 cell-based platform, for high throughput screening of compounds potentially counteracting the NS5-mediated antagonism of IFN-I signaling. Upon a screening with a library of 1220 approved drugs, 3 compounds previously linked to DENV inhibition (Apigenin, Chrysin, and Luteolin) were identified. Luteolin and Apigenin determined a significant inhibition of DENV2 replication in Huh7 cells and the restoration of STAT2 phosphorylation in both cell systems. Apigenin and Luteolin were able to stimulate STAT2 even in the absence of infection. Despite the "promiscuous" and "pan-assay-interfering" nature of Luteolin, Apigenin promotes STAT2 Tyr 689 phosphorylation and activation, highlighting the importance of screening for compounds able to interact with host factors, to counteract viral proteins capable of dampening innate immune responses.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Flavia Mancini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Antonello Amendola
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Giulia Marsili
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Valentina Tirelli
- Core Facility Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Chin Piaw Gwee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8-College Road, 169857, Singapore.
| | - Kitti Wing-Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8-College Road, 169857, Singapore.
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Monica Bisbocci
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy.
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt.
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt.
| | - Massimo Sanchez
- Core Facility Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Giulietta Venturi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, Università Degli Studi di Perugia, Via Del Liceo 1, 06123, Perugia, Italy.
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, Università Degli Studi di Perugia, Via Del Liceo 1, 06123, Perugia, Italy.
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8-College Road, 169857, Singapore.
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
26
|
Lee MF, Wu YS, Poh CL. Molecular Mechanisms of Antiviral Agents against Dengue Virus. Viruses 2023; 15:v15030705. [PMID: 36992414 PMCID: PMC10056858 DOI: 10.3390/v15030705] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the development of novel anti-DENV therapeutics. Various antiviral agents have been developed and investigated for their anti-DENV activities. This review discusses the mechanisms of action employed by various antiviral agents against DENV. The development of host-directed antivirals targeting host receptors and direct-acting antivirals targeting DENV structural and non-structural proteins are reviewed. In addition, the development of antivirals that target different stages during post-infection such as viral replication, viral maturation, and viral assembly are reviewed. Antiviral agents designed based on these molecular mechanisms of action could lead to the discovery and development of novel anti-DENV therapeutics for the treatment of dengue infections. Evaluations of combinations of antiviral drugs with different mechanisms of action could also lead to the development of synergistic drug combinations for the treatment of dengue at any stage of the infection.
Collapse
|
27
|
Le‐Trilling VTK, Banchenko S, Paydar D, Leipe PM, Binting L, Lauer S, Graziadei A, Klingen R, Gotthold C, Bürger J, Bracht T, Sitek B, Jan Lebbink R, Malyshkina A, Mielke T, Rappsilber J, Spahn CMT, Voigt S, Trilling M, Schwefel D. Structural mechanism of CRL4-instructed STAT2 degradation via a novel cytomegaloviral DCAF receptor. EMBO J 2023; 42:e112351. [PMID: 36762436 PMCID: PMC9975947 DOI: 10.15252/embj.2022112351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
Human cytomegalovirus (CMV) is a ubiquitously distributed pathogen whose rodent counterparts such as mouse and rat CMV serve as common infection models. Here, we conducted global proteome profiling of rat CMV-infected cells and uncovered a pronounced loss of the transcription factor STAT2, which is crucial for antiviral interferon signalling. Via deletion mutagenesis, we found that the viral protein E27 is required for CMV-induced STAT2 depletion. Cellular and in vitro analyses showed that E27 exploits host-cell Cullin4-RING ubiquitin ligase (CRL4) complexes to induce poly-ubiquitylation and proteasomal degradation of STAT2. Cryo-electron microscopy revealed how E27 mimics molecular surface properties of cellular CRL4 substrate receptors called DCAFs (DDB1- and Cullin4-associated factors), thereby displacing them from the catalytic core of CRL4. Moreover, structural analyses showed that E27 recruits STAT2 through a bipartite binding interface, which partially overlaps with the IRF9 binding site. Structure-based mutations in M27, the murine CMV homologue of E27, impair the interferon-suppressing capacity and virus replication in mouse models, supporting the conserved importance of DCAF mimicry for CMV immune evasion.
Collapse
Affiliation(s)
| | - Sofia Banchenko
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Darius Paydar
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
- Zentrum für KinderpsychiatrieUniversitätsklinik ZürichZürichSwitzerland
| | - Pia Madeleine Leipe
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Lukas Binting
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Simon Lauer
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Andrea Graziadei
- Bioanalytics Unit, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Robin Klingen
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Christine Gotthold
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Jörg Bürger
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Microscopy and Cryo‐Electron Microscopy Service GroupMax‐Planck‐Institute for Molecular GeneticsBerlinGermany
| | - Thilo Bracht
- Medizinisches Proteom‐CenterRuhr‐University BochumBochumGermany
- Department of Anesthesia, Intensive Care Medicine and Pain TherapyUniversity Hospital Knappschaftskrankenhaus BochumBochumGermany
| | - Barbara Sitek
- Medizinisches Proteom‐CenterRuhr‐University BochumBochumGermany
- Department of Anesthesia, Intensive Care Medicine and Pain TherapyUniversity Hospital Knappschaftskrankenhaus BochumBochumGermany
| | - Robert Jan Lebbink
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Anna Malyshkina
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Thorsten Mielke
- Microscopy and Cryo‐Electron Microscopy Service GroupMax‐Planck‐Institute for Molecular GeneticsBerlinGermany
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Christian MT Spahn
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Sebastian Voigt
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mirko Trilling
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - David Schwefel
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
28
|
Abstract
Zika virus (ZIKV) is an emerging virus from the Flaviviridae family that is transmitted to humans by mosquito vectors and represents an important health problem. Infections in pregnant women are of major concern because of potential devastating consequences during pregnancy and have been associated with microcephaly in newborns. ZIKV has a unique ability to use the host machinery to promote viral replication in a tissue-specific manner, resulting in characteristic pathological disorders. Recent studies have proposed that the host ubiquitin system acts as a major determinant of ZIKV tropism by providing the virus with an enhanced ability to enter new cells. In addition, ZIKV has developed mechanisms to evade the host immune response, thereby allowing the establishment of viral persistence and enhancing viral pathogenesis. We discuss recent reports on the mechanisms used by ZIKV to replicate efficiently, and we highlight potential new areas of research for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Maria I Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
| | - Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Current affiliation: Center for Virus-Host-Innate-Immunity; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases; and Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA;
| |
Collapse
|
29
|
Furtado ND, de Mello IS, de Godoy AS, Noske GD, Oliva G, Canard B, Decroly E, Bonaldo MC. Amino Acid Polymorphisms on the Brazilian Strain of Yellow Fever Virus Methyltransferase Are Related to the Host's Immune Evasion Mediated by Type I Interferon. Viruses 2023; 15:191. [PMID: 36680231 PMCID: PMC9863089 DOI: 10.3390/v15010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Since late 2016, a yellow fever virus (YFV) variant carrying a set of nine amino acid variations has circulated in South America. Three of them were mapped on the methyltransferase (MTase) domain of viral NS5 protein. To assess whether these changes affected viral infectivity, we synthesized YFV carrying the MTase of circulating lineage as well as its isoform with the residues of the previous strains (NS5 K101R, NS5 V138I, and NS5 G173S). We observed a slight difference in viral growth properties and plaque phenotype between the two synthetic YFVs. However, the MTase polymorphisms associated with the Brazilian strain of YFV (2016-2019) confer more susceptibility to the IFN-I. In addition, in vitro MTase assay revealed that the interaction between the YFV MTase and the methyl donor molecule (SAM) is altered in the Brazilian MTase variant. Altogether, the results reported here describe that the MTase carrying the molecular signature of the Brazilian YFV circulating since 2016 might display a slight decrease in its catalytic activity but virtually no effect on viral fitness in the parameters comprised in this study. The most marked influence of these residues stands in the immune escape against the antiviral response mediated by IFN-I.
Collapse
Affiliation(s)
- Nathália Dias Furtado
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Iasmim Silva de Mello
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Andre Schutzer de Godoy
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos-USP, São Paulo 13563-120, Brazil
| | - Gabriela Dias Noske
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos-USP, São Paulo 13563-120, Brazil
| | - Glaucius Oliva
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos-USP, São Paulo 13563-120, Brazil
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS, UMR7257, 13009 Marseille, France
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS, UMR7257, 13009 Marseille, France
| | - Myrna C. Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
30
|
The RNA polymerase of cytoplasmically replicating Zika virus binds with chromatin DNA in nuclei and regulates host gene transcription. Proc Natl Acad Sci U S A 2022; 119:e2205013119. [PMID: 36442102 PMCID: PMC9894162 DOI: 10.1073/pnas.2205013119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Zika virus (ZIKV) targets the neural progenitor cells (NPCs) in brain during intrauterine infections and consequently causes severe neurological disorders, such as microcephaly in neonates. Although replicating in the cytoplasm, ZIKV dysregulates the expression of thousands of host genes, yet the detailed mechanism remains elusive. Herein, we report that ZIKV encodes a unique DNA-binding protein to regulate host gene transcription in the nucleus. We found that ZIKV NS5, the viral RNA polymerase, associates tightly with host chromatin DNA through its methyltransferase domain and this interaction could be specifically blocked by GTP. Further study showed that expression of ZIKV NS5 in human NPCs markedly suppressed the transcription of its target genes, especially the genes involved in neurogenesis. Mechanistically, ZIKV NS5 binds onto the gene body of its target genes and then blocks their transcriptional elongation. The utero electroporation in pregnant mice showed that NS5 expression significantly disrupts the neurogenesis by reducing the number of Sox2- and Tbr2-positive cells in the fetal cortex. Together, our findings demonstrate a molecular clue linking to the abnormal neurodevelopment caused by ZIKV infection and also provide intriguing insights into the interaction between the host cell and the pathogenic RNA virus, where the cytoplasmic RNA virus encodes a DNA-binding protein to control the transcription of host cell in the nuclei.
Collapse
|
31
|
Genomic Determinants Potentially Associated with Clinical Manifestations of Human-Pathogenic Tick-Borne Flaviviruses. Int J Mol Sci 2022; 23:ijms232113404. [PMID: 36362200 PMCID: PMC9658301 DOI: 10.3390/ijms232113404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The tick-borne flavivirus group contains at least five species that are pathogenic to humans, three of which induce encephalitis (tick-borne encephalitis virus, louping-ill virus, Powassan virus) and another two species induce hemorrhagic fever (Omsk hemorrhagic fever virus, Kyasanur Forest disease virus). To date, the molecular mechanisms responsible for these strikingly different clinical forms are not completely understood. Using a bioinformatic approach, we performed the analysis of each amino acid (aa) position in the alignment of 323 polyprotein sequences to calculate the fixation index (Fst) per site and find the regions (determinants) where sequences belonging to two designated groups were most different. Our algorithm revealed 36 potential determinants (Fst ranges from 0.91 to 1.0) located in all viral proteins except a capsid protein. In an envelope (E) protein, most of the determinants were located on the virion surface regions (domains II and III) and one (absolutely specific site 457) was located in the transmembrane region. Another 100% specific determinant site (E63D) with Fst = 1.0 was located in the central hydrophilic domain of the NS2b, which mediates NS3 protease activity. The NS5 protein contains the largest number of determinants (14) and two of them are absolutely specific (T226S, E290D) and are located near the RNA binding site 219 (methyltransferase domain) and the extension structure. We assume that even if not absolutely, highly specific sites, together with absolutely specific ones (Fst = 1.0) can play a supporting role in cell and tissue tropism determination.
Collapse
|
32
|
Grass V, Hardy E, Kobert K, Talemi SR, Décembre E, Guy C, Markov PV, Kohl A, Paris M, Böckmann A, Muñoz-González S, Sherry L, Höfer T, Boussau B, Dreux M. Adaptation to host cell environment during experimental evolution of Zika virus. Commun Biol 2022; 5:1115. [PMID: 36271143 PMCID: PMC9587232 DOI: 10.1038/s42003-022-03902-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Zika virus (ZIKV) infection can cause important developmental and neurological defects in Humans. Type I/III interferon responses control ZIKV infection and pathological processes, yet the virus has evolved various mechanisms to defeat these host responses. Here, we established a pipeline to delineate at high-resolution the genetic evolution of ZIKV in a controlled host cell environment. We uncovered that serially passaged ZIKV acquired increased infectivity and simultaneously developed a resistance to TLR3-induced restriction. We built a mathematical model that suggests that the increased infectivity is due to a reduced time-lag between infection and viral replication. We found that this adaptation is cell-type specific, suggesting that different cell environments may drive viral evolution along different routes. Deep-sequencing of ZIKV populations pinpointed mutations whose increased frequencies temporally coincide with the acquisition of the adapted phenotype. We functionally validated S455L, a substitution in ZIKV envelope (E) protein, recapitulating the adapted phenotype. Its positioning on the E structure suggests a putative function in protein refolding/stability. Taken together, our results uncovered ZIKV adaptations to the cellular environment leading to accelerated replication onset coupled with resistance to TLR3-induced antiviral response. Our work provides insights into Zika virus adaptation to host cells and immune escape mechanisms. In vitro analyses and computational modelling indicate that Zika virus adapts to the cellular environment of its host over time
Collapse
Affiliation(s)
- Vincent Grass
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France
| | - Emilie Hardy
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France
| | - Kassian Kobert
- Laboratoire de Biométrie et Biologie Évolutive (LBBE), UMR CNRS 5558, Université Claude Bernard Lyon 1, Lyon, 69622, France
| | - Soheil Rastgou Talemi
- Theoretical Systems Biology, German Cancer Research Center, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Heidelberg, 69120, Germany
| | - Elodie Décembre
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France
| | - Coralie Guy
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France
| | - Peter V Markov
- Laboratoire de Biométrie et Biologie Évolutive (LBBE), UMR CNRS 5558, Université Claude Bernard Lyon 1, Lyon, 69622, France
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, 69007, France
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, 69007, France
| | - Sara Muñoz-González
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France
| | - Lee Sherry
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France
| | - Thomas Höfer
- Theoretical Systems Biology, German Cancer Research Center, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Heidelberg, 69120, Germany
| | - Bastien Boussau
- Laboratoire de Biométrie et Biologie Évolutive (LBBE), UMR CNRS 5558, Université Claude Bernard Lyon 1, Lyon, 69622, France.
| | - Marlène Dreux
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, 69007, France.
| |
Collapse
|
33
|
Ramaswamy K, Rashid M, Ramasamy S, Jayavelu T, Venkataraman S. Revisiting Viral RNA-Dependent RNA Polymerases: Insights from Recent Structural Studies. Viruses 2022; 14:2200. [PMID: 36298755 PMCID: PMC9612308 DOI: 10.3390/v14102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
RNA-dependent RNA polymerases (RdRPs) represent a distinctive yet versatile class of nucleic acid polymerases encoded by RNA viruses for the replication and transcription of their genome. The structure of the RdRP is comparable to that of a cupped right hand consisting of fingers, palm, and thumb subdomains. Despite the presence of a common structural core, the RdRPs differ significantly in the mechanistic details of RNA binding and polymerization. The present review aims at exploring these incongruities in light of recent structural studies of RdRP complexes with diverse cofactors, RNA moieties, analogs, and inhibitors.
Collapse
Affiliation(s)
- Kavitha Ramaswamy
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Mariya Rashid
- Taiwan International Graduate Program, Molecular Cell Biology (National Defense Medical Center and Academia Sinica), Taipei 115, Taiwan;
| | - Selvarajan Ramasamy
- National Research Center for Banana, Somarasempettai−Thogaimalai Rd, Podavur, Tamil Nadu 639103, India;
| | - Tamilselvan Jayavelu
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Sangita Venkataraman
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| |
Collapse
|
34
|
Chen J, Guan Y, Guan H, Mu Y, Ding Y, Zou J, Ouyang S, Chen X. Molecular and Structural Basis of Receptor Binding and Signaling of a Fish Type I IFN with Three Disulfide Bonds. THE JOURNAL OF IMMUNOLOGY 2022; 209:806-819. [DOI: 10.4049/jimmunol.2200202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/15/2022] [Indexed: 01/04/2023]
Abstract
Abstract
In mammals, type I IFNs, which commonly contain one or two disulfide bonds, activate the JAK-STAT signaling pathway through binding to the common cell surface receptor formed by IFN-α/β receptor (IFNAR)1 and IFNAR2 subunits. Although type I IFNs are also known to be essential for antiviral defense in teleost fish, very little is known about mechanisms underlying the recognition of fish type I IFNs by associated receptors. In this study, we demonstrate that a type I IFN of large yellow croaker Larimichthys crocea (LcIFNi), belonging to a new subgroup of fish type I IFNs, triggers antiviral response via the conserved JAK-STAT pathway through stable binding with a heterodimeric receptor comprising subunits LcCRFB5 and LcCRFB2. LcIFNi binds to LcCRFB5 with a much higher affinity than to LcCRFB2. Furthermore, we determined the crystal structure of LcIFNi at a 1.39 Å resolution. The high-resolution structure is, to our knowledge, the first reported structure of a type I IFN with three disulfide bonds, all of which were found to be indispensable for folding and stability of LcIFNi. Using structural analysis, mutagenesis, and biochemical assays, we identified key LcIFNi residues involved in receptor interaction and proposed a structural model of LcIFNi bound to the LcCRFB2–LcCRFB5 receptor. The results show that LcIFNi–LcCRFB2 exhibits a similar binding pattern to human IFN-ω–IFNAR2, whereas the binding pattern of LcIFNi–LcCRFB5 is quite different from that of IFN-ω–IFNAR1. Altogether, our findings reveal the structural basis for receptor interaction and signaling of a type I IFN with three disulfide bonds and provide new insights into the mechanisms underlying type I IFN recognition in teleosts.
Collapse
Affiliation(s)
- Jingjie Chen
- *Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyun Guan
- *Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongxin Guan
- †Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yinnan Mu
- *Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Ding
- *Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Zou
- ‡Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; and
| | - Songying Ouyang
- †Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xinhua Chen
- *Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- §Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
35
|
Shah PS, Beesabathuni NS, Fishburn AT, Kenaston MW, Minami SA, Pham OH, Tucker I. Systems Biology of Virus-Host Protein Interactions: From Hypothesis Generation to Mechanisms of Replication and Pathogenesis. Annu Rev Virol 2022; 9:397-415. [PMID: 35576593 PMCID: PMC10150767 DOI: 10.1146/annurev-virology-100520-011851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As obligate intracellular parasites, all viruses must co-opt cellular machinery to facilitate their own replication. Viruses often co-opt these cellular pathways and processes through physical interactions between viral and host proteins. In addition to facilitating fundamental aspects of virus replication cycles, these virus-host protein interactions can also disrupt physiological functions of host proteins, causing disease that can be advantageous to the virus or simply a coincidence. Consequently, unraveling virus-host protein interactions can serve as a window into molecular mechanisms of virus replication and pathogenesis. Identifying virus-host protein interactions using unbiased systems biology approaches provides an avenue for hypothesis generation. This review highlights common systems biology approaches for identification of virus-host protein interactions and the mechanistic insights revealed by these methods. We also review conceptual innovations using comparative and integrative systems biology that can leverage global virus-host protein interaction data sets to more rapidly move from hypothesis generation to mechanism. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Priya S Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA; .,Department of Chemical Engineering, University of California, Davis, California, USA
| | - Nitin S Beesabathuni
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Adam T Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA;
| | - Matthew W Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA;
| | - Shiaki A Minami
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Oanh H Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA;
| | - Inglis Tucker
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA;
| |
Collapse
|
36
|
Talbot-Cooper C, Pantelejevs T, Shannon JP, Cherry CR, Au MT, Hyvönen M, Hickman HD, Smith GL. Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host Microbe 2022; 30:357-372.e11. [PMID: 35182467 PMCID: PMC8912257 DOI: 10.1016/j.chom.2022.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families.
Collapse
Affiliation(s)
- Callum Talbot-Cooper
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - John P Shannon
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Christian R Cherry
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Marcus T Au
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
37
|
Hung SJ, Tsai HP, Wang YF, Ko WC, Wang JR, Huang SW. Assessment of the Risk of Severe Dengue Using Intrahost Viral Population in Dengue Virus Serotype 2 Patients via Machine Learning. Front Cell Infect Microbiol 2022; 12:831281. [PMID: 35223554 PMCID: PMC8866709 DOI: 10.3389/fcimb.2022.831281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue virus, a positive-sense single-stranded RNA virus, continuously threatens human health. Although several criteria for evaluation of severe dengue have been recently established, the ability to prognose the risk of severe outcomes for dengue patients remains limited. Mutant spectra of RNA viruses, including single nucleotide variants (SNVs) and defective virus genomes (DVGs), contribute to viral virulence and growth. Here, we determine the potency of intrahost viral population in dengue patients with primary infection that progresses into severe dengue. A total of 65 dengue virus serotype 2 infected patients in primary infection including 17 severe cases were enrolled. We utilized deep sequencing to directly define the frequency of SNVs and detection times of DVGs in sera of dengue patients and analyzed their associations with severe dengue. Among the detected SNVs and DVGs, the frequencies of 9 SNVs and the detection time of 1 DVG exhibited statistically significant differences between patients with dengue fever and those with severe dengue. By utilizing the detected frequencies/times of the selected SNVs/DVG as features, the machine learning model showed high average with a value of area under the receiver operating characteristic curve (AUROC, 0.966 ± 0.064). The elevation of the frequency of SNVs at E (nucleotide position 995 and 2216), NS2A (nucleotide position 4105), NS3 (nucleotide position 4536, 4606), and NS5 protein (nucleotide position 7643 and 10067) and the detection times of the selected DVG that had a deletion junction in the E protein region (nucleotide positions of the junction: between 969 and 1022) increased the possibility of dengue patients for severe dengue. In summary, we demonstrated the detected frequencies/times of SNVs/DVG in dengue patients associated with severe disease and successfully utilized them to discriminate severe patients using machine learning algorithm. The identified SNVs and DVGs that are associated with severe dengue will expand our understanding of intrahost viral population in dengue pathogenesis.
Collapse
Affiliation(s)
- Su-Jhen Hung
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Fang Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
- *Correspondence: Sheng-Wen Huang,
| |
Collapse
|
38
|
Parisien JP, Lenoir JJ, Alvarado G, Horvath CM. The Human STAT2 Coiled-Coil Domain Contains a Degron for Zika Virus Interferon Evasion. J Virol 2022; 96:e0130121. [PMID: 34643427 PMCID: PMC8754212 DOI: 10.1128/jvi.01301-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
The ability of viruses to evade the host antiviral immune system determines their level of replication fitness, species specificity, and pathogenic potential. Flaviviruses rely on the subversion of innate immune barriers, including the type I and type III interferon (IFN) antiviral systems. Zika virus infection induces the degradation of STAT2, an essential component of the IFN-stimulated gene transcription factor ISGF3. The mechanisms that lead to STAT2 degradation by Zika virus are poorly understood, but it is known to be mediated by the viral NS5 protein that binds to STAT2 and targets it for proteasome-mediated destruction. To better understand how NS5 engages and degrades STAT2, functional analysis of the protein interactions that lead to Zika virus and NS5-dependent STAT2 proteolysis were investigated. Data implicate the STAT2 coiled-coil domain as necessary and sufficient for NS5 interaction and proteasome degradation after Zika virus infection. Molecular dissection reveals that the first two α-helices of the STAT2 coiled-coil domain contain a specific targeting region for IFN antagonism. These functional interactions provide a more complete understanding of the essential protein-protein interactions needed for Zika virus evasion of the host antiviral response and identify new targets for antiviral therapeutic approaches. IMPORTANCE Zika virus infection can cause mild fever, rash, and muscle pain and in rare cases can lead to brain or nervous system diseases, including Guillain-Barré syndrome. Infections in pregnant women can increase the risk of miscarriage or serious birth defects, including brain anomalies and microcephaly. There are no drugs or vaccines for Zika disease. Zika virus is known to break down the host antiviral immune response, and this research project reveals how the virus suppresses interferon signaling, and may reveal therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Jean-Patrick Parisien
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Jessica J. Lenoir
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Gloria Alvarado
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Curt M. Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
39
|
Barik S. Mechanisms of Viral Degradation of Cellular Signal Transducer and Activator of Transcription 2. Int J Mol Sci 2022; 23:ijms23010489. [PMID: 35008916 PMCID: PMC8745392 DOI: 10.3390/ijms23010489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Virus infection of eukaryotes triggers cellular innate immune response, a major arm of which is the type I interferon (IFN) family of cytokines. Binding of IFN to cell surface receptors triggers a signaling cascade in which the signal transducer and activator of transcription 2 (STAT2) plays a key role, ultimately leading to an antiviral state of the cell. In retaliation, many viruses counteract the immune response, often by the destruction and/or inactivation of STAT2, promoted by specific viral proteins that do not possess protease activities of their own. This review offers a summary of viral mechanisms of STAT2 subversion with emphasis on degradation. Some viruses also destroy STAT1, another major member of the STAT family, but most viruses are selective in targeting either STAT2 or STAT1. Interestingly, degradation of STAT2 by a few viruses requires the presence of both STAT proteins. Available evidence suggests a mechanism in which multiple sites and domains of STAT2 are required for engagement and degradation by a multi-subunit degradative complex, comprising viral and cellular proteins, including the ubiquitin–proteasomal system. However, the exact molecular nature of this complex and the alternative degradation mechanisms remain largely unknown, as critically presented here with prospective directions of future study.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
40
|
SOUZA MAYQUEPAULOMDE, FREITAS BÁRBARACAROLINEG, HOLANDA GUSTAVOM, DINIZ JUNIOR JOSÉANTÔNIOP, CRUZ ANACECÍLIAR. Correlation of cGAS, STING, INF-α and INF-β gene expression with Zika virus kinetics in primary culture of microglia and neurons from BALB/c mice. AN ACAD BRAS CIENC 2022; 94:e20211189. [DOI: 10.1590/0001-3765202220211189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
|
41
|
Cheng CX, Alvin Tan MJ, Chan KWK, Watanabe S, Wang S, Choy MM, Manuel M, Victorio CBL, Ong J, Reolo M, Chacko AM, Vasudevan SG. In Vitro and In Vivo Stability of P884T, a Mutation that Relocalizes Dengue Virus 2 Non-structural Protein 5. ACS Infect Dis 2021; 7:3277-3291. [PMID: 34735113 DOI: 10.1021/acsinfecdis.1c00441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dengue virus (DENV) non-structural protein 5 (NS5) is critical for viral RNA synthesis within endoplasmic reticulum (ER)-derived replication complexes in the cytoplasm; however a proportion of NS5 is known to be localized to the nucleus of infected cells. The importance of nuclear DENV NS5 on viral replication and pathogenesis is still unclear. We recently discovered a nuclear localization signal (NLS) residing in the C-terminal 18 amino acid (Cter18) region of DENV NS5 and that a single NS5 P884T amino acid substitution adjacent to the NLS is sufficient to relocalize a significant proportion of DENV2 NS5 from the nucleus to the cytoplasm of infected cells. Here, in vitro studies show that the DENV2 NS5 P884T mutant replicates similarly to the parental wild-type infectious clone-derived virus while inducing a greater type I interferon and inflammatory cytokine response, in a manner independent of NS5's ability to degrade STAT2 or regulate SAT1 splicing. In both AG129 mouse and Aedes aegypti mosquito infection models, the P884T virus exhibits lower levels of viral replication only at early timepoints. Intriguingly, there appears to be a tendency for selection pressure to revert to the wild-type proline in P884T-infected Ae. aegypti, in agreement with the high conservation of the proline at this position of NS5 in DENV2, 3, and 4. These results suggest that the predominant nuclear localization of DENV NS5, while not required for viral RNA replication, may play a role in pathogenesis and modulation of the host immune response and contribute to viral fitness in the mosquito host.
Collapse
Affiliation(s)
- Colin X. Cheng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Min Jie Alvin Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kitti W. K. Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Satoru Watanabe
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sai Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Milly M. Choy
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Menchie Manuel
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Carla B. L. Victorio
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Joanne Ong
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Marie Reolo
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ann-Marie Chacko
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Subhash G. Vasudevan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, NUS, 5 Science Drive 2, Singapore 117545, Singapore
- Institute for Glycomics, Griffith University, Southport 4222, Australia
| |
Collapse
|
42
|
Elrefaey AME, Hollinghurst P, Reitmayer CM, Alphey L, Maringer K. Innate Immune Antagonism of Mosquito-Borne Flaviviruses in Humans and Mosquitoes. Viruses 2021; 13:2116. [PMID: 34834923 PMCID: PMC8624719 DOI: 10.3390/v13112116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023] Open
Abstract
Mosquito-borne viruses of the Flavivirus genus (Flaviviridae family) pose an ongoing threat to global public health. For example, dengue, Japanese encephalitis, West Nile, yellow fever, and Zika viruses are transmitted by infected mosquitoes and cause severe and fatal diseases in humans. The means by which mosquito-borne flaviviruses establish persistent infection in mosquitoes and cause disease in humans are complex and depend upon a myriad of virus-host interactions, such as those of the innate immune system, which are the main focus of our review. This review also covers the different strategies utilized by mosquito-borne flaviviruses to antagonize the innate immune response in humans and mosquitoes. Given the lack of antiviral therapeutics for mosquito-borne flaviviruses, improving our understanding of these virus-immune interactions could lead to new antiviral therapies and strategies for developing refractory vectors incapable of transmitting these viruses, and can also provide insights into determinants of viral tropism that influence virus emergence into new species.
Collapse
Affiliation(s)
- Ahmed M. E. Elrefaey
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
| | - Philippa Hollinghurst
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | | | - Luke Alphey
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
| |
Collapse
|
43
|
Current Trends and Limitations in Dengue Antiviral Research. Trop Med Infect Dis 2021; 6:tropicalmed6040180. [PMID: 34698303 PMCID: PMC8544673 DOI: 10.3390/tropicalmed6040180] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Dengue is the most prevalent arthropod-borne viral disease worldwide and affects approximately 2.5 billion people living in over 100 countries. Increasing geographic expansion of Aedes aegypti mosquitoes (which transmit the virus) has made dengue a global health concern. There are currently no approved antivirals available to treat dengue, and the only approved vaccine used in some countries is limited to seropositive patients. Treatment of dengue, therefore, remains largely supportive to date; hence, research efforts are being intensified for the development of antivirals. The nonstructural proteins, 3 and 5 (NS3 and NS5), have been the major targets for dengue antiviral development due to their indispensable enzymatic and biological functions in the viral replication process. NS5 is the largest and most conserved nonstructural protein encoded by flaviviruses. Its multifunctionality makes it an attractive target for antiviral development, but research efforts have, this far, not resulted in the successful development of an antiviral targeting NS5. Increase in structural insights into the dengue NS5 protein will accelerate drug discovery efforts focused on NS5 as an antiviral target. In this review, we will give an overview of the current state of therapeutic development, with a focus on NS5 as a therapeutic target against dengue.
Collapse
|
44
|
Zeng M, Chen S, Zhang W, Duan Y, Jiang B, Pan X, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Tian B, Gao Q, Cheng A. Nuclear localization of duck Tembusu virus NS5 protein attenuates viral replication in vitro and NS5-NS2B3 interaction. Vet Microbiol 2021; 262:109239. [PMID: 34555732 DOI: 10.1016/j.vetmic.2021.109239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/11/2021] [Indexed: 11/15/2022]
Abstract
Duck Tembusu virus (TMUV) belongs to the flavivirus genus whose genome replication involved in capping and RNA synthesis dominating by nonstructural protein 5 (NS5). Flaviviral replication has been well documented to occur in the cytoplasm, but the effect of NS5 to gain access to the nucleus remains controversial. Here, TMUV NS5 was observed to localize within the cytoplasm of transfected and infected cells and co-localized with the endoplasmic reticulum. We introduced two arginine mutations into the N390 and Q392 (N390R and Q392R) of the NS5 bipartite nuclear localization sequence (α/βNLS) and designated that mutagenesis as NS5NLSmut, which has shown the ability to access the nucleus and hence attenuates viral replication and production in vitro. Additionally, there was no significant difference between the recovered wild-type TMUV (rTMUV-WT) and engineered mutant (rTMUV-NS5NLSmut) on plaque morphology, survival rate of infected duck embryos or virus copies in tissues. Considering that NS5NLSmut is mainly located in the cytoplasm of rTMUV-NS5NLSmut infected cells at the early stage of infection. We further confirmed that NS5NLSmut attenuated its interaction with nonstructural NS2B-NS3 (NS2B3) following transfection and infection. Meanwhile, the rTMUV-NS5NLSmut tended to stimulate more interferon beta (IFNβ) than rTMUV-WT. However, preliminary study on transient NS5 and NS5NLSmut detected the same levels of IFNβ mRNA mediated by RIG-I detection of NS5 RNA polymerase activity in cell. In summary, these results provide further insights into the relationship between the viral property and subcellular localization of flavivirus NS5 in terms of the NS5-NS2B3 interaction.
Collapse
Affiliation(s)
- Miao Zeng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Yanping Duan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xin Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| |
Collapse
|
45
|
O’Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol Syst Biol 2021; 17:e10079. [PMID: 34519429 PMCID: PMC8438690 DOI: 10.15252/msb.202010079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/chemistry
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Binding Sites
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Computational Biology/methods
- Coronavirus Envelope Proteins/chemistry
- Coronavirus Envelope Proteins/genetics
- Coronavirus Envelope Proteins/metabolism
- Coronavirus Nucleocapsid Proteins/chemistry
- Coronavirus Nucleocapsid Proteins/genetics
- Coronavirus Nucleocapsid Proteins/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Mitochondrial Membrane Transport Proteins/chemistry
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Precursor Protein Import Complex Proteins
- Models, Molecular
- Molecular Mimicry
- Neuropilin-1/chemistry
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping/methods
- Protein Multimerization
- Protein Processing, Post-Translational
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viroporin Proteins/chemistry
- Viroporin Proteins/genetics
- Viroporin Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Seán I O’Donoghue
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- CSIRO Data61CanberraACTAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Andrea Schafferhans
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- Department of Bioengineering SciencesWeihenstephan‐Tr. University of Applied SciencesFreisingGermany
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Neblina Sikta
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | - Sandeep Kaur
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Bosco K Ho
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | | | - Christian Dallago
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Nicola Bordin
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | | | - Burkhard Rost
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| |
Collapse
|
46
|
Duncan CJA, Hambleton S. Human Disease Phenotypes Associated with Loss and Gain of Function Mutations in STAT2: Viral Susceptibility and Type I Interferonopathy. J Clin Immunol 2021; 41:1446-1456. [PMID: 34448086 PMCID: PMC8390117 DOI: 10.1007/s10875-021-01118-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
STAT2 is distinguished from other STAT family members by its exclusive involvement in type I and III interferon (IFN-I/III) signaling pathways, and its unique behavior as both positive and negative regulator of IFN-I signaling. The clinical relevance of these opposing STAT2 functions is exemplified by monogenic diseases of STAT2. Autosomal recessive STAT2 deficiency results in heightened susceptibility to severe and/or recurrent viral disease, whereas homozygous missense substitution of the STAT2-R148 residue is associated with severe type I interferonopathy due to loss of STAT2 negative regulation. Here we review the clinical presentation, pathogenesis, and management of these disorders of STAT2.
Collapse
Affiliation(s)
- Christopher James Arthur Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Royal Victoria Infirmary, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, NE1 4LP, Newcastle upon Tyne, UK.
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Great North Children's Hospital, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, NE1 4LP, Newcastle upon Tyne, UK
| |
Collapse
|
47
|
Landau LJB, Fam BSDO, Yépez Y, Caldas-Garcia GB, Pissinatti A, Falótico T, Reales G, Schüler-Faccini L, Sortica VA, Bortolini MC. Evolutionary analysis of the anti-viral STAT2 gene of primates and rodents: Signature of different stages of an arms race. INFECTION GENETICS AND EVOLUTION 2021; 95:105030. [PMID: 34384937 DOI: 10.1016/j.meegid.2021.105030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 02/04/2023]
Abstract
STAT2 plays a strategic role in defending viral infection through the signaling cascade involving the immune system initiated after type I interferon release. Many flaviviruses target the inactivation or degradation of STAT2 as a strategy to impair this host's line of defense. Primates are natural reservoirs for a range of disease-causing flaviviruses (e.g., Zika, Dengue, and Yellow Fever virus), while rodents appear less susceptible. We analyzed the STAT2 coding sequence of 28 Rodentia species and 49 Primates species. Original data from 19 Platyrrhini species were sequenced for the SH2 domain of STAT2 and included in the analysis. STAT2 has many sites whose variation can be explained by positive selection, measurement by two methods (PALM indicated 12, MEME 61). Both evolutionary tests significantly marked sites 127, 731, 739, 766, and 780. SH2 is under evolutionary constraint but presents episodic positive selection events within Rodentia: in one of them, a moderately radical change (serine > arginine) at position 638 is found in Peromyscus species, and can be implicated in the difference in susceptibility to flaviviruses within Rodentia. Some other positively selected sites are functional such as 5, 95, 203, 251, 782, and 829. Sites 251 and 287 regulate the signaling mediated by the JAK-STAT2 pathway, while 782 and 829 create a stable tertiary structure of STAT2, facilitating its connection with transcriptional co-activators. Only three positively selected sites, 5, 95, and 203, are recognized members who act on the interface between STAT2 and flaviviruses NS5 protein. We suggested that due to the higher evolutionary rate, rodents are, at this moment, taking some advantage in the battle against infections for some well-known Flaviviridae, in particular when compared to primates. Our results point to dynamics that fit with a molecular evolutionary scenario shaped by a thought-provoking virus-host arms race.
Collapse
Affiliation(s)
- Luane Jandira Bueno Landau
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bibiana Sampaio de Oliveira Fam
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Yuri Yépez
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Barreto Caldas-Garcia
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alcides Pissinatti
- Rio de Janeiro's Primatology Center (RJPC - INEA), Rio de Janeiro, RJ, Brazil
| | - Tiago Falótico
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Guillermo Reales
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Genética Médica Populacional, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Lavínia Schüler-Faccini
- Instituto Nacional de Genética Médica Populacional, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vinicius Albuquerque Sortica
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
48
|
Fernandes PO, Chagas MA, Rocha WR, Moraes AH. Non-structural protein 5 (NS5) as a target for antiviral development against established and emergent flaviviruses. Curr Opin Virol 2021; 50:30-39. [PMID: 34340199 DOI: 10.1016/j.coviro.2021.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
Flaviviruses are among the most critical pathogens in tropical regions and cause a growing number of severe diseases in developing countries. The development of antiviral therapeutics is crucial for managing flavivirus outbreaks. Among the ten proteins encoded in the flavivirus RNA, non-structural protein 5, NS5, is a promising drug target. NS5 plays a fundamental role in flavivirus replication, viral RNA methylation, RNA polymerization, and host immune system evasion. Most of the NS5 inhibitor candidates target NS5 active sites. However, the similarity of NS5 activity sites with human enzymes can cause side effects. Identifying new allosteric sites in NS5 can contribute enormously to antiviral development. The NS5 structural characterization enabled exploring new regions, such as the residues involved in MTase-RdRp interaction, NS5 oligomerization, and NS5 interaction with other viral and host-cell proteins. Targeting NS5 critical interactions might lead to new compounds and overcomes the toxicity of current NS5-inhibitor candidates.
Collapse
Affiliation(s)
- Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Marcelo A Chagas
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Willian R Rocha
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| |
Collapse
|
49
|
Akt Interacts with Usutu Virus Polymerase, and Its Activity Modulates Viral Replication. Pathogens 2021; 10:pathogens10020244. [PMID: 33672588 PMCID: PMC7924047 DOI: 10.3390/pathogens10020244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Usutu virus (USUV) is a flavivirus that mainly infects wild birds through the bite of Culex mosquitoes. Recent outbreaks have been associated with an increased number of cases in humans. Despite being a growing source of public health concerns, there is yet insufficient data on the virus or host cell targets for infection control. In this work we have investigated whether the cellular kinase Akt and USUV polymerase NS5 interact and co-localize in a cell. To this aim, we performed co-immunoprecipitation (Co-IP) assays, followed by confocal microscopy analyses. We further tested whether NS5 is a phosphorylation substrate of Akt in vitro. Finally, to examine its role in viral replication, we chemically silenced Akt with three inhibitors (MK-2206, honokiol and ipatasertib). We found that both proteins are localized (confocal) and pulled down (Co-IP) together when expressed in different cell lines, supporting the fact that they are interacting partners. This possibility was further sustained by data showing that NS5 is phosphorylated by Akt. Treatment of USUV-infected cells with Akt-specific inhibitors led to decreases in virus titers (>10-fold). Our results suggest an important role for Akt in virus replication and stimulate further investigations to examine the PI3K/Akt/mTOR pathway as an antiviral target.
Collapse
|
50
|
The Molecular Interactions of ZIKV and DENV with the Type-I IFN Response. Vaccines (Basel) 2020; 8:vaccines8030530. [PMID: 32937990 PMCID: PMC7565347 DOI: 10.3390/vaccines8030530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Zika Virus (ZIKV) and Dengue Virus (DENV) are related viruses of the Flavivirus genus that cause significant disease in humans. Existing control measures have been ineffective at curbing the increasing global incidence of infection for both viruses and they are therefore prime targets for new vaccination strategies. Type-I interferon (IFN) responses are important in clearing viral infection and for generating efficient adaptive immune responses towards infection and vaccination. However, ZIKV and DENV have evolved multiple molecular mechanisms to evade type-I IFN production. This review covers the molecular interactions, from detection to evasion, of these viruses with the type-I IFN response. Additionally, we discuss how this knowledge can be exploited to improve the design of new vaccine strategies.
Collapse
|