1
|
Dong X, Gong J, Zhang W, Zhang S, Yang G, Yan C, Wang R, Zhang S, Wang T, Yu Y, Xie Q. Future climate change increase species vulnerability and present new opportunities for biodiversity conservation in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125652. [PMID: 40334409 DOI: 10.1016/j.jenvman.2025.125652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/18/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Climate change is exerting severe pressure on terrestrial biodiversity. It is essential to clarify how vulnerabilities to climate change differ among taxonomic groups to mitigate biodiversity loss. Conservation planning should aim to minimize additional threats while maximizing the opportunities that climate change offers. In this study, we used species distribution models to simulate the current and future (2050s) suitable distributions of Chinese mammals, reptiles, amphibians, birds, and plants. We analyzed the climate change vulnerability across these taxonomic groups and identified conservation priorities based on the vulnerable and opportunity areas that will result from climate change. By the 2050s, the losses of current habitat suitable for amphibians, mammals, reptiles, birds, and plants will reach 26.8 %, 16.8 %, 13.8 %, 11.9 %, and 10.0 %, respectively, indicating high vulnerability to climate change. The relative loss of suitable habitat is influenced by the threat status of species. Spatially, the areas of China with the highest vulnerability to climate change are mainly distributed in the north, northwest, and Qinghai-Tibet regions, whereas high-opportunity areas are mainly in the south. Areas with high opportunity and vulnerability will together account for 11.8 % of land area in China and represent conservation priorities for reducing species extinction. However, provinces with large priority areas will have lower human development and human footprint indexes, which will challenge the successful implementation of conservation efforts. Our results highlight the different responses of different Chinese taxonomic groups to climate change and will guide the selection of crucial areas for reducing species extinction risk.
Collapse
Affiliation(s)
- Xuede Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jirui Gong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Weiyuan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Siqi Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Guisen Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Chenyi Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Ruijing Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Shangpeng Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Tong Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yaohong Yu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Qin Xie
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Chang C, Ren M, Wang H, Ye S, Tang X, He D, Hu E, Li M, Pan B. Riverine network size determined major driving factors of the composition and diversity of aquatic invertebrate communities in a multi-tributary mountain river basin. WATER RESEARCH 2025; 276:123257. [PMID: 39954458 DOI: 10.1016/j.watres.2025.123257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/18/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Revealing the spatial variation of aquatic invertebrates and their response to biotic and abiotic factors, from headwaters to estuaries, is crucial for understanding their successional patterns and protecting watershed ecosystems. This study aimed to explore the biogeographic patterns and identify the primary drivers of invertebrate community structure across river networks of varying sizes using environmental DNA (eDNA) technology. To assess the contribution of biotic and abiotic factors to invertebrate communities, we collected six categories of abiotic factors: geography, climate, hydro-morphology, human footprint index, land use, and water quality. For biotic factors, four microbial groups including archaea, bacteria, fungi, and protists were identified using eDNA techniques. Water samples were collected from a total of 187 sample sites in the upper Hanjiang River basin (China) during two seasons (Spring and Autumn), covering the transition from the headwater tributaries to the lower reaches of the main channel. The results revealed that environmental factors explained approximately 6.5 times more variation in invertebrate eDNA communities than geographic factors. Water quality and biotic factors had strong explanatory power for invertebrate eDNA diversity. Ecological succession of invertebrate eDNA communities along the river continuum showed a shift from Arthropoda-dominated communities in the headwaters to a co-dominance of Arthropoda, Rotifera, and Cnidaria downstream. The cumulative dendritic distance upstream, representing the location of each sampling site within the river network, emerged as the most predictive spatial feature. Significant differences were observed in the dominant environmental factors influencing community diversity across different river network sizes. In small river networks, invertebrate eDNA diversity was primarily influenced by biotic factors, while in medium-sized networks, it was shaped by a combination of biotic factors and water quality. In large river networks, water quality emerged as the primary driver. These findings suggest that invertebrate communities throughout the Hanjiang River basin undergo ecological succession along the river continuum, primarily shaped by environmental factors related to river network size.
Collapse
Affiliation(s)
- Chao Chang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Mi Ren
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Han Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Sisi Ye
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Xiaofeng Tang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Ding He
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong SAR, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Science, Wuhan 430071, China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, Shaanxi, China.
| | - Ming Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| |
Collapse
|
3
|
Mohanty DJ, Rout J. Mapping anthropogenic pressure in the Brahmani-Baitarani River Basin: a PCA-based approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:641. [PMID: 40341423 DOI: 10.1007/s10661-025-14088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
This study presents a robust objective methodology for assessing and mapping anthropogenic pressure in the Brahmani-Baitarani River Basin (BBRB) through an objective principal component analysis (PCA)-based approach. Nine key stressors-Aerosol Trend (AERT), Degree of Urbanization Change (DUC), Land Use/Land Cover Change (LULCC), Normalized Difference Moisture Index Trend (NDMIT), Normalized Difference Vegetation Index Trend (NDVIT), Observed Minus Reanalysis Temperature (OMR), Nightlights Change (NLC), Population Count Change (PPC), and Water Balance Trend (WBT)-were used to construct a composite pressure index. These stressors were selected based on their direct link to human-induced environmental modifications. The datasets, spanning from 2000 to 2023, were preprocessed and normalized to ensure comparability. The suitability of the dataset for PCA was confirmed through the Kaiser-Meyer-Olkin (KMO = 0.61) and a significant Bartlett test (χ2 = 378037, p < 0.01). PCA was applied to determine variable weightings, reducing redundancy and highlighting dominant stressors, with OMR, DUC, and LULCC contributing the highest weights. The final composite anthropogenic pressure raster (CAPR) was generated with index ranging from 9 to 78%. Spatial analysis reveals significant variations in anthropogenic pressure, with towns such as Byasanagar and Lohardaga experiencing very high mean anthropogenic pressures (~ 50%). Conversely, regions like Deogarh, Gua, and Kiriburu exhibit relatively very low anthropogenic pressures (~ 20%). Further, the CAPR was grouped into 7 categories based upon natural breaks in the data and pseudo-F-statistics-based elbow test, providing a clear representation of the spatial distribution of anthropogenic impacts, serving as a critical tool for sustainable management and policy formulation.
Collapse
Affiliation(s)
| | - Jajnaseni Rout
- Department of Geography, Ravenshaw University, Cuttack, Odisha, India.
| |
Collapse
|
4
|
Chen M, Gao T, Zhang Y, Kang S, Wang Z. Riverine microplastics in the Mount Everest region affected by glacier meltwater. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137331. [PMID: 39874770 DOI: 10.1016/j.jhazmat.2025.137331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Understanding the distribution and drivers of microplastics (MPs) in remote and sensitive environments is essential for assessing their ecological impacts and devising mitigation strategies. This study investigates the distribution and characteristics of MPs in streams and sediments of the Mt. Everest region. Results show that microplastic (MP) abundance during the non-monsoon season was 2-4 times higher than in the monsoon season. MPs were predominantly fragments, composed of specific polymer types (PA, PET), and fell within the 10-30 µm size range. An ecological risk assessment was conducted to better evaluate MP pollution in the Mt. Everest region. The study found that recharge sources of streams influenced MP distribution, with streams receiving non-glacial recharge exhibiting higher MP concentrations during the monsoon season, likely due to the dilution effect of glacier meltwater. Principal component analysis highlighted correlations between MP abundance and environmental factors such as wind speed, dissolved oxygen, stream order, and elevation. These findings advance our understanding of MP pollution dynamics in high-altitude streams, establish a foundation for evaluating their ecological impacts, and offer valuable insights for developing mitigation strategies. This study provides a critical reference for further exploring MP contamination in high-elevation ecosystems and addressing its challenges.
Collapse
Affiliation(s)
- Meilin Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tanguang Gao
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yulan Zhang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhaoqing Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Almasieh K, Mohammadi A. Spatial risk patches of the Indian crested porcupine crop damage in southeastern Iran. Sci Rep 2025; 15:15359. [PMID: 40316569 PMCID: PMC12048679 DOI: 10.1038/s41598-025-00232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/25/2025] [Indexed: 05/04/2025] Open
Abstract
Human-wildlife conflict (HWC) represent a significant global issue, leading to economic losses for humans due to the destruction of agricultural products and livestock. This study was conducted in southeastern Iran with two primary objectives: to identify the major environmental variables influencing spatial risk modeling and to pinpoint spatial risk patches and hotspots of agricultural damage caused by the Indian crested porcupine (ICP) in this region. An ensemble modeling technique was used to evaluate the spatial risk of agricultural damage caused by the ICP, drawing on 111 independent conflict records and nine environmental factors. The findings indicated that the distance to villages, orchard density, cropland density, and Normalized Difference Vegetation Index emerged as the most significant variables in modeling the spatial risk of crop damage from the ICP in the study region. Nine spatial risk patches, comprising approximately 8% of the study area, were identified for crop damage attributed to the ICP. The three largest spatial risk patches, located in the west of the study area, accounted for 80% of all predicted crop damage patches caused by the ICP. Additionally, hotspots of agricultural damage were clustered in the western part of the study area. Conservation areas covered about 8% of the predicted spatial risk patches and 2.4% of the hotspots of agricultural damage, respectively. Urgent attention is needed to reduce human-ICP conflicts in the identified risk patches. We strongly recommend implementing fencing around cultivated lands and individual tree trunks, as well as enhancing local knowledge and insurance for agricultural products, to mitigate human-ICP conflicts in the study area.
Collapse
Affiliation(s)
- Kamran Almasieh
- Department of Nature Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
| | - Alireza Mohammadi
- Department of Environment Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran
| |
Collapse
|
6
|
Dursun C, Demirci N, Candan K, Yıldırım Caynak E, Kumlutaş Y, Ilgaz Ç, Gül S. Microplastic Contamination of the Turkish Worm Lizard ( Blanus strauchi Bedriaga, 1884) in Muğla Province (Türkiye). BIOLOGY 2025; 14:441. [PMID: 40282306 PMCID: PMC12025114 DOI: 10.3390/biology14040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Because of their diversity, microplastics (MPs), which are synthetic particles smaller than 5 mm, are highly bioavailable and widely distributed. The prevalence of microplastics in aquatic habitats has been extensively studied but less is known about their presence in terrestrial environments and biota. This study examined MP intake in terrestrial environments utilizing gastrointestinal tracts (GITs), with a particular focus on the Turkish worm lizard (Blanus strauchi). Suspected particles discovered in the GITs were removed, measured, and characterized based on size, shape, color, and polymer type in order to evaluate MP ingestion. Out of 118 samples analyzed, 29 specimens (or 24.57%) had microplastic particlesMP length did not significantly correlate with snout-vent length (SVL) and weight. These correlations were tested to determine whether the size or weight of Blanus strauchi influenced the amount or size of MPs found within the GITs. Also, MP consumption by the worm lizard did not correlate with the year of sampling. All particles identified as fibers through FT-IR spectroscopy analysis. The most common type of microplastic was polyethylene terephthalate (PET). The most often detected color was blue, with mean MP lengths ranging from 133 µm to 2929 µm. It has been demonstrated that worm lizards inhabiting soil or sheltering under stones in bushy areas with sparse vegetation consume MPs. Predation is regarded to be the most likely way through which MPs infiltrate terrestrial food webs.
Collapse
Affiliation(s)
- Cantekin Dursun
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100 Rize, Türkiye; (C.D.); (N.D.)
| | - Nagihan Demirci
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100 Rize, Türkiye; (C.D.); (N.D.)
| | - Kamil Candan
- Department of Biology, Faculty of Science, Dokuz Eylül University, Buca, 35390 İzmir, Türkiye; (K.C.); (E.Y.C.); (Y.K.); (Ç.I.)
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Buca, 35390 İzmir, Türkiye
| | - Elif Yıldırım Caynak
- Department of Biology, Faculty of Science, Dokuz Eylül University, Buca, 35390 İzmir, Türkiye; (K.C.); (E.Y.C.); (Y.K.); (Ç.I.)
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Buca, 35390 İzmir, Türkiye
| | - Yusuf Kumlutaş
- Department of Biology, Faculty of Science, Dokuz Eylül University, Buca, 35390 İzmir, Türkiye; (K.C.); (E.Y.C.); (Y.K.); (Ç.I.)
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Buca, 35390 İzmir, Türkiye
| | - Çetin Ilgaz
- Department of Biology, Faculty of Science, Dokuz Eylül University, Buca, 35390 İzmir, Türkiye; (K.C.); (E.Y.C.); (Y.K.); (Ç.I.)
- Fauna and Flora Research and Application Center, Dokuz Eylül University, Buca, 35390 İzmir, Türkiye
| | - Serkan Gül
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53100 Rize, Türkiye; (C.D.); (N.D.)
| |
Collapse
|
7
|
Theobald DM, Oakleaf JR, Moncrieff G, Voigt M, Kiesecker J, Kennedy CM. Global extent and change in human modification of terrestrial ecosystems from 1990 to 2022. Sci Data 2025; 12:606. [PMID: 40210896 PMCID: PMC11985953 DOI: 10.1038/s41597-025-04892-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
Habitat loss and degradation associated with industrial development is the primary threat and dominant driver of biodiversity loss globally. Spatially-explicit datasets that estimate human pressures are essential to understand the extent and rate of anthropogenic impacts on ecosystems and are critical to inform conservation commitments and efforts under the Global Biodiversity Framework. We leveraged the human modification framework to generate comprehensive, consistent, detailed, robust, temporal, and contemporary datasets to map cumulative and individual threats associated with industrial human activities to terrestrial biodiversity and ecosystems from 1990 to 2022. In ~2022, 43% of terrestrial lands had very low levels of modification, while 27%, 20%, and 10% had low, moderate, and high modification, respectively. Nearly 2/3 of biomes and 1/2 of ecoregions currently are moderately-modified, and 24% of terrestrial ecosystems (31 M km2) experienced increased modification from 1990 to 2020. About 29% of countries and 31% of ecoregions might also be particularly vulnerable to biodiversity loss given their above-average increased modification and less than 30% protection.
Collapse
Affiliation(s)
- David M Theobald
- Conservation Planning Technologies, Fort Collins, CO, 80521, USA.
- Dept. of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, 80526, USA.
| | - James R Oakleaf
- Global Protect Oceans, Lands and Waters, The Nature Conservancy, Fort Collins, CO, 80524, USA
| | - Glenn Moncrieff
- Global Science, The Nature Conservancy, Cape Town, South Africa
| | - Maria Voigt
- Global Science, The Nature Conservancy, Berlin, Germany
| | - Joe Kiesecker
- Global Protect Oceans, Lands and Waters, The Nature Conservancy, Fort Collins, CO, 80524, USA
| | | |
Collapse
|
8
|
Medina RG, Domínguez M. Vulnerability of Gubernatrix cristata to climate change, anthropogenic pressures, and hybridization threats. Sci Rep 2025; 15:12152. [PMID: 40204765 PMCID: PMC11982183 DOI: 10.1038/s41598-025-94293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Estimating extinction risk is challenging due to insufficient data on current and future threats. This study develops a framework incorporating the impacts of climate change, anthropogenic pressures, and biotic interactions for assessing extinction risks using the endangered Yellow Cardinal (Gubernatrix cristata) as a case study. Using ecological niche modeling (ENM) with occurrences, climate, and land use data, we projected current and future distributions of G. cristata, identifying key constraints for its occurrence. Field validation through a citizen science initiative contributed new presence records, supporting our model's predictions. Currently, 4.50% of cardinal's suitable areas overlap with areas of high anthropic pressures, while 27.04% are in contact with the hybridizing species Diuca diuca. Future projections predict a 60% shift in the cardinal's distribution, exacerbating its vulnerability due to greater overlap with areas of high anthropic pressures and reduced presence in protected areas. We identified key risk areas on the distribution's periphery, vulnerable to geographic range loss and increased interaction with D. diuca due to climate change. Targeted management actions are recommended to mitigate further degradation. This study illustrates the potential of integrating citizen science, ENM, and anthropogenic and biotic pressures to develop conservation strategies, offering a versatile, universally applicable framework crucial for global biodiversity and conservation efforts.
Collapse
Affiliation(s)
- Regina Gabriela Medina
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Biodiversidad Neotropical, (CONICET), Universidad Nacional de Tucumán, Facultad de Ciencias Naturales, Ciudad Universitaria, Horco Molle, Yerba Buena, 4107, Tucumán, Argentina
| | - Marisol Domínguez
- Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Haus 26, D-14476, Potsdam, Germany.
- Laboratorio de Ecología y Comportamiento Animal, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto IEGEBA UBA-CONICET, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Matej S, Weidinger F, Kaufmann L, Roux N, Gingrich S, Haberl H, Krausmann F, Erb KH. A global land-use data cube 1992-2020 based on the Human Appropriation of Net Primary Production. Sci Data 2025; 12:511. [PMID: 40148360 PMCID: PMC11950351 DOI: 10.1038/s41597-025-04788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Land use is intimately linked to key components of the Earth system, including the climate system, biodiversity and biogeochemical cycles. Advanced understanding of patterns and dynamics of land use is vital for assessing impacts on these system components and for developing strategies to ensure sustainability. However, thematically detailed data that enable the analyses of spatiotemporal dynamics of land use, including land-use intensity, are currently lacking. This study presents a comprehensive land-use data cube (LUIcube) that traces global land-use area and intensity developments between 1992 and 2020 annually at 30 arcsecond spatial resolution. It discerns 32 land-use classes that can be aggregated to cropland, grazing land, forestry, built-up land and wilderness. Land-use intensity is represented through the framework of Human Appropriation of Net Primary Production, which allows to quantify changes in NPP, respectively biomass flows, induced by land conversion and land-management. The LUIcube provides the necessary database for analyzing the role of natural and socioeconomic drivers of land-use change and its ecological impacts to inform strategies for sustainable land management.
Collapse
Affiliation(s)
- Sarah Matej
- BOKU University Vienna, Institute of Social Ecology, Schottenfeldgasse 29, 1070, Vienna, Austria.
| | - Florian Weidinger
- BOKU University Vienna, Institute of Social Ecology, Schottenfeldgasse 29, 1070, Vienna, Austria
| | - Lisa Kaufmann
- BOKU University Vienna, Institute of Social Ecology, Schottenfeldgasse 29, 1070, Vienna, Austria
| | - Nicolas Roux
- BOKU University Vienna, Institute of Social Ecology, Schottenfeldgasse 29, 1070, Vienna, Austria
| | - Simone Gingrich
- BOKU University Vienna, Institute of Social Ecology, Schottenfeldgasse 29, 1070, Vienna, Austria
| | - Helmut Haberl
- BOKU University Vienna, Institute of Social Ecology, Schottenfeldgasse 29, 1070, Vienna, Austria
| | - Fridolin Krausmann
- BOKU University Vienna, Institute of Social Ecology, Schottenfeldgasse 29, 1070, Vienna, Austria
| | - Karl-Heinz Erb
- BOKU University Vienna, Institute of Social Ecology, Schottenfeldgasse 29, 1070, Vienna, Austria.
| |
Collapse
|
10
|
Yousefi M, Nicolaï MPJ, Bosso L, Kafash A, Nezami B, Rastegar-Pouyani E. Global scale high-resolution habitat suitability modeling of avifauna providing pollination service (sunbirds, Nectariniidae). Sci Rep 2025; 15:9489. [PMID: 40108218 PMCID: PMC11923160 DOI: 10.1038/s41598-025-85587-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/03/2025] [Indexed: 03/22/2025] Open
Abstract
Avian species provide important ecosystem services such as nutrient cycling, seed dispersal, meat provision, pest control, scavenging, and pollination. Currently, the populations of avian pollinators are declining due to climate change and human impact, and it is crucial to identify species-rich areas for their conservation. Sunbirds (Nectariniidae) are important vertebrate pollinators with a wide distribution that include Africa, Asia and Australasia. Here, we assembled distribution records of sunbird species and applied a maximum entropy approach to model sunbird habitat suitability in the world. We also quantified sunbirds composition similarity among the terrestrial biomes. We found that sunbird habitat suitability reached a peak in Southeast Asia, and in western and central parts of the African continent. Sunbird richness was highest in the Tropical and Subtropical Moist Broadleaf Forests biome. Solar Radiation Index (SRI), precipitation of the warmest quarter, and human footprint index were the most important predictors of sunbirds global habitat suitability. Geographic regions identified to have the highest suitability and richness for sunbirds have high priority for conservation of this unique group of avian pollinators and the ecological services they provide.
Collapse
Affiliation(s)
- Masoud Yousefi
- Faculty of Governance, University of Tehran, Tehran, Iran.
| | - Michaël P J Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent, Belgium
| | - Luciano Bosso
- Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy, Piazzale E. Fermi, 1, Portici, 80055, NA, Italy
| | - Anooshe Kafash
- Department of Biology, Hakim Sabzevari University, Sabzevar, Iran
| | - Bagher Nezami
- Research Group of Biodiversity & Biosafety, Research Center for Environment and Sustainable Development, Tehran, Iran
| | | |
Collapse
|
11
|
Wambulwa MC, Zhu G, Luo Y, Wu Z, Provan J, Cadotte MW, Jump AS, Wachira FN, Gao L, Yi T, Cai J, Wang H, Li D, Liu J. Incorporating Genetic Diversity to Optimize the Plant Conservation Network in the Third Pole. GLOBAL CHANGE BIOLOGY 2025; 31:e70122. [PMID: 40110964 PMCID: PMC11924320 DOI: 10.1111/gcb.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/24/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Climate change poses a significant threat to the survival of many species. Although protected areas can slow down biodiversity loss, they often lack systematic planning and do not integrate genetic diversity. Genetic diversity is a key prerequisite for species survival and the ability to tolerate new conditions. Using population genetic and distribution data from 96 plant species in the Third Pole (encompassing the Tibetan Plateau and adjacent mountains), we mapped patterns of genetic diversity, projected climate-driven range dynamics and future genetic erosion, and designed an optimal conservation framework for the region. We identified several patches of high haplotype diversity (HD), with a relatively high number of haplotypes in southeastern Third Pole. Regression models revealed that climate and topography have interacted to shape patterns of genetic diversity, with latitude and precipitation being the best predictors for HD of cpDNA and nrDNA, respectively. Ecological niche modeling predicted an approximate 43 km northwestward and 86 m upward shift in suitable habitats under future climate scenarios, likely leading to a significant loss of up to 13.19% and 15.49% of cpDNA and nrDNA genetic diversity, respectively. Alarmingly, 71.20% of the newly identified conservation priority areas fall outside of the existing protected areas and planned National Park Clusters. Therefore, we recommend expanding the network by 2.02 × 105 km2 (5.91%) in the Third Pole, increasing the total conserved area to 1.36 × 106 km2 (39.93%) to effectively preserve the evolutionary potential of plants. This study represents an innovative attempt to incorporate genetic diversity into biodiversity conservation efforts.
Collapse
Affiliation(s)
- Moses C. Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
- Department of Life Sciences, School of Science and ComputingSouth Eastern Kenya UniversityKituiKenya
| | - Guang‐Fu Zhu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| | - Ya‐Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of BotanyChinese Academy of SciencesLijiangYunnanChina
| | - Zeng‐Yuan Wu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| | - Jim Provan
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Marc W. Cadotte
- Department of Biological SciencesUniversity of Toronto‐ScarboroughTorontoOntarioCanada
| | - Alistair S. Jump
- Biological and Environmental SciencesUniversity of StirlingStirlingUK
| | - Francis N. Wachira
- Department of Life Sciences, School of Science and ComputingSouth Eastern Kenya UniversityKituiKenya
| | - Lian‐Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of BotanyChinese Academy of SciencesLijiangYunnanChina
| | - Ting‐Shuang Yi
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| | - Jie Cai
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| | - De‐Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of BotanyChinese Academy of SciencesLijiangYunnanChina
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
- Department of Biological SciencesUniversity of Toronto‐ScarboroughTorontoOntarioCanada
| |
Collapse
|
12
|
Pradhan N, Agrawal A. Mapping fine-scale socioeconomic inequality using machine learning and remotely sensed data. PNAS NEXUS 2025; 4:pgaf040. [PMID: 39990764 PMCID: PMC11843647 DOI: 10.1093/pnasnexus/pgaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025]
Abstract
Limited and missing socioeconomic data have made it nearly impossible to measure or estimate inequality consistently at fine spatiotemporal and jurisdictional scales, especially for lower- and middle-income countries. We deploy a novel data harmonization method that combines existing household survey data with freely available remotely sensed data and machine learning techniques to generate fine-scale socioeconomic inequality estimates across spatial and temporal scales for India. Our manuscript makes three important contributions. First, it identifies key remote sensing datasets that, in combination with nighttime luminosity, improve its predictive power to estimate measures of socioeconomic inequality. Second, it offers an analytical approach that reliably estimates the uneven distribution of socioeconomic conditions by harmonizing household assets and sociodemographic information that remotely sensed data at the village or similar geographic levels represent-the results achieve >84% prediction accuracy. Finally, it leverages a spatially cross-validated machine learning model with training and test datasets from two successive Demographic and Health Surveys to demonstrate how data gaps in socioeconomic inequality at subnational levels can be addressed. Our replicable approach has the potential to improve global inequality data, thereby supporting research and applications aiming to reduce socioeconomic inequality in the context of the Sustainable Development Goals.
Collapse
Affiliation(s)
- Nabin Pradhan
- School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, USA
| | - Arun Agrawal
- Keough School of Global Affairs, O 308 Hesburgh Center, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
13
|
Chaves A, Mendoza H, Herrera A, Pacheco-Zapata M, López-Pérez AM, Fernández A, Arguello-Sáenz M, Arnal A, Suzán G. Zoonosis: social and environmental connections in the Mexico-United States border region. ONE HEALTH OUTLOOK 2025; 7:3. [PMID: 39780242 PMCID: PMC11715514 DOI: 10.1186/s42522-024-00120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/04/2024] [Indexed: 01/11/2025]
Abstract
The emerging risks facing humanity have highlighted the need to address and prevent challenges through multilateral preventive strategies. The Mexico-United States (US) border is a region with great biological biodiversity and both countries shared a similar history and intense socioeconomic, and cultural interrelationships. Also, it has an extraordinary ecological contrast, resulting in an enormous biological diversity in a broad Nearctic-Neotropical transition zone. This dynamic region has important disparities due to the lack of bilateral strategies to face emerging issues (e.g., infectious diseases) in an integrated and holistic approach. In this context, we describe the various socio-ecosystemic contexts of the shared border and present different diseases transmitted, and different zoonoses that affect ecosystemic public health that must be addressed under collaborative schemes that can develop preventive policies under the One Health approach with emphasis on the Mexican zone. We describe the social determinants of health issues for the border, but we add ecological contexts infrequently studied in classical epidemiological approaches. Strategies towards One Health require international and multidisciplinary approaches that strengthen diagnostic capabilities, recognizing social, and environmental challenges. Recognizing these aspects will allow the establishment of joint monitoring, prevention, and mitigation strategies with benefits for both countries.
Collapse
Affiliation(s)
- Andrea Chaves
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
- Institute of Research and Education in Nutrition and Health (INCIENSA), La Union, San Diego, Cartago, 42250, Costa Rica
- Escuela de Biología, Universidad de Costa, 11501-206, San José, Costa Rica
| | - Hugo Mendoza
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
| | - Angel Herrera
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
| | - Mitsuri Pacheco-Zapata
- Institute of Research and Education in Nutrition and Health (INCIENSA), La Union, San Diego, Cartago, 42250, Costa Rica
- International Joint Laboratory ELDORADO, IRD/UNAM, Mérida, Yucatán, México
| | - Andrés M López-Pérez
- Red de Biología y Conservación de Vertebrados, Instituto de ecologia AC, Xalapa, 91073, Veracruz, México
| | - Adriana Fernández
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
| | - Milena Arguello-Sáenz
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
| | - Audrey Arnal
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico
- International Joint Laboratory ELDORADO, IRD/UNAM, Mérida, Yucatán, México
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Gerardo Suzán
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad #3000, Mexico City, 04510, D.F, Mexico.
- International Joint Laboratory ELDORADO, IRD/UNAM, Mérida, Yucatán, México.
| |
Collapse
|
14
|
Li M, Li Q, Wang S, Wang X, Li Q, Liu W, Yu J, Zhang G, Wang J, Wu QL, Zeng J. The diversity and biogeography of bacterial communities in lake sediments across different climate zones. ENVIRONMENTAL RESEARCH 2024; 263:120028. [PMID: 39307222 DOI: 10.1016/j.envres.2024.120028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Bacteria are diverse and play important roles in biogeochemical cycling of aquatic ecosystems, but the global distribution patterns of bacterial communities in lake sediments across different climate zones are still obscure. Here we integrated the high-throughput sequencing data of 750 sediment samples from published literature to investigate the distribution of bacterial communities in different climate zones and the potential driving mechanisms. The obtained results indicated that the diversity and richness of bacterial community were notably higher in temperate and cold zones than those in other climate zones. In addition, the bacterial community composition varied significantly in different climate zones, which further led to changes in bacterial functional groups. Specifically, the relative abundance of nitrogen cycling functional groups in polar zones was notably higher compared to other climate zones. Regression analysis revealed that climate (mean annual precipitation, MAP; and mean annual temperature, MAT), vegetation, and geography together determined the diversity pattern of sediment bacterial community on a global scale. The results of partial least squares path modeling further demonstrated that climate was the most significant factor affecting the composition and diversity of bacterial communities, and MAP was the most important climate factor affecting the composition of bacteria community (R2 = 0.443, P < 0.001). It is worth noting that a strong positive correlation was observed between the abundance of the dominant bacterial group uncultured_f_Anaerolineaceae and the normalized difference vegetation index (NDVI; P < 0.001), suggesting that vegetation could affect bacterial community diversity by influencing dominant bacterial taxa. This study enhances our understanding of the global diversity patterns and biogeography of sediment bacteria.
Collapse
Affiliation(s)
- Mengyuan Li
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qiang Li
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuren Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiujun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qisheng Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wan Liu
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jianghua Yu
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jianjun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jin Zeng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang, 332899, China.
| |
Collapse
|
15
|
Tseng KK, Koehler H, Becker DJ, Gibb R, Carlson CJ, del Pilar Fernandez M, Seifert SN. Viral genomic features predict Orthopoxvirus reservoir hosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564211. [PMID: 37961540 PMCID: PMC10634857 DOI: 10.1101/2023.10.26.564211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Orthopoxviruses (OPVs), including the causative agents of smallpox and mpox have led to devastating outbreaks in human populations worldwide. However, the discontinuation of smallpox vaccination, which also provides cross-protection against related OPVs, has diminished global immunity to OPVs more broadly. We apply machine learning models incorporating both host ecological and viral genomic features to predict likely reservoirs of OPVs. We demonstrate that incorporating viral genomic features in addition to host ecological traits enhanced the accuracy of potential OPV host predictions, highlighting the importance of host-virus molecular interactions in predicting potential host species. We identify hotspots for geographic regions rich with potential OPV hosts in parts of southeast Asia, equatorial Africa, and the Amazon, revealing high overlap between regions predicted to have a high number of potential OPV host species and those with the lowest smallpox vaccination coverage, indicating a heightened risk for the emergence or establishment of zoonotic OPVs. Our findings can be used to target wildlife surveillance, particularly related to concerns about mpox establishment beyond its historical range.
Collapse
Affiliation(s)
- Katie K. Tseng
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Heather Koehler
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Daniel J. Becker
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Rory Gibb
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- People & Nature Lab, UCL East, University College London, Stratford, London, United Kindom
| | - Colin J. Carlson
- Center for Global Health Science and Security, Georgetown University, Washington, DC, United States of America
| | - Maria del Pilar Fernandez
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| | - Stephanie N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
16
|
Ashrafzadeh MR, Moradi M, Khosravi R, Naghipour AA, Chamberlain D. Impacts of climate change on a high elevation specialist bird are ameliorated by terrain complexity. Glob Ecol Conserv 2024; 56:e03281. [DOI: 10.1016/j.gecco.2024.e03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
17
|
Guo J, Zhang M, Bi Y, Zhao Z, Wang R, Li M. Spatiotemporal distribution prediction of the relict and endangered plant Tetraena mongolica in inner Mongolia, China under climate change. Sci Rep 2024; 14:28478. [PMID: 39557958 PMCID: PMC11574013 DOI: 10.1038/s41598-024-79088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
Climate change significantly affects the distribution of plant species, particularly that of relict plants. Tetraena mongolica Maxim. is a first-class endangered relict plant in China, primarily found in Inner Mongolia. This study explored the impact of multiple factors on its potential distribution under climate change. Considering a comprehensive set of 42 potential influencing variables, including climate, soil, net primary productivity (NPP), human activities, and topography, 29 variables were selected. The maximum entropy (MaxEnt) model was used to construct separate climate and soil niche models, and an "overlay function" was employed to construct a dual-suitability model. By establishing five different scenarios, we analyzed the effects of climate, human activities, and NPP on T. mongolica distribution. The results showed that climate is the most significant factor, soil constraints limit its distribution, and human activities reduce its suitable habitats. Although the direct influence of NPP is limited, it may indirectly affect T. mongolica distribution by improving habitat conditions. Future climate change is expected to sharply reduce suitable habitat areas, with the center of distribution migrating eastward. The study's findings imply that climate change, human activities, and soil conditions significantly impact the distribution and survival of the endangered plant T. mongolica, necessitating comprehensive conservation measures to mitigate habitat loss and ensure its preservation.
Collapse
Affiliation(s)
- Jingxia Guo
- Baotou Medical College, Baotou, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou, Inner Mongolia, China
| | - Mingxu Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China
| | - Yaqiong Bi
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, Inner Mongolia, China
| | - Zezuan Zhao
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Ran Wang
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Minhui Li
- Baotou Medical College, Baotou, Inner Mongolia, China.
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou, Inner Mongolia, China.
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, Inner Mongolia, China.
| |
Collapse
|
18
|
Onditi KO, de la Sancha NU, Musila S, Kioko E, Jiang X. Unravelling spatial scale effects on elevational diversity gradients: insights from montane small mammals in Kenya. BMC Ecol Evol 2024; 24:139. [PMID: 39516748 PMCID: PMC11545329 DOI: 10.1186/s12862-024-02328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Montane ecosystems play crucial roles as global biodiversity hotspots. However, climatic changes and anthropogenic pressure increasingly threaten the stability of montane community dynamics, such as diversity-elevation interactions, creating a challenge in understanding species biogeography and community ecology dynamics in these crucial conservation areas. We examined how varying sampling spatial grains influence small mammal diversity patterns within Kenya's tallest montane ecosystems. METHODS Employing a combination of multidimensional alpha diversity metrics and multisite beta diversity characteristics (species richness, phylogenetic and functional diversity and divergence, and multisite beta diversity) alongside spatial generalized additive multivariate regression analyses, we tested how spatial scaling influences elevational diversity gradient patterns and their associations with environmental and human activity variables. RESULTS The diversity-elevation associations were generally homogeneous across spatial grains; however, idiosyncratic patterns emerged across mountains. The total (taxonomic, phylogenetic, and functional) beta diversity, nestedness, and turnover resultant components monotonically increased or decreased with varying spatial grains. The associations between the diversity patterns and the environmental and human footprint variables increased with spatial grain size but also presented variations across mountains and indices. Species richness and phylogenetic and functional richness indices were more strongly influenced by spatial scale variations than were the divergence and community structure indices in both the diversity distribution patterns and their associations with the environmental and human variables. CONCLUSIONS The diversity-elevation and diversity-environment (including human activity pressure) relationships across spatial grains suggest that montane small mammal diversity patterns portray subtle but systematic sensitivity to sampling spatial grain variation and underscore the importance of geographical context in shaping these elevational diversity gradients. For improved effectiveness, conservation efforts should consider these spatial effects and the unique geographical background of individual montane ecosystems.
Collapse
Affiliation(s)
- Kenneth Otieno Onditi
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, 17 Longxin Road, Kunming, 650201, Yunnan, China
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Nairobi, Kenya
| | - Noé U de la Sancha
- Department of Environmental Science and Studies, DePaul University, Chicago, IL, USA
- Negaunee Integrative Research Centre, Field Museum of Natural History, Chicago, IL, USA
| | - Simon Musila
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Esther Kioko
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Xuelong Jiang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, 17 Longxin Road, Kunming, 650201, Yunnan, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Nairobi, Kenya.
| |
Collapse
|
19
|
Zhao H, Xian X, Yang N, Chen T, Li J, Sheppard A, Wan F, Qi G, Liu W. A Proposed Coupling Framework of Biological Invasions: Quantifying the Management Prioritization in Mealybugs Invasion. GLOBAL CHANGE BIOLOGY 2024; 30:e17583. [PMID: 39555767 DOI: 10.1111/gcb.17583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 11/19/2024]
Abstract
Prioritizing potential invasive alien species, introduction pathways, and likely places susceptible to biological invasions is collectively critical for developing the targeting of management strategies at pre-border, border, and post-border. A framework for prioritizing the invasion management that considered all these elements in combination is lacking, particularly in the context of potential coinvasion scenarios of multispecies. Here, for the first time, we have constructed a coupling framework of biological invasions to evaluate and prioritize multiple invasion risks of 35 invasive alien mealybugs (IAMs) that posed a significant threat to the agri-horticultural crops in China. We found that the imported tropical fruits from free trade areas of the Association of Southeast Asian Nations to entry ports of southern China were the primary introduction pathway for IAMs, vectored on various fruit commodities. There was also a high probability for cointroductions of potential multi-IAMs with a single imported tropical fruit. The potential distribution of such IAMs with dissimilar net relatedness were mainly located in southern China. These distributions, however, are likely to expand to the higher latitudes of northern China under future climate and land use/land cover changes. Temperature and anthropogenic factors were both independently and collectively determining factors for the diversity and distribution patterns of imported IAMs under near-current climate conditions. Our findings highlight that these multiple components of global change have and will continue to facilitate the introduction and establishment risks of IAMs in southern China, as well as the spread risk into northern China. Additionally, our findings, for the first time, demonstrated management prioritization across the continuous invasion stages of 35 IAMs in China, and provide additional insights into the development of targeting of their biosecurity and management decisions.
Collapse
Affiliation(s)
- Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianyu Li
- Institute of Plant Protection, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Andy Sheppard
- CSIRO Health & Biosecurity, Canberra, Australian Capital Territory, Australia
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guojun Qi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Huang X, Wu Y, Bao A, Zheng L, Yu T, Naibi S, Wang T, Song F, Yuan Y, De Maeyer P, Van de Voorde T. Habitat quality outweighs the human footprint in driving spatial patterns of Cetartiodactyla in the Kunlun-Pamir Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122693. [PMID: 39369535 DOI: 10.1016/j.jenvman.2024.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
The Human Footprint (HFP) and Habitat Quality (HQ) are critical factors influencing the species' distribution, yet their relation to biodiversity, particularly in mountainous regions, still remains inadequately understood. This study aims to identify the primary factor that affects the biodiversity by comparing the impact of the HFP and HQ on the species' richness of Cetartiodactyla in the Kunlun-Pamir Plateau and four protected areas: The Pamir Plateau Wetland Nature Reserve, Taxkorgan Wildlife Nature Reserve, Middle Kunlun Nature Reserve and Arjinshan Nature Reserve through multi-source satellite remote sensing product data. By integrating satellite data with the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST)HQ model and utilizing residual and linear regression analysis, we found that: (1) The Wildness Area (WA) predominantly underwent a transition to a Highly Modified Area (HMA) and Intact Area (IA), with a notable 12.02% rise in stable regions, while 58.51% rather experienced a negligible decrease. (2) From 1985 to 2020, the Kunlun-Pamir Plateau has seen increases in the forestland, water, cropland and shrubland, alongside declines in bare land and grassland, denoting considerable land cover changes. (3) The HQ degradation was significant, with 79.81% of the area showing degradation compared to a 10.65% improvement, varying across the nature reserves. (4) The species richness of Cetartiodactyla was better explained by HQ than by HFP on the Kunlun-Pamir Plateau (52.99% vs. 47.01%), as well as in the Arjinshan Nature Reserve (81.57%) and Middle Kunlun Nature Reserve (56.41%). In contrast, HFP was more explanatory in the Pamir Plateau Wetland Nature Reserve (88.89%) and the Taxkorgan Wildlife Nature Reserve (54.55%). Prioritizing the restoration of degraded habitats areas of the Kunlun Pamir Plateau could enhance Cetartiodactyla species richness. These findings provide valuable insights for the biodiversity management and conservation strategies in the mountainous regions.
Collapse
Affiliation(s)
- Xiaoran Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Sciences, Xinjiang University, Urumqi, 830046, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Yangfeng Wu
- Northeast Institute of Geography and Agro-Ecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Anming Bao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; CAS Research Centre for Ecology and Environment of Central Asia, Urumqi, 830011, China; China-Pakistan Joint Research Centre on Earth Sciences, CAS-HEC, Islamabad, 45320, Pakistan
| | - Lei Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Tao Yu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Sulei Naibi
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Ting Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Geography, Ghent University, Ghent, 9000, Belgium
| | - Fengjiao Song
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Yuan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Philippe De Maeyer
- Department of Geography, Ghent University, Ghent, 9000, Belgium; Sino-Belgian Laboratory for Geo-Information, Ghent, 9000, Belgium
| | - Tim Van de Voorde
- Department of Geography, Ghent University, Ghent, 9000, Belgium; Sino-Belgian Laboratory for Geo-Information, Ghent, 9000, Belgium
| |
Collapse
|
21
|
Wang Z, Deng Y, Kang Y, Wang Y, Bao D, Tan Y, An K, Su J. Impacts of climate change and human activities on three Glires pests of the Qinghai-Tibet Plateau. PEST MANAGEMENT SCIENCE 2024; 80:5233-5243. [PMID: 38899513 DOI: 10.1002/ps.8250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The range of Glires is influenced by human activities and climate change. However, the extent to which human activities and environmental changes have contributed to this relationship remains unclear. We examined alterations in the distribution changes and driving factors of the Himalayan marmot, plateau pika, and plateau zokor on the Qinghai-Tibet Plateau (QTP) using the maximum entropy (MaxEnt) model and a geographical detector (Geodetector). RESULTS The MaxEnt model showed that the contribution rates of the human footprint index (HFI) to the distribution patterns of the three types of Glires were 46.70%, 58.70%, and 59.50%, respectively. The Geodetector results showed that the distribution pattern of the Himalayan marmot on the QTP was influenced by altitude and the normalized difference vegetation index (NDVI). The distribution patterns for plateau pikas and plateau zokors were driven by HFI and NDVI. Climate has played a substantial role in shaping suitable habitats for these three Glires on the QTP. Their suitable area is expected to decrease over the next 30-50 years, along with their niche breadth and overlap. Future suitable habitats for the three Glires tended to shift toward higher latitudes on the QTP. CONCLUSION These findings underscore the impacts of environmental and human factors on the distribution of the three Glires on the QTP. They have enhanced our understanding of the intricate relationships between Glires niches and environments. This can aid in identifying necessary interventions for developing effective early warning systems and prevention strategies to mitigate Glires infestations and plague epidemics on the QTP. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yanan Deng
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yukun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yan Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Duanhong Bao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, China
- Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei, China
| |
Collapse
|
22
|
Luo W, Sun C, Yang S, Chen W, Sun Y, Li Z, Liu J, Tao W, Tao J. Contrasting range changes and drivers of four forest foundation species under future climate change in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173784. [PMID: 38851330 DOI: 10.1016/j.scitotenv.2024.173784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Forest foundation species, vital for shaping community structure and dynamics through non-trophic level interactions, are key to forest succession and sustainability. Despite their ecological importance, the habitat ranges of these species in China and their responses to future climate change remain unclear. Our study employed the optimal MaxEnt model to assess the range shifts and their essential drivers of four typical forest foundation species from three climatic zones in China under climate scenarios, including Acer tegmentosum, Acer pseudo-sieboldianum (temperate zone), Quercus glandulifera (subtropical zone), and Ficus hispida (tropical zone). The optimal MaxEnt model exhibited high evaluation indices (AUC values > 0.90) for the four foundation species, indicating excellent predictive performance. Currently, we observed that A. tegmentosum and A. pseudo-sieboldianum are predominantly inhabited temperate forest areas in northeastern China, Q. glandulifera is primarily concentrated in subtropical forests in southeastern China, and F. hispida is mainly distributed across the tropical forests in southern China. Climate factors, particularly temperature, emerged as the primary environmental factors influencing the potential range of forest foundation species. Moreover, precipitation strongly influenced the potential range of A. tegmentosum and A. pseudo-sieboldianum, while elevation exhibited a greater impact on the range of Q. glandulifera and F. hispida. Under future climate scenarios, suitable areas for A. tegmentosum and A. pseudo-sieboldianum tend to expand southward, F. hispida tends to expand northward, while Q. glandulifera exhibited a tendency to contract towards the center. This study advances our understanding of the spatial and temporal dynamics of forest foundation species in China under climate change, providing critical insights for conservation efforts and sustainable forest management practices.
Collapse
Affiliation(s)
- Weixue Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Chengxiang Sun
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Shuo Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenke Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhong Sun
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Zongfeng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Jinchun Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Wenjing Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| | - Jianping Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China; Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, Southwest University, Chongqing, China.
| |
Collapse
|
23
|
Scholten RC, Veraverbeke S, Chen Y, Randerson JT. Spatial variability in Arctic-boreal fire regimes influenced by environmental and human factors. NATURE GEOSCIENCE 2024; 17:866-873. [PMID: 39267694 PMCID: PMC11387193 DOI: 10.1038/s41561-024-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/12/2024] [Indexed: 09/15/2024]
Abstract
Wildfire activity in Arctic and boreal regions is rapidly increasing, with severe consequences for climate and human health. Regional long-term variations in fire frequency and intensity characterize fire regimes. The spatial variability in Arctic-boreal fire regimes and their environmental and anthropogenic drivers, however, remain poorly understood. Here we present a fire tracking system to map the sub-daily evolution of all circumpolar Arctic-boreal fires between 2012 and 2023 using 375 m Visible Infrared Imaging Radiometer Suite active fire detections and the resulting dataset of the ignition time, location, size, duration, spread and intensity of individual fires. We use this dataset to classify the Arctic-boreal biomes into seven distinct 'pyroregions' with unique climatic and geographic environments. We find that these pyroregions exhibit varying responses to environmental drivers, with boreal North America, eastern Siberia and northern tundra regions showing the highest sensitivity to climate and lightning density. In addition, anthropogenic factors play an important role in influencing fire number and size, interacting with other factors. Understanding the spatial variability of fire regimes and its interconnected drivers in the Arctic-boreal domain is important for improving future predictions of fire activity and identifying areas at risk for extreme events.
Collapse
Affiliation(s)
- Rebecca C Scholten
- Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Earth System Science, University of California, Irvine, CA USA
| | - Sander Veraverbeke
- Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Yang Chen
- Department of Earth System Science, University of California, Irvine, CA USA
| | - James T Randerson
- Department of Earth System Science, University of California, Irvine, CA USA
| |
Collapse
|
24
|
Liu Q, Tang X, Hang T, Wu Y, Liu Y, Song T, Song Y. Exploring the performance of protected areas in alleviating future human pressure. AMBIO 2024; 53:1323-1335. [PMID: 38653867 PMCID: PMC11300414 DOI: 10.1007/s13280-024-02023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/13/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Protected areas (PAs) are effective in mitigating human pressures, yet their future pressure alleviating effects remain unclear. In this study, we employed the ConvLSTM model to forecast the future human footprint and analyzed human pressure trends using Theil-Sen median and Mann-Kendall tests. We further evaluated the mitigating effects of PAs within their buffer zones (1-10 km) and the contributions of different IUCN categories of PAs to mitigating human pressure using linear regression models. The results indicate that by 2035, the average human pressure value is expected to increase by 11%, with trends exhibiting a polarized pattern. Furthermore, PAs also effectively mitigate human pressure within their 1 km buffer zones. Different categories of PAs vary in their effectiveness in mitigating human pressure, and stricter conservation areas are not always the most effective. This study can offer insights for evaluating the effectiveness of PAs in reducing human pressure and advocate for their targeted management in urban areas.
Collapse
Affiliation(s)
- Qiqi Liu
- Department of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Department of Environmental Design, Graduate School of Environmental Studies, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaolan Tang
- Department of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Academy of Chinese Ecological Progress and Forestry Studies, Nanjing Forestry University, Nanjing, People's Republic of China.
| | - Tian Hang
- Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul, 08826, Republic of Korea
- Integrated Major in Smart City Global Convergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yunfei Wu
- Department of Art and Design, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yuanyuan Liu
- Department of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Tianrui Song
- Department of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Youngkeun Song
- Department of Environmental Design, Graduate School of Environmental Studies, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul, 08826, Republic of Korea
- Integrated Major in Smart City Global Convergence, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
25
|
Ameca EI, Nie Y, Wu R, Mittermeier RA, Foden W, Wei F. Identifying protected areas in biodiversity hotspots at risk from climate and human-induced compound events for conserving threatened species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173192. [PMID: 38761951 DOI: 10.1016/j.scitotenv.2024.173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/09/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Anthropogenic pressure in areas of biodiversity importance erodes the integrity of the ecosystems they harbour, making features of biodiversity less buffered against extreme climatic events. We define the combination of these disturbances as compound events. We assessed compound event risk in protected areas (PAs) applying a spatial framework guided by criteria and quantitative thresholds associated with exposure to cyclones, drought, and intense human pressure. This assessment was used in a relational matrix to classify PAs with different risk of compound event occurrence. We identified PAs of higher conservation concern by quantifying the extent of human pressure in their surrounding landscape while harbouring large numbers of threatened vertebrate species. Of the 39,694 PAs assessed, very high risk of compound events was determined for 6965 PAs (17.5 %) related to cyclones and human pressure (mainly island hotspots), 6367 PAs (16 %) related to droughts and human pressure (island and continental hotspots), and 2031 PAs (5 %) to cyclones, drought and human pressure (mainly in island hotspots). From the subset of 2031 PAs assessed at very high risk, we identified 239 PAs of higher conservation concern distributed predominantly in the Caribbean Islands, Japan, North America Coastal Plain, Philippines, and Southwest Australia. Our work highlights PAs in the biodiversity hotspots where high risk of compound event occurrence poses a greater threat to species. We encourage researchers to adapt and apply this framework across other globally significant sites for conserving biodiversity to identify high risk-prone areas, and prevent further biodiversity decline.
Collapse
Affiliation(s)
- E I Ameca
- Key Laboratory of Animal Ecology & Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Key Laboratory for Biodiversity Science & Ecological Engineering, Beijing Normal University, Beijing, China; Climate Change Specialist Group, Species Survival Commission, International Union for Conservation of Nature, Gland, Switzerland; Faculty of Biology, University of Veracruz-UV, Veracruz, Mexico.
| | - Y Nie
- Key Laboratory of Animal Ecology & Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - R Wu
- Conservation Biogeography Research Group, Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan, China; Yunnan Key Laboratory of International Rivers and Transboundary Ecosecurity, Yunnan University, Kunming, Yunnan, China
| | | | - W Foden
- Climate Change Specialist Group, Species Survival Commission, International Union for Conservation of Nature, Gland, Switzerland; South African National Parks, Cape Research Centre, Tokai Park, Cape Town, South Africa; Global Change Biology Group, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - F Wei
- Key Laboratory of Animal Ecology & Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang 330045, China; Centre for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
26
|
Wu ZY, Chapman MA, Liu J, Milne RI, Zhao Y, Luo YH, Zhu GF, Cadotte MW, Luan MB, Fan PZ, Monro AK, Li ZP, Corlett RT, Li DZ. Genomic variation, environmental adaptation, and feralization in ramie, an ancient fiber crop. PLANT COMMUNICATIONS 2024; 5:100942. [PMID: 38720463 PMCID: PMC11369781 DOI: 10.1016/j.xplc.2024.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 05/06/2024] [Indexed: 06/29/2024]
Abstract
Feralization is an important evolutionary process, but the mechanisms behind it remain poorly understood. Here, we use the ancient fiber crop ramie (Boehmeria nivea (L.) Gaudich.) as a model to investigate genomic changes associated with both domestication and feralization. We first produced a chromosome-scale de novo genome assembly of feral ramie and investigated structural variations between feral and domesticated ramie genomes. Next, we gathered 915 accessions from 23 countries, comprising cultivars, major landraces, feral populations, and the wild progenitor. Based on whole-genome resequencing of these accessions, we constructed the most comprehensive ramie genomic variation map to date. Phylogenetic, demographic, and admixture signal detection analyses indicated that feral ramie is of exoferal or exo-endo origin, i.e., descended from hybridization between domesticated ramie and the wild progenitor or ancient landraces. Feral ramie has higher genetic diversity than wild or domesticated ramie, and genomic regions affected by natural selection during feralization differ from those under selection during domestication. Ecological analyses showed that feral and domesticated ramie have similar ecological niches that differ substantially from the niche of the wild progenitor, and three environmental variables are associated with habitat-specific adaptation in feral ramie. These findings advance our understanding of feralization, providing a scientific basis for the excavation of new crop germplasm resources and offering novel insights into the evolution of feralization in nature.
Collapse
Affiliation(s)
- Zeng-Yuan Wu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Jie Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Ying Zhao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guang-Fu Zhu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Ming-Bao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China.
| | - Peng-Zhen Fan
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Alex K Monro
- Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AE, UK
| | - Zhi-Peng Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Richard T Corlett
- Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AE, UK; Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
27
|
Ridley FA, Rushton SP, Hickinbotham EJ, Suggitt AJ, McGowan PJK, Mair L. Global mismatches between threat mapping research effort and the potential of threat abatement actions to reduce extinction risk. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14271. [PMID: 38623873 DOI: 10.1111/cobi.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 04/17/2024]
Abstract
Threat mapping is a necessary tool for identifying and abating direct threats to species in the ongoing extinction crisis. There are known gaps in the threat mapping literature for particular threats and geographic locations, and it remains unclear if the distribution of research effort is appropriately targeted relative to conservation need. We aimed to determine the drivers of threat mapping research effort and to quantify gaps that, if filled, could inform actions with the highest potential to reduce species' extinction risk. We used a negative binomial generalized linear model to analyze research effort as a function of threat abatement potential (quantified as the potential reduction in species extinction risk from abating threats), species richness, land area, and human pressure. The model showed that threat mapping research effort increased by 1.1 to 1.2 times per standardized unit change in threat abatement potential. However, species richness and land area were stronger predictors of research effort overall. The greatest areas of mismatch between research effort and threat abatement potential, receiving disproportionately low research effort, were related to the threats to species of agriculture, aquaculture, and biological resource use across the tropical regions of the Americas, Asia, and Madagascar. Conversely, the threat of linear infrastructure (e.g., roads and rails) across regions, the threat of biological resource use (e.g., hunting or collection) in sub-Saharan Africa, and overall threats in North America and Europe all received disproportionately high research effort. We discuss the range of methodological and sociopolitical factors that may be behind the overall trends and specific areas of mismatch we found. We urge a stronger emphasis on targeting research effort toward those threats and geographic locations where threat abatement activities could make the greatest contribution to reducing global species extinction risk.
Collapse
Affiliation(s)
- Francesca A Ridley
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Stephen P Rushton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Emily J Hickinbotham
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew J Suggitt
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Philip J K McGowan
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Louise Mair
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
28
|
Zhao L, Li J, Barrett RL, Liu B, Hu H, Lu L, Chen Z. Spatial heterogeneity of extinction risk for flowering plants in China. Nat Commun 2024; 15:6352. [PMID: 39069525 PMCID: PMC11284212 DOI: 10.1038/s41467-024-50704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Understanding the variability of extinction risk and its potential drivers across different spatial extents is crucial to revealing the underlying processes of biodiversity loss and sustainability. However, in countries with high climatic and topographic heterogeneity, studies on extinction risk are often challenged by complexities associated with extent effects. Here, using 2.02 million fine-grained distribution records and a phylogeny including 27,185 species, we find that the extinction risk of flowering plants in China is spatially concentrated in southwestern China. Our analyses suggest that spatial extinction risks of flowering plants in China may be caused by multiple drivers and are extent dependent. Vegetation structure based on proportion of growth forms is likely the dominant extinction driver at the national extent, followed by climatic and evolutionary drivers. Finer extent analyses indicate that the potential dominant extinction drivers vary across zones and vegetation regions. Despite regional heterogeneity, we detect a geographical continuity potential in extinction drivers, with variation in West China dominated by vegetation structure, South China by climate, and North China by evolution. Our findings highlight that identification of potential extent-dependent drivers of extinction risk is crucial for targeted conservation practice in countries like China.
Collapse
Affiliation(s)
- Lina Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| | - Jinya Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, 2567, NSW, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Kensington, 2052, NSW, Australia
| | - Bing Liu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Haihua Hu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| | - Limin Lu
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
| | - Zhiduan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
29
|
Martins LP, Stouffer DB, Blendinger PG, Böhning-Gaese K, Costa JM, Dehling DM, Donatti CI, Emer C, Galetti M, Heleno R, Menezes Í, Morante-Filho JC, Muñoz MC, Neuschulz EL, Pizo MA, Quitián M, Ruggera RA, Saavedra F, Santillán V, Schleuning M, da Silva LP, Ribeiro da Silva F, Tobias JA, Traveset A, Vollstädt MGR, Tylianakis JM. Birds optimize fruit size consumed near their geographic range limits. Science 2024; 385:331-336. [PMID: 39024457 DOI: 10.1126/science.adj1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/13/2024] [Indexed: 07/20/2024]
Abstract
Animals can adjust their diet to maximize energy or nutritional intake. For example, birds often target fruits that match their beak size because those fruits can be consumed more efficiently. We hypothesized that pressure to optimize diet-measured as matching between fruit and beak size-increases under stressful environments, such as those that determine species' range edges. Using fruit-consumption and trait information for 97 frugivorous bird and 831 plant species across six continents, we demonstrate that birds feed more frequently on closely size-matched fruits near their geographic range limits. This pattern was particularly strong for highly frugivorous birds, whereas opportunistic frugivores showed no such tendency. These findings highlight how frugivore interactions might respond to stressful conditions and reveal that trait matching may not predict resource use consistently.
Collapse
Affiliation(s)
- Lucas P Martins
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
| | - Pedro G Blendinger
- Instituto de Ecología Regional, Universidad Nacional de Tucumán and CONICET, CC 34, 4107 Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 2005, 4000 Tucumán, Argentina
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60439 Frankfurt am Main, Germany
| | - José Miguel Costa
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - D Matthias Dehling
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Camila I Donatti
- Conservation International, Arlington, VA 22202, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
| | - Carine Emer
- Rio de Janeiro Botanical Garden Research Institute, Rua Pacheco Leão 915, Jardim Botânico, Rio de Janeiro, RJ 22460-030, Brazil
- Center for Reseach on Biodiversity and Climate Change (CBioClima), Department of Biodiversity, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Mauro Galetti
- Center for Reseach on Biodiversity and Climate Change (CBioClima), Department of Biodiversity, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
- Kimberly Green Latin American and Caribbean Center, Florida International University (FIU), Miami, FL 33199, USA
| | - Ruben Heleno
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ícaro Menezes
- Applied Conservation Ecology Lab, Santa Cruz State University, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, BA 45662-000, Brazil
| | - José Carlos Morante-Filho
- Applied Conservation Ecology Lab, Santa Cruz State University, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, BA 45662-000, Brazil
| | - Marcia C Muñoz
- Programa de Biología, Universidad de La Salle, Carrera 2 # 10-70, Bogotá, Colombia
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Marco Aurélio Pizo
- Center for Reseach on Biodiversity and Climate Change (CBioClima), Department of Biodiversity, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Marta Quitián
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Systematic Zoology Laboratory, Tokyo Metropolitan University TMU, Tokyo, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
| | - Roman A Ruggera
- Instituto de Ecorregiones Andinas (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Jujuy), Canónigo Gorriti 237, Y4600 San Salvador de Jujuy, Jujuy, Argentina
- Cátedra de Diversidad Biológica III, Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, Y4600 San Salvador de Jujuy, Jujuy, Argentina
| | - Francisco Saavedra
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Instituto de Ecología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Vinicio Santillán
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Av. de las Américas, Cuenca, Ecuador
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Luís Pascoal da Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Fernanda Ribeiro da Silva
- Laboratory of Ecology and Management of Forest Ecosystems, University of Santa Catarina (UFSC), Trindade, Florianópolis, SC 88040-900, Brazil
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Anna Traveset
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
| | - Maximilian G R Vollstädt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, 07190 Esporles, Mallorca, Balearic Islands, Spain
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Jason M Tylianakis
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
- Bioprotection Aotearoa, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand
| |
Collapse
|
30
|
Guo Y, Han J, Bao H, Wu Y, Shen L, Xu X, Chen Z, Smith P, Abdalla M. A systematic analysis and review of soil organic carbon stocks in urban greenspaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174788. [PMID: 39019284 DOI: 10.1016/j.scitotenv.2024.174788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Urban greenspaces typically refer to urban wetland, urban forest and urban turfgrass. They play a critical role in carbon sequestration by absorbing carbon from the atmosphere; however, their capacity to retain and store carbon in the form of soil organic carbon (SOC) varies significantly. This study provides a systematic analysis and review on the capacity of different urban greenspace types in retaining and storing SOC in 30 cm soil depth on a global scale. Data came from 78 publications on the subject of SOC stocks, covering different countries and climate zones. Overall, urban greenspace types exerted significant influences on the spatial pattern of SOC stocks, with the highest value of 18.86 ± 11.57 kg m-2 (mean ± standard deviation) in urban wetland, followed by urban forest (6.50 ± 3.65 kg m-2), while the lowest mean value of 4.24 ± 3.28 kg m-2 was recorded in urban turfgrass soil. Soil organic carbon stocks in each urban greenspace type were significantly affected by climate zones, management/environmental settings, and selected soil properties (i.e. soil bulk density, pH and clay content). Furthermore, our analysis showed a significantly negative correlation between SOC stocks and human footprint in urban wetland, but a significantly positive relationship in urban forest and urban turfgrass. A positive correlation between SOC stocks and human footprint indicates that increased human activity and development can enhance SOC stocks through effective management and green infrastructure. Conversely, a negative correlation suggests that improper management of human activities can degrade SOC stocks. This highlights the need for sustainable practices to maintain or enhance SOC accumulation in urban greenspaces.
Collapse
Affiliation(s)
- Yang Guo
- Research Institute for Urban Planning and Sustainability, Hangzhou City University, Hangzhou 310015, China; School of Public Affairs, Zhejiang University, Hangzhou 310058, China
| | - Jiatong Han
- College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Haijun Bao
- Research Institute for Urban Planning and Sustainability, Hangzhou City University, Hangzhou 310015, China.
| | - Yuzhe Wu
- School of Public Affairs, Zhejiang University, Hangzhou 310058, China
| | - Liyin Shen
- Research Institute for Urban Planning and Sustainability, Hangzhou City University, Hangzhou 310015, China
| | - Xiangrui Xu
- Research Institute for Urban Planning and Sustainability, Hangzhou City University, Hangzhou 310015, China
| | - Ziwei Chen
- Research Institute for Urban Planning and Sustainability, Hangzhou City University, Hangzhou 310015, China
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Mohamed Abdalla
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| |
Collapse
|
31
|
Muhlfeld CC, Cline TJ, Finstad AG, Hessen DO, Perrin S, Thaulow J, Whited D, Vøllestad LA. Climate change vulnerability of Arctic char across Scandinavia. GLOBAL CHANGE BIOLOGY 2024; 30:e17387. [PMID: 38971982 DOI: 10.1111/gcb.17387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 07/08/2024]
Abstract
Climate change is anticipated to cause species to shift their ranges upward and poleward, yet space for tracking suitable habitat conditions may be limited for range-restricted species at the highest elevations and latitudes of the globe. Consequently, range-restricted species inhabiting Arctic freshwater ecosystems, where global warming is most pronounced, face the challenge of coping with changing abiotic and biotic conditions or risk extinction. Here, we use an extensive fish community and environmental dataset for 1762 lakes sampled across Scandinavia (mid-1990s) to evaluate the climate vulnerability of Arctic char (Salvelinus alpinus), the world's most cold-adapted and northernly distributed freshwater fish. Machine learning models show that abiotic and biotic factors strongly predict the occurrence of Arctic char across the region with an overall accuracy of 89 percent. Arctic char is less likely to occur in lakes with warm summer temperatures, high dissolved organic carbon levels (i.e., browning), and presence of northern pike (Esox lucius). Importantly, climate warming impacts are moderated by habitat (i.e., lake area) and amplified by the presence of competitors and/or predators (i.e., northern pike). Climate warming projections under the RCP8.5 emission scenario indicate that 81% of extant populations are at high risk of extirpation by 2080. Highly vulnerable populations occur across their range, particularly near the southern range limit and at lower elevations, with potential refugia found in some mountainous and coastal regions. Our findings highlight that range shifts may give way to range contractions for this cold-water specialist, indicating the need for pro-active conservation and mitigation efforts to avoid the loss of Arctic freshwater biodiversity.
Collapse
Affiliation(s)
- Clint C Muhlfeld
- U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, Montana, USA
| | - Timothy J Cline
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Anders G Finstad
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
- Gjærevoll Center for Biodiversity Foresight Analyses, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dag O Hessen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sam Perrin
- Gjærevoll Center for Biodiversity Foresight Analyses, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jens Thaulow
- Formerly Employed at Norwegian Institute for Water Research, Oslo, Norway
| | - Diane Whited
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | | |
Collapse
|
32
|
Pili AN, Leroy B, Measey JG, Farquhar JE, Toomes A, Cassey P, Chekunov S, Grenié M, van Winkel D, Maria L, Diesmos MLL, Diesmos AC, Zurell D, Courchamp F, Chapple DG. Forecasting potential invaders to prevent future biological invasions worldwide. GLOBAL CHANGE BIOLOGY 2024; 30:e17399. [PMID: 39007251 DOI: 10.1111/gcb.17399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
The ever-increasing and expanding globalisation of trade and transport underpins the escalating global problem of biological invasions. Developing biosecurity infrastructures is crucial to anticipate and prevent the transport and introduction of invasive alien species. Still, robust and defensible forecasts of potential invaders are rare, especially for species without known invasion history. Here, we aim to support decision-making by developing a quantitative invasion risk assessment tool based on invasion syndromes (i.e., generalising typical attributes of invasive alien species). We implemented a workflow based on 'Multiple Imputation with Chain Equation' to estimate invasion syndromes from imputed datasets of species' life-history and ecological traits and macroecological patterns. Importantly, our models disentangle the factors explaining (i) transport and introduction and (ii) establishment. We showcase our tool by modelling the invasion syndromes of 466 amphibians and reptile species with invasion history. Then, we project these models to amphibians and reptiles worldwide (16,236 species [c.76% global coverage]) to identify species with a risk of being unintentionally transported and introduced, and risk of establishing alien populations. Our invasion syndrome models showed high predictive accuracy with a good balance between specificity and generality. Unintentionally transported and introduced species tend to be common and thrive well in human-disturbed habitats. In contrast, those with established alien populations tend to be large-sized, are habitat generalists, thrive well in human-disturbed habitats, and have large native geographic ranges. We forecast that 160 amphibians and reptiles without known invasion history could be unintentionally transported and introduced in the future. Among them, 57 species have a high risk of establishing alien populations. Our reliable, reproducible, transferable, statistically robust and scientifically defensible quantitative invasion risk assessment tool is a significant new addition to the suite of decision-support tools needed for developing a future-proof preventative biosecurity globally.
Collapse
Affiliation(s)
- Arman N Pili
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Victoria, Australia
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Boris Leroy
- Unité 8067 Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, CNRS, IRD, Université des Antilles, Paris, France
| | - John G Measey
- Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- UMR7179 MECADEV CNRS/MNHN, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Bâtiment d'Anatomie Comparée, Paris, France
| | - Jules E Farquhar
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Victoria, Australia
| | - Adam Toomes
- Invasion Science and Wildlife Ecology Group, The University of Adelaide, Adelaide, South Australia, Australia
| | - Phillip Cassey
- Invasion Science and Wildlife Ecology Group, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sebastian Chekunov
- Invasion Science and Wildlife Ecology Group, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthias Grenié
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Dylan van Winkel
- Bioresearches (Babbage Consultants Limited), Auckland, New Zealand
| | - Lisa Maria
- Biosecurity New Zealand-Tiakitanga Pūtaiao Aotearoa, Ministry for Primary Industries-Manatū Ahu Matua, Upper Hutt, New Zealand
| | - Mae Lowe L Diesmos
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | | | - Damaris Zurell
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif Sur Yvette, France
| | - David G Chapple
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Han Q, Li M, Keeffe G. Can large-scale tree planting in China compensate for the loss of climate connectivity due to deforestation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172350. [PMID: 38608907 DOI: 10.1016/j.scitotenv.2024.172350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Extensive deforestation has been a major reason for the loss of forest connectivity, impeding species range shifts under current climate change. Over the past decades, the Chinese government launched a series of afforestation and reforestation projects to increase forest cover, yet whether the new forests can compensate for the loss of connectivity due to deforestation-and where future tree planting would be most effective-remains largely unknown. Here, we evaluate changes in climate connectivity across China's forests between 2015 and 2019. We find that China's large-scale tree planting alleviated the negative impacts of forest loss on climate connectivity, improving the extent and probability of climate connectivity by 0-0.2 °C and 0-0.03, respectively. The improvements were particularly obvious for species with short dispersal distances (i.e., 3 km and 10 km). Nevertheless, only ~55 % of the trees planted in this period could serve as stepping stones for species movement. This indicates that focusing solely on the quantitative target of forest coverage without considering the connectivity of forests may miss opportunities in tree planting to facilitate climate-induced range shifts. More attention should be paid to the spatial arrangement of tree plantations and their potential as stepping stones. We then identify priority areas for future tree planting to create effective stepping stones. Our study highlights the potential of large-scale tree planting to facilitate range shifts. Future tree-planting efforts should incorporate the need for species range shifts to achieve more biodiversity conservation benefits under climate change.
Collapse
Affiliation(s)
- Qiyao Han
- Department of Landscape Architecture, Nanjing Agricultural University, China.
| | - Ming Li
- Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland
| | - Greg Keeffe
- School of Natural and Built Environment, Queen's University Belfast, UK
| |
Collapse
|
34
|
Clarke SH, Lawrence ER, Matte JM, Gallagher BK, Salisbury SJ, Michaelides SN, Koumrouyan R, Ruzzante DE, Grant JWA, Fraser DJ. Global assessment of effective population sizes: Consistent taxonomic differences in meeting the 50/500 rule. Mol Ecol 2024; 33:e17353. [PMID: 38613250 DOI: 10.1111/mec.17353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal and amphibian populations had a <54% probability of reachingN ̂ e = 50 and a <9% probability of reachingN ̂ e = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller medianN ̂ e than unlisted populations, and this was consistent across all taxonomic groups.N ̂ e was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation ofN ̂ e in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritise assessment of populations from taxa most at risk of failing to meet conservation thresholds.
Collapse
Affiliation(s)
- Shannon H Clarke
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | - Jean-Michel Matte
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Brian K Gallagher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Sarah J Salisbury
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Ramela Koumrouyan
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Daniel E Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James W A Grant
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Dylan J Fraser
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Cui Y, Carmona CP, Wang Z. Identifying global conservation priorities for terrestrial vertebrates based on multiple dimensions of biodiversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14205. [PMID: 37855155 DOI: 10.1111/cobi.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/28/2022] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
The Kunming-Montreal Global Biodiversity Framework of the Convention on Biological Diversity calls for an expansion of the current protected areas (PAs) to cover at least 30% of global land and water areas by 2030 (i.e., the 30×30 target). Efficient spatial planning for PA expansion is an urgent need for global conservation practice. A spatial prioritization framework considering multiple dimensions of biodiversity is critical for improving the efficiency of the spatial planning of PAs, yet it remains a challenge. We developed an index for the identification of priority areas based on functionally rare, evolutionarily distinct, and globally endangered species (FREDGE) and applied it to 21,536 terrestrial vertebrates. We determined species distributions, conservation status (global endangerment), molecular phylogenies (evolutionary distinctiveness), and life-history traits (functional rarity). Madagascar, Central America, and the Andes were of high priority for the conservation of multiple dimensions of terrestrial vertebrate biodiversity. However, 68.8% of grid cells in these priority areas had <17% of their area covered by PAs, and these priority areas were under intense anthropogenic and climate change threats. These results highlight the difficulties of conserving multiple dimensions of biodiversity. Our global analyses of the geographical patterns of multiple dimensions of terrestrial vertebrate biodiversity demonstrate the insufficiency of the conservation of different biodiversity dimensions, and our index, based on multiple dimensions of biodiversity, provides a useful tool for guiding future spatial prioritization of PA expansion to achieve the 30×30 target under serious pressures.
Collapse
Affiliation(s)
- Yu Cui
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | | | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
36
|
Levis C, Flores BM, Campos-Silva JV, Peroni N, Staal A, Padgurschi MCG, Dorshow W, Moraes B, Schmidt M, Kuikuro TW, Kuikuro H, Wauja K, Kuikuro K, Kuikuro A, Fausto C, Franchetto B, Watling J, Lima H, Heckenberger M, Clement CR. Contributions of human cultures to biodiversity and ecosystem conservation. Nat Ecol Evol 2024; 8:866-879. [PMID: 38503867 DOI: 10.1038/s41559-024-02356-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
The expansion of globalized industrial societies is causing global warming, ecosystem degradation, and species and language extinctions worldwide. Mainstream conservation efforts still focus on nature protection strategies to revert this crisis, often overlooking the essential roles of Indigenous Peoples and Local Communities (IP&LC) in protecting biodiversity and ecosystems globally. Here we assess the scientific literature to identify relationships between biodiversity (including ecosystem diversity) and cultural diversity, and investigate how these connections may affect conservation outcomes in tropical lowland South America. Our assessment reveals a network of interactions and feedbacks between biodiversity and diverse IP&LC, suggesting interconnectedness and interdependencies from which multiple benefits to nature and societies emerge. We illustrate our findings with five case studies of successful conservation models, described as consolidated or promising 'social-ecological hope spots', that show how engagement with IP&LC of various cultures may be the best hope for biodiversity and ecosystem conservation, particularly when aligned with science and technology. In light of these five inspiring cases, we argue that conservation science and policies need to recognize that protecting and promoting both biological and cultural diversities can provide additional co-benefits and solutions to maintain ecosystems resilient in the face of global changes.
Collapse
Affiliation(s)
- Carolina Levis
- Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
- Affiliated scholar, Brazil LAB, Princeton University, Princeton, NJ, USA.
| | - Bernardo M Flores
- Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - João Vitor Campos-Silva
- Instituto Juruá, Manaus, Brazil
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Nivaldo Peroni
- Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Arie Staal
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Maíra C G Padgurschi
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
- Centro de Pesquisas Meteorológicas e Climáticas aplicadas à Agricultura, University of Campinas, Campinas, Brazil
| | - Wetherbee Dorshow
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
- Earth Analytic, Puente Institute, Santa Fe, NM, USA
| | - Bruno Moraes
- Earth Analytic, Puente Institute, Santa Fe, NM, USA
- Museu Paraense Emílio Goeldi, Belém, Brazil
| | - Morgan Schmidt
- Laboratório de Estudos Interdisciplinares em Arqueologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Department of Anthropology, University of Florida, Gainesville, FL, USA
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taku Wate Kuikuro
- Associação Indígena Kuikuro do Alto Xingu, Aldeia Ipatse, Território Indígena do Alto Xingu, Canarana and Gaúcha do Norte, Mato Grosso, Brazil
| | - Huke Kuikuro
- Associação Indígena Kuikuro do Alto Xingu, Aldeia Ipatse, Território Indígena do Alto Xingu, Canarana and Gaúcha do Norte, Mato Grosso, Brazil
| | - Kumessi Wauja
- Associação Indígena Kuikuro do Alto Xingu, Aldeia Ipatse, Território Indígena do Alto Xingu, Canarana and Gaúcha do Norte, Mato Grosso, Brazil
| | - Kalutata Kuikuro
- Associação Indígena Kuikuro do Alto Xingu, Aldeia Ipatse, Território Indígena do Alto Xingu, Canarana and Gaúcha do Norte, Mato Grosso, Brazil
| | - Afukaka Kuikuro
- Associação Indígena Kuikuro do Alto Xingu, Aldeia Ipatse, Território Indígena do Alto Xingu, Canarana and Gaúcha do Norte, Mato Grosso, Brazil
| | - Carlos Fausto
- Programa de Pós-Graduação em Antropologia Social, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Visiting Research Scholar, Princeton Institute for International and Regional Studies, Brazil LAB, Princeton University, Princeton, NJ, USA
| | - Bruna Franchetto
- Programa de Pós-Graduação em Antropologia Social, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jennifer Watling
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | | | - Charles R Clement
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| |
Collapse
|
37
|
Ye J, Xiao C, Feng Z, Qiao T. A review of global wilderness area identification since the 21st century. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120946. [PMID: 38652991 DOI: 10.1016/j.jenvman.2024.120946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Wilderness areas are natural landscape elements that are relatively undisrupted by human activity and play a critical role in maintaining ecological equilibrium, preserving naturalness, and ensuring ecosystem resilience. Since 2000, monitoring of global wilderness areas has increased owing to the availability of spatial map data and remote sensing imagery related to human activity and/or human footprint. Progress has been made in the remote sensing of wilderness areas by relying on available historical literature (e.g., published papers, books, and reports). However, to our knowledge, a synthesis of wilderness area research from a remote sensing perspective has not yet been performed. In this preliminary review, we discuss the concept of wilderness in different historical eras and systematically summarize dynamic wilderness monitoring at local, national, and global scales, available remotely sensed indicators, disparities and commonalities in identification methods, and mapping uncertainties. Finally, since this field remains in its initial stage owing to a lack of unified standards and vertical/horizontal comparisons, we present insights into future research directions, particularly with regard to remote sensing. The findings of this review may help to improve the overall understanding of current wilderness patterns (i.e., increases/decreases) and the mechanisms by which they change, as well as provide guidance for global nature conservation programs.
Collapse
Affiliation(s)
- Junzhi Ye
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, 100049, Beijing, China.
| | - Chiwei Xiao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, 100049, Beijing, China.
| | - Zhiming Feng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, 100049, Beijing, China.
| | - Tian Qiao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Address: 11A, Datun Road, Chaoyang District, 100049, Beijing, China.
| |
Collapse
|
38
|
An N, Lu N, Wang M, Chen Y, Wu F, Fu B. Plant size traits are key contributors in the spatial variation of net primary productivity across terrestrial biomes in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171412. [PMID: 38447733 DOI: 10.1016/j.scitotenv.2024.171412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Understanding the spatial variability of ecosystem functions is an important step forward in predicting changes in ecosystems under global transformations. Plant functional traits are important drivers of ecosystem functions such as net primary productivity (NPP). Although trait-based approaches have advanced rapidly, the extent to which specific plant functional traits are linked to the spatial diversity of NPP at a regional scale remains uncertain. Here, we used structural equation models (SEMs) to disentangle the relative effects of abiotic variables (i.e., climate, soil, nitrogen deposition, and human footprint) and biotic variables (i.e., plant functional traits and community structure) on the spatial variation of NPP across China and its eight biomes. Additionally, we investigated the indirect influence of climate and soil on the spatial variation of NPP by directly affecting plant functional traits. Abiotic and biotic variables collectively explained 62.6 % of the spatial differences of NPP within China, and 28.0 %-69.4 % across the eight distinct biomes. The most important abiotic factors, temperature and precipitation, had positive effects for NPP spatial variation. Interestingly, plant functional traits associated with the size of plant organs (i.e., plant height, leaf area, seed mass, and wood density) were the primary biotic drivers, and their positive effects were independent of biome type. Incorporating plant functional traits improved predictions of NPP by 6.7 %-50.2 %, except for the alpine tundra on the Qinghai-Tibet Plateau. Our study identifies the principal factors regulating NPP spatial variation and highlights the importance of plant size traits in predictions of NPP variation at a large scale. These results provide new insights for involving plant size traits in carbon process models.
Collapse
Affiliation(s)
- Nannan An
- Key Laboratory for Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Nan Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Mengyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Library, Henan University of Science and Technology, Luoyang 471000, China
| | - Yongzhe Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Geography, The University of Hong Kong, Hongkong 999077, China
| | - Fuzhong Wu
- Key Laboratory for Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
39
|
Wong MKL, Didham RK. Global meta-analysis reveals overall higher nocturnal than diurnal activity in insect communities. Nat Commun 2024; 15:3236. [PMID: 38622174 PMCID: PMC11018786 DOI: 10.1038/s41467-024-47645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Insects sustain key ecosystem functions, but how their activity varies across the day-night cycle and the underlying drivers are poorly understood. Although entomologists generally expect that more insects are active at night, this notion has not been tested with empirical data at the global scale. Here, we assemble 331 quantitative comparisons of the abundances of insects between day and night periods from 78 studies worldwide and use multi-level meta-analytical models to show that insect activity is on average 31.4% (CI: -6.3%-84.3%) higher at night than in the day. We reveal diel preferences of major insect taxa, and observe higher nocturnal activity in aquatic taxa than in terrestrial ones, as well as in warmer environments. In a separate analysis of the small subset of studies quantifying diel patterns in taxonomic richness (31 comparisons from 13 studies), we detect preliminary evidence of higher nocturnal richness in tropical than temperate communities. The higher overall (but variable) nocturnal activity in insect communities underscores the need to address threats such as light pollution and climate warming that may disproportionately impact nocturnal insects.
Collapse
Affiliation(s)
- Mark K L Wong
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
- CSIRO Health & Biosecurity, Centre for Environment and Life Sciences, Floreat, WA, 6014, Australia.
| | - Raphael K Didham
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- CSIRO Health & Biosecurity, Centre for Environment and Life Sciences, Floreat, WA, 6014, Australia
| |
Collapse
|
40
|
Broekman MJE, Hilbers JP, Hoeks S, Huijbregts MAJ, Schipper AM, Tucker MA. Environmental drivers of global variation in home range size of terrestrial and marine mammals. J Anim Ecol 2024; 93:488-500. [PMID: 38459628 DOI: 10.1111/1365-2656.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
As animal home range size (HRS) provides valuable information for species conservation, it is important to understand the driving factors of HRS variation. It is widely known that differences in species traits (e.g. body mass) are major contributors to variation in mammal HRS. However, most studies examining how environmental variation explains mammal HRS variation have been limited to a few species, or only included a single (mean) HRS estimate for the majority of species, neglecting intraspecific HRS variation. Additionally, most studies examining environmental drivers of HRS variation included only terrestrial species, neglecting marine species. Using a novel dataset of 2800 HRS estimates from 586 terrestrial and 27 marine mammal species, we quantified the relationships between HRS and environmental variables, accounting for species traits. Our results indicate that terrestrial mammal HRS was on average 5.3 times larger in areas with low human disturbance (human footprint index [HFI] = 0), compared to areas with maximum human disturbance (HFI = 50). Similarly, HRS was on average 5.4 times larger in areas with low annual mean productivity (NDVI = 0), compared to areas with high productivity (NDVI = 1). In addition, HRS increased by a factor of 1.9 on average from low to high seasonality in productivity (standard deviation (SD) of monthly NDVI from 0 to 0.36). Of these environmental variables, human disturbance and annual mean productivity explained a larger proportion of HRS variance than seasonality in productivity. Marine mammal HRS decreased, on average, by a factor of 3.7 per 10°C decline in annual mean sea surface temperature (SST), and increased by a factor of 1.5 per 1°C increase in SST seasonality (SD of monthly values). Annual mean SST explained more variance in HRS than SST seasonality. Due to the small sample size, caution should be taken when interpreting the marine mammal results. Our results indicate that environmental variation is relevant for HRS and that future environmental changes might alter the HRS of individuals, with potential consequences for ecosystem functioning and the effectiveness of conservation actions.
Collapse
Affiliation(s)
- Maarten J E Broekman
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jelle P Hilbers
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Selwyn Hoeks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Mark A J Huijbregts
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Aafke M Schipper
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
- PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
| | - Marlee A Tucker
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Canty SWJ, Nowakowski AJ, Cox CE, Valdivia A, Holstein DM, Limer B, Lefcheck JS, Craig N, Drysdale I, Giro A, Soto M, McField M. Interplay of management and environmental drivers shifts size structure of reef fish communities. GLOBAL CHANGE BIOLOGY 2024; 30:e17257. [PMID: 38572701 DOI: 10.1111/gcb.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Countries are expanding marine protected area (MPA) networks to mitigate fisheries declines and support marine biodiversity. However, MPA impact evaluations typically assess total fish biomass. Here, we examine how fish biomass disaggregated by adult and juvenile life stages responds to environmental drivers, including sea surface temperature (SST) anomalies and human footprint, and multiple management types at 139 reef sites in the Mesoamerican Reef (MAR) region. We found that total fish biomass generally appears stable across the region from 2006 to 2018, with limited rebuilding of fish stocks in MPAs. However, the metric of total fish biomass masked changes in fish community structure, with lower adult than juvenile fish biomass at northern sites, and adult:juvenile ratios closer to 1:1 at southern sites. These shifts were associated with different responses of juvenile and adult fish to environmental drivers and management. Juvenile fish biomass increased at sites with high larval connectivity and coral cover, whereas adult fish biomass decreased at sites with greater human footprint and SST anomalies. Adult fish biomass decreased primarily in Honduran general use zones, which suggests insufficient protection for adult fish in the southern MAR. There was a north-south gradient in management and environmental drivers, with lower coverage of fully protected areas and higher SST anomalies and coastal development in the south that together may undermine the maintenance of adult fish biomass in the southern MAR. Accounting for the interplay between environmental drivers and management in the design of MPAs is critical for increasing fish biomass across life history stages.
Collapse
Affiliation(s)
- Steven W J Canty
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - A Justin Nowakowski
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
- Moore Center for Science, Conservation International, Arlington, Virginia, USA
| | | | - Abel Valdivia
- World Wildlife Fund, Washington, District of Columbia, USA
| | - Daniel M Holstein
- Department of Oceanography and Coastal Studies, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Benjamin Limer
- Department of Oceanography and Coastal Studies, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jonathan S Lefcheck
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
- University of Maryland Center for Environmental Science, Cambridge, Maryland, USA
| | - Nicole Craig
- Healthy Reefs Initiative, Fort Lauderdale, Florida, USA
| | - Ian Drysdale
- Healthy Reefs Initiative, Fort Lauderdale, Florida, USA
| | - Ana Giro
- Healthy Reefs Initiative, Fort Lauderdale, Florida, USA
| | - Mélina Soto
- Healthy Reefs Initiative, Fort Lauderdale, Florida, USA
| | - Melanie McField
- Healthy Reefs Initiative, Fort Lauderdale, Florida, USA
- Smithsonian Marine Station, Fort Pierce, Florida, USA
| |
Collapse
|
42
|
Xie Y, Shen Z, Wang T, Malanson GP, Peñuelas J, Wang X, Chen X, Liang E, Liu H, Yang M, Ying L, Zhao F, Piao S. Uppermost global tree elevations are primarily limited by low temperature or insufficient moisture. GLOBAL CHANGE BIOLOGY 2024; 30:e17260. [PMID: 38563236 DOI: 10.1111/gcb.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The impact of anthropogenic global warming has induced significant upward dispersal of trees to higher elevations at alpine treelines. Assessing vertical deviation from current uppermost tree distributions to potential treeline positions is crucial for understanding ecosystem responses to evolving global climate. However, due to data resolution constraints and research scale limitation, comprehending the global pattern of alpine treeline elevations and driving factors remains challenging. This study constructed a comprehensive quasi-observational dataset of uppermost tree distribution across global mountains using Google Earth imagery. Validating the isotherm of mean growing-season air temperature at 6.6 ± 0.3°C as the global indicator of thermal treeline, we found that around two-thirds of uppermost tree distribution records significantly deviated from it. Drought conditions constitute the primary driver in 51% of cases, followed by mountain elevation effect which indicates surface heat (27%). Our analyses underscore the multifaceted determinants of global patterns of alpine treeline, explaining divergent treeline responses to climate warming. Moisture, along with temperature and disturbance, plays the most fundamental roles in understanding global variation of alpine treeline elevation and forecasting alpine treeline response to ongoing global warming.
Collapse
Affiliation(s)
- Yuyang Xie
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Zehao Shen
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | | | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Catalonia, Spain
| | - Xiaoyi Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiangwu Chen
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Hongyan Liu
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Mingzheng Yang
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Lingxiao Ying
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Fu Zhao
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Shilong Piao
- College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing, China
| |
Collapse
|
43
|
Bachman SP, Brown MJM, Leão TCC, Nic Lughadha E, Walker BE. Extinction risk predictions for the world's flowering plants to support their conservation. THE NEW PHYTOLOGIST 2024; 242:797-808. [PMID: 38437880 DOI: 10.1111/nph.19592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
More than 70% of all vascular plants lack conservation status assessments. We aimed to address this shortfall in knowledge of species extinction risk by using the World Checklist of Vascular Plants to generate the first comprehensive set of predictions for a large clade: angiosperms (flowering plants, c. 330 000 species). We used Bayesian Additive Regression Trees (BART) to predict the extinction risk of all angiosperms using predictors relating to range size, human footprint, climate, and evolutionary history and applied a novel approach to estimate uncertainty of individual species-level predictions. From our model predictions, we estimate 45.1% of angiosperm species are potentially threatened with a lower bound of 44.5% and upper bound of 45.7%. Our species-level predictions, with associated uncertainty estimates, do not replace full global, or regional Red List assessments, but can be used to prioritise predicted threatened species for full Red List assessment and fast-track predicted non-threatened species for Least Concern assessments. Our predictions and uncertainty estimates can also guide fieldwork, inform systematic conservation planning and support global plant conservation efforts and targets.
Collapse
|
44
|
Musto C, Cerri J, Capizzi D, Fontana MC, Rubini S, Merialdi G, Berzi D, Ciuti F, Santi A, Rossi A, Barsi F, Gelmini L, Fiorentini L, Pupillo G, Torreggiani C, Bianchi A, Gazzola A, Prati P, Sala G, Apollonio M, Delogu M, Biancardi A, Uboldi L, Moretti A, Garbarino C. First evidence of widespread positivity to anticoagulant rodenticides in grey wolves (Canis lupus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169990. [PMID: 38232835 DOI: 10.1016/j.scitotenv.2024.169990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Second-generation Anticoagulant Rodenticides (ARs) can be critical for carnivores, due to their widespread use and impacts. However, although many studies explored the impacts of ARs on small and mesocarnivores, none assessed the extent to which they could contaminate large carnivores in anthropized landscapes. We filled this gap by exploring spatiotemporal trends in grey wolf (Canis lupus) exposure to ARs in central and northern Italy, by subjecting a large sample of dead wolves (n = 186) to the LC-MS/MS method. Most wolves (n = 115/186, 61.8 %) tested positive for ARs (1 compound, n = 36; 2 compounds, n = 47; 3 compounds, n = 16; 4 or more compounds, n = 16). Bromadiolone, brodifacoum and difenacoum, were the most common compounds, with brodifacoum and bromadiolone being the ARs that co-occurred the most (n = 61). Both the probability of testing positive for multiple ARs and the concentration of brodifacoum, and bromadiolone in the liver, systematically increased in wolves that were found at more anthropized sites. Moreover, wolves became more likely to test positive for ARs through time, particularly after 2020. Our results underline that rodent control, based on ARs, increases the risks of unintentional poisoning of non-target wildlife. However, this risk does not only involve small and mesocarnivores, but also large carnivores at the top of the food chain, such as wolves. Therefore, rodent control is adding one further conservation threat to endangered large carnivores in anthropized landscapes of Europe, whose severity could increase over time and be far higher than previously thought. Large-scale monitoring schemes for ARs in European large carnivores should be devised as soon as possible.
Collapse
Affiliation(s)
- Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy.
| | - Jacopo Cerri
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy.
| | - Dario Capizzi
- Directorate for Environment, Latium Region, 00173 Rome, Italy
| | - Maria Cristina Fontana
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Silva Rubini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Duccio Berzi
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Francesca Ciuti
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Annalisa Santi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Arianna Rossi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Filippo Barsi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Luca Gelmini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Pupillo
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Camilla Torreggiani
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Bianchi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandra Gazzola
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Paola Prati
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Sala
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Alberto Biancardi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Uboldi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Moretti
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Chiara Garbarino
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| |
Collapse
|
45
|
Danet A, Giam X, Olden JD, Comte L. Past and recent anthropogenic pressures drive rapid changes in riverine fish communities. Nat Ecol Evol 2024; 8:442-453. [PMID: 38291153 DOI: 10.1038/s41559-023-02271-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/13/2023] [Indexed: 02/01/2024]
Abstract
Understanding how and why local communities change is a pressing task for conservation, especially in freshwater systems. It remains challenging because of the complexity of biodiversity changes, driven by the spatio-temporal heterogeneity of human pressures. Using a compilation of riverine fish community time series (93% between 1993 and 2019) across the Palaearctic, Nearctic and Australasia realms, we assessed how past and recent anthropogenic pressures drive community changes across both space and time. We found evidence of rapid changes in community composition of 30% per decade characterized by important changes in the dominant species, together with a 13% increase in total abundance per decade and a 7% increase in species richness per decade. The spatial heterogeneity in these trends could be traced back to the strength and timing of anthropogenic pressures and was mainly mediated by non-native species introductions. Specifically, we demonstrate that the negative effects of anthropogenic pressures on species richness and total abundance were compensated over time by the establishment of non-native species, a pattern consistent with previously reported biotic homogenization at the global scale. Overall, our study suggests that accounting for the complexity of community changes and its drivers is a crucial step to reach global conservation goals.
Collapse
Affiliation(s)
- Alain Danet
- School of Biological Sciences, Illinois State University, Normal, IL, USA.
- School of Biosciences, University of Sheffield, Sheffield, UK.
| | - Xingli Giam
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN, USA
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Lise Comte
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| |
Collapse
|
46
|
Outhwaite CL. Under the hood of trends in riverine fish. Nat Ecol Evol 2024; 8:364-365. [PMID: 38291152 DOI: 10.1038/s41559-024-02328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Affiliation(s)
- Charlotte L Outhwaite
- Centre for Biodiversity & Environment Research, University College London, London, UK.
| |
Collapse
|
47
|
Xu L, Fan Y, Zheng J, Guan J, Lin J, Wu J, Liu L, Wu R, Liu Y. Impacts of climate change and human activity on the potential distribution of Aconitum leucostomum in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168829. [PMID: 38030008 DOI: 10.1016/j.scitotenv.2023.168829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Aconitum leucostomum is a poisonous grass that disturbs grassland populations and livestock development, and its spread is influenced by climate change and human activities. Therefore, exploring its potential distribution area under such conditions is crucial to maintain grassland ecological security and livestock development. The present study initially selected 39 variables that may influence the spatial distribution of A. leucostomum, including bioclimate, soil, topography, solar radiation, and human footprint data; the variables were screened by Spearman's correlation coefficient and the jackknife method. Twenty variables were finally identified, and three types of models based on the maximum entropy (MaxEnt) model were constructed to predict the distribution of A. leucostomum within China under three shared economy pathways (SSP126, SSP245, and SSP585): A: prediction of environmental variables under the current climate model; B: prediction of environmental variables + human footprint under the current climate model; and C: prediction of environmental variables under the future climate model (including the 2030s, 2050s, and 2070s). The effects of human activities and climate change on the potential geographic distribution of A. leucostomum were explored separately. The results show that precipitation seasonality, human footprint, solar radiation and mean diurnal range are the main factors affecting the distribution of A. leucostomum. Human activities inhibit the spread of A. leucostomum, and climate change promotes its growth, with areas of high suitability and area variation mainly in northern Xinjiang and northern Yunnan. With climate change, in the future, the distribution center of A. leucostomum shows a tendency to migrate to the southeast on the horizontal gradient and to move to higher altitudes on the vertical gradient. This study provides a positive reference value for the control of A. leucostomum and the maintenance of grassland ecological security.
Collapse
Affiliation(s)
- Li Xu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, China
| | - Yuan Fan
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, China
| | - Jianghua Zheng
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, China.
| | - Jingyun Guan
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; College of Tourism, Xinjiang University of Finance & Economics, Urumqi 830012, China
| | - Jun Lin
- Xinjiang Office of Locust Control and Rodent Eradication Command, Urumqi 830001, China
| | - Jianguo Wu
- Xinjiang Office of Locust Control and Rodent Eradication Command, Urumqi 830001, China
| | - Liang Liu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, China
| | - Rui Wu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, China
| | - Yujia Liu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Urumqi 830046, China
| |
Collapse
|
48
|
Akbas A. Human or climate? Differentiating the anthropogenic and climatic drivers of lake storage changes on spatial perspective via remote sensing data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168982. [PMID: 38036137 DOI: 10.1016/j.scitotenv.2023.168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Lakes are an essential part of the terrestrial water system in which storage changes are controlled by water balance and human impact. Although there are some attempts to define storage changes on a global scale, examination of spatial relations is poorly quantified. In this study, therefore, lake storage changes have been investigated using remote-sensing-derived data around the globe. Hence, 372 artificial/natural lakes were obtained, covering between 1992 and 2019. Watersheds belong to river was extracted via HydroSHED data. Based on watershed, dominant climate types were determined via Köppen-Geiger classification. Similarly, the areal average CRU TS v.4.05 monthly gridded precipitation time series and human footprint data based on watersheds were obtained to understand the drivers of lake storage changes. The nonparametric Mann-Kendall and Sen's slope trend analyses were applied to the lake storage change and precipiation values in order to determine long-term increases and decreases. A bivariate map was constructed between storage changes trend vs precipitation trend and human footprint to reveal the drivers of lake storage changes in terms of spatial aspects. The trend analysis and bivariate map results show that North America, the East African Highlands, and the Tibet plateau are important increasing hotspots, where precipitation is a significant driver for storage oscillations, except for the Tibet plateau. Besides, the Brazilian Highlands, Pacific Mountain System, and Intermontane of conterminous USA are other decreasing hotspots in which human footprint and decreasing precipitation collectively affect these changes. Furthermore, results clearly show that anthropogenic influence is low in the northern and mountainous areas, and storage changes have a linear relationship with precipitation. In contrast, intense human climate interaction influences lake changes in plains areas and arid/temperate climates.
Collapse
Affiliation(s)
- Abdullah Akbas
- Geography Department, Physical Geography Division, Bursa Uludağ University, Bursa, Turkey.
| |
Collapse
|
49
|
Lundgren EJ, Bergman J, Trepel J, le Roux E, Monsarrat S, Kristensen JA, Pedersen RØ, Pereyra P, Tietje M, Svenning JC. Functional traits-not nativeness-shape the effects of large mammalian herbivores on plant communities. Science 2024; 383:531-537. [PMID: 38301018 DOI: 10.1126/science.adh2616] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/30/2023] [Indexed: 02/03/2024]
Abstract
Large mammalian herbivores (megafauna) have experienced extinctions and declines since prehistory. Introduced megafauna have partly counteracted these losses yet are thought to have unusually negative effects on plants compared with native megafauna. Using a meta-analysis of 3995 plot-scale plant abundance and diversity responses from 221 studies, we found no evidence that megafauna impacts were shaped by nativeness, "invasiveness," "feralness," coevolutionary history, or functional and phylogenetic novelty. Nor was there evidence that introduced megafauna facilitate introduced plants more than native megafauna. Instead, we found strong evidence that functional traits shaped megafauna impacts, with larger-bodied and bulk-feeding megafauna promoting plant diversity. Our work suggests that trait-based ecology provides better insight into interactions between megafauna and plants than do concepts of nativeness.
Collapse
Affiliation(s)
- Erick J Lundgren
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane City, Queensland, Australia
| | - Juraj Bergman
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jonas Trepel
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Conservation Biology, University of Göttingen, Göttingen, Germany
| | - Elizabeth le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Mammal Research Institute, University of Pretoria, Hatfield, South Africa
- Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Sophie Monsarrat
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Rewilding Europe, Nijmegen, Netherlands
| | - Jeppe Aagaard Kristensen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Leverhulme Centre for Nature Recovery, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Rasmus Østergaard Pedersen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Patricio Pereyra
- Consejo Nacional de Investigaciones, Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Centro de Investigación Aplicada y Transferencia, Tecnológica en Recursos Marinos Almirante Storni (CIMAS), San Antonio Oeste, Argentina
| | - Melanie Tietje
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
50
|
Nedopil C, Yue M, Hughes AC. Are debt-for-nature swaps scalable: Which nature, how much debt, and who pays? AMBIO 2024; 53:63-78. [PMID: 37658986 PMCID: PMC10692041 DOI: 10.1007/s13280-023-01914-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/11/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
With the ongoing sovereign debt and biodiversity crises in many emerging economies, applications of debt-for-nature swaps as a dual solution for sovereign debt and nature conservation have been re-emerging. We analyze how debt-for-nature swaps (DNS) can be scaled to protect biodiversity priority areas and reduce debt burden. We build a dataset for biodiversity conservation and debt restructuring in 67 countries at risk of sovereign debt distress and show that they hold over 22% of global biodiversity priority areas, 82.96% of which are unprotected. Furthermore, we show that for 35 of the 67 countries, using conservative cost estimates, 100% of unprotected biodiversity priority areas could be protected for a fraction of debt; for the remaining countries, applying DNS would allow the protection of 11-13% of currently unprotected biodiversity priority areas. By applying interdisciplinary research combining fundamental biodiversity and economic data and methods merging, the research contributes methodologically and practically to the understanding of debt-for-nature swaps for emerging economies.
Collapse
Affiliation(s)
- Christoph Nedopil
- Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, People's Republic of China
| | - Mengdi Yue
- Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, People's Republic of China
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|