1
|
Avalos B, Kulbe JR, Ford MK, Laird AE, Walter K, Mante M, Florio JB, Boustani A, Chaillon A, Schlachetzki JCM, Sundermann EE, Volsky DJ, Rissman RA, Ellis RJ, Letendre SL, Iudicello J, Fields JA. Cannabis Use and Cannabidiol Modulate HIV-Induced Alterations in TREM2 Expression: Implications for Age-Related Neuropathogenesis. Viruses 2024; 16:1509. [PMID: 39459844 PMCID: PMC11512329 DOI: 10.3390/v16101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is involved in neuroinflammation and HIV-associated neurocognitive impairment (NCI). People with HIV (PWH) using cannabis exhibit lower inflammation and neurological disorders. We hypothesized that TREM2 dysfunction mediates HIV neuropathogenesis and can be reversed by cannabinoids. EcoHIV-infected wildtype (WT) and TREM2R47H mutant mice were used to study HIV's impact on TREM2 and behavior. TREM2 and related gene expressions were examined in monocyte-derived macrophages (MDMs) from PWH (n = 42) and people without HIV (PWoH; n = 19) with varying cannabis use via RNA sequencing and qPCR. Differences in membrane-bound and soluble TREM2 (sTREM2) were evaluated using immunocytochemistry (ICC) and ELISA. EcoHIV increased immature and C-terminal fragment forms of TREM2 in WT mice but not in TREM2R47H mice, with increased IBA1 protein in TREM2R47H hippocampi, correlating with worse memory test performance. TREM2 mRNA levels increased with age in PWoH but not in PWH. Cannabidiol (CBD) treatment increased TREM2 mRNA alone and with IL1β. RNA-seq showed the upregulation of TREM2-related transcripts in cannabis-using PWH compared to naïve controls. IL1β increased sTREM2 and reduced membrane-bound TREM2, effects partially reversed by CBD. These findings suggest HIV affects TREM2 expression modulated by cannabis and CBD, offering insights for therapeutic strategies.
Collapse
Affiliation(s)
- Bryant Avalos
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jacqueline R. Kulbe
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Mary K. Ford
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Anna Elizabeth Laird
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Kyle Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Michael Mante
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Jazmin B. Florio
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ali Boustani
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | | | - Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - David J. Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert A. Rissman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Scott L. Letendre
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Jennifer Iudicello
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| |
Collapse
|
2
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
3
|
Abstract
Microtubules (MTs) form rapidly adaptable, complex intracellular networks of filaments that not only provide structural support, but also form the tracks along which motors traffic macromolecular cargos to specific sub-cellular sites. These dynamic arrays play a central role in regulating various cellular processes including cell shape and motility as well as cell division and polarization. Given their complex organization and functional importance, MT arrays are carefully controlled by many highly specialized proteins that regulate the nucleation of MT filaments at distinct sites, their dynamic growth and stability, and their engagement with other subcellular structures and cargoes destined for transport. This review focuses on recent advances in our understanding of how MTs and their regulatory proteins function, including their active targeting and exploitation, during infection by viruses that utilize a wide variety of replication strategies that occur within different cellular sub-compartments or regions of the cell.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; HIV Clinical and Translational Research, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
4
|
Renault C, Veyrenche N, Mennechet F, Bedin AS, Routy JP, Van de Perre P, Reynes J, Tuaillon E. Th17 CD4+ T-Cell as a Preferential Target for HIV Reservoirs. Front Immunol 2022; 13:822576. [PMID: 35197986 PMCID: PMC8858966 DOI: 10.3389/fimmu.2022.822576] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Among CD4+ T-cells, T helper 17 (Th17) cells play a sentinel role in the defense against bacterial/fungal pathogens at mucosal barriers. However, Th17 cells are also highly susceptible to HIV-1 infection and are rapidly depleted from gut mucosal sites, causing an imbalance of the Th17/Treg ratio and impairing cytokines production. Consequently, damage to the gut mucosal barrier leads to an enhanced microbial translocation and systemic inflammation, a hallmark of HIV-1 disease progression. Th17 cells’ expression of mucosal homing receptors (CCR6 and α4β7), as well as HIV receptors and co-receptors (CD4, α4β7, CCR5, and CXCR4), contributes to susceptibility to HIV infection. The up-regulation of numerous intracellular factors facilitating HIV production, alongside the downregulation of factors inhibiting HIV, helps to explain the frequency of HIV DNA within Th17 cells. Th17 cells harbor long-lived viral reservoirs in people living with HIV (PLWH) receiving antiretroviral therapy (ART). Moreover, cell longevity and the proliferation of a fraction of Th17 CD4 T cells allow HIV reservoirs to be maintained in ART patients.
Collapse
Affiliation(s)
- Constance Renault
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Nicolas Veyrenche
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
| | - Franck Mennechet
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Anne-Sophie Bedin
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Research Institute and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
| | - Jacques Reynes
- Virology Laboratory, CHU de Montpellier, Montpellier, France
- IRD UMI 233, INSERM U1175, University of Montpellier, Montpellier, France
- Infectious Diseases Department, CHU de Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM U1058, University of Montpellier, Etablissement Français du Sang, Antilles University, Montpellier, France
- Virology Laboratory, CHU de Montpellier, Montpellier, France
- *Correspondence: Edouard Tuaillon,
| |
Collapse
|
5
|
Sirakanyan S, Arabyan E, Hakobyan A, Hakobyan T, Chilingaryan G, Sahakyan H, Sargsyan A, Arakelov G, Nazaryan K, Izmailyan R, Abroyan L, Karalyan Z, Arakelova E, Hakobyan E, Hovakimyan A, Serobian A, Neves M, Ferreira J, Ferreira F, Zakaryan H. A new microtubule-stabilizing agent shows potent antiviral effects against African swine fever virus with no cytotoxicity. Emerg Microbes Infect 2021; 10:783-796. [PMID: 33706677 PMCID: PMC8079068 DOI: 10.1080/22221751.2021.1902751] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
African swine fever virus (ASFV) is the causal agent of a fatal disease of domestic swine for which no effective antiviral drugs are available. Recently, it has been shown that microtubule-targeting agents hamper the infection cycle of different viruses. In this study, we conducted in silico screening against the colchicine binding site (CBS) of tubulin and found three new compounds with anti-ASFV activity. The most promising antiviral compound (6b) reduced ASFV replication in a dose-dependent manner (IC50 = 19.5 μM) with no cellular (CC50 > 500 μM) and animal toxicity (up to 100 mg/kg). Results also revealed that compound 6b interfered with ASFV attachment, internalization and egress, with time-of-addition assays, showing that compound 6b has higher antiviral effects when added within 2-8 h post-infection. This compound significantly inhibited viral DNA replication and disrupted viral protein synthesis. Experiments with ASFV-infected porcine macrophages disclosed that antiviral effects of the compound 6b were similar to its effects in Vero cells. Tubulin polymerization assay and confocal microscopy demonstrated that compound 6b promoted tubulin polymerization, acting as a microtubule-stabilizing, rather than a destabilizing agent in cells. In conclusion, this work emphasizes the idea that microtubules can be targets for drug development against ASFV.
Collapse
Affiliation(s)
- Samvel Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan, Armenia
| | - Erik Arabyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Astghik Hakobyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Tamara Hakobyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Garri Chilingaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Harutyun Sahakyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Arsen Sargsyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Grigor Arakelov
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Karen Nazaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
- Russian-Armenian University, Yerevan, Armenia
| | - Roza Izmailyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Liana Abroyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Zaven Karalyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
- Department of Medical Biology, Yerevan State Medical University, Yerevan, Armenia
| | - Elina Arakelova
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Elmira Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan, Armenia
| | - Anush Hovakimyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS, Institute of Fine Organic Chemistry of A.L. Mnjoyan, Yerevan, Armenia
| | - Andre Serobian
- Advanced Solutions Center, Foundation for Armenian Science and Technology, Yerevan, Armenia
| | - Marco Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Fernando Ferreira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Hovakim Zakaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of NAS, Yerevan, Armenia
- Denovo Sciences, Yerevan, Armenia
| |
Collapse
|
6
|
Reif T, Dyckhoff G, Hohenberger R, Kolbe CC, Gruell H, Klein F, Latz E, Stolp B, Fackler OT. Contact-dependent inhibition of HIV-1 replication in ex vivo human tonsil cultures by polymorphonuclear neutrophils. CELL REPORTS MEDICINE 2021; 2:100317. [PMID: 34195682 PMCID: PMC8233696 DOI: 10.1016/j.xcrm.2021.100317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/02/2021] [Accepted: 05/20/2021] [Indexed: 12/01/2022]
Abstract
Polymorphonuclear neutrophils (PMNs), the most abundant white blood cells, are recruited rapidly to sites of infection to exert potent anti-microbial activity. Information regarding their role in infection with human immunodeficiency virus (HIV) is limited. Here we report that addition of PMNs to HIV-infected cultures of human tonsil tissue or peripheral blood mononuclear cells causes immediate and long-lasting suppression of HIV-1 spread and virus-induced depletion of CD4 T cells. This inhibition of HIV-1 spread strictly requires PMN contact with infected cells and is not mediated by soluble factors. 2-Photon (2PM) imaging visualized contacts of PMNs with HIV-1-infected CD4 T cells in tonsil tissue that do not result in lysis or uptake of infected cells. The anti-HIV activity of PMNs also does not involve degranulation, formation of neutrophil extracellular traps, or integrin-dependent cell communication. These results reveal that PMNs efficiently blunt HIV-1 replication in primary target cells and tissue by an unconventional mechanism. PMNs blunt HIV-1 spread and CD4 T cell depletion in HIV-infected human tonsils Suppression of HIV-1 replication by PMNs requires cell-cell contacts PMNs do not affect HIV via effector functions such as NETosis or degranulation PMNs exert unconventional antiviral activity
Collapse
Affiliation(s)
- Tatjana Reif
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gerhard Dyckhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ralph Hohenberger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Carl-Christian Kolbe
- Institute of Innate Immunity, Department of Innate Immunity and Metaflammation, University Hospital Bonn, 53127 Bonn, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Eicke Latz
- Institute of Innate Immunity, Department of Innate Immunity and Metaflammation, University Hospital Bonn, 53127 Bonn, Germany
| | - Bettina Stolp
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Ma L, Zhang H, Zhang Y, Li H, An M, Zhao B, Ding H, Xu J, Shang H, Han X. Integrated analysis of lncRNA, miRNA and mRNA profiles reveals potential lncRNA functions during early HIV infection. J Transl Med 2021; 19:135. [PMID: 33794921 PMCID: PMC8015739 DOI: 10.1186/s12967-021-02802-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) can regulate gene expression in a cis-regulatory fashion or as “microRNA sponges”. However, the expression and functions of lncRNAs during early human immunodeficiency virus (HIV) infection (EHI) remain unclear. Methods 3 HAART-naive EHI patients and 3 healthy controls (HCs) were recruited in this study to perform RNA sequencing and microRNA (miRNA) sequencing. The expression profiles of lncRNAs, mRNAs and miRNAs were obtained, and the potential roles of lncRNAs were analysed based on discovering lncRNA cis-regulatory target mRNAs and constructing lncRNA–miRNA–mRNA competing endogenous RNA (ceRNA) networks. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on 175 lncRNA-associated differentially expressed (DE) mRNAs to investigate the potential functions of DE lncRNAs in ceRNA networks. Results A total of 242 lncRNAs, 1240 mRNAs and 21 mature known miRNAs were determined as differentially expressed genes in HAART-naive EHI patients compared to HCs. Among DE lncRNAs, 44 lncRNAs were predicted to overlap with 41 target mRNAs, and 107 lncRNAs might regulate their nearby DE mRNAs. Two DE lncRNAs might regulate their cis-regulatory target mRNAs BTLA and ZAP70, respectively, which were associated with immune activation. In addition, the ceRNA networks comprised 160 DE lncRNAs, 21 DE miRNAs and 175 DE mRNAs. Seventeen DE lncRNAs were predicted to regulate HIF1A and TCF7L2, which are involved in the process of HIV-1 replication. Twenty DE lncRNAs might share miRNA response elements (MREs) with FOS, FOSB and JUN, which are associated with both immune activation and HIV-1 replication. Conclusions This study revealed that lncRNAs might play a critical role in HIV-1 replication and immune activation during EHI. These novel findings are helpful for understanding of the pathogenesis of HIV infection and provide new insights into antiviral therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02802-9.
Collapse
Affiliation(s)
- Lianwei Ma
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Yue Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Minghui An
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Chander Y, Kumar R, Khandelwal N, Singh N, Shringi BN, Barua S, Kumar N. Role of p38 mitogen-activated protein kinase signalling in virus replication and potential for developing broad spectrum antiviral drugs. Rev Med Virol 2021; 31:1-16. [PMID: 33450133 DOI: 10.1002/rmv.2217] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play a key role in complex cellular processes such as proliferation, development, differentiation, transformation and apoptosis. Mammals express at least four distinctly regulated groups of MAPKs which include extracellular signal-related kinases (ERK)-1/2, p38 proteins, Jun amino-terminal kinases (JNK1/2/3) and ERK5. p38 MAPK is activated by a wide range of cellular stresses and modulates activity of several downstream kinases and transcription factors which are involved in regulating cytoskeleton remodeling, cell cycle modulation, inflammation, antiviral response and apoptosis. In viral infections, activation of cell signalling pathways is part of the cellular defense mechanism with the basic aim of inducing an antiviral state. However, viruses can exploit enhanced cell signalling activities to support various stages of their replication cycles. Kinase activity can be inhibited by small molecule chemical inhibitors, so one strategy to develop antiviral drugs is to target these cellular signalling pathways. In this review, we provide an overview on the current understanding of various cellular and viral events regulated by the p38 signalling pathway, with a special emphasis on targeting these events for antiviral drug development which might identify candidates with broad spectrum activity.
Collapse
Affiliation(s)
- Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Biotechnology, GLA University, Mathura, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Brij Nandan Shringi
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
9
|
Abstract
HIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. The HIV-1 envelope spike gp160 is partially required for viral transcytosis across the BBB endothelium. But do antibodies developing in infected individuals and targeting the HIV-1 gp160 glycoproteins block HIV-1 transcytosis through the BBB? We addressed this issue and discovered that anti-gp160 antibodies do not block HIV-1 transport; instead, free viruses and those in complex with antibodies can transit across BBB endothelial cells. Importantly, we found that only neutralizing antibodies could inhibit posttranscytosis viral infectivity, highlighting their ability to protect susceptible brain cells from HIV-1 infection. HIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. Here, we examined whether antibodies targeting the HIV-1 envelope glycoproteins interfere with the transcytosis of virions across the human BBB endothelium. We found that although the viral envelope spike gp160 is required for optimal endothelial cell endocytosis, no anti-gp160 antibodies blocked the BBB transcytosis of HIV-1 in vitro. Instead, both free viruses and those in complex with antibodies transited across endothelial cells in the BBB model, as observed by confocal microscopy. HIV-1 infectious capacity was considerably altered by the transcytosis process but still detectable, even in the presence of nonneutralizing antibodies. Only virions bound by neutralizing antibodies lacked posttranscytosis infectivity. Overall, our data support the role of neutralizing antibodies in protecting susceptible brain cells from HIV-1 infection despite their inability to inhibit viral BBB endocytic transport.
Collapse
|
10
|
De Martini W, Rahman R, Ojegba E, Jungwirth E, Macias J, Ackerly F, Fowler M, Cottrell J, Chu T, Chang SL. Kinases: Understanding Their Role in HIV Infection. WORLD JOURNAL OF AIDS 2019; 9:142-160. [PMID: 32257606 PMCID: PMC7118713 DOI: 10.4236/wja.2019.93011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Antiviral drugs currently on the market primarily target proteins encoded by specific viruses. The drawback of these drugs is that they lack antiviral mechanisms that account for resistance or viral mutation. Thus, there is a pressing need for researchers to explore and investigate new therapeutic agents with other antiviral strategies. Viruses such as the human immunodeficiency virus (HIV) alter canonical signaling pathways to create a favorable biochemical environment for infectivity. We used Qiagen Ingenuity Pathway Analysis (IPA) software to review the function of several cellular kinases and the resulting perturbed signaling pathways during HIV infection such as NF-κB signaling. These host cellular kinases such as ADK, PKR, MAP3K11 are involved during HIV infection at various stages of the life cycle. Additionally IPA analysis indicated that these modified host cellular kinases are known to have interactions with each other especially AKT1, a serine/threonine kinase involved in multiple pathways. We present a list of cellular host kinases and other proteins that interact with these kinases. This approach to understanding the relationship between HIV infection and kinase activity may introduce new drug targets to arrest HIV infectivity.
Collapse
Affiliation(s)
- William De Martini
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Roksana Rahman
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Eduvie Ojegba
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Emily Jungwirth
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Jasmine Macias
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Frederick Ackerly
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Mia Fowler
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Tinchun Chu
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Sulie L. Chang
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
- Institute of NeuroImmune Pharmacology, South Orange, NJ, USA
| |
Collapse
|
11
|
Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res 2019; 265:115-121. [PMID: 30905686 DOI: 10.1016/j.virusres.2019.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review we will discuss general cell contact-dependent mechanisms that HIV-1 utilizes for its spread and the evidence pointing to cell-to-cell transmission as a mechanism for the establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- Kyle D Pedro
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Andrew J Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA.
| |
Collapse
|
12
|
Agosto LM, Henderson AJ. CD4 + T Cell Subsets and Pathways to HIV Latency. AIDS Res Hum Retroviruses 2018; 34:780-789. [PMID: 29869531 DOI: 10.1089/aid.2018.0105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Latent infection of CD4+ T cells is the main barrier to eradicating HIV-1 infection from infected patients. The cellular and molecular mechanisms involved in the establishment and maintenance of latent infection are directly linked to the transcriptional program of the different CD4+ T cell subsets targeted by the virus. In this review, we provide an overview of how T cell activation, T cell differentiation into functional subsets, and the mode of initial viral infection influence HIV proviral transcription and entry into latency.
Collapse
Affiliation(s)
- Luis M. Agosto
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Andrew J. Henderson
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
13
|
Dufloo J, Bruel T, Schwartz O. HIV-1 cell-to-cell transmission and broadly neutralizing antibodies. Retrovirology 2018; 15:51. [PMID: 30055632 PMCID: PMC6064125 DOI: 10.1186/s12977-018-0434-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
HIV-1 spreads through contacts between infected and target cells. Polarized viral budding at the contact site forms the virological synapse. Additional cellular processes, such as nanotubes, filopodia, virus accumulation in endocytic or phagocytic compartments promote efficient viral propagation. Cell-to-cell transmission allows immune evasion and likely contributes to HIV-1 spread in vivo. Anti-HIV-1 broadly neutralizing antibodies (bNAbs) defeat the majority of circulating viral strains by binding to the viral envelope glycoprotein (Env). Several bNAbs have entered clinical evaluation during the last years. It is thus important to understand their mechanism of action and to determine how they interact with infected cells. In experimental models, HIV-1 cell-to-cell transmission is sensitive to neutralization, but the effect of antibodies is often less marked than during cell-free infection. This may be due to differences in the conformation or accessibility of Env at the surface of virions and cells. In this review, we summarize the current knowledge on HIV-1 cell-to-cell transmission and discuss the role of bNAbs during this process.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS-UMR3569, Paris, France
| | - Timothée Bruel
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS-UMR3569, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France. .,CNRS-UMR3569, Paris, France. .,Vaccine Research Institute, Créteil, France.
| |
Collapse
|
14
|
Abstract
While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues.
Collapse
Affiliation(s)
- Lucie Bracq
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Maorong Xie
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Serge Benichou
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Jérôme Bouchet
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses 2018; 10:v10020065. [PMID: 29415518 PMCID: PMC5850372 DOI: 10.3390/v10020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells such as monocytes, dendritic cells (DC) and macrophages (MΦ) are key components of the innate immune system contributing to the maintenance of tissue homeostasis and the development/resolution of immune responses to pathogens. Monocytes and DC, circulating in the blood or infiltrating various lymphoid and non-lymphoid tissues, are derived from distinct bone marrow precursors and are typically short lived. Conversely, recent studies revealed that subsets of tissue resident MΦ are long-lived as they originate from embryonic/fetal precursors that have the ability to self-renew during the life of an individual. Pathogens such as the human immunodeficiency virus type 1 (HIV-1) highjack the functions of myeloid cells for viral replication (e.g., MΦ) or distal dissemination and cell-to-cell transmission (e.g., DC). Although the long-term persistence of HIV reservoirs in CD4+ T-cells during viral suppressive antiretroviral therapy (ART) is well documented, the ability of myeloid cells to harbor replication competent viral reservoirs is still a matter of debate. This review summarizes the current knowledge on the biology of monocytes and DC during homeostasis and in the context of HIV-1 infection and highlights the importance of future studies on long-lived resident MΦ to HIV persistence in ART-treated patients.
Collapse
|
16
|
Ospina Stella A, Turville S. All-Round Manipulation of the Actin Cytoskeleton by HIV. Viruses 2018; 10:v10020063. [PMID: 29401736 PMCID: PMC5850370 DOI: 10.3390/v10020063] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.
Collapse
Affiliation(s)
- Alberto Ospina Stella
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| | - Stuart Turville
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| |
Collapse
|
17
|
Zhou Z, Xu L, Sennepin A, Federici C, Ganor Y, Tudor D, Damotte D, Barry Delongchamps N, Zerbib M, Bomsel M. The HIV-1 viral synapse signals human foreskin keratinocytes to secrete thymic stromal lymphopoietin facilitating HIV-1 foreskin entry. Mucosal Immunol 2018; 11:158-171. [PMID: 28443609 DOI: 10.1038/mi.2017.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/01/2017] [Indexed: 02/04/2023]
Abstract
The complexity of signal transduction resulting from the contact of human immunodeficiency virus type 1 (HIV-1)-infected cells and mucosal cells has hampered our comprehension of HIV-1 mucosal entry. Such process is driven efficiently only by viral synapse contacts, whereas cell-free HIV-1 remains poorly infectious. Using CD4+ T-cells expressing only HIV-1 envelope inoculated on human adult foreskin tissues, we designed methodologies to identify the signals transduced in foreskin keratinocytes following HIV-1-envelope-dependent viral synapse formation. We find that the viral synapse activates the MyD88-independent TLR-4-nuclear factor (NfκB) signaling pathway in keratinocytes and the subsequent secretion of cytokines including thymic stromal lymphopoietin (TSLP), a cytokine linking innate and T-helper type 2-adaptive immune responses. Moreover, the viral synapse upregulates the non-coding microRNA miR-375, known to control TSLP, and transfection of keratinocytes with anti-miR-375 blocks significantly TSLP secretion. Thus, the secretion of TSLP by keratinocytes is induced by the viral synapse in a miR-375 controlled manner. At the tissue level, these signals translate into the epidermal redistribution of Langerhans cells and formation of conjugates with T-cells, recapitulating the initial events observed in human foreskin infection by HIV-1. These results open new possibilities for designing strategies to block mucosal HIV-1 transmission, the major pathway by which HIV-1 spreads worldwide.
Collapse
Affiliation(s)
- Z Zhou
- Mucosal Entry of HIV-1 and Mucosal Immunity, Infection, Immunity and Inflammation Department, Cochin Institute, Université Paris Descartes, Paris, France.,INSERM, U1016, Paris, France.,CNRS, UMR 8104, Paris, France
| | - L Xu
- Mucosal Entry of HIV-1 and Mucosal Immunity, Infection, Immunity and Inflammation Department, Cochin Institute, Université Paris Descartes, Paris, France.,INSERM, U1016, Paris, France.,CNRS, UMR 8104, Paris, France
| | - A Sennepin
- Mucosal Entry of HIV-1 and Mucosal Immunity, Infection, Immunity and Inflammation Department, Cochin Institute, Université Paris Descartes, Paris, France.,INSERM, U1016, Paris, France.,CNRS, UMR 8104, Paris, France
| | - C Federici
- INSERM, U1016, Paris, France.,CNRS, UMR 8104, Paris, France
| | - Y Ganor
- Mucosal Entry of HIV-1 and Mucosal Immunity, Infection, Immunity and Inflammation Department, Cochin Institute, Université Paris Descartes, Paris, France.,INSERM, U1016, Paris, France.,CNRS, UMR 8104, Paris, France
| | - D Tudor
- Mucosal Entry of HIV-1 and Mucosal Immunity, Infection, Immunity and Inflammation Department, Cochin Institute, Université Paris Descartes, Paris, France.,INSERM, U1016, Paris, France.,CNRS, UMR 8104, Paris, France
| | - D Damotte
- Anatomy and Pathological Cytology Service, GH Cochin-St Vincent de Paul, Paris, France
| | | | - M Zerbib
- Urology Service, GH Cochin-St Vincent de Paul, Paris, France
| | - M Bomsel
- Mucosal Entry of HIV-1 and Mucosal Immunity, Infection, Immunity and Inflammation Department, Cochin Institute, Université Paris Descartes, Paris, France.,INSERM, U1016, Paris, France.,CNRS, UMR 8104, Paris, France
| |
Collapse
|
18
|
Len ACL, Starling S, Shivkumar M, Jolly C. HIV-1 Activates T Cell Signaling Independently of Antigen to Drive Viral Spread. Cell Rep 2017; 18:1062-1074. [PMID: 28122231 PMCID: PMC5289937 DOI: 10.1016/j.celrep.2016.12.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 11/24/2022] Open
Abstract
HIV-1 spreads between CD4 T cells most efficiently through virus-induced cell-cell contacts. To test whether this process potentiates viral spread by activating signaling pathways, we developed an approach to analyze the phosphoproteome in infected and uninfected mixed-population T cells using differential metabolic labeling and mass spectrometry. We discovered HIV-1-induced activation of signaling networks during viral spread encompassing over 200 cellular proteins. Strikingly, pathways downstream of the T cell receptor were the most significantly activated, despite the absence of canonical antigen-dependent stimulation. The importance of this pathway was demonstrated by the depletion of proteins, and we show that HIV-1 Env-mediated cell-cell contact, the T cell receptor, and the Src kinase Lck were essential for signaling-dependent enhancement of viral dissemination. This study demonstrates that manipulation of signaling at immune cell contacts by HIV-1 is essential for promoting virus replication and defines a paradigm for antigen-independent T cell signaling. Unbiased global analysis of T cell signaling changes during HIV-1 cell-cell spread Experimental system to map dynamic signaling changes in mixed cell populations over time More than 200 host cell proteins are modified as HIV-1 disseminates between T cells HIV-1 activates antigen-independent TCR signaling to drive viral spread
Collapse
Affiliation(s)
- Alice C L Len
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Shimona Starling
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Maitreyi Shivkumar
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| |
Collapse
|
19
|
Khazaei B, Sartakhti JS, Manshaei MH, Zhu Q, Sadeghi M, Mousavi SR. HIV-1-infected T-cells dynamics and prognosis: An evolutionary game model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 152:1-14. [PMID: 29054249 DOI: 10.1016/j.cmpb.2017.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 07/01/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Understanding the dynamics of human immunodeficiency virus (HIV) is essential for depicting, developing, and investigating effective treatment strategies. HIV infects several types of immune cells, but its main target is to destroy helper T-cells. In the lymph nodes, the infected T-cells interact with each other and their environment to obtain more resources. According to infectivity and replicative capacity of T-cells in the HIV infection process, they can be divided into four phenotypes. Although genetic mutations in the reverse transcription that beget these phenotypes are random, the framework by which a phenotype become favored is affected by the environment and neighboring phenotypes. Moreover, the HIV disease has all components of an evolutionary process, including replication, mutation, and selection. METHODS We propose a novel structure-based game-theoretic model for the evolution of HIV-1-Infected CD4+T-cells and invasion of the immune system. We discuss the theoretical basis of the stable equilibrium states of the evolutionary dynamics of four T-cells types as well as its significant results to understand and control HIV infection. The results include the importance of genetic variations and the process of establishing evolutionary dynamics of the virus quasispecies. RESULTS Our results show that there is a direct dependency between some parameters such as mutation rates and the stability of equilibrium states in the HIV infection. This is an interesting result because these parameters can be changed by some pharmacotherapies and alternative treatments. Our model indicates that in an appropriate treatment the relative frequency of the wild type of virus quasispecies can be decreased in the population. Consequently, this can cause delaying the emergence of the AIDS phase. To assess the model, we investigate two new treatments for HIV. The results show that our model can predict the treatment results. CONCLUSIONS The paper shows that a structured-based evolutionary game theory can model the evolutionary dynamics of the infected T-cells and virus quasispecies. The model predicts certain aspects of the HIV infection process under several treatments.
Collapse
Affiliation(s)
- Bahareh Khazaei
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Mohammad Hossein Manshaei
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Quanyan Zhu
- Department of Electrical and Computer Engineering, Polytechnic School of Engineering, New York University, NY, USA
| | - Mehdi Sadeghi
- National Institute of Genetic Engineering and Biotechnology and the School of Biological Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Seyed Rasoul Mousavi
- Computer Engineering Department, Amirkabir University of Technology and the Institute for Research in Fundamental Sciences, Tehran, Iran
| |
Collapse
|
20
|
Abstract
Microtubules (MTs) form a rapidly adaptable network of filaments that radiate throughout the cell. These dynamic arrays facilitate a wide range of cellular processes, including the capture, transport, and spatial organization of cargos and organelles, as well as changes in cell shape, polarity, and motility. Nucleating from MT-organizing centers, including but by no means limited to the centrosome, MTs undergo rapid transitions through phases of growth, pause, and catastrophe, continuously exploring and adapting to the intracellular environment. Subsets of MTs can become stabilized in response to environmental cues, acquiring distinguishing posttranslational modifications and performing discrete functions as specialized tracks for cargo trafficking. The dynamic behavior and organization of the MT array is regulated by MT-associated proteins (MAPs), which include a subset of highly specialized plus-end-tracking proteins (+TIPs) that respond to signaling cues to alter MT behavior. As pathogenic cargos, viruses require MTs to transport to and from their intracellular sites of replication. While interactions with and functions for MT motor proteins are well characterized and extensively reviewed for many viruses, this review focuses on MT filaments themselves. Changes in the spatial organization and dynamics of the MT array, mediated by virus- or host-induced changes to MT regulatory proteins, not only play a central role in the intracellular transport of virus particles but also regulate a wider range of processes critical to the outcome of infection.
Collapse
|
21
|
Starling S, Jolly C. LFA-1 Engagement Triggers T Cell Polarization at the HIV-1 Virological Synapse. J Virol 2016; 90:9841-9854. [PMID: 27558417 PMCID: PMC5068534 DOI: 10.1128/jvi.01152-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/15/2016] [Indexed: 12/01/2022] Open
Abstract
HIV-1 efficiently disseminates by cell-cell spread at intercellular contacts called virological synapses (VS), where the virus preferentially assembles and buds. Cell-cell contact triggers active polarization of organelles and viral proteins within infected cells to the contact site to support efficient VS formation and HIV-1 spread; critically, however, which cell surface protein triggers contact-induced polarization at the VS remains unclear. Additionally, the mechanism by which the HIV-1 envelope glycoprotein (Env) is recruited to the VS remains ill defined. Here, we use a reductionist bead-coupled antibody assay as a model of the VS and show that cross-linking the integrin LFA-1 alone is sufficient to induce active T cell polarization and recruitment of the microtubule organizing center (MTOC) in HIV-1-infected cells. Mutant cell lines coupled with inhibitors demonstrated that LFA-1-induced polarization was dependent on the T cell kinase ZAP70. Notably, immunofluorescent staining of viral proteins revealed an accumulation of surface Env at sites of LFA-1 engagement, with intracellular Env localized to a Golgi compartment proximal to the polarized MTOC. Furthermore, blocking LFA-1-induced MTOC polarization through ZAP70 inhibition prevented intracellular Env polarization. Taken together, these data reveal that LFA-1 is a key determinant in inducing dynamic T cell remodeling to the VS and suggest a model in which LFA-1 engagement triggers active polarization of the MTOC and the associated Env-containing secretory apparatus to sites of cell-cell contact to support polarized viral assembly and egress for efficient cell-cell spread. IMPORTANCE HIV-1 causes AIDS by spreading within immune cells and depletion of CD4 T lymphocytes. Rapid spread between these cells occurs by highly efficient cell-cell transmission that takes place at virological synapses (VS). VS are characterized by striking T cell remodeling that is spatially associated with polarized virus assembly and budding at sites of cell contact. Here, we show that the integrin LFA-1 triggers organelle polarization and viral protein recruitment, facilitating formation of the VS, and that this requires the T cell kinase ZAP70. Taken together, these data suggest a mechanism by which HIV-1-infected T cells sense and respond to cell contact to polarize viral egress and promote cell-cell spread. Understanding how cell-cell spread is regulated may help reveal therapeutic targets to specifically block this mode of HIV-1 dissemination.
Collapse
Affiliation(s)
- Shimona Starling
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
22
|
Dirk BS, Van Nynatten LR, Dikeakos JD. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques. Viruses 2016; 8:v8100288. [PMID: 27775563 PMCID: PMC5086620 DOI: 10.3390/v8100288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022] Open
Abstract
Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED) and photoactivation and localization microscopy (PALM) have been instrumental in studying viral assembly and release through both cell-cell transmission and cell-free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle.
Collapse
Affiliation(s)
- Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Logan R Van Nynatten
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
23
|
Viruses exploit the tissue physiology of the host to spread in vivo. Curr Opin Cell Biol 2016; 41:81-90. [PMID: 27149407 DOI: 10.1016/j.ceb.2016.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023]
Abstract
Viruses are pathogens that strictly depend on their host for propagation. Over years of co-evolution viruses have become experts in exploiting the host cell biology and physiology to ensure efficient replication and spread. Here, we will first summarize the concepts that have emerged from in vitro cell culture studies to understand virus spread. We will then review the results from studies in living animals that reveal how viruses exploit the natural flow of body fluids, specific tissue architecture, and patterns of cell circulation and migration to spread within the host. Understanding tissue physiology will be critical for the design of antiviral strategies that prevent virus dissemination.
Collapse
|
24
|
Cleret-Buhot A, Zhang Y, Planas D, Goulet JP, Monteiro P, Gosselin A, Wacleche VS, Tremblay CL, Jenabian MA, Routy JP, El-Far M, Chomont N, Haddad EK, Sekaly RP, Ancuta P. Identification of novel HIV-1 dependency factors in primary CCR4(+)CCR6(+)Th17 cells via a genome-wide transcriptional approach. Retrovirology 2015; 12:102. [PMID: 26654242 PMCID: PMC4676116 DOI: 10.1186/s12977-015-0226-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/22/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The HIV-1 infection is characterized by profound CD4(+) T cell destruction and a marked Th17 dysfunction at the mucosal level. Viral suppressive antiretroviral therapy restores Th1 but not Th17 cells. Although several key HIV dependency factors (HDF) were identified in the past years via genome-wide siRNA screens in cell lines, molecular determinants of HIV permissiveness in primary Th17 cells remain to be elucidated. RESULTS In an effort to orient Th17-targeted reconstitution strategies, we investigated molecular mechanisms of HIV permissiveness in Th17 cells. Genome-wide transcriptional profiling in memory CD4(+) T-cell subsets enriched in cells exhibiting Th17 (CCR4(+)CCR6(+)), Th1 (CXCR3(+)CCR6(-)), Th2 (CCR4(+)CCR6(-)), and Th1Th17 (CXCR3(+)CCR6(+)) features revealed remarkable transcriptional differences between Th17 and Th1 subsets. The HIV-DNA integration was superior in Th17 versus Th1 upon exposure to both wild-type and VSV-G-pseudotyped HIV; this indicates that post-entry mechanisms contribute to viral replication in Th17. Transcripts significantly enriched in Th17 versus Th1 were previously associated with the regulation of TCR signaling (ZAP-70, Lck, and CD96) and Th17 polarization (RORγt, ARNTL, PTPN13, and RUNX1). A meta-analysis using the NCBI HIV Interaction Database revealed a set of Th17-specific HIV dependency factors (HDFs): PARG, PAK2, KLF2, ITGB7, PTEN, ATG16L1, Alix/AIP1/PDCD6IP, LGALS3, JAK1, TRIM8, MALT1, FOXO3, ARNTL/BMAL1, ABCB1/MDR1, TNFSF13B/BAFF, and CDKN1B. Functional studies demonstrated an increased ability of Th17 versus Th1 cells to respond to TCR triggering in terms of NF-κB nuclear translocation/DNA-binding activity and proliferation. Finally, RNA interference studies identified MAP3K4 and PTPN13 as two novel Th17-specific HDFs. CONCLUSIONS The transcriptional program of Th17 cells includes molecules regulating HIV replication at multiple post-entry steps that may represent potential targets for novel therapies aimed at protecting Th17 cells from infection and subsequent depletion in HIV-infected subjects.
Collapse
Affiliation(s)
- Aurélie Cleret-Buhot
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Yuwei Zhang
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Delphine Planas
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | | | - Patricia Monteiro
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Annie Gosselin
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Vanessa Sue Wacleche
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Cécile L Tremblay
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Mohammad-Ali Jenabian
- Département des sciences biologiques, Université du Québec à Montréal, Montreal, QC, Canada.
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada. .,Research Institute, McGill University Health Centre, Montreal, QC, Canada. .,Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.
| | - Mohamed El-Far
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Nicolas Chomont
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| | - Elias K Haddad
- Division of infectious Diseases and HIV Medicine, Drexel University, Philadelphia, PA, USA.
| | | | - Petronela Ancuta
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada. .,CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, R09.416, Montreal, QUÉBEC, H2X 0A9, Canada.
| |
Collapse
|
25
|
HIV-1 Cell-Free and Cell-to-Cell Infections Are Differentially Regulated by Distinct Determinants in the Env gp41 Cytoplasmic Tail. J Virol 2015; 89:9324-37. [PMID: 26136566 DOI: 10.1128/jvi.00655-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The HIV-1 envelope (Env) glycoprotein mediates viral entry during both cell-free and cell-to-cell infection of CD4(+) T cells. The highly conserved long cytoplasmic tail (CT) of Env is required in a cell type-dependent manner for optimal infectivity of cell-free virus. To probe the role of the CT in cell-to-cell infection, we tested a panel of mutations in the CT region that maintain or attenuate cell-free infection to investigate whether the functions of the CT are conserved during cell-free and cell-to-cell infection. The mutations tested included truncations of structural motifs in the gp41 CT and two point mutations in lentiviral lytic peptide 3 (LLP-3) previously described as disrupting the infectivity of cell-free virus. We found that small truncations of 28 to 43 amino acids (aa) or two LLP-3 point mutations, YW_SL and LL_RQ, severely impaired single-round cell-free infectivity 10-fold or more relative to wild-type full-length CT. These mutants showed a modest 2-fold reduction in cell-to-cell infection assays. Conversely, large truncations of 93 to 124 aa severely impaired cell-to-cell infectivity 20-fold or more while resulting in a 50% increase in infectivity of cell-free viral particles when produced in 293T cells. Intermediate truncations of 46 to 90 aa showed profound impairment of both modes of infection. Our results show that the abilities of Env to support cell-free and cell-to-cell infection are genetically distinct. These differences are cell type dependent for large-CT-truncation mutants. Additionally, point mutants in LLP-3 can maintain multiround propagation from cell-to-cell in primary CD4(+) T cells. IMPORTANCE The functions of HIV Env gp41 CT remain poorly understood despite being widely studied in the context of cell-free infection. We have identified domains of the gp41 CT responsible for striking selective deficiencies in either cell-free or cell-to-cell infectivity. These differences may reflect a different intrinsic regulatory influence of the CT on cell-associated versus particle-associated Env or differential interaction with host or viral proteins. Our findings provide novel insight into the key regulatory potential of the gp41 CT in cell-free and cell-to-cell HIV-1 infection, particularly for short-truncation mutants of ≤43 amino acids or mutants with point mutations in the LLP-3 helical domain of the CT, which are able to propagate via cell-to-cell infection in the absence of infectious cell-free virus production. These mutants may also serve as tools to further define the contributions of cell-free and cell-to-cell infection in vitro and in vivo.
Collapse
|
26
|
Involvement of the Rac1-IRSp53-Wave2-Arp2/3 Signaling Pathway in HIV-1 Gag Particle Release in CD4 T Cells. J Virol 2015; 89:8162-81. [PMID: 26018170 DOI: 10.1128/jvi.00469-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/14/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED During HIV-1 assembly, the Gag viral proteins are targeted and assemble at the inner leaflet of the cell plasma membrane. This process could modulate the cortical actin cytoskeleton, located underneath the plasma membrane, since actin dynamics are able to promote localized membrane reorganization. In addition, activated small Rho GTPases are known for regulating actin dynamics and membrane remodeling. Therefore, the modulation of such Rho GTPase activity and of F-actin by the Gag protein during virus particle formation was considered. Here, we studied the implication of the main Rac1, Cdc42, and RhoA small GTPases, and some of their effectors, in this process. The effect of small interfering RNA (siRNA)-mediated Rho GTPases and silencing of their effectors on Gag localization, Gag membrane attachment, and virus-like particle production was analyzed by immunofluorescence coupled to confocal microscopy, membrane flotation assays, and immunoblot assays, respectively. In parallel, the effect of Gag expression on the Rac1 activation level was monitored by G-LISA, and the intracellular F-actin content in T cells was monitored by flow cytometry and fluorescence microscopy. Our results revealed the involvement of activated Rac1 and of the IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag membrane localization and particle release in T cells as well as a role for actin branching and polymerization, and this was solely dependent on the Gag viral protein. In conclusion, our results highlight a new role for the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in the late steps of HIV-1 replication in CD4 T lymphocytes. IMPORTANCE During HIV-1 assembly, the Gag proteins are targeted and assembled at the inner leaflet of the host cell plasma membrane. Gag interacts with specific membrane phospholipids that can also modulate the regulation of cortical actin cytoskeleton dynamics. Actin dynamics can promote localized membrane reorganization and thus can be involved in facilitating Gag assembly and particle formation. Activated small Rho GTPases and effectors are regulators of actin dynamics and membrane remodeling. We thus studied the effects of the Rac1, Cdc42, and RhoA GTPases and their specific effectors on HIV-1 Gag membrane localization and viral particle release in T cells. Our results show that activated Rac1 and the IRSp53-Wave2-Arp2/3 signaling pathway are involved in Gag plasma membrane localization and viral particle production. This work uncovers a role for cortical actin through the activation of Rac1 and the IRSp53/Wave2 signaling pathway in HIV-1 particle formation in CD4 T lymphocytes.
Collapse
|
27
|
Affiliation(s)
- Raymond A. Alvarez
- Division of Infectious Disease, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Maria Ines Barría
- Division of Infectious Disease, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Benjamin K. Chen
- Division of Infectious Disease, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Shimauchi T, Piguet V. DC-T cell virological synapses and the skin: novel perspectives in dermatology. Exp Dermatol 2014; 24:1-4. [PMID: 25039899 DOI: 10.1111/exd.12511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 01/13/2023]
Abstract
Virological synapses (VS) increase cell-to-cell viral transmission and facilitate propagation of human immunodeficiency virus type 1 (HIV-1) and human T-cell leukaemia virus type 1 (HTLV-1). VS formation also plays a more general role in viral replication and dissemination. VS have been observed in vitro and ex vivo between uninfected T cells and T cells infected with HIV-1 or HTLV-1. In addition, dendritic cells (DC) infected with HIV-1 also play an important role in viral transmission to uninfected CD4+ T cells via VS formation. Recent studies revealed that several DC subsets are also infected with HTLV-1. These findings may help explain the rapid dissemination of both viruses within secondary lymphoid tissues in vivo. VS also explain, at least in part, why HIV-1 can propagate in the mucosal sites during sexual transmission. Furthermore, in the case of HTLV-1, VS can potentially explain some of the features of HTLV-1-associated dermatitis as infected T cells in the skin contribute to the pathogenesis of this condition.
Collapse
Affiliation(s)
- Takatoshi Shimauchi
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, School of Medicine, Cardiff University and University Hospital of Wales, Cardiff, UK
| | | |
Collapse
|
29
|
Ezrin is a component of the HIV-1 virological presynapse and contributes to the inhibition of cell-cell fusion. J Virol 2014; 88:7645-58. [PMID: 24760896 DOI: 10.1128/jvi.00550-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During cell-to-cell transmission of HIV-1, viral and cellular proteins transiently accumulate at the contact zone between infected (producer) and uninfected (target) cells, forming the virological synapse. Rearrangements of the cytoskeleton in producer and target cells are required for proper targeting of viral and cellular components during synapse formation, yet little is known about how these processes are regulated, particularly within the producer cell. Since ezrin-radixin-moesin (ERM) proteins connect F-actin with integral and peripheral membrane proteins, are incorporated into virions, and interact with cellular components of the virological presynapse, we hypothesized that they play roles during the late stage of HIV-1 replication. Here we document that phosphorylated (i.e., active) ezrin specifically accumulates at the HIV-1 presynapse in T cell lines and primary CD4(+) lymphocytes. To investigate whether ezrin supports virus transmission, we sought to ablate ezrin expression in producer cells. While cells did not tolerate a complete knockdown of ezrin, even a modest reduction of ezrin expression (~50%) in HIV-1-producing cells led to the release of particles with impaired infectivity. Further, when cocultured with uninfected target cells, ezrin-knockdown producer cells displayed reduced accumulation of the tetraspanin CD81 at the synapse and fused more readily with target cells, thus forming syncytia. Such an outcome likely is not optimal for virus dissemination, as evidenced by the fact that, in vivo, only relatively few infected cells form syncytia. Thus, ezrin likely helps secure efficient virus spread not only by enhancing virion infectivity but also by preventing excessive membrane fusion at the virological synapse. IMPORTANCE While viruses, in principal, can propagate through successions of syncytia, HIV-1-infected cells in the majority of cases do not fuse with potential target cells during viral transmission. This mode of spread is coresponsible for key features of HIV-1 pathogenesis, including killing of bystander cells and establishment of latently infected T lymphocytes. Here we identify the ERM protein family member ezrin as a cellular factor that contributes to the inhibition of cell-cell fusion and thus to suppressing excessive syncytium formation. Our analyses further suggest that ezrin, which connects integral membrane proteins with actin, functions in concert with CD81, a member of the tetraspanin family of proteins. Additional evidence, documented here and elsewhere, suggests that ezrin and CD81 cooperate to prevent cytoskeleton rearrangements that need to take place during the fusion of cellular membranes.
Collapse
|
30
|
Clemente MI, Álvarez S, Serramía MJ, Martínez-Bonet M, Muñoz-Fernández MÁ. Prostaglandin E2 reduces the release and infectivity of new cell-free virions and cell-to-cell HIV-1 transfer. PLoS One 2014; 9:e85230. [PMID: 24586238 PMCID: PMC3934822 DOI: 10.1371/journal.pone.0085230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/25/2013] [Indexed: 12/23/2022] Open
Abstract
Background The course of human immunodeficiency virus type-1 (HIV-1) infection is influenced by a complex interplay between viral and host factors. HIV infection stimulates several proinflammatory genes, such as cyclooxigense-2 (COX-2), which leads to an increase in prostaglandin (PG) levels in the plasma of HIV-1-infected patients. These genes play an indeterminate role in HIV replication and pathogenesis. The effect of prostaglandin E2 (PGE2) on HIV infection is quite controversial and even contradictory, so we sought to determine the role of PGE2 and the signal transduction pathways involved in HIV infection to elucidate possible new targets for antiretrovirals. Results Our results suggest that PGE2 post-infection treatment acts in the late stages of the viral cycle to reduce HIV replication. Interestingly, viral protein synthesis was not affected, but a loss of progeny virus production was observed. No modulation of CD4 CXCR4 and CCR5 receptor expression, cell proliferation, or activation after PGE2 treatment was detected. Moreover, PGE2 induced an increase in intracellular cAMP (cyclic AMP) levels through the EP2/EP4 receptors. PGE2 effects were mimicked by dbcAMP and by a specific Epac (exchange protein directly activated by cyclic AMP) agonist, 8-Cpt-cAMP. Treatment with PGE2 increased Rap1 activity, decreased RhoA activity and subsequently reduced the polymerization of actin by approximately 30% compared with untreated cells. In connection with this finding, polarized viral assembly platforms enriched in Gag were disrupted, altering HIV cell-to-cell transfer and the infectivity of new virions. Conclusions Our results demonstrate that PGE2, through Epac and Rap activation, alters the transport of newly synthesized HIV-1 components to the assembly site, reducing the release and infectivity of new cell-free virions and cell-to-cell HIV-1 transfer.
Collapse
Affiliation(s)
- María Isabel Clemente
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Susana Álvarez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - María Jesús Serramía
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Marta Martínez-Bonet
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - María Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- * E-mail:
| |
Collapse
|
31
|
Trible RP, Narute P, Emert-Sedlak LA, Alvarado JJ, Atkins K, Thomas L, Kodama T, Yanamala N, Korotchenko V, Day BW, Thomas G, Smithgall TE. Discovery of a diaminoquinoxaline benzenesulfonamide antagonist of HIV-1 Nef function using a yeast-based phenotypic screen. Retrovirology 2013; 10:135. [PMID: 24229420 PMCID: PMC3874621 DOI: 10.1186/1742-4690-10-135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-1 Nef is a viral accessory protein critical for AIDS progression. Nef lacks intrinsic catalytic activity and binds multiple host cell signaling proteins, including Hck and other Src-family tyrosine kinases. Nef binding induces constitutive Hck activation that may contribute to HIV pathogenesis by promoting viral infectivity, replication and downregulation of cell-surface MHC-I molecules. In this study, we developed a yeast-based phenotypic screen to identify small molecules that inhibit the Nef-Hck complex. RESULTS Nef-Hck interaction was faithfully reconstituted in yeast cells, resulting in kinase activation and growth arrest. Yeast cells expressing the Nef-Hck complex were used to screen a library of small heterocyclic compounds for their ability to rescue growth inhibition. The screen identified a dihydrobenzo-1,4-dioxin-substituted analog of 2-quinoxalinyl-3-aminobenzene-sulfonamide (DQBS) as a potent inhibitor of Nef-dependent HIV-1 replication and MHC-I downregulation in T-cells. Docking studies predicted direct binding of DQBS to Nef which was confirmed in differential scanning fluorimetry assays with recombinant purified Nef protein. DQBS also potently inhibited the replication of HIV-1 NL4-3 chimeras expressing Nef alleles representative of all M-group HIV-1 clades. CONCLUSIONS Our findings demonstrate the utility of a yeast-based growth reversion assay for the identification of small molecule Nef antagonists. Inhibitors of Nef function discovered with this assay, such as DQBS, may complement the activity of current antiretroviral therapies by enabling immune recognition of HIV-infected cells through the rescue of cell surface MHC-I.
Collapse
Affiliation(s)
- Ronald P Trible
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Purushottam Narute
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - John Jeff Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Katelyn Atkins
- School of Medicine, Oregon Health and Science University, 97239, Portland, OR, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Toshiaki Kodama
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh School of Medicine, 15261, Pittsburgh, PA USA
| | - Vasiliy Korotchenko
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 15261, Pittsburgh, PA USA
| | - Billy W Day
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 15261, Pittsburgh, PA USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 15219, Pittsburgh, PA USA
| |
Collapse
|
32
|
Gaudin R, de Alencar BC, Arhel N, Benaroch P. HIV trafficking in host cells: motors wanted! Trends Cell Biol 2013; 23:652-62. [PMID: 24119663 DOI: 10.1016/j.tcb.2013.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 11/16/2022]
Abstract
Throughout the viral replication cycle, viral proteins, complexes, and particles need to be transported within host cells. These transport events are dependent on the host cell cytoskeleton and molecular motors. However, the mechanisms by which virus is trafficked along cytoskeleton filaments and how molecular motors are recruited and regulated to guarantee successful integration of the viral genome and production of new viruses has only recently begun to be understood. Recent studies on HIV have identified specific molecular motors involved in the trafficking of these viral particles. Here we review recent literature on the transport of HIV components in the cell, provide evidence for the identity and role of molecular motors in this process, and highlight how these trafficking events may be related to those occurring with other viruses.
Collapse
Affiliation(s)
- Raphaël Gaudin
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, 75248 Paris Cedex 05, France; INSERM, U932, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
33
|
Wei B, Han L, Abbink TEM, Groppelli E, Lim D, Thaker YR, Gao W, Zhai R, Wang J, Lever A, Jolly C, Wang H, Rudd CE. Immune adaptor ADAP in T cells regulates HIV-1 transcription and cell-cell viral spread via different co-receptors. Retrovirology 2013; 10:101. [PMID: 24047317 PMCID: PMC3851709 DOI: 10.1186/1742-4690-10-101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/12/2013] [Indexed: 11/25/2022] Open
Abstract
Background Immune cell adaptor protein ADAP (adhesion and degranulation-promoting adaptor protein) mediates aspects of T-cell adhesion and proliferation. Despite this, a connection between ADAP and infection by the HIV-1 (human immunodeficiency virus-1) has not been explored. Results In this paper, we show for the first time that ADAP and its binding to SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) regulate HIV-1 infection via two distinct mechanisms and co-receptors. siRNA down-regulation of ADAP, or expression of a mutant that is defective in associating to its binding partner SLP-76 (termed M12), inhibited the propagation of HIV-1 in T-cell lines and primary human T-cells. In one step, ADAP and its binding to SLP-76 were needed for the activation of NF-κB and its transcription of the HIV-1 long terminal repeat (LTR) in cooperation with ligation of co-receptor CD28, but not LFA-1. In a second step, the ADAP-SLP-76 module cooperated with LFA-1 to regulate conjugate formation between T-cells and dendritic cells or other T-cells as well as the development of the virological synapse (VS) and viral spread between immune cells. Conclusions These findings indicate that ADAP regulates two steps of HIV-1 infection cooperatively with two distinct receptors, and as such, serves as a new potential target in the blockade of HIV-1 infection.
Collapse
Affiliation(s)
- Bin Wei
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Malbec M, Sourisseau M, Guivel-Benhassine F, Porrot F, Blanchet F, Schwartz O, Casartelli N. HIV-1 Nef promotes the localization of Gag to the cell membrane and facilitates viral cell-to-cell transfer. Retrovirology 2013; 10:80. [PMID: 23899341 PMCID: PMC3734038 DOI: 10.1186/1742-4690-10-80] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/26/2013] [Indexed: 11/16/2022] Open
Abstract
Background Newly synthesized HIV-1 particles assemble at the plasma membrane of infected cells, before being released as free virions or being transferred through direct cell-to-cell contacts to neighboring cells. Localization of HIV-1 Gag precursor at the cell membrane is necessary and sufficient to trigger viral assembly, whereas the GagPol precursor is additionally required to generate a fully matured virion. HIV-1 Nef is an accessory protein that optimizes viral replication through partly defined mechanisms. Whether Nef modulates Gag and/or GagPol localization and assembly at the membrane and facilitates viral cell-to-cell transfer has not been extensively characterized so far. Results We report that Nef increases the total amount of Gag proteins present in infected cells, and promotes Gag localization at the cell membrane. Moreover, the processing of p55 into p24 is improved in the presence of Nef. We also examined the effect of Nef during HIV-1 cell-to-cell transfer. We show that without Nef, viral transfer through direct contacts between infected cells and target cells is impaired. With a nef-deleted virus, the number of HIV-1 positive target cells after a short 2h co-culture is reduced, and viral material transferred to uninfected cells is less matured. At later time points, this defect is associated with a reduction in the productive infection of new target cells. Conclusions Our results highlight a previously unappreciated role of Nef during the viral replication cycle. Nef promotes HIV-1 Gag membrane localization and processing, and facilitates viral cell-to-cell transfer.
Collapse
Affiliation(s)
- Marine Malbec
- Département de Virologie, Institut Pasteur, Unité Virus et Immunité, 28 rue du Docteur Roux, Paris F-75015, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Sundquist WI, Kräusslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2013; 2:a006924. [PMID: 22762019 DOI: 10.1101/cshperspect.a006924] [Citation(s) in RCA: 543] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A defining property of retroviruses is their ability to assemble into particles that can leave producer cells and spread infection to susceptible cells and hosts. Virion morphogenesis can be divided into three stages: assembly, wherein the virion is created and essential components are packaged; budding, wherein the virion crosses the plasma membrane and obtains its lipid envelope; and maturation, wherein the virion changes structure and becomes infectious. All of these stages are coordinated by the Gag polyprotein and its proteolytic maturation products, which function as the major structural proteins of the virus. Here, we review our current understanding of the mechanisms of HIV-1 assembly, budding, and maturation, starting with a general overview and then providing detailed descriptions of each of the different stages of virion morphogenesis.
Collapse
Affiliation(s)
- Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | | |
Collapse
|
36
|
Dale BM, Alvarez RA, Chen BK. Mechanisms of enhanced HIV spread through T-cell virological synapses. Immunol Rev 2013; 251:113-24. [PMID: 23278744 DOI: 10.1111/imr.12022] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An elaborate network of cell-cell interactions in the immune system is essential for vertebrates to mount adaptive immune responses against invading pathogens. For lymphotropic viruses such as the human immunodeficiency virus type 1 (HIV-1), these immune cell interactions can also promote the spread of the virus within the host. The main target of HIV-1 infection is the CD4(+) helper T lymphocyte, a cell type that is responsible for coordinating immune responses and modulating effector responses to foreign antigens. As part of their normal immune surveillance duties, these cells migrate actively within lymphoid tissues and can travel from inductive sites to effector sites in search of their cognate antigen. For CD4(+) T cells, there is an ongoing search for a unique peptide antigen presented in the context of class II MHC that can activate a proliferative or tolerogenic response. This iterative and continual probing and interrogation of other cells determine the outcome of immune responses. Recent studies in vitro have revealed that the viral infection program induces cell-cell interactions called virological synapses between infected and uninfected CD4(+) T cells. These long-lived, virally induced adhesive contacts greatly enhance the rate of productive infection and may be central to the spread of the virus in vivo. Here, we review aspects of this efficient mode of cell-to-cell infection and the implications for our understanding of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Benjamin M Dale
- Division of Infectious Disease, Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
37
|
Productive entry of HIV-1 during cell-to-cell transmission via dynamin-dependent endocytosis. J Virol 2013; 87:8110-23. [PMID: 23678185 DOI: 10.1128/jvi.00815-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 can be transmitted as cell-free virus or via cell-to-cell contacts. Cell-to-cell transmission between CD4(+) T cells is the more efficient mode of transmission and is predominant in lymphoid tissue, where the majority of virus resides. Yet the cellular mechanisms underlying productive cell-to-cell transmission in uninfected target cells are unclear. Although it has been demonstrated that target cells can take up virus via endocytosis, definitive links between this process and productive infection remain undefined, and this route of transmission has been proposed to be nonproductive. Here, we report that productive cell-to-cell transmission can occur via endocytosis in a dynamin-dependent manner and is sensitive to clathrin-associated antagonists. These data were obtained in a number of CD4(+) T-cell lines and in primary CD4(+) T cells, using both CXCR4- and CCR5-tropic virus. However, we also found that HIV-1 demonstrated flexibility in its use of such endocytic pathways as certain allogeneic transmissions were seen to occur in a dynamin-dependent manner but were insensitive to clathrin-associated antagonists. Also, depleting cells of the clathrin accessory protein AP180 led to a viral uptake defect associated with enhanced infection. Collectively, these data demonstrate that endosomal uptake of HIV-1 during cell-to-cell transmission leads to productive infection, but they are also indicative of a flexible model of viral entry during cell-to-cell transmission, in which the virus can alter its entry route according to the pressures that it encounters.
Collapse
|
38
|
Schiralli Lester GM, Akiyama H, Evans E, Singh J, Gummuluru S, Henderson AJ. Interleukin 2-inducible T cell kinase (ITK) facilitates efficient egress of HIV-1 by coordinating Gag distribution and actin organization. Virology 2013; 436:235-43. [PMID: 23260110 PMCID: PMC3598624 DOI: 10.1016/j.virol.2012.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/18/2012] [Accepted: 11/25/2012] [Indexed: 12/18/2022]
Abstract
Interleukin 2-inducible T cell kinase (ITK) influences T cell signaling by coordinating actin polymerization and polarization as well as recruitment of kinases and adapter proteins. ITK regulates multiple steps of HIV-1 replication, including virion assembly and release. Fluorescent microscopy was used to examine the functional interactions between ITK and HIV-1 Gag during viral particle release. ITK and Gag colocalized at the plasma membrane and were concentrated at sites of F-actin accumulation and membrane lipid rafts in HIV-1 infected T cells. There was polarized staining of ITK, Gag, and actin towards sites of T cell conjugates. Small molecule inhibitors of ITK disrupted F-actin capping, perturbed Gag-ITK colocalization, inhibited virus like particle release, and reduced HIV replication in primary human CD4+ T cells. These data provide insight as to how ITK influences HIV-1 replication and suggest that targeting host factors that regulate HIV-1 egress provides an innovative strategy for controlling HIV infection.
Collapse
Affiliation(s)
- Gillian M. Schiralli Lester
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, EBRC 648, Boston, MA 02118, United States
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Erica Evans
- Celgene Avilomics Research, Bedford, MA, United States
| | | | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Andrew J. Henderson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, EBRC 648, Boston, MA 02118, United States
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
39
|
Zhong P, Agosto LM, Ilinskaya A, Dorjbal B, Truong R, Derse D, Uchil PD, Heidecker G, Mothes W. Cell-to-cell transmission can overcome multiple donor and target cell barriers imposed on cell-free HIV. PLoS One 2013; 8:e53138. [PMID: 23308151 PMCID: PMC3538641 DOI: 10.1371/journal.pone.0053138] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/23/2012] [Indexed: 11/18/2022] Open
Abstract
Virus transmission can occur either by a cell-free mode through the extracellular space or by cell-to-cell transmission involving direct cell-to-cell contact. The factors that determine whether a virus spreads by either pathway are poorly understood. Here, we assessed the relative contribution of cell-free and cell-to-cell transmission to the spreading of the human immunodeficiency virus (HIV). We demonstrate that HIV can spread by a cell-free pathway if all the steps of the viral replication cycle are efficiently supported in highly permissive cells. However, when the cell-free path was systematically hindered at various steps, HIV transmission became contact-dependent. Cell-to-cell transmission overcame barriers introduced in the donor cell at the level of gene expression and surface retention by the restriction factor tetherin. Moreover, neutralizing antibodies that efficiently inhibit cell-free HIV were less effective against cell-to-cell transmitted virus. HIV cell-to-cell transmission also efficiently infected target T cells that were relatively poorly susceptible to cell-free HIV. Importantly, we demonstrate that the donor and target cell types influence critically the extent by which cell-to-cell transmission can overcome each barrier. Mechanistically, cell-to-cell transmission promoted HIV spread to more cells and infected target cells with a higher proviral content than observed for cell-free virus. Our data demonstrate that the frequently observed contact-dependent spread of HIV is the result of specific features in donor and target cell types, thus offering an explanation for conflicting reports on the extent of cell-to-cell transmission of HIV.
Collapse
Affiliation(s)
- Peng Zhong
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Luis M. Agosto
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Anna Ilinskaya
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Batsukh Dorjbal
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Rosaline Truong
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - David Derse
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gisela Heidecker
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
40
|
Pique C, Jones KS. Pathways of cell-cell transmission of HTLV-1. Front Microbiol 2012; 3:378. [PMID: 23109932 PMCID: PMC3479854 DOI: 10.3389/fmicb.2012.00378] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/03/2012] [Indexed: 01/23/2023] Open
Abstract
The deltaretroviruses human T cell lymphotropic virus type 1 (HTLV-1) and human T cell lymphotropic virus type 2 (HTLV-2) have long been believed to differ from retroviruses in other genera by their mode of transmission. While other retroviruses were thought to primarily spread by producing cell-free particles that diffuse through extracellular fluids prior to binding to and infecting target cells, HTLV-1 and HTLV-2 were believed to transmit the virus solely by cell–cell interactions. This difference in transmission was believed to reflect the fact that, relative to other retroviruses, the cell-free virions produced by HTLV-infected cells are very poorly infectious. Since HTLV-1 and HTLV-2 are primarily found in T cells in the peripheral blood, spread of these viruses was believed to occur between infected and uninfected, T cells, although little was known about the cellular and viral proteins involved in this interaction. Recent studies have revealed that the method of transmission of HTLV is not unique: other retroviruses including human immunodeficiency virus (HIV) are also transmitted from cell-to-cell, and this method is dramatically more efficient than cell-free transmission. Moreover, cell–cell transmission of HTLV-1, as well as HIV, can occur following interactions between dendritic cells and T cells, as well as between T cells. Conversely, other studies have shown that cell-free HTLV-1 is not as poorly infectious as previously thought, since it is capable of infecting certain cell types. Here we summarize the recent insights about the mechanisms of cell–cell transmission of HTLV-1 and other retroviruses. We also review in vitro and in vivo studies of infection and discuss how these finding may relate to the spread of HTLV-1 between individuals.
Collapse
Affiliation(s)
- Claudine Pique
- CNRS UMR 8104, INSERM U567, Université Paris-Descartes, Institut Cochin Paris, France
| | | |
Collapse
|
41
|
Hogue IB, Llewellyn GN, Ono A. Dynamic Association between HIV-1 Gag and Membrane Domains. Mol Biol Int 2012; 2012:979765. [PMID: 22830021 PMCID: PMC3399408 DOI: 10.1155/2012/979765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 06/01/2012] [Indexed: 12/18/2022] Open
Abstract
HIV-1 particle assembly is driven by the structural protein Gag. Gag binds to and multimerizes on the inner leaflet of the plasma membrane, eventually resulting in formation of spherical particles. During virus spread among T cells, Gag accumulates to the plasma membrane domain that, together with target cell membrane, forms a cell junction known as the virological synapse. While Gag association with plasma membrane microdomains has been implicated in virus assembly and cell-to-cell transmission, recent studies suggest that, rather than merely accumulating to pre-existing microdomains, Gag plays an active role in reorganizing the microdomains via its multimerization activity. In this paper, we will discuss this emerging view of Gag microdomain interactions. Relationships between Gag multimerization and microdomain association will be further discussed in the context of Gag localization to T-cell uropods and virological synapses.
Collapse
Affiliation(s)
- Ian B. Hogue
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - G. Nicholas Llewellyn
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
42
|
Saxena SK, Shrivastava G, Tiwari S, Swamy MA, Nair MP. Modulation of HIV pathogenesis and T-cell signaling by HIV-1 Nef. Future Virol 2012; 7:609-620. [PMID: 22844345 DOI: 10.2217/fvl.12.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HIV-1 Nef protein is an approximately 27-kDa myristoylated protein that is a virulence factor essential for efficient viral replication and infection in CD4(+) T cells. The functions of CD4(+) T cells are directly impeded after HIV infection. HIV-1 Nef plays a crucial role in manipulating host cellular machinery and in HIV pathogenesis by reducing the ability of infected lymphocytes to form immunological synapses by promoting virological synapses with APCs, and by affecting T-cell stimulation. This article reviews the current status of the efficient Nef-mediated spread of virus in the unreceptive environment of the immune system by altering CD4(+) T-lymphocyte signaling, intracellular trafficking, cell migration and apoptotic pathways.
Collapse
Affiliation(s)
- Shailendra K Saxena
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500007 (AP), India
| | | | | | | | | |
Collapse
|
43
|
Dale BM, McNerney GP, Thompson DL, Hubner W, de Los Reyes K, Chuang FYS, Huser T, Chen BK. Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. Cell Host Microbe 2012; 10:551-62. [PMID: 22177560 DOI: 10.1016/j.chom.2011.10.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/16/2011] [Accepted: 11/08/2011] [Indexed: 10/14/2022]
Abstract
HIV-1 can infect T cells by cell-free virus or by direct virion transfer between cells through cell contact-induced structures called virological synapses (VS). During VS-mediated infection, virions accumulate within target cell endosomes. We show that after crossing the VS, the transferred virus undergoes both maturation and viral membrane fusion. Following VS transfer, viral membrane fusion occurs with delayed kinetics and transferred virions display reduced sensitivity to patient antisera compared to mature, cell-free virus. Furthermore, particle fusion requires that the transferred virions undergo proteolytic maturation within acceptor cell endosomes, which occurs over several hours. Rapid, live cell confocal microscopy demonstrated that viral fusion can occur in compartments that have moved away from the VS. Thus, HIV particle maturation activates viral fusion in target CD4+ T cell endosomes following transfer across the VS and may represent a pathway by which HIV evades antibody neutralization.
Collapse
Affiliation(s)
- Benjamin M Dale
- Division of Infectious Diseases, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nagaraja T, Anand AR, Zhao H, Ganju RK. The adaptor protein SLP-76 regulates HIV-1 release and cell-to-cell transmission in T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:2769-77. [PMID: 22323535 DOI: 10.4049/jimmunol.1102106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV-1 infection in T cells is regulated by TCR activation. However, the cellular proteins of the TCR pathway that regulate HIV-1 infection are poorly characterized. In this study, in HIV-1 infection, we observed a significant reduction of HIV-1 virus production in Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76)-deficient Jurkat T cells compared with wild-type and SLP-76-reconstituted Jurkat T cells. We further confirmed the role of SLP-76 in HIV-1 infection by small interfering RNA-mediated knockdown in MT4 cells and PBMCs. Structural-functional analysis revealed that the N-terminal domain of SLP-76 was important for regulating HIV-1 infection. Further mechanistic studies revealed that lack of SLP-76 impaired virus release, but did not affect viral entry, integration, and transcription. We also showed that SLP-76 plays a critical role in cell-to-cell transmission of HIV-1. Signaling studies revealed that SLP-76 associated with viral negative regulatory factor protein and multiple signaling molecules during HIV-1 infection. Furthermore, SLP-76 facilitated the association of negative regulatory factor and F-actin, suggesting that SLP-76 mediates the formation of a signaling complex that may regulate viral release via cytoskeletal changes. Taken together, our studies demonstrate a novel role for the adaptor molecule SLP-76 in regulating HIV-1 infection in T cells with the potential to develop innovative strategies against HIV-1.
Collapse
Affiliation(s)
- Tirumuru Nagaraja
- Department of Pathology, Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
45
|
Nzounza P, Chazal M, Guedj C, Schmitt A, Massé JM, Randriamampita C, Pique C, Ramirez BC. The scaffolding protein Dlg1 is a negative regulator of cell-free virus infectivity but not of cell-to-cell HIV-1 transmission in T cells. PLoS One 2012; 7:e30130. [PMID: 22272285 PMCID: PMC3260186 DOI: 10.1371/journal.pone.0030130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/13/2011] [Indexed: 12/28/2022] Open
Abstract
Background Cell-to-cell virus transmission of Human immunodeficiency virus type-1 (HIV-1) is predominantly mediated by cellular structures such as the virological synapse (VS). The VS formed between an HIV-1-infected T cell and a target T cell shares features with the immunological synapse (IS). We have previously identified the human homologue of the Drosophila Discs Large (Dlg1) protein as a new cellular partner for the HIV-1 Gag protein and a negative regulator of HIV-1 infectivity. Dlg1, a scaffolding protein plays a key role in clustering protein complexes in the plasma membrane at cellular contacts. It is implicated in IS formation and T cell signaling, but its role in HIV-1 cell-to-cell transmission was not studied before. Methodology/Principal Findings Kinetics of HIV-1 infection in Dlg1-depleted Jurkat T cells show that Dlg1 modulates the replication of HIV-1. Single-cycle infectivity tests show that this modulation does not take place during early steps of the HIV-1 life cycle. Immunofluorescence studies of Dlg1-depleted Jurkat T cells show that while Dlg1 depletion affects IS formation, it does not affect HIV-1-induced VS formation. Co-culture assays and quantitative cell-to-cell HIV-1 transfer analyses show that Dlg1 depletion does not modify transfer of HIV-1 material from infected to target T cells, or HIV-1 transmission leading to productive infection via cell contact. Dlg1 depletion results in increased virus yield and infectivity of the viral particles produced. Particles with increased infectivity present an increase in their cholesterol content and during the first hours of T cell infection these particles induce higher accumulation of total HIV-1 DNA. Conclusion Despite its role in the IS formation, Dlg1 does not affect the VS and cell-to-cell spread of HIV-1, but plays a role in HIV-1 cell-free virus transmission. We propose that the effect of Dlg1 on HIV-1 infectivity is at the stage of virus entry.
Collapse
Affiliation(s)
- Patrycja Nzounza
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maxime Chazal
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chloé Guedj
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Alain Schmitt
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Marc Massé
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Clotilde Randriamampita
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claudine Pique
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bertha Cecilia Ramirez
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
46
|
Sattentau QJ. The direct passage of animal viruses between cells. Curr Opin Virol 2011; 1:396-402. [PMID: 22440841 DOI: 10.1016/j.coviro.2011.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/20/2011] [Indexed: 11/28/2022]
Abstract
The paradigm that viruses can move directly, and in some cases covertly, between contacting target cells is now well established for several virus families. The underlying mechanisms of cell-to-cell spread, however, remain to be fully elucidated and may differ substantially depending on the viral exit/entry route and the cellular tropism. Here, two divergent cell-to-cell spread mechanisms are exemplified: firstly by human retroviruses, which rely upon transient adhesive structures that form between polarized immune cells termed virological synapses, and secondly by herpesviruses that depend predominantly on pre-existing stable cellular contacts, but may also form virological synapses. Plant viruses can also spread directly between contacting cells, but are obliged by the rigid host cell wall to move across pore structures termed plasmodesmata. This review will focus primarily on recent advances in our understanding of animal virus cell-to-cell spread using examples from these two virus families, and will conclude by comparing and contrasting the cell-to-cell spread of animal and plant viruses.
Collapse
Affiliation(s)
- Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford OX13RE, UK.
| |
Collapse
|
47
|
Lehmann M, Nikolic DS, Piguet V. How HIV-1 takes advantage of the cytoskeleton during replication and cell-to-cell transmission. Viruses 2011; 3:1757-76. [PMID: 21994805 PMCID: PMC3187690 DOI: 10.3390/v3091757] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) infects T cells, macrophages and dendritic cells and can manipulate their cytoskeleton structures at multiple steps during its replication cycle. Based on pharmacological and genetic targeting of cytoskeleton modulators, new imaging approaches and primary cell culture models, important roles for actin and microtubules during entry and cell-to-cell transfer have been established. Virological synapses and actin-containing membrane extensions can mediate HIV-1 transfer from dendritic cells or macrophage cells to T cells and between T cells. We will review the role of the cytoskeleton in HIV-1 entry, cellular trafficking and cell-to-cell transfer between primary cells.
Collapse
Affiliation(s)
- Martin Lehmann
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland; E-Mails: (M.L.); (D.S.N)
- Department of Dermatology and Venereology, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland
| | - Damjan S. Nikolic
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland; E-Mails: (M.L.); (D.S.N)
- Department of Dermatology and Venereology, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland
| | - Vincent Piguet
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland; E-Mails: (M.L.); (D.S.N)
- Department of Dermatology and Venereology, University Hospital and Medical School of Geneva, Geneva 1211, Switzerland
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine and University Hospital of Wales, Cardiff, Wales, CF144XN, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-(0)-29-20-744721; Fax: +44-(0)-29-20-744312
| |
Collapse
|
48
|
Jolly C, Welsch S, Michor S, Sattentau QJ. The regulated secretory pathway in CD4(+) T cells contributes to human immunodeficiency virus type-1 cell-to-cell spread at the virological synapse. PLoS Pathog 2011; 7:e1002226. [PMID: 21909273 PMCID: PMC3164651 DOI: 10.1371/journal.ppat.1002226] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/05/2011] [Indexed: 11/19/2022] Open
Abstract
Direct cell-cell spread of Human Immunodeficiency Virus type-1 (HIV-1) at the virological synapse (VS) is an efficient mode of dissemination between CD4(+) T cells but the mechanisms by which HIV-1 proteins are directed towards intercellular contacts is unclear. We have used confocal microscopy and electron tomography coupled with functional virology and cell biology of primary CD4(+) T cells from normal individuals and patients with Chediak-Higashi Syndrome and report that the HIV-1 VS displays a regulated secretion phenotype that shares features with polarized secretion at the T cell immunological synapse (IS). Cell-cell contact at the VS re-orientates the microtubule organizing center (MTOC) and organelles within the HIV-1-infected T cell towards the engaged target T cell, concomitant with polarization of viral proteins. Directed secretion of proteins at the T cell IS requires specialized organelles termed secretory lysosomes (SL) and we show that the HIV-1 envelope glycoprotein (Env) localizes with CTLA-4 and FasL in SL-related compartments and at the VS. Finally, CD4(+) T cells that are disabled for regulated secretion are less able to support productive cell-to-cell HIV-1 spread. We propose that HIV-1 hijacks the regulated secretory pathway of CD4(+) T cells to enhance its dissemination.
Collapse
Affiliation(s)
- Clare Jolly
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom.
| | | | | | | |
Collapse
|
49
|
WFDC1 expression identifies memory CD4 T-lymphocytes rendered vulnerable to cell-cell HIV-1 transfer by promoting intercellular adhesive junctions. Retrovirology 2011; 8:29. [PMID: 21545747 PMCID: PMC3108927 DOI: 10.1186/1742-4690-8-29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 05/05/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elucidating mechanisms that promote HIV-1 transfer between CD4+ T-lymphocytes and their subsequent loss is of importance to HIV-1 pathogenesis. We recently reported that whey acidic protein, ps20, promotes cell-free HIV-1 spread through ICAM-1 modulation. Since ICAM-1 is pivotal in cell conjugation and intercellular HIV-1 transfer, this study examines ps20 effects on HIV-1 spread between T lymphocytes. RESULTS We demonstrate intrinsic ps20 variability in primary CD4+ T-lymphocyte clonal populations and a significant positive correlation between endogenous ps20 levels and virus transfer involving fusion resulting in a spreading infection that could be reversed by the addition of reverse transcriptase inhibitors. Blocking anti-ps20 antibody or siRNA mediated ps20 knockdown, significantly reduced virus transfer. Conversely, virus transfer was promoted by ectopic ps20 expression or by exogenous addition of recombinant ps20. A higher frequency of virological synapse formation was evident in cocultures of HIV-1 infected donor T-cells with ps20high v ps20low/intermediate targets. Blocking ps20 inhibited T-lymphocyte conjugate formation and ICAM-1 expression, and was as potent as ICAM-1 in inhibiting HIV-1 transfer. CONCLUSIONS Therefore ps20 is a novel marker of CD4+ T-cells rendered vulnerable to HIV-1 infection by regulating the fundamental biologic process of intercellular conjugate formation and consequently of potential importance in HIV-1 pathogenesis.
Collapse
|
50
|
Jones KL, Smyth RP, Pereira CF, Cameron PU, Lewin SR, Jaworowski A, Mak J. Early events of HIV-1 infection: can signaling be the next therapeutic target? J Neuroimmune Pharmacol 2011; 6:269-83. [PMID: 21373988 DOI: 10.1007/s11481-011-9268-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 02/23/2011] [Indexed: 01/08/2023]
Abstract
Intracellular signaling events are signposts of biological processes, which govern the direction and action of biological activities. Through millions of years of evolution, pathogens, such as viruses, have evolved to hijack host cell machinery to infect their targets and are therefore dependent on host cell signaling for replication. This review will detail our current understanding of the signaling events that are important for the early steps of HIV-1 replication. More specifically, the therapeutic potential of signaling events associated with chemokine coreceptors, virus entry, viral synapses, and post-entry processes will be discussed. We argue that these pathways may represent novel targets for antiviral therapy.
Collapse
Affiliation(s)
- Kate L Jones
- Centre for Virology, Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | | | | | | | | | | | | |
Collapse
|