1
|
Chen R, Wang K, Lin L, Chen Y, Liu Y, Li R, Wu X, Feng P, Chen X, Xu Y, Yang Z. Exploring the action mechanism and effective components of Yupingfeng powder on influenza based on computational system pharmacology and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118678. [PMID: 39121925 DOI: 10.1016/j.jep.2024.118678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yupingfeng powder (YPF) is a classic traditional Chinese medicine prescription with a long history of clinical application. However, there is a consensus on the clinical efficacy of YPF in the prevention and treatment of influenza, the underlying pharmacological mechanisms and functional substances have not been thoroughly investigated. AIM OF THE STUDY This study aimed to elucidate the functional substances and potential mechanisms of YPF against influenza infections by integrating network analysis, metabolomics, computational system pharmacology, and in vitro experiments. MATERIALS AND METHODS In this study, the active ingredients, related targets, and potential mechanisms of YPF against influenza were identified through network pharmacology and GEO database mining. Combined with metabolomics to corroborate the results of network pharmacology analysis and construct C-T-P-D-M network. Based on this, the key network motifs (KNM) with significance were predicted by system pharmacology algorithm. Finally, the key components as functional substances in the KNM were validated by the coverage of influenza-causing genes and functional pathways, and in vitro experiments. RESULTS A total of 238 active components and 158 potential target genes intersecting with influenza infection differential genes were screened from YPF. KEGG enrichment analysis indicated that metabolism participated in YPF-provided prevention and treatment on influenza, and metabolomic results further corroborated the significance of the metabolic pathways intervened by YPF included pyruvate metabolism, Valine, leucine and isoleucine degradation, etc. The KNM prediction strategy was computed to include wogonin and isoimperaporin, a group of 48 potential functional components. This functional component group maintained a high degree of consistency with the corresponding C-T network in terms of the coverage of influenza pathogenic genes, and the coverage of functional pathways. Meanwhile, the in vitro results showed that wogonin and isoimperaporin had significant inhibitory effects on inflammation induced by influenza infection, confirming the reliability and accuracy of the KNM prediction strategy. CONCLUSION YPF against influenza has multi-target and multi-pathway effects, and the underlying mechanisms may be related to metabolism. The pharmacodynamic effects of core components such as wogonin and isoimperaporin on influenza prevention and treatment were confirmed, which represent promising functional candidates for subsequent influenza prevention and treatment, and provide references for the pharmacological and mechanistic analyses of subsequent formulas.
Collapse
Affiliation(s)
- Ruifeng Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Kexin Wang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Luping Lin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510230, China
| | - Yaorong Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Ya Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Runfeng Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Xiao Wu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China
| | - Pei Feng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaohong Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Zifeng Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China; Guangzhou National Laboratory, Guangzhou, 510005, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, 510230, China; Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510230, China.
| |
Collapse
|
2
|
Dilawari R, Chaubey GK, Modanwal R, Dhiman A, Talukdar S, Kumar A, Raje CI, Raje M. Glyceraldehyde-3-Phosphate Dehydrogenase Binds with Spike Protein and Inhibits the Entry of SARS-CoV-2 into Host Cells. J Innate Immun 2024; 16:133-142. [PMID: 38325356 PMCID: PMC10911789 DOI: 10.1159/000535634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/29/2023] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION Coronavirus disease 2019 caused by coronavirus-2 (SARS-CoV-2) has emerged as an aggressive viral pandemic. Health care providers confront a challenging task for rapid development of effective strategies to combat this and its long-term after effects. Virus entry into host cells involves interaction between receptor-binding domain (RBD) of spike (S) protein S1 subunit with angiotensin converting enzyme present on host cells. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a moonlighting enzyme involved in cellular glycolytic energy metabolism and micronutrient homeostasis. It is deployed in various cellular compartments and the extra cellular milieu. Though it is known to moonlight as a component of mammalian innate immune defense machinery, till date its role in viral restriction remains unknown. METHOD Recombinant S protein, the RBD, and human GAPDH protein were used for solid phase binding assays and biolayer interferometry. Pseudovirus particles expressing four different strain variants of S protein all harboring ZsGreen gene as marker of infection were used for flow cytometry-based infectivity assays. RESULTS Pseudovirus entry into target cells in culture was significantly inhibited by addition of human GAPDH into the extracellular medium. Binding assays demonstrated that human GAPDH binds to S protein and RBD of SARS-CoV-2 with nanomolar affinity. CONCLUSIONS Our investigations suggest that this interaction of GAPDH interferes in the viral docking with hACE2 receptors, thereby affecting viral ingress into mammalian cells.
Collapse
Affiliation(s)
- Rahul Dilawari
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | | | - Asmita Dhiman
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | - Ajay Kumar
- National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Chaaya Iyengar Raje
- National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Manoj Raje
- Institute of Microbial Technology, CSIR, Chandigarh, India
| |
Collapse
|
3
|
Dhiman A, Talukdar S, Chaubey GK, Dilawari R, Modanwal R, Chaudhary S, Patidar A, Boradia VM, Kumbhar P, Raje CI, Raje M. Regulation of Macrophage Cell Surface GAPDH Alters LL-37 Internalization and Downstream Effects in the Cell. J Innate Immun 2023; 15:581-598. [PMID: 37080180 PMCID: PMC10315065 DOI: 10.1159/000530083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/03/2023] [Indexed: 04/22/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb), the major causative agent of tuberculosis, has evolved mechanisms to evade host defenses and persist within host cells. Host-directed therapies against infected cells are emerging as an effective option. Cationic host defense peptide LL-37 is known to internalize into cells and induce autophagy resulting in intracellular killing of M.tb. This peptide also regulates the immune system and interacts with the multifunctional protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inside macrophages. Our investigations revealed that GAPDH moonlights as a mononuclear cell surface receptor that internalizes LL-37. We confirmed that the surface levels of purinergic receptor 7, the receptor previously reported for this peptide, remained unaltered on M.tb infected macrophages. Upon infection or cellular activation with IFNγ, surface recruited GAPDH bound to and internalized LL-37 into endocytic compartments via a lipid raft-dependent process. We also discovered a role for GAPDH in LL-37-mediated autophagy induction and clearance of intracellular pathogens. In infected macrophages wherein GAPDH had been knocked down, we observed an inhibition of LL-37-mediated autophagy which was rescued by GAPDH overexpression. This process was dependent on intracellular calcium and p38 MAPK pathways. Our findings reveal a previously unknown process by which macrophages internalize an antimicrobial peptide via cell surface GAPDH and suggest a moonlighting role of GAPDH in regulating cellular phenotypic responses of LL-37 resulting in reduction of M.tb burden.
Collapse
Affiliation(s)
- Asmita Dhiman
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | | | - Rahul Dilawari
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | | | - Anil Patidar
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | - Pradeep Kumbhar
- National Institute of Pharmaceutical Education and Research, Punjab, India
| | | | - Manoj Raje
- Institute of Microbial Technology, CSIR, Chandigarh, India
| |
Collapse
|
4
|
Qi P, Huang M, Li T. Identification of potential biomarkers and therapeutic targets for posttraumatic acute respiratory distress syndrome. BMC Med Genomics 2023; 16:54. [PMID: 36918848 PMCID: PMC10012314 DOI: 10.1186/s12920-023-01482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Despite improved supportive care, posttraumatic acute respiratory distress syndrome (ARDS) mortality has improved very little in recent years. Additionally, ARDS diagnosis is delayed or missed in many patients. We analyzed co-differentially expressed genes (co-DEGs) to explore the relationships between severe trauma and ARDS to reveal potential biomarkers and therapeutic targets for posttraumatic ARDS. METHODS Two gene expression datasets (GSE64711 and GSE76293) were downloaded from the Gene Expression Omnibus. The GSE64711 dataset included a subset of 244 severely injured trauma patients and 21 healthy controls. GSE76293 specimens were collected from 12 patients with ARDS who were recruited from trauma intensive care units and 11 age- and sex-matched healthy volunteers. Trauma DEGs and ARDS DEGs were identified using the two datasets. Subsequently, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction network analyses were performed to elucidate the molecular functions of the DEGs. Then, hub genes of the co-DEGs were identified. Finally, to explore whether posttraumatic ARDS and septic ARDS are common targets, we included a third dataset (GSE100159) for corresponding verification. RESULTS 90 genes were upregulated and 48 genes were downregulated in the two datasets and were therefore named co-DEGs. These co-DEGs were significantly involved in multiple inflammation-, immunity- and neutrophil activation-related biological processes. Ten co-upregulated hub genes (GAPDH, MMP8, HGF, MAPK14, LCN2, CD163, ENO1, CD44, ARG1 and GADD45A) and five co-downregulated hub genes (HERC5, IFIT2, IFIT3, RSAD2 and IFIT1) may be considered potential biomarkers and therapeutic targets for posttraumatic ARDS. Through the verification of the third dataset, posttraumatic ARDS may have its own unique targets worthy of further exploration. CONCLUSION This exploratory analysis supports a relationship between trauma and ARDS pathophysiology, specifically in relationship to the identified hub genes. These data may serve as potential biomarkers and therapeutic targets for posttraumatic ARDS.
Collapse
Affiliation(s)
- Peng Qi
- Department of Emergency, First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Mengjie Huang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Tanshi Li
- Department of Emergency, First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
5
|
Identification of differentially expressed genes and signaling pathways in neutrophils during sepsis-induced immunosuppression via bioinformatics analysis. Chin Med J (Engl) 2022; 135:2131-2133. [PMID: 34966028 PMCID: PMC9746769 DOI: 10.1097/cm9.0000000000001878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
6
|
Zhu CL, Xie J, Zhao ZZ, Li P, Liu Q, Guo Y, Meng Y, Wan XJ, Bian JJ, Deng XM, Wang JF. PD-L1 maintains neutrophil extracellular traps release by inhibiting neutrophil autophagy in endotoxin-induced lung injury. Front Immunol 2022; 13:949217. [PMID: 36016930 PMCID: PMC9396256 DOI: 10.3389/fimmu.2022.949217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) is not only an important molecule in mediating tumor immune escape, but also regulates inflammation development. Here we showed that PD-L1 was upregulated on neutrophils in lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS). Neutrophil specific knockout of PD-L1 reduced lung injury in ARDS model induced by intratracheal LPS injection. The level of NET release was reduced and autophagy is elevated by PD-L1 knockout in ARDS neutrophils both in vivo and in vitro. Inhibition of autophagy could reverse the inhibitory effect of PD-L1 knockout on NET release. PD-L1 interacted with p85 subunit of PI3K at the endoplasmic reticulum (ER) in neutrophils from ARDS patients, activating the PI3K/Akt/mTOR pathway. An extrinsic neutralizing antibody against PD-L1 showed a protective effect against ARDS. Together, PD-L1 maintains the release of NETs by regulating autophagy through the PI3K/Akt/mTOR pathway in ARDS. Anti-PD-L1 therapy may be a promising measure in treating ARDS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jin-jun Bian
- *Correspondence: Jin-jun Bian, ; Xiao-ming Deng, ; Jia-feng Wang,
| | - Xiao-ming Deng
- *Correspondence: Jin-jun Bian, ; Xiao-ming Deng, ; Jia-feng Wang,
| | - Jia-feng Wang
- *Correspondence: Jin-jun Bian, ; Xiao-ming Deng, ; Jia-feng Wang,
| |
Collapse
|
7
|
Sun X, Li KX, Figueiredo ML, Lin CC, Li BY, Yokota H. Generation of the Chondroprotective Proteomes by Activating PI3K and TNFα Signaling. Cancers (Basel) 2022; 14:cancers14133039. [PMID: 35804814 PMCID: PMC9264838 DOI: 10.3390/cancers14133039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Chondrosarcoma and inflammatory arthritis are two joint-damaging diseases. Here, we examined whether a counterintuitive approach of activating tumorigenic and inflammatory signaling may generate joint-protective proteomes in mesenchymal stem cells and chondrocytes for the treatment of chondrosarcoma and inflammatory arthritis. While activating PI3K signaling and the administration of TNFα to chondrosarcoma cells and chondrocytes promoted tumor progression and inflammatory responses, those cells paradoxically generated a chondroprotective conditioned medium. Notably, the chondroprotective conditioned medium was enriched with Hsp90ab1 that interacted with GAPDH. Extracellular GAPDH interacted with L1CAM, an oncogenic transmembrane protein, and inhibited tumorigenic behaviors, whereas intracellular GAPDH downregulated p38 in chondrocytes and exerted anti-inflammatory effects. The result supports the unconventional approach of generating chondroprotective proteomes. Abstract Purpose: To develop a novel treatment option for Chondrosarcoma (CS) and inflammatory arthritis, we evaluated a counterintuitive approach of activating tumorigenic and inflammatory signaling for generating joint-protective proteomes. Methods: We employed mesenchymal stem cells and chondrocytes to generate chondroprotective proteomes by activating PI3K signaling and the administration of TNFα. The efficacy of the proteomes was examined using human and mouse cell lines as well as a mouse model of CS. The regulatory mechanism was analyzed using mass spectrometry-based whole-genome proteomics. Results: While tumor progression and inflammatory responses were promoted by activating PI3K signaling and the administration of TNFα to CS cells and chondrocytes, those cells paradoxically generated a chondroprotective conditioned medium (CM). The application of CM downregulated tumorigenic genes in CS cells and TNFα and MMP13 in chondrocytes. Mechanistically, Hsp90ab1 was enriched in the chondroprotective CM, and it immunoprecipitated GAPDH. Extracellular GAPDH interacted with L1CAM and inhibited tumorigenic behaviors, whereas intracellular GAPDH downregulated p38 and exerted anti-inflammatory effects. Conclusions: We demonstrated that the unconventional approach of activating oncogenic and inflammatory signaling can generate chondroprotective proteomes. The role of Hsp90ab1 and GAPDH differed in their locations and they acted as the uncommon protectors of the joint tissue from tumor and inflammatory responses.
Collapse
Affiliation(s)
- Xun Sun
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.S.); (K.-X.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Ke-Xin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.S.); (K.-X.L.)
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences and Interdisciplinary Biomedical Sciences Program, Purdue University, West Lafayette, IN 47907, USA;
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.S.); (K.-X.L.)
- Correspondence: (B.-Y.L.); (H.Y.); Tel.: +86-451-8667-1354 (B.-Y.L.); +1-317-278-5177 (H.Y.); Fax: +86-451-8667-1354 (B.-Y.L.); +1-317-278-2455 (H.Y.)
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (B.-Y.L.); (H.Y.); Tel.: +86-451-8667-1354 (B.-Y.L.); +1-317-278-5177 (H.Y.); Fax: +86-451-8667-1354 (B.-Y.L.); +1-317-278-2455 (H.Y.)
| |
Collapse
|
8
|
Sun M, Yang Q, Hu C, Zhang H, Xing L. Identification and Validation of Autophagy-Related Genes in Sepsis-Induced Acute Respiratory Distress Syndrome and Immune Infiltration. J Inflamm Res 2022; 15:2199-2212. [PMID: 35411170 PMCID: PMC8994633 DOI: 10.2147/jir.s355225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 01/10/2023] Open
Abstract
Purpose Autophagy-related genes (ARGs) play an important role in the pathophysiology processes of sepsis-induced acute respiratory distress syndrome (ARDS). However, expression profiles of ARGs have rarely been used to explore the relationship between autophagy and sepsis-induced ARDS. Therefore, we aim to identify and validate the potential ARGs of sepsis-induced ARDS through bioinformatics analysis and experiment validation. Methods We downloaded GSE32707 data from the Gene Expression Omnibus (GEO) database. The potential differentially expressed genes (DEGs) and differentially expressed ARGs (DEARGs) of sepsis-induced ARDS were screened by R software. Then, we performed functional enrichment analyses to explore the potential biological functions of DEARGs and constructed protein–protein interaction (PPI) networks. Subsequently, correlation analysis and receiver operating characteristic (ROC) curve were used for the DEARGs. In addition, we estimated the proportions of 22 immune cell subsets by using CIBERSORT algorithm. Finally, RNA expression of seven DEARGs were validated by qRT-PCR in blood samples from sepsis-induced ARDS and healthy controls. Results We identified 28 DEARGs, including 11 up-regulated genes and 17 down-regulated genes, which were primarily involved in autophagy and apoptosis. Seven genes (BAG3, CTSD, ERBB2, MYC, PEA15, RAB24 and SIRT1) with AUC >0.70 were considered possible to be sepsis-induced ARDS hub genes for ROC curve analysis. CIBERSORT results shown that sepsis-induced ARDS contained a higher proportion of naive CD4+ T cells, gamma delta T cells, monocytes, and neutrophils, and lower levels of CD8+ T cells, memory resting CD4+ T cells, follicular helper T cells were relatively lower. The results of qRT-PCR also demonstrated that the expression levels of BAG3, CTSD, ERBB2, MYC and SIRT1 in sepsis-induced ARDS patients and healthy controls had differences. Conclusion We identified an association between DEGs and immune infiltration in sepsis-induced ARDS and validated BAG3, CTSD, ERBB2, MYC and SIRT1 that may be have excellent diagnostic performance.
Collapse
Affiliation(s)
- Mengfei Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Qianqian Yang
- Department of Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Chunling Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Hengchao Zhang
- Department of Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Lihua Xing
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Correspondence: Lihua Xing, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Zhengzhou, Henan, 450052, People’s Republic of China, Tel/Fax +8613838095088, Email
| |
Collapse
|
9
|
Chen G, Deutsch GH, Schulert G, Zheng H, Jang S, Trapnell B, Lee P, Macaubas C, Ho K, Schneider C, Saper VE, de Jesus AA, Krasnow M, Grom A, Goldbach-Mansky R, Khatri P, Mellins ED, Canna SW. Serum proteome analysis of systemic JIA and related lung disease identifies distinct inflammatory programs and biomarkers. Arthritis Rheumatol 2022; 74:1271-1283. [PMID: 35189047 DOI: 10.1002/art.42099] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 01/16/2022] [Accepted: 02/15/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Recent observations in systemic Juvenile Idiopathic Arthritis (sJIA) suggest an increasing incidence of high-mortality interstitial lung disease (sJIA-LD) often characterized by a variant of pulmonary alveolar proteinosis (PAP). Co-occurrence of macrophage activation syndrome (MAS) and PAP in sJIA suggested a shared pathology, but sJIA-LD patients also commonly experience features of drug reaction such as atypical rashes and eosinophilia. We sought to investigate immunopathology and identify biomarkers in sJIA, MAS, and sJIA-LD. METHODS We used SOMAscan to measure >1300 analytes in sera from healthy controls and patients with sJIA, MAS, sJIA-LD and other related diseases. We verified selected findings by ELISA and lung immunostaining. Because the proteome of a sample may reflect multiple states (sJIA, MAS, sJIA-LD), we used regression modeling to identify subsets of altered proteins associated with each state. We tested key findings in a validation cohort. RESULTS Proteome alterations in active sJIA and MAS overlapped substantially, including known sJIA biomarkers like SAA and S100A9, and novel elevations of heat shock proteins and glycolytic enzymes. IL-18 was elevated in all sJIA groups, particularly MAS and sJIA-LD. We also identified an MAS-independent sJIA-LD signature notable for elevated ICAM5, MMP7, and allergic/eosinophilic chemokines, which have been previously associated with lung damage. Immunohistochemistry localized ICAM5 and MMP7 in sJIA-LD lung. ICAM5's ability to distinguish sJIA-LD from sJIA/MAS was independently validated. CONCLUSION Serum proteins support an sJIA-to-MAS continuum, help distinguish sJIA, sJIA/MAS, and sJIA-LD and suggest etiologic hypotheses. Select biomarkers, such as ICAM5, could aid in early detection and management of sJIA-LD.
Collapse
Affiliation(s)
- Guangbo Chen
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Gail H Deutsch
- Pathology, Seattle Children's Hospital and University of Washington Medical Center, Seattle, WA, USA
| | - Grant Schulert
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA.,Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - SoRi Jang
- Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Bruce Trapnell
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Pui Lee
- Pediatric Rheumatology, Boston Children's Hospital and Harvard School of Medicine, Boston, MA, USA
| | - Claudia Macaubas
- Pediatrics, Program in Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Katherine Ho
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA.,Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Corinne Schneider
- Pediatrics, UPMC Children's Hospital & University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vivian E Saper
- Pediatrics, School of Medicine, Stanford University, Stanford, California, USA
| | - Adriana Almeida de Jesus
- Translational Autoinflammatory Disease Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Mark Krasnow
- Biochemistry, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexei Grom
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Disease Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA.,Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Elizabeth D Mellins
- Pediatrics, Program in Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Scott W Canna
- Pediatrics, UPMC Children's Hospital & University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
10
|
Gauthier T, Chen W. Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections. Front Immunol 2022; 13:780839. [PMID: 35154105 PMCID: PMC8825490 DOI: 10.3389/fimmu.2022.780839] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Macrophages are essential innate immune cells that contribute to host defense during infection. An important feature of macrophages is their ability to respond to extracellular cues and to adopt different phenotypes and functions in response to these stimuli. The evidence accumulated in the last decade has highlighted the crucial role of metabolic reprogramming during macrophage activation in infectious context. Thus, understanding and manipulation of macrophage immunometabolism during infection could be of interest to develop therapeutic strategies. In this review, we focus on 5 major metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis, tricarboxylic acid cycle and amino acid metabolism and discuss how they sustain and regulate macrophage immune function in response to parasitic, bacterial and viral infections as well as trained immunity. At the end, we assess whether some drugs including those used in clinic and in development can target macrophage immunometabolism for potential therapy during infection with an emphasis on SARS-CoV2 infection.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wanjun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
11
|
Cong X, Zhang J, Sun R, Pu Y. Short-term ambient particulate air pollution exposure, microRNAs, blood pressure and lung function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118387. [PMID: 34673158 DOI: 10.1016/j.envpol.2021.118387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Ambient particulate air pollution is a risk factor for cardiovascular and respiratory disease, yet the biological mechanisms underlying this association are not well understood. The current study aimed to investigate the mediation role of microRNAs on the association between personal PM2.5 exposure and blood pressure and lung function. One hundred and twenty adults (60 truck drivers and 60 office workers) aged 18-46 years were assessed on the June 15, 2008 and at follow-up (1- to 2-weeks later). MicroRNAs were extracted from the peripheral blood samples. Compared to truck drivers, there is a significant increase in FEF25-75, FEV1, and FEV1/FVC and a decrease in PM2.5 in office workers (all p < 0.05). According to the Bonferroni corrected threshold p-value < 6.81 × 10-5 (0.05/734) used, personal PM2.5 data showed a significant positive association with miR-644 after the adjustment for age, BMI, smoking status, and habitual alcohol use. The mediation effect of miR-644 on the association between personal PM2.5 exposure and FEF25-75 [B (95%CI) = -1.342 (-2.810, -0.113)], PEF [B (95%CI) = -1.793 (-3.926, -0.195)], and FEV1/FVC [B (95%CI) = -0.119‰ (-0.224‰, -0.026‰)] was significant only for truck drivers after the adjustment for covariates. There were no similar associations with blood pressure. These results demonstrate microRNAs to potentially mediate association of PM2.5 with lung function. Subsequent studies are needed to further elucidate the potential mechanisms of action by which the mediation effect of microRNAs is achieved with this process.
Collapse
Affiliation(s)
- Xiaowei Cong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
12
|
Kanjanapruthipong T, Sukphopetch P, Reamtong O, Isarangkul D, Muangkaew W, Thiangtrongjit T, Sansurin N, Fongsodsri K, Ampawong S. Cytoskeletal Alteration Is an Early Cellular Response in Pulmonary Epithelium Infected with Aspergillus fumigatus Rather than Scedosporium apiospermum. MICROBIAL ECOLOGY 2022; 83:216-235. [PMID: 33890146 DOI: 10.1007/s00248-021-01750-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Invasive aspergillosis and scedosporiosis are life-threatening fungal infections with similar clinical manifestations in immunocompromised patients. Contrarily, Scedosporium apiospermum is susceptible to some azole derivative but often resistant to amphotericin B. Histopathological examination alone cannot diagnose these two fungal species. Pathogenesis studies could contribute to explore candidate protein markers for new diagnosis and treatment methods leading to a decrease in mortality. In the present study, proteomics was conducted to identify significantly altered proteins in A549 cells infected with or without Aspergillus fumigatus and S. apiospermum as measured at initial invasion. Protein validation was performed with immunogold labelling alongside immunohistochemical techniques in infected A549 cells and lungs from murine models. Further, cytokine production was measured, using the Bio-Plex-Multiplex immunoassay. The cytoskeletal proteins HSPA9, PA2G4, VAT1, PSMA2, PEX1, PTGES3, KRT1, KRT9, CLIP1 and CLEC20A were mainly changed during A. fumigatus infection, while the immunologically activated proteins WNT7A, GAPDH and ANXA2 were principally altered during S. apiospermum infection. These proteins are involved in fungal internalisation and structural destruction leading to pulmonary disorders. Interleukin (IL)-21, IL-1α, IL-22, IL-2, IL-8, IL-12, IL-17A, interferon-γ and tumour necrosis factor-α were upregulated in both aspergillosis and scedosporiosis, although more predominately in the latter, in accordance with chitin synthase-1 and matrix metalloproteinase levels. Our results demonstrated that during invasion, A. fumigatus primarily altered host cellular integrity, whereas S. apiospermum chiefly induced and extensively modulated host immune responses.
Collapse
Affiliation(s)
- Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Nichapa Sansurin
- Northeast Laboratory Animal Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
13
|
Su R, Zhang Y, Zhang J, Wang H, Luo Y, Chan HF, Tao Y, Chen Z, Li M. Nanomedicine to advance the treatment of bacteria-induced acute lung injury. J Mater Chem B 2021; 9:9100-9115. [PMID: 34672317 DOI: 10.1039/d1tb01770e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteria-induced acute lung injury (ALI) is associated with a high mortality rate due to the lack of an effective treatment. Patients often rely on supportive care such as low tidal volume ventilation to alleviate the symptoms. Nanomedicine has recently received much attention owing to its premium benefits of delivering drugs in a sustainable and controllable manner while minimizing the potential side effects. It can effectively improve the prognosis of bacteria-induced ALI through targeted delivery of drugs, regulation of multiple inflammatory pathways, and combating antibiotic resistance. Hence, in this review, we first discuss the pathogenesis of ALI and its potential therapeutics. In particular, the state-of-the-art nanomedicines for the treatment of bacteria-induced ALI are highlighted, including their administration routes, in vivo distribution, and clearance. Furthermore, the available bacteria-induced ALI animal models are also summarized. In the end, future perspectives of nanomedicine for ALI treatment are proposed.
Collapse
Affiliation(s)
- Ruonan Su
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yu Zhang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca 14853, USA
| | - Jiabin Zhang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haixia Wang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhuanggui Chen
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
14
|
Mining nematode protein secretomes to explain lifestyle and host specificity. PLoS Negl Trop Dis 2021; 15:e0009828. [PMID: 34587193 PMCID: PMC8504978 DOI: 10.1371/journal.pntd.0009828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/11/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Parasitic nematodes are highly successful pathogens, inflicting disease on humans, animals and plants. Despite great differences in their life cycles, host preference and transmission modes, these parasites share a common capacity to manipulate their host's immune system. This is at least partly achieved through the release of excretory/secretory proteins, the most well-characterized component of nematode secretomes, that are comprised of functionally diverse molecules. In this work, we analyzed published protein secretomes of parasitic nematodes to identify common patterns as well as species-specific traits. The 20 selected organisms span 4 nematode clades, including plant pathogens, animal parasites, and the free-living species Caenorhabditis elegans. Transthyretin-like proteins were the only component common to all adult secretomes; many other protein classes overlapped across multiple datasets. The glycolytic enzymes aldolase and enolase were present in all parasitic species, but missing from C. elegans. Secretomes from larval stages showed less overlap between species. Although comparison of secretome composition across species and life-cycle stages is challenged by the use of different methods and depths of sequencing among studies, our workflow enabled the identification of conserved protein families and pinpointed elements that may have evolved as to enable parasitism. This strategy, extended to more secretomes, may be exploited to prioritize therapeutic targets in the future.
Collapse
|
15
|
Wang X, Wang Z, Tang D. Aerobic exercise improves LPS-induced sepsis via regulating the Warburg effect in mice. Sci Rep 2021; 11:17772. [PMID: 34493741 PMCID: PMC8423727 DOI: 10.1038/s41598-021-97101-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/12/2021] [Indexed: 01/24/2023] Open
Abstract
We investigated the impact of aerobic exercise (AE) on multiple organ dysfunction syndrome (MODS), aortic injury, pathoglycemia, and death during sepsis. ICR mice were randomized into four groups: Control (Con), Lipopolysaccharide (LPS), Exercise (Ex), and Exercise + LPS (Ex + LPS) groups. Mice were trained with low-intensity for 4 weeks. LPS and Ex + LPS mice received 5 mg/kg LPS intraperitoneally for induction of sepsis. Histopathological micrographs showed the organ morphology and damage. This study examined the effects of AE on LPS-induced changes in systemic inflammation, pulmonary inflammation, lung permeability, and bronchoalveolar lavage fluid (BALF) cell count, oxidative stress-related indicators in the lung, blood glucose levels, plasma lactate levels, serum insulin levels, plasma high-mobility group box 1 (HMGB1) levels, glucose transporter 1 (Glut1) and HMGB1, silent information regulator 1 (Sirt-1), and nuclear factor erythroid 2-related factor 2 (Nrf-2) mRNA expression levels in lung tissue. AE improved sepsis-associated multiple organ dysfunction syndrome (MODS), aortic injury, hypoglycemia, and death. AE prominently decreased pulmonary inflammation, pulmonary edema, and modulated redox balance during sepsis. AE prominently decreased neutrophil content in organ. AE prominently downregulated CXCL-1, CXCL-8, IL-6, TNF-α, Glu1, and HMGB1 mRNA expression but activated IL-1RN, IL-10, Sirt-1, and Nrf-2 mRNA expression in the lung during sepsis. AE decreased the serum levels of lactate and HMGB1 but increased blood glucose levels and serum insulin levels during sepsis. A 4-week AE improves sepsis-associated MODS, aortic injury, pathoglycemia, and death. AE impairs LPS-induced lactate and HMGB1 release partly because AE increases serum insulin levels and decreases the levels of Glut1. AE is a novel therapeutic strategy for sepsis targeting aerobic glycolysis.
Collapse
Affiliation(s)
- Xishuai Wang
- Department of College of P.E and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing, 100875, People's Republic of China. .,Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Zhiqing Wang
- Department of College of P.E and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing, 100875, People's Republic of China
| | - Donghui Tang
- Department of College of P.E and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing, 100875, People's Republic of China.
| |
Collapse
|
16
|
Integrated Metabolomics and Proteomics Analyses in the Local Milieu of Islet Allografts in Rejection versus Tolerance. Int J Mol Sci 2021; 22:ijms22168754. [PMID: 34445459 PMCID: PMC8395897 DOI: 10.3390/ijms22168754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
An understanding of the immune mechanisms that lead to rejection versus tolerance of allogeneic pancreatic islet grafts is of paramount importance, as it facilitates the development of innovative methods to improve the transplant outcome. Here, we used our established intraocular islet transplant model to gain novel insight into changes in the local metabolome and proteome within the islet allograft’s immediate microenvironment in association with immune-mediated rejection or tolerance. We performed integrated metabolomics and proteomics analyses in aqueous humor samples representative of the graft’s microenvironment under each transplant outcome. The results showed that several free amino acids, small primary amines, and soluble proteins related to the Warburg effect were upregulated or downregulated in association with either outcome. In general, the observed shifts in the local metabolite and protein profiles in association with rejection were consistent with established pro-inflammatory metabolic pathways and those observed in association with tolerance were immune regulatory. Taken together, the current findings further support the potential of metabolic reprogramming of immune cells towards immune regulation through targeted pharmacological and dietary interventions against specific metabolic pathways that promote the Warburg effect to prevent the rejection of transplanted islets and promote their immune tolerance.
Collapse
|
17
|
Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy. Inflamm Res 2021; 70:915-930. [PMID: 34244821 DOI: 10.1007/s00011-021-01481-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Multiple organ failure (MOF) is the main cause of early death in septic shock. Lungs are among the organs that are affected in MOF, resulting in acute lung injury. Inflammation is an important factor that causes immune cell dysfunction in the pathogenesis of sepsis. Autophagy is involved in the process of inflammation and also occurs in response to cell and tissue injury in several diseases. We previously demonstrated that hydrogen alleviated the inflammation-induced cell injury and organ damage in septic mice. AIM The focus of the present study was to elucidate whether mitophagy mediates the inflammatory response or oxidative injury in sepsis in vitro and in vivo. Furthermore, we evaluated the role of mitophagy in the protective effects of hydrogen against cell injury or organ dysfunction in sepsis. METHOD RAW 264.7 macrophages induced by lipopolysaccharide (LPS) were used as an in vitro model for inflammation, and cecal ligation and puncture (CLP)-induced acute lung injury mice were used as an in vivo model for sepsis. The key protein associated with mitophagy, PTEN-induced putative kinase 1 (PINK1), was knocked down by PINK1 shRNA transfection in RAW 264.7 macrophages or mice. RESULTS Hydrogen ameliorated cell injury and enhanced mitophagy in macrophages stimulated by LPS. PINK1 was required for the mitigation of the cell impairment in LPS-stimulated macrophages by hydrogen treatment. PINK1 knockdown abrogated the beneficial effects of hydrogen on mitophagy in LPS-stimulated macrophages. Hydrogen inhibited acute lung injury in CLP mice via activation of PINK1-mediated mitophagy. CONCLUSION These results suggest that PINK1-mediated mitophagy plays a key role in the protective effects of hydrogen against cell injury in LPS-induced inflammation and CLP-induced acute lung injury.
Collapse
|
18
|
Characterization and identification of novel anti-inflammatory peptides from Baijiao sea bass (Lateolabrax maculatus). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.1164/rccm.202111-2484oc+10.3389/fcell.2021.664896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2024] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Xiao-ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
20
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.1164/rccm.202111-2484oc 10.3389/fcell.2021.664896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China,Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China,*Correspondence: Jia-feng Wang,
| | - Xiao-ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China,Xiao-ming Deng,
| |
Collapse
|
21
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.3389/fcell.2021.664896] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-Long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-Qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-Xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-Feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Xiao-Ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
22
|
Iwamoto A, Inoue Y, Tachibana H, Kawahara H. Immunomodulatory effect of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in allergic conditions in vitro and in vivo. Cytotechnology 2021; 73:333-342. [PMID: 34149169 PMCID: PMC8166990 DOI: 10.1007/s10616-020-00438-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
We found that strawberry extract suppressed immunoglobulin (Ig) E production in vitro and in vivo, and identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as one of the IgE suppressor in the extract. We report here the effect of GAPDH on various Ig productions in vitro and in vivo. GAPDH suppressed IgE and enhanced IgA, IgG and IgM productions in ovalbumin (OVA)-stimulated human peripheral blood mononuclear cells. Oral administration of GAPDH at 10 mg/kg/day to OVA-induced allergy model mice tended to decrease total IgE level and increase total IgA and IgG levels in sera, and also decreased OVA-specific IgE and IgG levels. It is known that the increase of total IgA as well as the decrease of total and specific IgE is important for alleviating allergic symptoms. In addition, GAPDH accelerated IgA production and increased some cytokine secretions such as IL-4, TGF-β1 and IFN-γ in the OVA-immunized mice spleen lymphocytes. These cytokines involved in the class-switching, IgA enhancement, and IgE suppression, respectively, supporting above results. Our study suggests a possibility that oral administration of GAPDH may induce the immunomodulation in allergic responses.
Collapse
Affiliation(s)
- Akira Iwamoto
- Division of Applied Biological Chemistry, Department of Bioscience and Biochemistry, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Yuichi Inoue
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka, 802-0985 Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biochemistry, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Hiroharu Kawahara
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka, 802-0985 Japan
| |
Collapse
|
23
|
Han X, Yuan Z, Jing Y, Zhou W, Sun Y, Xing J. Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway. Open Med (Wars) 2021; 16:581-590. [PMID: 33869780 PMCID: PMC8034242 DOI: 10.1515/med-2021-0204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/24/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022] Open
Abstract
Sepsis is a common and lethal syndrome. Long non-coding RNA (lncRNA) transcript predicting survival in AKI (TapSAKI) has recently been found to serve as an important regulator in sepsis. However, the underlying mechanism of TapSAKI in sepsis pathogenesis remains largely unknown. Our data demonstrated that lipopolysaccharide (LPS)-induced HK-2 cell injury by weakening cell viability and enhancing cell apoptosis and inflammation. TapSAKI was upregulated and miR-205 was downregulated in LPS-induced HK-2 cells. TapSAKI knockdown or miR-205 overexpression alleviated LPS-induced cytotoxicity in HK-2 cells. TapSAKI sequestered miR-205 via acting as a miR-205 sponge. Moreover, the mitigating effect of TapSAKI silencing on LPS-induced HK-2 cell injury was mediated by miR-205. Additionally, the interferon regulatory factor 3 (IRF3) signaling was involved in the regulation of the TapSAKI/miR-205 axis on LPS-induced HK-2 cell damage. Our current study suggested that TapSAKI silencing relieved LPS-induced injury in HK-2 cells at least in part by sponging miR-205 and regulating the IRF3 signaling pathway, highlighting a novel understanding for sepsis pathogenesis and a promising target for this disease treatment.
Collapse
Affiliation(s)
- Xiaoning Han
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| | - Zhiyong Yuan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| | - Yajun Jing
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| | - Weigui Zhou
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| | - Yunbo Sun
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| | - Jinyan Xing
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| |
Collapse
|
24
|
Bu Y, Wang H, Ma X, Han C, Jia X, Zhang J, Liu Y, Peng Y, Yang M, Yu K, Wang C. Untargeted Metabolomic Profiling of the Correlation Between Prognosis Differences and PD-1 Expression in Sepsis: A Preliminary Study. Front Immunol 2021; 12:594270. [PMID: 33868224 PMCID: PMC8046931 DOI: 10.3389/fimmu.2021.594270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives: The mortality rate of sepsis remains very high. Metabolomic techniques are playing increasingly important roles in diagnosis and treatment in critical care medicine. The purpose of our research was to use untargeted metabolomics to identify and analyze the common differential metabolites among patients with sepsis with differences in their 7-day prognosis and blood PD-1 expression and analyze their correlations with environmental factors. Methods: Plasma samples from 18 patients with sepsis were analyzed by untargeted LC-MS metabolomics. Based on the 7-day prognoses of the sepsis patients or their levels of PD-1 expression on the surface of CD4+ T cells in the blood, we divided the patients into two groups. We used a combination of multidimensional and monodimensional methods for statistical analysis. At the same time, the Spearman correlation analysis method was used to analyze the correlation between the differential metabolites and inflammatory factors. Results: In the positive and negative ionization modes, 16 and 8 differential metabolites were obtained between the 7-day death and survival groups, respectively; 5 and 8 differential metabolites were obtained between the high PD-1 and low PD-1 groups, respectively. We identified three common differential metabolites from the two groups, namely, PC (P-18:0/14:0), 2-ethyl-2-hydroxybutyric acid and glyceraldehyde. Then, we analyzed the correlations between environmental factors and the common differences in metabolites. Among the identified metabolites, 2-ethyl-2-hydroxybutyric acid was positively correlated with the levels of IL-2 and lactic acid (Lac) (P < 0.01 and P < 0.05, respectively). Conclusions: These three metabolites were identified as common differential metabolites between the 7-day prognosis groups and the PD-1 expression level groups of sepsis patients. They may be involved in regulating the expression of PD-1 on the surface of CD4+ T cells through the action of related environmental factors such as IL-2 or Lac, which in turn affects the 7-day prognosis of sepsis patients.
Collapse
Affiliation(s)
- Y Bu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - H Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - X Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - C Han
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - X Jia
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - J Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Y Liu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Y Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - M Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - K Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - C Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
25
|
Adamo A, Frusteri C, Pallotta MT, Pirali T, Sartoris S, Ugel S. Moonlighting Proteins Are Important Players in Cancer Immunology. Front Immunol 2021; 11:613069. [PMID: 33584695 PMCID: PMC7873856 DOI: 10.3389/fimmu.2020.613069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Plasticity and adaptation to environmental stress are the main features that tumor and immune system share. Except for intrinsic and high-defined properties, cancer and immune cells need to overcome the opponent's defenses by activating more effective signaling networks, based on common elements such as transcriptional factors, protein-based complexes and receptors. Interestingly, growing evidence point to an increasing number of proteins capable of performing diverse and unpredictable functions. These multifunctional proteins are defined as moonlighting proteins. During cancer progression, several moonlighting proteins are involved in promoting an immunosuppressive microenvironment by reprogramming immune cells to support tumor growth and metastatic spread. Conversely, other moonlighting proteins support tumor antigen presentation and lymphocytes activation, leading to several anti-cancer immunological responses. In this light, moonlighting proteins could be used as promising new potential targets for improving current cancer therapies. In this review, we describe in details 12 unprecedented moonlighting proteins that during cancer progression play a decisive role in guiding cancer-associated immunomodulation by shaping innate or adaptive immune response.
Collapse
Affiliation(s)
- Annalisa Adamo
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Frusteri
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
26
|
Cohen MJ, Chirico WJ, Lipke PN. Through the back door: Unconventional protein secretion. Cell Surf 2020; 6:100045. [PMID: 33225116 PMCID: PMC7666356 DOI: 10.1016/j.tcsw.2020.100045] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Proteins are secreted from eukaryotic cells by several mechanisms besides the well-characterized classical secretory system. Proteins destined to enter the classical secretory system contain a signal peptide for translocation into the endoplasmic reticulum. However, many proteins lacking a signal peptide are secreted nonetheless. Contrary to conventional belief, these proteins are not just released as a result of membrane damage leading to cell leakage, but are actively packaged for secretion in alternative pathways. They are called unconventionally secreted proteins, and the best-characterized are from fungi and mammals. These proteins have extracellular functions including cell signaling, immune modulation, as well as moonlighting activities different from their well-described intracellular functions. Among the pathways for unconventional secretion are direct transfer across the plasma membrane, release within plasma membrane-derived microvesicles, use of elements of autophagy, or secretion from endosomal/multivesicular body-related components. We review the fungal and metazoan unconventional secretory pathways and their regulation, and propose experimental criteria to identify their mode of secretion.
Collapse
Affiliation(s)
- Michael J. Cohen
- The Graduate Center of the City University of New York, United States
- Biology Department, Brooklyn College of the City University of New York, United States
| | - William J. Chirico
- Department of Cell Biology, Molecular and Cellular Biology Program, SUNY Downstate Medical Center, United States
| | - Peter N. Lipke
- The Graduate Center of the City University of New York, United States
- Biology Department, Brooklyn College of the City University of New York, United States
| |
Collapse
|
27
|
Firinu D, Arba M, Vincenzoni F, Iavarone F, Costanzo G, Cabras T, Castagnola M, Messana I, Del Giacco SR, Sanna MT. Proteomic Analysis of the Acid-Insoluble Fraction of Whole Saliva from Patients Affected by Different Forms of Non-histaminergic Angioedema. J Clin Immunol 2020; 40:840-850. [PMID: 32519288 DOI: 10.1007/s10875-020-00802-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/01/2020] [Indexed: 01/17/2023]
Abstract
We analyzed by bidimensional electrophoresis the acid-insoluble fraction of saliva from three classes of angioedema patients and a healthy control group, highlighting significant variations of several normalized spot volumes. Characterization of the corresponding proteins was performed by in-gel tryptic digestion of the spots, followed by high-resolution HPLC-ESI-MS/MS analysis of tryptic mixtures. By this strategy, 16 differentially-expressed proteins among two or more groups were identified. We found higher concentration of proteins involved in immune response (interleukin-1 receptor antagonist and annexin A1), and of moonlighting proteins acting as plasminogen receptors (glyceraldehyde-3-phosphate dehydrogenase, α-enolase, and annexin A2) in patients affected by the idiopathic non-histaminergic or hereditary angioedema with unknown origin with respect to healthy controls. These data provide new information on the molecular basis of these less characterized types of angioedema. Graphical Abstract Graphical Abstract.
Collapse
Affiliation(s)
- Davide Firinu
- Dept of Medical Sciences and Public Health, University of Cagliari, 09042, Monserrato, CA, Italy.
| | - Morena Arba
- Dept of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Federica Vincenzoni
- Dept of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
- Agostino Gemelli Foundation University Hospital IRCCS, Rome, Italy
| | - Federica Iavarone
- Dept of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Rome, Italy
- Agostino Gemelli Foundation University Hospital IRCCS, Rome, Italy
| | - Giulia Costanzo
- Dept of Medical Sciences and Public Health, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Tiziana Cabras
- Dept of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Massimo Castagnola
- Proteomics Lab. IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64 00143, Rome, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche, "Giulio Natta" Consiglio Nazionale delle Ricerche L.go F. Vito 1, 00168, Roma, Italy
| | - Stefano R Del Giacco
- Dept of Medical Sciences and Public Health, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Maria T Sanna
- Dept of Life and Environmental Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| |
Collapse
|
28
|
Luo F, Jiang W, Xu Y, Liu XM, Wang W, Zhang W, Luo C. The Mechanisms Involved in Mesenchymal Stem Cell Alleviation of Sepsis-Induced Acute Lung Injury in Mice: A Pilot Study. Curr Ther Res Clin Exp 2020; 93:100593. [PMID: 32760471 PMCID: PMC7393454 DOI: 10.1016/j.curtheres.2020.100593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background Acute lung injury is a common complication of sepsis in intensive care unit patients. Inflammation is among the main mechanisms of sepsis. Therefore, suppression of inflammation is an important mechanism for sepsis treatment. Mesenchymal stem cells (MSCs) have been reported to exhibit antimicrobial properties. Objective The present study investigated the effects of MSCs on sepsis-induced acute lung injury. Methods Male C57BL/6 mice underwent a cecal ligation and puncture (CLP) operation to induce sepsis and then received either normal saline or MSCs (1 × 106 cells intravenously) at 3 hours after surgery. Survival after surgery was assessed. Lung injury was assessed by histology score, the presence of lung edema, vascular permeability, inflammatory cell infiltration, and cytokine levels in bronchoalveolar lavage fluid. Finally, we tested nuclear factor kappa-light-chain-enhancer of activated B cells activation in lung tissue. Results As expected, CLP caused lung injury as indicated by significant increases in the histopathology score, lung wet to dry weight ratio, and total protein concentration. However, mice treated with MSCs had amelioration of the lung histopathologic changes, lung wet to dry weight ratio, and total protein concentration. The levels of cytokines tumor necrosis factor alpha, interleukin 6, interleukin 1β, and interleukin 17 in bronchoalveolar lavage fluid were dramatically decreased after MSCs treatment. In contrast, expression of interleukin 10 was increased after MSCs treatment. Moreover, mice treated with MSCs had a higher survival rate than the CLP group. Neutrophil infiltration into bronchoalveolar lavage fluid was attenuated after MSCs injection, but the amounts of macrophages observed in the MSC group showed no significant differences compared with the CLP group. In addition, MSCs treatment significantly reduced nuclear factor kappa-light-chain-enhancer of activated B cells activation in lung tissue. Conclusions Based on the above findings, treatment with MSCs dampened the inflammatory response and inhibited nuclear factor kappa-light-chain-enhancer of activated B cells activation in the mouse CLP model. Thus, MSCs may be a potential new agent for the treatment of sepsis-induced acute lung injury. (Curr Ther Res Clin Exp. 2020; 81:XXX-XXX).
Collapse
Affiliation(s)
- Feng Luo
- The Affiliated Hospital of Qingdao University, Shandong, China
| | - Wei Jiang
- The Affiliated Hospital of Qingdao University, Shandong, China
| | - Yan Xu
- The Affiliated Hospital of Qingdao University, Shandong, China
| | - Xue-Mei Liu
- The Affiliated Hospital of Qingdao University, Shandong, China
| | - Wei Wang
- The Affiliated Hospital of Qingdao University, Shandong, China
| | - Wei Zhang
- The Affiliated Hospital of Qingdao University, Shandong, China
| | - Congjuan Luo
- The Affiliated Hospital of Qingdao University, Shandong, China
| |
Collapse
|
29
|
Ma J, Liu M, Wang Y, Xin C, Zhang H, Chen S, Zheng X, Zhang X, Xiao F, Yang S. Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins. Aging (Albany NY) 2020; 12:13529-13554. [PMID: 32602849 PMCID: PMC7377841 DOI: 10.18632/aging.103461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
Skin aging is a specific manifestation of the physiological aging process that occurs in virtually all organisms. In this study, we used data independent acquisition mass spectrometry to perform a comparative analysis of protein expression in volar forearm skin samples from of 20 healthy young and elderly Chinese individuals. Our quantitative proteomic analysis identified a total of 95 differentially expressed proteins (DEPs) in aged skin compared to young skin. Enrichment analyses of these DEPs (57 upregulated and 38 downregulated proteins) based on the GO, KEGG, and KOG databases revealed functional clusters associated with immunity and inflammation, oxidative stress, biosynthesis and metabolism, proteases, cell proliferation, cell differentiation, and apoptosis. We also found that GAPDH, which was downregulated in aged skin samples, was the top hub gene in a protein-protein interaction network analysis. Some of the DEPs identified herein had been previously correlated with aging of the skin and other organs, while others may represent novel age-related entities. Our non-invasive proteomics analysis of human epidermal proteins may guide future research on skin aging to help develop treatments for age-related skin conditions and rejuvenation.
Collapse
Affiliation(s)
- Jing Ma
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Mengting Liu
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Yaochi Wang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Cong Xin
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Shirui Chen
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xiaodong Zheng
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xuejun Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Fengli Xiao
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China.,The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China
| | - Sen Yang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
30
|
Xu F, Yuan J, Tian S, Chen Y, Zhou F. MicroRNA-92a serves as a risk factor in sepsis-induced ARDS and regulates apoptosis and cell migration in lipopolysaccharide-induced HPMEC and A549 cell injury. Life Sci 2020; 256:117957. [PMID: 32534035 DOI: 10.1016/j.lfs.2020.117957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
AIMS Sepsis-induced acute respiratory distress syndrome (ARDS) is a common, high mortality complication in intensive care unit (ICU) patients. MicroRNA-92a (miR-92a) plays a role in many diseases, but its association with sepsis-induced ARDS is unclear. MATERIALS AND METHODS We enrolled 53 patients, including 17 with sepsis only, and 36 with sepsis-induced ARDS. Lipopolysaccharide (LPS) was used to stimulate pulmonary microvascular endothelial cells (HPMEC) and alveolar epithelial A549 cells, which were used to investigate the miR-92a roles in ARDS. MiR-92a expression levels in patient serum and cells were quantified using quantitative reverse transcription-polymerase chain reaction (RT-PCR), and protein expression was examined using Western blotting. The effect of miR-92a on apoptosis was examined using flow cytometry. Wound healing and transwell migration assays were used to evaluate cell migration. KEY FINDINGS Serum miR-92a expression was higher in patients with sepsis-induced ARDS, when compared to patients with sepsis only. After LPS treatment in cells, miR-92a expression was higher when compared with control group, cell apoptosis and inflammatory responses were increased and cell migration was inhibited. However, cell apoptosis and inflammatory responses were decreased and cell migration was enhanced after miR-92a downregulation, when compared with inhibitor negative control (NC) group. Moreover, phosphorylated-Akt and phosphorylated-mTOR expression were increased after miR-92a inhibition. SIGNIFICANCE Our study provides evidence that circulating serum miR-92a could act as a risk factor for sepsis-induced ARDS. MiR-92a inhibition attenuated the adverse effects of LPS on ARDS through the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Fan Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Jianghan Yuan
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Shijing Tian
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yi Chen
- Emergency Department, Chongqing Emergency Medical Center, Chongqing 400016, PR China
| | - Fachun Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
31
|
Glyceraldehyde-3-phosphate Dehydrogenase is a Multifaceted Therapeutic Target. Pharmaceutics 2020; 12:pharmaceutics12050416. [PMID: 32370188 PMCID: PMC7285110 DOI: 10.3390/pharmaceutics12050416] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme whose role in cell metabolism and homeostasis is well defined, while its function in pathologic processes needs further elucidation. Depending on the cell context, GAPDH may bind a number of physiologically important proteins, control their function and correspondingly affect the cell’s fate. These interprotein interactions and post-translational modifications of GAPDH mediate its cytotoxic or cytoprotective functions in the manner of a Janus-like molecule. In this review, we discuss the functional features of the enzyme in cellular physiology and its possible involvement in human pathologies. In the last part of the article, we describe drugs that can be employed to modulate this enzyme’s function in some pathologic states.
Collapse
|
32
|
Qu B, Ma Z, Zhang Y, Gao Z, Zhang S. Characterization of a novel protein identified by proteomics analysis as a modulator of inflammatory networks in amphioxus. FISH & SHELLFISH IMMUNOLOGY 2020; 96:97-106. [PMID: 31805412 DOI: 10.1016/j.fsi.2019.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Inflammatory response is an innate host defense mechanism, and its regulation is essential for the host to get rid of harm by the excessive reactions. We first utilized proteomics approach to identify amphioxus humoral fluid proteins in response to LPS-induced inflammation. A total of 26 differentially expressed proteins, mainly involved in energy metabolism and cytoskeleton rearrangement processes, were identified between LPS-treated and control animals. Furthermore, we found a single uncharacterized protein (termed BjIM1) out of the most up-regulated ones, and examined its role in the regulation of immune and inflammatory responses. BjIM1 is predominantly expressed in the hepatic caecum, and its promoter sequence includes many binding sites for immune-relevant transcription factors. Importantly, recombinant BjIM1 (rBjIM1) is able to inhibit LPS-induced up-regulation of TLR pathway genes, such as MyD88, IKK, NF-κB1, Rel, p38, JNK and AP-1, indicating that BjIM1 may negatively regulate the TLR signaling pathway in amphioxus. Moreover, rBjIM1 also modulates the expression of genes involved in the interaction network of inflammation, energy metabolism and cytoskeleton rearrangement, including SIRT1, Rac1 and NOX2, in the LPS-induced inflammatory response in amphioxus. Collectively, our studies suggest that BjIM1 is an uncharacterized protein functioning as a modulator of inflammatory networks in amphioxus.
Collapse
Affiliation(s)
- Baozhen Qu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Zengyu Ma
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Yu Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Zhan Gao
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China.
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
33
|
Du HL, Zhai AD, Yu H. Synergistic effect of halofuginone and dexamethasone on LPS‑induced acute lung injury in type II alveolar epithelial cells and a rat model. Mol Med Rep 2019; 21:927-935. [PMID: 31974595 DOI: 10.3892/mmr.2019.10865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
Acute lung injury (ALI) is characterized by neutrophilic infiltration, uncontrolled oxidative stress and inflammatory processes. Despite various therapeutic regimes having been performed, there remains no effective pharmacotherapy available to treat ALI. Halofuginone (HF), a ketone isolated from Dichroa febrifuga, exhibits significant anti‑inflammatory and antifibrotic effects. Dexamethasone (DEX), a synthetic glucocorticoid, has been routinely used as an adjuvant therapy in treating inflammatory diseases, including ALI. The present study aimed to investigate the effects of the combination of HF and DEX in the treatment of ALI. The present results suggested that the simultaneous administration of HF and DEX markedly decreased the level of pro‑inflammatory cytokines and increased the level of anti‑inflammatory cytokines, as assessed by western blot analysis. In addition, HF and DEX effectively decreased nuclear factor‑κB activity via suppressing the phosphorylation of P65 in lipopolysaccharide (LPS)‑induced human pulmonary alveolar epithelial cells (HPAEpiC) and lung tissues extracted from ALI rats, as determined by immunofluorescence. Furthermore, in vivo experiments demonstrated that the combination of HF and DEX in LPS‑induced ALI rats defended against lung fibrosis, perivascular inflammation, congestion and edema of pulmonary alveoli, as assessed by histopathological analysis, TUNEL staining and immunohistochemistry assay. Taken together, the present study indicated the synergistic effect of HF and DEX on LPS‑induced ALI in HPAEpiC cells and a rat model. These results offer a novel therapeutic approach for the treatment of ALI.
Collapse
Affiliation(s)
- Hai-Lian Du
- Department of Respiratory Medicine, Yidu Central Hospital Affiliated to Weifang Medical College, Qingzhou, Shandong 262500, P.R. China
| | - Ai-Dong Zhai
- Department of Internal Medicine, Maternal and Child Health Hospital of Zibo, Zibo, Shandong 255029, P.R. China
| | - Hong Yu
- Intensive Care Unit, Second Hospital of Harbin City, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
34
|
Identification of Key Pathways and Genes of Acute Respiratory Distress Syndrome Specific Neutrophil Phenotype. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9528584. [PMID: 31531373 PMCID: PMC6720049 DOI: 10.1155/2019/9528584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022]
Abstract
Despite over 50 years of clinical and basic studies, acute respiratory distress syndrome (ARDS) is still a critical challenge with high mortality worldwide. The severity of neutrophil activation was associated with disease severity. However, the detailed pathophysiology of the circulating polymorphonuclear neutrophil activation in ARDS remains unclear. To identify key pathways and genes in the ARDS-specific neutrophil phenotype distinct from sepsis, the datasets of blood polymorphonuclear neutrophils (PMNs) from patients with ARDS (GSE76293) and from sepsis patients (GSE49757) were chosen from the Gene Expression Omnibus (GEO) and analyzed using bioinformatics methods. A total of 220 differential expressed genes (DEGs) were overlapped between GSE49757 and GSE76293 in a Venn diagram. Pathway enrichment analysis results showed that DEGs in GSE76293 were mainly enriched in the MAPK signaling pathway, FoxO signaling pathway, and AMPK signaling pathway relative to GSE49757. We identified 30 hub genes in the protein-protein interaction network. By comparing with GSE49757, we speculated that GAPDH, MAPK8, PIK3CB, and MMP9 may play important roles in the progression of ARDS-specific circulating neutrophil activation. The findings may provide novel insights into the development of promising targets for the diagnosis and treatment of ARDS in the future.
Collapse
|
35
|
Wang T, Jeon SW, Jung US, Kim MJ, Lee HG. l-Lactate Dehydrogenase B Chain Associated with Milk Protein Content in Dairy Cows. Animals (Basel) 2019; 9:ani9070442. [PMID: 31311116 PMCID: PMC6680410 DOI: 10.3390/ani9070442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022] Open
Abstract
This study aimed to explore genes associated with milk protein content in dairy cows and their relationships with l-leucine. Ten primiparous Holstein cows (93.8 ± 11.56 milking days) fed the same diet were divided into two groups depending on their milk protein contents (group High, 3.34 ± 0.10%; and group Low, 2.86 ± 0.05%). Milk epithelial cells (MECs) were isolated from the collected morning milk and differentially expressed proteins in MECs were explored by two-dimensional gel electrophoresis (2-DE). Then, the mRNA expression of these proteins was detected by real time PCR in MAC-T cells incubated with three different media named positive control (PC), negative control (NC), and l-leucine depletion (NO-leu). Results showed that ten proteins were differentially expressed in MECs from cows in group High. They included seven down-regulated ones (heat shock protein beta-1 (HSPB1), 78 kDa glucose-regulated protein (GRP-78), l-lactate dehydrogenase B chain (LDH-B), malate dehydrogenase, cytoplasmic (MDH1), annexin I (ANXA1), cytokeratin-7 (CK-7), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)), and three up-regulated ones (prohibitin (PHB), beta casein (CSN2), and alpha S1 casein (CSN1S1)). When l-leucine was depleted from the medium, not only proteins content was lowered (p < 0.05), but also the LDH-B mRNA expression was decreased in MAC-T cells (p < 0.05). In conclusion, LDH-B is negatively associated with the milk protein content of dairy cows and has a positive association with l-leucine.
Collapse
Affiliation(s)
- Tao Wang
- Department of Animal Science and Technology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Korea
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Seung Woo Jeon
- Department of Animal Science and Technology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Korea
| | - U Suk Jung
- Department of Animal Science and Technology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Korea
| | - Min Jeong Kim
- Department of Animal Science and Technology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Korea
| | - Hong Gu Lee
- Department of Animal Science and Technology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
36
|
Jiang K, Yang J, Guo S, Zhao G, Wu H, Deng G. Peripheral Circulating Exosome-Mediated Delivery of miR-155 as a Novel Mechanism for Acute Lung Inflammation. Mol Ther 2019; 27:1758-1771. [PMID: 31405809 DOI: 10.1016/j.ymthe.2019.07.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence has revealed that excessive activation of macrophages may result in an adverse lung inflammation involved in sepsis-related acute lung injury (ALI). However, it has never been clearly identified whether peripheral circulating serum exosomes participate in the pathogenesis of sepsis-related ALI. Therefore, the purposes of our study were to investigate the effect of serum exosomes on macrophage activation and elucidate a novel mechanism underlying sepsis-related ALI. Here we found that exosomes were abundant in the peripheral blood from ALI mice and selectively loaded microRNAs (miRNAs), such as miR-155. In vivo experiments revealed that intravenous injection of serum exosomes harvested from ALI mice, but not control mice, increased the number of M1 macrophages in the lung, and it caused lung inflammation in naive mice. In vitro, we demonstrated that serum exosomes from ALI mice delivered miR-155 to macrophages, stimulated nuclear factor κB (NF-κB) activation, and induced the production of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6. Furthermore, we also showed that serum exosome-derived miR-155 promoted macrophage proliferation and inflammation by targeting SHIP1 and SOCS1, respectively. Collectively, our data suggest the important role of circulating exosomes secreted into peripheral blood as a key mediator of septic lung injury via exosome-shuttling miR-155.
Collapse
Affiliation(s)
- Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
37
|
Xie X, Zhao J, Xie L, Wang H, Xiao Y, She Y, Ma L. Identification of differentially expressed proteins in the injured lung from zinc chloride smoke inhalation based on proteomics analysis. Respir Res 2019; 20:36. [PMID: 30770755 PMCID: PMC6377712 DOI: 10.1186/s12931-019-0995-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Lung injury due to zinc chloride smoke inhalation is very common in military personnel and leads to a high incidence of pulmonary complications and mortality. The aim of this study was to uncover the underlying mechanisms of lung injury due to zinc chloride smoke inhalation using a rat model. Methods: Histopathology analysis of rat lungs after zinc chloride smoke inhalation was performed by using haematoxylin and eosin (H&E) and Mallory staining. A lung injury rat model of zinc chloride smoke inhalation (smoke inhalation for 1, 2, 7 and 14 days) was developed. First, isobaric tags for relative and absolute quantization (iTRAQ) and weighted gene co-expression network analysis (WGCNA) were used to identify important differentially expressed proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to study the biological functions of differentially expressed proteins. Then, analysis of lung injury repair-related differentially expressed proteins in the early (day 1 and day 2) and middle-late stages (day 7 and day 14) of lung injury after smoke inhalation was performed, followed by the protein-protein interaction (PPI) analysis of these differentially expressed proteins. Finally, the injury repair-related proteins PARK7 and FABP5 were validated by immunohistochemistry and western blot analysis. Results Morphological changes were observed in the lung tissues after zinc chloride smoke inhalation. A total of 27 common differentially expressed proteins were obtained on days 1, 2, 7 and 14 after smoke inhalation. WGCNA showed that the turquoise module (which involved 909 proteins) was most associated with smoke inhalation time. Myl3, Ckm, Adrm1 and Igfbp7 were identified in the early stages of lung injury repair. Gapdh, Acly, Tnni2, Acta1, Actn3, Pygm, Eno3 and Tpi1 (hub proteins in the PPI network) were identified in the middle-late stages of lung injury repair. Eno3 and Tpi1 were both involved in the glycolysis/gluconeogenesis signalling pathway. The expression of PARK7 and FABP5 was validated and was consistent with the proteomics analysis. Conclusion The identified hub proteins and their related signalling pathways may play crucial roles in lung injury repair due to zinc chloride smoke inhalation.
Collapse
Affiliation(s)
- Xiaowei Xie
- Medical School of Chinese PLA, Medical School of Chinese PLA, Fuxing Road, Beijing, 100853, China
| | - Jingan Zhao
- Medical School of Chinese PLA, Medical School of Chinese PLA, Fuxing Road, Beijing, 100853, China
| | - Lixin Xie
- Medical School of Chinese PLA, Medical School of Chinese PLA, Fuxing Road, Beijing, 100853, China.
| | - Haiyan Wang
- Department of Respiratory, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Xiao
- Department of Respiratory, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yingjia She
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lingyun Ma
- Department of Respiratory, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
38
|
Huo J, Ma R, Chai X, Liang HJ, Jiang P, Zhu XL, Chen X, Su BX. Inhibiting a spinal cord signaling pathway protects against ischemia injury in rats. J Thorac Cardiovasc Surg 2019; 157:494-503.e1. [DOI: 10.1016/j.jtcvs.2018.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 02/05/2023]
|
39
|
Hu JT, Lai J, Zhou W, Chen XF, Zhang C, Pan YP, Jiang LY, Zhou YX, Zhou B, Tang ZH. Hypothermia alleviated LPS-induced acute lung injury in Rat models through TLR2/MyD88 pathway. Exp Lung Res 2019; 44:397-404. [PMID: 30663438 DOI: 10.1080/01902148.2018.1557299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Acute lung injury (ALI) is a common clinical syndrome in ICU departments with high mortality. The pathology of ALI is still not clear and there is no specific and efficient treatment against ALI. In this study, we established ALI rat model through lipopolysaccharide administration. We found that hypothermia therapy led to significant improvement in oxygenation index, edema formation and pathological score, demonstrating that hypothermia is beneficial to the recovery of lung function and alleviation of lung injury. Besides, hypothermia resulted in a decrease in plasminogen activator inhibitor-1(PAI-1) concentration, showing the inflammation was partially inhibited. This was also confirmed by a decrease in TNF-α mRNA and protein level in hypothermia group. The effect of hypothermia was mediated by TLR2/MyD88 signaling, which led to the alteration in NF-κB p65 level. Collectively, this study indicated that hypothermia therapy was potentially an efficient therapy against ALI.
Collapse
Affiliation(s)
- Jun-Tao Hu
- a Department of Critical Care Medicine , the First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Zhuang Autonomous Region, China
| | - Jie Lai
- a Department of Critical Care Medicine , the First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Zhuang Autonomous Region, China
| | - Wei Zhou
- a Department of Critical Care Medicine , the First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Zhuang Autonomous Region, China
| | - Xian-Feng Chen
- a Department of Critical Care Medicine , the First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Zhuang Autonomous Region, China
| | - Chi Zhang
- a Department of Critical Care Medicine , the First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Zhuang Autonomous Region, China
| | - Yi-Ping Pan
- a Department of Critical Care Medicine , the First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Zhuang Autonomous Region, China
| | - Liang-Yan Jiang
- a Department of Critical Care Medicine , the First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Zhuang Autonomous Region, China
| | - Yun-Xia Zhou
- a Department of Critical Care Medicine , the First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Zhuang Autonomous Region, China
| | - Bing Zhou
- a Department of Critical Care Medicine , the First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Zhuang Autonomous Region, China
| | - Zhan-Hong Tang
- a Department of Critical Care Medicine , the First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
40
|
Galván-Peña S, Carroll RG, Newman C, Hinchy EC, Palsson-McDermott E, Robinson EK, Covarrubias S, Nadin A, James AM, Haneklaus M, Carpenter S, Kelly VP, Murphy MP, Modis LK, O'Neill LA. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat Commun 2019; 10:338. [PMID: 30659183 PMCID: PMC6338787 DOI: 10.1038/s41467-018-08187-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophages undergo metabolic changes during activation that are coupled to functional responses. The gram negative bacterial product lipopolysaccharide (LPS) is especially potent at driving metabolic reprogramming, enhancing glycolysis and altering the Krebs cycle. Here we describe a role for the citrate-derived metabolite malonyl-CoA in the effect of LPS in macrophages. Malonylation of a wide variety of proteins occurs in response to LPS. We focused on one of these, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In resting macrophages, GAPDH binds to and suppresses translation of several inflammatory mRNAs, including that encoding TNFα. Upon LPS stimulation, GAPDH undergoes malonylation on lysine 213, leading to its dissociation from TNFα mRNA, promoting translation. We therefore identify for the first time malonylation as a signal, regulating GAPDH mRNA binding to promote inflammation.
Collapse
Affiliation(s)
- Silvia Galván-Peña
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, Dublin, D2, Ireland
- Immunology Catalyst, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Richard G Carroll
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, D2, Ireland
| | - Carla Newman
- In Vitro/In Vivo Translation, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Elizabeth C Hinchy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Eva Palsson-McDermott
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, Dublin, D2, Ireland
| | - Elektra K Robinson
- Department of Molecular Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, 95064, CA, USA
| | - Sergio Covarrubias
- Department of Molecular Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, 95064, CA, USA
| | - Alan Nadin
- NCE Molecular Tools Group, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Moritz Haneklaus
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, Dublin, D2, Ireland
| | - Susan Carpenter
- Department of Molecular Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, 95064, CA, USA
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, Dublin, D2, Ireland
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Louise K Modis
- Immunology Catalyst, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, Dublin, D2, Ireland.
- Immunology Catalyst, GlaxoSmithKline, Stevenage, SG1 2NY, UK.
| |
Collapse
|
41
|
Wu JJ, Yuan XM, Huang C, An GY, Liao ZL, Liu GA, Chen RX. Farnesyl thiosalicylic acid prevents iNOS induction triggered by lipopolysaccharide via suppression of iNOS mRNA transcription in murine macrophages. Int Immunopharmacol 2019; 68:218-225. [PMID: 30658315 DOI: 10.1016/j.intimp.2018.12.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/12/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023]
Abstract
Inducible nitric oxide synthase (iNOS) is a molecule critical for the development of inflammation-associated disorders. Its induction should be tightly controlled in order to maintain cellular homeostasis. Upon lipopolysaccharide (LPS) stimulation, iNOS, in most settings, is induced by the activation of inhibitor of κB-α (IκB-α)-nuclear factor κB (NF-κB) signaling. Farnesyl thiosalicylic acid (FTS), a synthetic small molecule that is considered to detach Ras from the inner cell membrane, has been shown to exhibit numerous anti-inflammatory functions. However, it remains unclear whether and how it affects iNOS induction in macrophages. The present study addressed this issue in cultured macrophages and endotoxemic mice. Results showed that FTS pretreatment significantly prevented LPS-induced increases in iNOS protein and mRNA expression levels in murine cultured macrophages, which were confirmed in organs in vivo from endotoxemic mice, such as the liver and lung. Mechanistic studies revealed that FTS pretreatment did not affect IκB-α degradation and NF-κB activation in LPS-treated macrophages. The nuclear transport of the active NF-κB was also not affected by FTS. But FTS pretreatment reduced the binding of NF-κB to its DNA elements, and reduced NF-κB bindings to iNOS promoter inside LPS-treated macrophages. Finally, our results showed that FST pretreatment increased mouse survival rate compared to LPS alone treatment. Taken together, these results indicate that FTS attenuates iNOS induction in macrophages likely through inhibition of iNOS mRNA transcription, providing further insight into the molecular mechanism of action of FTS in inflammatory disorder therapy.
Collapse
Affiliation(s)
- Jing-Jing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Xiao-Mei Yuan
- Heart Failure Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| | - Chao Huang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Guo-Yin An
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Zhan-Ling Liao
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Guang-An Liu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Run-Xiang Chen
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China.
| |
Collapse
|
42
|
Agraz-Cibrian JM, Giraldo DM, Urcuqui-Inchima S. 1,25-Dihydroxyvitamin D 3 induces formation of neutrophil extracellular trap-like structures and modulates the transcription of genes whose products are neutrophil extracellular trap-associated proteins: A pilot study. Steroids 2019; 141:14-22. [PMID: 30414422 DOI: 10.1016/j.steroids.2018.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/09/2018] [Accepted: 11/05/2018] [Indexed: 01/05/2023]
Abstract
Neutrophils are components of the innate immune system that participate in controlling infectious diseases through microbicidal mechanisms such as phagocytosis, degranulation and the release of neutrophil extracellular traps (NETs). NETs are DNA structures that are released through the decondensation and spreading of chromatin and the adherence of various proteins, including neutrophil elastase (NE), myeloperoxidase (MPO) and peptidyl arginine deiminase 4 (PDA4). Since NETs recovered after treatment of activated polymorphonuclear neutrophils can enhance IL-1β and IFN-α production by LPS-activated macrophages, they are thought to be keys to the host's defenses and inflammation. 1,25(OH)2D3 has been shown to play an important role in modulating neutrophils activation and in preventing infections. Therefore, the aim of this study was to assess the effect of 1,25(OH)2D3 in modulating induction of the release of NETs and in regulating the transcription of genes whose products in human neutrophils are NETs-associated proteins, TLRs and interferon. We observed that 1,25(OH)2D3 induced production of NETs-like structures while also upregulating NE/PAD4/COX-3/GAPDH mRNA levels. Additionally, we found an increase in TLR7 and type I interferon (IFN) mRNA levels as a result of neutrophil activation by 1,25(OH)2D3. Since the transcription of genes whose products constitute NETs-associated proteins are differentially-regulated by 1,25(OH)2D3, we proposed that this might restrict the spread of pathogens, such as virus, by inducing NETs, the expression of TLR7 and secretion of IFN-α. Our results suggest the potential importance of this hormone in preventing infections by inducing NETs formation.
Collapse
Affiliation(s)
- Juan Manuel Agraz-Cibrian
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Diana M Giraldo
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
43
|
Nakano T, Goto S, Takaoka Y, Tseng HP, Fujimura T, Kawamoto S, Ono K, Chen CL. A novel moonlight function of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for immunomodulation. Biofactors 2018; 44:597-608. [PMID: 28753256 DOI: 10.1002/biof.1379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/25/2017] [Accepted: 06/22/2017] [Indexed: 11/09/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an energy metabolism-related enzyme, which generates NADH in glycolysis. Our previous study revealed a novel role of exogenous GAPDH in the amelioration of lipopolysaccharide (LPS)-induced sepsis-related, severe acute lung injury (ALI) in mice. Here, we show the effect of extracellular GAPDH on the physiological functions of macrophages, which play an important role in the onset of sepsis and ALI. GAPDH has no effect on cell viability, while it strongly suppressed cell adhesion, spreading, and phagocytic function of LPS-stimulated macrophages. GAPDH treatment significantly reduced tumor necrosis factor (TNF)-α, while it induced interleukin (IL)-10 production from LPS-stimulated macrophages in a dose-dependent manner. It is noteworthy that heat inactivation of GAPDH lost its immunomodulatory activity. Correspondingly, NADH significantly inhibited TNF-α and enhanced IL-10 production with elevation of both M1/M2 macrophage markers. These data suggest that extracellular GAPDH induces intermediate M1/M2 macrophages for termination of inflammation, partly through its enzyme activity for generation of NADH. © 2018 BioFactors, 44(6):597-608, 2018.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, 123 Ta-Pei Rd, Niao-Sung, Kaohsiung 833, Taiwan
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta-Pei Rd, Niao-Sung, Kaohsiung 833, Taiwan
| | - Shigeru Goto
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta-Pei Rd, Niao-Sung, Kaohsiung 833, Taiwan
- Nobeoka Medical Check Center, Fukuoka Institution of Occupational Health, 2-1-5 Atagomachi, Nobeoka, Miyazaki 882-0872, Japan
- Basic Medical Science of Nursing, Faculty of Nursing, Department of Nursing, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan
| | - Yuki Takaoka
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta-Pei Rd, Niao-Sung, Kaohsiung 833, Taiwan
| | - Hui-Peng Tseng
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, 123 Ta-Pei Rd, Niao-Sung, Kaohsiung 833, Taiwan
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta-Pei Rd, Niao-Sung, Kaohsiung 833, Taiwan
| | - Takashi Fujimura
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Seiji Kawamoto
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Kazuhisa Ono
- Hiroshima Research Center for Healthy Aging (HiHA), Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Chao-Long Chen
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta-Pei Rd, Niao-Sung, Kaohsiung 833, Taiwan
| |
Collapse
|
44
|
|
45
|
Wan QQ, Wu D, Ye QF. Candidate Genes as Biomarkers in Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome Based on mRNA Expression Profile by Next-Generation RNA-Seq Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4384797. [PMID: 29850515 PMCID: PMC5911337 DOI: 10.1155/2018/4384797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/09/2018] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
Abstract
Up until now, the regulation mechanism at the level of gene during lipopolysaccharide- (LPS-) induced acute respiratory distress syndrome (ARDS) remains unclear. The discovery of differentially expressed genes (DEGs) between LPS-induced ARDS rats and normal rats by next-generation RNA sequencing analysis is of particular interest for the current study. These DEGs may help clinical diagnosis of ARDS and facilitate the selection of the optimal treatment strategy. Randomly, 20 rats were equally divided into 2 groups, the control group and the LPS group. Three rats from each group were selected at random for RNA sequencing analysis. Sequence reads were obtained from Illumina HiSeq4000 and mapped onto the rat reference genome RN6 using Hisat2. We identified 5244 DEGs (Fold_Change > 1.5, and P < 0.05) in the lung tissues from LPS-treated rats compared with normal rats, including 1413 upregulated and 3831 downregulated expressed genes. Lots of chemokine family members were among the most upregulated genes in LPS group. Gene ontology (GO) analysis revealed that almost all of the most enriched and meaningful biological process terms were mainly involved in the functions like immune-inflammation response and the pathways like cytokine-cytokine receptor interaction. We also found that, as for GO molecular function terms, the enriched terms were mainly related to chemokines and cytokines. DEGs with fold change over 100 were verified by quantitative real-time polymerase chain reaction and reanalyzed by gene-gene coexpression network, and the results elucidated central roles of chemokines in LPS-induced ARDS. Our results revealed some new biomarkers for uncovering mechanisms and processes of ARDS.
Collapse
Affiliation(s)
- Qi-Quan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Di Wu
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qi-Fa Ye
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, China
| |
Collapse
|
46
|
miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-β/smad3 signaling pathways. J Transl Med 2018; 98:339-359. [PMID: 29200203 DOI: 10.1038/labinvest.2017.123] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/03/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022] Open
Abstract
Pulmonary fibrosis triggered during the early stage of acute respiratory distress syndrome (ARDS) contributes to poor prognosis in patients. However, whether microRNAs (miRNAs) can serve as therapeutic targets for early pulmonary fibrosis during ARDS is still largely unknown. In this study, we evaluated the effects and mechanisms of miR-200s and its targets ZEB1/2 in lung tissue. An early pulmonary fibrosis mouse model caused by ARDS was established via a lipopolysaccharide (LPS) three-hit regimen. Lentiviral packaged miR-200b/c cDNA or ZEB1/2 shRNA was intratracheally administered into the lungs of C57BL/6 mice 1 day before an LPS injection was administered. In vitro, following a 30-min pretreatment with miR-200b/c or SB203580/SIS3, RLE-6TN cells were stimulated by LPS or LPS + transforming growth factor-β (TGF-β) for 24 h. miR-200b/c and E-cadherin protein expression declined, whereas ZEB1/2 mRNA and protein and vimentin and α-smooth muscle actin (α-SMA) protein levels gradually increased during the development of pulmonary fibrosis. Furthermore, both the overexpression of miR-200b/c and the silencing of ZEB1/2 significantly alleviated pulmonary inflammation and fibrosis, reduced vimentin and α-SMA expression, and increased E-cadherin protein levels. In RLE-6TN cells, LPS combined with TGF-β exerts synergistic effects of increasing vimentin and α-SMA protein levels, increasing p38 and smad3 phosphorylation and reducing E-cadherin protein levels, which were reversed by pretreatment with miR-200b/c or SB203580/SIS3. Our findings demonstrate that miR-200b/c was downregulated, whereas ZEB1/2 was upregulated in the development of LPS-induced early pulmonary fibrosis. miR-200b/c exerts a protective effect by targeting ZEB1/2, which may be associated with the inhibition of p38 MAPK and TGF-β /smad3 signaling pathways.
Collapse
|
47
|
Seki SM, Gaultier A. Exploring Non-Metabolic Functions of Glycolytic Enzymes in Immunity. Front Immunol 2017; 8:1549. [PMID: 29213268 PMCID: PMC5702622 DOI: 10.3389/fimmu.2017.01549] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023] Open
Abstract
At the beginning of the twentieth century, discoveries in cancer research began to elucidate the idiosyncratic metabolic proclivities of tumor cells (1). Investigators postulated that revealing the distinct nutritional requirements of cells with unchecked growth potential would reveal targetable metabolic vulnerabilities by which their survival could be selectively curtailed. Soon thereafter, researchers in the field of immunology began drawing parallels between the metabolic characteristics of highly proliferative cancer cells and those of immune cells that respond to perceived threats to host physiology by invading tissues, clonally expanding, and generating vast amounts of pro-inflammatory effector molecules to provide the host with protection. Throughout the past decade, increasing effort has gone into elucidating the biosynthetic and bioenergetic requirements of immune cells during inflammatory responses. It is now well established that, like tumor cells, immune cells must undergo metabolic adaptations to fulfill their effector functions (2, 3). Unraveling the metabolic adaptations that license inflammatory immune responses may lead to the development of novel classes of therapeutics for pathologies with prominent inflammatory components (e.g., autoimmunity). However, the translational potential of discoveries made toward this end is currently limited by the ubiquitous nature of the "pathologic" process being targeted: metabolism. Recent works have started to unravel unexpected non-metabolic functions for metabolic enzymes in the context of inflammation, including signaling and gene regulation. One way information gained through the study of immunometabolism may be leveraged for therapeutic benefit is by exploiting these non-canonical features of metabolic machinery, modulating their contribution to the immune response without impacting their basal metabolic functions. The focus of this review is to discuss the metabolically independent functions of glycolytic enzymes and how these could impact T cells, agents of the immune system that are commonly considered as orchestrators of auto-inflammatory processes.
Collapse
Affiliation(s)
- Scott M Seki
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA, United States.,Graduate Program in Neuroscience, Charlottesville, VA, United States.,Medical Scientist Training Program, Charlottesville, VA, United States
| | - Alban Gaultier
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA, United States
| |
Collapse
|
48
|
Ding Q, Liu G, Zeng Y, Zhu J, Liu Z, Jiang J, Huang J. Glycogen synthase kinase‑3β inhibitor reduces LPS‑induced acute lung injury in mice. Mol Med Rep 2017; 16:6715-6721. [PMID: 28901469 PMCID: PMC5865788 DOI: 10.3892/mmr.2017.7469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 05/08/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to examine the role of Wnt signaling in lipopolysaccharide (LPS)‑induced acute respiratory distress syndrome (ARDS). ARDS was induced by LPS and compared in mice treated with either glycogen synthase kinase‑3β inhibitor (GSKI) or PBS. The protein expression levels of interleukin (IL)‑6, IL‑8, tumor necrosis factor (TNF)‑α, IL‑17, IL‑18 and IL‑1β in the bronchoalveolar lavage fluid (BALF) were examined using murine cytokine‑specific enzyme‑linked immunosorbent assays. The accumulation of neutrophils and macrophages in the BALF were detected using flow cytometry. The extent of pathological lesions was evaluated using an immunohistochemical assay. The differentiation of mesenchymal stem cells (MSCs) into type II alveolar (ATII) epithelial cells was analyzed using immunofluorescence staining. Treatment with GSKI led to maintained body weights and survival in mice with LPS‑induced ARDS. Treatment with GSKI effectively reduced the levels of total protein, albumin, IgM and keratinocyte growth factor in the BALF. Smith scores showed that GSKI significantly alleviated LPS‑induced lung injury. GSKI also functioned to reduce inflammatory cell accumulation and pro‑inflammatory cytokine secretion. Finally, it was found that GSKI promoted the differentiation of MSCs into ATII epithelial cells in vivo. Taken together, the GSKI‑treated mice exhibited reduced acute lung injury through inhibited intra‑fluid inflammatory cell infiltration and decreased expression of pro‑inflammatory cytokines, and GSKI increased the differentiation of MSCs into ATII epithelial cells.
Collapse
Affiliation(s)
- Qi Ding
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Jiangsu 215006, P.R. China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Jiangsu 215006, P.R. China
| | - Jianjie Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Jiangsu 215006, P.R. China
| | - Zeyi Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Jiangsu 215006, P.R. China
| | - Junhong Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Jiangsu 215006, P.R. China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Jiangsu 215006, P.R. China
| |
Collapse
|
49
|
The synthetic cannabinoid WIN55212-2 ameliorates traumatic spinal cord injury via inhibition of GAPDH/Siah1 in a CB2-receptor dependent manner. Brain Res 2017; 1671:85-92. [DOI: 10.1016/j.brainres.2017.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/12/2017] [Accepted: 06/17/2017] [Indexed: 01/24/2023]
|
50
|
Hou X, Snarski P, Higashi Y, Yoshida T, Jurkevich A, Delafontaine P, Sukhanov S. Nuclear complex of glyceraldehyde-3-phosphate dehydrogenase and DNA repair enzyme apurinic/apyrimidinic endonuclease I protect smooth muscle cells against oxidant-induced cell death. FASEB J 2017; 31:3179-3192. [PMID: 28404743 DOI: 10.1096/fj.201601082r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/27/2017] [Indexed: 01/18/2023]
Abstract
Atherosclerotic plaque destabilization is the major determinant of most acute coronary events. Smooth muscle cell (SMC) death contributes to plaque destabilization. Here, we describe a novel antiapoptotic mechanism in vascular SMCs that involves interaction of nuclear glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with apurinic/apyrimidinic endonuclease 1 (Ape1), the major oxidized DNA repair enzyme. GAPDH down-regulation potentiated H2O2-induced DNA damage and SMC apoptosis. Conversely, GAPDH overexpression decreased DNA damage and protected SMCs against apoptosis. Ape1 down-regulation reversed the resistance of GAPDH-overexpressing cells to DNA damage and apoptosis, which indicated that Ape1 is indispensable for GAPDH-dependent protective effects. GAPDH bound Ape1 in the SMC nucleus, and blocking (or oxidation) of GAPDH active site cysteines suppressed GAPDH/Ape1 interaction and potentiated apoptosis. GAPDH up-regulated Ape1 via a transcription factor homeobox protein Hox-A5-dependent mechanism. GAPDH levels were reduced in atherosclerotic plaque SMCs, and this effect correlated with oxidative stress and SMC apoptosis. Thus, we demonstrated that nuclear GAPDH/Ape1 interaction preserved Ape1 activity, reduced DNA damage, and prevented SMC apoptosis. Suppression of SMC apoptosis by maintenance of nuclear GAPDH/Ape1 interactions may be a novel therapy to increase atherosclerotic plaque stability.-Hou, X., Snarski, P., Higashi, Y., Yoshida, T., Jurkevich, A., Delafontaine, P., Sukhanov, S. Nuclear complex of glyceraldehyde-3-phosphate dehydrogenase and DNA repair enzyme apurinic/apyrimidinic endonuclease I protect smooth muscle cells against oxidant-induced cell death.
Collapse
Affiliation(s)
- Xuwei Hou
- Department of Medicine, School of Medicine, University of Missouri at Columbia, Columbia, Missouri, USA
| | - Patricia Snarski
- Department of Medicine, School of Medicine, University of Missouri at Columbia, Columbia, Missouri, USA
| | - Yusuke Higashi
- Department of Medicine, School of Medicine, University of Missouri at Columbia, Columbia, Missouri, USA.,Department of Physiology and Medical Pharmacology, School of Medicine, University of Missouri at Columbia, Columbia, Missouri, USA
| | - Tadashi Yoshida
- Department of Medicine, School of Medicine, University of Missouri at Columbia, Columbia, Missouri, USA.,Department of Physiology and Medical Pharmacology, School of Medicine, University of Missouri at Columbia, Columbia, Missouri, USA
| | - Alexander Jurkevich
- Molecular Cytology Core, University of Missouri at Columbia, Columbia, Missouri, USA
| | - Patrick Delafontaine
- Department of Medicine, School of Medicine, University of Missouri at Columbia, Columbia, Missouri, USA.,Department of Physiology and Medical Pharmacology, School of Medicine, University of Missouri at Columbia, Columbia, Missouri, USA
| | - Sergiy Sukhanov
- Department of Medicine, School of Medicine, University of Missouri at Columbia, Columbia, Missouri, USA; .,Department of Physiology and Medical Pharmacology, School of Medicine, University of Missouri at Columbia, Columbia, Missouri, USA
| |
Collapse
|