1
|
Cabadaj P, Illeová V, Dobiašová H, Bučko M, Polakovič M. Optimization of growth and induction conditions for the production of recombinant whole cell cyclohexanone monooxygenase in Escherichia coli. Sci Rep 2025; 15:14447. [PMID: 40281270 PMCID: PMC12032340 DOI: 10.1038/s41598-025-99461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Optimizing biocatalyst production conditions is essential for enhancing productivities and yields in biotransformation applications. This study focused on investigating the impact of the volumetric oxygen mass transfer coefficient (kLa) on the specific growth rate of recombinant E. coli cells and optimizing induction conditions for whole-cell cyclohexanone monooxygenase (CHMO) production. The results demonstrated that elevated kLa improved microbial growth rates, with optimal conditions achieved at kLa = 31 h⁻¹, where aerobic growth is no longer limited by dissolved oxygen. Additionally, the induction of CHMO during the exponential growth phase led to the highest specific biocatalyst activity, when used as resting cells. Further optimization of induction parameters, including the isopropyl-β-D-thiogalactopyranoside (IPTG) concentration and induction duration, significantly increased CHMO activity. The specific activity reached 54.4 U/g, representing an improvement of over 130%. Specifically, optimized conditions included a 5-hour cultivation period at kLa = 31 h⁻¹, resulting in a biocatalyst concentration of approximately 1 g/L, followed by a 20-minute induction with 0.16 mmol/L of IPTG. Bioreactor strategies for a biocatalytic Baeyer-Villiger oxidation process were evaluated, revealing that repeated batch experiments with cell washing between cycles maintained CHMO activity at 53 U/g over multiple cycles, making this the most favorable method for sustained CHMO activity and technology application. This study underscores the importance of induction optimization in maximizing biocatalyst activity for potential pilot-scale applications. These findings provide valuable insights into the optimization of biocatalytic processes, paving the way for enhanced efficiency and productivity in Baeyer-Villiger monooxygenase (BVMO)-driven processes.
Collapse
Affiliation(s)
- Patrik Cabadaj
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
- Sensible Biotechnologies s.r.o., Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Viera Illeová
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Hana Dobiašová
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
- Axxence Slovakia s.r.o, Mickiewiczova 9, 811 07, Bratislava, Slovakia
| | - Marek Bučko
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia
| | - Milan Polakovič
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| |
Collapse
|
2
|
Cabadaj P, Illeová V, Lech M, Bučko M, Polakovič M. Effect of oxygen mass transfer on the kinetics of Baeyer-Villiger oxidation using a recombinant whole-cell biocatalyst. BIORESOURCE TECHNOLOGY 2025; 421:132148. [PMID: 39914720 DOI: 10.1016/j.biortech.2025.132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/12/2025]
Abstract
Performance of resting cells of Escherichia coli expressing cyclohexanone monooxygenase was investigated in a Baeyer-Villiger (BV) oxidation. The impact of oxygen mass transfer on bicyclic lactone production and oxygen metabolic consumption was examined at varying biocatalyst and bicyclic ketone concentrations. Initial rate measurements were conducted with oxygen mass transfer coefficient (kLa) ranging from 19 h-1 to 83 h-1. Results varied notably depending on the initial bicyclic ketone concentration. Below 4 g/L, BV oxidation followed zero-order kinetics for the ketone and oxygen. Intrinsic specific rates for bicyclic lactone production and metabolic oxygen consumption were 1.4 mmol/g/h and 1.7 mmol/g/h, respectively. Mass transfer limitations intensified with higher biocatalyst concentrations and lower kLa-values. A refined conceptual model of oxygen demand for metabolism and BV oxidation was proposed. Above 4 g/L, substrate inhibition of BV oxidation was evident, while metabolic oxygen consumption was less affected. Bicyclic ketone consumption rates indicated intracellular ketone accumulation.
Collapse
Affiliation(s)
- Patrik Cabadaj
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9 81237 Bratislava, Slovakia
| | - Viera Illeová
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9 81237 Bratislava, Slovakia
| | - Magdalena Lech
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9 81237 Bratislava, Slovakia; Department of Micro, Nano & Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science & Technology, Norwida 4-6 PL-50373 Wroclaw, Poland
| | - Marek Bučko
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9 SK-84538 Bratislava, Slovakia
| | - Milan Polakovič
- Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9 81237 Bratislava, Slovakia.
| |
Collapse
|
3
|
Subudhi S, Saha K, Mudgil D, Sarangi PK, Srivastava RK, Sarma MK. Biomethanol production from renewable resources: a sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7432-7448. [PMID: 37667122 DOI: 10.1007/s11356-023-29616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
The abundant availability of various kinds of biomass and their use as feedstock for the production of gaseous and liquid biofuels has been considered a viable, eco-friendly, and sustainable mode of energy generation. Gaseous fuels like biogas and liquid fuels, e.g., bioethanol, biodiesel, and biomethanol derived from biological sources, have been theorized to produce numerous industrially relevant organic compounds replacing the traditional practice of employing fossil fuels as a raw material. Among the biofuels explored, biomethanol has shown promising potential to be a future product addressing multifactorial issues concerning sustainable energy and associated process developments. The presented mini-review has explored the importance and application of biomethanol as a value-added product. The biomethanol production process was well reviewed by focusing on different thermochemical and biochemical conversion processes. Syngas and biogas have been acknowledged as potential resources for biomethanol synthesis. The emphasis on biochemical processes is laid on the principal metabolic pathways and enzymatic machinery involved or used by microbial physiology to convert feedstock into biomethanol under normal temperature and pressure conditions. The advantage of minimizing the cost of production by utilizing suggested modifications to the overall process of biomethanol production that involves metabolic and genetic engineering in microbial strains used in the production process has been delineated. The challenges that exist in our current knowledge domain, impeding large-scale commercial production potential of biomethanol at a cost-effective rate, and strategies to overcome them along with its future scenarios have also been pointed out.
Collapse
Affiliation(s)
- Sanjukta Subudhi
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India.
| | - Koel Saha
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Divya Mudgil
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, 795004, Manipur, India
| | - Rajesh K Srivastava
- Department of Biotechnology, Gitam School of Technology, GITAM (Deemed to Be University), Visakhapatnam, 530045, India
| | - Mrinal Kumar Sarma
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| |
Collapse
|
4
|
Zhang J, Chang K, Tay J, Tiong E, Heng E, Seah T, Lim YW, Peh G, Lim YH, Wong FT, Beh CW. Hyper-porous encapsulation of microbes for whole cell biocatalysis and biomanufacturing. Microb Cell Fact 2025; 24:48. [PMID: 39994799 PMCID: PMC11852520 DOI: 10.1186/s12934-025-02675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Biocatalysis using whole cell biotransformation presents an alternative approach to producing complex molecules when compared to traditional synthetic chemical processes. This method offers several advantages, including scalability, self-contained co-factor recycling systems, the use of cost-effective raw materials, and reduced purification costs. Notably, biotransformation using microbial consortia provides benefits over monocultures by enhancing biosynthesis efficiency and productivity through division of labor and a reduction in metabolic burden. However, reliably controlling microbial cell populations within a consortium remains a significant challenge. In this work, we address this challenge through mechanical constraints. We describe the encapsulation and immobilization of cells in a hyper-porous hydrogel block, using methods and materials that are designed to be amenable to industrial scale-up. The porosity of the block provides ample nutrient access to ensure good cell viability, while the mechanical properties of the hydrogel matrix were optimized for Escherichia coli encapsulation, effectively limiting their proliferation while sustaining recombinant protein production. We also demonstrated the potential of this method for achieving stable co-cultivation of microbes by maintaining two different microbial strains spatially in a single porous hydrogel block. Finally, we successfully applied encapsulation to enable biotransformation in a mixed culture. Unlike its non-encapsulated counterpart, encapsulated E. coli expressing RadH halogenase achieved halogenation of the genistein substrate in a co-culture with genistein-producing Streptomyces. Overall, our strategy of controlling microbial cell populations through physical constraints offers a promising approach for engineering synthetic microbial consortia for biotransformation at an industrial scale.
Collapse
Affiliation(s)
- Jingyi Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Keziah Chang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Joyce Tay
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Elaine Tiong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, #07-06, Singapore, 138673, Singapore
| | - Elena Heng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, #07-06, Singapore, 138673, Singapore
| | - Theresa Seah
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-08, Singapore, 117583, Singapore
| | - Yi Wee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore
| | - Guangrong Peh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore
| | - Fong Tian Wong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, #07-06, Singapore, 138673, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore
| | - Cyrus W Beh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| |
Collapse
|
5
|
Jodlbauer J, Schmal M, Waltl C, Rohr T, Mach-Aigner AR, Mihovilovic MD, Rudroff F. Unlocking the potential of cyanobacteria: a high-throughput strategy for enhancing biocatalytic performance through genetic optimization. Trends Biotechnol 2024; 42:1795-1818. [PMID: 39214789 DOI: 10.1016/j.tibtech.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Cyanobacteria show promise as hosts for whole-cell biocatalysis. Their photoautotrophic metabolism can be leveraged for a sustainable production process. Despite advancements, performance still lags behind heterotrophic hosts. A key challenge is the limited ability to overexpress recombinant enzymes, which also hinders their biocatalytic efficiency. To address this, we generated large-scale expression libraries and developed a high-throughput method combining fluorescence-activated cell sorting (FACS) and deep sequencing in Synechocystis sp. PCC 6803 (Syn. 6803) to screen and optimize its genetic background. We apply this approach to enhance expression and biocatalyst performance for three enzymes: the ketoreductase LfSDR1M50, enoate reductase YqjM, and Baeyer-Villiger monooxygenase (BVMO) CHMOmut. Diverse genetic combinations yielded significant improvements: optimizing LfSDR1M50 expression showed a 17-fold increase to 39.2 U gcell dry weight (CDW)-1. In vivo activity of Syn. YqjM was improved 16-fold to 58.7 U gCDW-1 and, for Syn. CHMOmut, a 1.5-fold increase to 7.3 U gCDW-1 was achieved by tailored genetic design. Thus, this strategy offers a pathway to optimize cyanobacteria as expression hosts, paving the way for broader applications in other cyanobacteria strains and larger libraries.
Collapse
Affiliation(s)
- Julia Jodlbauer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Matthias Schmal
- Institute of Chemical, Environmental, and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Christian Waltl
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Thomas Rohr
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental, and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|
6
|
Zou S, Ma Y, Zhao L, Chen X, Gao H, Chen J, Xue Y, Zheng Y. Revealing the regulatory impact of nutrient on the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid by Beauveria bassiana biofilms through comparative transcriptomics analyse. Bioprocess Biosyst Eng 2024; 47:1803-1814. [PMID: 39080012 DOI: 10.1007/s00449-024-03070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 09/29/2024]
Abstract
Carbon and nitrogen play a fundamental role in the architecture of fungal biofilm morphology and metabolite production. However, the regulatory mechanism of nutrients remains to be fully understood. In this study, the formation of Beauveria bassiana biofilm and the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid in two media with different carbon and nitrogen sources (GY: Glucose as a carbon source and yeast extract as a nitrogen source, MT: Mannitol as a carbon source and tryptone as a nitrogen source) were compared. R-HPPA production increased 2.85-fold in media MT than in media GY. Different fungal biofilm morphology and architecture were discovered in media GY and MT. Comparative transcriptomics revealed up-regulation of mitogen-activated protein kinase (MAPK) pathway and polysaccharides degradation genes affecting mycelial morphology and polysaccharides yield of the extracellular polymeric substances (EPS) in MT medium biofilms. Upregulation of genes related to NADH synthesis (carbon metabolism, amino acid metabolism, glutamate cycle) causes NADH accumulation and triggers an increase in R-HPPA production. These data provide a valuable basis for future studies on regulating fungal biofilm morphology and improving the production of high-value compounds.
Collapse
Affiliation(s)
- Shuping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yizhi Ma
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lixiang Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiaomin Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hailing Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Juan Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yaping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
7
|
Dai Y, Wang J, Tao Z, Luo L, Huang C, Liu B, Shi H, Tang L, Ou Z. Highly efficient synthesis of the chiral ACE inhibitor intermediate (R)-2-hydroxy-4-phenylbutyrate ethyl ester via engineered bi-enzyme coupled systems. BIORESOUR BIOPROCESS 2024; 11:99. [PMID: 39402402 PMCID: PMC11473482 DOI: 10.1186/s40643-024-00814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
(R)-2-Hydroxy-4-phenylbutyric acid ethyl ester ((R)-HPBE) is an essential chiral intermediate in the synthesis of angiotensin-converting enzyme (ACE) inhibitors. Its production involves the highly selective asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate (OPBE), catalyzed by carbonyl reductase (CpCR), with efficient cofactor regeneration playing a crucial role. In this study, an in-situ coenzyme regeneration system was developed by coupling carbonyl reductase (CpCR) with glucose dehydrogenase (GDH), resulting in the construction of five recombinant strains capable of NADPH regeneration. Among these, the recombinant strain E. coli BL21-pETDuet-1-GDH-L-CpCR, where CpCR is fused to the C-terminus of GDH, demonstrated the highest catalytic activity. This strain exhibited an enzyme activity of 69.78 U/mg and achieved a conversion rate of 98.3%, with an enantiomeric excess (ee) of 99.9% during the conversion of 30 mM OPBE to (R)-HPBE. High-density fermentation further enhanced enzyme yield, achieving an enzyme activity of 1960 U/mL in the fermentation broth, which is 16.2 times higher than the volumetric activity obtained from shake flask fermentation. Additionally, the implementation of a substrate feeding strategy enabled continuous processing, allowing the strain to efficiently convert a final OPBE concentration of 920 mM, producing 912 mM of (R)-HPBE. These findings highlight the system's improved catalytic efficiency, stability, and scalability, making it highly suitable for industrial-scale biocatalytic production.
Collapse
Affiliation(s)
- Yanmei Dai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jinmei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zijuan Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liangli Luo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changshun Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bo Liu
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315199, China
| | - Hanbing Shi
- Department of Respiratory Medicine, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Lan Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhimin Ou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
8
|
Schultes FPJ, Welter L, Schmidtke M, Tischler D, Mügge C. A tailored cytochrome P450 monooxygenase from Gordonia rubripertincta CWB2 for selective aliphatic monooxygenation. Biol Chem 2024:hsz-2024-0041. [PMID: 39331465 DOI: 10.1515/hsz-2024-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Cytochrome P450 monooxygenases are recognized as versatile biocatalysts due to their broad reaction capabilities. One important reaction is the hydroxylation of non-activated C-H bonds. The subfamily CYP153A is known for terminal hydroxylation reactions, giving access to functionalized aliphatics. Whilst fatty derivatives may be converted by numerous enzyme classes, midchain aliphatics are seldomly accepted, a prime property of CYP153As. We report here on a new CYP153A member from the genome of the mesophilic actinobacterium Gordonia rubripertincta CWB2 as an efficient biocatalyst. The gene was overexpressed in Escherichia coli and fused with a surrogate electron transport system from Acinetobacter sp. OC4. This chimeric self-sufficient whole-cell system could perform hydroxylation and epoxidation reactions: conversions of C6-C14 alkanes, alkenes, alcohols and of cyclic compounds were observed, yielding production rates of, e.g., 2.69 mM h-1 for 1-hexanol and 4.97 mM h-1 for 1,2-epoxyhexane. Optimizing the linker compositions between the protein units led to significantly altered activity. Balancing linker length and flexibility with glycine-rich and helix-forming linker units increased 1-hexanol production activity to 350 % compared to the initial linker setup with entirely helical linkers. The study shows that strategic coupling of efficient electron supply and a selective enzyme enables previously challenging monooxygenation reactions of midchain aliphatics.
Collapse
Affiliation(s)
- Fabian Peter Josef Schultes
- Microbial Biotechnology, Faculty of Biology and Biotechnology, 9142 Ruhr University Bochum , D-44801 Bochum, Germany
| | - Leon Welter
- Microbial Biotechnology, Faculty of Biology and Biotechnology, 9142 Ruhr University Bochum , D-44801 Bochum, Germany
| | - Myra Schmidtke
- Microbial Biotechnology, Faculty of Biology and Biotechnology, 9142 Ruhr University Bochum , D-44801 Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, 9142 Ruhr University Bochum , D-44801 Bochum, Germany
| | - Carolin Mügge
- Microbial Biotechnology, Faculty of Biology and Biotechnology, 9142 Ruhr University Bochum , D-44801 Bochum, Germany
| |
Collapse
|
9
|
Bertelmann C, Bühler B. Strategies found not to be suitable for stabilizing high steroid hydroxylation activities of CYP450 BM3-based whole-cell biocatalysts. PLoS One 2024; 19:e0309965. [PMID: 39240904 PMCID: PMC11379211 DOI: 10.1371/journal.pone.0309965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/08/2024] Open
Abstract
The implementation of biocatalytic steroid hydroxylation processes plays a crucial role in the pharmaceutical industry due to a plethora of medicative effects of hydroxylated steroid derivatives and their crucial role in drug approval processes. Cytochrome P450 monooxygenases (CYP450s) typically constitute the key enzymes catalyzing these reactions, but commonly entail drawbacks such as poor catalytic rates and the dependency on additional redox proteins for electron transfer from NAD(P)H to the active site. Recently, these bottlenecks were overcome by equipping Escherichia coli cells with highly active variants of the self-sufficient single-component CYP450 BM3 together with hydrophobic outer membrane proteins facilitating cellular steroid uptake. The combination of the BM3 variant KSA14m and the outer membrane pore AlkL enabled exceptionally high testosterone hydroxylation rates of up to 45 U gCDW-1 for resting (i.e., living but non-growing) cells. However, a rapid loss of specific activity heavily compromised final product titers and overall space-time yields. In this study, several stabilization strategies were evaluated on enzyme-, cell-, and reaction level. However, neither changes in biocatalyst configuration nor variation of cultivation media, expression systems, or inducer concentrations led to considerable improvement. This qualified the so-far used genetic construct pETM11-ksa14m-alkL, M9 medium, and the resting-cell state as the best options enabling comparatively efficient activity along with fast growth prior to biotransformation. In summary, we report several approaches not enabling a stabilization of the high testosterone hydroxylation rates, providing vital guidance for researchers tackling similar CYP450 stability issues. A comparison with more stable natively steroid-hydroxylating CYP106A2 and CYP154C5 in equivalent setups further highlighted the high potential of the investigated CYP450 BM3-based whole-cell biocatalysts. The immense and continuously developing repertoire of enzyme engineering strategies provides promising options to stabilize the highly active biocatalysts.
Collapse
Affiliation(s)
- Carolin Bertelmann
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
| | - Bruno Bühler
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
| |
Collapse
|
10
|
Aer L, Jiang Q, Zhong L, Si Q, Liu X, Pan Y, Feng J, Zeng H, Tang L. Optimization of polyethylene terephthalate biodegradation using a self-assembled multi-enzyme cascade strategy. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134887. [PMID: 38901251 DOI: 10.1016/j.jhazmat.2024.134887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Although many efforts have been devoted to the modification of polyethylene terephthalate (PET) hydrolases for improving the efficiency of PET degradation, the catalytic performance of these enzymes at near-ambient temperatures remains a challenge. Herein, a multi-enzyme cascade system (PT-EC) was developed and validated by assembling three well-developed PETases, PETaseEHA, Fast-PETase, and Z1-PETase, respectively, together with carboxylesterase TfCa, and hydrophobic binding module CBM3a using scaffold proteins. The resulting PT-ECEHA, PT-ECFPE, PT-ECZPE all demonstrated outstanding PET degradation efficacy. Notably, PT-ECEHA exhibited a 16.5-fold increase in product release compared to PETaseEHA, and PT-ECZPE yielded the highest amount of product. Subsequently, PT-ECs were displayed on the surface of Escherichia coli, respectively, and their degradation efficiency toward three PET types was investigated. The displayed PT-ECEHA exhibited a 20-fold increase in degradation efficiency with PET film compared to the surface-displayed PETaseEHA. Remarkably, an almost linear increase in product release was observed for the displayed PT-ECZPE over a one-week degradation period, reaching 11.56 ± 0.64 mM after 7 days. TfCaI69W/L281Y evolved using a docking-based virtual screening strategy showed a further 2.5-fold increase in the product release of PET degradation. Collectively, these advantages of PT-EC demonstrated the potential of a multi-enzyme cascade system for PET bio-cycling.
Collapse
Affiliation(s)
- Lizhu Aer
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qifa Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Linling Zhong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiuyue Si
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianghong Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yan Pan
- Medical School of University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongjuan Zeng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
11
|
Rahman Khan A, Aziz Z, Iqbal A, Sheema, Rashid Khan A, Zafar S. Biotransformation of hydrocortisone succinate with whole cell cultures of Monascus purpureus and Cunninghamella echinulata. Steroids 2024; 209:109466. [PMID: 38955303 DOI: 10.1016/j.steroids.2024.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Hydrocortisone succinate (1) is a synthetic anti-inflammatory drug and key intermediate in the synthesis of other steroidal drugs. This work is based on the fungal biotransformation of 1, using Monascus purpureus and Cunninghamella echinulata strains. Comopound 1 was transformed into four metabolites, identified as hydrocortisone (2), 11β-hydroxyandrost-4-en-3,17-dione (3), Δ1-cortienic acid (4), and hydrocortisone-17-succinate (5), obtained through side chain cleavage, hydrolysis, dehydrogenation, and oxidation reactions. These compounds have previously been synthesized either chemically or enzymatically from different precursors. Though this is not the first report on the biotransformation of 1, but it obviously is a first, where the biotransformed products of compound 1 have been characterized structurally with the help of modern spectroscopic techniques. It is noteworthy that these products have already shown biological potential, however a more thorough investigation of the anti-inflammatory properties of these metabolites would be of high value. These results not only emphasize upon the immense potential of biotransformation in catalysis of reactions, otherwise not-achievable chemically, but also holds promise for the development of novel anti-inflammatory compounds.
Collapse
Affiliation(s)
- Abdur Rahman Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zainab Aziz
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Amir Iqbal
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Sheema
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Afsana Rashid Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Salman Zafar
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
12
|
Jaroensuk J, Sutthaphirom C, Phonbuppha J, Chinantuya W, Kesornpun C, Akeratchatapan N, Kittipanukul N, Phatinuwat K, Atichartpongkul S, Fuangthong M, Pongtharangkul T, Hollmann F, Chaiyen P. A versatile in situ cofactor enhancing system for meeting cellular demands for engineered metabolic pathways. J Biol Chem 2024; 300:105598. [PMID: 38159859 PMCID: PMC10850783 DOI: 10.1016/j.jbc.2023.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
Cofactor imbalance obstructs the productivities of metabolically engineered cells. Herein, we employed a minimally perturbing system, xylose reductase and lactose (XR/lactose), to increase the levels of a pool of sugar phosphates which are connected to the biosynthesis of NAD(P)H, FAD, FMN, and ATP in Escherichia coli. The XR/lactose system could increase the amounts of the precursors of these cofactors and was tested with three different metabolically engineered cell systems (fatty alcohol biosynthesis, bioluminescence light generation, and alkane biosynthesis) with different cofactor demands. Productivities of these cells were increased 2-4-fold by the XR/lactose system. Untargeted metabolomic analysis revealed different metabolite patterns among these cells, demonstrating that only metabolites involved in relevant cofactor biosynthesis were altered. The results were also confirmed by transcriptomic analysis. Another sugar reducing system (glucose dehydrogenase) could also be used to increase fatty alcohol production but resulted in less yield enhancement than XR. This work demonstrates that the approach of increasing cellular sugar phosphates can be a generic tool to increase in vivo cofactor generation upon cellular demand for synthetic biology.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chalermroj Sutthaphirom
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jittima Phonbuppha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Wachirawit Chinantuya
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand; Faculty of Science, Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Mahidol University, Bangkok, Thailand
| | - Chatchai Kesornpun
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Nattanon Akeratchatapan
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Narongyot Kittipanukul
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Kamonwan Phatinuwat
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | | | - Mayuree Fuangthong
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand; Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | | | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
13
|
Verma S, Paliwal S. Recent Developments and Applications of Biocatalytic and Chemoenzymatic Synthesis for the Generation of Diverse Classes of Drugs. Curr Pharm Biotechnol 2024; 25:448-467. [PMID: 37885105 DOI: 10.2174/0113892010238984231019085154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Biocatalytic and chemoenzymatic biosynthesis are powerful methods of organic chemistry that use enzymes to execute selective reactions and allow the efficient production of organic compounds. The advantages of these approaches include high selectivity, mild reaction conditions, and the ability to work with complex substrates. The utilization of chemoenzymatic techniques for the synthesis of complicated compounds has lately increased dramatically in the area of organic chemistry. Biocatalytic technologies and modern synthetic methods are utilized synergistically in a multi-step approach to a target molecule under this paradigm. Chemoenzymatic techniques are promising for simplifying access to essential bioactive compounds because of the remarkable regio- and stereoselectivity of enzymatic transformations and the reaction diversity of modern organic chemistry. Enzyme kits may include ready-to-use, reproducible biocatalysts. Its use opens up new avenues for the synthesis of active therapeutic compounds and aids in drug development by synthesizing active components to construct scaffolds in a targeted and preparative manner. This study summarizes current breakthroughs as well as notable instances of biocatalytic and chemoenzymatic synthesis. To assist organic chemists in the use of enzymes for synthetic applications, it also provides some basic guidelines for selecting the most appropriate enzyme for a targeted reaction while keeping aspects like cofactor requirement, solvent tolerance, use of whole cell or isolated enzymes, and commercial availability in mind.
Collapse
Affiliation(s)
- Swati Verma
- Department of Pharmacy, ITS College of Pharmacy, Muradnagar, Ghaziabad, India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| |
Collapse
|
14
|
Bertelmann C, Mock M, Schmid A, Bühler B. Efficiency aspects of regioselective testosterone hydroxylation with highly active CYP450-based whole-cell biocatalysts. Microb Biotechnol 2024; 17:e14378. [PMID: 38018939 PMCID: PMC10832557 DOI: 10.1111/1751-7915.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
Steroid hydroxylations belong to the industrially most relevant reactions catalysed by cytochrome P450 monooxygenases (CYP450s) due to the pharmacological relevance of hydroxylated derivatives. The implementation of respective bioprocesses at an industrial scale still suffers from several limitations commonly found in CYP450 catalysis, that is low turnover rates, enzyme instability, inhibition and toxicity related to the substrate(s) and/or product(s). Recently, we achieved a new level of steroid hydroxylation rates by introducing highly active testosterone-hydroxylating CYP450 BM3 variants together with the hydrophobic outer membrane protein AlkL into Escherichia coli-based whole-cell biocatalysts. However, the activity tended to decrease, which possibly impedes overall productivities and final product titres. In this study, a considerable instability was confirmed and subject to a systematic investigation regarding possible causes. In-depth evaluation of whole-cell biocatalyst kinetics and stability revealed a limitation in substrate availability due to poor testosterone solubility as well as inhibition by the main product 15β-hydroxytestosterone. Instability of CYP450 BM3 variants was disclosed as another critical factor, which is of general significance for CYP450-based biocatalysis. Presented results reveal biocatalyst, reaction and process engineering strategies auguring well for industrial implementation of the developed steroid hydroxylation platform.
Collapse
Affiliation(s)
| | - Magdalena Mock
- Department of Solar MaterialsLeipzigGermany
- Present address:
Department of Mechanical Engineering and Material SciencesGeorg Agricola University of Applied SciencesBochumGermany
| | | | - Bruno Bühler
- Department of Solar MaterialsLeipzigGermany
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research GmbH–UFZLeipzigGermany
| |
Collapse
|
15
|
Kim B, Oh SJ, Hwang JH, Kim HJ, Shin N, Joo JC, Choi KY, Park SH, Park K, Bhatia SK, Yang YH. Complementation of reducing power for 5-hydroxyvaleric acid and 1,5-pentanediol production via glucose dehydrogenase in Escherichia coli whole-cell system. Enzyme Microb Technol 2023; 170:110305. [PMID: 37595400 DOI: 10.1016/j.enzmictec.2023.110305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
One of the key intermediates, 5-hydroxyvaleric acid (5-HV), is used in the synthesis of polyhydroxyalkanoate monomer, δ-valerolactone, 1,5-pentanediol (1,5-PDO), and many other substances. Due to global environmental problems, eco-friendly bio-based synthesis of various platform chemicals and key intermediates are socially required, but few previous studies on 5-HV biosynthesis have been conducted. To establish a sustainable bioprocess for 5-HV production, we introduced gabT encoding 4-aminobutyrate aminotransferase and yqhD encoding alcohol dehydrogenase to produce 5-HV from 5-aminovaleric acid (5-AVA), through glutarate semialdehyde in Escherichia coli whole-cell reaction. As, high reducing power is required to produce high concentrations of 5-HV, we newly introduced glucose dehydrogenase (GDH) for NADPH regeneration system from Bacillus subtilis 168. By applying GDH with D-glucose and optimizing the parameters, 5-HV conversion rate from 5-AVA increased from 47% (w/o GDH) to 82% when using 200 mM (23.4 g/L) of 5-AVA. Also, it reached 56% conversion in 2 h, showing 56 mM/h (6.547 g/L/h) productivity from 200 mM 5-AVA, finally reaching 350 mM (41 g/L) and 14.6 mM/h (1.708 g/L/h) productivity at 24 h when 1 M (117.15 g/L) 5-AVA was used. When the whole-cell system with GDH was expanded to produce 1,5-PDO, its production was also increased 5-fold. Considering that 5-HV and 1,5-PDO production depends heavily on the reducing power of the cells, we successfully achieved a significant increase in 5-HV and 1,5-PDO production using GDH.
Collapse
Affiliation(s)
- Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Chan Joo
- Deparment of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Gyeonggi-do, Republic of Korea; Department of Energy Systems Research, Ajou University, Gyeonggi-do, Republic of Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Kordesedehi R, Asadollahi MA, Shahpiri A, Biria D, Nikel PI. Optimized enantioselective (S)-2-hydroxypropiophenone synthesis by free- and encapsulated-resting cells of Pseudomonas putida. Microb Cell Fact 2023; 22:89. [PMID: 37131175 PMCID: PMC10155308 DOI: 10.1186/s12934-023-02073-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/25/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Aromatic α-hydroxy ketones, such as S-2-hydroxypropiophenone (2-HPP), are highly valuable chiral building blocks useful for the synthesis of various pharmaceuticals and natural products. In the present study, enantioselective synthesis of 2-HPP was investigated by free and immobilized whole cells of Pseudomonas putida ATCC 12633 starting from readily-available aldehyde substrates. Whole resting cells of P. putida, previously grown in a culture medium containing ammonium mandelate, are a source of native benzoylformate decarboxylase (BFD) activity. BFD produced by induced P. putida resting cells is a highly active biocatalyst without any further treatment in comparison with partially purified enzyme preparations. These cells can convert benzaldehyde and acetaldehyde into the acyloin compound 2-HPP by BFD-catalyzed enantioselective cross-coupling reaction. RESULTS The reaction was carried out in the presence of exogenous benzaldehyde (20 mM) and acetaldehyde (600 mM) as substrates in 6 mL of 200 mM phosphate buffer (pH 7) for 3 h. The optimal biomass concentration was assessed to be 0.006 g dry cell weight (DCW) mL- 1. 2-HPP titer, yield and productivity using the free cells were 1.2 g L- 1, 0.56 g 2-HPP/g benzaldehyde (0.4 mol 2-HPP/mol benzaldehyde), 0.067 g 2-HPP g- 1 DCW h- 1, respectively, under optimized biotransformation conditions (30 °C, 200 rpm). Calcium alginate (CA)-polyvinyl alcohol (PVA)-boric acid (BA)-beads were used for cell entrapment. Encapsulated whole-cells were successfully employed in four consecutive cycles for 2-HPP production under aerobic conditions without any noticeable beads degradation. Moreover, there was no production of benzyl alcohol as an unwanted by-product. CONCLUSIONS Bioconversion by whole P. putida resting cells is an efficient strategy for the production of 2-HPP and other α-hydroxyketones.
Collapse
Affiliation(s)
- Reihaneh Kordesedehi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Davoud Biria
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Pablo Iván Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Siziya IN, Jung JH, Seo MJ, Lim MC, Seo DH. Whole-cell bioconversion using non-Leloir transglycosylation reactions: a review. Food Sci Biotechnol 2023; 32:749-768. [PMID: 37041815 PMCID: PMC10082888 DOI: 10.1007/s10068-023-01283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Microbial biocatalysts are evolving technological tools for glycosylation research in food, feed and pharmaceuticals. Advances in bioengineered Leloir and non-Leloir carbohydrate-active enzymes allow for whole-cell biocatalysts to curtail production costs of purified enzymes while enhancing glucan synthesis through continued enzyme expression. Unlike sugar nucleotide-dependent Leloir glycosyltransferases, non-Leloir enzymes require inexpensive sugar donors and can be designed to match the high value, yield and selectivity of the former. This review addresses the current state of bacterial cell-based production of glucans and glycoconjugates via transglycosylation, and describes how alterations made to microbial hosts to surpass purified enzymes as the preferred mode of catalysis are steadily being acquired through genetic engineering, rational design and process optimization. A comprehensive exploration of relevant literature has been summarized to describe whole-cell biocatalysis in non-Leloir glycosylation reactions with various donors and acceptors, and the characterization, application and latest developments in the optimization of their use.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Jong-Hyun Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212 Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Min-Cheol Lim
- Research Group of Consumer Safety, Korea Food Research Institute (KFRI), Jeollabuk-do, 55365 Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
18
|
Smaluch K, Wollenhaupt B, Steinhoff H, Kohlheyer D, Grünberger A, Dusny C. Assessing the growth kinetics and stoichiometry of Escherichia coli at the single-cell level. Eng Life Sci 2023; 23:e2100157. [PMID: 36619887 PMCID: PMC9815083 DOI: 10.1002/elsc.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023] Open
Abstract
Microfluidic cultivation and single-cell analysis are inherent parts of modern microbial biotechnology and microbiology. However, implementing biochemical engineering principles based on the kinetics and stoichiometry of growth in microscopic spaces remained unattained. We here present a novel integrated framework that utilizes distinct microfluidic cultivation technologies and single-cell analytics to make the fundamental math of process-oriented biochemical engineering applicable at the single-cell level. A combination of non-invasive optical cell mass determination with sub-pg sensitivity, microfluidic perfusion cultivations for establishing physiological steady-states, and picoliter batch reactors, enabled the quantification of all physiological parameters relevant to approximate a material balance in microfluidic reaction environments. We determined state variables (biomass concentration based on single-cell dry weight and mass density), biomass synthesis rates, and substrate affinities of cells grown in microfluidic environments. Based on this data, we mathematically derived the specific kinetics of substrate uptake and growth stoichiometry in glucose-grown Escherichia coli with single-cell resolution. This framework may initiate microscale material balancing beyond the averaged values obtained from populations as a basis for integrating heterogeneous kinetic and stoichiometric single-cell data into generalized bioprocess models and descriptions.
Collapse
Affiliation(s)
- Katharina Smaluch
- Department of Solar Materials – Microscale Analysis and EngineeringHelmholtz‐Centre for Environmental Research – UFZ LeipzigLeizpigGermany
| | - Bastian Wollenhaupt
- Microscale BioengineeringIBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Heiko Steinhoff
- Multiscale BioengineeringFaculty of TechnologyBielefeld UniversityBielefeldGermany
| | - Dietrich Kohlheyer
- Microscale BioengineeringIBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Alexander Grünberger
- Multiscale BioengineeringFaculty of TechnologyBielefeld UniversityBielefeldGermany
| | - Christian Dusny
- Department of Solar Materials – Microscale Analysis and EngineeringHelmholtz‐Centre for Environmental Research – UFZ LeipzigLeizpigGermany
| |
Collapse
|
19
|
Surface display of (R)-carbonyl reductase on Escherichia coli as biocatalyst for recycling biotransformation of 2-hydroxyacetophenone. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Wang M, Wang L, Lyu X, Hua X, Goddard JM, Yang R. Lactulose production from lactose isomerization by chemo-catalysts and enzymes: Current status and future perspectives. Biotechnol Adv 2022; 60:108021. [PMID: 35901861 DOI: 10.1016/j.biotechadv.2022.108021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/02/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
Lactulose, a semisynthetic nondigestive disaccharide with versatile applications in the food and pharmaceutical industries, has received increasing interest due to its significant health-promoting effects. Currently, industrial lactulose production is exclusively carried out by chemical isomerization of lactose via the Lobry de Bruyn-Alberda van Ekenstein (LA) rearrangement, and much work has been directed toward improving the conversion efficiency in terms of lactulose yield and purity by using new chemo-catalysts and integrated catalytic-purification systems. Lactulose can also be produced by an enzymatic route offering a potentially greener alternative to chemo-catalysis with fewer side products. Compared to the controlled trans-galactosylation by β-galactosidase, directed isomerization of lactose with high isomerization efficiency catalyzed by the most efficient lactulose-producing enzyme, cellobiose 2-epimerase (CE), has gained much attention in recent decades. To further facilitate the industrial translation of CE-based lactulose biotransformation, numerous studies have been reported on improving biocatalytic performance through enzyme mediated molecular modification. This review summarizes recent developments in the chemical and enzymatic production of lactulose. Related catalytic mechanisms are also highlighted and described in detail. Emerging techniques that aimed at advancing lactulose production, such as the boronate affinity-based technique and molecular biological techniques, are reviewed. Finally, perspectives on challenges and opportunities in lactulose production and purification are also discussed.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China; College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China; Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Lu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Julie M Goddard
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China.
| |
Collapse
|
21
|
Artificially sporulated Escherichia coli cells as a robust cell factory for interfacial biocatalysis. Nat Commun 2022; 13:3142. [PMID: 35668090 PMCID: PMC9170730 DOI: 10.1038/s41467-022-30915-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
The natural bacterial spores have inspired the development of artificial spores, through coating cells with protective materials, for durable whole-cell catalysis. Despite attractiveness, artificial spores developed to date are generally limited to a few microorganisms with their natural endogenous enzymes, and they have never been explored as a generic platform for widespread synthesis. Here, we report a general approach to designing artificial spores based on Escherichia coli cells with recombinant enzymes. The artificial spores are simply prepared by coating cells with polydopamine, which can withstand UV radiation, heating and organic solvents. Additionally, the protective coating enables living cells to stabilize aqueous-organic emulsions for efficient interfacial biocatalysis ranging from single reactions to multienzyme cascades. Furthermore, the interfacial system can be easily expanded to chemoenzymatic synthesis by combining artificial spores with metal catalysts. Therefore, this artificial-spore-based platform technology is envisioned to lay the foundation for next-generation cell factory engineering.
Collapse
|
22
|
Theodosiou E, Tüllinghoff A, Toepel J, Bühler B. Exploitation of Hetero- and Phototrophic Metabolic Modules for Redox-Intensive Whole-Cell Biocatalysis. Front Bioeng Biotechnol 2022; 10:855715. [PMID: 35497353 PMCID: PMC9043136 DOI: 10.3389/fbioe.2022.855715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
The successful realization of a sustainable manufacturing bioprocess and the maximization of its production potential and capacity are the main concerns of a bioprocess engineer. A main step towards this endeavor is the development of an efficient biocatalyst. Isolated enzyme(s), microbial cells, or (immobilized) formulations thereof can serve as biocatalysts. Living cells feature, beside active enzymes, metabolic modules that can be exploited to support energy-dependent and multi-step enzyme-catalyzed reactions. Metabolism can sustainably supply necessary cofactors or cosubstrates at the expense of readily available and cheap resources, rendering external addition of costly cosubstrates unnecessary. However, for the development of an efficient whole-cell biocatalyst, in depth comprehension of metabolic modules and their interconnection with cell growth, maintenance, and product formation is indispensable. In order to maximize the flux through biosynthetic reactions and pathways to an industrially relevant product and respective key performance indices (i.e., titer, yield, and productivity), existing metabolic modules can be redesigned and/or novel artificial ones established. This review focuses on whole-cell bioconversions that are coupled to heterotrophic or phototrophic metabolism and discusses metabolic engineering efforts aiming at 1) increasing regeneration and supply of redox equivalents, such as NAD(P/H), 2) blocking competing fluxes, and 3) increasing the availability of metabolites serving as (co)substrates of desired biosynthetic routes.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Adrian Tüllinghoff
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| |
Collapse
|
23
|
Bretschneider L, Heuschkel I, Bühler K, Karande R, Bühler B. Rational orthologous pathway and biochemical process engineering for adipic acid production using Pseudomonas taiwanensis VLB120. Metab Eng 2022; 70:206-217. [DOI: 10.1016/j.ymben.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
|
24
|
Hilberath T, Raffaele A, Windeln LM, Urlacher VB. Evaluation of P450 monooxygenase activity in lyophilized recombinant E. coli cells compared to resting cells. AMB Express 2021; 11:162. [PMID: 34865204 PMCID: PMC8643389 DOI: 10.1186/s13568-021-01319-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cytochromes P450 catalyze oxidation of chemically diverse compounds and thus offer great potential for biocatalysis. Due to the complexity of these enzymes, their dependency of nicotinamide cofactors and redox partner proteins, recombinant microbial whole cells appear most appropriate for effective P450-mediated biocatalysis. However, some drawbacks exist that require individual solutions also when P450 whole-cell catalysts are used. Herein, we compared wet resting cells and lyophilized cells of recombinant E. coli regarding P450-catalyzed oxidation and found out that lyophilized cells are well-appropriate as P450-biocatalysts. E. coli harboring CYP105D from Streptomyces platensis DSM 40041 was used as model enzyme and testosterone as model substrate. Conversion was first enhanced by optimized handling of resting cells. Co-expression of the alcohol dehydrogenase from Rhodococcus erythropolis for cofactor regeneration did not affect P450 activity of wet resting cells (46% conversion) but was crucial to obtain sufficient P450 activity with lyophilized cells reaching a conversion of 72% under the same conditions. The use of recombinant lyophilized E. coli cells for P450 mediated oxidations is a promising starting point towards broader application of these enzymes.
Collapse
|
25
|
Fan J, Zhang Y, Wu P, Zhang X, Bai Y. Enhancing cofactor regeneration of cyanobacteria for the light-powered synthesis of chiral alcohols. Bioorg Chem 2021; 118:105477. [PMID: 34814084 DOI: 10.1016/j.bioorg.2021.105477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Cyanobacteria Synechocystis sp. PCC 6803 was exploited as green cell factory for light-powered asymmetric synthesis of aromatic chiral alcohols. The effect of temperature, light, substrate and cell concentration on substrate conversions were investigated. Under the optimal condition, a series of chiral alcohols were synthesized with conversions up to 95% and enantiomer excess (ee) > 99%. We found that the addition of Na2S2O3 and Angeli's Salt increased the NADPH content by 20% and 25%, respectively. As a result, the time to reach 95% substrate conversion was shortened by 12 h, which demonstrated that the NADPH regeneration and hence the reaction rates can be regulated in cyanobacteria. This blue-green algae based biocatalysis showed its potential for chiral compounds production in future.
Collapse
Affiliation(s)
- Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yinghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ping Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
26
|
Sheng T, Guan X, Liu C, Su Y. De Novo Approach to Encapsulating Biocatalysts into Synthetic Matrixes: From Enzymes to Microbial Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52234-52249. [PMID: 34352175 DOI: 10.1021/acsami.1c09708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biocatalysts hold great promise in chemical and electrochemical reactions. However, biocatalysts are prone to inhospitable physiochemical conditions. Encapsulating biocatalysts into a synthetic host matrix can improve their stability and activity, and broaden their operational conditions. In this Review, we summarize the emerging de novo approaches to encapsulating biocatalysts into synthetic matrixes. Here, de novo means that embedding of biocatalysts and construction of matrixes take place simultaneously. We discuss the advantages and limitations of the de novo approach. On the basis of the nature of the biocatalysts and the synthetic frameworks, we specifically focus on two aspects: (1) encapsulation of enzymes (in vitro) in metal-organic frameworks and (2) encapsulation of microbial electrocatalysts (in vivo) on the electrode. For both cases, we discuss how the encapsulation improves biocatalysts' performance (stability, viability, activity, and etc.). We also highlight the benefit of encapsulation in facilitating the transport of charge carriers in microbial electrocatalysis.
Collapse
Affiliation(s)
- Tianran Sheng
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yude Su
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
27
|
Song J, Baeg Y, Jeong H, Lee J, Oh D, Hollmann F, Park J. Bacterial Outer Membrane Vesicles as Nano‐Scale Bioreactors: A Fatty Acid Conversion Case Study. ChemCatChem 2021. [DOI: 10.1002/cctc.202100778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ji‐Won Song
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Yoonjin Baeg
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Ha‐Yeon Jeong
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering Sogang University Seoul 04107 Republic of Korea
| | - Deok‐Kun Oh
- Department of Bioscience and Biotechnology Konkuk University Seoul 05029 Republic of Korea
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Jin‐Byung Park
- Department of Food Science & Engineering Ewha Womans University Seoul 03760 Republic of Korea
| |
Collapse
|
28
|
Enzymatic Synthesis of l- threo-β-Hydroxy-α-Amino Acids via Asymmetric Hydroxylation Using 2-Oxoglutarate-Dependent Hydroxylase from Sulfobacillus thermotolerans Y0017. Appl Environ Microbiol 2021; 87:e0133521. [PMID: 34347519 DOI: 10.1128/aem.01335-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Hydroxy-α-amino acids are useful compounds for pharmaceutical development. Enzymatic synthesis of β-hydroxy-α-amino acids has attracted considerable interest as a selective, sustainable, and environmentally benign process. In this study, we identified a novel amino acid hydroxylase, AEP14369, from Sulfobacillus thermotolerans Y0017, which is included in a previously constructed CAS-like superfamily protein library, to widen the variety of amino acid hydroxylases. The detailed structures determined by nuclear magnetic resonance and X-ray crystallography analysis of the enzymatically produced compounds revealed that AEP14369 catalyzed threo-β-selective hydroxylation of l-His and l-Gln in a 2-oxoglutarate-dependent manner. Furthermore, the production of l-threo-β-hydroxy-His and l-threo-β-hydroxy-Gln was achieved using Escherichia coli expressing the gene encoding AEP14369 as a whole-cell biocatalyst. Under optimized reaction conditions, 137 mM (23.4 g L-1) l-threo-β-hydroxy-His and 150 mM l-threo-β-hydroxy-Gln (24.3 g L-1) were obtained, indicating that the enzyme is applicable for preparative-scale production. AEP14369, an l-His/l-Gln threo-β-hydroxylase, increases the availability of 2-oxoglutarate-dependent hydroxylase and opens the way for the practical production of β-hydroxy-α-amino acids in the future. The amino acids produced in this study would also contribute to the structural diversification of pharmaceuticals that affect important bioactivities. Importance Owing to an increasing concern for sustainability, enzymatic approaches for producing industrially useful compounds have attracted considerable attention as a powerful complement to chemical synthesis for environment-friendly synthesis. In this study, we developed a bioproduction method for β-hydroxy-α-amino acid synthesis using a newly discovered enzyme. AEP14369 from the moderate thermophilic bacterium Sulfobacillus thermotolerans Y0017 catalyzed the hydroxylation of l-His and l-Gln in a regioselective and stereoselective fashion. Furthermore, we biotechnologically synthesized both l-threo-β-hydroxy-His and l-threo-β-hydroxy-Gln with a titer of over 20 g L-1 through whole-cell bioconversion using recombinant Escherichia coli cells. As β-hydroxy-α-amino acids are important compounds for pharmaceutical development, this achievement would facilitate future sustainable and economical industrial applications.
Collapse
|
29
|
Bretschneider L, Heuschkel I, Ahmed A, Bühler K, Karande R, Bühler B. Characterization of different biocatalyst formats for BVMO-catalyzed cyclohexanone oxidation. Biotechnol Bioeng 2021; 118:2719-2733. [PMID: 33844297 DOI: 10.1002/bit.27791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 01/05/2023]
Abstract
Cyclohexanone monooxygenase (CHMO), a member of the Baeyer-Villiger monooxygenase family, is a versatile biocatalyst that efficiently catalyzes the conversion of cyclic ketones to lactones. In this study, an Acidovorax-derived CHMO gene was expressed in Pseudomonas taiwanensis VLB120. Upon purification, the enzyme was characterized in vitro and shown to feature a broad substrate spectrum and up to 100% conversion in 6 h. Furthermore, we determined and compared the cyclohexanone conversion kinetics for different CHMO-biocatalyst formats, that is, isolated enzyme, suspended whole cells, and biofilms, the latter two based on recombinant CHMO-containing P. taiwanensis VLB120. Biofilms showed less favorable values for KS (9.3-fold higher) and kcat (4.8-fold lower) compared with corresponding KM and kcat values of isolated CHMO, but a favorable KI for cyclohexanone (5.3-fold higher). The unfavorable KS and kcat values are related to mass transfer- and possibly heterogeneity issues and deserve further investigation and engineering, to exploit the high potential of biofilms regarding process stability. Suspended cells showed only 1.8-fold higher KS , but 1.3- and 4.2-fold higher kcat and KI values than isolated CHMO. This together with the efficient NADPH regeneration via glucose metabolism makes this format highly promising from a kinetics perspective.
Collapse
Affiliation(s)
- Lisa Bretschneider
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ingeborg Heuschkel
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Afaq Ahmed
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Katja Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Rohan Karande
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
30
|
Bretschneider L, Wegner M, Bühler K, Bühler B, Karande R. One-pot synthesis of 6-aminohexanoic acid from cyclohexane using mixed-species cultures. Microb Biotechnol 2021; 14:1011-1025. [PMID: 33369139 PMCID: PMC8085927 DOI: 10.1111/1751-7915.13744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
6-Aminohexanoic acid (6AHA) is a vital polymer building block for Nylon 6 production and an FDA-approved orphan drug. However, its production from cyclohexane is associated with several challenges, including low conversion and yield, and severe environmental issues. We aimed at overcoming these challenges by developing a bioprocess for 6AHA synthesis. A mixed-species approach turned out to be most promising. Thereby, Pseudomonas taiwanensis VLB120 strains harbouring an upstream cascade converting cyclohexane to either є-caprolactone (є-CL) or 6-hydroxyhexanoic acid (6HA) were combined with Escherichia coli JM101 strains containing the corresponding downstream cascade for the further conversion to 6AHA. ε-CL was found to be a better 'shuttle molecule' than 6HA enabling higher 6AHA formation rates and yields. Mixed-species reaction performance with 4 g l-1 biomass, 10 mM cyclohexane, and an air-to-aqueous phase ratio of 23 combined with a repetitive oxygen feeding strategy led to complete substrate conversion with 86% 6AHA yield and an initial specific 6AHA formation rate of 7.7 ± 0.1 U gCDW -1 . The same cascade enabled 49% 7-aminoheptanoic acid yield from cycloheptane. This combination of rationally engineered strains allowed direct 6AHA production from cyclohexane in one pot with high conversion and yield under environmentally benign conditions.
Collapse
Affiliation(s)
- Lisa Bretschneider
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research –UFZPermoserstrasse 15Leipzig04318Germany
| | - Martin Wegner
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research –UFZPermoserstrasse 15Leipzig04318Germany
| | - Katja Bühler
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research –UFZPermoserstrasse 15Leipzig04318Germany
| | - Bruno Bühler
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research –UFZPermoserstrasse 15Leipzig04318Germany
| | - Rohan Karande
- Department of Solar MaterialsHelmholtz‐Centre for Environmental Research –UFZPermoserstrasse 15Leipzig04318Germany
| |
Collapse
|
31
|
Zeng Y, Liu L, Chen B, Zhang W. Light-Driven Enzymatic Decarboxylation of Dicarboxylic Acids. ChemistryOpen 2021; 10:553-559. [PMID: 33945237 PMCID: PMC8095292 DOI: 10.1002/open.202100039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Photodecarboxylase from Chlorella variabillis (CvFAP) is one of the three known light-activated enzymes that catalyzes the decarboxylation of fatty acids into the corresponding C1-shortened alkanes. Although the substrate scope of CvFAP has been altered by protein engineering and decoy molecules, it is still limited to mono-fatty acids. Our studies demonstrate for the first time that long chain dicarboxylic acids can be converted by CvFAP. Notably, the conversion of dicarboxylic acids to alkanes still represents a chemically very challenging reaction. Herein, the light-driven enzymatic decarboxylation of dicarboxylic acids to the corresponding (C2-shortened) alkanes using CvFAP is described. A series of dicarboxylic acids is decarboxylated into alkanes in good yields by means of this approach, even for the preparative scales. Reaction pathway studies show that mono-fatty acids are formed as the intermediate products before the final release of C2-shortened alkanes. In addition, the thermostability, storage stability, and recyclability of CvFAP for decarboxylation of dicarboxylic acids are well evaluated. These results represent an advancement over the current state-of-the-art.
Collapse
Affiliation(s)
- Yong‐Yi Zeng
- School of Marine SciencesSun Yat-Sen UniversityZhuhai519082P. R. China
| | - Lan Liu
- School of Marine SciencesSun Yat-Sen UniversityZhuhai519082P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Zhuhai519082P. R. China
| | - Bi‐Shuang Chen
- School of Marine SciencesSun Yat-Sen UniversityZhuhai519082P. R. China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal EngineeringZhuhai519082P. R. China
| | - Wuyuan Zhang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesWest 7th AvenueTianjin300308P. R. China
- National Technology Innovation Center of Synthetic Biology32 West 7th AvenueTianjin300308P. R. China
| |
Collapse
|
32
|
Louie TM, Louie K, DenHartog S, Gopishetty S, Subramanian M, Arnold M, Das S. Production of bio-xylitol from D-xylose by an engineered Pichia pastoris expressing a recombinant xylose reductase did not require any auxiliary substrate as electron donor. Microb Cell Fact 2021; 20:50. [PMID: 33618706 PMCID: PMC7898734 DOI: 10.1186/s12934-021-01534-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/29/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Xylitol is a five-carbon sugar alcohol that has numerous beneficial health properties. It has almost the same sweetness as sucrose but has lower energy value compared to the sucrose. Metabolism of xylitol is insulin independent and thus it is an ideal sweetener for diabetics. It is widely used in food products, oral and personal care, and animal nutrition as well. Here we present a two-stage strategy to produce bio-xylitol from D-xylose using a recombinant Pichia pastoris expressing a heterologous xylose reductase gene. The recombinant P. pastoris cells were first generated by a low-cost, standard procedure. The cells were then used as a catalyst to make the bio-xylitol from D-xylose. RESULTS Pichia pastoris expressing XYL1 from P. stipitis and gdh from B. subtilis demonstrated that the biotransformation was very efficient with as high as 80% (w/w) conversion within two hours. The whole cells could be re-used for multiple rounds of catalysis without loss of activity. Also, the cells could directly transform D-xylose in a non-detoxified hemicelluloses hydrolysate to xylitol at 70% (w/w) yield. CONCLUSIONS We demonstrated here that the recombinant P. pastoris expressing xylose reductase could transform D-xylose, either in pure form or in crude hemicelluloses hydrolysate, to bio-xylitol very efficiently. This biocatalytic reaction happened without the external addition of any NAD(P)H, NAD(P)+, and auxiliary substrate as an electron donor. Our experimental design & findings reported here are not limited to the conversion of D-xylose to xylitol only but can be used with other many oxidoreductase reactions also, such as ketone reductases/alcohol dehydrogenases and amino acid dehydrogenases, which are widely used for the synthesis of high-value chemicals and pharmaceutical intermediates.
Collapse
Affiliation(s)
- Tai Man Louie
- Center for Biocatalysis & Bioprocessing, University of Iowa, Iowa City, IA, 52241, USA
| | - Kailin Louie
- Center for Biocatalysis & Bioprocessing, University of Iowa, Iowa City, IA, 52241, USA
| | - Samuel DenHartog
- Center for Biocatalysis & Bioprocessing, University of Iowa, Iowa City, IA, 52241, USA
| | - Sridhar Gopishetty
- Center for Biocatalysis & Bioprocessing, University of Iowa, Iowa City, IA, 52241, USA
| | - Mani Subramanian
- Center for Biocatalysis & Bioprocessing, University of Iowa, Iowa City, IA, 52241, USA
| | - Mark Arnold
- Center for Biocatalysis & Bioprocessing, University of Iowa, Iowa City, IA, 52241, USA
- Department of Chemistry, University of Iowa, Iowa City, IA, 52241, USA
| | - Shuvendu Das
- Center for Biocatalysis & Bioprocessing, University of Iowa, Iowa City, IA, 52241, USA.
- Department of Chemistry, University of Iowa, Iowa City, IA, 52241, USA.
| |
Collapse
|
33
|
Telomerase activators from 20(27)-octanor-cycloastragenol via biotransformation by the fungal endophytes. Bioorg Chem 2021; 109:104708. [PMID: 33621779 DOI: 10.1016/j.bioorg.2021.104708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/24/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Cycloastragenol [20(R),24(S)-epoxy-3β,6α,16β,25-tetrahydroxycycloartane] (CA), the principle sapogenol of many cycloartane-type glycosides found in Astragalus genus, is currently the only natural product in the anti-aging market as telomerase activator. Here, we report biotransformation of 20(27)-octanor-cycloastragenol (1), a thermal degradation product of CA, using Astragalus species originated endophytic fungi, viz. Penicillium roseopurpureum, Alternaria eureka, Neosartorya hiratsukae and Camarosporium laburnicola. Fifteen new biotransformation products (2-16) were isolated, and their structures were established by NMR and HRESIMS. Endophytic fungi were found to be capable of performing hydroxylation, oxidation, ring cleavage-methyl migration, dehydrogenation and Baeyer-Villiger type oxidation reactions on the starting compound (1), which would be difficult to achieve by conventional synthetic methods. In addition, the ability of the metabolites to increase telomerase activation in Hekn cells was evaluated, which showed from 1.08 to 12.4-fold activation compared to the control cells treated with DMSO. Among the compounds tested, 10, 11 and 12 were found to be the most potent in terms of telomerase activation with 12.40-, 7.89- and 5.43-fold increase, respectively (at 0.1, 2 and 10 nM concentrations, respectively).
Collapse
|
34
|
Rodríguez M A, Rache LY, Brijaldo MH, Romanelli GP, Luque R, Martinez JJ. Biocatalytic transformation of furfural into furfuryl alcohol using resting cells of Bacillus cereus. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Jodlbauer J, Rohr T, Spadiut O, Mihovilovic MD, Rudroff F. Biocatalysis in Green and Blue: Cyanobacteria. Trends Biotechnol 2021; 39:875-889. [PMID: 33468423 DOI: 10.1016/j.tibtech.2020.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Recently, several studies have proven the potential of cyanobacteria as whole-cell biocatalysts for biotransformation. Compared to heterotrophic hosts, cyanobacteria show unique advantages thanks to their photoautotrophic metabolism. Their ability to use light as energy and CO2 as carbon source promises a truly sustainable production platform. Their photoautotrophic metabolism offers an encouraging source of reducing power, which makes them attractive for redox-based biotechnological purposes. To exploit the full potential of these whole-cell biocatalysts, cyanobacterial cells must be considered in their entirety. With this emphasis, this review summarizes the latest developments in cyanobacteria research with a strong focus on the benefits associated with their unique metabolism. Remaining bottlenecks and recent strategies to overcome them are evaluated for their potential in future applications.
Collapse
Affiliation(s)
- Julia Jodlbauer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Thomas Rohr
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical Engineering, research area Biochemical Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria.
| |
Collapse
|
36
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021; 60:88-119. [PMID: 32558088 PMCID: PMC7818486 DOI: 10.1002/anie.202006648] [Citation(s) in RCA: 648] [Impact Index Per Article: 162.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.
Collapse
Affiliation(s)
- Shuke Wu
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Radka Snajdrova
- Novartis Institutes for BioMedical ResearchGlobal Discovery Chemistry4056BaselSwitzerland
| | - Jeffrey C. Moore
- Process Research and DevelopmentMerck & Co., Inc.126 E. Lincoln AveRahwayNJ07065USA
| | - Kai Baldenius
- Baldenius Biotech ConsultingHafenstr. 3168159MannheimGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| |
Collapse
|
37
|
Adebar N, Nastke A, Gröger H. Concepts for flow chemistry with whole-cell biocatalysts. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00331j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
By combining continuous flow processing and biocatalysis, efficient, stable and cost-effective processes can be realised. In this review, an overview about different concepts for continuous flow processes based on the use of whole-cells as catalysts is given.
Collapse
Affiliation(s)
- Niklas Adebar
- Chair of Industrial Organic Chemistry and Biotechnology
- Faculty of Chemistry
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Alina Nastke
- Chair of Industrial Organic Chemistry and Biotechnology
- Faculty of Chemistry
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology
- Faculty of Chemistry
- Bielefeld University
- 33615 Bielefeld
- Germany
| |
Collapse
|
38
|
Mozuch MD, Hirth KC, Schwartz TJ, Kersten PJ. Repurposing Inflatable Packaging Pillows as Bioreactors: a Convenient Synthesis of Glucosone by Whole-Cell Catalysis Under Oxygen. Appl Biochem Biotechnol 2020; 193:743-760. [PMID: 33188507 PMCID: PMC7910265 DOI: 10.1007/s12010-020-03448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/02/2020] [Indexed: 11/21/2022]
Abstract
Biocatalysis using molecular oxygen as the electron acceptor has significant potential for selective oxidations at low cost. However, oxygen is poorly soluble in water, and its slow rate of mass transfer in the aqueous phase is a major obstacle, even for laboratory-scale syntheses. Oxygen transfer can be accelerated by vigorous mechanical methods, but these are often incompatible with biological catalysts. Gentler conditions can be achieved with shallow, high surface area bag reactors that are designed for single use and generally for specialized cell culture applications. As a less-expensive alternative to these high-end bioreactors, we describe repurposing inflatable shipping pillows with resealable valves to provide high surface area mixing under oxygen for preparative synthesis of glucosone (D-arabino-hexos-2-ulose) from D-glucose using non-growing Escherichia coli whole cells containing recombinant pyranose 2-oxidase (POX) as catalyst. Parallel reactions permitted systematic study of the effects of headspace composition (i.e., air vs 100% oxygen), cell density, exogenous catalase, and reaction volume in the oxidation of 10% glucose. Importantly, only a single charge of 100% oxygen is required for stoichiometric conversion on a multi-gram scale in 18 h with resting cells, and the conversion was successfully repeated with recycled cells.
Collapse
Affiliation(s)
- Michael D Mozuch
- Forest Products Laboratory, Forest Service, US Department of Agriculture, Madison, WI, 53726, USA
| | - Kolby C Hirth
- Forest Products Laboratory, Forest Service, US Department of Agriculture, Madison, WI, 53726, USA
| | - Thomas J Schwartz
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, 04469, USA
| | - Philip J Kersten
- Forest Products Laboratory, Forest Service, US Department of Agriculture, Madison, WI, 53726, USA.
| |
Collapse
|
39
|
Salamanca D, Bühler K, Engesser KH, Schmid A, Karande R. Whole-cell biocatalysis using the Acidovorax sp. CHX100 Δ6HX for the production of ω-hydroxycarboxylic acids from cycloalkanes. N Biotechnol 2020; 60:200-206. [PMID: 33127412 DOI: 10.1016/j.nbt.2020.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
Omega hydroxycarboxylic acids (ω-HAs) possess two functional groups, a hydroxyl group and a carboxyl group, and are essential precursors for the production of biodegradable polyester polymers. In this work, an Acidovorax mutant was investigated as a whole-cell biocatalyst for the conversion of cycloalkanes to their respective ω-hydroxycarboxylic acids. This Acidovorax sp. strain CHX100 originated from a wastewater treatment plant and uses cyclohexane as the sole source of carbon and energy with excellent growth rates (0.199 h-1). The metabolic efficiency of Acidovorax CHX100 is based on a highly efficient enzyme cascade used for the mineralization of cyclohexane. A deletion of 6-hydroxyhexanoate dehydrogenase in the native cycloalkane pathway resulted in the Acidovorax sp. strain CHX100 Δ6HX mutant, which accumulated short ω-hydroxycarboxylic acids (C5 to C10) from cycloalkanes. This mutant transformed cyclopentane and cyclohexane (5 mM) to 5-hydroxypentanoic acid and 6-hydroxyhexanoic acid, respectively, with a molar conversion above 98% in 6 h. An elementary environmental and economical assessment based on E-factor and biocatalyst yield suggests the use of inexpensive electron donor and carbon sources, with subsequent efforts to minimize waste generation. Such an early-stage analysis highlights the main bottlenecks that need to be solved in developing a sustainable bioprocess.
Collapse
Affiliation(s)
- Diego Salamanca
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Solar Materials, Permoserstr. 15, 04318 Leipzig, Germany
| | - Katja Bühler
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Solar Materials, Permoserstr. 15, 04318 Leipzig, Germany
| | - Karl-Heinrich Engesser
- Department of Biological Waste Air Purification, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Stuttgart, Germany
| | - Andreas Schmid
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Solar Materials, Permoserstr. 15, 04318 Leipzig, Germany
| | - Rohan Karande
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Solar Materials, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
40
|
Ge J, Yang X, Yu H, Ye L. High-yield whole cell biosynthesis of Nylon 12 monomer with self-sufficient supply of multiple cofactors. Metab Eng 2020; 62:172-185. [PMID: 32927060 DOI: 10.1016/j.ymben.2020.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
Biosynthesis of Nylon 12 monomer using dodecanoic acid (DDA) or its esters as the renewable feedstock typically involves ω-hydroxylation, oxidation and ω-amination. The dependence of hydroxylation and oxidation-catalyzing enzymes on redox cofactors, and the requirement of L-alanine as the co-substrate and pyridoxal 5'-phosphate (PLP) as the coenzyme for transamination, raise the issue of redox imbalance and cofactor shortage, challenging the development of efficient biocatalysts. Simultaneous regeneration of the redox equivalents, PLP and L-alanine required in the artificial pathway was enabled by its interfacing with the native metabolism of the host using glucose dehydrogenase (GDH), L-alanine dehydrogenase (AlaDH) and an exogenous ribose 5-phosphate (R5P)-dependent PLP synthesis pathway as bridges. Further engineering of the host by blocking β-oxidation and enhancing substrate uptake improved the ω-aminododecanoic acid (ω-AmDDA) yield to 96.5%. This study offers a strategy to resolve the cofactor imbalance issue commonly encountered in whole-cell biocatalysis and meanwhile lays a solid foundation for Nylon 12 bioproduction.
Collapse
Affiliation(s)
- Jiawei Ge
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaohong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
41
|
Schäfer L, Bühler K, Karande R, Bühler B. Rational Engineering of a Multi‐Step Biocatalytic Cascade for the Conversion of Cyclohexane to Polycaprolactone Monomers in
Pseudomonas taiwanensis. Biotechnol J 2020; 15:e2000091. [DOI: 10.1002/biot.202000091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/13/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Lisa Schäfer
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| | - Katja Bühler
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| | - Rohan Karande
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| | - Bruno Bühler
- Department of Solar Materials Helmholtz‐Centre for Environmental Research ‐ UFZ Permoserstraße 15 Leipzig Saxony 04318 Germany
| |
Collapse
|
42
|
Efficient Production Hyperoside from Quercetin in Escherichia coli Through Increasing UDP-Galactose Supply and Recycling of Resting Cell. Catal Letters 2020. [DOI: 10.1007/s10562-020-03373-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006648] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuke Wu
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research Global Discovery Chemistry 4056 Basel Schweiz
| | - Jeffrey C. Moore
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Kai Baldenius
- Baldenius Biotech Consulting Hafenstraße 31 68159 Mannheim Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|
44
|
Synthesis of glycoconjugates utilizing the regioselectivity of a lytic polysaccharide monooxygenase. Sci Rep 2020; 10:13197. [PMID: 32764705 PMCID: PMC7411024 DOI: 10.1038/s41598-020-69951-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
Polysaccharides from plant biomass are the most abundant renewable chemicals on Earth and can potentially be converted to a wide variety of useful glycoconjugates. Potential applications of glycoconjugates include therapeutics and drug delivery, vaccine development and as fine chemicals. While anomeric hydroxyl groups of carbohydrates are amenable to a variety of useful chemical modifications, selective cross-coupling to non-reducing ends has remained challenging. Several lytic polysaccharide monooxygenases (LPMOs), powerful enzymes known for their application in cellulose degradation, specifically oxidize non-reducing ends, introducing carbonyl groups that can be utilized for chemical coupling. This study provides a simple and highly specific approach to produce oxime-based glycoconjugates from LPMO-functionalized oligosaccharides. The products are evaluated by HPLC, mass spectrometry and NMR. Furthermore, we demonstrate potential biodegradability of these glycoconjugates using selective enzymes.
Collapse
|
45
|
Xu SH, Chen HL, Yang ZL, Lyu LW, Fan Y, Sha M, Zhang J, Xu W, Lin Y. New 30-norlupane derivatives through chemical-microbial semi-synthesis of betulinic acid and their neuroprotective effect. Bioorg Med Chem Lett 2020; 30:127407. [PMID: 32738992 DOI: 10.1016/j.bmcl.2020.127407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
In this study, seven 30-norlupane derivatives (2-8) wasobtained from the chemical oxidation ofbetulinic acidfollowed bybiotransformationviaBacillus megateriumCGMCC 1.1741. And metabolites 2-4 and 6-8 were newly identified products. In the first step, betulinic acid was chemically oxidizedto platanic acid (1). Following the chemical oxidation, B. megaterium catalyzed the hydroxylation at C-7, C-11, C-15 and C-23 of platanic acid (1) as well as the oxidation of C-3 hydroxyl group. Compared to the labor-intensive isolation from natural plants, this chemical-microbial semi-synthesis is more capable to provide increased structural diversity of oxygenated 30-norlupane. Finally, the potential neuroprotective effect of the derivatives was assessed on neuron-like PC12 cells induced by cobalt chloride (CoCl2). Metabolite 6 showed a potent neuroprotective activity.
Collapse
Affiliation(s)
- Shao-Hua Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Hai-Lan Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ze-Lin Yang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Li-Wei Lyu
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Panum, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Yong Fan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Panum, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mei Sha
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yu Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
46
|
Schirmer M, Wink K, Ohla S, Belder D, Schmid A, Dusny C. Conversion Efficiencies of a Few Living Microbial Cells Detected at a High Throughput by Droplet-Based ESI-MS. Anal Chem 2020; 92:10700-10708. [DOI: 10.1021/acs.analchem.0c01839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Martin Schirmer
- Helmholtz Centre for Environmental Research−UFZ Leipzig, Leipzig 04318, Germany
| | - Konstantin Wink
- Institute of Analytical Chemistry, Leipzig University, Leipzig 04103, Germany
| | - Stefan Ohla
- Institute of Analytical Chemistry, Leipzig University, Leipzig 04103, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Leipzig 04103, Germany
| | - Andreas Schmid
- Helmholtz Centre for Environmental Research−UFZ Leipzig, Leipzig 04318, Germany
| | - Christian Dusny
- Helmholtz Centre for Environmental Research−UFZ Leipzig, Leipzig 04318, Germany
| |
Collapse
|
47
|
Cano-Flores A, Gómez J, S. Escalona-Torres I, Velasco-Bejarano B. Microorganisms as Biocatalysts and Enzyme Sources. Microorganisms 2020. [DOI: 10.5772/intechopen.90338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
48
|
Richards L, Jarrold A, Bowser T, Stevens GW, Gras SL. Cytochrome P450-mediated N-demethylation of noscapine by whole-cell biotransformation: process limitations and strategies for optimisation. J Ind Microbiol Biotechnol 2020; 47:449-464. [PMID: 32507955 DOI: 10.1007/s10295-020-02283-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/29/2020] [Indexed: 01/16/2023]
Abstract
Cytochrome P450 enzymes catalyse reactions of significant industrial interest but are underutilised in large-scale bioprocesses due to enzyme stability, cofactor requirements and the poor aqueous solubility and microbial toxicity of typical substrates and products. In this work, we investigate the potential for preparative-scale N-demethylation of the opium poppy alkaloid noscapine by a P450BM3 (CYP102A1) mutant enzyme in a whole-cell biotransformation system. We identify and address several common limitations of whole-cell P450 biotransformations using this model N-demethylation process. Mass transfer into Escherichia coli cells was found to be a major limitation of biotransformation rate and an alternative Gram-positive expression host Bacillus megaterium provided a 25-fold improvement in specific initial rate. Two methods were investigated to address poor substrate solubility. First, a biphasic biotransformation system was developed by systematic selection of potentially biocompatible solvents and in silico solubility modelling using Hansen solubility parameters. The best-performing biphasic system gave a 2.3-fold improvement in final product titre compared to a single-phase system but had slower initial rates of biotransformation due to low substrate concentration in the aqueous phase. The second strategy aimed to improve aqueous substrate solubility using cyclodextrin and hydrophilic polymers. This approach provided a fivefold improvement in initial biotransformation rate and allowed a sixfold increase in final product concentration. Enzyme stability and cell viability were identified as the next parameters requiring optimisation to improve productivity. The approaches used are also applicable to the development of other pharmaceutical P450-mediated biotransformations.
Collapse
Affiliation(s)
- Luke Richards
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Ailsa Jarrold
- Sun Pharmaceutical Industries Ltd, Princes Highway, Port Fairy, VIC, 3281, Australia
| | - Tim Bowser
- Impact Science Consulting, Unit 2/52 Swanston St, Heidelberg Heights, VIC, 2081, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sally L Gras
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3010, Australia.
| |
Collapse
|
49
|
Biocatalytic allylic hydroxylation of unsaturated triterpenes and steroids by Bacillus megaterium CGMCC 1.1741. Bioorg Chem 2020; 99:103826. [DOI: 10.1016/j.bioorg.2020.103826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/16/2020] [Accepted: 04/05/2020] [Indexed: 11/18/2022]
|
50
|
Zhou Y, Sekar BS, Wu S, Li Z. Benzoic acid production via cascade biotransformation and coupled fermentation‐biotransformation. Biotechnol Bioeng 2020; 117:2340-2350. [DOI: 10.1002/bit.27366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of Singapore Singapore Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore Singapore
| | - Shuke Wu
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of Singapore Singapore Singapore
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore Singapore
| | - Zhi Li
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of Singapore Singapore Singapore
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore Singapore
| |
Collapse
|