1
|
Sherwood AM, Yasseen BA, DeBlasi JM, Caldwell S, DeNicola GM. Distinct roles for the thioredoxin and glutathione antioxidant systems in Nrf2-Mediated lung tumor initiation and progression. Redox Biol 2025; 83:103653. [PMID: 40334547 DOI: 10.1016/j.redox.2025.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Redox regulators are emerging as critical mediators of lung tumorigenesis. NRF2 and its negative regulator KEAP1 are commonly mutated in human lung cancers, leading to NRF2 accumulation and constitutive expression of NRF2 target genes, many of which are at the interface between antioxidant function and anabolic processes that support cellular proliferation. Nrf2 activation promotes lung tumor initiation and early progression in murine models of lung cancer, but which Nrf2 targets mediate these phenotypes is unknown. Nrf2 regulates two parallel antioxidant systems mediated by thioredoxin reductase 1 (TXNRD1) and glutathione reductase (GSR), which promote the reduction of protein antioxidant thioredoxin (TXN) and tripeptide antioxidant glutathione (GSH), respectively. We deleted TXNRD1 and GSR alone, or in combination, in lung tumors harboring mutations in KrasG12D and Nrf2D29H. We found that tumor initiation was promoted by expression of GSR, but not TXNRD1, regardless of Nrf2 status. In contrast, Nrf2D29H tumors, but not Nrf2WT, were dependent on TXNRD1 for tumor progression, while GSR was dispensable. Simultaneous deletion of GSR and TXNRD1 reduced initiation and progression independent of Nrf2 status, but surprisingly did not completely abrogate tumor formation. Thus, the thioredoxin and glutathione antioxidant systems play unique roles in tumor initiation and progression.
Collapse
Affiliation(s)
- Amanda M Sherwood
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Basma A Yasseen
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Janine M DeBlasi
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL, USA
| | - Samantha Caldwell
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
2
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Safakli RN, Gray SP, Bernardi N, Smyrnias I. Unveiling a novel signalling pathway involving NRF2 and PGAM5 in regulating the mitochondrial unfolded protein response in stressed cardiomyocytes. Int J Biochem Cell Biol 2025; 178:106704. [PMID: 39608747 DOI: 10.1016/j.biocel.2024.106704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The mitochondrial unfolded protein response (UPRmt) is a conserved signalling pathway that initiates a specific transcriptional programme to maintain mitochondrial and cellular homeostasis under stress. Previous studies have demonstrated that UPRmt activation has protective effects in the pressure-overloaded human heart, suggesting that robust UPRmt stimulation could serve as an intervention strategy for cardiovascular diseases. However, the precise mechanisms of UPRmt regulation remain unclear. In this study, we present evidence that the NRF2 transcription factor is involved in UPRmt activation in cardiomyocytes during conditions of mitochondrial stress. Silencing NRF2 partially reduces UPRmt activation, highlighting its essential role in this pathway. However, constitutive activation of NRF2 via inhibition of its cytosolic regulator KEAP1 does not increase levels of UPRmt activation markers, suggesting an alternative regulatory mechanism independent of the canonical KEAP1-NRF2 axis. Further analysis revealed that NRF2 likely affects UPRmt activation through its interaction with PGAM5 at the mitochondrial membrane. Disruption of PGAM5 in cardiomyocytes subjected to mitochondrial stress reduces the interaction between PGAM5 and NRF2, enhancing nuclear translocation of NRF2 and significantly upregulating the UPRmt in an NRF2-dependent manner. This NRF2-regulated UPRmt amplification improves mitochondrial respiration, reflecting an enhanced capacity for cardiomyocytes to meet elevated energetic demands during mitochondrial stress. Our findings highlight the therapeutic potential of targeting the NRF2-PGAM5-KEAP1 signalling complex to amplify the UPRmt in cardiomyocytes for cardiovascular and other diseases associated with mitochondrial dysfunction. Future studies should aim to elucidate the mechanisms via which NRF2 enhances the protective effects of UPRmt, thereby contributing to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Rahme Nese Safakli
- Department of Comparative Biomedical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Stephen P Gray
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Nadia Bernardi
- Department of Comparative Biomedical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Ioannis Smyrnias
- Department of Comparative Biomedical Sciences, University of Surrey, Guildford GU2 7AL, UK.
| |
Collapse
|
4
|
Sakai E, Tsukuba T. Transcriptomic Characterization Reveals Mitochondrial Involvement in Nrf2/Keap1-Mediated Osteoclastogenesis. Antioxidants (Basel) 2024; 13:1575. [PMID: 39765903 PMCID: PMC11673794 DOI: 10.3390/antiox13121575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Although osteoclasts play crucial roles in the skeletal system, the mechanisms that underlie oxidative stress during osteoclastogenesis remain unclear. The transcription factor Nrf2 and its suppressor, Keap1, function as central mediators of oxidative stress. To further elucidate the function of Nrf2/Keap1-mediated oxidative stress regulation in osteoclastogenesis, DNA microarray analysis was conducted in this study using wild-type (WT), Keap1 knockout (Keap1 KO), and Nrf2 knockout (Nrf2 KO) osteoclasts. Principal component analysis showed that 403 genes, including Nqo1, Il1f9, and Mmp12, were upregulated in Keap1 KO compared with WT osteoclasts, whereas 24 genes, including Snhg6, Ccdc109b, and Wfdc17, were upregulated in Nrf2 KO compared with WT osteoclasts. Moreover, 683 genes, including Car2, Calcr, and Pate4, were upregulated in Nrf2 KO cells compared to Keap1 KO cells. Functional analysis by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed upregulated genes in Nrf2 KO osteoclasts were mostly enriched in oxidative phosphorylation. Furthermore, GeneMANIA predicted the protein-protein interaction network of novel molecules such as Rufy4 from genes upregulated in Nrf2 KO osteoclasts. Understanding the complex interactions between these molecules may pave the way for developing promising therapeutic strategies against bone metabolic diseases caused by increased osteoclast differentiation under oxidative stress.
Collapse
Affiliation(s)
- Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan;
| | | |
Collapse
|
5
|
Gao Y, Li H, Que Y, Chen W, Huang SY, Liu W, Ye X. Lycium barbarum polysaccharides (LBP) suppresses hypoxia/reoxygenation (H/R)-induced rat H9C2 cardiomyocytes pyroptosis via Nrf2/HO-1 signaling pathway. Int J Biol Macromol 2024; 280:135924. [PMID: 39322131 DOI: 10.1016/j.ijbiomac.2024.135924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
This study aimed to explore the mechanism that Lycium barbarum polysaccharides (LBP) suppress hypoxia/reoxygenation (H/R)-caused pyroptosis in cardiomyocytes (H9C2) via the Nrf2/HO-1 pathway. Initially, we established the cell model of H/R (6 h hypoxia plus with 24 h reoxygenation), and found that 90 μg/mL LBP was the optimal concentration. Subsequently, we confirmed that LBP reduced the apoptosis rate of cells after H/R, the activity of LDH, the inflammatory factors IL-1β and IL-18, and the levels of pyroptosis-specific markers ASC, NLRP3, and Caspase-1 (mRNAs and proteins). It increased the cell survival rate and the mRNA levels of the Nrf2/HO-1 pathway markers Nrf2 and HO-1, and allowed cytoplasmic Nrf2 protein to enter the nucleus to activate HO-1 protein. The Nrf2 siRNA2 caused the following events in H/R model: (1) the increases of the apoptosis rate, LDH activity, the levels of inflammatory factors (IL-1β and IL-18), the levels of ACS, NLRP3, and Caspase-1 (mRNAs and proteins); and (2) the decreases of the cell survival rate, the mRNA levels of Nrf2 and HO-1, and the protein levels of cytoplasm-Nrf2, nucleus-Nrf2, and HO-1. Therefore we concluded that 90 μg/mL LBP suppressed H/R-induced H9C2 cardiomyocyte pyroptosis via the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yi Gao
- Department of General Medicine, Xiamen Changgeng Hospital Affiliated to Huaqiao University, Xiamen 361000, China
| | - Huangen Li
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Yongkang Que
- Department of General Medicine, Xiamen Changgeng Hospital Affiliated to Huaqiao University, Xiamen 361000, China
| | - Weiwen Chen
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361000, China.
| | - Wenjie Liu
- Department of General Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China.
| | - Xiaotong Ye
- School of Medicine, Huaqiao University, Quanzhou 362000, China.
| |
Collapse
|
6
|
Ham S, Choi BH, Kwak MK. NRF2 signaling and amino acid metabolism in cancer. Free Radic Res 2024; 58:648-661. [PMID: 39540796 DOI: 10.1080/10715762.2024.2423690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Alterations in amino acid metabolism have emerged as a critical component in cancer biology, influencing various aspects of tumor initiation, progression, and metastasis. This review explores how amino acids, beyond their role as protein building blocks, are essential for redox balance, cell proliferation, metastasis, signaling/epigenetic regulation, and tumor microenvironment modulation in cancer. We particularly focus on the intricate relationship between amino acid metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling, a master regulator of oxidative stress response that frequently hyperactivated in cancer. Increasing evidence indicates that NRF2 is a key player in amino acid metabolism, orchestrating metabolism of cysteine, glutamine, and serine/glycine to promote cancer cell survival and growth. This comprehensive analysis provides insights into potential therapeutic strategies targeting the NRF2-amino acid metabolism axis, offering new avenues for cancer treatment that address multiple aspects of tumor biology.
Collapse
Affiliation(s)
- Suji Ham
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
7
|
Alshareef NS, AlSedairy SA, Al-Harbi LN, Alshammari GM, Yahya MA. Carthamus tinctorius L. (Safflower) Flower Extract Attenuates Hepatic Injury and Steatosis in a Rat Model of Type 2 Diabetes Mellitus via Nrf2-Dependent Hypoglycemic, Antioxidant, and Hypolipidemic Effects. Antioxidants (Basel) 2024; 13:1098. [PMID: 39334757 PMCID: PMC11428842 DOI: 10.3390/antiox13091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to examine the hepatic and anti-steatotic protective effects of methanolic extract from Carthamus tinctorius (safflower) flowers (SFFE), using a rat model of type 2 diabetes mellitus (T2DM), and to examine the molecular mechanisms underlying these effects. Adult male Wistar rats were used for this study. First, T2DM was induced in some rats by feeding them a high-fat diet (HFD) for 4 weeks, followed by a single dose of streptozotocin (STZ) (35 mg/kg, i.p.). Experimental groups included the following five groups (n = 8 in each): control, control + SFFE, T2DM, T2DM + SFFE, and T2DM + SFFE + brusatol (an Nrf2 inhibitor, 2 mg/kg, i.p.). SFFE was administered at a concentration of 300 mg/kg, and all experiments concluded after 8 weeks. Treatments with SFFE significantly reduced fasting blood glucose levels, free fatty acids (FFAs), cholesterol, triglycerides, and low-density lipoprotein cholesterol in both the control and T2DM rats, but they failed to reduce fasting insulin levels in these groups. SFFE treatments also improved the liver structure and reduced hepatocyte vacuolization and hepatic levels of triglycerides and cholesterol in T2DM rats, in addition to increasing the hepatic mRNA levels of keap1 and the cytoplasmic levels and nuclear activities of Nrf2 in both the control and T2DM rats. SFFE also stimulated the expression levels of PPARα and CPT-1 but reduced the malondialdehyde (MDA), mRNA levels of SREBP1, fatty acid synthase, and acetyl CoA carboxylase in both the control and T2DM rats; meanwhile, it reduced hepatic mRNA and the nuclear activities of NF-κB and increased levels of glutathione, superoxide dismutase, and heme oxygenase-1 in the livers of both groups of treated rats. Furthermore, SFFE suppressed the levels of caspase-3, Bax, tumor necrosis factor-α, and interleukin-6 in the T2DM rats. Treatment with brusatol prevented all of these effects of SFFE. In conclusion, SFFE suppresses liver damage and hepatic steatosis in T2DM through Nrf2-dependent hypoglycemic, antioxidant, anti-inflammatory, and hypolipidemic effects.
Collapse
Affiliation(s)
| | | | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.A.A.); (G.M.A.); (M.A.Y.)
| | | | | |
Collapse
|
8
|
Luchkova A, Mata A, Cadenas S. Nrf2 as a regulator of energy metabolism and mitochondrial function. FEBS Lett 2024; 598:2092-2105. [PMID: 39118293 DOI: 10.1002/1873-3468.14993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) is essential for the control of cellular redox homeostasis. When activated, Nrf2 elicits cytoprotective effects through the expression of several genes encoding antioxidant and detoxifying enzymes. Nrf2 can also improve antioxidant defense via the pentose phosphate pathway by increasing NADPH availability to regenerate glutathione. Microarray and genome-wide localization analyses have identified many Nrf2 target genes beyond those linked to its redox-regulatory capacity. Nrf2 regulates several intermediary metabolic pathways and is involved in cancer cell metabolic reprogramming, contributing to malignant phenotypes. Nrf2 also modulates substrate utilization for mitochondrial respiration. Here we review the experimental evidence supporting the essential role of Nrf2 in the regulation of energy metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Alina Luchkova
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Mata
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| |
Collapse
|
9
|
Nandi I, Ji L, Smith HW, Avizonis D, Papavasiliou V, Lavoie C, Pacis A, Attalla S, Sanguin-Gendreau V, Muller WJ. Targeting fatty acid oxidation enhances response to HER2-targeted therapy. Nat Commun 2024; 15:6587. [PMID: 39097623 PMCID: PMC11297952 DOI: 10.1038/s41467-024-50998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Metabolic reprogramming, a hallmark of tumorigenesis, involves alterations in glucose and fatty acid metabolism. Here, we investigate the role of Carnitine palmitoyl transferase 1a (Cpt1a), a key enzyme in long-chain fatty acid (LCFA) oxidation, in ErbB2-driven breast cancers. In ErbB2+ breast cancer models, ablation of Cpt1a delays tumor onset, growth, and metastasis. However, Cpt1a-deficient cells exhibit increased glucose dependency that enables survival and eventual tumor progression. Consequently, these cells exhibit heightened oxidative stress and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Inhibiting Nrf2 or silencing its expression reduces proliferation and glucose consumption in Cpt1a-deficient cells. Combining the ketogenic diet, composed of LCFAs, or an anti-ErbB2 monoclonal antibody (mAb) with Cpt1a deficiency significantly perturbs tumor growth, enhances apoptosis, and reduces lung metastasis. Using an immunocompetent model, we show that Cpt1a inhibition promotes an antitumor immune microenvironment, thereby enhancing the efficacy of anti-ErbB2 mAbs. Our findings underscore the importance of targeting fatty acid oxidation alongside HER2-targeted therapies to combat resistance in HER2+ breast cancer patients.
Collapse
Affiliation(s)
- Ipshita Nandi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Linjia Ji
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Harvey W Smith
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Daina Avizonis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Vasilios Papavasiliou
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Cynthia Lavoie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Alain Pacis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Sherif Attalla
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Virginie Sanguin-Gendreau
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Bertuccio MP, Saija C, Acri G, Ientile R, Caccamo D, Currò M. Sulforaphane Effects on Neuronal-like Cells and Peripheral Blood Mononuclear Cells Exposed to 2.45 GHz Electromagnetic Radiation. Int J Mol Sci 2024; 25:7872. [PMID: 39063113 PMCID: PMC11276899 DOI: 10.3390/ijms25147872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Exposure to 2.45 GHz electromagnetic radiation (EMR) emitted from commonly used devices has been reported to induce oxidative stress in several experimental models. Our study aims to evaluate the efficacy of sulforaphane, a well-known natural product, in preventing radiation-induced toxic effects caused by a 24 h exposure of SH-SY5Y neuronal-like cells and peripheral blood mononuclear cells (PBMCs) to 2.45 GHz EMR. Cells were exposed to radiation for 24 h in the presence or absence of sulforaphane at different concentrations (5-10-25 µg/mL). Cell viability, mitochondrial activity alterations, the transcription and protein levels of redox markers, and apoptosis-related genes were investigated. Our data showed a reduction in cell viability of both neuronal-like cells and PBMCs caused by EMR exposure and a protective effect of 5 µg/mL sulforaphane. The lowest sulforaphane concentration decreased ROS production and increased the Mitochondrial Transmembrane Potential (Δψm) and the NAD+/NADH ratio, which were altered by radiation exposure. Sulforaphane at higher concentrations displayed harmful effects. The hormetic behavior of sulforaphane was also evident after evaluating the expression of genes coding for Nrf2, SOD2, and changes in apoptosis markers. Our study underlined the vulnerability of neuronal-like cells to mitochondrial dysfunction and oxidative stress and the possibility of mitigating these effects by supplementation with sulforaphane. To our knowledge, there are no previous studies about the effects of SFN on these cells when exposed to 2.45 GHz electromagnetic radiation.
Collapse
Affiliation(s)
- Maria Paola Bertuccio
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (C.S.); (G.A.); (R.I.); (M.C.)
| | | | | | | | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (C.S.); (G.A.); (R.I.); (M.C.)
| | | |
Collapse
|
11
|
Singh S, Kumar A, Gupta S, Agrawal R. Curative role of natural PPARγ agonist in non-alcoholic fatty liver disease (NAFLD). Tissue Barriers 2024; 12:2289830. [PMID: 38050958 PMCID: PMC11262216 DOI: 10.1080/21688370.2023.2289830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
NAFLD is a condition that develops when the liver accumulates excess fat without alcohol consumption. This chronic liver ailment progresses along with insulin resistant and is typically not diagnosed until the patients have cirrhosis. Nuclear hormone receptor superfamily PPARs are essential for metabolism of fatty acids and glucose. In liver, lipid metabolism is regulated by nuclear receptors and PPARα, and PPARβ/δ encourages fatty acid β-oxidation. PPAR-γ, an energy-balanced receptor is a crucial regulator in NAFLD. The partial activation of PPAR-γ could lead to increased level of adiponectin and insulin sensitivity, thus improved NAFLD. Because of less side effects, natural compounds are emerged as potential therapeutic agents for NAFLD by PPARγ agonists. Although the results from preclinical studies are promising, further research is needed to determine the potential dosing and efficacy of mentioned compounds in human subjects. In this review, we summarize the effect of natural PPARγ agonist in the NAFLD.
Collapse
Affiliation(s)
- Swati Singh
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Anit Kumar
- Department of Pharmacology, Divine College of Pharmacy, Bihar, India
| | - Suruchi Gupta
- School of Pharmacy, YBN University, Ranchi, Jharkhand, India
| | - Rohini Agrawal
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Pfister K, Young V, Frankel B, Silva Barbosa A, Burton J, Bons J, Zhang B, Chiba T, Uhlean R, Goetzman E, Schilling B, Sims-Lucas S. Succinylation of Park7 activates a protective metabolic response to acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F128-F136. [PMID: 38695076 DOI: 10.1152/ajprenal.00062.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024] Open
Abstract
Acute kidney injury (AKI) is extremely prevalent among hospitalizations and presents a significant risk for the development of chronic kidney disease and increased mortality. Ischemia caused by shock, trauma, and transplant are common causes of AKI. To attenuate ischemic AKI therapeutically, we need a better understanding of the physiological and cellular mechanisms underlying damage. Instances of ischemia are most damaging in proximal tubule epithelial cells (PTECs) where hypoxic signaling cascades, and perhaps more rapidly, posttranslational modifications (PTMs), act in concert to change cellular metabolism. Here, we focus on the effects of the understudied PTM, lysine succinylation. We have previously shown a protective effect of protein hypersuccinylation on PTECs after depletion of the desuccinylase sirtuin5. General trends in the results suggested that hypersuccinylation led to upregulation of peroxisomal activity and was protective against kidney injury. Included in the list of changes was the Parkinson's-related deglycase Park7. There is little known about any links between peroxisome activity and Park7. In this study, we show in vitro and in vivo that Park7 has a crucial role in protection from AKI and upregulated peroxisome activity. These data in combination with published results of Park7's protective role in cardiovascular damage and chronic kidney disease lead us to hypothesize that succinylation of Park7 may ameliorate oxidative damage resulting from AKI and prevent disease progression. This novel mechanism provides a potential therapeutic mechanism that can be targeted.NEW & NOTEWORTHY Succinylation is an understudied posttranslational modification that has been shown to increase peroxisomal activity. Furthermore, increased peroxisomal activity has been shown to reduce oxidative stress and protect proximal tubules after acute kidney injury. Analysis of mass spectrometry succinylomic and proteomic data reveals a novel role for Parkinson's related Park7 in mediating Nrf2 antioxidant response after kidney injury. This novel protection pathway provides new insights for kidney injury prevention and development of novel therapeutics.
Collapse
Affiliation(s)
- Katherine Pfister
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Victoria Young
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Brendon Frankel
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Anne Silva Barbosa
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jordan Burton
- Buck Institute for Research on Aging, Novato, California, United States
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, California, United States
| | - Bob Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Takuto Chiba
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Rebecca Uhlean
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Eric Goetzman
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, United States
| | - Sunder Sims-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
13
|
Patwardhan RS, Gohil D, Singh B, Kumar BK, Purohit V, Thoh M, Checker R, Gardi N, Gota V, Kutala VK, Patwardhan S, Sharma D, Sandur SK. Mitochondrial-targeted curcumin inhibits T-cell activation via Nrf2 and inhibits graft-versus-host-disease in a mouse model. Phytother Res 2024; 38:1555-1573. [PMID: 38281735 DOI: 10.1002/ptr.8126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 01/30/2024]
Abstract
Anti-inflammatory and immune suppressive agents are required to moderate hyper-activation of lymphocytes under disease conditions or organ transplantation. However, selective disruption of mitochondrial redox has not been evaluated as a therapeutic strategy for suppression of T-cell-mediated pathologies. Using mitochondrial targeted curcumin (MitoC), we studied the effect of mitochondrial redox modulation on T-cell responses by flow cytometry, transmission electron microscopy, transcriptomics, and proteomics, and the role of Nrf2 was studied using Nrf2- /- mice. MitoC decreased mitochondrial TrxR activity, enhanced mitochondrial ROS (mROS) production, depleted mitochondrial glutathione, and suppressed activation-induced increase in mitochondrial biomass. This led to suppression of T-cell responses and metabolic reprogramming towards Treg differentiation. MitoC induced nuclear translocation and DNA binding of Nrf2, leading to upregulation of Nrf2-dependent genes and proteins. MitoC-mediated changes in mitochondrial redox and modulation of T-cell responses are abolished in Nrf2- /- mice. Restoration of mitochondrial thiols abrogated inhibition of T-cell responses. MitoC suppressed alloantigen-induced lymphoblast formation, inflammatory cytokines, morbidity, and mortality in acute graft-versus-host disease mice. Disruption of mitochondrial thiols but not mROS increase inculcates an Nrf2-dependent immune-suppressive disposition in T cells for the propitious treatment of graft-versus-host disease.
Collapse
Affiliation(s)
| | - Dievya Gohil
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Babita Singh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Binita K Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Vaitashi Purohit
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Maikho Thoh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rahul Checker
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Nilesh Gardi
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Vikram Gota
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Vijay Kumar Kutala
- Department of Biochemistry, Nizam's Institute of Medical Sciences (NIMS), Hyderabad, India
| | - Sejal Patwardhan
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| |
Collapse
|
14
|
Yan T, Zhang Y, Lu H, Zhao J, Wen C, Song S, Ai C, Yang J. The protective effect of Enteromorpha prolifera polysaccharide on alcoholic liver injury in C57BL/6 mice. Int J Biol Macromol 2024; 261:129908. [PMID: 38320642 DOI: 10.1016/j.ijbiomac.2024.129908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
An alcohol-induced liver injury model was induced in C57BL/6 mice to assess the protective efficacy of Enteromorpha prolifera polysaccharides (EP) against liver damage. Histological alterations in the liver were examined following hematoxylin-eosin (H&E) staining. Biochemical assay kits and ELISA kits were employed to analyze serum and liver biochemical parameters, as well as the activity of antioxidant enzymes and alcohol metabolism-related enzymes. The presence of oxidative stress-related proteins in the liver was detected using western blotting. Liquid chromatography and mass spectrometry were used to profile serum metabolites in mice. The findings demonstrated that EP-H (100 mg/Kg) reduced serum ALT and AST activity by 2.31-fold and 2.32-fold, respectively, when compared to the alcohol-induced liver injury group. H&E staining revealed a significant attenuation of microvesicular steatosis and ballooning pathology in the EP-H group compared to the model group. EP administration was found to enhance alcohol metabolism by regulating metabolite-related enzymes (ADH and ALDH) and decreasing CYP2E1 expression. EP also modulated the Nrf2/HO-1 signaling pathway to bolster hepatic antioxidant capacity. Furthermore, EP restored the levels of lipid metabolites (Glycine, Butanoyl-CoA, and Acetyl-CoA) to normalcy. In summary, EP confers protection to the liver through the regulation of antioxidant activity and lipid metabolites in the murine liver.
Collapse
Affiliation(s)
- Tingting Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuying Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hengyu Lu
- West China School of Pharmacy, Sichuan University, Chengdu 610207, China
| | - Jun Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chengrong Wen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chunqing Ai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jingfeng Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Hu J, Hou W, Ma N, Zhang Y, Liu X, Wang Y, Ci X. Aging-related NOX4-Nrf2 redox imbalance increases susceptibility to cisplatin-induced acute kidney injury by regulating mitophagy. Life Sci 2024; 336:122352. [PMID: 38104863 DOI: 10.1016/j.lfs.2023.122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND During aging, excessive ROS production in the kidneys leads to redox imbalance, which contributes to oxidative damage and impaired organ homeostasis. However, whether and how aging-related NOX4-Nrf2 redox imbalance increases susceptibility to cisplatin-induced acute kidney injury remain largely unknown. METHODS In this study, we used cisplatin-challenged aging mouse models and senescent HK-2 cells to investigate the effects and mechanisms of aging on susceptibility to cisplatin-induced acute kidney injury. RESULTS In vivo, we found that cisplatin stimulation caused more severe renal damage, oxidative stress, mitochondrial dysfunction and mitophagy impairment in aging mice than in young mice. Moreover, Nrf2 deficiency aggravated cisplatin-induced acute kidney injury by exacerbating NOX4-Nrf2 redox imbalance and defective mitophagy. In vitro experiments on D-gal-treated human renal tubular epithelial cells (HK-2) demonstrated that senescent renal epithelial cells exhibited increased susceptibility to cisplatin-induced apoptosis, NOX4-Nrf2 redox imbalance-mediated oxidative stress and defective mitophagy. Mechanistically, we found that knockdown of Nrf2 in HK2 cells resulted in increased ROS and aggravated mitophagy impairment, whereas these effects were reversed in NOX4-knockdown cells. CONCLUSION The present study indicates that NOX4-Nrf2 redox imbalance is critical for mitophagy deficiency in aged renal tubular epithelial cells and is a therapeutic target for alleviating cisplatin-induced acute kidney injury in elderly patients.
Collapse
Affiliation(s)
- Jianqiang Hu
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Wenli Hou
- Department of Cadre Ward, the First Hospital of Jilin University, 71 Xinmin Street, Chaoyang, Changchun, Jilin 130021, China
| | - Ning Ma
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Yan Zhang
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Xiaojie Liu
- Urological Department, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yuantao Wang
- Urological Department, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Xinxin Ci
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, Jilin 130001, China.
| |
Collapse
|
16
|
Xu Q, Cao Y, Zhong X, Qin X, Feng J, Peng H, Su Y, Ma Z, Zhou S. Riboflavin protects against heart failure via SCAD-dependent DJ-1-Keap1-Nrf2 signalling pathway. Br J Pharmacol 2023; 180:3024-3044. [PMID: 37377111 DOI: 10.1111/bph.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Our recent studies have shown that flavin adenine dinucleotide (FAD) exerts cardiovascular protective effects by supplementing short-chain acyl-CoA dehydrogenase (SCAD). The current study aimed to elucidate whether riboflavin (the precursor of FAD) could improve heart failure via activating SCAD and the DJ-1-Keap1-Nrf2 signalling pathway. EXPERIMENTAL APPROACH Riboflavin treatment was given to the mouse transverse aortic constriction (TAC)-induced heart failure model. Cardiac structure and function, energy metabolism and apoptosis index were assessed, and relevant signalling proteins were analysed. The mechanisms underlying the cardioprotection by riboflavin were analysed in the cell apoptosis model induced by tert-butyl hydroperoxide (tBHP). KEY RESULTS In vivo, riboflavin ameliorated myocardial fibrosis and energy metabolism, improved cardiac dysfunction and inhibited oxidative stress and cardiomyocyte apoptosis in TAC-induced heart failure. In vitro, riboflavin ameliorated cell apoptosis in H9C2 cardiomyocytes by decreasing reactive oxygen species (ROS). At the molecular level, riboflavin significantly restored FAD content, SCAD expression and enzymatic activity, activated DJ-1 and inhibited the Keap1-Nrf2/HO1 signalling pathway in vivo and in vitro. SCAD knockdown exaggerated the tBHP-induced DJ-1 decrease and Keap1-Nrf2/HO1 signalling pathway activation in H9C2 cardiomyocytes. The knockdown of SCAD abolished the anti-apoptotic effects of riboflavin on H9C2 cardiomyocytes. DJ-1 knockdown hindered SCAD overexpression anti-apoptotic effects and regulation on Keap1-Nrf2/HO1 signalling pathway in H9C2 cardiomyocytes. CONCLUSIONS AND IMPLICATIONS Riboflavin exerts cardioprotective effects on heart failure by improving oxidative stress and cardiomyocyte apoptosis via FAD to stimulate SCAD and then activates the DJ-1-Keap1-Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Qingping Xu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuhong Cao
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoyi Zhong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xue Qin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingyun Feng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Huan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongshao Su
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhichao Ma
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Sigui Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Dayalan Naidu S, Angelova PR, Knatko EV, Leonardi C, Novak M, de la Vega L, Ganley IG, Abramov AY, Dinkova-Kostova AT. Nrf2 depletion in the context of loss-of-function Keap1 leads to mitolysosome accumulation. Free Radic Biol Med 2023; 208:478-493. [PMID: 37714439 DOI: 10.1016/j.freeradbiomed.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) is the principal determinant of the cellular redox homeostasis, contributing to mitochondrial function, integrity and bioenergetics. The main negative regulator of Nrf2 is Kelch-like ECH associated protein 1 (Keap1), a substrate adaptor for Cul3/Rbx1 ubiquitin ligase, which continuously targets Nrf2 for ubiquitination and proteasomal degradation. Loss-of-function mutations in Keap1 occur frequently in lung cancer, leading to constitutive Nrf2 activation. We used the human lung cancer cell line A549 and its CRISPR/Cas9-generated homozygous Nrf2-knockout (Nrf2-KO) counterpart to assess the role of Nrf2 on mitochondrial health. To confirm that the observed effects of Nrf2 deficiency are not due to clonal selection or long-term adaptation to the absence of Nrf2, we also depleted Nrf2 by siRNA (siNFE2L2), thus creating populations of Nrf2-knockdown (Nrf2-KD) A549 cells. Nrf2 deficiency decreased mitochondrial respiration, but increased the mitochondrial membrane potential, mass, DNA content, and the number of mitolysosomes. The proportion of ATG7 and ATG3 within their respective LC3B conjugates was increased in Nrf2-deficient cells with mutant Keap1, whereas the formation of new autophagosomes was not affected. Thus, in lung cancer cells with loss-of-function Keap1, Nrf2 facilitates mitolysosome degradation thereby ensuring timely clearance of damaged mitochondria.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | | | - Elena V Knatko
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Chiara Leonardi
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Miroslav Novak
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrey Y Abramov
- UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Vaikunthanathan T, Landmann E, Correa DM, Romano M, Trevelin SC, Peng Q, Crespo E, Corrado M, Lozano JJ, Pearce EL, Perpinan E, Zoccarato A, Siew L, Edwards-Hicks J, Khan R, Luu NT, Thursz MR, Newsome PN, Martinez-Llordella M, Shah N, Lechler RI, Shah AM, Sanchez-Fueyo A, Lombardi G, Safinia N. Dysregulated anti-oxidant signalling and compromised mitochondrial integrity negatively influence regulatory T cell function and viability in liver disease. EBioMedicine 2023; 95:104778. [PMID: 37657135 PMCID: PMC10480539 DOI: 10.1016/j.ebiom.2023.104778] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Dysregulated inflammatory responses and oxidative stress are key pathogenic drivers of chronic inflammatory diseases such as liver cirrhosis (LC). Regulatory T cells (Tregs) are essential to prevent excessive immune activation and maintain tissue homeostasis. While inflammatory cues are well known to modulate the function and stability of Tregs, the extent to which Tregs are influenced by oxidative stress has not been fully explored. METHODS The phenotypic and functional properties of CD4+CD25+CD127lo/- Tregs isolated from patients with LC were compared to healthy controls (HC). Treg redox state was investigated by characterizing intracellular reactive oxygen species (ROS), NADPH oxidase-2 (Nox2) activity, mitochondrial function, morphology, and nuclear factor-erythroid 2-related factor (Nrf2) antioxidant signalling. The relevance of Nrf2 and its downstream target, Heme-oxygenase-1 (HO-1), in Treg function, stability, and survival, was further assessed using mouse models and CRISPR/Cas9-mediated HO-1 knock-out. FINDINGS Circulating Tregs from LC patients displayed a reduced suppressive function, correlating with liver disease severity, associated with phenotypic abnormalities and increased apoptosis. Mechanistically, this was linked to a dysregulated Nrf2 signalling with resultant lower levels of HO-1, enhanced Nox2 activation, and impaired mitochondrial respiration and integrity. The functional deficit in LC Tregs could be partially recapitulated by culturing control Tregs in patient sera. INTERPRETATION Our findings reveal that Tregs rely on functional redox homeostasis for their function, stability, and survival. Targeting Treg specific anti-oxidant pathways may have therapeutic potential to reverse the Treg impairment in conditions of oxidative damage such as advanced liver disease. FUNDING This study was funded by the Wellcome Trust (211113/A/18/Z).
Collapse
Affiliation(s)
- Trishan Vaikunthanathan
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Emmanuelle Landmann
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Diana Marin Correa
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom.
| | - Silvia Cellone Trevelin
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Qi Peng
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom.
| | - Elena Crespo
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Mauro Corrado
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Juan-José Lozano
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph Stelzmannstrasse 26, 50931, Cologne, Germany.
| | - Erika L Pearce
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Calle Rossello 153 Bajos, O8036, Barcelona, Spain.
| | - Elena Perpinan
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Anna Zoccarato
- Department of Immunometabolism, Max Planck Institute of Immunobiology & Epigenetics, Stübeweg 51, 79108, Freiburg, Germany.
| | - Leonard Siew
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom.
| | - Joy Edwards-Hicks
- Centre for Liver and Gastroenterology Research and Birmingham National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.
| | - Reenam Khan
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Liver Unit, 10th Floor QEQM Building, St Mary's Hospital, W2 1NY, London, United Kingdom.
| | - Nguyet-Thin Luu
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Liver Unit, 10th Floor QEQM Building, St Mary's Hospital, W2 1NY, London, United Kingdom.
| | - Mark R Thursz
- Institute of Liver Sciences, King's College Hospital NHS Foundation Trust, London, SE5 9NU, United Kingdom.
| | - Philip N Newsome
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Liver Unit, 10th Floor QEQM Building, St Mary's Hospital, W2 1NY, London, United Kingdom.
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Naina Shah
- James Black Centre, Department of Cardiovascular sciences, British Heart Foundation Centre of Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, SE5 9NU, United Kingdom.
| | - Robert I Lechler
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom.
| | - Ajay M Shah
- Department of Immunometabolism, Max Planck Institute of Immunobiology & Epigenetics, Stübeweg 51, 79108, Freiburg, Germany.
| | - Alberto Sanchez-Fueyo
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, 5th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, United Kingdom.
| | - Niloufar Safinia
- Department of Inflammation Biology, Institute of Liver Studies, School of Immunology and Microbial Sciences, James Black Centre, King's College London, London, SE5 9NU, United Kingdom.
| |
Collapse
|
19
|
Tang YC, Chuang YJ, Chang HH, Juang SH, Yen GC, Chang JY, Kuo CC. How to deal with frenemy NRF2: Targeting NRF2 for chemoprevention and cancer therapy. J Food Drug Anal 2023; 31:387-407. [PMID: 39666284 PMCID: PMC10629913 DOI: 10.38212/2224-6614.3463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 12/13/2024] Open
Abstract
Induction of antioxidant proteins and phase 2 detoxifying enzymes that neutralize reactive electrophiles are important mechanisms for protection against carcinogenesis. Normal cells provide multifaceted pathways to tightly control NF-E2-related factor 2 (NRF2)-mediated gene expression in response to an assault by a range of endogenous and exogenous oncogenic molecules. Transient activation of NRF2 by its activators is able to induce ARE-mediated cytoprotective proteins which are essential for protection against various toxic and oxidative damages, and NRF2 activators thereby have efficacy in cancer chemoprevention. Because NRF2 has a cytoprotective function, it can protect normal cells from carcinogens like an angel, but when the protective effect acts on cancer cells, it will give rise to invincible cancer cells and play a devilish role in tumor progression. Indeed, aberrant activation of NRF2 has been found in a variety of cancers that create a favorable environment for the proliferation and survival of cancer cells and leads to drug resistance, ultimately leading to the poor clinical prognosis of patients. Therefore, pharmacological inhibition of NRF2 signaling has emerged as a promising approach for cancer therapy. This review aims to compile the regulatory mechanisms of NRF2 and its double-edged role in cancer. In addition, we also summarize the research progress of NRF2 modulators, especially phytochemicals, in chemoprevention and cancer therapy.
Collapse
Affiliation(s)
- Ya-Chu Tang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu,
Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu,
Taiwan
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
| | - Shin-Hun Juang
- School of Pharmacy, China Medical University, Taichung,
Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung,
Taiwan
| | - Jang-Yang Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
- Taipei Cancer Center, Taipei Medical University Hospital, Taipei,
Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei,
Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung,
Taiwan
| |
Collapse
|
20
|
Brackhan M, Arribas-Blazquez M, Lastres-Becker I. Aging, NRF2, and TAU: A Perfect Match for Neurodegeneration? Antioxidants (Basel) 2023; 12:1564. [PMID: 37627559 PMCID: PMC10451380 DOI: 10.3390/antiox12081564] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Although the trigger for the neurodegenerative disease process is unknown, the relevance of aging stands out as a major risk for the development of neurodegeneration. In this review, we highlighted the relationship between the different cellular mechanisms that occur as a consequence of aging and transcription factor nuclear factor erythroid-2-related factor 2 (NRF2) and the connection with the TAU protein. We focused on the relevance of NRF2 in the main processes involved in neurodegeneration and associated with aging, such as genomic instability, protein degradation systems (proteasomes/autophagy), cellular senescence, and stem cell exhaustion, as well as inflammation. We also analyzed the effect of aging on TAU protein levels and its aggregation and spread process. Finally, we investigated the interconnection between NRF2 and TAU and the relevance of alterations in the NRF2 signaling pathway in both primary and secondary tauopathies. All these points highlight NRF2 as a possible therapeutic target for tauopathies.
Collapse
Affiliation(s)
- Mirjam Brackhan
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, c/Arturo Duperier 4, 28029 Madrid, Spain
| | - Marina Arribas-Blazquez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain;
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, c/Arturo Duperier 4, 28029 Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| |
Collapse
|
21
|
Zhuo C, Xin J, Huang W, Zhang D, Yan X, Li R, Li H, Lan J, Lin L, Li L, Wang X, Liu L, Wang Y, Li X, Mao Y, Chen H, Wu S, Yang X, Jiang W. Irisin protects against doxorubicin-induced cardiotoxicity by improving AMPK-Nrf2 dependent mitochondrial fusion and strengthening endogenous anti-oxidant defense mechanisms. Toxicology 2023; 494:153597. [PMID: 37499777 DOI: 10.1016/j.tox.2023.153597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Irisin, a new exercise-mediated myokine, plays an important role in cardiovascular diseases by regulating cell energy metabolism. The induction of mitochondrial dysfunction and oxidative stress are the crucial mechanisms involved in doxorubicin-induced cardiomyocyte damage and cardiac dysfunction, but the mitochondria-dependent protective mechanisms of irisin in DOX-impaired cardiomyocytes are poorly understood. In this study, we exposed mouse-FNDC5 (irisin-precursor)-knockout, FNDC5 transgenic mice and their WT littermates, as well as cultured neonatal rat cardiomyocytes to DOX at a dosage of 4 mg/kg (once a week for 4 weeks) in vivo and 2 μM in vitro, respectively, then investigated how irisin alleviated DOX-induced oxidative stress and myocardial injury. Irisin knockout worsened, while irisin overexpression attenuated DOX-induced mortality, body weight loss, myocardial atrophy, damage and oxidative stress, cardiac remodeling and dysfunction in mice. Exogenous irisin supplementation (20 nM) also relieved these DOX-induced damage in cardiomyocytes. Intriguingly, irisin activated AMPK-Nrf2 signaling axis, and then up-regulated the transcription and protein expression of the downstream target genes of Nrf2, including mitochondrial fusion-related genes (mitofusin 1/2 and Optic Atrophy Type 1) and endogenous anti-oxidant genes, to promote mitochondrial fusion, improve mitochondrial dynamics and mitochondrial function, and reduced oxidative stress damage in DOX-induced cardiomyocytes. These results suggest that irisin protects the hearts from DOX-induced cardiotoxicity by improving mitochondrial dynamics and strengthening the endogenous anti-oxidant system through an AMPK-Nrf2 axis dependent manner, thus reducing DOX-induced oxidative stress injury in cardiomyocytes.
Collapse
Affiliation(s)
- Caili Zhuo
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Juanjuan Xin
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenjing Huang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Die Zhang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Yan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ruli Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - He Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jie Lan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lan Lin
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lingyu Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xuemei Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Linling Liu
- Department of Pharmacology, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Yingling Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xinyue Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan Mao
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hongying Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Sisi Wu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xijing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
22
|
Teng Y, Xu L, Li W, Liu P, Tian L, Liu M. Targeting reactive oxygen species and fat acid oxidation for the modulation of tumor-associated macrophages: a narrative review. Front Immunol 2023; 14:1224443. [PMID: 37545527 PMCID: PMC10401428 DOI: 10.3389/fimmu.2023.1224443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are significant immunocytes infiltrating the tumor microenvironment(TME). Recent research has shown that TAMs exhibit diversity in terms of their phenotype, function, time, and spatial distribution, which allows for further classification of TAM subtypes. The metabolic efficiency of fatty acid oxidation (FAO) varies among TAM subtypes. FAO is closely linked to the production of reactive oxygen species (ROS), which play a role in processes such as oxidative stress. Current evidence demonstrates that FAO and ROS can influence TAMs' recruitment, polarization, and phagocytosis ability either individually or in combination, thereby impacting tumor progression. But the specific mechanisms associated with these relationships still require further investigation. We will review the current status of research on the relationship between TAMs and tumor development from three aspects: ROS and TAMs, FAO and TAMs, and the interconnectedness of FAO, ROS, and TAMs.
Collapse
Affiliation(s)
| | | | | | | | - Linli Tian
- *Correspondence: Linli Tian, ; Ming Liu,
| | - Ming Liu
- *Correspondence: Linli Tian, ; Ming Liu,
| |
Collapse
|
23
|
Barros LF, Ruminot I, Sandoval PY, San Martín A. Enlightening brain energy metabolism. Neurobiol Dis 2023:106211. [PMID: 37352985 DOI: 10.1016/j.nbd.2023.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Brain tissue metabolism is distributed across several cell types and subcellular compartments, which activate at different times and with different temporal patterns. The introduction of genetically-encoded fluorescent indicators that are imaged using time-lapse microscopy has opened the possibility of studying brain metabolism at cellular and sub-cellular levels. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides, which inform about relative levels, concentrations and fluxes. This review offers a brief survey of the metabolic indicators that have been validated in brain cells, with some illustrative examples from the literature. Whereas only a small fraction of the metabolome is currently accessible to fluorescent probes, there are grounds to be optimistic about coming developments and the application of these tools to the study of brain disease.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
24
|
Al-Hussan R, Albadr NA, Alshammari GM, Almasri SA, Yahya MA. Phloretamide Prevent Hepatic and Pancreatic Damage in Diabetic Male Rats by Modulating Nrf2 and NF-κB. Nutrients 2023; 15:nu15061456. [PMID: 36986192 PMCID: PMC10059022 DOI: 10.3390/nu15061456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
This study examined the effect of phloretamide, a metabolite of phloretin, on liver damage and steatosis in streptozotocin-induced diabetes mellitus (DM) in rats. Adult male rats were divided into two groups: control (nondiabetic) and STZ-treated rats, each of which was further treated orally with the vehicle phloretamide 100 mg or 200 mg. Treatments were conducted for 12 weeks. Phloretamide, at both doses, significantly attenuated STZ-mediated pancreatic β-cell damage, reduced fasting glucose, and stimulated fasting insulin levels in STZ-treated rats. It also increased the levels of hexokinase, which coincided with a significant reduction in glucose-6 phosphatase (G-6-Pase), and fructose-1,6-bisphosphatase 1 (PBP1) in the livers of these diabetic rats. Concomitantly, both doses of phloretamide reduced hepatic and serum levels of triglycerides (TGs) and cholesterol (CHOL), serum levels of low-density lipoprotein cholesterol (LDL-c), and hepatic ballooning. Furthermore, they reduced levels of lipid peroxidation, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), mRNA, and total and nuclear levels of NF-κB p65, but increased mRNA levels, total and nuclear levels of Nrf2, as well as levels of reduced glutathione (GSH), superoxide dismutase (SOD-1), catalase (CAT), and heme-oxygenase-1 (HO-1) in the livers of diabetic rats. All of these effects were dose-dependent. In conclusion, phloretamide is a novel drug that could ameliorate DM-associated hepatic steatosis via its powerful antioxidant and anti-inflammatory effects. Mechanisms of protection involve improving the β-cell structure and hepatic insulin action, suppressing hepatic NF-κB, and stimulating hepatic Nrf2.
Collapse
|
25
|
Esteras N, Blacker TS, Zherebtsov EA, Stelmashuk OA, Zhang Y, Wigley WC, Duchen MR, Dinkova-Kostova AT, Abramov AY. Nrf2 regulates glucose uptake and metabolism in neurons and astrocytes. Redox Biol 2023; 62:102672. [PMID: 36940606 PMCID: PMC10034142 DOI: 10.1016/j.redox.2023.102672] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
The transcription factor Nrf2 and its repressor Keap1 mediate cell stress adaptation by inducing expression of genes regulating cellular detoxification, antioxidant defence and energy metabolism. Energy production and antioxidant defence employ NADH and NADPH respectively as essential metabolic cofactors; both are generated in distinct pathways of glucose metabolism, and both pathways are enhanced by Nrf2 activation. Here, we examined the role of Nrf2 on glucose distribution and the interrelation between NADH production in energy metabolism and NADPH homeostasis using glio-neuronal cultures isolated from wild-type, Nrf2-knockout and Keap1-knockdown mice. Employing advanced microscopy imaging of single live cells, including multiphoton fluorescence lifetime imaging microscopy (FLIM) to discriminate between NADH and NADPH, we found that Nrf2 activation increases glucose uptake into neurons and astrocytes. Glucose consumption is prioritized in brain cells for mitochondrial NADH and energy production, with a smaller contribution to NADPH synthesis in the pentose phosphate pathway for redox reactions. As Nrf2 is suppressed during neuronal development, this strategy leaves neurons reliant on astrocytic Nrf2 to maintain redox balance and energy homeostasis.
Collapse
Affiliation(s)
- Noemí Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Thomas S Blacker
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Evgeny A Zherebtsov
- Optoelectronics and Measurement Techniques, University of Oulu, Oulu, Finland
| | - Olga A Stelmashuk
- Laboratory of Cell Physiology and Pathology, Orel State University, Orel, Russia
| | - Ying Zhang
- Jacqui Wood Cancer, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - W Christian Wigley
- Reata Pharmaceuticals, 2801 Gateway Dr, Suite 150, Irving, TX, 75063, USA
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
26
|
Yao Y, Wang H, Yang Y, Jiang Z, Ma H. Dehydroepiandrosterone protects against oleic acid-triggered mitochondrial dysfunction to relieve oxidative stress and inflammation via activation of the AMPK-Nrf2 axis by targeting GPR30 in hepatocytes. Mol Immunol 2023; 155:110-123. [PMID: 36773597 DOI: 10.1016/j.molimm.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
Fatty liver hemorrhage syndrome (FLHS) seriously threatens the health and performance of laying hens, and the occurrence and development of FLHS are closely related to oxidative damage and inflammation; thus, diets supplemental with activated substances to relive the oxidative stress and inflammation maybe effectively control the occurrences of FLHS. Dehydroepiandrosterone (DHEA) has beneficial effects in fat-reduction, anti-oxidation and anti-inflammation, and it was widely applied to alleviate multiple metabolic-related diseases; however, there are few reports on whether DHEA can prevent against metabolic-related diseases by modulating oxidative stress and inflammation, especially FLHS in laying hens. Herein, present study aimed to investigate the regulatory actions and potential molecular mechanism of DHEA on inflammation and oxidative stress triggered by oleic acid (OA)-stimulation in primary chicken hepatocytes and chicken hepatocellular carcinoma cell line (LMH). The results showed that DHEA significantly alleviated oxidative stress challenged by OA-stimulation via activation of AMP-activated protein kinase (AMPK)-nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in hepatocytes, which led to relieving effect of DHEA on inflammatory by inhibiting mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) signaling pathways. Mechanistically, we found that the activation of AMPK-Nrf2 signaling pathway by DHEA treatment was mediated by G-protein coupled estrogen receptor (GPR30/GPER) in OA-stimulated hepatocytes. Further investigation found that DHEA activated the GPR30-mediated AMPK-Nrf2 signaling pathways to increase antioxidant capacity and inhibit mitochondrial reactive oxygen species (ROS) overproduction, which thereby inhibiting the activation of ROS-induced MAPK and NF-κB signaling pathways in OA-stimulated hepatocytes. Overall, these data demonstrated that DHEA attenuates the oxidative stress and inflammation triggered by OA-stimulation, and these beneficial effects of DHEA are achieved by activating the GPR30-mediated AMPK-Nrf2 signaling to prevent the impairment of mitochondrial function, and thereby inhibiting the activation of ROS-induced MAPK and NF-κB signaling pathways in hepatocytes. These results revealed the effects and mechanisms of DHEA on oxidative stress and inflammation, and also provide substantial information to support it as a potential nutritional supplement in preventing the occurrences of FLHS in laying hens and other metabolic-related diseases in animals and humans.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and food safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
27
|
Alam MM, Kishino A, Sung E, Sekine H, Abe T, Murakami S, Akaike T, Motohashi H. Contribution of NRF2 to sulfur metabolism and mitochondrial activity. Redox Biol 2023; 60:102624. [PMID: 36758466 PMCID: PMC9941419 DOI: 10.1016/j.redox.2023.102624] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
NF-E2-related factor 2 (NRF2) plays a crucial role in the maintenance of cellular homeostasis by regulating various enzymes and proteins that are involved in the redox reactions utilizing sulfur. While substantial impacts of NRF2 on mitochondrial activity have been described, the precise mechanism by which NRF2 regulates mitochondrial function is still not fully understood. Here, we demonstrated that NRF2 increased intracellular persulfides by upregulating the cystine transporter xCT encoded by Slc7a11, a well-known NRF2 target gene. Persulfides have been shown to play an important role in mitochondrial function. Supplementation with glutathione trisulfide (GSSSG), which is a form of persulfide, elevated the mitochondrial membrane potential (MMP), increased the oxygen consumption rate (OCR) and promoted ATP production. Persulfide-mediated mitochondrial activation was shown to require the mitochondrial sulfur oxidation pathway, especially sulfide quinone oxidoreductase (SQOR). Consistently, NRF2-mediated mitochondrial activation was also dependent on SQOR activity. This study clarified that the facilitation of persulfide production and sulfur metabolism in mitochondria by increasing cysteine availability is one of the mechanisms for NRF2-dependent mitochondrial activation.
Collapse
Affiliation(s)
- Md Morshedul Alam
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan,Department of Genetic Engineering and Biotechnology, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Akihiro Kishino
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Eunkyu Sung
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Hiroki Sekine
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Takaaki Abe
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shohei Murakami
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
28
|
Koch M, Kockmann T, Rodriguez E, Wehkamp U, Hiebert P, Ben-Yehuda Greenwald M, Stölzl D, Beer HD, Tschachler E, Weidinger S, Werner S, Auf dem Keller U. Quantitative Proteomics Identifies Reduced NRF2 Activity and Mitochondrial Dysfunction in Atopic Dermatitis. J Invest Dermatol 2023; 143:220-231.e7. [PMID: 36108803 DOI: 10.1016/j.jid.2022.08.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 01/25/2023]
Abstract
Atopic dermatitis is the most common inflammatory skin disease and is characterized by a deficient epidermal barrier and cutaneous inflammation. Genetic studies suggest a key role of keratinocytes in atopic dermatitis pathogenesis, but the alterations in the proteome that occur in the full epidermis have not been defined. Using a pressure-cycling technology and data-independent acquisition approach, we performed quantitative proteomics of epidermis from healthy volunteers and lesional and nonlesional patient skin. Results were validated by targeted proteomics using parallel reaction monitoring mass spectrometry and immunofluorescence staining. Proteins that were differentially abundant in the epidermis of patients with atopic dermatitis versus in healthy control reflect the strong inflammation in lesional skin and the defect in keratinocyte differentiation and epidermal stratification that already characterizes nonlesional skin. Most importantly, they reveal impaired activation of the NRF2-antioxidant pathway and reduced abundance of mitochondrial proteins involved in key metabolic pathways in the affected epidermis. Analysis of primary human keratinocytes with small interfering RNA‒mediated NRF2 knockdown revealed that the impaired NRF2 activation and mitochondrial abnormalities are partially interlinked. These results provide insight into the molecular alterations in the epidermis of patients with atopic dermatitis and identify potential targets for pharmaceutical intervention.
Collapse
Affiliation(s)
- Michael Koch
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, University of Zurich/ETH Zürich, Zürich, Switzerland
| | - Elke Rodriguez
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulrike Wehkamp
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Paul Hiebert
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Dora Stölzl
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
29
|
Aiello G, Rescigno F, Meloni M, Zoanni B, Aldini G, Carini M, D’Amato A. The Effect of Carnosine on UVA-Induced Changes in Intracellular Signaling of Human Skin Fibroblast Spheroids. Antioxidants (Basel) 2023; 12:antiox12020300. [PMID: 36829859 PMCID: PMC9951876 DOI: 10.3390/antiox12020300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Dermis fibroblasts are very sensitive to penetrating UVA radiation and induce photo-damage. To protect skin cells against this environmental damage, there is an urgent need for effective compounds, specifically targeting UVA-induced mitochondrial injury. This study aimed to analyze the effect of carnosine on the proteome of UVA-irradiated human skin fibroblast, cultured in a three-dimensional (3D) biological system recapitulating dermal compartment as a test system to investigate the altered cellular pathways after 48 h and 7 days of culture with or without carnosine treatment. The obtained results indicate that UVA dysregulates Oxidative Phosphorylation, the Fibrosis Signaling Pathway, Glycolysis I and Nrf2-mediated Oxidative Stress Response. Carnosine exercises provide a protective function against the harmful effects of UVA radiation by activating the Nrf2 pathway with the upregulations of some ROS-detoxifying enzymes such as the glutathione S-transferase (GST) protein family. Additionally, carnosine regulates the activation of the Epithelial Adherens Junction and Wound Healing Signaling Pathway by mediating the activation of structural proteins such as vinculin and zyxin as well as fibronectin 1 and collagen type XVIII alpha 1 chain against UVA-induced changes.
Collapse
Affiliation(s)
- Gilda Aiello
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, 00166 Rome, Italy
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | | | - Marisa Meloni
- VitroScreen, In Vitro Innovation Center, 20149 Milan, Italy
| | - Beatrice Zoanni
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
30
|
Jin W, Li C, Yang S, Song S, Hou W, Song Y, Du Q. Hypolipidemic effect and molecular mechanism of ginsenosides: a review based on oxidative stress. Front Pharmacol 2023; 14:1166898. [PMID: 37188264 PMCID: PMC10175615 DOI: 10.3389/fphar.2023.1166898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Hyperlipidemia is considered a risk factor for cardiovascular and endocrine diseases. However, effective approaches for treating this common metabolic disorder remain limited. Ginseng has traditionally been used as a natural medicine for invigorating energy or "Qi" and has been demonstrated to possess antioxidative, anti-apoptotic, and anti-inflammatory properties. A large number of studies have shown that ginsenosides, the main active ingredient of ginseng, have lipid-lowering effects. However, there remains a lack of systematic reviews detailing the molecular mechanisms by which ginsenosides reduce blood lipid levels, especially in relation to oxidative stress. For this article, research studies detailing the molecular mechanisms through which ginsenosides regulate oxidative stress and lower blood lipids in the treatment of hyperlipidemia and its related diseases (diabetes, nonalcoholic fatty liver disease, and atherosclerosis) were comprehensively reviewed. The relevant papers were search on seven literature databases. According to the studies reviewed, ginsenosides Rb1, Rb2, Rb3, Re, Rg1, Rg3, Rh2, Rh4, and F2 inhibit oxidative stress by increasing the activity of antioxidant enzymes, promoting fatty acid β-oxidation and autophagy, and regulating the intestinal flora to alleviate high blood pressure and improve the body's lipid status. These effects are related to the regulation of various signaling pathways, such as those of PPARα, Nrf2, mitogen-activated protein kinases, SIRT3/FOXO3/SOD, and AMPK/SIRT1. These findings suggest that ginseng is a natural medicine with lipid-lowering effects.
Collapse
Affiliation(s)
- Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunrun Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shihui Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shiyi Song
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Weiwei Hou
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yang Song, ; Quanyu Du,
| | - Quanyu Du
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yang Song, ; Quanyu Du,
| |
Collapse
|
31
|
Shilovsky GA, Ashapkin VV. Transcription Factor Nrf2 and Mitochondria - Friends or Foes in the Regulation of Aging Rate. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1477-1486. [PMID: 36717441 DOI: 10.1134/s0006297922120057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
At the first sight, the transcription factor Nrf2 as a master regulator of cellular antioxidant systems, and mitochondria as the main source of reactive oxygen species (ROS), should play the opposite roles in determining the pace of aging. However, since the causes of aging cannot be confined to the oxidative stress, the role of Nrf2 role cannot be limited to the regulation of antioxidant systems, and moreover, the role of mitochondria is not confined to the ROS production. In this review, we discussed only one aspect of this problem, namely, the molecular mechanisms of interaction between Nrf2 and mitochondria that influence the rate of aging and the lifespan. Experimental data accumulated so far show that the Nrf2 activity positively affects both the mitochondrial dynamics and mitochondrial quality control. Nrf2 influences the mitochondrial function through various mechanisms, e.g., regulation of nuclear genome-encoded mitochondrial proteins and changes in the balance of ROS or other metabolites that affect the functioning of mitochondria. In turn, multiple regulatory proteins functionally associated with the mitochondria affect the Nrf2 activity and even form mutual regulatory loops with Nrf2. We believe that these loops enable the fine-tuning of the cellular redox balance and, possibly, of the cellular metabolism as a whole. It has been commonly accepted for a long time that all mitochondrial regulatory signals are mediated by the nuclear genome-encoded proteins, whereas the mitochondrial genome encodes only a few respiratory chain proteins and two ribosomal RNAs. Relatively recently, mtDNA-encoded signal peptides have been discovered. In this review, we discuss the data on their interactions with the nuclear regulatory systems, first of all, Nrf2, and their possible involvement in the regulation of the aging rate. The interactions between regulatory cascades that link the programs ensuring the maintenance of cellular homeostasis and cellular responses to the oxidative stress are a significant part of both aging and anti-aging programs. Therefore, understanding these interactions will be of great help in searching for the molecular targets to counteract aging-associated diseases and aging itself.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Vasily V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
32
|
Kang Y, Song Y, Luo Y, Song J, Li C, Yang S, Guo J, Yu J, Zhang X. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate experimental non-alcoholic steatohepatitis via Nrf2/NQO-1 pathway. Free Radic Biol Med 2022; 192:25-36. [PMID: 36096356 DOI: 10.1016/j.freeradbiomed.2022.08.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND No approved effective therapy for non-alcoholic steatohepatitis (NASH) is currently available. Exosomes derived from mesenchymal stem cells (MSCs) perform the functions such as inhibiting inflammation, anti-oxidative stress, regulating immunity, but it is not clear whether human umbilical cord mesenchymal stem cells (hUC-MSCs) exosomes protect against NASH through Nrf2/NQO-1 pathway. Therefore, this study was conducted to investigate the effects of hUC-MSCs exosomes on NASH through Nrf2/NQO-1 pathway in vivo and in vitro. METHODS C57BL/6J male mice were fed with high fat and high cholesterol diet (HFHC) and methionine choline deficiency diet (MCD). Mice were treated with or without hUC-MSCs exosomes by tail intravenous injection. The liver histology, lipid metabolism and oxidative stress were evaluated. HepG2 and AML12 cells were incubated with palmitic acid (PA) and MCD conditioned medium, respectively. Then the therapeutic effect of hUC-MSCs exosomes in steatotic cells was evaluated. To elucidate the signaling pathways, the Nrf2-specific blocker ML385 was applied to intervene in vitro. RESULTS In NASH models, hUC-MSCs exosomes attenuated steatosis in hepatocytes, altered the abnormal expression of lipid-related genes including SREBP-1c, PPAR-α, Fabp5, CPT1α, ACOX and FAS, suppressed the hepatic inflammatory responses by decreasing the expression of F4/80+ macrophages, CD11c+ macrophages as well as the content of TNF-α and IL-6. hUC-MSCs exosomes also inhibited oxidative stress by reducing the level of MDA, CYP2E1 and ROS, increasing the activity of SOD and GSH in hepatocytes. Notably, hUC-MSCs exosomes enhanced the protein ratio of p-Nrf2/Nrf2 and the protein expression of NQO-1. Moreover, in vitro, the therapeutic effects of hUC-MSCs exosomes on lipid deposition and ROS were reversed by ML385. Also, ML385 reduced the protein expression of p-Nrf2 and NQO-1 in vitro. CONCLUSION Nrf2/NQO-1 antioxidant signaling pathway may play a key role in the treatment of NASH by hUC-MSCs exosomes.
Collapse
Affiliation(s)
- Yaxing Kang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiran Song
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuxin Luo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jia Song
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chenyang Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuangshuang Yang
- Shandong Qilu Cell Therapy Engineering Technology Co., Ltd, Jinan, Shandong, China
| | - Jinbo Guo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Yu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
33
|
Wu X, Huang J, Tang J, Sun Y, Zhao G, Yan C, Liu Z, Yi W, Xu S, Yu X. Isoginkgetin, a bioactive constituent from Ginkgo Biloba, protects against obesity-induced cardiomyopathy via enhancing Nrf2/ARE signaling. Redox Biol 2022; 57:102485. [PMID: 36162256 PMCID: PMC9516449 DOI: 10.1016/j.redox.2022.102485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Obesity-induced metabolic cardiomyopathy (MC), characterized by lipotoxicity and excessive oxidative stress, emerges as the leading cause of heart failure in the obese patients. Yet, its therapy remains very limited. Here, we demonstrated that isoginkgetin (IGK), a bioactive biflavonoid isolated from medicinal herb Ginkgo Biloba, protected against obesity-induced cardiac diastolic dysfunction and adverse remodeling. Transcriptomics profiling revealed that IGK activated Nrf2 signaling in the heart tissues of the obese mice. Consistent with this observation, IGK treatment increased the nuclear translocation of Nrf2, which in turn trigger the activation of its downstream target genes (e. g. HO-1 and NQO1). In addition, IGK significantly rejuvenated mitochondrial defects in obese heart tissues as evidenced by enhancing mitochondrial respiratory capacity and resisting the collapse of mitochondrial potential and oxidative stress both in vitro and in vivo. Mechanistically, IGK stabilized Nrf2 protein via inhibiting the proteasomal degradation, independent of transcription regulation. Moreover, molecular docking and dynamics simulation assessment demonstrated a good binding mode between IGK and Nrf2/Keap1. Of note, the protective effects conferred by IGK against obesity-induced mitochondrial defects and cardiac dysfunction was compromised by Nrf2 gene silencing both in vitro and in vivo, consolidating a pivotal role of Nrf2 in IGK-elicited myocardial protection against MC. Thus, the present study identifies IGK as a promising drug candidate to alleviate obesity-induced oxidative stress and cardiomyocyte damage through Nrf2 activation, highlighting the therapeutic potential of IGK in ameliorating obesity-induced cardiomyopathy.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China.
| | - Jianrong Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junyuan Tang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuling Sun
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, China
| | - Cuishi Yan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhenghong Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230037, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230037, China.
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences& the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
34
|
Kryszczuk M, Kowalczuk O. Significance of NRF2 in physiological and pathological conditions an comprehensive review. Arch Biochem Biophys 2022; 730:109417. [DOI: 10.1016/j.abb.2022.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022]
|
35
|
Kant R, Manne RK, Anas M, Penugurti V, Chen T, Pan BS, Hsu CC, Lin HK. Deregulated transcription factors in cancer cell metabolisms and reprogramming. Semin Cancer Biol 2022; 86:1158-1174. [PMID: 36244530 PMCID: PMC11220368 DOI: 10.1016/j.semcancer.2022.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/10/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Metabolic reprogramming is an important cancer hallmark that plays a key role in cancer malignancies and therapy resistance. Cancer cells reprogram the metabolic pathways to generate not only energy and building blocks but also produce numerous key signaling metabolites to impact signaling and epigenetic/transcriptional regulation for cancer cell proliferation and survival. A deeper understanding of the mechanisms by which metabolic reprogramming is regulated in cancer may provide potential new strategies for cancer targeting. Recent studies suggest that deregulated transcription factors have been observed in various human cancers and significantly impact metabolism and signaling in cancer. In this review, we highlight the key transcription factors that are involved in metabolic control, dissect the crosstalk between signaling and transcription factors in metabolic reprogramming, and offer therapeutic strategies targeting deregulated transcription factors for cancer treatment.
Collapse
Affiliation(s)
- Rajni Kant
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Mohammad Anas
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Vasudevarao Penugurti
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Tingjin Chen
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA.
| |
Collapse
|
36
|
Neto NGB, O'Rourke SA, Zhang M, Fitzgerald HK, Dunne A, Monaghan MG. Non-invasive classification of macrophage polarisation by 2P-FLIM and machine learning. eLife 2022; 11:77373. [PMID: 36254592 PMCID: PMC9578711 DOI: 10.7554/elife.77373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we utilise fluorescence lifetime imaging of NAD(P)H-based cellular autofluorescence as a non-invasive modality to classify two contrasting states of human macrophages by proxy of their governing metabolic state. Macrophages derived from human blood-circulating monocytes were polarised using established protocols and metabolically challenged using small molecules to validate their responding metabolic actions in extracellular acidification and oxygen consumption. Large field-of-view images of individual polarised macrophages were obtained using fluorescence lifetime imaging microscopy (FLIM). These were challenged in real time with small-molecule perturbations of metabolism during imaging. We uncovered FLIM parameters that are pronounced under the action of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), which strongly stratifies the phenotype of polarised human macrophages; however, this performance is impacted by donor variability when analysing the data at a single-cell level. The stratification and parameters emanating from a full field-of-view and single-cell FLIM approach serve as the basis for machine learning models. Applying a random forests model, we identify three strongly governing FLIM parameters, achieving an area under the receiver operating characteristics curve (ROC-AUC) value of 0.944 and out-of-bag (OBB) error rate of 16.67% when classifying human macrophages in a full field-of-view image. To conclude, 2P-FLIM with the integration of machine learning models is showed to be a powerful technique for analysis of both human macrophage metabolism and polarisation at full FoV and single-cell level.
Collapse
Affiliation(s)
- Nuno G B Neto
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Sinead A O'Rourke
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Mimi Zhang
- School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
| | - Hannah K Fitzgerald
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials for BioEngineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials for BioEngineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland.,CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| |
Collapse
|
37
|
Morelli M, Lessi F, Barachini S, Liotti R, Montemurro N, Perrini P, Santonocito OS, Gambacciani C, Snuderl M, Pieri F, Aquila F, Farnesi A, Naccarato AG, Viacava P, Cardarelli F, Ferri G, Mulholland P, Ottaviani D, Paiar F, Liberti G, Pasqualetti F, Menicagli M, Aretini P, Signore G, Franceschi S, Mazzanti CM. Metabolic-imaging of human glioblastoma live tumors: A new precision-medicine approach to predict tumor treatment response early. Front Oncol 2022; 12:969812. [PMID: 36132155 PMCID: PMC9483168 DOI: 10.3389/fonc.2022.969812] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Glioblastoma (GB) is the most severe form of brain cancer, with a 12-15 month median survival. Surgical resection, temozolomide (TMZ) treatment, and radiotherapy remain the primary therapeutic options for GB, and no new therapies have been introduced in recent years. This therapeutic standstill is primarily due to preclinical approaches that do not fully respect the complexity of GB cell biology and fail to test efficiently anti-cancer treatments. Therefore, better treatment screening approaches are needed. In this study, we have developed a novel functional precision medicine approach to test the response to anticancer treatments in organoids derived from the resected tumors of glioblastoma patients. Methods GB organoids were grown for a short period of time to prevent any genetic and morphological evolution and divergence from the tumor of origin. We chose metabolic imaging by NAD(P)H fluorescence lifetime imaging microscopy (FLIM) to predict early and non-invasively ex-vivo anti-cancer treatment responses of GB organoids. TMZ was used as the benchmark drug to validate the approach. Whole-transcriptome and whole-exome analyses were performed to characterize tumor cases stratification. Results Our functional precision medicine approach was completed within one week after surgery and two groups of TMZ Responder and Non-Responder tumors were identified. FLIM-based metabolic tumor stratification was well reflected at the molecular level, confirming the validity of our approach, highlighting also new target genes associated with TMZ treatment and identifying a new 17-gene molecular signature associated with survival. The number of MGMT gene promoter methylated tumors was higher in the responsive group, as expected, however, some non-methylated tumor cases turned out to be nevertheless responsive to TMZ, suggesting that our procedure could be synergistic with the classical MGMT methylation biomarker. Conclusions For the first time, FLIM-based metabolic imaging was used on live glioblastoma organoids. Unlike other approaches, ex-vivo patient-tailored drug response is performed at an early stage of tumor culturing with no animal involvement and with minimal tampering with the original tumor cytoarchitecture. This functional precision medicine approach can be exploited in a range of clinical and laboratory settings to improve the clinical management of GB patients and implemented on other cancers as well.
Collapse
Affiliation(s)
- Mariangela Morelli
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Francesca Lessi
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Serena Barachini
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Liotti
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Paolo Perrini
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | - Carlo Gambacciani
- Neurosurgical Department of Spedali Riuniti di Livorno, Livorno, Italy
| | - Matija Snuderl
- Department of Pathology, New York University (NYU) Langone Medical Center, New York City, NY, United States
| | - Francesco Pieri
- Neurosurgical Department of Spedali Riuniti di Livorno, Livorno, Italy
| | - Filippo Aquila
- Neurosurgical Department of Spedali Riuniti di Livorno, Livorno, Italy
| | - Azzurra Farnesi
- Neurosurgical Department of Spedali Riuniti di Livorno, Livorno, Italy
| | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paolo Viacava
- Anatomical Pathology Department, Azienda Ospedaliera Toscana Nord-ovest, Livorno, Italy
| | - Francesco Cardarelli
- National Enterprise for nanoScience and nanoTechnology (NEST), Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
| | - Gianmarco Ferri
- National Enterprise for nanoScience and nanoTechnology (NEST), Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
- Section of Nanomedicine, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Paul Mulholland
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Diego Ottaviani
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Fabiola Paiar
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Gaetano Liberti
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michele Menicagli
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Paolo Aretini
- Section of Bioinformatics, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Giovanni Signore
- Section of Nanomedicine, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Sara Franceschi
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Chiara Maria Mazzanti
- Section of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| |
Collapse
|
38
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
39
|
G Bardallo R, Panisello-Roselló A, Sanchez-Nuno S, Alva N, Roselló-Catafau J, Carbonell T. Nrf2 and oxidative stress in liver ischemia/reperfusion injury. FEBS J 2022; 289:5463-5479. [PMID: 34967991 DOI: 10.1111/febs.16336] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022]
Abstract
In response to stress signal, nuclear factor-erythroid 2-related factor 2 (Nrf2) induces the expression of target genes involved in antioxidant defense and detoxification. Nrf2 activity is strictly regulated through a variety of mechanisms, including regulation of Keap1-Nrf2 stability, transcriptional regulation (NF-ĸB, ATF3, ATF4), and post-transcriptional regulation (miRNA), evidencing that transcriptional responses of Nrf2 are critical for the maintenance of homeostasis. Ischemia-reperfusion (IR) injury is a major cause of graft loss and dysfunction in clinical transplantation and organ resection. During the IR process, the generation of reactive oxygen species (ROS) leads to damage from oxidative stress, oxidation of biomolecules, and mitochondrial dysfunction. Oxidative stress can trigger apoptotic and necrotic cell death. Stress factors also result in the assembly of the inflammasome protein complex and the subsequent activation and secretion of proinflammatory cytokines. After Nrf2 activation, the downstream antioxidant upregulation can act as a primary cellular defense against the cytotoxic effects of oxidative stress and help to promote hepatic recovery during IR. The complex crosstalk between Nrf2 and cellular pathways in liver IR injury and the potential therapeutic target of the Nrf2 inducers will be discussed in the present review.
Collapse
Affiliation(s)
- Raquel G Bardallo
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, Barcelona, Spain
| | - Sergio Sanchez-Nuno
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| | - Norma Alva
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, Barcelona, Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| |
Collapse
|
40
|
Yao Y, Wang H, Yang Y, Jiang Z, Ma H. Dehydroepiandrosterone activates the GPER-mediated AMPK signaling pathway to alleviate the oxidative stress and inflammatory response in laying hens fed with high-energy and low-protein diets. Life Sci 2022; 308:120926. [PMID: 36058264 DOI: 10.1016/j.lfs.2022.120926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Fatty liver hemorrhagic syndrome (FLHS) seriously threatens the layer industry due to it can cause a sudden decline in egg production and acute death, and dietary supplement with bioactive substance is considered an effective way to prevent the FLHS occurrence. Dehydroepiandrosterone (DHEA) is a popular dietary supplement and it possesses anti-oxidative and anti-inflammatory functions; however, the effect and underlying mechanism about DHEA in protecting against the occurrence and development of FLHS remain elucidated. The current results showed that DHEA relieved HELP-induced decrease of egg productivity and liver injury in laying hens. Meanwhile, DHEA markedly enhanced the antioxidant capacity and then alleviated oxidative stress via activation of nuclear factor (erythroid-derived 2)-like 2 (NRF-2) signal in laying hens fed with HELP diets. In addition, DHEA significantly alleviated HELP-stimulated systemic inflammatory response by suppressing the overproduction of hepatic pro-inflammatory factors in laying hens, and further found this beneficial effect was achieved by blocking the activation of NF-κB pathway. Furthermore, we found that DHEA promoted the AMP-activated protein kinase α (AMPKα) activation and increased the G-protein-coupled estrogen receptor (GPER) expression level in laying hens fed with HELP diets. In summary, our data demonstrated that DHEA attenuates oxidative stress and inflammation through the activation of GPER-AMPK signal axis in laying hens fed with HELP diets. These results might facilitate an understanding of the benefits and mechanism of DHEA on the development of FLHS, and provide sufficient data to support it as a dietary supplement to control the FLHS-related metabolic diseases in chickens.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
41
|
Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med 2022; 190:75-93. [PMID: 35918013 DOI: 10.1016/j.freeradbiomed.2022.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
NRF2 (Nuclear factor E2 p45-related factor 2) is a stress responsive transcription factor lending cells resilience against oxidative, xenobiotic, and also nutrient or proteotoxic insults. AMPK (AMP-activated kinase), considered as prime regulator of cellular energy homeostasis, not only tunes metabolism to provide the cell at any time with sufficient ATP or building blocks, but also controls redox balance and inflammation. Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis. After a short introduction of the two players this narrative review paints the current picture on how AMPK and NRF2 signaling might interact on the molecular level, and highlights their possible crosstalk in selected examples of pathophysiology or bioactivity of drugs and phytochemicals.
Collapse
Affiliation(s)
- Eleni Petsouki
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Shara Natalia Sosa Cabrera
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
42
|
Esteras N, Abramov AY. Nrf2 as a regulator of mitochondrial function: Energy metabolism and beyond. Free Radic Biol Med 2022; 189:136-153. [PMID: 35918014 DOI: 10.1016/j.freeradbiomed.2022.07.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
Abstract
Mitochondria are unique and essential organelles that mediate many vital cellular processes including energy metabolism and cell death. The transcription factor Nrf2 (NF-E2 p45-related factor 2) has emerged in the last few years as an important modulator of multiple aspects of mitochondrial function. Well-known for controlling cellular redox homeostasis, the cytoprotective effects of Nrf2 extend beyond its ability to regulate a diverse network of antioxidant and detoxification enzymes. Here, we review the role of Nrf2 in the regulation of mitochondrial function and structure. We focus on Nrf2 involvement in promoting mitochondrial quality control and regulation of basic aspects of mitochondrial function, including energy production, reactive oxygen species generation, calcium signalling, and cell death induction. Given the importance of mitochondria in the development of multiple diseases, these findings reinforce the pharmacological activation of Nrf2 as an attractive strategy to counteract mitochondrial dysfunction.
Collapse
Affiliation(s)
- Noemí Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
43
|
Panieri E, Pinho SA, Afonso GJM, Oliveira PJ, Cunha-Oliveira T, Saso L. NRF2 and Mitochondrial Function in Cancer and Cancer Stem Cells. Cells 2022; 11:cells11152401. [PMID: 35954245 PMCID: PMC9367715 DOI: 10.3390/cells11152401] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/21/2022] Open
Abstract
The NRF2–KEAP1 system is a fundamental component of the cellular response that controls a great variety of transcriptional targets that are mainly involved in the regulation of redox homeostasis and multiple cytoprotective mechanisms that confer adaptation to the stress conditions. The pleiotropic response orchestrated by NRF2 is particularly relevant in the context of oncogenic activation, wherein this transcription factor acts as a key driver of tumor progression and cancer cells’ resistance to treatment. For this reason, NRF2 has emerged as a promising therapeutic target in cancer cells, stimulating extensive research aimed at the identification of natural, as well as chemical, NRF2 inhibitors. Excitingly, the influence of NRF2 on cancer cells’ biology extends far beyond its mere antioxidant function and rather encompasses a functional crosstalk with the mitochondrial network that can influence crucial aspects of mitochondrial homeostasis, including biogenesis, oxidative phosphorylation, metabolic reprogramming, and mitophagy. In the present review, we summarize the current knowledge of the reciprocal interrelation between NRF2 and mitochondria, with a focus on malignant tumors and cancer stem cells.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
- Section of Hazardous Substances, Environmental Education and Training for the Technical Coordination of Management Activities (DGTEC), Italian Institute for Environmental Protection and Research, 00144 Rome, Italy
- Correspondence: (E.P.); (T.C.-O.); Tel.: +39-06-5007-2131 (E.P.); +351-231249195 (T.C.-O.)
| | - Sónia A. Pinho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Gonçalo J. M. Afonso
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Correspondence: (E.P.); (T.C.-O.); Tel.: +39-06-5007-2131 (E.P.); +351-231249195 (T.C.-O.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
44
|
Cai L, Arbab AS, Lee TJ, Sharma A, Thomas B, Igarashi K, Raju RP. BACH1-Hemoxygenase-1 axis regulates cellular energetics and survival following sepsis. Free Radic Biol Med 2022; 188:134-145. [PMID: 35691510 PMCID: PMC10507736 DOI: 10.1016/j.freeradbiomed.2022.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 12/24/2022]
Abstract
Sepsis is a complex disease due to dysregulated host response to infection. Oxidative stress and mitochondrial dysfunction leading to metabolic dysregulation are among the hallmarks of sepsis. The transcription factor NRF2 (Nuclear Factor E2-related factor2) is a master regulator of the oxidative stress response, and the NRF2 mediated antioxidant response is negatively regulated by BTB and CNC homology 1 (BACH1) protein. This study tested whether Bach1 deletion improves organ function and survival following polymicrobial sepsis induced by cecal ligation and puncture (CLP). We observed enhanced post-CLP survival in Bach1-/- mice with a concomitantly increased liver HO-1 expression, reduced liver injury and oxidative stress, and attenuated systemic and tissue inflammation. After sepsis induction, the liver mitochondrial function was better preserved in Bach1-/- mice. Furthermore, BACH1 deficiency improved liver and lung blood flow in septic mice, as measured by SPECT/CT. RNA-seq analysis identified 44 genes significantly altered in Bach1-/- mice after sepsis, including HMOX1 and several genes in lipid metabolism. Inhibiting HO-1 activity by Zinc Protoporphyrin-9 worsened organ function in Bach1-/- mice following sepsis. We demonstrate that mitochondrial bioenergetics, organ function, and survival following experimental sepsis were improved in Bach1-/- mice through the HO-1-dependent mechanism and conclude that BACH1 is a therapeutic target in sepsis.
Collapse
Affiliation(s)
- Lun Cai
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA
| | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Bobby Thomas
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neuroscience and Drug Discovery, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
45
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
46
|
Bakalova R, Aoki I, Zhelev Z, Higashi T. Cellular redox imbalance on the crossroad between mitochondrial dysfunction, senescence, and proliferation. Redox Biol 2022; 53:102337. [PMID: 35584568 PMCID: PMC9119829 DOI: 10.1016/j.redox.2022.102337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies demonstrate that redox imbalance of NAD+/NADH and NADP+/NADPH pairs due to impaired respiration may trigger two “hidden” metabolic pathways on the crossroad between mitochondrial dysfunction, senescence, and proliferation: “β-oxidation shuttle” and “hydride transfer complex (HTC) cycle”. The “β-oxidation shuttle” induces NAD+/NADH redox imbalance in mitochondria, while HTC cycle maintains the redox balance of cytosolic NAD+/NADH, increasing the redox disbalance of NADP+/NADPH. Senescence appears to depend on high cytoplasmic NADH but low NADPH, while proliferation depends on high cytoplasmic NAD+ and NADPH that are under mitochondrial control. Thus, activating or deactivating the HTC cycle can be crucial to cell fate – senescence or proliferation. These pathways are a source of enormous cataplerosis. They support the production of large amounts of NADPH and intermediates for lipid synthesis and membrane biogenesis, as well as for DNA synthesis.
Collapse
Affiliation(s)
- Rumiana Bakalova
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan.
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
| | - Zhivko Zhelev
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan; Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria & Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bugaria
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
| |
Collapse
|
47
|
Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation. Antioxidants (Basel) 2022; 11:antiox11061199. [PMID: 35740096 PMCID: PMC9220155 DOI: 10.3390/antiox11061199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation and oxidative stress are interlinked and interdependent processes involved in many chronic diseases, including neurodegeneration, diabetes, cardiovascular diseases, and cancer. Therefore, targeting inflammatory pathways may represent a potential therapeutic strategy. Emerging evidence indicates that many phytochemicals extracted from edible plants have the potential to ameliorate the disease phenotypes. In this scenario, ß-caryophyllene (BCP), a bicyclic sesquiterpene, and carnosic acid (CA), an ortho-diphenolic diterpene, were demonstrated to exhibit anti-inflammatory, and antioxidant activities, as well as neuroprotective and mitoprotective effects in different in vitro and in vivo models. BCP essentially promotes its effects by acting as a selective agonist and allosteric modulator of cannabinoid type-2 receptor (CB2R). CA is a pro-electrophilic compound that, in response to oxidation, is converted to its electrophilic form. This can interact and activate the Keap1/Nrf2/ARE transcription pathway, triggering the synthesis of endogenous antioxidant “phase 2” enzymes. However, given the nature of its chemical structure, CA also exhibits direct antioxidant effects. BCP and CA can readily cross the BBB and accumulate in brain regions, giving rise to neuroprotective effects by preventing mitochondrial dysfunction and inhibiting activated microglia, substantially through the activation of pro-survival signalling pathways, including regulation of apoptosis and autophagy, and molecular mechanisms related to mitochondrial quality control. Findings from different in vitro/in vivo experimental models of Parkinson’s disease and Alzheimer’s disease reported the beneficial effects of both compounds, suggesting that their use in treatments may be a promising strategy in the management of neurodegenerative diseases aimed at maintaining mitochondrial homeostasis and ameliorating glia-mediated neuroinflammation.
Collapse
|
48
|
Liu G, Li J, Pang B, Li Y, Xu F, Liao N, Shao D, Jiang C, Shi J. Potential role of selenium in alleviating obesity-related iron dyshomeostasis. Crit Rev Food Sci Nutr 2022; 63:10032-10046. [PMID: 35574661 DOI: 10.1080/10408398.2022.2074961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is a serious health problem in modern life and increases the risk of many comorbidities including iron dyshomeostasis. In contrast to malnourished anemia, obesity-related iron dyshomeostasis is mainly caused by excessive fat accumulation, inflammation, and disordered gut microbiota. In obesity, iron dyshomeostasis also induces disorders associated with gut microbiota, neurodegenerative injury, oxidative damage, and fat accumulation in the liver. Selenium deficiency is often accompanied by obesity or iron deficiency, and selenium supplementation has been shown to alleviate obesity and overcome iron deficiency. Selenium inhibits fat accumulation and exhibits anti-inflammatory activity. It regulates gut microbiota, prevents neurodegenerative injury, alleviates oxidative damage to the body, and ameliorates hepatic fat accumulation. These effects theoretically meet the requirements for the inhibition of factors underlying obesity-related iron dyshomeostasis. Selenium supplementation may have a potential role in the alleviation of obesity-related iron dyshomeostasis. This review verifies this hypothesis in theory. All the currently reported causes and results of obesity-related iron dyshomeostasis are reviewed comprehensively, together with the effects of selenium. The challenges and strategies of selenium supplementation are also discussed. The findings demonstrate the possibility of selenium-containing drugs or functional foods in alleviating obesity-related iron dyshomeostasis.
Collapse
Affiliation(s)
- Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
49
|
Chen H, Du G, Yan X, Ye H, Guo Q, Wang Z, Yuan Y, Yue T. Selenium-Enriched Pediococcus acidilactici MRS-7 Alleviates Patulin-Induced Jejunum Injuries in Mice and Its Possible Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4755-4764. [PMID: 35394776 DOI: 10.1021/acs.jafc.2c00949] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Patulin (PAT) is a common mycotoxin. Oral ingestion of PAT could damage the intestinal mucosa. Both selenium and probiotics can alleviate intestinal damage, but there are few reports on selenium-enriched probiotics. Here, we studied the protective effects of a new selenium-enriched Pediococcus acidilactici MRS-7 (SeP) on PAT-induced jejunum injuries in mice. Results show that PAT induced jejunum injuries such as loss of crypts, ulceration of the mucosa, and intestinal epithelial barrier function impairment. However, SeP could protect against PAT-induced jejunum injuries and significantly inhibit the reduction of goblet cell numbers. SeP could not only alleviate PAT-induced oxidative stress by decreasing malondialdehyde (MDA) and increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels in the jejunum tissues but also alleviate the inflammatory response caused by PAT by reducing the levels of inflammatory factors (interleukin (IL)-6 snd IL-1β and tumor necrosis factor-α (TNF-α)) in the serum and jejunum tissues. In addition, SeP also inhibited the expression of nuclear factor-κB (NF-κB) and Toll-like receptor 4 (TLR-4), increased the expression of tight junction proteins (occludin, ZO-1, and claudin-1), and increased the selenium content in the jejunum, thereby antagonizing the jejunum injuries caused by PAT exposure. Finally, SeP rebalanced the intestinal microbiota and improved probiotic abundance such as Turicibacter, Bifidobacterium, Ileibacterium, and Pediococcus in PAT-treated mice. These results support the possibility of SeP as a novel protective agent to mitigate the toxicity of PAT.
Collapse
Affiliation(s)
- Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Huanfeng Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710000, China
| |
Collapse
|
50
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|