1
|
Bhowmick S, D'Mello V, Abdul-Muneer PM. Synergistic Inhibition of ERK1/2 and JNK, Not p38, Phosphorylation Ameliorates Neuronal Damages After Traumatic Brain Injury. Mol Neurobiol 2019; 56:1124-1136. [PMID: 29873042 DOI: 10.1007/s12035-018-1132-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/15/2018] [Indexed: 01/14/2023]
Abstract
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that play a critical role in signal transduction and are activated by phosphorylation in response to a variety of pathophysiology stimuli. While MAP kinase signaling has a significant role in the pathophysiology of several neurodegenerative diseases, the precise function of activation of MAP kinase in traumatic brain injury (TBI) is unknown. Therefore, it is important to study the role of MAP kinase signaling in TBI-associated neurological ailments. In this study, using an in vitro stretch injury model in rat embryo neuronal cultures and the in vivo fluid percussion injury (FPI) model in rats, we explored the role of MAP kinase signaling in the mechanisms of cell death in TBI. Our study demonstrated that the stretch injury in vitro and FPI in vivo upregulated the phosphorylation of MAP kinase proteins ERK1/2 and JNK, but not p38. Using ERK1/2 inhibitor U0126, JNK inhibitor SP600125, and p38 inhibitor SB203580, we validated the role of MAP kinase proteins in the activation of NF-kB and caspase-3. By immunofluorescence and western blotting, further, we demonstrated the role of ERK1/2 and JNK phosphorylation in neurodegeneration by analyzing cell death proteins annexin V and Poly-ADP-Ribose-Polymerase p85. Interestingly, combined use of ERK1/2 and JNK inhibitors further attenuated the cell death in stretch-injured neurons. In conclusion, this study could establish the significance of MAP kinase signaling in the pathophysiology of TBI and may have significant implications for developing therapeutic strategies using ERK1/2 and JNK inhibitors for TBI-associated neurological complications.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Laboratory of CNS Injury and Repair, JFK Neuroscience Institute, Hackensack Meridian Health JFK Medical Center, 65 James St., Edison, NJ, 08820, USA
| | - Veera D'Mello
- Laboratory of CNS Injury and Repair, JFK Neuroscience Institute, Hackensack Meridian Health JFK Medical Center, 65 James St., Edison, NJ, 08820, USA
| | - P M Abdul-Muneer
- Laboratory of CNS Injury and Repair, JFK Neuroscience Institute, Hackensack Meridian Health JFK Medical Center, 65 James St., Edison, NJ, 08820, USA.
| |
Collapse
|
2
|
Li S, Zeng J, Wan X, Yao Y, Zhao N, Yu Y, Yu C, Xia Z. Enhancement of spinal dorsal horn neuron NMDA receptor phosphorylation as the mechanism of remifentanil induced hyperalgesia: Roles of PKC and CaMKII. Mol Pain 2018; 13:1744806917723789. [PMID: 28714352 PMCID: PMC5549877 DOI: 10.1177/1744806917723789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Modulation of N-methyl-D-aspartate receptor subunits NR1 and NR2 through phosphorylation mediates opioid-induced hyperalgesia, and activations of protein kinase C and extracellular signal-regulated kinase 1/2 potentiate while activation of calcium/calmodulin-dependent protein kinase II inhibits opioid-induced hyperalgesia. However, the mechanism of opioid-induced hyperalgesia development and in particular the potential interplay between N-methyl-D-aspartate receptors and protein kinase C or calcium/calmodulin-dependent protein kinase II or extracellular signal-regulated kinase 1/2 in the development of remifentanil-induced hyperalgesia is unclear. Methods Remifentanil (1 µg ċ kg−1 ċ min−1) was given intravenously over 60 min in rats, followed by the infusion of either vehicle solution or the respective inhibitors of protein kinase C (chelerythrine), extracellular signal-regulated kinase II (KN93), or extracellular signal-regulated kinase 1/2 (PD98059). Thereafter, the pain behaviors were evaluated by the paw withdrawal mechanical threshold and paw withdrawal thermal latency. In in vitro studies, fetal spinal cord dorsal horn neurons were primary cultured in the presence of 4 nM remifentanil for 60 min, and then the remifentanil was washed out and replaced immediately by culturing in the absence or presence of chelerythrine, KN93 or PD98059, respectively for up to 8 h. The expressions of N-methyl-D-aspartate receptors subunits and their phosphorylation (NR1, NR2B, p-NR1, p-NR2B) were analyzed by Western blotting after the completion of treatments. Functional changes of N-methyl-D-aspartate receptors were evaluated by electrophysiologic recordings of N-methyl-D-aspartate currents. Results Remifentanil induced significant thermal and mechanical hyperalgesia, which were significantly attenuated by Chelerythrine or KN93 but not PD98059. The expressions of NR1, NR2B, p-NR1, and p-NR2B were increased significantly and progressively over time after remifentanil administration, and these increases were all significantly attenuated by either chelerythrine or KN93 but not PD98059. Intriguingly, N-methyl-D-aspartate receptor functional enhancement induced by remifentanil was attenuated by Chelerythrine, KN93, and PD98059. Conclusions It is concluded that the enhancements in function and quantity of N-methyl-D-aspartate receptor via phosphorylation of its subunits through protein kinase C and calcium/calmodulin-dependent protein kinase II activation may represent the major mechanism whereby remifentanil induced hyperalgesia.
Collapse
Affiliation(s)
- Sisi Li
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Wan
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ying Yao
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Nan Zhao
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yujia Yu
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
3
|
Figueira L, Israel A. Dysregulation of Cerebellar Adrenomedullin Signaling During Hypertension. J Mol Neurosci 2017; 62:281-290. [PMID: 28653133 DOI: 10.1007/s12031-017-0936-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/05/2017] [Indexed: 01/24/2023]
Abstract
Adrenomedullin (AM) is a peptide involved in blood pressure regulation. AM activates three different receptors, the AM type 1 (AM1), type 2 (AM2), and calcitonin gene-related peptide 1 (CGRP1) receptors. AM triggers several signaling pathways such as adenylyl cyclase (AC), guanylyl cyclase (GC), and extracellular signal-regulated kinases (ERK) and modulates reactive oxygen species (ROS) metabolism. Cerebellar AM, AM-binding sites, and its receptor components are altered during hypertension, although it is unknown if these alterations are associated with changes in AM signaling. Thus, we assessed AM signaling pathways in cerebellar vermis of 16-week-old Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Animals were sacrificed by decapitation, and cerebellar vermis was microdissected under stereomicroscopic control. Tissue was stimulated in vitro with AM. Then the production of cyclic guanosine monophosphate (cGMP), nitric oxide (NO) and cyclic adenosine monophosphate (cAMP) were assessed along with ERK1/2 activation and three antioxidant enzymes' activity: glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). Our findings demonstrate that in the cerebellar vermis of normotensive rats, AM increases cGMP, NO, cAMP production, and ERK1/2 phosphorylation, while decreases basal antioxidant enzyme activity. In addition, AM antagonizes angiotensin II (ANG II)-induced increment of antioxidant enzyme activity. Hypertension blunts AM-induced cGMP and NO production and AM-induced decrease of antioxidant enzyme activity. Meanwhile, AM-induced effects on cAMP production, ERK1/2 activation, and AM-ANG II antagonism were not altered in SHR rats. Our results support a dysregulation of several AM signaling pathways during hypertension in cerebellar vermis.
Collapse
Affiliation(s)
- Leticia Figueira
- School of Pharmacy, Laboratory of Neuropeptides, Universidad Central de Venezuela, Santa Rosa de Lima, Sec. Las Mesetas, Calle La Cima, Res. Mara, No. 82., Caracas, Venezuela.,School of Bioanalysis, Laboratory of Investigation and Postgraduate of School of Bioanalysis (LIPEB), School of Health Sciences, Universidad de Carabobo, Valencia, Carabobo, Venezuela
| | - Anita Israel
- School of Pharmacy, Laboratory of Neuropeptides, Universidad Central de Venezuela, Santa Rosa de Lima, Sec. Las Mesetas, Calle La Cima, Res. Mara, No. 82., Caracas, Venezuela.
| |
Collapse
|
4
|
Atef RM, Agha AM, Abdel-Rhaman ARA, Nassar NN. The Ying and Yang of Adenosine A 1 and A 2A Receptors on ERK1/2 Activation in a Rat Model of Global Cerebral Ischemia Reperfusion Injury. Mol Neurobiol 2017; 55:1284-1298. [PMID: 28120151 DOI: 10.1007/s12035-017-0401-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Adenosine impacts cerebral ischemia reperfusion (IR) through the inhibitory A1 and the excitatory A2 receptors. The present study aimed at investigating the contrasting role of pERK1/2 in mediating adenosine A1R (protective) versus A2AR (deleterious) effects in IR. Male Wistar rats subjected to bilateral carotid occlusion (45 min) followed by reperfusion (24 h) exhibited increased pERK1/2 activity, downstream from DAG pathway, along with increases in hippocampal glutamate, c-Fos, NF-κB, TNF-α, iNOS, TBARS, cytochrome c, caspase-3, BDNF, Nrf2, and IL-10 contents. Further, hippocampal microglial reactivity, glial TNF-α, and BDNF expression were observed. Although unilateral intrahippocampal injection of either the A1R agonist CHA or the A2AR agonist CGS21680 increased pERK1/2, only CHA mitigated histopathological and behavioral deficits along with reducing glutamate, microglial activation, c-Fos, TNF-α, iNOS, TBARS, cytochrome c and caspase-3 and elevating Nrf2 and IL-10 levels in IR rats. These results yield insight into the double-faceted nature of pERK1/2 in mediating protective and deleterious effects of A1R and A2AR signaling, respectively, against IR injury.
Collapse
Affiliation(s)
- Reham M Atef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Azza M Agha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Abdel-Rahman A Abdel-Rhaman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
5
|
Abstract
Excellent reviews on central N-methyl-D-aspartate receptor (NMDAR) signaling and function in cardiovascular regulating neuronal pools have been reported. However, much less attention has been given to NMDAR function in peripheral tissues, particularly the heart and vasculature, although a very recent review discusses such function in the kidney. In this short review, we discuss the NMDAR expression and complexity of its function in cardiovascular tissues. In conscious (contrary to anesthetized) rats, activation of the peripheral NMDAR triggers cardiovascular oxidative stress through the PI3K-ERK1/2-NO signaling pathway, which ultimately leads to elevation in blood pressure. Evidence also implicates Ca release, in the peripheral NMDAR-mediated pressor response. Despite evidence of circulating potent ligands (eg, D-aspartate and L-aspartate, L-homocysteic acid, and quinolinic acid) and also their coagonist (eg, glycine or D-serine), the physiological role of peripheral cardiovascular NMDAR remains elusive. Nonetheless, the cardiovascular relevance of the peripheral NMDAR might become apparent when its signaling is altered by drugs, such as alcohol, which interact with the NMDAR or its downstream signaling mechanisms.
Collapse
Affiliation(s)
- Marie A. McGee
- Oak Ridge Institute for Science and Education, Research Triangle Park, NC
| | - Abdel A. Abdel-Rahman
- Department of Pharmacology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| |
Collapse
|
6
|
Mohamed RA, Agha AM, Abdel-Rahman AA, Nassar NN. Role of adenosine A2A receptor in cerebral ischemia reperfusion injury: Signaling to phosphorylated extracellular signal-regulated protein kinase (pERK1/2). Neuroscience 2015; 314:145-59. [PMID: 26642806 DOI: 10.1016/j.neuroscience.2015.11.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/02/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022]
Abstract
Following brain ischemia reperfusion (IR), the dramatic increase in adenosine activates A2AR to induce further neuronal damage. Noteworthy, A2A antagonists have proven efficacious in halting IR injury, however, the detailed downstream signaling remains elusive. To this end, the present study aimed to investigate the possible involvement of phospho-extracellular signal-regulated kinase (pERK1/2) pathway in mediating protection afforded by the central A2A blockade. Male Wistar rats (250-270 g) subjected to bilateral carotid occlusion for 45 min followed by a 24-h reperfusion period showed increased infarct size corroborating histopathological damage, memory impairment and motor incoordination as well as increased locomotor activity. Those events were mitigated by the unilateral intrahippocampal administration of the selective A2A antagonist SCH58261 via a decrease in pERK1/2 downstream from diacyl glycerol (DAG) signaling. Consequent to pERK1/2 inhibition, reduced hippocampal microglial activation, glial tumor necrosis factor-alpha (TNF-α) and brain-derived neurotropic factor (BDNF) expression, glutamate (Glu), inducible nitric oxide synthase (iNOS) and thiobarbituric acid reactive substances (TBARS) were evident in animals receiving SCH58261. Additionally, the anti-inflammatory cytokine interleukin-10 (IL-10) increased following nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Taken all together, these events suppressed apoptotic pathways via a reduction in cytochrome c (Cyt. c) as well as caspase-3 supporting a crucial role for pERK1/2 inhibition in consequent reduction of inflammatory and excitotoxic cascades as well as correction of the redox imbalance.
Collapse
Affiliation(s)
- R A Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - A M Agha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - A A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, NC, USA.
| | - N N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
7
|
Sun WL, Quizon PM, Zhu J. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:1-40. [PMID: 26809997 DOI: 10.1016/bs.pmbts.2015.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
8
|
Yamagata Y, Nairn AC. Contrasting features of ERK1/2 activity and synapsin I phosphorylation at the ERK1/2-dependent site in the rat brain in status epilepticus induced by kainic acid in vivo. Brain Res 2015; 1625:314-23. [PMID: 26320550 DOI: 10.1016/j.brainres.2015.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Extracellular signal-regulated kinase 1/2 (ERK1/2) plays diverse roles in the central nervous system. Activation of ERK1/2 has been observed in various types of neuronal excitation, including seizure activity in vivo and in vitro. However, studies examining ERK1/2 activity and its substrate phosphorylation in parallel are scarce especially in seizure models. We have been studying the phosphorylation state of the presynaptic protein, synapsin I at ERK1/2-dependent and -independent sites in various types of seizure models and showed that ERK1/2-dependent phosphorylation of synapsin I was indeed under control of ERK1/2 activity in vivo. To further expand our study, here we examined the effects of prolonged seizure activity on ERK1/2 activity and synapsin I phosphorylation by using status epilepticus induced by kainic acid (KA-SE) in rats in vivo. In KA-SE, robust ERK1/2 activation was observed in the hippocampus, a representative limbic structure, with lesser activation in the parietal cortex, a representative non-limbic structure. In contrast, the phosphorylation level of synapsin I at ERK1/2-dependent phospho-site 4/5 was profoundly decreased, the extent of which was much larger in the hippocampus than in the parietal cortex. In addition, phosphorylation at other ERK1/2-independent phospho-sites in synapsin I also showed an even larger decrease. All these changes disappeared after recovery from KA-SE. These results indicate that the phosphorylation state of synapsin I is dynamically regulated by the balance between kinase and phosphatase activities. The contrasting features of robust ERK1/2 activation yet synapsin I dephosphorylation may be indicative of an irreversible pathological outcome of the epileptic state in vivo.
Collapse
Affiliation(s)
- Yoko Yamagata
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki 444-8787, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Japan.
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA; Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065-6399, USA
| |
Collapse
|
9
|
Kenney JW, Moore CE, Wang X, Proud CG. Eukaryotic elongation factor 2 kinase, an unusual enzyme with multiple roles. Adv Biol Regul 2014; 55:15-27. [PMID: 24853390 DOI: 10.1016/j.jbior.2014.04.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 12/27/2022]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is a member of the small group of atypical 'α-kinases'. It phosphorylates and inhibits eukaryotic elongation factor 2, to slow down the elongation stage of protein synthesis, which normally consumes a great deal of energy and amino acids. The activity of eEF2K is normally dependent on calcium ions and calmodulin. eEF2K is also regulated by a plethora of other inputs, including inhibition by signalling downstream of anabolic signalling pathways such as the mammalian target of rapamycin complex 1. Recent data show that eEF2K helps to protect cancer cells against nutrient starvation and is also cytoprotective in other settings, including hypoxia. Growing evidence points to roles for eEF2K in neurological processes such as learning and memory and perhaps in depression.
Collapse
Affiliation(s)
- Justin W Kenney
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO16 7LB, UK
| | - Claire E Moore
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO16 7LB, UK
| | - Xuemin Wang
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO16 7LB, UK
| | - Christopher G Proud
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton, SO16 7LB, UK.
| |
Collapse
|
10
|
Estrada JA, Contreras I, Pliego-Rivero FB, Otero GA. Molecular mechanisms of cognitive impairment in iron deficiency: alterations in brain-derived neurotrophic factor and insulin-like growth factor expression and function in the central nervous system. Nutr Neurosci 2013; 17:193-206. [PMID: 24074845 DOI: 10.1179/1476830513y.0000000084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The present review examines the relationship between iron deficiency and central nervous system (CNS) development and cognitive impairment, focusing on the cellular and molecular mechanisms related to the expression and function of growth factors, particularly the insulin-like growth factors I and II (IGF-I/II) and brain-derived neurotrophic factor (BDNF), in the CNS. METHODS Nutritional deficiencies are important determinants in human cognitive impairment. Among these, iron deficiency has the highest prevalence worldwide. Although this ailment is known to induce psychomotor deficits during development, the precise molecular and cellular mechanisms underlying these alterations have not been properly elucidated. This review summarizes the available information on the effect of iron deficiency on the expression and function of growth factors in the CNS, with an emphasis on IGF-I/II and BDNF. RESULTS AND DISCUSSION Recent studies have shown that specific growth factors, such as IGF-I/II and BDNF, have an essential role in cognition, particularly in processes involving learning and memory, by the activation of intracellular-signaling pathways involved in cell proliferation, differentiation, and survival. It is known that nutritional deficiencies promote reductions in systemic and CNS concentrations of growth factors, and that altered expression of these molecules and their receptors in the CNS leads to psychomotor and developmental deficits. Iron deficiency may induce these deficits by decreasing the expression and function of IGF-I/II and BDNF in specific areas of the brain.
Collapse
|
11
|
Joshi S, Kapur J. N-methyl-D-aspartic acid receptor activation downregulates expression of δ subunit-containing GABAA receptors in cultured hippocampal neurons. Mol Pharmacol 2013; 84:1-11. [PMID: 23585058 PMCID: PMC3684822 DOI: 10.1124/mol.112.084715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/09/2013] [Indexed: 01/26/2023] Open
Abstract
Neurosteroids are endogenous allosteric modulators of GABAA receptors (GABARs), and they enhance GABAR-mediated inhibition. However, GABARs expressed on hippocampal dentate granule neurons of epileptic animals are modified such that their neurosteroid sensitivity is reduced and δ subunit expression is diminished. We explored the molecular mechanisms triggering this GABAR plasticity. In the cultured hippocampal neurons, treatment with N-methyl-D-aspartic acid (NMDA) (10 μM) for 48 hours reduced the surface expression of δ and α4 subunits but did not increase the expression of γ2 subunits. The tonic current recorded from neurons in NMDA-treated cultures was reduced, and its neurosteroid modulation was also diminished. In contrast, synaptic inhibition and its modulation by neurosteroids were preserved in these neurons. The time course of NMDA's effects on surface and total δ subunit expression was distinct; shorter (6 hours) treatment decreased surface expression, whereas longer treatment reduced both surface and total expression. Dl-2-amino-5-phosphonopentanoic acid (APV) blocked NMDA's effects on δ subunit expression. Chelation of calcium ions by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM) or blockade of extracellular signal-regulated kinase (ERK) 1/2 activation by UO126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene) also prevented the effects of NMDA. Thus, prolonged activation of NMDA receptors in hippocampal neurons reduced GABAR δ subunit expression through Ca(2+) entry and at least in part by ERK1/2 activation.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, Box 800394, University of Virginia-HSC, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
12
|
XIE GUANLI, YANG SHANLI, CHEN AZHEN, LAN LAN, LIN ZHICHENG, GAO YANLIN, HUANG JIA, LIN JIUMAO, PENG JUN, TAO JING, CHEN LIDIAN. Electroacupuncture at Quchi and Zusanli treats cerebral ischemia-reperfusion injury through activation of ERK signaling. Exp Ther Med 2013; 5:1593-1597. [PMID: 23837037 PMCID: PMC3702718 DOI: 10.3892/etm.2013.1030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/21/2013] [Indexed: 01/21/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) pathway, a critical mediator of cell proliferation, is activated in cerebral ischemia/reperfusion (I/R) injury and is therefore a key target in the treatment of ischemic stroke. Acupuncture has long been used in China to clinically treat stroke. However, the precise mechanism of its neuroprotective activities remains largely unknown. In the present study, a focal cerebral I/R-injured rat model was used to evaluate the in vivo therapeutic efficacy of electroacupuncture (EA) and investigate the underlying molecular mechanisms. EA significantly ameliorated neurological deficits and cerebral infarction in cerebral I/R-injured rats. Moreover, EA significantly increased the phosphorylation levels of ERK, as well as the protein expression levels of Ras, cyclin D1 and cyclin-dependent kinase (CDK)4. Consequently, EA-mediated activation of the ERK pathway resulted in the stimulation of cerebral cell proliferation. The present data suggest that EA at the Quchi and Zusanli acupoints exerts a neuroprotective effect in ischemic stroke via the activation of ERK signaling.
Collapse
Affiliation(s)
- GUANLI XIE
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - SHANLI YANG
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - AZHEN CHEN
- MOE Key Laboratory of Traditional Chinese Medicine on Osteology and Traumatology and Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - LAN LAN
- MOE Key Laboratory of Traditional Chinese Medicine on Osteology and Traumatology and Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - ZHICHENG LIN
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - YANLIN GAO
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - JIA HUANG
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - JIUMAO LIN
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - JUN PENG
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - JING TAO
- MOE Key Laboratory of Traditional Chinese Medicine on Osteology and Traumatology and Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - LIDIAN CHEN
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| |
Collapse
|
13
|
Kawai HD, La M, Kang HA, Hashimoto Y, Liang K, Lazar R, Metherate R. Convergence of nicotine-induced and auditory-evoked neural activity activates ERK in auditory cortex. Synapse 2013; 67:455-68. [PMID: 23401204 DOI: 10.1002/syn.21647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022]
Abstract
Enhancement of sound-evoked responses in auditory cortex (ACx) following administration of systemic nicotine is known to depend on activation of extracellular-signaling regulated kinase (ERK), but the nature of this enhancement is not clear. Here, we show that systemic nicotine increases the density of cells immunolabeled for phosphorylated (activated) ERK (P-ERK) in mouse primary ACx (A1). Cortical injection of dihydro-β-erythroidine reduced nicotine-induced P-ERK immunolabel, suggesting a role for nicotinic acetylcholine receptors located in A1 and containing α4 and β2 subunits. P-ERK expressing cells were distributed mainly in layers 2/3 and more sparsely in lower layers, with many cells exhibiting immunolabel within pyramidal-shaped somata and proximal apical dendrites. About one-third of P-ERK positive cells also expressed calbindin. In the thalamus, P-ERK immunopositive cells were found in the nonlemniscal medial geniculate (MG) and adjacent nuclei, but were absent in the lemniscal MG. Pairing broad spectrum acoustic stimulation (white noise) with systemic nicotine increased P-ERK immunopositive cell density in ACx as well as the total amount of P-ERK protein, particularly the phosphorylated form of ERK2. However, narrow spectrum (tone) stimulation paired with nicotine increased P-ERK immunolabel preferentially at a site within A1 where the paired frequency was characteristic frequency (CF), relative to a second site with a spectrally distant CF (two octaves above or below the paired frequency). Together, these results suggest that ERK is activated optimally where nicotinic signaling and sound-evoked neural activity converge.
Collapse
Affiliation(s)
- Hideki D Kawai
- Department of Neurobiology and Behavior and Center for Hearing Research, University of California, Irvine, California, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Yamagata Y, Kaneko K, Kase D, Ishihara H, Nairn AC, Obata K, Imoto K. Regulation of ERK1/2 mitogen-activated protein kinase by NMDA-receptor-induced seizure activity in cortical slices. Brain Res 2013; 1507:1-10. [PMID: 23419897 DOI: 10.1016/j.brainres.2013.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
Extracellular signal-regulated kinase 1/2 (ERK1/2) that belongs to a subfamily of mitogen-activated protein kinases (MAPKs) plays diverse roles in the central nervous system. Activation of ERK1/2 has been observed in various types of neuronal excitation, including seizure activity in vivo and in vitro, as well as in NMDA-receptor (NMDA-R)-dependent long-term potentiation in the hippocampus. On the other hand, recent studies in cultured neurons have shown that NMDA-R stimulation could result in either ERK1/2 activation or non-activation, depending on the pharmacological manipulations. To assess NMDA-R-dependent regulation of ERK1/2 activity in vivo, here we examined the effect of NMDA-R-induced seizure activity on ERK1/2 activation by using rat cortical slice preparations. NMDA-R-dependent seizure activity introduced by Mg2+ -free condition did not cause ERK1/2 activation. On the other hand, when picrotoxin was added to concurrently suppress GABAA-receptor-mediated inhibition, profound ERK1/2 activation occurred, which was accompanied by strong phospho-ERK1/2-staining in the superficial and deep cortical layer neurons. In this case, prolonged membrane depolarization and enhanced burst action potential firings, both of which were much greater than those in Mg2+ -free condition alone, were observed. Differential ERK1/2 activation was supported by the concurrent selective increase in phosphorylation of a substrate protein, phospho-site 4/5 of synapsin I. These results indicate that NMDA-R activation through a release from Mg2+ -blockade, which accompanies enhancement of both excitatory and inhibitory synaptic transmission, was not enough, but concurrent suppression of GABAergic inhibition, which leads to a selective increase in excitatory synaptic transmission, was necessary for robust ERK1/2 activation to occur within the cortical network.
Collapse
Affiliation(s)
- Yoko Yamagata
- Department of Information Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8787, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Lee MS, Chao J, Yen JC, Lin LW, Tsai FS, Hsieh MT, Peng WH, Cheng HY. Schizandrin protects primary rat cortical cell cultures from glutamate-induced apoptosis by inhibiting activation of the MAPK family and the mitochondria dependent pathway. Molecules 2012; 18:354-72. [PMID: 23271470 PMCID: PMC6270204 DOI: 10.3390/molecules18010354] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 11/26/2022] Open
Abstract
Glutamate-induced excitotoxicity has been implicated in a variety of neuronal degenerative disorders. In the present study, we investigated the possible neuroprotective effects of schizandrin against apoptosis of primary cultured rat cortical cells induced by glutamate. Glutamate (10 μM) administered for 24 h decreased the expression of Bcl-2 and Bcl-X(L) protein, whereas increased the expression of Bax, Bak, apoptosis inducing factor (AIF), endonuclease G (Nodo G) and endoplasmic reticulum (ER) stress of caspase-12. Pretreatment with schizandrin (100 μM) before glutamate treatment increased the Bcl-X(L) and Bcl-2 expression and decreased Bax, Bak, AIF, Nodo G and caspase-12 compared with those only treated with glutamate. Furthermore, glutamate-induced phosphorylation of JNK, p38 and ERK mitogen-activated protein kinases (MAPK), and these effects were attenuated by schizandrin (100 μM) treatment. These results suggest that schizandrin possesses the neuroprotective effects. The molecular mechanisms of schizandrin against glutamate-induced apoptosis may involve the regulation of Bcl-2 family proteins expression, and ER stress through blocking the activation of JNK, ERK and p38 MAPK.
Collapse
Affiliation(s)
- Meng-Shiou Lee
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 402, Taiwan; E-Mails: (M.-S.L.); mthsieh@ mail.cmu.edu.tw (M.-T.H.)
| | - Jung Chao
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan; E-Mails: (J.C.); (J.-C.Y.)
| | - Jiin-Cherng Yen
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan; E-Mails: (J.C.); (J.-C.Y.)
| | - Li-Wei Lin
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung 840, Taiwan; E-Mails: (L.-W.L.); (F.-S.T.)
| | - Fan-Shiu Tsai
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung 840, Taiwan; E-Mails: (L.-W.L.); (F.-S.T.)
| | - Ming-Tsuen Hsieh
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 402, Taiwan; E-Mails: (M.-S.L.); mthsieh@ mail.cmu.edu.tw (M.-T.H.)
| | - Wen-Huang Peng
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 402, Taiwan; E-Mails: (M.-S.L.); mthsieh@ mail.cmu.edu.tw (M.-T.H.)
| | - Hao-Yuan Cheng
- Department of Nursing, Chung Jen College of Nursing, Health Sciences and Management, Chiayi 600, Taiwan
| |
Collapse
|
16
|
Learning and nicotine interact to increase CREB phosphorylation at the jnk1 promoter in the hippocampus. PLoS One 2012; 7:e39939. [PMID: 22761932 PMCID: PMC3386232 DOI: 10.1371/journal.pone.0039939] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/29/2012] [Indexed: 12/29/2022] Open
Abstract
Nicotine is known to enhance long-term hippocampus dependent learning and memory in both rodents and humans via its activity at nicotinic acetylcholinergic receptors (nAChRs). However, the molecular basis for the nicotinic modulation of learning is incompletely understood. Both the mitogen activated protein kinases (MAPKs) and cAMP response element binding protein (CREB) are known to be integral to the consolidation of long-term memory and the disruption of MAPKs and CREB are known to abrogate some of the cognitive effects of nicotine. In addition, the acquisition of contextual fear conditioning in the presence of nicotine is associated with a β2-subunit containing nAChR-dependent increase in jnk1 (mapk8) transcription in the hippocampus. In the present study, chromatin immunoprecipitation (ChIP) was used to examine whether learning and nicotine interact to alter transcription factor binding or histone acetylation at the jnk1 promoter region. The acquisition of contextual fear conditioning in the presence of nicotine resulted in an increase in phosphorylated CREB (pCREB) binding to the jnk1 promoter in the hippocampus in a β2-subunit containing nAChR dependent manner, but had no effect on CREB binding; neither fear conditioning alone nor nicotine administration alone altered transcription factor binding to the jnk1 promoter. In addition, there were no changes in histone H3 or H4 acetylation at the jnk1 promoter following fear conditioning in the presence of nicotine. These results suggest that contextual fear learning and nicotine administration act synergistically to produce a unique pattern of protein activation and gene transcription in the hippocampus that is not individually generated by fear conditioning or nicotine administration alone.
Collapse
|
17
|
Bodai L, Marsh JL. A novel target for Huntington's disease: ERK at the crossroads of signaling. Bioessays 2011; 34:142-8. [DOI: 10.1002/bies.201100116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Abstract
The concentration of amyloid-β (Aβ) within the brain extracellular space is one determinant of whether the peptide will aggregate into toxic species that are important in Alzheimer's disease (AD) pathogenesis. Some types of synaptic activity can regulate Aβ levels. Here we demonstrate two distinct mechanisms that are simultaneously activated by NMDA receptors and regulate brain interstitial fluid (ISF) Aβ levels in opposite directions in the living mouse. Depending on the dose of NMDA administered locally to the brain, ISF Aβ levels either increase or decrease. Low doses of NMDA increase action potentials and synaptic transmission which leads to an elevation in synaptic Aβ generation. In contrast, high doses of NMDA activate signaling pathways that lead to ERK (extracellular-regulated kinase) activation, which reduces processing of APP into Aβ. This depression in Aβ via APP processing occurs despite dramatically elevated synaptic activity. Both of these synaptic mechanisms are simultaneously active, with the balance between them determining whether ISF Aβ levels will increase or decrease. NMDA receptor antagonists increase ISF Aβ levels, suggesting that basal activity at these receptors normally suppresses Aβ levels in vivo. This has implications for understanding normal Aβ metabolism as well as AD pathogenesis.
Collapse
|
19
|
Otani N, Nawashiro H, Nagatani K, Takeuchi S, Kobayashi H, Shima K. Mitogen-Activated Protein Kinase Pathways Following Traumatic Brain Injury. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/nm.2011.23028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Lee CH, Yoo KY, Park OK, Choi JH, Kang IJ, Bae E, Kim SK, Hwang IK, Won MH. Phosphorylated extracellular signal-regulated kinase 1/2 immunoreactivity and its protein levels in the gerbil hippocampus during normal aging. Mol Cells 2010; 29:373-8. [PMID: 20213312 DOI: 10.1007/s10059-010-0046-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 12/11/2022] Open
Abstract
Phosphorylated extracellular signal-regulated kinase (pERK) mediates neuronal synaptic plasticity, long-term potentiation, and learning and memory in the hippocampus. In this study, we examined pERK1/2 immunoreactivity and its protein level in the gerbil hippocampus at various ages. In the postnatal month 1 (PM 1) group, very weak pERK1/2 immunoreactivity was detected in the hippocampus. In the CA1 region, pERK1/2 immunoreactivity was considerably increased in the stratum pyramidale in the PM 6 group. Thereafter, pERK1/2 immunoreactivity was decreased. In the CA2/3 region, pERK1/2 immunoreactivity increased in an age-dependent manner until PM 12. Thereafter, numbers of pERK1/2-immunoreactive neurons were decreased. However, in the mossy fiber zone, pERK1/2 immunostaining became stronger with age. In the dentate gyrus, a few pERK1/2-immunoreactive cells were observed until PM 12. In the PM 18 and 24 groups, numbers of pERK1/2-immunoreactive cells were increased, especially in the polymorphic layer. In Western blot analysis, pERK1/2 level in the gerbil hippocampus was increased with age. These results indicate that total pERK1/2 levels are increased in the hippocampus with age. However pERK1/2 immunoreactivity in subregions of the gerbil hippocampus was changed with different pattern during normal aging.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shang Y, Wang H, Mercaldo V, Li X, Chen T, Zhuo M. Fragile X mental retardation protein is required for chemically-induced long-term potentiation of the hippocampus in adult mice. J Neurochem 2009; 111:635-46. [PMID: 19659572 DOI: 10.1111/j.1471-4159.2009.06314.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout mice, have deficits in the Morris water maze and trace fear memory tests, showing impairment in hippocampus-dependent learning and memory. However, results for synaptic long-term potentiation (LTP), a key cellular model for learning and memory, remain inconclusive in the hippocampus of Fmr1 knockout mice. Here, we demonstrate that FMRP is required for glycine induced LTP (Gly-LTP) in the CA1 of hippocampus. This form of LTP requires activation of post-synaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Genetic deletion of FMRP interrupted the phosphorylation of ERK1/2, suggesting the possible role of FMRP in the regulation of the activity of ERK1/2. Our study provide strong evidences that FMRP participates in Gly-LTP in the hippocampus by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS.
Collapse
Affiliation(s)
- Yuze Shang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Serchov T, Heumann R. Constitutive Activation of Ras in Neurons: Implications for the Regulation of the Mammalian Circadian Clock. Chronobiol Int 2009; 23:191-200. [PMID: 16687293 DOI: 10.1080/07420520500521970] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Almost all organisms living on earth exhibit rhythms under the control of autonomous timekeeping mechanisms referred to as circadian clocks. In mammals, peripheral clocks are synchronized (entrained) with high precision in a 24 h periodicity by the master circadian clock located in the suprachiasmatic nucleus (SCN) of the ventral hypothalamus. Light is the strongest phase-adjusting stimulus of the circadian clock. Circadian oscillations are driven by transcription/translation-based feedback/feedforward loops, comprising a set of clock genes and their protein products. The signalling pathways that couple light input to transcriptional, translational, and post-translational changes to ensure precise entrainment of the clock are not yet well characterized. A candidate pathway for transmission of photic information in the SCN is represented by the extracellular signal-regulated kinases ERK1/ERK2. In neurons, the ERK pathway is activated by a large array of stimuli, including trophic factors, neurotransmitters, and modulatory peptides. An upstream element of the ERK signalling route is the small intracellular membrane-anchored G-protein, Ras. In order to study its possible role in the entrainment of the circadian clock we are using transgenic gain-of-function mice expressing constitutively activated Val-12 Ha-Ras selectively in neurons (synRas mice). The Ha-Ras transgene protein is expressed in the SCN of synRas mice neurons serving as a model for interfering with the normal rhythmic changes in Ras activities in the SCN. This will allow us to investigate whether the associated modulation of the downstream targets such as ERK activities will interfere with the mechanisms of entrainment.
Collapse
Affiliation(s)
- Tsvetan Serchov
- Department of Molecular Neurobiochemistry and IGSN, Ruhr-University, Bochum, Germany
| | | |
Collapse
|
23
|
Mao LM, Tang QS, Wang JQ. Regulation of extracellular signal-regulated kinase phosphorylation in cultured rat striatal neurons. Brain Res Bull 2009; 78:328-34. [PMID: 19056470 PMCID: PMC2736782 DOI: 10.1016/j.brainresbull.2008.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 11/20/2022]
Abstract
Recent studies demonstrate that activation of Ca(2+)-permeable N-methyl-D-aspartate (NMDA) receptors upregulates phosphorylation of mitogen-activated protein kinases (MAPKs) in heterologous cells and neurons. In cultured rat striatal neurons, the present work systematically evaluated the role of a number of protein kinases in forming a signaling cascade transducing NMDA receptor signals to MAPKs. It was found that a brief NMDA application consistently induced rapid and transient phosphorylation of the extracellular signal-regulated kinase 1/2 (ERK1/2), a best characterized subclass of MAPKs. This ERK1/2 phosphorylation was resistant to the inhibition of protein kinase C, p38 MAPK, cyclin-dependent kinase 5, receptor tyrosine kinase (epidermal growth factor receptors), or non-receptor tyrosine kinases (including Src) by their selective inhibitors. However, the increase in ERK1/2 phosphorylation was partially blocked by a protein kinase A (PKA) inhibitor. The inhibitors for Ca(2+)/calmodulin-dependent protein kinase (CaMK) or phosphatidylinositol 3-kinase (PI3-kinase) completely blocked the NMDA-stimulated ERK1/2 phosphorylation. In an attempt to characterize the sequential role of CaMK and PI3-kinase, we found that NMDA increased PI3-kinase phosphorylation on Tyr(508), which kinetically corresponded to the ERK1/2 phosphorylation and was blocked by the CaMK inhibitor. These results indicate that the protein kinases are differentially involved in linking NMDA receptors to ERK1/2 in striatal neurons.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| | | | | |
Collapse
|
24
|
Lugo JN, Barnwell LF, Ren Y, Lee WL, Johnston LD, Kim R, Hrachovy RA, Sweatt JD, Anderson AE. Altered phosphorylation and localization of the A-type channel, Kv4.2 in status epilepticus. J Neurochem 2008; 106:1929-40. [PMID: 18513371 PMCID: PMC2678944 DOI: 10.1111/j.1471-4159.2008.05508.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Extracelluar signal-regulated kinase (ERK) pathway activation has been demonstrated following convulsant stimulation; however, little is known about the molecular targets of ERK in seizure models. Recently, it has been shown that ERK phosphorylates Kv4.2 channels leading to down-regulation of channel function, and substantially alters dendritic excitability. In the kainate model of status epilepticus (SE), we investigated whether ERK phosphorylates Kv4.2 and whether the changes in Kv4.2 were evident at a synaptosomal level during SE. Western blotting was performed on rat hippocampal whole cell, membrane, synaptosomal, and surface biotinylated extracts following systemic kainate using an antibody generated against the Kv4.2 ERK sites and for Kv4.2, ERK, and phospho-ERK. ERK activation was associated with an increase in Kv4.2 phosphorylation during behavioral SE. During SE, ERK activation and Kv4.2 phosphorylation were evident at the whole cell and synaptosomal levels. In addition, while whole-cell preparations revealed no alterations in total Kv4.2 levels, a decrease in synaptosomal and surface expression of Kv4.2 was evident after prolonged SE. These results demonstrate ERK pathway coupling to Kv4.2 phosphorylation. The finding of decreased Kv4.2 levels in hippocampal synaptosomes and surface membranes suggest additional mechanisms for decreasing the dendritic A-current, which could lead to altered intrinsic membrane excitability during SE.
Collapse
Affiliation(s)
- Joaquin N. Lugo
- The Cain Foundation Laboratories, Department of Pediatrics, Houston, Texas, USA
| | | | - Yajun Ren
- The Cain Foundation Laboratories, Department of Pediatrics, Houston, Texas, USA
| | - Wai Ling Lee
- The Cain Foundation Laboratories, Department of Pediatrics, Houston, Texas, USA
| | | | - Rebecca Kim
- The Cain Foundation Laboratories, Department of Pediatrics, Houston, Texas, USA
| | - Richard A. Hrachovy
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- The Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - John David Sweatt
- Department of Neurobiology, University of Alabama, Birmingham, Alabama, USA
| | - Anne E. Anderson
- The Cain Foundation Laboratories, Department of Pediatrics, Houston, Texas, USA
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
25
|
Peng HY, Cheng YW, Lee SD, Ho YC, Chou D, Chen GD, Cheng CL, Hsu TH, Tung KC, Lin TB. Glutamate-mediated spinal reflex potentiation involves ERK 1/2 phosphorylation in anesthetized rats. Neuropharmacology 2008; 54:686-98. [DOI: 10.1016/j.neuropharm.2007.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/20/2007] [Accepted: 11/28/2007] [Indexed: 11/24/2022]
|
26
|
Blockade of NMDA receptors pre-training, but not post-training, impairs object displacement learning in the rat. Brain Res 2008; 1199:126-32. [DOI: 10.1016/j.brainres.2008.01.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 12/29/2022]
|
27
|
Samoilov MO, Rybnikova EA, Sitnik NA, Glushchenko TS, Tyulkova EI, Grinkevich LN. Preconditioning modifies the activities of mitogen-activated protein kinases and c-Jun transcription factor in rat hippocampus after severe hypobaric hypoxia. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407030087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Ma QL, Harris-White ME, Ubeda OJ, Simmons M, Beech W, Lim GP, Teter B, Frautschy SA, Cole GM. Evidence of Abeta- and transgene-dependent defects in ERK-CREB signaling in Alzheimer's models. J Neurochem 2007; 103:1594-607. [PMID: 17760871 PMCID: PMC2527620 DOI: 10.1111/j.1471-4159.2007.04869.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular-signal regulated kinase (ERK) signaling is critical for memory and tightly regulated by acute environmental stimuli. In Alzheimer disease transgenic models, active ERK is shown to first be increased, then later reduced, but whether these baseline changes reflect disruptions in ERK signaling is less clear. We investigated the influence of the familial Alzheimer's disease transgene APPsw and beta-amyloid peptide (Abeta) immunoneutralization on cannulation injury-associated (i.c.v. infusion) ERK activation. At both 12 and 22 months of age, the trauma-associated activation of ERK observed in Tg(-) mice was dramatically attenuated in Tg(+). In cortices of 22-month-old non-infused mice, a reduction in ERK activation was observed in Tg(+), relative to Tg(-) mice. Intracerebroventricular (i.c.v.) anti-Abeta infusion significantly increased phosphorylated ERK, its substrate cAMP-response element-binding protein (CREB) and a downstream target, the NMDA receptor subunit. We also demonstrated that Abeta oligomer decreased active ERK and subsequently active CREB in human neuroblastoma cells, which could be prevented by oligomer immunoneutralization. Abeta oligomers also inhibited active ERK and CREB in primary neurons, in addition to reducing the downstream post-synaptic protein NMDA receptor subunit. These effects were reversed by anti-oligomer. Our data strongly support the existence of an APPsw transgene-dependent and Abeta oligomer-mediated defect in regulation of ERK activation.
Collapse
Affiliation(s)
- Qiu-Lan Ma
- Department of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen L, Miyamoto Y, Furuya K, Mori N, Sokabe M. PREGS induces LTP in the hippocampal dentate gyrus of adult rats via the tyrosine phosphorylation of NR2B coupled to ERK/CREB [corrected] signaling. J Neurophysiol 2007; 98:1538-48. [PMID: 17625058 DOI: 10.1152/jn.01151.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An acute application of neurosteroid pregnenolone sulfate (PREGS) to hippocampal slices from adult rats induced a long-lasting potentiation (LLP PREGS) at the perforant path-granule cell synapse. As a partial mechanism of the LLP PREGS, we previously revealed that PREGS transiently increases the probability of presynaptic glutamate release via a sensitization of alpha7-nicotinic acetylcholine receptor (alpha7nAChR). We herein demonstrate that the LLP PREGS could be separated into two independent processes: the above-mentioned early presynaptic-origin short-term potentiation (STP PREGS) and a delayed postsynaptic N-methyl-d-aspartate receptor (NMDAr)-dependent long-term potentiation termed LTP(PREGS). This study focused on the analysis of the signaling mechanism underlying the LTP PREGS. PREGS increased the tyrosine phosphorylation of NR2B, a subunit of NMDAr, and the NMDAr-mediated Ca2+ influx in the granule cells. The enhanced Ca2+ influx was largely attenuated by the NR2B subunit inhibitor ifenprodil and the Src kinase family inhibitor PP2. PREGS also triggered a persistent phosphorylation of extracellular signal-regulated kinase 2 (ERK2) followed by an ERK-dependent phosphorylation of cAMP-response element-binding protein (CREB), which was crucial for the LTP PREGS induction and was sensitive to ifenprodil. These results suggest that PREGS induces an acute increase in the NR2B tyrosine phosphorylation which enhances the Ca2+ influx through NMDAr, followed by an activation of the ERK/CREB signaling cascade that leads to LTP PREGS.
Collapse
Affiliation(s)
- Ling Chen
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
30
|
Rao JS, Ertley RN, Rapoport SI, Bazinet RP, Lee HJ. Chronic NMDA administration to rats up-regulates frontal cortex cytosolic phospholipase A2 and its transcription factor, activator protein-2. J Neurochem 2007; 102:1918-1927. [PMID: 17550430 DOI: 10.1111/j.1471-4159.2007.04648.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Excessive N-methyl-D-aspartate (NMDA) signaling is thought to contribute to bipolar disorder symptoms. Lithium and carbamazepine, effective against bipolar mania, are reported in rats to reduce brain transcription of an arachidonic acid selective calcium-dependent cytosolic phospholipase A(2) (cPLA(2)), as well as expression of one of its transcription factors, activator protein (AP)-2. In this study, we determined if chronic administration of NMDA (25 mg/kg i.p.) to rats would increase brain cPLA(2) and AP-2 expression, as these antimanic drugs are known to down-regulate excessive NMDA signaling. Administration of a daily subconvulsive dose of NMDA to rats for 21 days decreased frontal cortex NMDA receptor (NR)-1 and NR-3A subunits and increased cPLA(2) activity, phosphorylation, protein, and mRNA levels. The activity and protein levels of secretory phospholipase A(2) or calcium-independent phospholipase A(2) were not changed significantly. Chronic NMDA also increased the DNA-binding activity of AP-2 and the protein levels of its alpha and beta subunits. These changes were absent following acute (3 h earlier) NMDA administration. The changes, opposite to those found following chronic lithium or carbamazepine, are consistent with up-regulated arachidonic acid release due to excessive NR signaling and may be a contributing factor to bipolar mania.
Collapse
Affiliation(s)
- Jagadeesh S Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USADepartment of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Renee N Ertley
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USADepartment of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USADepartment of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Bazinet
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USADepartment of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ho-Joo Lee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USADepartment of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. ACTA ACUST UNITED AC 2007; 54:34-66. [PMID: 17222914 DOI: 10.1016/j.brainresrev.2006.11.003] [Citation(s) in RCA: 540] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 11/20/2022]
Abstract
Cerebral ischemia (stroke) triggers a complex series of biochemical and molecular mechanisms that impairs the neurologic functions through breakdown of cellular integrity mediated by excitotoxic glutamatergic signalling, ionic imbalance, free-radical reactions, etc. These intricate processes lead to activation of signalling mechanisms involving calcium/calmodulin-dependent kinases (CaMKs) and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). The distribution of these transducers bring them in contact with appropriate molecular targets leading to altered gene expression, e.g. ERK and JNK mediated early gene induction, responsible for activation of cell survival/damaging mechanisms. Moreover, inflammatory reactions initiated at the neurovascular interface and alterations in the dynamic communication between the endothelial cells, astrocytes and neurons are thought to substantially contribute to the pathogenesis of the disease. The damaging mechanisms may proceed through rapid nonspecific cell lysis (necrosis) or by active form of cell demise (apoptosis or necroptosis), depending upon the severity and duration of the ischemic insult. A systematic understanding of these molecular mechanisms with prospect of modulating the chain of events leading to cellular survival/damage may help to generate the potential strategies for neuroprotection. This review briefly covers the current status on the molecular mechanisms of stroke pathophysiology with an endeavour to identify potential molecular targets such as targeting postsynaptic density-95 (PSD-95)/N-methyl-d-aspartate (NMDA) receptor interaction, certain key proteins involved in oxidative stress, CaMKs and MAPKs (ERK, p38 and JNK) signalling, inflammation (cytokines, adhesion molecules, etc.) and cell death pathways (caspases, Bcl-2 family proteins, poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis-inducing factor (AIF), inhibitors of apoptosis proteins (IAPs), heat shock protein 70 (HSP70), receptor interacting protein (RIP), etc., besides targeting directly the genes itself. However, selecting promising targets from various signalling cascades, for drug discovery and development is very challenging, nevertheless such novel approaches may lead to the emergence of new avenues for therapeutic intervention in cerebral ischemia.
Collapse
Affiliation(s)
- Suresh L Mehta
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow-226001, India
| | | | | |
Collapse
|
32
|
Kim HS, Song M, Yumkham S, Choi JH, Lee T, Kwon J, Lee SJ, Kim JI, Lee KW, Han PL, Shin SW, Baik JH, Kim YS, Ryu SH, Suh PG. Identification of a new functional target of haloperidol metabolite: implications for a receptor-independent role of 3-(4-fluorobenzoyl) propionic acid. J Neurochem 2007; 99:458-69. [PMID: 17029599 DOI: 10.1111/j.1471-4159.2006.04108.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Haloperidol, a dopamine D2 receptor blocker, is a classical neuroleptic drug that elicits extrapyramidal symptoms. Its metabolites include 3-(4-fluorobenzoyl) propionic acid (FBPA) and 4-(4-chlorophenyl)-4-piperidinol (CPHP). Until now, the biological significance of these metabolites has remained largely unknown. Here, we report that the administration of FBPA to mice effected a suppression of locomotor activity and induced catalepsy in a manner similar to that observed with haloperidol, whereas CPHP had no significant effects. Neither of these two metabolites, however, exhibited any ability to bind to the dopamine D2 receptor. FBPA blocked dopamine-induced extracellular signal-regulated kinase 1/2 phosphorylation, and it specifically affected mitogen-activated protein kinase kinase (MEK)1/2 activity in hippocampal HN33 cells. Moreover, FBPA was capable of direct interaction with MEK1/2, and inhibited its activity in vitro. We demonstrated the generation of haloperidol metabolites within haloperidol-treated cells by mass spectrometric analyses. Collectively, our results confirm the biological activity of FBPA, and provide initial clues as to the receptor-independent role of haloperidol.
Collapse
Affiliation(s)
- Hyeon Soo Kim
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Kyungbuk, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen L, Miyamoto Y, Furuya K, Dai XN, Mori N, Sokabe M. Chronic DHEAS administration facilitates hippocampal long-term potentiation via an amplification of Src-dependent NMDA receptor signaling. Neuropharmacology 2006; 51:659-70. [PMID: 16806295 DOI: 10.1016/j.neuropharm.2006.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 04/19/2006] [Accepted: 05/11/2006] [Indexed: 12/30/2022]
Abstract
Dehydroepiandrosterone sulfate (DHEAS) has well characterized effects on memory and cognitive performances. Recently we have reported that repetitive administration of DHEAS lowers the threshold pulse number in inducing activity-dependent long-term potentiation (LTP) in rat hippocampal Schaffer collateral-CA1 synapses, in which a sub-threshold high frequency stimulation (HFS, 30 pulses at 100 Hz) for normal rats could induce robust LTP in DHEAS-treated rats (Chen et al., 2006). Here we report that the sub-threshold HFS could trigger the phosphorylation of Src and ERK2 in the DHEAS-treated rats, but not in control rats. We found in slices obtained from the DHEAS-treated rats that NMDA-induced intracellular Ca2+([Ca2+]i) transients in CA1 pyramidal neurons were significantly potentiated, which was essential for the Src and ERK2 phosphorylations. The activation of ERK2, a downstream factor of Src family kinase, was required for the DHEAS-facilitated LTP. The Src family kinase inhibitor PP2, but not its inactive homologue PP3, attenuated the NMDA-induced [Ca2+]i increase and abolished the DHEAS-facilitated LTP. These findings suggest that the chronic administration of DHEAS brings the NMDA receptor (NMDAr) to a potentiated state that causes an enough level of [Ca2+]i increase for LTP induction even by the sub-threshold HFS. The potentiated [Ca2+]i transient by the sub-threshold HFS may trigger the Src phosphorylation that will further potentiate NMDAr followed by an activation of ERK2 and LTP induction. This novel postsynaptic NMDAr/Src-mediated signal amplification through "NMDAr-Ca2+-->Src-->NMDAr-Ca2+" cycle may play a pivotal role in the DHEAS-facilitated LTP induction.
Collapse
Affiliation(s)
- Ling Chen
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | | | |
Collapse
|
34
|
Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, Medina I. Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol 2006; 572:789-98. [PMID: 16513670 PMCID: PMC1779993 DOI: 10.1113/jphysiol.2006.105510] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The extracellular signal-regulated kinases (ERK) signalling cascade is a key pathway that mediates the NMDA receptor (NMDAR)-dependent neuronal plasticity and survival. However, it is not clear yet how NMDARs regulate ERK activity. Stimulation of the NMDARs induces a complex modification of ERK that includes both ERK activation and inactivation and depends on particular experimental conditions. Here we show that there exists a differential restriction in the regulation of ERK activity that depends on the pool of NMDAR that was activated. The synaptic pool of NMDARs activates ERK whereas the extrasynaptic pool does not; on the contrary, it triggers a signalling pathway that results in the inactivation of ERK. As a result, simultaneous activation of both extrasynaptic and synaptic NMDAR using bath application of NMDA or glutamate (a typical protocol explored in the majority of studies) produced ERK activation that depended on the concentration of agonists and was always significantly weaker than those mediated by synaptic NMDARs. Since the activation of the extrasynaptic NMDA is attributed mainly to global release of glutamate occurring at pathological conditions including hypoxic/ischaemic insults, traumas and epileptic brain damage, the reported differential regulation of ERK cascade by NMDARs provides a unique mechanism for an early identification of the physiological and/or pathophysiological consequences of NMDAR activation. The negative regulation of the ERK activity might be one of the first signalling events determining brain injury and constitutes a putative target of new pharmacological applications.
Collapse
Affiliation(s)
- Anton Ivanov
- INMED/INSERM Unite 29, 163 Route de Luminy, 13009 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Brisman JL, Cosgrove GR, Thornton AF, Beer T, Bradley-Moore M, Shay CT, Hedley-Whyte ET, Cole AJ. Hyperacute neuropathological findings after proton beam radiosurgery of the rat hippocampus. Neurosurgery 2006; 56:1330-7; discussion 1337-8. [PMID: 15918950 DOI: 10.1227/01.neu.0000159885.34134.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Accepted: 12/02/2004] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To study the hyperacute histological and immunohistochemical effects of stereotactic proton beam irradiation of the rat hippocampus. METHODS Nine rats underwent proton beam radiosurgery of one hippocampus with nominal doses of cobalt-2, -12, and -60 Gray equivalents (n = 3 each). Control animals (n = 3) were not irradiated. Animals were killed 5 hours after irradiation and brain sections were stained for Nissl, silver degeneration, deoxyribonucleic acid (DNA) fragmentation (DNAF), and the activated form of two mitogen-activated protein kinases (MAPKs), phospho-Erk1/2 (P-Erk1/2) and p38. Stained cells in the hippocampus expressing DNAF and/or P-Erk1/2 were counted. Confocal microscopy with double immunofluorescent staining was used to examine cellular colocalization of DNAF and P-Erk1/2. RESULTS Both DNAF and P-Erk1/2 showed quantitative dose-dependent increases in staining in the targeted hippocampus compared with the contralateral side and controls. This finding was restricted to the subgranular proliferative zone of the hippocampus. Both markers also were up-regulated on the contralateral side when compared with controls in a dose-dependent fashion. Simultaneous staining for DNAF and P-Erk1/2 was found in fewer than half of all cells. p38 was unchanged compared with controls. Although Nissl staining appeared normal, silver stain confirmed dose-dependent cellular degeneration. CONCLUSION DNAF, a marker of cell death, was present in rat hippocampi within 5 hours of delivery of cobalt-2 Gray equivalents stereotactically focused irradiation, suggesting that even low-dose radiosurgery has hyperacute neurotoxic effects. Activated mitogen-activated protein kinase was incompletely colocalized with DNAF, suggesting that activation of this cascade is neither necessary nor sufficient to initiate acute cell death after irradiation.
Collapse
Affiliation(s)
- Jonathan L Brisman
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wei F, Vadakkan KI, Toyoda H, Wu LJ, Zhao MG, Xu H, Shum FWF, Jia YH, Zhuo M. Calcium calmodulin-stimulated adenylyl cyclases contribute to activation of extracellular signal-regulated kinase in spinal dorsal horn neurons in adult rats and mice. J Neurosci 2006; 26:851-61. [PMID: 16421305 PMCID: PMC6675366 DOI: 10.1523/jneurosci.3292-05.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The extracellular signal-regulated kinase (Erk) cascades are suggested to contribute to excitatory synaptic plasticity in the CNS, including the spinal cord dorsal horn. However, many of their upstream signaling pathways remain to be investigated. Here, we demonstrate that glutamate and substance P (SP), two principal mediators of sensory information between primary afferent fibers and the spinal cord, activate Erk in dorsal horn neurons of both adult rat and mouse spinal cord. In genetic knock-out mice of calcium calmodulin-stimulated adenylyl cyclase subtypes 1 (AC1) and 8 (AC8), activation of Erk in dorsal horn neurons were significantly reduced or blocked, either after peripheral tissue inflammation or by glutamate or SP in spinal cord slices. Our studies suggest that AC1 and AC8 act upstream from Erk activation in spinal dorsal horn neurons and the calcium-AC1/AC8-dependent Erk signaling pathways may contribute to spinal sensitization, an underlying mechanism for the development of persistent pain after injury.
Collapse
Affiliation(s)
- Feng Wei
- Department of Biomedical Sciences, University of Maryland Dental School, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Caldwell MA, He X, Svendsen CN. 5-Bromo-2'-deoxyuridine is selectively toxic to neuronal precursors in vitro. Eur J Neurosci 2006; 22:2965-70. [PMID: 16324131 DOI: 10.1111/j.1460-9568.2005.04504.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effect of 5-bromo-2'-deoxyuridine (BrdU) incorporation on the phenotype of progeny derived from expanded E18 rat striatal precursors was examined. BrdU was administered to cultures for 24 h prior to differentiation. Results revealed that there was selective toxicity of this compound to developing TuJ1+ neurons, but not glia, at concentrations used in most labelling studies. Therefore, a BrdU dose-response curve from 0.2 microM to 10 microM was established. The optimum dose of BrdU for labelling cells was 0.2 microM, well below the 1-10 microm recommended concentration. This dose resulted in the survival of significantly more newborn BrdU/TuJ1+ double-labelled neurons and eliminated the toxic effects of BrdU. Administration of 10 microm BrdU resulted in a significant decrease in extracellular regulated kinase (ERK) phosphorylation compared with untreated cultures, this could be completely restored by the administration of either N-methyl-D-aspartate (NMDA) receptor antagonists such as MK801 or the nitric oxide synthesis inhibitor L-methyl-arginine methyl ester (L-NAME). Our results show that high levels of BrdU are selectively toxic to neurons through a mechanism that activates classical cell death pathways. This has implications for labelling studies both in vivo and in vitro.
Collapse
Affiliation(s)
- Maeve A Caldwell
- Centre for Brain Repair and Department of Clinical Neurosciences, Cambridge University Forvie Site, Robinson Way, Cambridge CB2 2PY, UK.
| | | | | |
Collapse
|
38
|
Lee HP, Jun YC, Choi JK, Kim JI, Carp RI, Kim YS. Activation of mitogen-activated protein kinases in hamster brains infected with 263K scrapie agent. J Neurochem 2005; 95:584-93. [PMID: 16135077 DOI: 10.1111/j.1471-4159.2005.03429.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the expression, activation and distribution of c-Jun N-terminal kinases (JNKs), p38 mitogen-activated protein kinases (p38 MAPKs) and extracellular signal-regulated kinases (ERKs), using western blotting and immunohistochemistry, in the brains of hamsters infected with 263K scrapie agent, to clarify the role of these kinases in the pathogenesis of prion disease. The immunoblot analysis demonstrated that activation of JNK, p38 MAPK and ERK in whole brain homogenates was increased in infected animals. Phosphorylation of cAMP/calcium responsive element binding protein (CREB), a downstream transcription factor of active ERK, was significantly increased in scrapie-infected hamsters. The immunohistochemical study showed that active ERK was enhanced in infected hamsters compared with controls. Active ERK immunoreactivity was observed within neurons in the dentate gyrus and in glial fibrillary acidic protein (GFAP)-positive reactive astrocytes of infected animals. The expression level of c-Jun mRNA as well as protein, a substrate of active JNK, was increased in infected animals. A significant increase in JNK activity upon glutathione S-transferase (GST)-c-Jun was observed in infected compared with control animals. Phospho-c-Jun immunoreactivity was observed only in neurons of the thalamus in infected groups. These findings indicated that the JNK pathway was activated in the scrapie-infected group. The chronological activation of MAPKs using immunoblot analysis indicates that the kinases are sequentially activated during the pathophysiology of prion disease. Taken together, these results lend credence to the notion that MAPK pathways are dysregulated in prion disease, and also indicate an active role for this pathway in disease pathogenesis.
Collapse
Affiliation(s)
- Hyun-Pil Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Kyeonggi-Do, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Mo L, Ren Q, Duchemin AM, Neff NH, Hadjiconstantinou M. GM1 and ERK signaling in the aged brain. Brain Res 2005; 1054:125-34. [PMID: 16084500 DOI: 10.1016/j.brainres.2005.06.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 06/23/2005] [Accepted: 06/25/2005] [Indexed: 12/01/2022]
Abstract
We investigated the ability of GM1 to induce phosphorylation/activation of the extracellular-regulated protein kinases (ERKs) in the striatum, hippocampus and frontal cortex of aged male Sprague-Dawley rats. Three different treatment paradigms were used: a single application of GM1 to brain slices in situ, a single intracerebroventricular (icv) administration of GM1 in vivo, and chronic administration of GM1 in vivo. In situ, GM1 induced a rapid and transient activation of ERK1 and ERK 2 in both young and aged rats, and a similar effect was observed after stimulation with the neurotrophins NGF and BDNF. The aged brain appeared to respond more robustly to neurotrophic stimulation with the pERK2 response being significantly greater in the hippocampus and frontal cortex. Acute icv administration of GM1 resulted in short-lasting phosphorylation of ERKs in both aged groups, while chronic administration of GM1 induced a protracted phosphorylation of ERKs. Following chronic GM1 treatment, pERK2 levels in the aged hippocampus were elevated over young control animals. In agreement with reports that GM1 phosphorylates TrkA in vitro or in situ, treatment with GM1 increased the phosphorylation of TrkA in hippocampus of both young and aged animals. These observations indicate that the aged brain maintains the ability to respond to neurotrophic stimuli and put forward the proposition that the ERK cascade is associated with the action(s) of GM1 ganglioside in vivo.
Collapse
Affiliation(s)
- Lili Mo
- Department of Psychiatry, Division of Molecular Neuropsychopharmacology, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
40
|
Futter M, Uematsu K, Bullock SA, Kim Y, Hemmings HC, Nishi A, Greengard P, Nairn AC. Phosphorylation of spinophilin by ERK and cyclin-dependent PK 5 (Cdk5). Proc Natl Acad Sci U S A 2005; 102:3489-94. [PMID: 15728359 PMCID: PMC552943 DOI: 10.1073/pnas.0409802102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spinophilin is a protein that binds to protein phosphatase-1 and actin and modulates excitatory synaptic transmission and dendritic spine morphology. We have identified three sites phosphorylated by ERK2 (Ser-15 and Ser-205) and cyclin-dependent PK 5 (Cdk5) (Ser-17), within the actin-binding domain of spinophilin. Cdk5 and ERK2 both phosphorylated spinophilin in intact cells. However, in vitro, phosphorylation by ERK2, but not by Cdk5, was able to modulate the ability of spinophilin to bind to and bundle actin filaments. In neurons and HEK293 cells expressing GFP-tagged variants of spinophilin, imaging studies demonstrated that introduction of a phospho-site mimic (Ser-15 to glutamate) was associated with increased filopodial density. These results support a role for spinophilin phosphorylation by ERK2 in the regulation of spine morphogenesis.
Collapse
Affiliation(s)
- Marie Futter
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Petzold A, Eikelenboom MJ, Keir G, Grant D, Lazeron RHC, Polman CH, Uitdehaag BMJ, Thompson EJ, Giovannoni G. Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J Neurol Neurosurg Psychiatry 2005; 76:206-11. [PMID: 15654034 PMCID: PMC1739484 DOI: 10.1136/jnnp.2004.043315] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Neurofilament phosphoforms (Nf) are principal components of the axoskeleton released during axonal injury. Cerebrospinal fluid (CSF) levels of Nf phosphoforms might be useful surrogate markers for disability in multiple sclerosis (MS), aid in distinguishing clinical subtypes, and provide valuable prognostic information. METHOD Thirty four patients with MS were included in a three year follow up study along with 318 controls with other non-inflammatory neurological diseases. CSF levels of two Nf heavy chain (NfH) phosphoforms (NfH(SMI35), NfH(SMI34)) were quantified at baseline and three year follow up using new ELISA techniques. Levels of NfH phosphoforms, the degree of phosphorylation (NfH(SMI34):NfH(SMI35) ratio), and changes in NfH levels between baseline and follow up (Delta NfH) were related to the clinical phenotype (RR or SP/PP), to three clinical scales (Kurtzke's EDSS, ambulation index (AI), and nine hole peg test (9HPT)), and to progression of disability. RESULTS A significantly higher proportion (59%) of patients with SP/PPMS experienced an increase in NfH(SMI35) levels between baseline and follow up compared with those with RRMS (14%, p<0.05). CSF NfH(SMI34) levels at baseline were higher in patients with SP/PP (11 pg/ml) compared with RR (7 pg/ml, p<0.05) and NfH(SMI35) levels were higher at follow up in SP/PP (129 pg/ml) compared with levels below assay sensitivity in RR (p<0.05). NfH(SMI35) correlated with the EDSS (r(s) = 0.54, p<0.01), the AI (r(s) = 0.42, p<0.05), and the 9HPT (r(s) = 0.59, p<0.01) at follow up. CONCLUSION The increase in NfH during the progressive phase of the disease together with the correlation of NfH(SMI35) with all clinical scales at follow up suggests that cumulative axonal loss is responsible for sustained disability and that high NfH(SMI35) levels are a poor prognostic sign.
Collapse
Affiliation(s)
- A Petzold
- Institute of Neurology, Department of Neuroinflammation, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ho OH, Delgado JY, O'Dell TJ. Phosphorylation of proteins involved in activity-dependent forms of synaptic plasticity is altered in hippocampal slices maintained in vitro. J Neurochem 2005; 91:1344-57. [PMID: 15584911 DOI: 10.1111/j.1471-4159.2004.02815.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The acute hippocampal slice preparation has been widely used to study the cellular mechanisms underlying activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD). Although protein phosphorylation has a key role in LTP and LTD, little is known about how protein phosphorylation might be altered in hippocampal slices maintained in vitro. To begin to address this issue, we examined the effects of slicing and in vitro maintenance on phosphorylation of six proteins involved in LTP and/or LTD. We found that AMPA receptor (AMPAR) glutamate receptor 1 (GluR1) subunits are persistently dephosphorylated in slices maintained in vitro for up to 8 h. alpha calcium/calmodulin-dependent kinase II (alphaCamKII) was also strongly dephosphorylated during the first 3 h in vitro but thereafter recovered to near control levels. In contrast, phosphorylation of the extracellular signal-regulated kinase ERK2, the ERK kinase MEK, proline-rich tyrosine kinase 2 (Pyk2), and Src family kinases was significantly, but transiently, increased. Electrophysiological experiments revealed that the induction of LTD by low-frequency synaptic stimulation was sensitive to time in vitro. These findings indicate that phosphorylation of proteins involved in N-methyl-D-aspartate (NMDA) receptor-dependent forms of synaptic plasticity is altered in hippocampal slices and suggest that some of these changes can significantly influence the induction of LTD.
Collapse
Affiliation(s)
- Oanh H Ho
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
43
|
Korhonen P, Kyrylenko S, Suuronen T, Salminen A. Changes in DNA binding pattern of transcription factor YY1 in neuronal degeneration. Neurosci Lett 2004; 377:121-4. [PMID: 15740849 DOI: 10.1016/j.neulet.2004.11.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/09/2004] [Accepted: 11/25/2004] [Indexed: 10/26/2022]
Abstract
Molecular events under the neuronal degeneration are widely studied but still not defined. Here we compared the effects of both excitotoxic and apoptotic insults on the DNA binding profile of multifunctional transcription factor YY1 protein in cultured cerebellar granule neurons. We report that L-glutamate-induced excitotoxic insult but not ionophore A23187 treatment caused the disappearance of the larger DNA binding complex of YY1 and a simultaneous appearance of the smaller YY1 complex in cerebellar granule neurons. MK-801 (NMDA receptor antagonist) as well as benzamide (PARP inhibitor), MDL 28170 (calpain inhibitor) and roscovitine (cyclin-dependent kinase inhibitor) inhibited the glutamate response to the YY1 complexes. Herbimycin, PD169316, wortmannin, JAK3 inhibitor, KN-93, H-7 and LY294002 were not effective. Apoptosis induced by okadaic acid but not that induced by etoposide or trichostatin A caused a similar excitotoxic reorganization in YY1 complexes. We suggest that despite the different cell death mechanisms, glutamate and okadaic acid activate signalling cascades that affect the formation of YY1 complexes and probably YY1-mediated gene regulation.
Collapse
Affiliation(s)
- Pauliina Korhonen
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | |
Collapse
|
44
|
Corvol JC, Valjent E, Toutant M, Enslen H, Irinopoulou T, Lev S, Hervé D, Girault JA. Depolarization activates ERK and proline-rich tyrosine kinase 2 (PYK2) independently in different cellular compartments in hippocampal slices. J Biol Chem 2004; 280:660-8. [PMID: 15537634 DOI: 10.1074/jbc.m411312200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the hippocampus, extracellular signal-regulated kinase (ERK) and the non-receptor protein proline-rich tyrosine kinase 2 (PYK2) are activated by depolarization and involved in synaptic plasticity. Both are also activated under pathological conditions following ischemia, convulsions, or electroconvulsive shock. Although in non-neuronal cells PYK2 activates ERK through the recruitment of Src-family kinases (SFKs), the link between these pathways in the hippocampus is not known. We addressed this question using K(+)-depolarized rat hippocampal slices. Depolarization increased the phosphorylation of PYK2, SFKs, and ERK. These effects resulted from Ca(2+) influx through voltage-gated Ca(2+) channels and were diminished by GF109203X, a protein kinase C inhibitor. Inhibition of SFKs with PP2 decreased PYK2 tyrosine phosphorylation dramatically, but not its autophosphorylation on Tyr-402. Moreover, PYK2 autophosphorylation and total tyrosine phosphorylation were profoundly altered in fyn-/- mice, revealing an important functional relationship between Fyn and PYK2 in the hippocampus. In contrast, ERK activation was unaltered by PP2, Fyn knock-out, or LY294002, a phosphatidyl-inositol-3-kinase inhibitor. ERK activation was prevented by MEK inhibitors that had no effect on PYK2. Immunofluorescence of hippocampal slices showed that PYK2 and ERK were activated in distinct cellular compartments in somatodendritic regions and nerve terminals, respectively, with virtually no overlap. Activation of ERK was critical for the rephosphorylation of a synaptic vesicle protein, synapsin I, following depolarization, underlining its functional importance in nerve terminals. Thus, in hippocampal slices, in contrast to cell lines, depolarization-induced activation of non-receptor tyrosine kinases and ERK occurs independently in distinct cellular compartments in which they appear to have different functional roles.
Collapse
Affiliation(s)
- Jean-Christophe Corvol
- Signal Transduction and Plasticity in the Nervous System Unit, INSERM/Université Pierre et Marie Curie U536, Institut du Fer à Moulin, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kyosseva SV. Differential expression of mitogen-activated protein kinases and immediate early genes fos and jun in thalamus in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:997-1006. [PMID: 15380860 DOI: 10.1016/j.pnpbp.2004.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 12/20/2022]
Abstract
Despite a growing body of evidence demonstrating that mitogen-activated protein (MAP) kinase pathways play an important physiological role in the CNS, little is known about their role and function in various mental disorders including schizophrenia. Our previous studies have shown increased expression of several intermediates of the extracellular signal-regulated (ERK) cascade and downstream transcription targets in cerebellar vermis without any changes in mesopontine tegmentum and Brodmann's area 10 in patients with schizophrenia. Given the evidence for abnormalities in schizophrenia in a neural circuit involving the cerebellum and thalamus, the present study was conducted to examine the expression of MAP kinases extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38, as well as immediate early genes fos (c-fos and fos B) and jun (c-jun, jun B and jun D) using a Western blot analysis and reverse transcription polymerase chain reaction (RT-PCR) in postmortem thalamus from schizophrenic and control subjects. There were significant increase in ERK2, c-fos and c-jun protein and mRNA levels in thalamus of patients with schizophrenia relative to controls. No statistically significant differences were found for ERK1, Fos B, Jun B or Jun D proteins in schizophrenic and control subjects. These results taken together with our previous findings provide new evidence for selective abnormalities of distinct MAP kinases and immediate early genes c-fos and c-jun in a circuit involving the thalamus and cerebellum, which may contribute significantly to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Svetlana V Kyosseva
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| |
Collapse
|
46
|
Kyosseva SV. The role of the extracellular signal-regulated kinase pathway in cerebellar abnormalities in schizophrenia. THE CEREBELLUM 2004; 3:94-9. [PMID: 15233576 DOI: 10.1080/14734220410029164] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent postmortem and functional imaging studies have revealed that cerebellar abnormalities may play a role in the pathophysiology of schizophrenia. Cerebellum is a part of the cortical-subcortical-cerebellar circuitry that is involved in higher cognitive functions. Deficits in cognition, including information, executive functions, attention, emotion, and memory have been described in patients with schizophrenia. Given the pivotal role of mitogen-activated protein (MAP) kinase pathways in regulation of neuronal function and especially the role of extracellular-signal regulated kinase (ERK) in synaptic plasticity, cell survival, learning and memory, the importance of MAP kinases in schizophrenia is being increasingly recognized. In this mini-review is summarized recent evidence from human postmortem studies and the phencyclidine (PCP) pharmacological model of schizophrenia that ERK signaling pathway could contribute to the pathogenic events that occur in the cerebellum in schizophrenia.
Collapse
Affiliation(s)
- Svetlana V Kyosseva
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| |
Collapse
|
47
|
Wang JQ, Tang Q, Parelkar NK, Liu Z, Samdani S, Choe ES, Yang L, Mao L. Glutamate signaling to Ras-MAPK in striatal neurons: mechanisms for inducible gene expression and plasticity. Mol Neurobiol 2004; 29:1-14. [PMID: 15034219 DOI: 10.1385/mn:29:1:01] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 06/24/2003] [Indexed: 11/11/2022]
Abstract
Extracellular signals can regulate mitogen-activated protein kinase (MAPK) cascades through a receptor-mediated mechanism in postmitotic neurons of adult mammalian brain. Both ionotropic and metabotropic glutamate receptors (mGluRs) are found to possess such an ability in striatal neurons. NMDA and AMPA receptor signals seem to share a largely common route to MAPK phosphorylation which involves first activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) via Ca2+ influx, followed by subsequent induction of phosphoinositide 3-kinase (PI3-kinase). Through its lipid and protein kinase activity, active PI3-kinase may transduce signals to Ras-MAPK cascades via at least two distinct pathways. A novel, Ca(2+)-independent pathway is believed to mediate mGluR signals to Ras-MAPK activation. As an information superhighway between the surface membrane and the nucleus, Ras-MAPK cascades, through activating their specific nuclear transcription factor targets, are actively involved in the regulation of gene expression. Emerging evidence shows that MAPK-mediated genomic responses in striatal neurons to drug exposure contribute to the development of neuroplasticity related to addictive properties of drugs of abuse.
Collapse
Affiliation(s)
- John Q Wang
- Department of Pharmacology, University of Missouri-Kansas City, Kansas City, MO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Merlo D, Cifelli P, Cicconi S, Tancredi V, Avoli M. 4-Aminopyridine-induced epileptogenesis depends on activation of mitogen-activated protein kinase ERK. J Neurochem 2004; 89:654-9. [PMID: 15086522 DOI: 10.1111/j.1471-4159.2004.02382.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular signal-regulated kinases such as ERK1 [p44 mitogen-activated protein kinase (MAPK)] and ERK2 (p42 MAPK) are activated in the CNS under physiological and pathological conditions such as ischemia and epilepsy. Here, we studied the activation state of ERK1/2 in rat hippocampal slices during application of the K(+) channel blocker 4-aminopyridine (4AP, 50 micro m), a procedure that enhances synaptic transmission and leads to the appearance of epileptiform activity. Hippocampal slices superfused with 4AP-containing medium exhibited a marked activation of ERK1/2 phosphorylation that peaked within about 20 min. These effects were not accompanied by changes in the activation state of c-Jun N-terminal kinase (JNK), another member of the MAP kinase superfamily. 4AP-induced ERK1/2 activation was inhibited by the voltage-gated Na(+) channel blocker tetrodotoxin (1 micro m). We also found that application of the ERK pathway inhibitors U0126 (50 micro m) or PD98059 (100 micro m) markedly reduced 4AP-induced epileptiform synchronization, thus abolishing ictal discharges in the CA3 area. The effects induced by U0126 or PD98059 were not associated with changes in the amplitude and latency of the field potentials recorded in the CA3 area following electrical stimuli delivered in the dentate hylus. These data demonstrate that activation of ERK1/2 accompanies the appearance of epileptiform activity induced by 4AP and suggest a cause-effect relationship between the ERK pathway and epileptiform synchronization.
Collapse
Affiliation(s)
- Daniela Merlo
- Dipartimento di Neuroscienze, Università degli Studi di Roma 'Tor Vergata', Roma, Italy
| | | | | | | | | |
Collapse
|
49
|
Saulle E, Gubellini P, Picconi B, Centonze D, Tropepi D, Pisani A, Morari M, Marti M, Rossi L, Papa M, Bernardi G, Calabresi P. Neuronal vulnerability following inhibition of mitochondrial complex II: a possible ionic mechanism for Huntington's disease. Mol Cell Neurosci 2004; 25:9-20. [PMID: 14962736 DOI: 10.1016/j.mcn.2003.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 09/16/2003] [Accepted: 09/29/2003] [Indexed: 11/28/2022] Open
Abstract
An impaired complex II (succinate dehydrogenase, SD) striatal mitochondrial activity is one of the prominent metabolic alterations in Huntington's disease (HD), and intoxication with 3-nitropropionic acid (3-NP), an inhibitor of mitochondrial complex II, mimics the motor abnormalities and the pathology of HD. We found that striatal spiny neurons responded to this toxin with an irreversible membrane depolarization/inward current, while cholinergic interneurons showed a hyperpolarization/outward current. Both these currents were sensitive to intracellular concentration of ATP. The 3-NP-induced depolarization was associated with an increased release of endogenous GABA, while acetylcholine levels were reduced. Moreover, 3-NP induced a higher depolarization in presymptomatic R6/2 HD transgenic mice compared to wild-type (WT) mice, showing an increased susceptibility to SD inhibition. Conversely, the hyperpolarization did not significantly differ from the one recorded in WT mice. The diverse membrane changes induced by SD inhibition may contribute to the cell-type-specific neuronal death in HD.
Collapse
Affiliation(s)
- Emilia Saulle
- Clinica Neurologica, Dipartimento di Medicina Clinica e Sperimentale, Università di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Martini C, Trincavelli ML, Tuscano D, Carmassi C, Ciapparelli A, Lucacchini A, Cassano GB, Dell'Osso L. Serotonin-mediated phosphorylation of extracellular regulated kinases in platelets of patients with panic disorder versus controls. Neurochem Int 2004; 44:627-39. [PMID: 15016478 DOI: 10.1016/j.neuint.2003.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Revised: 04/17/2003] [Accepted: 09/11/2003] [Indexed: 11/18/2022]
Abstract
Phosphorylation of extracellular signal-regulated kinases (ERK 1/2) represents a converging intracellular signalling pathway which is involved in the modulation of gene transcription and may contribute to the feed-back regulation of neurotransmitter receptor functioning. The purpose of the current study was to investigate the serotonin-mediated phosphorylation of ERK 1/2 in platelets from patients (n = 17) with panic disorder, with respect to healthy volunteers (n = 17). Patients presented a severe symptomatology as assessed by the self-report rating scales for panic-agoraphobic (PAS-SR) and mood (MOOD-SR) spectrum, and by Clinical Global Impression Severity Scale (CGI-S). In platelets from healthy volunteers, serotonin induced a rapid increase of ERK 1/2 phosphorylation with a transient monophasic kinetic. The dose-response curves showed this effect was concentration dependent with an average of the EC(50) value of 22.8 +/- 2.4 microM. Platelet pre-incubation with 5HT(1A) and 5HT(2A) antagonists, pindobind and ritanserin, significantly inhibited serotonin-mediated kinase activation with an EC(50) of 3.2 +/- 0.2 and 1.99 +/- 0.08 nM, respectively, suggesting an involvement of these specific receptor subtypes in serotonin-mediated response. Furthermore, the 5HT(1A) and 5HT(2A) agonists, 8-hydroxy-N,N-dipropyl-aminotetralin (8OH-DPAT) and 1-(2,5-dimethoxy)-4-iodophenyl-2-aminopropane (DOI), were able to modulate ERK 1/2 phosphorylation in a concentration-dependent manner with an EC(50) value of 3.1 +/- 0.2 and 76 +/- 4.5 nM, respectively. ERK 1/2 phosphorylation was not observed after serotonin treatment of platelets from drug-free panic disorder patients, suggesting an alteration in intracellular phosphorylative pathways. Since ERK 1/2 responsiveness to other stimulus, such as collagen and thrombin, was comparable in platelets from healthy volunteers and patients, our results suggested that a specific alteration of serotonergic system occurred in panic disorder. Further studies to investigate 5HT(1A) and 5HT(2A) receptor expression and threonine phosphorylation levels showed that, nevertheless no significant differences in the receptor expression levels were detected, an increase of both 5HT receptor phosphorylation, on threonine residues, occurred in platelet from panic patients with respect to controls, suggesting that a reduction of serotonin receptor functioning was involved in the loss of serotonin responsiveness in panic.
Collapse
Affiliation(s)
- Claudia Martini
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|