1
|
Dilimulati D, Nueraihemaiti N, Hailati S, Han M, Abudurousuli K, Maihemuti N, Baishan A, Aikebaier A, Abulizi M, Zhou W. Elucidating the multi-target pharmacological mechanism of Xiaoyandina for the treatment of hepatitis C virus based on bioinformatics and cyberpharmacology studies. Medicine (Baltimore) 2025; 104:e41793. [PMID: 40101098 PMCID: PMC11922434 DOI: 10.1097/md.0000000000041793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
An estimated 170 million people worldwide suffer from chronic hepatitis C virus (HCV) infection, which is the main reason for liver transplantation in numerous nations. Traditional Chinese medicine is also frequently employed in medicine to treat HCV. Xiaoyandina is frequently employed in traditional medicine, and which has traditionally been used to cure acute and chronic hepatitis, jaundice, acute and chronic cholecystitis, and acute and chronic cholangitis. The information related to active compounds was retrieved from public databases and through literature review which was later combined with differentially expressed genes obtained through microarray datasets; a compound-target genes-disease network was constructed which uncovered that Kaempferol, Sesamin, and Quercetin decisively contributed to the cell growth and proliferation by affecting STAT1, interleukin-6, and CXCL10 proteins. The molecular docking and molecular dynamics simulation of 50 ns well complemented the binding affinity of the compound and revealed strong stability of predicted compounds at the docked site. In total, compound targets were obtained separately from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. And 27, 10,894, 6, and 20 disease targets were acquired separately based on OMIM, GeneCard, DrugBank, and PharmGkb databases. Then, we constructed the compound-target network and protein-protein interaction network. Three hundred ninety-four differentially expressed genes were observed (231 up-regulated and 163 downregulated genes). Hub genes were screened through survival analysis, including interleukin-6, STAT1, and CXCL10. Finally, molecular docking and molecular dynamics analysis results showed more stable binding between 3 hub genes and the 2 most active compounds Kaempferol and Quercetin. Our research suggests a novel scientific approach for evaluating the multi-component, multi-target impact of XYDN's active compounds. The present investigation suggested Quercetin, Kaempferol, and Sesamin as possible HCV treatments by combining bioinformatics techniques and network pharmacology. But the findings were not validated in actual patients, so further investigation is needed to confirm the potential use of XYDN towards HCV.
Collapse
Affiliation(s)
- Dilihuma Dilimulati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Nuerbiye Nueraihemaiti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Sendaer Hailati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Mengyuan Han
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Kayisaier Abudurousuli
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Nulibiya Maihemuti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Alhar Baishan
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Alfira Aikebaier
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| | - Maidina Abulizi
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Wenting Zhou
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
- Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Medicines, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Turnham RE, Pitea A, Jang GM, Xu Z, Lim HC, Choi AL, Von Dollen J, Levin RS, Webber JT, McCarthy E, Hu J, Li X, Che L, Singh A, Yoon A, Chan G, Kelley RK, Swaney DL, Zhang W, Bandyopadhyay S, Theis FJ, Eckhardt M, Chen X, Shokat KM, Ideker T, Krogan NJ, Gordan JD. HBV Remodels PP2A Complexes to Rewire Kinase Signaling in Hepatocellular Carcinoma. Cancer Res 2025; 85:660-674. [PMID: 39652575 PMCID: PMC11949624 DOI: 10.1158/0008-5472.can-24-0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/09/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
Hepatitis B virus (HBV) infections promote liver cancer initiation by inducing inflammation and cellular stress. Despite a primarily indirect effect on oncogenesis, HBV is associated with a recurrent genomic phenotype in hepatocellular carcinoma (HCC), suggesting that it impacts the biology of established HCC. Characterization of the interaction of HBV with host proteins and the mechanistic contributions of HBV to HCC initiation and maintenance could provide insights into HCC biology and uncover therapeutic vulnerabilities. In this study, we used affinity purification mass spectrometry to comprehensively map a network of 145 physical interactions between HBV and human proteins in HCC. A subset of the host factors targeted by HBV proteins were preferentially mutated in non-HBV-associated HCC, suggesting that their interaction with HBV influences HCC biology. HBV interacted with proteins involved in mRNA splicing, mitogenic signaling, and DNA repair, with the latter set interacting with the HBV oncoprotein X (HBx). HBx remodeled the PP2A phosphatase complex by excluding striatin regulatory subunits from the PP2A holoenzyme, and the HBx effects on PP2A caused Hippo kinase activation. In parallel, HBx activated mTOR complex 2, which can prevent YAP degradation. mTOR complex 2-mediated upregulation of YAP was observed in human HCC specimens and mouse HCC models and could be targeted with mTOR kinase inhibitors. Thus, HBV interaction with host proteins rewires HCC signaling rather than directly activating mitogenic pathways, providing an alternative paradigm for the cellular effects of a tumor-promoting virus. Significance: Integrative proteomic and genomic analysis of HBV/host interactions illuminated modifiers of hepatocellular carcinoma behavior and key signaling mechanisms in advanced disease, which suggested that HBV may have therapeutically actionable effects.
Collapse
Affiliation(s)
- Rigney E Turnham
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Adriana Pitea
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Gwendolyn M Jang
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Zhong Xu
- Department of Bioengineering, University of California, San Francisco CA
| | - Huat Chye Lim
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Alex L Choi
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - John Von Dollen
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Rebecca S. Levin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - James T Webber
- Department of Bioengineering, University of California, San Francisco CA
| | - Elizabeth McCarthy
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Junjie Hu
- Department of Bioengineering, University of California, San Francisco CA
| | - Xiaolei Li
- Department of Bioengineering, University of California, San Francisco CA
| | - Li Che
- Department of Bioengineering, University of California, San Francisco CA
| | - Ananya Singh
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Alex Yoon
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Gary Chan
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Robin K Kelley
- Division of Hematology/Oncology, University of California, San Francisco CA
| | - Danielle L Swaney
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Wei Zhang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Fabian J Theis
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Manon Eckhardt
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA
| | - Xin Chen
- Department of Bioengineering, University of California, San Francisco CA
| | - Kevan M Shokat
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Howard Hughes Medical Institute, University of California, San Francisco CA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Nevan J Krogan
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA
| | - John D Gordan
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| |
Collapse
|
3
|
Seurre C, Roca Suarez AA, Testoni B, Zoulim F, Grigorov B. After the Storm: Persistent Molecular Alterations Following HCV Cure. Int J Mol Sci 2024; 25:7073. [PMID: 39000179 PMCID: PMC11241208 DOI: 10.3390/ijms25137073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The development of direct-acting antivirals (DAAs) against hepatitis C virus (HCV) has revolutionized the management of this pathology, as their use allows viral elimination in a large majority of patients. Nonetheless, HCV remains a major public health problem due to the multiple challenges associated with its diagnosis, treatment availability and development of a prophylactic vaccine. Moreover, HCV-cured patients still present an increased risk of developing hepatic complications such as hepatocellular carcinoma. In the present review, we aim to summarize the impact that HCV infection has on a wide variety of peripheral and intrahepatic cell populations, the alterations that remain following DAA treatment and the potential molecular mechanisms implicated in their long-term persistence. Finally, we consider how recent developments in single-cell multiomics could refine our understanding of this disease in each specific intrahepatic cell population and drive the field to explore new directions for the development of chemo-preventive strategies.
Collapse
Affiliation(s)
- Coline Seurre
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Armando Andres Roca Suarez
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
- Hospices Civils de Lyon, 69002 Lyon, France
| | - Boyan Grigorov
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| |
Collapse
|
4
|
Ahn BY, Zhang Y, Wei S, Jeong Y, Park DH, Lee SJ, Leem YE, Kang JS. Prmt7 regulates the JAK/STAT/Socs3 signaling pathway in postmenopausal cardiomyopathy. Exp Mol Med 2024; 56:711-720. [PMID: 38486105 PMCID: PMC10985114 DOI: 10.1038/s12276-024-01193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024] Open
Abstract
Protein arginine methyltransferases (PRMTs) modulate diverse cellular processes, including stress responses. The present study explored the role of Prmt7 in protecting against menopause-associated cardiomyopathy. Mice with cardiac-specific Prmt7 ablation (cKO) exhibited sex-specific cardiomyopathy. Male cKO mice exhibited impaired cardiac function, myocardial hypertrophy, and interstitial fibrosis associated with increased oxidative stress. Interestingly, female cKO mice predominantly exhibited comparable phenotypes only after menopause or ovariectomy (OVX). Prmt7 inhibition in cardiomyocytes exacerbated doxorubicin (DOX)-induced oxidative stress and DNA double-strand breaks, along with apoptosis-related protein expression. Treatment with 17β-estradiol (E2) attenuated the DOX-induced decrease in Prmt7 expression in cardiomyocytes, and Prmt7 depletion abrogated the protective effect of E2 against DOX-induced cardiotoxicity. Transcriptome analysis of ovariectomized wild-type (WT) or cKO hearts and mechanical analysis of Prmt7-deficient cardiomyocytes demonstrated that Prmt7 is required for the control of the JAK/STAT signaling pathway by regulating the expression of suppressor of cytokine signaling 3 (Socs3), which is a negative feedback inhibitor of the JAK/STAT signaling pathway. These data indicate that Prmt7 has a sex-specific cardioprotective effect by regulating the JAK/STAT signaling pathway and, ultimately, may be a potential therapeutic tool for heart failure treatment depending on sex.
Collapse
Affiliation(s)
- Byeong-Yun Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Yan Zhang
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Shibo Wei
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Yideul Jeong
- Research Institute of Aging-Related Diseases, AniMusCure, Inc, Suwon, Republic of Korea
| | - Dong-Hyun Park
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea
| | - Sang-Jin Lee
- Research Institute of Aging-Related Diseases, AniMusCure, Inc, Suwon, Republic of Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea.
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
5
|
PGC-1α and MEF2 Regulate the Transcription of the Carnitine Transporter OCTN2 Gene in C2C12 Cells and in Mouse Skeletal Muscle. Int J Mol Sci 2022; 23:ijms232012304. [PMID: 36293168 PMCID: PMC9604316 DOI: 10.3390/ijms232012304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
OCTN2 (SLC22A5) is a carnitine transporter whose main function is the active transport of carnitine into cells. In skeletal muscle and other organs, the regulation of the SLC22A5 gene transcription has been shown to depend on the nuclear transcription factor PPAR-α. Due to the observation that the muscle OCTN2 mRNA level is maintained in PPAR-α knock-out mice and that PGC-1α overexpression in C2C12 myoblasts increases OCTN2 mRNA expression, we suspected additional regulatory pathways for SLC22A5 gene transcription. Indeed, we detected several binding sites of the myocyte-enhancing factor MEF2 in the upstream region of the SLC22A5 gene, and MEF2C/MEF2D stimulated the activity of the OCTN2 promoter in gene reporter assays. This stimulation was increased by PGC-1α and was blunted for a SLC22A5 promoter fragment with a mutated MEF2 binding site. Further, we demonstrated the specific binding of MEF2 to the SLC22A5 gene promoter, and a supershift of the MEF2/DNA complex in electrophoretic mobility shift assays. In immunoprecipitation experiments, we could demonstrate the interaction between PGC-1α and MEF2. In addition, SB203580, a specific inhibitor of p38 MAPK, blocked and interferon-γ stimulated the transcriptional activity of the SLC22A5 gene promoter. Finally, mice with muscle-specific overexpression of OCTN2 showed an increase in OCTN2 mRNA and protein expression in skeletal muscle. In conclusion, we detected and characterized a second stimulatory pathway of SLC22A5 gene transcription in skeletal muscle, which involves the nuclear transcription factor MEF2 and co-stimulation by PGC-1α and which is controlled by the p38 MAPK signaling cascade.
Collapse
|
6
|
Tian Z, Xu C, Yang P, Lin Z, Wu W, Zhang W, Ding J, Ding R, Zhang X, Dou K. Molecular pathogenesis: Connections between viral hepatitis-induced and non-alcoholic steatohepatitis-induced hepatocellular carcinoma. Front Immunol 2022; 13:984728. [PMID: 36189208 PMCID: PMC9520190 DOI: 10.3389/fimmu.2022.984728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma(HCC) is the sixth most common cancer in the world and is usually caused by viral hepatitis (HBV and HCV), alcoholic, and non-alcoholic fatty liver disease(NAFLD). Viral hepatitis accounts for 80% of HCC cases worldwide. In addition, With the increasing incidence of metabolic diseases, NAFLD is now the most common liver disease and a major risk factor for HCC in most developed countries. This review mainly described the specificity and similarity between the pathogenesis of viral hepatitis(HBV and HCV)-induced HCC and NAFLD-induced HCC. In general, viral hepatitis promotes HCC development mainly through specific encoded viral proteins. HBV can also exert its tumor-promoting mechanism by integrating into the host chromosome, while HCV cannot. Viral hepatitis-related HCC and NASH-related HCC differ in terms of genetic factors, and epigenetic modifications (DNA methylation, histone modifications, and microRNA effects). In addition, both of them can lead to HCC progression through abnormal lipid metabolism, persistent inflammatory response, immune and intestinal microbiome dysregulation.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenlong Wu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kefeng Dou,
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Xuan Zhang, ; Kefeng Dou,
| |
Collapse
|
7
|
Anwar MI, Li N, Zhou Q, Chen M, Hu C, Wu T, Chen H, Li YP, Zhou Y. PPP2R5D promotes hepatitis C virus infection by binding to viral NS5B and enhancing viral RNA replication. Virol J 2022; 19:118. [PMID: 35836293 PMCID: PMC9284890 DOI: 10.1186/s12985-022-01848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection increased the risk of hepatocellular carcinoma. Identification of host factors required for HCV infection will help to unveil the HCV pathogenesis. Adaptive mutations that enable the replication of HCV infectious clones could provide hints that the mutation-carrying viral protein may specifically interact with some cellular factors essential for the HCV life cycle. Previously, we identified D559G mutation in HCV NS5B (RNA dependent RNA polymerase) important for replication of different genotype clones. Here, we searched for the factors that potentially interacted with NS5B and investigated its roles in HCV infection. METHODS Wild-type-NS5B and D559G-NS5B of HCV genotype 2a clone, J6cc, were ectopically expressed in hepatoma Huh7.5 cells, and NS5B-binding proteins were pulled down and identified by mass spectrometry. The necessity and mode of action of the selected cellular protein for HCV infection were explored by experiments including gene knockout or knockdown, complementation, co-immunoprecipitation (Co-IP), colocalization, virus infection and replication, and enzymatic activity, etc. RESULTS: Mass spectrometry identified a number of cellular proteins, of which protein phosphatase 2 regulatory subunit B'delta (PPP2R5D, the PP2A regulatory B subunit) was one of D559G-NS5B-pulled down proteins and selected for further investigation. Co-IP confirmed that PPP2R5D specifically interacted with HCV NS5B but not HCV Core and NS3 proteins, and D559G slightly enhanced the interaction. NS5B also colocalized with PPP2R5D in the endoplasmic reticulum. Knockdown and knockout of PPP2R5D decreased and abrogated HCV infection in Huh7.5 cells, respectively, while transient and stable expression of PPP2R5D in PPP2R5D-knockout cells restored HCV infection to a level close to that in wild-type Huh7.5 cells. Replicon assay revealed that PPP2R5D promoted HCV replication, but the phosphatase activity and catalytic subunit of PP2A were not affected by NS5B. CONCLUSIONS PPP2R5D interactes with HCV NS5B and is required for HCV infection in cultured hepatoma cells through facilitating HCV replication.
Collapse
Affiliation(s)
- Muhammad Ikram Anwar
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ni Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qing Zhou
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Mingxiao Chen
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chengguang Hu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Wu
- Department of Infectious Diseases, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Haihang Chen
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China. .,Department of Infectious Diseases, The Fifth Hospital of Sun Yat-Sen University, Zhuhai, China.
| | - Yuanping Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Toll-like Receptor Response to Hepatitis C Virus Infection: A Recent Overview. Int J Mol Sci 2022; 23:ijms23105475. [PMID: 35628287 PMCID: PMC9141274 DOI: 10.3390/ijms23105475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) infection remains a major global health burden, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that detect pathogen-associated molecular patterns and activate downstream signaling to induce proinflammatory cytokine and chemokine production. An increasing number of studies have suggested the importance of TLR responses in the outcome of HCV infection. However, the exact role of innate immune responses, including TLR response, in controlling chronic HCV infection remains to be established. A proper understanding of the TLR response in HCV infection is essential for devising new therapeutic approaches against HCV infection. In this review, we discuss the progress made in our understanding of the host innate immune response to HCV infection, with a particular focus on the TLR response. In addition, we discuss the mechanisms adopted by HCV to avoid immune surveillance mediated by TLRs.
Collapse
|
9
|
Pascale RM, Simile MM, Calvisi DF, Feo CF, Feo F. S-Adenosylmethionine: From the Discovery of Its Inhibition of Tumorigenesis to Its Use as a Therapeutic Agent. Cells 2022; 11:409. [PMID: 35159219 PMCID: PMC8834208 DOI: 10.3390/cells11030409] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations of methionine cycle in steatohepatitis, cirrhosis, and hepatocellular carcinoma induce MAT1A decrease and MAT2A increase expressions with the consequent decrease of S-adenosyl-L-methionine (SAM). This causes non-alcoholic fatty liver disease (NAFLD). SAM administration antagonizes pathological conditions, including galactosamine, acetaminophen, and ethanol intoxications, characterized by decreased intracellular SAM. Positive therapeutic effects of SAM/vitamin E or SAM/ursodeoxycholic acid in animal models with NAFLD and intrahepatic cholestasis were not confirmed in humans. In in vitro experiments, SAM and betaine potentiate PegIFN-alpha-2a/2b plus ribavirin antiviral effects. SAM plus betaine improves early viral kinetics and increases interferon-stimulated gene expression in patients with viral hepatitis non-responders to pegIFNα/ribavirin. SAM prevents hepatic cirrhosis, induced by CCl4, inhibits experimental tumors growth and is proapoptotic for hepatocellular carcinoma and MCF-7 breast cancer cells. SAM plus Decitabine arrest cancer growth and potentiate doxorubicin effects on breast, head, and neck cancers. Furthermore, SAM enhances the antitumor effect of gemcitabine against pancreatic cancer cells, inhibits growth of human prostate cancer PC-3, colorectal cancer, and osteosarcoma LM-7 and MG-63 cell lines; increases genomic stability of SW480 cells. SAM reduces colorectal cancer progression and inhibits the proliferation of preneoplastic rat liver cells in vivo. The discrepancy between positive results of SAM treatment of experimental tumors and modest effects against human disease may depend on more advanced human disease stage at moment of diagnosis.
Collapse
Affiliation(s)
- Rosa M. Pascale
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Maria M. Simile
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Diego F. Calvisi
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Claudio F. Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| |
Collapse
|
10
|
HCV Genotype Has No Influence on the Incidence of Diabetes-EpiTer Multicentre Study. J Clin Med 2022; 11:jcm11020379. [PMID: 35054072 PMCID: PMC8780546 DOI: 10.3390/jcm11020379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
HCV infection is one of the main reasons for liver cirrhosis and hepatocellular carcinoma. In recent years, one finds more and more extrahepatic manifestations of HCV infection, including its possible influence on the development of diabetes. In the presented work, one finds the frequency analysis of the incidence of diabetes among 2898 HCV infected patients treated in Poland, and the assessment of their relevance to the HCV genotype and the progression of fibrosis. The results indicate that the hepatitis C infection seems to be a risk factor for diabetes in persons with more advanced liver fibrosis, for older people, and for the male gender. Thus, one found no differences regarding the frequency of its incidence depending on HCV genotype, including genotype 3.
Collapse
|
11
|
PIAS1 Regulates Hepatitis C Virus-Induced Lipid Droplet Accumulation by Controlling Septin 9 and Microtubule Filament Assembly. Pathogens 2021; 10:pathogens10101327. [PMID: 34684276 PMCID: PMC8537804 DOI: 10.3390/pathogens10101327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection often leads to fibrosis and chronic hepatitis, then cirrhosis and ultimately hepatocellular carcinoma (HCC). The processes of the HVC life cycle involve intimate interactions between viral and host cell proteins and lipid metabolism. However, the molecules and mechanisms involved in this tripartite interaction remain poorly understood. Herein, we show that the infection of HCC-derived Huh7.5 cells with HCV promotes upregulation of the protein inhibitor of activated STAT1 (PIAS1). Reciprocally, PIAS1 regulated the expression of HCV core protein and HCV-induced LD accumulation and impaired HCV replication. Furthermore, PIAS1 controlled HCV-promoted septin 9 filament formation and microtubule polymerization. Subsequently, we found that PIAS1 interacted with septin 9 and controlled its assembly on filaments, which thus affected septin 9-induced lipid droplet accumulation. Taken together, these data reveal that PIAS1 regulates the accumulation of lipid droplets and offer a meaningful insight into how HCV interacts with host proteins.
Collapse
|
12
|
Virus-Induced Tumorigenesis and IFN System. BIOLOGY 2021; 10:biology10100994. [PMID: 34681093 PMCID: PMC8533565 DOI: 10.3390/biology10100994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 01/11/2023]
Abstract
Oncogenic viruses favor the development of tumors in mammals by persistent infection and specific cellular pathways modifications by deregulating cell proliferation and inhibiting apoptosis. They counteract the cellular antiviral defense through viral proteins as well as specific cellular effectors involved in virus-induced tumorigenesis. Type I interferons (IFNs) are a family of cytokines critical not only for viral interference but also for their broad range of properties that go beyond the antiviral action. In fact, they can inhibit cell proliferation and modulate differentiation, apoptosis, and migration. However, their principal role is to regulate the development and activity of most effector cells of the innate and adaptive immune responses. Various are the mechanisms by which IFNs exert their effects on immune cells. They can act directly, through IFN receptor triggering, or indirectly by the induction of chemokines, the secretion of further cytokines, or by the stimulation of cells useful for the activation of particular immune cells. All the properties of IFNs are crucial in the host defense against viruses and bacteria, as well as in the immune surveillance against tumors. IFNs may be affected by and, in turn, affect signaling pathways to mediate anti-proliferative and antiviral responses in virus-induced tumorigenic context. New data on cellular and viral microRNAs (miRNAs) machinery, as well as cellular communication and microenvironment modification via classical secretion mechanisms and extracellular vesicles-mediated delivery are reported. Recent research is reviewed on the tumorigenesis induced by specific viruses with RNA or DNA genome, belonging to different families (i.e., HPV, HTLV-1, MCPyV, JCPyV, Herpesviruses, HBV, HCV) and the IFN system involvement.
Collapse
|
13
|
Mirzapoiazova T, Xiao G, Mambetsariev B, Nasser MW, Miaou E, Singhal SS, Srivastava S, Mambetsariev I, Nelson MS, Nam A, Behal A, Arvanitis L, Atri P, Muschen M, Tissot FLH, Miser J, Kovach JS, Sattler M, Batra SK, Kulkarni P, Salgia R. Protein Phosphatase 2A as a Therapeutic Target in Small Cell Lung Cancer. Mol Cancer Ther 2021; 20:1820-1835. [PMID: 34253596 PMCID: PMC8722383 DOI: 10.1158/1535-7163.mct-21-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/22/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023]
Abstract
Protein phosphatase 2A (PP2A), a serine/threonine phosphatase involved in the regulation of apoptosis, proliferation, and DNA-damage response, is overexpressed in many cancers, including small cell lung cancer (SCLC). Here we report that LB100, a small molecule inhibitor of PP2A, when combined with platinum-based chemotherapy, synergistically elicited an antitumor response both in vitro and in vivo with no apparent toxicity. Using inductively coupled plasma mass spectrometry, we determined quantitatively that sensitization via LB100 was mediated by increased uptake of carboplatin in SCLC cells. Treatment with LB100 alone or in combination resulted in inhibition of cell viability in two-dimensional culture and three-dimensional spheroid models of SCLC, reduced glucose uptake, and attenuated mitochondrial and glycolytic ATP production. Combining LB100 with atezolizumab increased the capacity of T cells to infiltrate and kill tumor spheroids, and combining LB100 with carboplatin caused hyperphosphorylation of the DNA repair marker γH2AX and enhanced apoptosis while attenuating MET signaling and invasion through an endothelial cell monolayer. Taken together, these data highlight the translational potential of inhibiting PP2A with LB100 in combination with platinum-based chemotherapy and immunotherapy in SCLC.
Collapse
Affiliation(s)
- Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Gang Xiao
- Department of Systems Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
- Institute of Immunology, Institute of Hematology, Zhejiang University School of Medicine, Zhejiang, China
| | - Bolot Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Emily Miaou
- The Isotoparium, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - Sharad S Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Saumya Srivastava
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Michael S Nelson
- The Light Microscopy and Digital Imaging Core, Beckman Research Institute, City of Hope, Duarte, California
| | - Arin Nam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Amita Behal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Cancer Center, Duarte, California
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Markus Muschen
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - François L H Tissot
- The Isotoparium, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - James Miser
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California
| | - John S Kovach
- Lixte Biotechnology Holdings, Inc., East Setauket, New York
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California.
| |
Collapse
|
14
|
Barski MS, Minnell JJ, Maertens GN. PP2A Phosphatase as an Emerging Viral Host Factor. Front Cell Infect Microbiol 2021; 11:725615. [PMID: 34422684 PMCID: PMC8371333 DOI: 10.3389/fcimb.2021.725615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is one of the most ubiquitous cellular proteins and is responsible for the vast majority of Ser/Thr phosphatase activity in eukaryotes. PP2A is a heterotrimer, and its assembly, intracellular localization, enzymatic activity, and substrate specificity are subject to dynamic regulation. Each of its subunits can be targeted by viral proteins to hijack and modulate its activity and downstream signaling to the advantage of the virus. Binding to PP2A is known to be essential to the life cycle of many viruses and seems to play a particularly crucial role for oncogenic viruses, which utilize PP2A to transform infected cells through controlling the cell cycle and apoptosis. Here we summarise the latest developments in the field of PP2A viral targeting; in particular recent discoveries of PP2A hijacking through molecular mimicry of a B56-specific motif by several different viruses. We also discuss the potential as well as shortcomings for therapeutic intervention in the face of our current understanding of viral PP2A targeting.
Collapse
Affiliation(s)
| | | | - Goedele Noella Maertens
- Department of Infectious Disease, Section of Molecular Virology, St Mary’s Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Coto-Llerena M, Lepore M, Spagnuolo J, Di Blasi D, Calabrese D, Suslov A, Bantug G, Duong FH, Terracciano LM, De Libero G, Heim MH. Interferon lambda 4 can directly activate human CD19 + B cells and CD8 + T cells. Life Sci Alliance 2021; 4:e201900612. [PMID: 33158978 PMCID: PMC7668538 DOI: 10.26508/lsa.201900612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Compared with the ubiquitous expression of type I (IFNα and IFNβ) interferon receptors, type III (IFNλ) interferon receptors are mainly expressed in epithelial cells of mucosal barriers of the of the intestine and respiratory tract. Consequently, IFNλs are important for innate pathogen defense in the lung and intestine. IFNλs also determine the outcome of hepatitis C virus (HCV) infections, with IFNλ4 inhibiting spontaneous clearance of HCV. Because viral clearance is dependent on T cells, we explored if IFNλs can directly bind to and regulate human T cells. We found that human B cells and CD8+ T cells express the IFNλ receptor and respond to IFNλs, including IFNλ4. IFNλs were not inhibitors but weak stimulators of B- and T-cell responses. Furthermore, IFNλ4 showed neither synergistic nor antagonistic effects in co-stimulatory experiments with IFNλ1 or IFNα. Multidimensional flow cytometry of cells from liver biopsies of hepatitis patients from IFNλ4-producers showed accumulation of activated CD8+ T cells with a central memory-like phenotype. In contrast, CD8+ T cells with a senescent/exhausted phenotype were more abundant in IFNλ4-non-producers. It remains to be elucidated how IFNλ4 promotes CD8 T-cell responses and inhibits the host immunity to HCV infections.
Collapse
Affiliation(s)
- Mairene Coto-Llerena
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Marco Lepore
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Julian Spagnuolo
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Daniela Di Blasi
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Aleksei Suslov
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Glenn Bantug
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel, Switzerland
| | - Francois Ht Duong
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Luigi M Terracciano
- Molecular Pathology Division, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Gennaro De Libero
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Markus H Heim
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
- Division of Gastroenterology and Hepatology, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
16
|
Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther 2020; 5:280. [PMID: 33273451 PMCID: PMC7714782 DOI: 10.1038/s41392-020-00349-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the bicyclic metabolic pathways of one-carbon metabolism, methionine metabolism is the pivot linking the folate cycle to the transsulfuration pathway. In addition to being a precursor for glutathione synthesis, and the principal methyl donor for nucleic acid, phospholipid, histone, biogenic amine, and protein methylation, methionine metabolites can participate in polyamine synthesis. Methionine metabolism disorder can aggravate the damage in the pathological state of a disease. In the occurrence and development of chronic liver diseases (CLDs), changes in various components involved in methionine metabolism can affect the pathological state through various mechanisms. A methionine-deficient diet is commonly used for building CLD models. The conversion of key enzymes of methionine metabolism methionine adenosyltransferase (MAT) 1 A and MAT2A/MAT2B is closely related to fibrosis and hepatocellular carcinoma. In vivo and in vitro experiments have shown that by intervening related enzymes or downstream metabolites to interfere with methionine metabolism, the liver injuries could be reduced. Recently, methionine supplementation has gradually attracted the attention of many clinical researchers. Most researchers agree that adequate methionine supplementation can help reduce liver damage. Retrospective analysis of recently conducted relevant studies is of profound significance. This paper reviews the latest achievements related to methionine metabolism and CLD, from molecular mechanisms to clinical research, and provides some insights into the future direction of basic and clinical research.
Collapse
|
17
|
Unfried JP, Fortes P. LncRNAs in HCV Infection and HCV-Related Liver Disease. Int J Mol Sci 2020; 21:ijms21062255. [PMID: 32214045 PMCID: PMC7139329 DOI: 10.3390/ijms21062255] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts with poor coding capacity that may interact with proteins, DNA, or other RNAs to perform structural and regulatory functions. The lncRNA transcriptome changes significantly in most diseases, including cancer and viral infections. In this review, we summarize the functional implications of lncRNA-deregulation after infection with hepatitis C virus (HCV). HCV leads to chronic infection in many patients that may progress to liver cirrhosis and hepatocellular carcinoma (HCC). Most lncRNAs deregulated in infected cells that have been described function to potentiate or block the antiviral response and, therefore, they have a great impact on HCV viral replication. In addition, several lncRNAs upregulated by the infection contribute to viral release. Finally, many lncRNAs have been described as deregulated in HCV-related HCC that function to enhance cell survival, proliferation, and tumor progression by different mechanisms. Interestingly, some HCV-related HCC lncRNAs can be detected in bodily fluids, and there is great hope that they could be used as biomarkers to predict cancer initiation, progression, tumor burden, response to treatment, resistance to therapy, or tumor recurrence. Finally, there is high confidence that lncRNAs could also be used to improve the suboptimal long-term outcomes of current HCC treatment options.
Collapse
Affiliation(s)
| | - P. Fortes
- Correspondence: ; Tel.: +34-948194700
| |
Collapse
|
18
|
Ferreira AR, Ramos B, Nunes A, Ribeiro D. Hepatitis C Virus: Evading the Intracellular Innate Immunity. J Clin Med 2020; 9:jcm9030790. [PMID: 32183176 PMCID: PMC7141330 DOI: 10.3390/jcm9030790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus (HCV) infections constitute a major public health problem and are the main cause of chronic hepatitis and liver disease worldwide. The existing drugs, while effective, are expensive and associated with undesirable secondary effects. There is, hence, an urgent need to develop novel therapeutics, as well as an effective vaccine to prevent HCV infection. Understanding the interplay between HCV and the host cells will certainly contribute to better comprehend disease progression and may unravel possible new cellular targets for the development of novel antiviral therapeutics. Here, we review and discuss the interplay between HCV and the host cell innate immunity. We focus on the different cellular pathways that respond to, and counteract, HCV infection and highlight the evasion strategies developed by the virus to escape this intracellular response.
Collapse
Affiliation(s)
| | | | | | - Daniela Ribeiro
- Correspondence: ; Tel.: +351-234-247-014; Fax: +351-234-372-587
| |
Collapse
|
19
|
Xu J, Zhang L, Xu Y, Zhang H, Gao J, Wang Q, Tian Z, Xuan L, Chen H, Wang Y. PP2A Facilitates Porcine Reproductive and Respiratory Syndrome Virus Replication by Deactivating irf3 and Limiting Type I Interferon Production. Viruses 2019; 11:v11100948. [PMID: 31618847 PMCID: PMC6832233 DOI: 10.3390/v11100948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Protein phosphatase 2A (PP2A), a major serine/threonine phosphatase in mammalian cells, is known to regulate the kinase-driven intracellular signaling pathways. Emerging evidences have shown that the PP2A phosphatase functions as a bona-fide therapeutic target for anticancer therapy, but it is unclear whether PP2A affects a porcine reproductive and respiratory syndrome virus infection. In the present study, we demonstrated for the first time that inhibition of PP2A activity by either inhibitor or small interfering RNA duplexes in target cells significantly reduced their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Further analysis revealed that inhibition of PP2A function resulted in augmented production of type I interferon (IFN). The mechanism is that inhibition of PP2A activity enhances the levels of phosphorylated interferon regulatory factor 3, which activates the transcription of IFN-stimulated genes. Moreover, inhibition of PP2A activity mainly blocked PRRSV replication in the early stage of viral life cycle, after virus entry but before virus release. Using type I IFN receptor 2 specific siRNA in combination with PP2A inhibitor, we confirmed that the effect of PP2A on viral replication within target cells was an interferon-dependent manner. Taken together, these findings demonstrate that PP2A serves as a negative regulator of host cells antiviral responses and provides a novel therapeutic target for virus infection.
Collapse
Affiliation(s)
- Jiayu Xu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lu Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yunfei Xu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - He Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Junxin Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lv Xuan
- Department of public health policy, University of California, Irvine, CA 92697, USA
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
20
|
Christen V, Vogel MS, Hettich T, Fent K. A Vitellogenin Antibody in Honey Bees (Apis mellifera): Characterization and Application as Potential Biomarker for Insecticide Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1074-1083. [PMID: 30714192 DOI: 10.1002/etc.4383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/19/2019] [Accepted: 01/30/2019] [Indexed: 05/21/2023]
Abstract
The insect yolk precursor vitellogenin is a lipoglycoprotein synthesized and stored in the fat body and secreted into the hemolymph. In honey bees, vitellogenin displays crucial functions in hormone signaling, behavioral transition of nurse bees to foragers, stress resistance, and longevity in workers. Plant protection products such as neonicotinoids, pyrethroids, and organophosphates alter the transcriptional expression of vitellogenin. To assess plant protection product-induced alterations on the protein level, we developed a rabbit polyclonal vitellogenin antibody. After characterization, we assessed its specificity and vitellogenin levels in different tissues of worker bees. The vitellogenin antibody recognized full-length 180-kDa vitellogenin and the lighter fragment of 150 kDa in fat body, hemolymph, and brain. In hemolymph, a band of approximately 75 kDa was detected. Subsequent mass spectrometric analysis (liquid chromatography-mass spectrometry) confirmed the 180- and 150-kDa bands as vitellogenin. Subsequently, we evaluated vitellogenin expression in brain, fat body, and hemolymph on 24-h exposure of bees to 3 ng/bee to the neonicotinoid clothianidin. Full-length vitellogenin was upregulated 3-fold in the fat body, and the 150-kDa fragment was upregulated in the brain of exposed honey bees, whereas no alteration occurred in the hemolymph. Upregulation of the vitellogenin protein by the neonicotinoid clothianidin is in line with the previously shown induction of its transcript. We conclude that vitellogenin might serve as a potential biomarker for neonicotinoid and other pesticide exposure in bees. Environ Toxicol Chem 2019;00:1-10. © 2019 SETAC.
Collapse
Affiliation(s)
- Verena Christen
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Maren Susanne Vogel
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Timm Hettich
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Karl Fent
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollution Dynamics, Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland
| |
Collapse
|
21
|
Liu L, Wang H, Cui J, Zhang Q, Zhang W, Xu W, Lu H, Liu S, Shen S, Fang F, Li L, Yang W, Zhuang Z, Li J. Inhibition of Protein Phosphatase 2A Sensitizes Mucoepidermoid Carcinoma to Chemotherapy via the PI3K-AKT Pathway in Response to Insulin Stimulus. Cell Physiol Biochem 2018; 50:317-331. [PMID: 30282066 DOI: 10.1159/000494008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND/AIMS Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase that mediates cell cycle regulation and metabolism. Mounting evidence has indicated that PP2A inhibition exhibits considerable anticancer potency in multiple types of human cancers. However, the efficacy of PP2A inhibition remains unexplored in mucoepidermoid carcinoma (MEC), especially in locally advanced and metastatic cases with limited systemic treatment. In this study, we demonstrated the therapeutic potency of LB100 in mucoepidermoid carcinoma. METHODS In this study, the expression of PP2A was evaluated using immunohistochemical (IHC) staining. The effects associated with LB100 alone and in combination with cisplatin for the treatment of mucoepidermoid carcinoma were investigated both in vitro, regarding metabolism, proliferation, and migration, and in vivo in a mucoepidermoid carcinoma xenograft model. In addition, with LB100 treatment and in response to an insulin stimulus, the expression levels and phosphorylation levels of targets in the PI3K-AKT pathway were determined using western blot analysis and immunoblotting. RESULTS The expression of protein phosphatase 2A was significantly upregulated in the clinical specimens of high-grade MECs compared with those of low-/medium-grade MECs and normal controls. In this article, we report that a small molecule PP2A inhibitor, LB100, decreased cellular viability and glycolytic activity and induced G2/M cell cycle arrest. Importantly, LB100 enhanced the efficacy of cisplatin in mucoepidermoid carcinoma cells both in vitro and in vivo. PP2A inhibition by LB100 increased the phosphorylation of insulin receptor substrate 1(IRS-1) on serine residues, downregulated the expression of phosphatidylinositol 3-kinase (PI3K) p110 alpha subunit and dephosphorylated AKT at Ser473 and Thr308 in mucoepidermoid carcinoma cells in response to insulin stimulus. CONCLUSION These results highlight the translational potential of PP2A inhibition to synergize with cisplatin in mucoepidermoid carcinoma treatment.
Collapse
Affiliation(s)
- Limin Liu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Cui
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wanlin Xu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hao Lu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shengwen Liu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shukun Shen
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | | | - Lei Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenjun Yang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiang Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, National Clinical Research Center for Oral Diseases, Shanghai, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
22
|
Mani SKK, Andrisani O. Interferon signaling during Hepatitis B Virus (HBV) infection and HBV-associated hepatocellular carcinoma. Cytokine 2018; 124:154518. [PMID: 30126685 DOI: 10.1016/j.cyto.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
Chronic Hepatitis B Virus (HBV) infection is linked to hepatocellular carcinoma (HCC) pathogenesis. The World Health Organization estimates that globally 257 million people are chronic HBV carriers at risk of developing liver cancer. Current therapies for prevention and treatment of HCC are inadequate. Although interferon-based treatment strategies hold great promise for combating chronic infection and HCC, many patients do not respond to the IFN-based drugs for reasons not completely understood. Interferon signaling plays key roles in activation of innate and adaptive immunity. However, HBV has evolved various mechanisms to suppress IFN signaling. In this review, we present the basics about HBV infection and interferon signaling. Next, we discuss mechanisms through which HBV downregulates the function -activity and transcription- of the transcription factor STAT1 during acute and chronic infection. STAT1 is activated in response to all types (I/II/III) of interferon signaling and is essential in mediating all types (I/II/III) of interferon responses. Lastly, we discuss emerging evidence from different human cancers linking loss of interferon signaling to aggressive cancer and cancer stem cells. Whether the same occurs during HBV-associated hepatocarcinogenesis is discussed and currently under investigation.
Collapse
Affiliation(s)
- Saravana Kumar Kailasam Mani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | - Ourania Andrisani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Valadkhan S, Fortes P. Regulation of the Interferon Response by lncRNAs in HCV Infection. Front Microbiol 2018; 9:181. [PMID: 29503633 PMCID: PMC5820368 DOI: 10.3389/fmicb.2018.00181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- *Correspondence: Saba Valadkhan, Puri Fortes,
| | - Puri Fortes
- Center for Applied Medical Research, Department of Gene Therapy and Hepatology, Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain
- *Correspondence: Saba Valadkhan, Puri Fortes,
| |
Collapse
|
24
|
Lampejo T, Agarwal K, Carey I. Interferon-free direct-acting antiviral therapy for acute hepatitis C virus infection in HIV-infected individuals: A literature review. Dig Liver Dis 2018; 50:113-123. [PMID: 29233687 DOI: 10.1016/j.dld.2017.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/29/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
Dramatic rises in hepatitis C virus (HCV) coinfection rates in human immunodeficiency virus (HIV)-infected individuals have been observed recently, largely attributable to increasing recreational drug use combined with increased testing for HCV. In the era of direct-acting antiviral (DAA) therapy, treatment of acute HCV infection in HIV-infected individuals with short durations of these drugs may potentially reduce the disease and economic burden associated with HCV infection as well as reducing the likelihood of onward HCV transmission. We performed an extensive literature search of PubMed, Embase and Google Scholar up to 05 September 2017 for clinical trials of acute HCV infection in HIV-infected individuals. In the studies identified, rates of sustained virologic response at 12 weeks post-treatment (SVR12) ranged from 21% with 6 weeks of therapy up to 92% with 12 weeks of therapy with sofosbuvir and ribavirin. Ledipasvir/sofosbuvir for 6 weeks achieved an SVR of 77%. No HIV-related events occurred regardless of whether patients were receiving antiretroviral therapy (ART) and DAAs were well tolerated. Data is currently limited with regards to optimal regimens and durations of therapy, which need to be tailored based on potential interactions with concurrent ART and consideration for the fact that patients with higher baseline HCV RNA levels may require an extended duration of treatment.
Collapse
Affiliation(s)
- Temi Lampejo
- Institute of Liver Studies, King's College Hospital, London, United Kingdom.
| | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Ivana Carey
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| |
Collapse
|
25
|
Blumer T, Coto-Llerena M, Duong FHT, Heim MH. SOCS1 is an inducible negative regulator of interferon λ (IFN-λ)-induced gene expression in vivo. J Biol Chem 2017; 292:17928-17938. [PMID: 28900038 PMCID: PMC5663890 DOI: 10.1074/jbc.m117.788877] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
Type I (α and β) and type III (λ) IFNs are induced upon viral infection through host sensory pathways that activate IFN regulatory factors (IRFs) and nuclear factor κB. Secreted IFNs induce autocrine and paracrine signaling through the JAK-STAT pathway, leading to the transcriptional induction of hundreds of IFN-stimulated genes, among them sensory pathway components such as cGAS, STING, RIG-I, MDA5, and the transcription factor IRF7, which enhance the induction of IFN-αs and IFN-λs. This positive feedback loop enables a very rapid and strong host response that, at some point, has to be controlled by negative regulators to maintain tissue homeostasis. Type I IFN signaling is controlled by the inducible negative regulators suppressor of cytokine signaling 1 (SOCS1), SOCS3, and ubiquitin-specific peptidase 18 (USP18). The physiological role of these proteins in IFN-γ signaling has not been clarified. Here we used knockout cell lines and mice to show that IFN-λ signaling is regulated by SOCS1 but not by SOCS3 or USP18. These differences were the basis for the distinct kinetic properties of type I and III IFNs. We found that IFN-α signaling is transient and becomes refractory after hours, whereas IFN-λ provides a long-lasting IFN-stimulated gene induction.
Collapse
Affiliation(s)
- Tanja Blumer
- From the Department of Biomedicine, University of Basel, 4031 Basel, Switzerland and
- the University Hospital Basel, 4031 Basel, Switzerland
| | - Mairene Coto-Llerena
- From the Department of Biomedicine, University of Basel, 4031 Basel, Switzerland and
- the University Hospital Basel, 4031 Basel, Switzerland
| | - Francois H T Duong
- From the Department of Biomedicine, University of Basel, 4031 Basel, Switzerland and
- the University Hospital Basel, 4031 Basel, Switzerland
| | - Markus H Heim
- From the Department of Biomedicine, University of Basel, 4031 Basel, Switzerland and
- the University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
26
|
Ganesan M, Tikhanovich I, Vangimalla SS, Dagur RS, Wang W, Poluektova LI, Sun Y, Mercer DF, Tuma D, Weinman SA, Kharbanda KK, Osna NA. Demethylase JMJD6 as a New Regulator of Interferon Signaling: Effects of HCV and Ethanol Metabolism. Cell Mol Gastroenterol Hepatol 2017; 5:101-112. [PMID: 29693039 PMCID: PMC5904050 DOI: 10.1016/j.jcmgh.2017.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/10/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Alcohol-induced progression of hepatitis C virus (HCV) infection is related to dysfunction of innate immunity in hepatocytes. Endogenously produced interferon (IFN)α induces activation of interferon-stimulated genes (ISGs) via triggering of the Janus kinase-signal transducer and activator of transcription 1 (STAT1) pathway. This activation requires protein methyltransferase 1-regulated arginine methylation of STAT1. Here, we aimed to study whether STAT1 methylation also depended on the levels of demethylase jumonji domain-containing 6 protein (JMJD6) and whether ethanol and HCV affect JMJD6 expression in hepatocytes. METHODS Huh7.5-CYP (RLW) cells and hepatocytes were exposed to acetaldehyde-generating system (AGS) and 50 mmol/L ethanol, respectively. JMJD6 messenger RNA and protein expression were measured by real-time polymerase chain reaction and Western blot. IFNα-activated cells either overexpressing JMJD6 or with knocked-down JMJD6 expression were tested for STAT1 methylation, ISG activation, and HCV RNA. In vivo studies have been performed on C57Bl/6 mice (expressing HCV structural proteins or not) or chimeric mice with humanized livers fed control or ethanol diets. RESULTS AGS exposure to cells up-regulated JMJD6 expression in RLW cells. These results were corroborated by ethanol treatment of primary hepatocytes. The promethylating agent betaine reversed the effects of AGS/ethanol. Similar results were obtained in vivo, when mice were fed control/ethanol with and without betaine supplementation. Overexpression of JMJD6 suppressed STAT1 methylation, IFNα-induced ISG activation, and increased HCV-RNA levels. In contrast, JMJD6 silencing enhanced STAT1 methylation, ISG stimulation by IFNα, and attenuated HCV-RNA expression in Huh7.5 cells. CONCLUSIONS We conclude that arginine methylation of STAT1 is suppressed by JMJD6. Both HCV and acetaldehyde increase JMJD6 levels, thereby impairing STAT1 methylation and innate immunity protection in hepatocytes exposed to the virus and/or alcohol.
Collapse
Key Words
- 4-MP, 4-methylpirazole
- ADH, alcohol dehydrogenase
- AGS, acetaldehyde-generating system
- AMI-1, protein arginine N-methyltransferase inhibitor
- Ach, acetaldehyde
- Alcohol
- BHMT, betaine-homocysteine-S-methyltransferase
- CYP2E1, cytochrome P450 2E1
- HCV
- HCV, hepatitis C virus
- IFN, interferon
- ISG, interferon-stimulated gene
- JAK-STAT, Janus kinase–STAT, signal transducer and activator of transcription
- JMJD6
- JMJD6, jumonji domain-containing 6 protein
- OA, okadaic acid
- OAS-1, 2’-5’-oligoadenylate synthetase-1
- OASL, 2’-5’-oligoadenylate synthetase-like protein
- PCR, polymerase chain reaction
- PP2A, protein phosphatase 2A
- PRMT1, protein methyl transferase 1
- RT, reverse-transcription
- SAM, S-adenosylmethionine
- STAT1
- TK-NOG, thymidine kinase transgene-NOD/Shi-scid/IL-2Rγnull mice
- cDNA, complementary DNA
- mRNA, messenger RNA
- siRNA, short interfering RNA
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska–Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irina Tikhanovich
- Department of Internal Medicine, Liver Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Shiva Shankar Vangimalla
- Research Service, Veterans Affairs Nebraska–Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Raghubendra Singh Dagur
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Weimin Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Larisa I. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yimin Sun
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - David F. Mercer
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dean Tuma
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Steven A. Weinman
- Department of Internal Medicine, Liver Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska–Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska–Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
27
|
Barriocanal M, Fortes P. Long Non-coding RNAs in Hepatitis C Virus-Infected Cells. Front Microbiol 2017; 8:1833. [PMID: 29033906 PMCID: PMC5625025 DOI: 10.3389/fmicb.2017.01833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) often leads to a chronic infection in the liver that may progress to steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several viral and cellular factors are required for a productive infection and for the development of liver disease. Some of these are long non-coding RNAs (lncRNAs) deregulated in infected cells. After HCV infection, the sequence and the structure of the viral RNA genome are sensed to activate interferon (IFN) synthesis and signaling pathways. These antiviral pathways regulate transcription of several cellular lncRNAs. Some of these are also deregulated in response to viral replication. Certain viral proteins and/or viral replication can activate transcription factors such as MYC, SP1, NRF2, or HIF1α that modulate the expression of additional cellular lncRNAs. Interestingly, several lncRNAs deregulated in HCV-infected cells described so far play proviral or antiviral functions by acting as positive or negative regulators of the IFN system, while others help in the development of liver cirrhosis and HCC. The study of the structure and mechanism of action of these lncRNAs may aid in the development of novel strategies to treat infectious and immune pathologies and liver diseases such as cirrhosis and HCC.
Collapse
Affiliation(s)
| | - Puri Fortes
- Department of Gene Therapy and Hepatology, Navarra Institute for Health Research (IdiSNA), Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| |
Collapse
|
28
|
Ibrahim MK, Khedr A, Bader El Din NG, Khairy A, El Awady MK. Increased incidence of cytomegalovirus coinfection in HCV-infected patients with late liver fibrosis is associated with dysregulation of JAK-STAT pathway. Sci Rep 2017; 7:10364. [PMID: 28871140 PMCID: PMC5583286 DOI: 10.1038/s41598-017-10604-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Herein, we examined the association between cytomegalovirus (CMV) coinfection and the progression of liver fibrosis in hepatitis C virus (HCV) infection, and investigated the effect of CMV coinfection on JAK-STAT pathway. CMV DNAemia was detected by PCR in DNA from controls (n = 120), and HCV patients with early (F0-F1, n = 131) and late (F2-F4, n = 179) liver fibrosis. By quantitative real time PCR (qRT-PCR), we examined the profile of 8 JAK-STAT transcripts in PBMCs RNA from 90 HCV patients (39 CMV positive and 51 CMV negative), 4 CMV mono-infected patients, and 15 controls. Our results demonstrated higher incidence of CMV in F2-F4 group than in control (OR 5.479, 95% CI 3.033-9.895, p < 0.0001) or F0-F1 groups (OR 2, 95% CI 1.238-3.181, p = 0.005). qRT-PCR showed downregulation of STAT2 (p = 0.006) and IRF7 (p = 0.02) in CMV positive group compared to CMV negative one. The downregulation of STAT2 and IRF7 was mainly in CMV positive patients with late fibrosis compared to CMV negative patients (p = 0.0007 for IRF7 and p = 0.01 for STAT2). Our results are the first to report that CMV coinfection is a possible risk factor for the progression of HCV-induced liver fibrosis, and thereby CMV screening and treatment are important for HCV patients.
Collapse
Affiliation(s)
- Marwa K Ibrahim
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, 33 EL Bohouth St.(former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt.
| | - Ahmed Khedr
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, 33 EL Bohouth St.(former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Noha G Bader El Din
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, 33 EL Bohouth St.(former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Ahmed Khairy
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mostafa K El Awady
- Department of Microbial Biotechnology, Genetic Engineering Division, National Research Centre, 33 EL Bohouth St.(former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| |
Collapse
|
29
|
Ellwanger JH, Kaminski VDL, Valverde-Villegas JM, Simon D, Lunge VR, Chies JAB. Immunogenetic studies of the hepatitis C virus infection in an era of pan-genotype antiviral therapies - Effective treatment is coming. INFECTION GENETICS AND EVOLUTION 2017; 66:376-391. [PMID: 28811194 DOI: 10.1016/j.meegid.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 02/08/2023]
Abstract
What are the factors that influence human hepatitis C virus (HCV) infection, hepatitis status establishment, and disease progression? Firstly, one has to consider the genetic background of the host and HCV genotypes. The immunogenetic host profile will reflect how each infected individual deals with infection. Secondly, there are environmental factors that drive susceptibility or resistance to certain viral strains. These will dictate (I) the susceptibility to infection; (II) whether or not an infected person will promote viral clearance; (III) the immune response and the response profile to therapy; and (IV) whether and how long it would take to the development of HCV-associated diseases, as well as their severity. Looking at this scenario, this review addresses clinical aspects of HCV infection, following by an update of molecular and cellular features of the immune response against the virus. The evasion mechanisms used by HCV are presented, considering the potential role of exosomes in infection. Genetic factors influencing HCV infection and pathogenesis are the main topics of the article. Shortly, HLAs, MBLs, TLRs, ILs, and IFNLs genes have relevant roles in the susceptibility to HCV infection. In addition, ILs, IFNLs, as well as TLRs genes are important modulators of HCV-associated diseases. The viral aspects that influence HCV infection are presented, followed by a discussion about evolutionary aspects of host and HCV interaction. HCV and HIV infections are close related. Thus, we also present a discussion about HIV/HCV co-infection, focusing on cellular and molecular aspects of this interaction. Pharmacogenetics and treatment of HCV infection are the last topics of this review. The understanding of how the host genetics interacts with viral and environmental factors is crucial for the development of new strategies to prevent HCV infection, even in an era of potential development of pan-genotypic antivirals.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jacqueline María Valverde-Villegas
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Daniel Simon
- Laboratório de Genética Molecular Humana, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | - Vagner Ricardo Lunge
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
30
|
Liver immunology: How to reconcile tolerance with autoimmunity. Clin Res Hepatol Gastroenterol 2017; 41:6-16. [PMID: 27526967 DOI: 10.1016/j.clinre.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/01/2016] [Indexed: 02/04/2023]
Abstract
There are several examples of liver tolerance: the relative ease by which liver allografts are accepted and the exploitation of the hepatic microenvironment by the malarial parasite and hepatotrophic viruses are notable examples. The vasculature of the liver supports a unique population of antigen presenting cells specialised to maintain immunological tolerance despite continuous exposure to gut-derived antigens. Liver sinusoidal endothelial cells and Kupffer cells appear to be key to the maintenance of immune tolerance, by promoting T cell anergy or deletion and the generation of regulatory cell subsets. Despite this, there are three liver diseases with likely autoimmune involvement: primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune hepatitis. How can we reconcile this with the inherent tolerogenicity of the liver? Genetic studies have uncovered several associations with genes involved in the activation of the innate and adaptive immune systems. There is also evidence pointing to pathogenic and xenobiotic triggers of autoimmune liver disease. Coupled to this, impaired immunoregulatory mechanisms potentially play a permissive role, allowing the autoimmune response to proceed.
Collapse
|
31
|
Osna NA. Demethylase JMJD6 as a regulator of innate immunity in HCV-associated liver injury. INTERNATIONAL JOURNAL OF HEPATOBILIARY AND PANCREATIC DISEASES 2017. [DOI: 10.5348/ijhpd-2017-67-ed-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Christen V, Fent K. Silica nanoparticles induce endoplasmic reticulum stress response and activate mitogen activated kinase (MAPK) signalling. Toxicol Rep 2016; 3:832-840. [PMID: 28959611 PMCID: PMC5616204 DOI: 10.1016/j.toxrep.2016.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/19/2023] Open
Abstract
Effects of silica nanoparticles (SiO2-NPs) were investigated in Huh7 cells. SiO2-NPs induced ER stress response and activated MAPK pathway. SiO2-NPs induced inflammatory reaction by induction of TNF-α. Activation of MAPK may lead to activation of AP-1 complex.
Humans may be exposed to engineered silica nanoparticles (SiO2-NPs) but potential adverse effects are poorly understood, in particular in relation to cellular effects and modes of action. Here we studied effects of SiO2-NPs on cellular function in human hepatoma cells (Huh7). Exposure for 24 h to 10 and 50 μg/ml SiO2-NPs led to induction of endoplasmic reticulum (ER) stress as demonstrated by transcriptional induction of DNAJB9, GADD34, CHOP, as well as CHOP target genes BIM, CHAC-1, NOXA and PUMA. In addition, CHOP protein was induced. In addition, SiO2-NPs induced an inflammatory response as demonstrated by induction of TNF-α and IL-8. Activation of MAPK signalling was investigated employing a PCR array upon exposure of Huh7 cells to SiO2-NPs. Five of 84 analysed genes, including P21, P19, CFOS, CJUN and KSR1 exhibited significant transcriptional up-regulation, and 18 genes a significant down-regulation. Strongest down-regulation occurred for the proto-oncogene BRAF, MAPK11, one of the four p38 MAPK genes, and for NFATC4. Strong induction of CFOS, CJUN, FRA1 and CMYC was found after exposure to 50 μg/ml SiO2-NPs for 24 h. To analyse for effects derived from up-regulation of TNF-α, Huh7 cells were exposed to SiO2-NPs in the presence of the TNF-α inhibitor sauchinone, which reduced the induction of the TNF-α transcript by about 50%. These data demonstrate that SiO2-NPs induce ER stress, MAPK pathway and lead to inflammatory reaction in human hepatoma cells. Health implications of SiO2-NPs exposure should further be investigated for a risk assessment of these frequently used nanoparticles.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland.,Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland
| |
Collapse
|
33
|
Wang H, Wu D, Wang X, Chen G, Zhang Y, Yan W, Luo X, Han M, Ning Q. Hepatitis B virus surface protein-induced hPIAS1 transcription requires TAL1, E47, MYOG, NFI, and MAPK signal pathways. Biol Chem 2016; 397:1173-1185. [DOI: 10.1515/hsz-2015-0290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
Abstract
Abstract
The protein inhibitor of activated STAT1 (PIAS1) plays important roles in regulating virus-induced chronic hepatitis, but the interaction between hepatitis B virus (HBV) and hPIAS1 is not clear. Our aim was to verify if HBV encoding proteins enhance the transcription of hPIAS1 and which cis-elements and transcription factors were involved in the mechanism. In order to do, so a series of molecular biological methods, along with functional and histological studies, were performed. We found that the HBV surface protein (HBs) enhanced hPIAS1 transcription through the activities of TAL1, E47, myogenin (MYOG), and NFI, dependent on the activation of p38MAPK and ERK signaling pathways in vitro, which might contribute to the ineffectiveness of treatment in CHB patients. Furthermore, liver samples from patients with high HBsAg levels and HBV DNA displayed increased hPIAS1 expression and high levels of TAL1, E47, MYOG, and NFI, compared to those patients with low HBsAg levels and HBV DNA, and healthy controls. These findings suggest that the HBs protein-induced hPIAS1 transcription requires TAL1, E47, MYOG, NFI, and MAPK signal pathways. It provides new potential targets for antiviral therapeutic strategies for controlling HBV-associated diseases.
Collapse
|
34
|
Jeong AL, Han S, Lee S, Su Park J, Lu Y, Yu S, Li J, Chun KH, Mills GB, Yang Y. Patient derived mutation W257G of PPP2R1A enhances cancer cell migration through SRC-JNK-c-Jun pathway. Sci Rep 2016; 6:27391. [PMID: 27272709 PMCID: PMC4895347 DOI: 10.1038/srep27391] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/17/2016] [Indexed: 01/20/2023] Open
Abstract
Mutation of PPP2R1A has been observed at high frequency in endometrial serous carcinomas but at low frequency in ovarian clear cell carcinoma. However, the biological role of mutation of PPP2R1A in ovarian and endometrial cancer progression remains unclear. In this study, we found that PPP2R1A expression is elevated in high-grade primary tumor patients with papillary serous tumors of the ovary. To determine whether increased levels or mutation of PPP2R1A might contribute to cancer progression, the effects of overexpression or mutation of PPP2R1A on cell proliferation, migration, and PP2A phosphatase activity were investigated using ovarian and endometrial cancer cell lines. Among the mutations, PPP2R1A-W257G enhanced cell migration in vitro through activating SRC-JNK-c-Jun pathway. Overexpression of wild type (WT) PPP2R1A increased its binding ability with B56 regulatory subunits, whereas PPP2R1A-mutations lost the ability to bind to most B56 subunits except B56δ. Total PP2A activity and PPP2R1A-associated PP2Ac activity were significantly increased in cells overexpressing PPP2R1A-WT. In addition, overexpression of PPP2R1A-WT increased cell proliferation in vitro and tumor growth in vivo.
Collapse
Affiliation(s)
- Ae Lee Jeong
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Sora Han
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Sunyi Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jeong Su Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shuangxing Yu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jane Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| |
Collapse
|
35
|
Meili N, Christen V, Fent K. Nodularin induces tumor necrosis factor-alpha and mitogen-activated protein kinases (MAPK) and leads to induction of endoplasmic reticulum stress. Toxicol Appl Pharmacol 2016; 300:25-33. [DOI: 10.1016/j.taap.2016.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 01/08/2023]
|
36
|
Gong SJ, Feng XJ, Song WH, Chen JM, Wang SM, Xing DJ, Zhu MH, Zhang SH, Xu AM. Upregulation of PP2Ac predicts poor prognosis and contributes to aggressiveness in hepatocellular carcinoma. Cancer Biol Ther 2015; 17:151-62. [PMID: 26618405 DOI: 10.1080/15384047.2015.1121345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric protein phosphatase consisting of a 36-kD catalytic C subunit (PP2Ac). This study aimed to explore the prognostic and biological significance of PP2Ac in human hepatocellular carcinoma (HCC). High PP2Ac expression was significantly (P < 0.01) associated with serum hepatitis B surface antigen positivity, serum hepatitis B e antigen positivity, liver cirrhosis, moderate to poor differentiation grade, advanced disease stage, intrahepatic metastasis, and early recurrence in HCC. Multivariate analysis revealed PP2Ac as an independent prognostic factor for overall survival. Enforced expression of hepatitis B virus X protein (HBx) and its carboxyl-terminal truncated isoform induced PP2Ac expression in HCC cells. Co-immunoprecipitation assay revealed a direct interaction between PP2Ac and HBx. Small interfering RNA-mediated knockdown of PP2Ac significantly inhibited in vitro cell proliferation, colony formation, migration, and invasion and reduced tumor growth in an xenograft mouse model. In contrast, overexpression of PP2Ac promoted HCC cell proliferation, colony formation, and tumorigenesis. Additionally, silencing of PP2Ac impaired the growth-promoting effects on HepG2 HCC cells elicited by overexpression of carboxyl-terminal truncated HBx. Gene expression profiling analysis showed that PP2Ac downregulation modulated the expression of numerous genes involved in cell cycle and apoptosis regulation. Collectively, PP2Ac upregulation has a poor prognostic impact on the overall survival of HCC patients and contributes to the aggressiveness of HCC. PP2Ac may represent a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Shao-Juan Gong
- a Department of Interventional oncology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Xiao-Jun Feng
- b Department of Pathology , Yueyang Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Wei-Hua Song
- a Department of Interventional oncology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Jian-Ming Chen
- a Department of Interventional oncology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Shou-Mei Wang
- b Department of Pathology , Yueyang Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Dong-Juan Xing
- a Department of Interventional oncology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| | - Ming-Hua Zhu
- c Department of Pathology , Changhai Hospital and Institute of Liver Diseases, Second Military Medical University , Shanghai , China
| | - Shu-Hui Zhang
- b Department of Pathology , Yueyang Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Ai-Min Xu
- a Department of Interventional oncology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
37
|
T cells Exhibit Reduced Signal Transducer and Activator of Transcription 5 Phosphorylation and Upregulated Coinhibitory Molecule Expression After Kidney Transplantation. Transplantation 2015; 99:1995-2003. [PMID: 25769075 DOI: 10.1097/tp.0000000000000674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND T-cell depletion therapy is associated with diminished interleukin (IL)-7/IL-15-dependent homeostatic proliferation resulting in incomplete T-cell repopulation. Furthermore, it is associated with impaired T-cell functions. We hypothesized that this is the result of impaired cytokine responsiveness of T cells, through affected signal transducer and activator of transcription (STAT)5 phosphorylation and upregulation of coinhibitory molecules. MATERIALS AND METHODS Patients were treated with T cell-depleting rabbit antithymocyte globulin (rATG) (6 mg/kg, n = 17) or nondepleting, anti-CD25 antibody (basiliximab, 2 × 40 mg, n = 25) induction therapy, in combination with tacrolimus, mycophenolate mofetil, and steroids. Before and the first year after transplantation, IL-7 and IL-2 induced STAT5 phosphorylation, and the expression of the coinhibitory molecules programmed cell death protein 1 (PD-1), T cell immunoglobulin mucin-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), cluster of differentiation (CD) 160, and CD244 was measured by flow cytometry. RESULTS The first year after rATG, CD4+, and CD8+ T cells were affected in their IL-7-dependent phosphorylation of STAT5 (pSTAT5) which was most outspoken in the CD8+ memory population. The capacity of CD4+ and CD8+ T cells to pSTAT5 in response to IL-2 decreased after both rATG and basiliximab therapy. After kidney transplantation, the percentage of TIM-3+, PD-1+, and CD160+CD4+ T cells and the percentage of CD160+ and CD244+CD8+ T cells increased, with no differences in expression between rATG- and basiliximab-treated patients. The decrease in pSTAT5 capacity CD8+ T cells and the increase in coinhibitory molecules were correlated. CONCLUSIONS We show that memory T cells in kidney transplant patients, in particular after rATG treatment, have decreased cytokine responsiveness by impaired phosphorylation of STAT5 and have increased expression of coinhibitory molecules, processes which were correlated in CD8+ T cells.
Collapse
|
38
|
Zhang J, Garrison JC, Poluektova LY, Bronich TK, Osna NA. Liver-targeted antiviral peptide nanocomplexes as potential anti-HCV therapeutics. Biomaterials 2015; 70:37-47. [PMID: 26298393 PMCID: PMC4562313 DOI: 10.1016/j.biomaterials.2015.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 02/05/2023]
Abstract
Great success in HCV therapy was achieved by the development of direct-acting antivirals (DAA). However, the unsolved issues such as high cost and genotype dependency drive us to pursue additional therapeutic agents to be used instead or in combination with DAA. The cationic peptide p41 is one of such candidates displaying submicromolar anti-HCV potency. By electrostatic coupling of p41 with anionic poly(amino acid)-based block copolymers, antiviral peptide nanocomplexes (APN) platform was developed to improve peptide stability and to reduce cytotoxicity associated with positive charge. Herein, we developed a facile method to prepare galactosylated Gal-APN and tested their feasibility as liver-specific delivery system. In vitro, Gal-APN displayed specific internalization in hepatoma cell lines. Even though liver-targeted and non-targeted APN displayed comparable antiviral activity, Gal-APN offered prominent advantages to prevent HCV association with lipid droplets and suppress intracellular expression of HCV proteins. Moreover, in vivo preferential liver accumulation of Gal-APN was revealed in the biodistribution study. Altogether, this work illustrates the potential of Gal-APN as a novel liver-targeted therapy against HCV.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jered C Garrison
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Natalia A Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System Medical Center, 4101 Woolworth Avenue, Omaha, NE 68105, USA.
| |
Collapse
|
39
|
Carnero E, Fortes P. HCV infection, IFN response and the coding and non-coding host cell genome. Virus Res 2015; 212:85-102. [PMID: 26454190 DOI: 10.1016/j.virusres.2015.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
HCV is an ideal model to study how the infected cell is altered to allow the establishment of a chronic infection. After infection, the transcriptome of the cell changes in response to the virus or to the antiviral pathways induced by infection. The cell has evolved to sense HCV soon after infection and to activate antiviral pathways. In turn, HCV has evolved to block the antiviral pathways induced by the cell and, at the same time, to use some for its own benefit. In this review, we summarize the proviral and antiviral factors induced in HCV infected cells. These factors can be proteins and microRNAs, but also long noncoding RNAs (lncRNAs) that are induced by infection. Interestingly, several of the lncRNAs upregulated after HCV infection have oncogenic functions, suggesting that upregulation of lncRNAs could explain, at least in part, the increased rate of liver tumors observed in HCV-infected patients. Other lncRNAs induced by HCV infection may regulate the expression of coding genes required for replication or control genes involved in the cellular antiviral response. Given the evolutionary pressure imposed by viral infections and that lncRNAs are specially targeted by evolution, we believe that the study of proviral and antiviral lncRNAs may lead to unexpected discoveries that may have a strong impact on basic science and translational research.
Collapse
Affiliation(s)
- Elena Carnero
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain
| | - Puri Fortes
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
40
|
Ganesan M, Zhang J, Bronich T, Poluektova LI, Donohue TM, Tuma DJ, Kharbanda KK, Osna NA. Acetaldehyde accelerates HCV-induced impairment of innate immunity by suppressing methylation reactions in liver cells. Am J Physiol Gastrointest Liver Physiol 2015; 309:G566-G577. [PMID: 26251470 PMCID: PMC6842870 DOI: 10.1152/ajpgi.00183.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/04/2015] [Indexed: 02/08/2023]
Abstract
Alcohol exposure worsens the course and outcomes of hepatitis C virus (HCV) infection. Activation of protective antiviral genes is induced by IFN-α signaling, which is altered in liver cells by either HCV or ethanol exposure. However, the mechanisms of the combined effects of HCV and ethanol metabolism in IFN-α signaling modulation are not well elucidated. Here, we explored a possibility that ethanol metabolism potentiates HCV-mediated dysregulation of IFN-α signaling in liver cells via impairment of methylation reactions. HCV-infected Huh7.5 CYP2E1(+) cells and human hepatocytes were exposed to acetaldehyde (Ach)-generating system (AGS) and stimulated with IFN-α to activate IFN-sensitive genes (ISG) via the Jak-STAT-1 pathway. We observed significant suppression of signaling events by Ach. Ach exposure decreased STAT-1 methylation via activation of protein phosphatase 2A and increased the protein inhibitor of activated STAT-1 (PIAS-1)-STAT-1 complex formation in both HCV(+) and HCV(-) cells, preventing ISG activation. Treatment with a promethylating agent, betaine, attenuated all examined Ach-induced defects. Ethanol metabolism-induced changes in ISGs are methylation related and confirmed by in vivo studies on HCV(+) transgenic mice. HCV- and Ach-induced impairment of IFN signaling temporarily increased HCV RNA levels followed by apoptosis of heavily infected cells. We concluded that Ach potentiates the suppressive effects of HCV on activation of ISGs attributable to methylation-dependent dysregulation of IFN-α signaling. A temporary increase in HCV RNA sensitizes the liver cells to Ach-induced apoptosis. Betaine reverses the inhibitory effects of Ach on IFN signaling and thus can be used for treatment of HCV(+) alcohol-abusing patients.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jinjin Zhang
- School of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tatiana Bronich
- School of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Larisa I Poluektova
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology and Experimental Neuroscience, Omaha, Nebraska
| | - Terrence M Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska;
| |
Collapse
|
41
|
Read SA, Tay ES, Shahidi M, O’Connor KS, Booth DR, George J, Douglas MW. Hepatitis C Virus Driven AXL Expression Suppresses the Hepatic Type I Interferon Response. PLoS One 2015; 10:e0136227. [PMID: 26313459 PMCID: PMC4551482 DOI: 10.1371/journal.pone.0136227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/30/2015] [Indexed: 01/06/2023] Open
Abstract
Treatment of chronic hepatitis C virus (HCV) infection is evolving rapidly with the development of novel direct acting antivirals (DAAs), however viral clearance remains intimately linked to the hepatic innate immune system. Patients demonstrating a high baseline activation of interferon stimulated genes (ISGs), termed interferon refractoriness, are less likely to mount a strong antiviral response and achieve viral clearance when placed on treatment. As a result, suppressor of cytokine signalling (SOCS) 3 and other regulators of the IFN response have been identified as key candidates for the IFN refractory phenotype due to their regulatory role on the IFN response. AXL is a receptor tyrosine kinase that has been identified as a key regulator of interferon (IFN) signalling in myeloid cells of the immune system, but has not been examined in the context of chronic HCV infection. Here, we show that AXL is up-regulated following HCV infection, both in vitro and in vivo and is likely induced by type I/III IFNs and inflammatory signalling pathways. AXL inhibited type IFNα mediated ISG expression resulting in a decrease in its antiviral efficacy against HCV in vitro. Furthermore, patients possessing the favourable IFNL3 rs12979860 genotype associated with treatment response, showed lower AXL expression in the liver and a stronger induction of AXL in the blood, following their first dose of IFN. Together, these data suggest that elevated AXL expression in the liver may mediate an IFN-refractory phenotype characteristic of patients possessing the unfavourable rs12979860 genotype, which is associated with lower rates of viral clearance.
Collapse
Affiliation(s)
- Scott A. Read
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Enoch S. Tay
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Mahsa Shahidi
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Kate S. O’Connor
- Centre for Immunology and Allergy Research, University of Sydney at Westmead Hospital, Westmead, Australia
| | - David R. Booth
- Centre for Immunology and Allergy Research, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Mark W. Douglas
- Storr Liver Centre, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, Australia
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, Australia
| |
Collapse
|
42
|
Coccia EM, Battistini A. Early IFN type I response: Learning from microbial evasion strategies. Semin Immunol 2015; 27:85-101. [PMID: 25869307 PMCID: PMC7129383 DOI: 10.1016/j.smim.2015.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/10/2015] [Indexed: 12/12/2022]
Abstract
Type I interferon (IFN) comprises a class of cytokines first discovered more than 50 years ago and initially characterized for their ability to interfere with viral replication and restrict locally viral propagation. As such, their induction downstream of germ-line encoded pattern recognition receptors (PRRs) upon recognition of pathogen-associated molecular patterns (PAMPs) is a hallmark of the host antiviral response. The acknowledgment that several PAMPs, not just of viral origin, may induce IFN, pinpoints at these molecules as a first line of host defense against a number of invading pathogens. Acting in both autocrine and paracrine manner, IFN interferes with viral replication by inducing hundreds of different IFN-stimulated genes with both direct anti-pathogenic as well as immunomodulatory activities, therefore functioning as a bridge between innate and adaptive immunity. On the other hand an inverse interference to escape the IFN system is largely exploited by pathogens through a number of tactics and tricks aimed at evading, inhibiting or manipulating the IFN pathway, that result in progression of infection or establishment of chronic disease. In this review we discuss the interplay between the IFN system and some selected clinically important and challenging viruses and bacteria, highlighting the wide array of pathogen-triggered molecular mechanisms involved in evasion strategies.
Collapse
Affiliation(s)
- Eliana M Coccia
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Angela Battistini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy.
| |
Collapse
|
43
|
Kiely M, Kiely PA. PP2A: The Wolf in Sheep's Clothing? Cancers (Basel) 2015; 7:648-69. [PMID: 25867001 PMCID: PMC4491676 DOI: 10.3390/cancers7020648] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022] Open
Abstract
Protein Phosphatase 2A (PP2A) is a major serine/threonine phosphatase in cells. It consists of a catalytic subunit (C), a structural subunit (A), and a regulatory/variable B-type subunit. PP2A has a critical role to play in homeostasis where its predominant function is as a phosphatase that regulates the major cell signaling pathways in cells. Changes in the assembly, activity and substrate specificity of the PP2A holoenzyme have a direct role in disease and are a major contributor to the maintenance of the transformed phenotype in cancer. We have learned a lot about how PP2A functions from specific mutations that disrupt the core assembly of PP2A and from viral proteins that target PP2A and inhibit its effect as a phosphatase. This prompted various studies revealing that restoration of PP2A activity benefits some cancer patients. However, our understanding of the mechanism of action of this is limited because of the complex nature of PP2A holoenzyme assembly and because it acts through a wide variety of signaling pathways. Information on PP2A is also conflicting as there are situations whereby inactivation of PP2A induces apoptosis in many cancer cells. In this review we discuss this relationship and we also address many of the pertinent and topical questions that relate to novel therapeutic strategies aimed at altering PP2A activity.
Collapse
Affiliation(s)
- Maeve Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick 78666, Ireland.
| | - Patrick A Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick 78666, Ireland.
- Stokes Institute, University of Limerick 78666, Limerick, Ireland.
| |
Collapse
|
44
|
Choi JE, Kwon JH, Kim JH, Hur W, Sung PS, Choi SW, Yoon SK. Suppression of dual specificity phosphatase I expression inhibits hepatitis C virus replication. PLoS One 2015; 10:e0119172. [PMID: 25798824 PMCID: PMC4370512 DOI: 10.1371/journal.pone.0119172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/10/2015] [Indexed: 01/10/2023] Open
Abstract
It was reported that dual specificity phosphatase 1 (DUSP1) is specifically upregulated in the liver of patients with chronic hetpatitis C virus (HCV) infection who do not respond to peginterferon (PegIFN) treatment. Here, we have investigated the role of DUSP1 in HCV replication in hepatoma cells stably expressing the full HCV replicon (FK). DUSP1 was silenced in cells harboring the FK replicon using a lentiviral vector encoding a DUSP1-specific short hairpin RNA (LV-shDUSP1). We demonstrated that knock-down of DUSP1 significantly inhibited HCV RNA and protein expression. Also, DUSP1 silencing enhanced the expression of phosphorylated signal transducer and activator of transcription 1 (phosho-STAT1) and facilitated the translocation of STAT1 into the nucleus. The mRNA expression levels of myxovirus resistance protein A (MxA), 2'-5'-oligoadenylate synthetase 1 (OAS1), ISG15 ubiquitin-like modifier (ISG15), chemokine C-X-C motif ligand 10 (CXCL10), and ubiquitin-specific protease 18 (USP18) were also accelerated by silencing of DUSP1. Furthermore, combined with the IFN treatment, DUSP1 silencing synergistically decreased the levels of HCV RNA. These results suggest that suppression of DUSP1 expression enhances phosphorylation and nuclear translocation of STAT1, resulting in increasing expression of interferon-stimulated genes (ISGs), which synergizes with IFN's antiviral effect against HCV. In conclusion, DUSP1 is involved in the antiviral host defense mechanism against a HCV infection and thus DUSP1 might be a target to treat chronic HCV infection.
Collapse
Affiliation(s)
- Jung Eun Choi
- The Catholic University Liver Research Center & WHO Collaborating Center of Hepatitis, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- The Catholic University Liver Research Center & WHO Collaborating Center of Hepatitis, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, Incheon, Republic of Korea
| | - Jung-Hee Kim
- The Catholic University Liver Research Center & WHO Collaborating Center of Hepatitis, The Catholic University of Korea, Seoul, Republic of Korea
| | - Wonhee Hur
- The Catholic University Liver Research Center & WHO Collaborating Center of Hepatitis, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republuc of Korea
| | - Sang Wook Choi
- The Catholic University Liver Research Center & WHO Collaborating Center of Hepatitis, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, St. Paul Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center & WHO Collaborating Center of Hepatitis, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
45
|
Osna NA, Ganesan M, Kharbanda KK. Hepatitis C, innate immunity and alcohol: friends or foes? Biomolecules 2015; 5:76-94. [PMID: 25664450 PMCID: PMC4384112 DOI: 10.3390/biom5010076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/19/2015] [Accepted: 01/24/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.
Collapse
Affiliation(s)
- Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| |
Collapse
|
46
|
Martinez JP, Sasse F, Brönstrup M, Diez J, Meyerhans A. Antiviral drug discovery: broad-spectrum drugs from nature. Nat Prod Rep 2015; 32:29-48. [PMID: 25315648 DOI: 10.1039/c4np00085d] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to April 2014. The development of drugs with broad-spectrum antiviral activities is a long pursued goal in drug discovery. It has been shown that blocking co-opted host-factors abrogates the replication of many viruses, yet the development of such host-targeting drugs has been met with scepticism mainly due to toxicity issues and poor translation to in vivo models. With the advent of new and more powerful screening assays and prediction tools, the idea of a drug that can efficiently treat a wide range of viral infections by blocking specific host functions has re-bloomed. Here we critically review the state-of-the-art in broad-spectrum antiviral drug discovery. We discuss putative targets and treatment strategies, with particular focus on natural products as promising starting points for antiviral lead development.
Collapse
Affiliation(s)
- J P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
47
|
Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cell Mol Immunol 2014; 13:11-35. [PMID: 25544499 PMCID: PMC4712384 DOI: 10.1038/cmi.2014.127] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 12/14/2022] Open
Abstract
Infection with hepatitis C virus (HCV), a major viral cause of chronic liver disease, frequently progresses to steatosis and cirrhosis, which can lead to hepatocellular carcinoma. HCV infection strongly induces host responses, such as the activation of the unfolded protein response, autophagy and the innate immune response. Upon HCV infection, the host induces the interferon (IFN)-mediated frontline defense to limit virus replication. Conversely, HCV employs diverse strategies to escape host innate immune surveillance. Type I IFN elicits its antiviral actions by inducing a wide array of IFN-stimulated genes (ISGs). Nevertheless, the mechanisms by which these ISGs participate in IFN-mediated anti-HCV actions remain largely unknown. In this review, we first outline the signaling pathways known to be involved in the production of type I IFN and ISGs and the tactics that HCV uses to subvert innate immunity. Then, we summarize the effector mechanisms of scaffold ISGs known to modulate IFN function in HCV replication. We also highlight the potential functions of emerging ISGs, which were identified from genome-wide siRNA screens, in HCV replication. Finally, we discuss the functions of several cellular determinants critical for regulating host immunity in HCV replication. This review will provide a basis for understanding the complexity and functionality of the pleiotropic IFN system in HCV infection. Elucidation of the specificity and the mode of action of these emerging ISGs will also help to identify novel cellular targets against which effective HCV therapeutics can be developed.
Collapse
|
48
|
Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cell Mol Immunol 2014; 11:218-20. [PMID: 25544499 DOI: 10.1038/cmi.2014.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/16/2022] Open
Abstract
Infection with hepatitis C virus (HCV), a major viral cause of chronic liver disease, frequently progresses to steatosis and cirrhosis, which can lead to hepatocellular carcinoma. HCV infection strongly induces host responses, such as the activation of the unfolded protein response, autophagy and the innate immune response. Upon HCV infection, the host induces the interferon (IFN)-mediated frontline defense to limit virus replication. Conversely, HCV employs diverse strategies to escape host innate immune surveillance. Type I IFN elicits its antiviral actions by inducing a wide array of IFN-stimulated genes (ISGs). Nevertheless, the mechanisms by which these ISGs participate in IFN-mediated anti-HCV actions remain largely unknown. In this review, we first outline the signaling pathways known to be involved in the production of type I IFN and ISGs and the tactics that HCV uses to subvert innate immunity. Then, we summarize the effector mechanisms of scaffold ISGs known to modulate IFN function in HCV replication. We also highlight the potential functions of emerging ISGs, which were identified from genome-wide siRNA screens, in HCV replication. Finally, we discuss the functions of several cellular determinants critical for regulating host immunity in HCV replication. This review will provide a basis for understanding the complexity and functionality of the pleiotropic IFN system in HCV infection. Elucidation of the specificity and the mode of action of these emerging ISGs will also help to identify novel cellular targets against which effective HCV therapeutics can be developed.
Collapse
|
49
|
Neuman MG, French SW, French BA, Seitz HK, Cohen LB, Mueller S, Osna NA, Kharbanda KK, Seth D, Bautista A, Thompson KJ, McKillop IH, Kirpich IA, McClain CJ, Bataller R, Nanau RM, Voiculescu M, Opris M, Shen H, Tillman B, Li J, Liu H, Thomes PG, Ganesan M, Malnick S. Alcoholic and non-alcoholic steatohepatitis. Exp Mol Pathol 2014; 97:492-510. [PMID: 25217800 PMCID: PMC4696068 DOI: 10.1016/j.yexmp.2014.09.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 02/08/2023]
Abstract
This paper is based upon the "Charles Lieber Satellite Symposia" organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human immunodeficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible repair. We aim to (1) determine the immuno-pathology of alcohol-induced liver damage, (2) examine the role of genetics in the development of ASH, (3) propose diagnostic markers of ASH and NASH, (4) examine age differences, (5) develop common research tools to study alcohol-induced effects in clinical and pre-clinical studies, and (6) focus on factors that aggravate severity of organ-damage. The intention of these symposia is to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | - Helmut K Seitz
- Centre of Alcohol Research, University of Heidelberg and Department of Medicine (Gastroenterology and Hepatology), Salem Medical Centre, Heidelberg, Germany
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sebastian Mueller
- Centre of Alcohol Research, University of Heidelberg and Department of Medicine (Gastroenterology and Hepatology), Salem Medical Centre, Heidelberg, Germany
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Devanshi Seth
- Drug Health Services, Royal Prince Alfred Hospital, Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, NSW 2050, Australia; Faculty of Medicine, The University of Sydney, Sydney, NSW 2006, Australia
| | - Abraham Bautista
- Office of Extramural Activities, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine and Department of Pharmacology; Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine and Department of Pharmacology; Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Robley Rex Veterans Medical Center, Louisville, KY, USA
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Radu M Nanau
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada
| | - Mihai Voiculescu
- Division of Nephrology and Internal Medicine, Fundeni Clinical Institute and University of Medicine and Pharmacy, "Carol Davila", Bucharest, Romania
| | - Mihai Opris
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, Ontario, Canada; Family Medicine Clinic CAR, Bucharest, Romania
| | - Hong Shen
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Jun Li
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hui Liu
- Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Paul G Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steve Malnick
- Department Internal Medicine, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
50
|
Christen V, Camenzind M, Fent K. Silica nanoparticles induce endoplasmic reticulum stress response, oxidative stress and activate the mitogen-activated protein kinase (MAPK) signaling pathway. Toxicol Rep 2014; 1:1143-1151. [PMID: 28962324 PMCID: PMC5598250 DOI: 10.1016/j.toxrep.2014.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 10/24/2014] [Indexed: 12/12/2022] Open
Abstract
Silica nanoparticles (225 nm) induced ER stress and unfolded protein response. MAPK pathway and associated genes are induced. PP2Ac, TNFα, NFкB and interferon stimulated genes are up-regulated. p53 is down-regulated, indicating inhibition of apoptosis. The data suggest hepatotoxic, inflammatory and tumorigenic action of SiO2-NPs.
Application of silica nanoparticles (SiO2-NPs) may result in human exposure. Here we investigate unexplored modes of action by which SiO2-NPs with average size of 225 nm act on human hepatoma cells (Huh7). We focused on the endoplasmic (ER) stress response and on mitogen-activated protein kinase (MAPK) signaling pathways. Both pathways were induced. ER stress and the associated three unfolded protein response (UPR) pathways were activated as demonstrated by significant inductions of BiP and XBP-1s and a moderate but significant induction of ATF-4 at 0.05 and 0.5 mg/ml. In addition to activation of NFкB interferon stimulated genes IP-10, IRF-9, and ISG-15 were up-regulated. As a consequence of ER stress, the pro-inflammatory cytokine TNFα and PP2Ac were induced following exposure to 0.05 mg/ml SiO2-NPs. Additionally, this occurred at 0.005 mg/ml SiO2-NPs for TNFα at 24 h. This in turn led to a strong transcriptional induction of MAP-kinases and its target genes cJun, cMyc and CREB. A strong transcriptional down-regulation of the proapoptotic gene p53 occurred at 0.05 and 0.5 mg/ml SiO2-NP. Exposure of Huh7 cells to the anti-oxidant N-acetyl cysteine reduced transcriptional induction of ER stress markers demonstrating a link between the induction of oxidative stress and ER stress. Our study demonstrates that SiO2-NPs lead to strong ER stress and UPR induction, oxidative stress, activation of MAPK signaling and down-regulation of p53. All of these activated pathways, which are analyzed here for the first time in detail, inhibit apoptosis and induce cell proliferation, which may contribute to a hepatotoxic, inflammatory and tumorigenic action of SiO2-NPs.
Collapse
Key Words
- ATF-4, Activating transcription factor 4
- ATF-6, activating transcription factor 6
- BiP, binding immunoglobulin protein
- CHOP, CCAAT/enhancer binding protein-homologous protein
- CREB, cAMP response element-binding protein
- Huh7, human hepatoma cells
- Human hepatoma cells
- IFN α, interferon α
- IFN β, interferon β
- IP-10, interferon gamma-induced protein 10
- IRE-1, inositol-requiring protein 1
- IRF-9, interferon regulatory factor 9
- ISG-15, interferon-induced 17 kDa protein
- ISGs, interferon stiulated genes
- MAPK, mitogen-activated protein kinase signaling pathway
- NFκB, nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells
- Noxa, phorbol-12-myristate-13-acetate-induced protein 1
- PERK, protein kinase like ER kinase
- PP2A, protein phosphatase 2a
- Proinflammatory response ;Iinterferon-stimulated genes
- STAT1, signal transducer and activator of transcription 1
- SiO2-NPs, silica nanoparticles
- TNFα, tumor necrosis factor α
- Tumor necrosis factor alpha
- UPR, unfolded protein response
- XBP-1, X-box binding protein 1
- eIF2α, eukaryotic initiation factor 2α
- p53, TP53-tumorsuppressor-gene
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Magdalena Camenzind
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Science, CH-8092 Zürich, Switzerland
| |
Collapse
|