1
|
Li J, Li X, Chen Y, Wang Y, Wang B, Zhang X, Zhang N. Mesothelin expression prediction in pancreatic cancer based on multimodal stochastic configuration networks. Med Biol Eng Comput 2025; 63:1117-1129. [PMID: 39641869 DOI: 10.1007/s11517-024-03253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Predicting tumor biomarkers with high precision is essential for improving the diagnostic accuracy and developing more effective treatment strategies. This paper proposes a machine learning model that utilizes CT images and biopsy whole slide images (WSI) to classify mesothelin expression levels in pancreatic cancer. By combining multimodal learning and stochastic configuration networks, a radiopathomics mesothelin-prediction system named RPMSNet is developed. The system extracts radiomic and pathomic features from CT images and WSI, respectively, and sends them into stochastic configuration networks for the final prediction. Compared to traditional radiomics or pathomics, this system has the capability to capture more comprehensive image features, providing a multidimensional insight into tissue characteristics. The experiments and analyses demonstrate the accuracy and effectiveness of the system, with an area under the curve of 81.03%, an accuracy of 73.67%, a sensitivity of 71.54%, a precision of 76.78%, and a F1-score of 72.61%, surpassing both single-modality and dual-modality models. RPMSNet highlights its potential for early diagnosis and personalized treatment in precision medicine.
Collapse
Affiliation(s)
- Junjie Li
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xuanle Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518071, China
- Department of Radiology, Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yingge Chen
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yunling Wang
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Binjie Wang
- Department of Radiology, Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| | - Xuefeng Zhang
- College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Na Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518071, China.
| |
Collapse
|
2
|
Marinho LDSS, Andrade MCR, Lopes CADA, Coelho da Silva KVG, Gama E Souza KDM, Machado-Santos C. Immunohistochemical identification of ACE-2 (SARS-COV II entry mechanism) in the gastrointestinal tract, kidney and lung of rhesus monkeys (Macaca mulatta) and squirrel monkeys (Saimiri sciureus). Tissue Cell 2025; 93:102711. [PMID: 39787940 DOI: 10.1016/j.tice.2024.102711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/15/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
SARS-Cov-2 is a corona virus that causes COVID-19 disease, a viral infection responsible for the pandemic decreed by the World Health Organization in March 2020. Angiotensin-converting enzyme 2 (ACE-2) functions as the main receptor for SARS-Cov-2. The study aimed to detect the expression of ACE-2 in the gastrointestinal tract, kidney, and lung in the rhesus monkeys and squirrel monkeys. The sections from 18 rhesus monkey and 17 squirrel monkeys were incubated with rabbit polyclonal antibody to ACE2 (ab65863). In the lung of the rhesus monkeys, the presence of ACE-2 was noted in the bronchial mucosa of the respiratory epithelium. In the kidney, there was irregular in the proximal convoluted tubules. In the pyloric stomach, duodenum and in the large intestine it was observed on the surface of the lining epithelium. In the lung of the squirrel monkeys, this marking was present in both the ciliated cylindrical and goblet cell sof the bronchi. In the kidney light marking was observed along the surfasse of the cubic epithelium of the proximal convoluted tubules and in the renal glomerulus. No markings were observed throughout the stomach and intense staining was observed along the surfasse of the intestinal epithelium of the duodenum, jejunum and ileum, as well as in the intestinal glands. In our study, we can observe not able differences in the distribution of ACE2 between the two species of primates analysed. These differences must be considered in experimental studies on this disease, which continues to be a topic of notable importance for Public Health.
Collapse
Affiliation(s)
- Larissa Dos Santos Sebould Marinho
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil
| | | | | | - Kassia Valéria Gomes Coelho da Silva
- Department of Pathology and Veterinary Clinic, Faculty of Veterinary, Fluminense Federal University, Vital Brazil/Santa Rosa, Niterói, RJ 24230-340, Brazil
| | - Kauet de Matos Gama E Souza
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil
| | - Clarice Machado-Santos
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil.
| |
Collapse
|
3
|
Fraisse A, Guillier L, Cordevant C, Le Poder S, Perelle S, Martin-Latil S. Impedance-based method for the quantification of infectious SARS-CoV-2. J Virol Methods 2025; 333:115110. [PMID: 39855472 DOI: 10.1016/j.jviromet.2025.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent involved in the coronavirus disease 2019 (COVID-19) pandemic. The development of infectious titration methods is crucial to provide data for a better understanding of transmission routes, as well as to validate the efficacy of inactivation treatments. Nevertheless, the low-throughput analytical capacity of traditional methods may be a limiting factor for a large screening of samples. The aim of the study was to develop a Real-Time Cell Analysis (RTCA) assay based on the measurement of cell impedance to quantify infectious SARS-CoV-2. The kinetics of cell impedance showed a virus-specific Cell Index (CI) drop. This enabled the correlation between viral concentrations and time at which a 50 % drop in CI values was observed (tCI50), with establishment of a standard curve. In parallel, the improved Spearman and Kärber method was used to quantify infectious titer since the virus-induced CI drop is correlated to the Cytopathic Effect. The estimated uncertainty was respectively 0.57, 0.36, and 0.26 log10 with 4, 8, and 16 wells per dilution. Thus, the RTCA assay is a powerful tool with a greatly simplified workflow for effective risk assessment in the field of food and environmental virology.
Collapse
Affiliation(s)
- Audrey Fraisse
- Université Paris-Est, ANSES, Laboratory for food safety, Maisons-Alfort F-94700, France
| | - Laurent Guillier
- ANSES, Risk Assessment Department, Maisons-Alfort F-94700, France
| | - Christophe Cordevant
- ANSES, Strategy and Programs Department, Research and Reference Division, Maisons-Alfort F-94 700, France
| | - Sophie Le Poder
- UMR VIROLOGIE, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort F-94700, France
| | - Sylvie Perelle
- Université Paris-Est, ANSES, Laboratory for food safety, Maisons-Alfort F-94700, France
| | - Sandra Martin-Latil
- Université Paris-Est, ANSES, Laboratory for food safety, Maisons-Alfort F-94700, France; UMR VIROLOGIE, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort F-94700, France.
| |
Collapse
|
4
|
Saleem W, Aslam A, Tariq M, Nauwynck H. Intestinal mucus: the unsung hero in the battle against viral gastroenteritis. Gut Pathog 2025; 17:11. [PMID: 39972475 PMCID: PMC11841282 DOI: 10.1186/s13099-025-00684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
Intestinal mucus plays a crucial role in defending against enteric infections by protecting the vulnerable intestinal epithelial cells both physically and through its various constituents. Despite this, numerous gastroenteritis-causing viruses, such as rotavirus, coronavirus, adenovirus, astrovirus, calicivirus, and enterovirus, continue to pose significant threats to humans and animals. While several studies have examined the interactions between these viruses and intestinal mucus, significant gaps remain in understanding the full protective potential of intestinal mucus against these pathogens. This review aims to elucidate the protective role of intestinal mucus in viral gastroenteritis. It begins with a comprehensive literature overview of (i) intestinal mucus, (ii) enteric viruses of medical and veterinary importance, and (iii) the known interactions between various enteric viruses and intestinal mucus. Following this, a case study is presented to highlight the age-dependent blocking effect of porcine intestinal mucus against transmissible gastroenteritis virus, a porcine coronavirus. Finally, the review discusses future investigation directions to further explore the potential of intestinal mucus as a defense mechanism against viral gastroenteritis to stimulate further research in this dynamic and critical area.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium.
| | - Ateeqa Aslam
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium
| | - Mehlayl Tariq
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, 53-114, Poland
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Merelbeke, 9820, Belgium
| |
Collapse
|
5
|
Garrec C, Arrindell J, Andrieu J, Desnues B, Mege JL, Omar Osman I, Devaux C. Preferential apical infection of Caco-2 intestinal cell monolayers by SARS-CoV-2 is associated with damage to cellular barrier integrity: Implications for the pathophysiology of COVID-19. PLoS One 2025; 20:e0313068. [PMID: 39928619 PMCID: PMC11809792 DOI: 10.1371/journal.pone.0313068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/17/2024] [Indexed: 02/12/2025] Open
Abstract
SARS-CoV-2 can infect different organs, including the intestine. In an in vitro model of Caco-2 intestinal cell line, we previously found that SARS-CoV-2 modulates the ACE2 receptor expression and affects the expression of molecules involved in intercellular junctions. To further explore the possibility that the intestinal epithelium can serve as an alternative infection route for SARS-CoV-2, we used a model of polarized monolayers of Caco-2 cells (or co-cultures of two intestinal cell lines: Caco-2 and HT29) grown on the polycarbonate membrane of Transwell inserts, inoculated with the virus either in the upper or lower chamber of culture to determine the tropism of the virus for the apical or basolateral pole of these cells. In both polarized Caco-2 cell monolayers and co-culture Caco-2/HT29 cell monolayer, apical SARS-CoV-2 inoculation was found to be much more effective in establishing infection than basolateral inoculation. In addition, apical SARS-CoV-2 infection triggers monolayer degeneration, as shown by histological examination, measurement of trans-epithelial electrical resistance, and cell adhesion molecule expression. During apical infection, the infectious viruses reach the lower chamber, suggesting either a transcytosis mechanism from the apical side to the basolateral side of cells, a paracellular trafficking of the virus after damage to intercellular junctions in the epithelial barrier, or both. Taken together, these data indicate a preferential tropism of SARS-CoV-2 for the apical pole of the human intestinal tract and suggest that infection via the intestinal lumen leads to a systemic infection.
Collapse
Affiliation(s)
- Clémence Garrec
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Jeffrey Arrindell
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Jonatane Andrieu
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Benoit Desnues
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
- Laboratory of Immunology, Assistance Publique Hôpitaux de Marseille (APHM), Marseille, France
| | - Ikram Omar Osman
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Christian Devaux
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), Marseille, France
| |
Collapse
|
6
|
Vanderheiden A, Diamond MS. Animal Models of Non-Respiratory, Post-Acute Sequelae of COVID-19. Viruses 2025; 17:98. [PMID: 39861887 PMCID: PMC11768974 DOI: 10.3390/v17010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Post-acute sequelae of COVID-19 (PASC) are a diverse set of symptoms and syndromes driven by dysfunction of multiple organ systems that can persist for years and negatively impact the quality of life for millions of individuals. We currently lack specific therapeutics for patients with PASC, due in part to an incomplete understanding of its pathogenesis, especially for non-pulmonary sequelae. Here, we discuss three animal models that have been utilized to investigate PASC: non-human primates (NHPs), hamsters, and mice. We focus on neurological, gastrointestinal, and cardiovascular PASC and highlight advances in mechanistic insight that have been made using these animal models, as well as discussing the sequelae that warrant continued and intensive research.
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19. Virulence 2024; 15:2316438. [PMID: 38362881 PMCID: PMC10878030 DOI: 10.1080/21505594.2024.2316438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.
Collapse
Affiliation(s)
- Natalie M. Kirk
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
8
|
Gandini S, Conly J, Spencer EA, Evans D, Rosca EC, Brassey J, Maltoni S, Onakpoya I, Plüddemann A, Jefferson T, Heneghan C. Oro-faecal transmission of SARS-CoV-2: A systematic review of studies employing viral culture from gastrointestinal and other potential oro-faecal sources and evidence for transmission to humans. Epidemiol Infect 2024; 152:e138. [PMID: 39529596 PMCID: PMC11574600 DOI: 10.1017/s0950268824001481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 11/16/2024] Open
Abstract
The extent to which the oro-faecal route contributes to the transmission of SARS-CoV-2 is not established.We systematically reviewed the evidence on the presence of infectious SARS-CoV-2 in faeces and other gastrointestinal sources by examining studies that used viral culture to investigate the presence of replication-competent virus in these samples. We conducted searches in the WHO COVID-19 Database, LitCovid, medRxiv, and Google Scholar for SARS-CoV-2 using keywords and associated synonyms, with a search date up to 28 November 2023.We included 13 studies involving 229 COVID-19 subjects - providing 308 faecal or rectal swab SARS-CoV2 reverse transcription-polymerase chain reaction (RT-PCR)-positive samples tested with viral culture. The methods used for viral culture across the studies were heterogeneous. Three studies (two cohorts and one case series) reported observing replication-competent SARS-CoV-2 confirmed by quantitative RT-PCR (qPCR) and whole-genome sequencing, and qPCR including appropriate cycle threshold changes. Overall, six (1.9%) of 308 faecal samples subjected to cell culture showed replication-competent virus. One study found replication-competent samples from one immunocompromised patient. No studies were identified demonstrating direct evidence of oro-faecal transmission to humans.Our review found a relatively low frequency of replication-competent SARS-CoV-2 in faecal and other gastrointestinal sources. Although it is biologically plausible, more research is needed using standardized cell culture methods, control groups, adequate follow-up, and robust epidemiologic methods, including whether secondary infections occurred, to determine the role of the oro-faecal route in the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141Milan, Italy
| | - John Conly
- Departments of Medicine, Microbiology, Immunology & Infectious Diseases, and Pathology & Laboratory Medicine, Synder Institute for Chronic Diseases and O’Brien Institute for Public Health, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
| | - Elizabeth A. Spencer
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| | - David Evans
- Department of Medical Microbiology & Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Elena C Rosca
- Department of Neurology, Victor Babes University of Medicine and Pharmacy, Piata Eftimie Murgu 2, Timisoara300041, Romania
| | | | - Susanna Maltoni
- Research and Innovation Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Igho Onakpoya
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| | - Annette Plüddemann
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| | - Tom Jefferson
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| | - Carl Heneghan
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
9
|
Dos Reis RS, Selvam S, Ayyavoo V. Neuroinflammation in Post COVID-19 Sequelae: Neuroinvasion and Neuroimmune Crosstalk. Rev Med Virol 2024; 34:e70009. [PMID: 39558491 DOI: 10.1002/rmv.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 triggered a swift global spread, leading to a devastating pandemic. Alarmingly, approximately one in four individuals diagnosed with coronavirus disease 2019 (COVID-19) experience varying degrees of cognitive impairment, raising concerns about a potential increase in neurological sequelae cases. Neuroinflammation seems to be the key pathophysiological hallmark linking mild respiratory COVID-19 to cognitive impairment, fatigue, and neurological sequelae in COVID-19 patients, highlighting the interaction between the nervous and immune systems following SARS-CoV-2 infection. Several hypotheses have been proposed to explain how the virus disrupts physiological pathways to trigger inflammation within the CNS, potentially leading to neuronal damage. These include neuroinvasion, systemic inflammation, disruption of the lung and gut-brain axes, and reactivation of latent viruses. This review explores the potential origins of neuroinflammation and the underlying neuroimmune cross-talk, highlighting important unanswered questions in the field. Addressing these fundamental issues could enhance our understanding of the virus's impact on the CNS and inform strategies to mitigate its detrimental effects.
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sathish Selvam
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Brooks K, Nelson CE, Aguilar C, Hoang TN, Ortiz AM, Langner CA, Yee DS, Flynn JK, Vrba S, Laidlaw E, Vannella KM, Grazioli A, Saharia KK, Purcell M, Singireddy S, Wu J, Stankiewicz J, Chertow DS, Sereti I, Paiardini M, Hickman HD, Via LE, Barber DL, Brenchley JM. SARS-CoV-2 infection perturbs the gastrointestinal tract and induces modest microbial translocation across the intestinal barrier. J Virol 2024; 98:e0128824. [PMID: 39264207 PMCID: PMC11495055 DOI: 10.1128/jvi.01288-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
SARS-CoV-2 infects via the respiratory tract, but COVID-19 includes an array of non-respiratory symptoms, among them gastrointestinal (GI) manifestations such as vomiting and diarrhea. Here we investigated the GI pathology of SARS-CoV-2 infections in rhesus macaques and humans. Macaques experienced mild infection with USA-WA1/2020 and shed viral RNA in the respiratory tract and stool, including subgenomic RNA indicative of replication in the GI tract. Intestinal immune cell populations were disturbed, with significantly fewer proliferating (Ki67+) jejunal B cells in SARS-CoV-2-infected macaques than uninfected ones. Modest translocation of bacteria/bacterial antigen was observed across the colonic epithelium, with a corresponding significant increase in plasma soluble CD14 (sCD14) that may be induced by LPS. Human plasma demonstrated significant decreases in interleukin (IL)-6 and sCD14 upon recovery from COVID-19, suggesting resolution of inflammation and response to translocated bacteria. sCD14 significantly positively correlated with zonulin, an indicator of gut barrier integrity, and IL-6. These results demonstrate that GI perturbations such as microbial translocation can occur in even mild SARS-CoV-2 infections and may contribute to the COVID-19 inflammatory state.IMPORTANCEThis study investigates gastrointestinal (GI) barrier disruption in SARS-CoV-2 infections and how it may contribute to disease. We observed bacteria or bacterial products crossing from the colon interior (the lumen) to the lamina propria during SARS-CoV-2 infection in macaques. Bacteria/bacterial products are tolerated in the lumen but may induce immune responses if they translocate to the lamina propria. We also observed a significant increase in soluble CD14, which is associated with an immune response to bacterial products. In addition, we observed that humans recovering from COVID-19 experienced a significant decrease in soluble CD14, as well as the inflammatory marker interleukin (IL)-6. IL-6 and sCD14 correlated significantly across macaque and human samples. These findings suggest that SARS-CoV-2 infection results in GI barrier disruption that permits microbial translocation and a corresponding immune response. These findings could aid in developing interventions to improve COVID-19 patient outcomes.
Collapse
Affiliation(s)
- Kelsie Brooks
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine E. Nelson
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cynthia Aguilar
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Timothy N. Hoang
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Alexandra M. Ortiz
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charlotte A. Langner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Debra S. Yee
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacob K. Flynn
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sophia Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Laidlaw
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin M. Vannella
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Alison Grazioli
- Department of Medicine and Program in Trauma, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kapil K. Saharia
- Division of Infectious Diseases, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Madeleine Purcell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shreya Singireddy
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jocelyn Wu
- Department of Radiology and Imagining Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jason Stankiewicz
- Department of Pulmonary and Critical Care Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Daniel S. Chertow
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura E. Via
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Tuberculosis Imaging Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel L. Barber
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M. Brenchley
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Chen H, Shi J, Tang C, Xu J, Li B, Wang J, Zhou Y, Yang Y, Yang H, Huang Q, Yu W, Wang H, Wu D, Hu Y, Zhou H, Sun Q, Lu S. CHIKV infection drives shifts in the gastrointestinal microbiome and metabolites in rhesus monkeys. MICROBIOME 2024; 12:161. [PMID: 39223641 PMCID: PMC11367899 DOI: 10.1186/s40168-024-01895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Many studies have demonstrated the association between intestinal microbiota and joint diseases. The "gut-joint axis" also has potential roles in chikungunya virus (CHIKV) infection. Pro-inflammatory arthritis after CHIKV infection might disrupt host homeostasis and lead to dysbacteriosis. This study investigated the characteristics of fecal and gut microbiota, intestinal metabolites, and the changes in gene regulation of intestinal tissues after CHIKV infection using multi-omics analysis to explore the involvement of gut microbiota in the pathogenesis of CHIKV infection. RESULTS CHIKV infection increases the systemic burden of inflammation in the GI system of infected animals. Moreover, infection-induced alterations in GI microbiota and metabolites may be indirectly involved in the modulation of GI and bone inflammation after CHIKV infection, including the modulation of inflammasomes and interleukin-17 inflammatory cytokine levels. CONCLUSION Our results suggest that the GI tract and its microbes are involved in the modulation of CHIKV infection, which could serve as an indicator for the adjuvant treatment of CHIKV infection. Video Abstract.
Collapse
Affiliation(s)
- Hongyu Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Cong Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Jingwen Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Bai Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Junbin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Yanan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Yun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Hao Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Qing Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Haixuan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Daoju Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Yunzhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China.
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Insect-Borne Infectious Diseases Control & Yunan International Joint Laboratory of Tropical Infectious Diseases of Yunnan Institute of Parasitic Diseases, Puer, Yunnan, 665000, China.
| | - Qingming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College (IMBCAMS&PUMC), 935 Jiaoling Road, Kunming, Yunnan, 650118, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
| |
Collapse
|
12
|
Diaz EA, Sáenz C, Cabrera F, Rodríguez J, Carvajal M, Barragán V. COVID-19 in a common woolly monkey (Lagothrix lagothricha): First evidence of fatal outcome in a nonhuman primate after natural SARS-CoV-2 infection. Am J Primatol 2024; 86:e23654. [PMID: 38922738 DOI: 10.1002/ajp.23654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a pandemic by the World Health Organization in March 2020. Since then, viral spread from humans to animals has occurred worldwide. Nonhuman primates (NHPs) have been found to be susceptible to reverse-zoonosis transmission of SARS-CoV-2, but initial research suggested that platyrrhine primates are less susceptible than catarrhine primates. Here we report the natural SARS-CoV-2 infection of a common woolly monkey (Lagothrix lagothricha) from a wildlife rehabilitation center in Ecuador. The course of the disease, the eventual death of the specimen, and the pathological findings are described. Our results show the susceptibility of a new platyrrhine species to SARS-CoV-2 and provide evidence for the first time of a COVID-19-associated death in a naturally infected NHP. The putative route of transmission from humans, and implications for captive NHPs management, are also discussed. Given that common woolly monkeys are at risk of extinction in Ecuador, further understanding of the potential threat of SARS-CoV-2 to their health should be a conservation priority. A One Health approach is the best way to protect NHPs from a new virus in the same way that we would protect the human population.
Collapse
Affiliation(s)
- Eduardo A Diaz
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Biodiversidad Tropical IBIOTROP, Hospital de Fauna Silvestre TUERI, Quito, Ecuador
| | - Carolina Sáenz
- Universidad San Francisco de Quito USFQ, Instituto de Biodiversidad Tropical IBIOTROP, Hospital de Fauna Silvestre TUERI, Quito, Ecuador
| | - Francisco Cabrera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Quito, Ecuador
| | - Javier Rodríguez
- Universidad San Francisco de Quito USFQ, Hospital Docente de Especialidades Veterinarias HOSVET, Quito, Ecuador
| | - Mateo Carvajal
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Quito, Ecuador
| | - Verónica Barragán
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Quito, Ecuador
| |
Collapse
|
13
|
Xian SP, Li ZY, Li W, Yang PF, Huang SH, Liu Y, Tang L, Lai J, Zeng FM, He JZ, Liu Y. Spatial immune landscapes of SARS-CoV-2 gastrointestinal infection: macrophages contribute to local tissue inflammation and gastrointestinal symptoms. Front Cell Dev Biol 2024; 12:1375354. [PMID: 39100091 PMCID: PMC11295004 DOI: 10.3389/fcell.2024.1375354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Background In some patients, persistent gastrointestinal symptoms like abdominal pain, nausea, and diarrhea occur as part of long COVID-19 syndrome following acute respiratory symptoms caused by SARS-CoV-2. However, the characteristics of immune cells in the gastrointestinal tract of COVID-19 patients and their association with these symptoms remain unclear. Methodology Data were collected from 95 COVID-19 patients. Among this cohort, 11 patients who exhibited gastrointestinal symptoms and underwent gastroscopy were selected. Using imaging mass cytometry, the gastrointestinal tissues of these patients were thoroughly analyzed to identify immune cell subgroups and investigate their spatial distribution. Results Significant acute inflammatory responses were found in the gastrointestinal tissues, particularly in the duodenum, of COVID-19 patients. These alterations included an increase in the levels of CD68+ macrophages and CD3+CD4+ T-cells, which was more pronounced in tissues with nucleocapsid protein (NP). The amount of CD68+ macrophages positively correlates with the number of CD3+CD4+ T-cells (R = 0.783, p < 0.001), additionally, spatial neighborhood analysis uncovered decreased interactions between CD68+ macrophages and multiple immune cells were noted in NP-positive tissues. Furthermore, weighted gene coexpression network analysis was employed to extract gene signatures related to clinical features and immune responses from the RNA-seq data derived from gastrointestinal tissues from COVID-19 patients, and we validated that the MEgreen module shown positive correlation with clinical parameter (i.e., Total bilirubin, ALT, AST) and macrophages (R = 0.84, p = 0.001), but negatively correlated with CD4+ T cells (R = -0.62, p = 0.004). By contrast, the MEblue module was inversely associated with macrophages and positively related with CD4+ T cells. Gene function enrichment analyses revealed that the MEgreen module is closely associated with biological processes such as immune response activation, signal transduction, and chemotaxis regulation, indicating its role in the gastrointestinal inflammatory response. Conclusion The findings of this study highlight the role of specific immune cell groups in the gastrointestinal inflammatory response in COVID-19 patients. Gene coexpression network analysis further emphasized the importance of the gene modules in gastrointestinal immune responses, providing potential molecular targets for the treatment of COVID-19-related gastrointestinal symptoms.
Collapse
Affiliation(s)
- Shi-Ping Xian
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhan-Yu Li
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wei Li
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Peng-Fei Yang
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shen-Hao Huang
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ye Liu
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lei Tang
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jun Lai
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Fa-Min Zeng
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jian-Zhong He
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Department of Ophthalmology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
14
|
Port JR, Riopelle JC, van Tol S, Wickenhagen A, Bohrnsen E, Sturdevant DE, Rosenke R, Lovaglio J, Lack J, Anzick SL, Cordova K, Yinda KC, Hanley PW, Schountz T, Kendall LV, Shaia CI, Saturday G, Martens C, Schwarz B, Munster VJ. Jamaican fruit bat (Artibeus jamaicensis) insusceptibility to mucosal inoculation with SARS-CoV-2 Delta variant is not caused by receptor compatibility. NPJ VIRUSES 2024; 2:26. [PMID: 40295878 PMCID: PMC11721433 DOI: 10.1038/s44298-024-00037-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/01/2024] [Indexed: 04/30/2025]
Abstract
The ancestral sarbecovirus giving rise to SARS-CoV-2 is posited to have originated in bats. While SARS-CoV-2 causes asymptomatic to severe respiratory disease in humans, little is known about the biology, virus tropism, and immunity of SARS-CoV-2-like sarbecoviruses in bats. SARS-CoV-2 has been shown to infect multiple mammalian species, including various rodent species, non-human primates, and Egyptian fruit bats. We show that SARS-CoV-2 can utilize Jamaican fruit bat (Artibeus jamaicensis) ACE2 spike for entry in vitro. Therefore, we investigate the Jamaican fruit bat as a possible in vivo model to study reservoir responses. We find that SARS-CoV-2 Delta does not efficiently replicate in Jamaican fruit bats in vivo. We observe infectious viruses in the lungs of only one animal on day 1 post-inoculation and find no evidence of shedding or seroconversion. This is possibly due to host factors restricting virus egress after aborted replication. Furthermore, we observe no significant immune gene expression changes in the respiratory tract but do observe changes in the intestinal metabolome after inoculation. This suggests that, despite its broad host range, SARS-CoV-2 is unable to infect all bat species, and Jamaican fruit bats are not an appropriate model to study SARS-CoV-2 reservoir infection.
Collapse
Affiliation(s)
- Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Jade C Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Daniel E Sturdevant
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Rebecca Rosenke
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Justin Lack
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sarah L Anzick
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kathleen Cordova
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kwe Claude Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Lon V Kendall
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Carl I Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
15
|
Volcic M, Nchioua R, Pastorio C, Zech F, Haußmann I, Sauter D, Read C, Walther P, Kirchhoff F. Attenuated replication and damaging effects of SARS-CoV-2 Omicron variants in an intestinal epithelial barrier model. J Med Virol 2024; 96:e29783. [PMID: 38965890 DOI: 10.1002/jmv.29783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Many COVID-19 patients suffer from gastrointestinal symptoms and impaired intestinal barrier function is thought to play a key role in Long COVID. Despite its importance, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on intestinal epithelia is poorly understood. To address this, we established an intestinal barrier model integrating epithelial Caco-2 cells, mucus-secreting HT29 cells and Raji cells. This gut epithelial model allows efficient differentiation of Caco-2 cells into microfold-like cells, faithfully mimics intestinal barrier function, and is highly permissive to SARS-CoV-2 infection. Early strains of SARS-CoV-2 and the Delta variant replicated with high efficiency, severely disrupted barrier function, and depleted tight junction proteins, such as claudin-1, occludin, and ZO-1. In comparison, Omicron subvariants also depleted ZO-1 from tight junctions but had fewer damaging effects on mucosal integrity and barrier function. Remdesivir, the fusion inhibitor EK1 and the transmembrane serine protease 2 inhibitor Camostat inhibited SARS-CoV-2 replication and thus epithelial barrier damage, while the Cathepsin inhibitor E64d was ineffective. Our results support that SARS-CoV-2 disrupts intestinal barrier function but further suggest that circulating Omicron variants are less damaging than earlier viral strains.
Collapse
Affiliation(s)
- Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Chiara Pastorio
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Isabell Haußmann
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
16
|
Liu J, Jiang G, Zhang H, Zhang H, Jia X, Gan Z, Yu H. Effects of Hibernation on Colonic Epithelial Tissue and Gut Microbiota in Wild Chipmunks ( Tamias sibiricus). Animals (Basel) 2024; 14:1498. [PMID: 38791715 PMCID: PMC11117362 DOI: 10.3390/ani14101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The gut microbiota plays a crucial role in the host's metabolic processes. Many studies have shown significant changes in the gut microbiota of mammals during hibernation to adapt to the changes in the external environment, but there is limited research on the colonic epithelial tissue and gut microbiota of the wild chipmunks during hibernation. This study analyzed the diversity, composition, and function of the gut microbiota of the wild chipmunk during hibernation using 16S rRNA gene high-throughput sequencing technology, and further conducted histological analysis of the colon. Histological analysis of the colon showed an increase in goblet cells in the hibernation group, which was an adaptive change to long-term fasting during hibernation. The dominant gut microbial phyla were Bacteroidetes, Firmicutes, and Proteobacteria, and the relative abundance of them changed significantly. The analysis of gut microbiota structural differences indicated that the relative abundance of Helicobacter typhlonius and Mucispirillum schaedleri increased significantly, while unclassified Prevotella-9, unclassified Prevotellaceae-UCG-001, unclassified Prevotellaceae-UCG-003 and other species of Prevotella decreased significantly at the species level. Alpha diversity analysis showed that hibernation increased the diversity and richness of the gut microbiota. Beta diversity analysis revealed significant differences in gut microbiota diversity between the hibernation group and the control group. PICRUSt2 functional prediction analysis of the gut microbiota showed that 15 pathways, such as lipid metabolism, xenobiotics biodegradation and metabolism, amino acid metabolism, environmental adaptation, and neurodegenerative diseases, were significantly enriched in the hibernation group, while 12 pathways, including carbohydrate metabolism, replication and repair, translation, and transcription, were significantly enriched in the control group. It can be seen that during hibernation, the gut microbiota of the wild chipmunk changes towards taxa that are beneficial for reducing carbohydrate consumption, increasing fat consumption, and adapting more strongly to environmental changes in order to better provide energy for the body and ensure normal life activities during hibernation.
Collapse
Affiliation(s)
- Juntao Liu
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Guangyu Jiang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Hongrui Zhang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Haiying Zhang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
| | - Xiaoyan Jia
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
| | - Zhenwei Gan
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Huimei Yu
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (J.L.); (G.J.); (H.Z.); (H.Z.); (X.J.)
| |
Collapse
|
17
|
Zou Y, Pan M, Zhou T, Yan L, Chen Y, Yun J, Wang Z, Guo H, Zhang K, Xiong W. Critical COVID-19, Victivallaceae abundance, and celiac disease: A mediation Mendelian randomization study. PLoS One 2024; 19:e0301998. [PMID: 38701071 PMCID: PMC11068179 DOI: 10.1371/journal.pone.0301998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Celiac disease exhibits a higher prevalence among patients with coronavirus disease 2019. However, the potential influence of COVID-19 on celiac disease remains uncertain. Considering the significant association between gut microbiota alterations, COVID-19 and celiac disease, the two-step Mendelian randomization method was employed to investigate the genetic causality between COVID-19 and celiac disease, with gut microbiota as the potential mediators. We employed the genome-wide association study to select genetic instrumental variables associated with the exposure. Subsequently, these variables were utilized to evaluate the impact of COVID-19 on the risk of celiac disease and its potential influence on gut microbiota. Employing a two-step Mendelian randomization approach enabled the examination of potential causal relationships, encompassing: 1) the effects of COVID-19 infection, hospitalized COVID-19 and critical COVID-19 on the risk of celiac disease; 2) the influence of gut microbiota on celiac disease; and 3) the mediating impact of the gut microbiota between COVID-19 and the risk of celiac disease. Our findings revealed a significant association between critical COVID-19 and an elevated risk of celiac disease (inverse variance weighted [IVW]: P = 0.035). Furthermore, we observed an inverse correlation between critical COVID-19 and the abundance of Victivallaceae (IVW: P = 0.045). Notably, an increased Victivallaceae abundance exhibits a protective effect against the risk of celiac disease (IVW: P = 0.016). In conclusion, our analysis provides genetic evidence supporting the causal connection between critical COVID-19 and lower Victivallaceae abundance, thereby increasing the risk of celiac disease.
Collapse
Affiliation(s)
- Yuxin Zou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manyi Pan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifeng Yan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntian Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Yun
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihua Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaqi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Zhang
- Department of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Luo Y, Zhang Z, Ren J, Dou C, Wen J, Yang Y, Li X, Yan Z, Han Y. SARS-Cov-2 spike induces intestinal barrier dysfunction through the interaction between CEACAM5 and Galectin-9. Front Immunol 2024; 15:1303356. [PMID: 38686388 PMCID: PMC11056506 DOI: 10.3389/fimmu.2024.1303356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Background Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), as a typical tumor marker, has been found to exert immunomodulatory effects in many diseases. We previously reported the clinical and molecular evidences supporting that SARS-Cov-2 infected the gastrointestinal (GI) tract and found a reduction of CEACAM5 in COVID-19 patients' feces which associated with gut dysbiosis. Yet the role of CEACAM5 in GI infection is ill-defined. Methods Mice models were established through intraperitoneally injecting with recombinant viral spike-Fc to mimic the intestinal inflammation. We collected duodenum, jejunum, ileum and colon samples after 6h, 2 days, 4 days and 7 days of spike-Fc or control-Fc injection to perform proteomic analysis. Blood was collected from healthy donors and peripheral blood mononuclear cells (PBMC) were separated by density gradient centrifugation, then CD4+ T cells were isolated with magnetic beads and co-cultured with Caco-2 cells. Results In addition to intestinal CEACAM5, the expression of tight junction and the percent of CD4+ T lymphocytes were significantly decreased in spike-Fc group compared to control (p < 0.05), accompanied with increased level of inflammatory factors. The KEGG analysis revealed differentially expressed proteins were mainly enriched in the coronavirus disease (COVID-19), tight junction, focal adhesion, adherens junction and PI3K-Akt signaling pathway. Protein-protein interaction (PPI) network analysis identified the interaction between CEACAM5 and Galectin-9 that was also verified by molecular docking and co-IP assay. We further confirmed a reduction of CEACAM5 in SARS-CoV-2 spike stimulated enterocytes could promote the expression of Galectin-9 protein in CD4+T cells. Then it gave rise to the increasing release of inflammatory factors and increased apoptosis of CD4+T cells by inhibition of PI3K/AKT/mTOR pathway. Ultimately intestinal barrier dysfunction happened. Conclusion Our results indicated that CEACAM5 overexpression and Galectin-9 knockdown played a protective role in intestinal barrier injury upon spike-Fc stimulation. Collectively, our findings identified firstly that SARS-CoV-2 spike induced intestinal barrier dysfunction through the interaction between CEACAM5 and Galectin-9. The result provides potential therapeutic targets in intestinal barrier dysfunction for treating severe COVID patients.
Collapse
Affiliation(s)
- Yingshu Luo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhenling Zhang
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jiangnan Ren
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Chunxu Dou
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jiancheng Wen
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yang Yang
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiaofeng Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhixiang Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yanzhi Han
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
19
|
Snedden CE, Lloyd-Smith JO. Predicting the presence of infectious virus from PCR data: A meta-analysis of SARS-CoV-2 in non-human primates. PLoS Pathog 2024; 20:e1012171. [PMID: 38683864 PMCID: PMC11081500 DOI: 10.1371/journal.ppat.1012171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/09/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Researchers and clinicians often rely on molecular assays like PCR to identify and monitor viral infections, instead of the resource-prohibitive gold standard of viral culture. However, it remains unclear when (if ever) PCR measurements of viral load are reliable indicators of replicating or infectious virus. The recent popularity of PCR protocols targeting subgenomic RNA for SARS-CoV-2 has caused further confusion, as the relationships between subgenomic RNA and standard total RNA assays are incompletely characterized and opinions differ on which RNA type better predicts culture outcomes. Here, we explore these issues by comparing total RNA, subgenomic RNA, and viral culture results from 24 studies of SARS-CoV-2 in non-human primates (including 2167 samples from 174 individuals) using custom-developed Bayesian statistical models. On out-of-sample data, our best models predict subgenomic RNA positivity from total RNA data with 91% accuracy, and they predict culture positivity with 85% accuracy. Further analyses of individual time series indicate that many apparent prediction errors may arise from issues with assay sensitivity or sample processing, suggesting true accuracy may be higher than these estimates. Total RNA and subgenomic RNA showed equivalent performance as predictors of culture positivity. Multiple cofactors (including exposure conditions, host traits, and assay protocols) influence culture predictions, yielding insights into biological and methodological sources of variation in assay outcomes-and indicating that no single threshold value applies across study designs. We also show that our model can accurately predict when an individual is no longer infectious, illustrating the potential for future models trained on human data to guide clinical decisions on case isolation. Our work shows that meta-analysis of in vivo data can overcome longstanding challenges arising from limited sample sizes and can yield robust insights beyond those attainable from individual studies. Our analytical pipeline offers a framework to develop similar predictive tools in other virus-host systems, including models trained on human data, which could support laboratory analyses, medical decisions, and public health guidelines.
Collapse
Affiliation(s)
- Celine E. Snedden
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
20
|
Mullins N, Alashraf AR, McDermott K, Brown RS, Payne SJ. Polyethylenimine mediated recovery of SARS-CoV-2 and total viral RNA: Impact of aqueous conditions on behaviour and recovery. WATER RESEARCH 2024; 253:121207. [PMID: 38401469 DOI: 10.1016/j.watres.2024.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/28/2023] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
Wastewater-based epidemiology (WBE) is an emerging, practical surveillance tool for monitoring community levels of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, SC2). However, a paucity of data exists regarding SARS-CoV-2 and viral biomarker behaviour in aqueous and wastewater environments. Therefore, there is a pressing need to develop efficient and robust methods that both improve method sensitivity and reduce time and cost. We present a novel method for SARS-CoV-2, Human Coronavirus 229E (229E), and Pepper Mild Mottle Virus (PMMoV) recovery utilizing surface charge-based attraction via the branched cationic polymer, polyethylenimine (PEI). Initially, dose-optimization experiments demonstrated that low concentrations of PEI (0.001% w/v) proved most effective at flocculating suspended viruses and viral material, including additional unbound SC2 viral fragments and/or RNA from raw wastewater. A design-of-experiments (DOE) approach was used to optimize virus and/or viral material aggregation behaviour and recovery across varying aqueous conditions, revealing pH as a major influence on recoverability in this system, combinatorially due to both a reduction in viral material surface charge and increased protonation of PEI-bound amine groups. Overall, this method has shown great promise in significantly improving quantitative viral recovery, providing a straightforward and effective augmentation to standard centrifugation techniques.
Collapse
Affiliation(s)
- Nathan Mullins
- Queen's University, Department of Civil Engineering, Kingston, Ontario, K7L 3N6, Canada; McMaster University, Department of Chemical Engineering, Hamilton, Ontario, L8S 4L7, Canada
| | - Abdul Rahman Alashraf
- Queen's University, Department of Civil Engineering, Kingston, Ontario, K7L 3N6, Canada; Queen's University, Beaty Water Research Centre, Department of Civil Engineering, Kingston, Ontario, K7L 3N6, Canada
| | | | - R Stephen Brown
- Queen's University, Department of Chemistry and School of Environmental Studies, Kingston, Ontario, K7L 3N6, Canada; Queen's University, Beaty Water Research Centre, Department of Civil Engineering, Kingston, Ontario, K7L 3N6, Canada.
| | - Sarah Jane Payne
- Queen's University, Department of Civil Engineering, Kingston, Ontario, K7L 3N6, Canada; Queen's University, Beaty Water Research Centre, Department of Civil Engineering, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
21
|
Yokoyama Y, Ichiki T, Yamakawa T, Tsuji Y, Kuronuma K, Takahashi S, Narimatsu E, Katanuma A, Nakase H. Gut microbiota and metabolites in patients with COVID-19 are altered by the type of SARS-CoV-2 variant. Front Microbiol 2024; 15:1358530. [PMID: 38505560 PMCID: PMC10948395 DOI: 10.3389/fmicb.2024.1358530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Patients with COVID-19 have dysbiosis of the intestinal microbiota with altered metabolites in the stool. However, it remains unclear whether the differences among SARS-CoV-2 variants lead to differences in intestinal microbiota and metabolites. Thus, we compared the microbiome and metabolome changes for each SARS-CoV-2 variant in patients with COVID-19. Materials and methods We conducted a multicenter observational study of patients with COVID-19 and performed fecal microbiome, metabolome, and calprotectin analyses and compared the results among the different SARS-CoV-2 variants. Results Twenty-one patients with COVID-19 were enrolled and stratified according to the SARS-CoV-2 strain: six with the Alpha, 10 with the Delta, and five with the Omicron variant. Fecal microbiome analysis showed that α-diversity was reduced in the order of the Omicron, Delta, and Alpha variants (p = 0.07). Linear discriminant analysis revealed differences in the abundance of short-chain fatty acid-producing gut microbiota for each SARS-CoV-2 variant. Fecal metabolome analysis showed that the Omicron and Delta variants had markedly reduced propionic and lactic acid levels compared to the Alpha strain (p < 0.05). Conclusion The intestinal microbiota of patients with COVID-19 varies depending on the SARS-CoV-2 variant. Dysbiosis of the intestinal microbiota due to differences in SARS-CoV-2 variants causes a decrease in intestinal short-chain fatty acids.
Collapse
Affiliation(s)
- Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoko Ichiki
- Department of General Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tsukasa Yamakawa
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihisa Tsuji
- Department of General Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eichi Narimatsu
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
22
|
Hua S, Latha K, Marlin R, Benmeziane K, Bossevot L, Langlois S, Relouzat F, Dereuddre-Bosquet N, Le Grand R, Cavarelli M. Intestinal immunological events of acute and resolved SARS-CoV-2 infection in non-human primates. Mucosal Immunol 2024; 17:25-40. [PMID: 37827377 DOI: 10.1016/j.mucimm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
SARS-CoV-2 infection has been associated with intestinal mucosal barrier damage, leading to microbial and endotoxin translocation, heightened inflammatory responses, and aggravated disease outcomes. This study aimed to investigate the immunological mechanisms associated with impaired intestinal barrier function. We conducted a comprehensive analysis of gut damage and inflammation markers and phenotypic characterization of myeloid and lymphoid populations in the ileum and colon of SARS-CoV-2-exposed macaques during both the acute and resolved infection phases. Our findings revealed a significant accumulation of terminally differentiated and activated CD4+ and CD8+ T cells, along with memory B cells, within the gastrointestinal tract up to 43 days after exposure to SARS-CoV-2. This robust infection-induced immune response was accompanied by a notable depletion of plasmacytoid dendritic cells, myeloid dendritic cells, and macrophages, particularly affecting the colon during the resolved infection phase. Additionally, we identified a population of CX3CR1Low inflammatory macrophages associated with intestinal damage during active viral replication. Elevated levels of immune activation and gut damage markers, and perturbation of macrophage homeostasis, persisted even after the resolution of the infection, suggesting potential long-term clinical sequelae. These findings enhance our understanding of gastrointestinal immune pathology following SARS-CoV-2 infection and provide valuable information for developing and testing medical countermeasures.
Collapse
Affiliation(s)
- Stéphane Hua
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Krishna Latha
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Keltouma Benmeziane
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
23
|
Mosaffa-Jahromi M, Molavi Vardanjani H, Fuzimoto A, Hunter J, Lankarani KB, Pasalar M. Efficacy and safety of aniseed powder for treating gastrointestinal symptoms of COVID-19: a randomized, placebo-controlled trial. Front Pharmacol 2024; 15:1331177. [PMID: 38292939 PMCID: PMC10824915 DOI: 10.3389/fphar.2024.1331177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Background: Gastrointestinal symptoms are prevalent amongst patients with a confirmed diagnosis of COVID-19 and may be associated with an increased risk of disease severity. This trial aimed to evaluate the efficacy and safety of aniseed (Pimpinella anisum L.) powder as an add-on therapy to standard care for treating gastrointestinal symptoms experienced by adults with an acute SARS-CoV-2 infection. Methods: The study was a randomized parallel-group double-blinded placebo-controlled add-on therapy trial. Adults with an acute SARS-CoV-2 infection who did not require hospitalization and reported at least one gastrointestinal symptom in the preceding 48 h were assigned to either the aniseed or placebo group in a 1:4 ratio. All 225 participants (45 in the aniseed group and 180 in the placebo group) were instructed to use 25 g of powdered aniseed or placebo twice daily for 2 weeks. The primary outcomes were the proportion of patients who experienced an improvement of at least one point in the symptom score after adjusting for age group, gender, and time. Backwards stepwise logistic regression was applied to calculate the risk ratios. The clinical symptoms and adverse events were assessed at the beginning, 1 week later, and at the end of the trial (week two). Results: Participants in the aniseed group were significantly more likely to report symptom improvement for abdominal pain [adjusted risk ratio (RR):0.55; 95% confidence interval (CI): 0.46-0.72], anorexia (RR:0.62; 95% CI: 0.47-0.82), and diarrhea (RR:0.19; 95% CI: 0.12-0.30), but not nausea/vomiting (RR:0.87; 95% CI: 0.71-1.08) or bloating (RR:0.87; 95% CI: 0.72-1.05). Two participants in the aniseed group and three participants in the placebo group reported mild to moderate adverse events. Conclusion: This study showed that 2 weeks of aniseed powder containing trans-anethole (87%-94%) may help improve abdominal pain, anorexia, and diarrhea in COVID-19 patients. The findings align with the known biological, multitargeted activity of P. anisum and trans-anethole, which includes inhibiting SARS-CoV-2 along with other anti-infective, anti-inflammatory, antioxidant, hepatoprotective, and anti-dysbiosis properties. Multicenter trials with larger sample sizes and longer follow-up are warranted to confirm these findings. Clinical Trial Registration: Iranian Registry of Clinical Trials (IRCT20120506009651N3).
Collapse
Affiliation(s)
- Maryam Mosaffa-Jahromi
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Molavi Vardanjani
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | - Mehdi Pasalar
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Chen H, Wang J, Ding K, Xu J, Yang Y, Tang C, Zhou Y, Yu W, Wang H, Huang Q, Li B, Kuang D, Wu D, Luo Z, Gao J, Zhao Y, Liu J, Peng X, Lu S, Liu H. Gastrointestinal microbiota and metabolites possibly contribute to distinct pathogenicity of SARS-CoV-2 proto or its variants in rhesus monkeys. Gut Microbes 2024; 16:2334970. [PMID: 38563680 PMCID: PMC10989708 DOI: 10.1080/19490976.2024.2334970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Gastrointestinal (GI) infection is evidenced with involvement in COVID-19 pathogenesis caused by SARS-CoV-2. However, the correlation between GI microbiota and the distinct pathogenicity of SARS-CoV-2 Proto and its emerging variants remains unclear. In this study, we aimed to determine if GI microbiota impacted COVID-19 pathogenesis and if the effect varied between SARS-CoV-2 Proto and its variants. We performed an integrative analysis of histopathology, microbiomics, and transcriptomics on the GI tract fragments from rhesus monkeys infected with SARS-CoV-2 proto or its variants. Based on the degree of pathological damage and microbiota profile in the GI tract, five of SARS-CoV-2 strains were classified into two distinct clusters, namely, the clusters of Alpha, Beta and Delta (ABD), and Proto and Omicron (PO). Notably, the abundance of potentially pathogenic microorganisms increased in ABD but not in the PO-infected rhesus monkeys. Specifically, the high abundance of UCG-002, UCG-005, and Treponema in ABD virus-infected animals positively correlated with interleukin, integrins, and antiviral genes. Overall, this study revealed that infection-induced alteration of GI microbiota and metabolites could increase the systemic burdens of inflammation or pathological injury in infected animals, especially in those infected with ABD viruses. Distinct GI microbiota and metabolite profiles may be responsible for the differential pathological phenotypes of PO and ABD virus-infected animals. These findings improve our understanding the roles of the GI microbiota in SARS-CoV-2 infection and provide important information for the precise prevention, control, and treatment of COVID-19.
Collapse
Affiliation(s)
- Hongyu Chen
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Junbin Wang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Kaiyun Ding
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Jingwen Xu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Yun Yang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Cong Tang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Yanan Zhou
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Wenhai Yu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Haixuan Wang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Qing Huang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Bai Li
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Dexuan Kuang
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Daoju Wu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Zhiwu Luo
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Jiahong Gao
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Yuan Zhao
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Jiansheng Liu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Xiaozhong Peng
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
- Institute of Laboratory Animal Sciences, IMBCAMS & PUMC, Beijing, China
- Institute of Basic Medical Sciences, IMBCAMS & PUMC, Beijing, China
| | - Shuaiyao Lu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| | - Hongqi Liu
- Institute of Medical biology, Chinese Academy of Medical Sciences and Peking Union Medical School (IMBCAMS & PUMC), Kunming, Yunnan, China
| |
Collapse
|
25
|
Esseili MA. In vitro digestion of SARS-CoV-2 contaminated berries reveals high inactivation of infectious virus during gastrointestinal passage. Appl Environ Microbiol 2023; 89:e0133923. [PMID: 37982639 PMCID: PMC10734541 DOI: 10.1128/aem.01339-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE During the pandemic, news outlets occasionally reported on the detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA on various foods, raising concerns over contaminated foods initiating infections. Coronavirus disease 2019 (COVID-19) patients often experience gastrointestinal symptoms and shed SARS-CoV-2 RNA in their feces. In addition, active virus replication in the gastrointestinal tract was shown; however, infectious viruses were rarely detected in feces. We previously showed that SARS-CoV-2 remained infectious on frozen berries for at least a month. Here, in vitro digestion models showed that SARS-CoV-2 on berries exhibits minimal inactivation at the oral phase and the virus may escape gastric inactivation early during feeding. However, high intestinal inactivation of the virus on berries suggested that SARS-CoV-2 was less likely to initiate infection in the small intestine. In contrast, the oral cavity is a potential site where infection might be initiated, providing more input for the gastrointestinal tract. High intestinal inactivation might explain the difficulty of detecting infectious SARS-CoV-2 in feces but not of virus RNA.
Collapse
Affiliation(s)
- Malak A. Esseili
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
26
|
Xiao Z, Pan M, Li X, Zhao C. Impact of SARS-CoV2 infection on gut microbiota dysbiosis. MICROBIOME RESEARCH REPORTS 2023; 3:7. [PMID: 38455085 PMCID: PMC10917619 DOI: 10.20517/mrr.2023.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
The composition and function of the gut microbiota constantly influence health. Disruptions in this delicate balance, termed gut microbiota dysbiosis, have been implicated in various adverse health events. As the largest global epidemic since 1918, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had devastating consequences. While the primary impact of Corona Virus Disease 2019 (COVID-19) has been on the respiratory system, a growing body of research has unveiled the significant involvement of the gastrointestinal tract as well. Emerging evidence underscores notable alterations in the gut microbiome of COVID-19 patients. In addition, the gut microbiome is also characterized by an abundance of opportunistic pathogens, which is related to disease manifestations of COVID-19 patients. The intricate bidirectional interaction between the respiratory mucosa and the gut microbiota, known as the gut-lung axis, emerges as a crucial player in the pathological immune response triggered by SARS-CoV-2. Here, we discuss microbiota-based gut characteristics of COVID-19 patients and the long-term consequences of gut microbiota dysregulation. These insights could potentially transform the development of long-term interventions for COVID-19, offering hope for improved outcomes and enhanced patient recovery.
Collapse
Affiliation(s)
- Zhenming Xiao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Miaomiao Pan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xinyao Li
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Frontiers Science Center, Shanghai 200032, China
| |
Collapse
|
27
|
Termansen MB, Frische S. Fecal-oral transmission of SARS-CoV-2: A systematic review of evidence from epidemiological and experimental studies. Am J Infect Control 2023; 51:1430-1437. [PMID: 37121473 PMCID: PMC10141930 DOI: 10.1016/j.ajic.2023.04.170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND SARS-CoV-2 ribonucleic acid (RNA) has been detected in feces, but RNA is not infectious. This systematic review aims to answer if fecal SARS-CoV-2 is experimentally infectious and if evidence of human fecal-oral SARS-CoV-2 transmission exists. METHODS On September 19, 2022, we searched PubMed, Embase, Web of Science, medRxiv, and bioRxiv. Biomedical studies inoculating SARS-CoV-2 from feces, rectal, or anal swabs in cells, tissue, organoids, or animals were included. Epidemiological studies of groups differing in exposure to fecal SARS-CoV-2 were included. Risk of bias was assessed using standardized tools. Results were summarized by vote counting, tabulation, and a harvest plot. PROSPERO registration no. CRD42020221719. RESULTS A total of 4,874 studies were screened; 26 studies were included; and 13 out of 23 biomedical studies (56.5%) succeeded in infection. Two (66.7%) epidemiological studies found limited evidence suggesting fecal-oral transmission. All studies had concerns about the risk of bias. CONCLUSIONS It is possible to experimentally infect cell cultures, organoids, and animals with fecal SARS-CoV-2. No strong epidemiologic evidence was found to support human fecal-oral transmission. We advise future research to study fecal infectivity at different time points during infection, apply appropriate controls, use in vivo models, and study fecal exposure as a risk factor of transmission in human populations.
Collapse
|
28
|
Tang X, Zhou Y, Wu J, Liu P, Yang Y, Wang Q, Lu S, Liu J, Yang J. Proteomic and phosphoproteomic profiling of SARS-CoV-2-associated liver injury: a report based on rhesus macaques. MedComm (Beijing) 2023; 4:e358. [PMID: 37638337 PMCID: PMC10458660 DOI: 10.1002/mco2.358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Xiaoyue Tang
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yanan Zhou
- National Kunming High‐level Biosafety Primate Research CenterInstitute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | - Jianqiang Wu
- State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Peng Liu
- State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yehong Yang
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Qiaochu Wang
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Shuaiyao Lu
- National Kunming High‐level Biosafety Primate Research CenterInstitute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | - Jiangfeng Liu
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Juntao Yang
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| |
Collapse
|
29
|
Obleagă CV, Ahmet RAM, Florescu DN, Popescu DM, Meşină C, Streba L, Vere CC, Constantin C. Post-COVID-19 enterocolitis - a cause of rebellious diarrhea, acute abdomen and liver failure. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:527-533. [PMID: 38184833 PMCID: PMC10863687 DOI: 10.47162/rjme.64.4.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024]
Abstract
Currently, worldwide, the coronavirus disease 2019 (COVID-19) pandemic, which first appeared in Wuhan, China, in December 2019, is capsizing the medical system and turning the attention of the entire healthcare system through the many aspects it presents, both from a pathophysiological and from a semiological view, insufficiently studied aspects. With a high rate of morbidity and mortality, the COVID-19 pandemic was initially observed as a pathology leading to a severe acute respiratory syndrome, but over time gastrointestinal and hepatic manifestations have been reported. The study includes an analysis of 21 patients in the stage of the clinical disease of COVID-19 or in the stage of recovery, hospitalized in the Departments of General Surgery II or Gastroenterology, Emergency Clinical County Hospital of Craiova, Romania, with predominantly digestive symptoms, with the clinical expression of infectious enterocolitis, although stool culture was negative for pathogenic bacteria. The evolution of patients was influenced by the appearance of peritonitis through colonic necrosis or remission of clinical symptoms under empirical therapy.
Collapse
Affiliation(s)
| | | | - Dan Nicolae Florescu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, Romania
| | - Dragoş Marian Popescu
- Department of Extreme Conditions Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Cristian Meşină
- Department of Surgery, University of Medicine and Pharmacy of Craiova, Romania
| | - Liliana Streba
- Department of Medical Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | | | - Cristian Constantin
- Department of Medical Imaging, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
30
|
Vernia F, Ashktorab H, Cesaro N, Monaco S, Faenza S, Sgamma E, Viscido A, Latella G. COVID-19 and Gastrointestinal Tract: From Pathophysiology to Clinical Manifestations. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1709. [PMID: 37893427 PMCID: PMC10608106 DOI: 10.3390/medicina59101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
Background: Since its first report in Wuhan, China, in December 2019, COVID-19 has become a pandemic, affecting millions of people worldwide. Although the virus primarily affects the respiratory tract, gastrointestinal symptoms are also common. The aim of this narrative review is to provide an overview of the pathophysiology and clinical manifestations of gastrointestinal COVID-19. Methods: We conducted a systematic electronic search of English literature up to January 2023 using Medline, Scopus, and the Cochrane Library, focusing on papers that analyzed the role of SARS-CoV-2 in the gastrointestinal tract. Results: Our review highlights that SARS-CoV-2 directly infects the gastrointestinal tract and can cause symptoms such as diarrhea, nausea/vomiting, abdominal pain, anorexia, loss of taste, and increased liver enzymes. These symptoms result from mucosal barrier damage, inflammation, and changes in the microbiota composition. The exact mechanism of how the virus overcomes the acid gastric environment and leads to the intestinal damage is still being studied. Conclusions: Although vaccination has increased the prevalence of less severe symptoms, the long-term interaction with SARS-CoV-2 remains a concern. Understanding the interplay between SARS-CoV-2 and the gastrointestinal tract is essential for future management of the virus.
Collapse
Affiliation(s)
- Filippo Vernia
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Hassan Ashktorab
- Department of Medicine, Gastroenterology Division, Howard University College of Medicine, Washington, DC 20060, USA
| | - Nicola Cesaro
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Sabrina Monaco
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Susanna Faenza
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Emanuele Sgamma
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Angelo Viscido
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Giovanni Latella
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| |
Collapse
|
31
|
Saulnier A, Wendling JM, Hermant B, Lepelletier D. SARS-CoV-2 transmission modes: Why and how contamination occurs around shared meals and drinks? Food Microbiol 2023; 114:104297. [PMID: 37290873 DOI: 10.1016/j.fm.2023.104297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/10/2023]
Abstract
In spite of prevention measures enacted all over the world to control the COVID-19 pandemic outbreak, including mask wearing, social distancing, hand hygiene, vaccination, and other precautions, the SARS-CoV-2 virus continues to spread globally at an unabated rate of about 1 million cases per day. The specificities of superspreading events as well as evidence of human-to-human, human-to-animal and animal-to-human transmission, indoors or outdoors, raise questions about a possibly neglected viral transmission route. In addition to inhaled aerosols, which are already recognized as key contributors to transmission, the oral route represents a strong candidate, in particular when meals and drinks are shared. In this review, we intend to discuss that significant quantities of virus dispersed by large droplets during discussions at festive gatherings could explain group contamination either directly or indirectly after deposition on surfaces, food, drinks, cutlery, and several other soiled vectors. We suggest that hand hygiene and sanitary practices around objects brought to the mouth and food also need to be taken into account in order to curb transmission.
Collapse
Affiliation(s)
| | | | - Benoit Hermant
- Risk and Capability Assessment Unit, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Didier Lepelletier
- Hospital Hygiene Department, Nantes University Hospital, F-44000, Nantes, France; Nantes University, IICiMEd 1155 Lab, IRS 2 Institute, F-44093, Nantes, France.
| |
Collapse
|
32
|
Valdetaro L, Thomasi B, Ricciardi MC, Santos KDM, Coelho-Aguiar JDM, Tavares-Gomes AL. Enteric nervous system as a target and source of SARS-CoV-2 and other viral infections. Am J Physiol Gastrointest Liver Physiol 2023; 325:G93-G108. [PMID: 37253656 PMCID: PMC10390051 DOI: 10.1152/ajpgi.00229.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/02/2023] [Accepted: 05/29/2023] [Indexed: 06/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been demonstrated to affect several systems of the human body, including the gastrointestinal and nervous systems. The enteric nervous system (ENS) is a division of the autonomic nervous system that extends throughout the gut, regulates gastrointestinal function, and is therefore involved in most gut dysfunctions, including those resulting from many viral infections. Growing evidence highlights enteric neural cells and microbiota as important players in gut inflammation and dysfunction. Furthermore, the ENS and gastrointestinal immune system work together establishing relevant neuroimmune interactions during both health and disease. In recent years, gut-driven processes have also been implicated as players in systemic inflammation and in the initiation and propagation of several central nervous system pathologies, which seem to be hallmarks of COVID-19. In this review, we aim to describe evidence of the gastrointestinal and ENS infection with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss here viral-induced mechanisms, neuroplasticity, and neuroinflammation to call attention to the enteric neuroglial network as a nervous system with a sensitive and crucial position to be not only a target of the new coronavirus but also a way in and trigger of COVID-19-related symptoms.
Collapse
Affiliation(s)
- Luisa Valdetaro
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, United States
| | - Beatriz Thomasi
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Maria Carolina Ricciardi
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Karoline de Melo Santos
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Lúcia Tavares-Gomes
- Postgraduate Program in Neuroscience, Neurobiology Department, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Padmaprakash KV, Thareja S, Raman N, Muthukrishnan J, Miglani A, Summi P, Reddy SN. Gastrointestinal manifestations in symptomatic Coronavirus disease - 19 patients and its relevance in predicting severity and outcome. Indian J Gastroenterol 2023; 42:485-495. [PMID: 37329490 DOI: 10.1007/s12664-023-01370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Recent developments characterizing the pathophysiological basis of infection in the Coronavirus disease - 19 (COVID-19) have stirred great interest in studying this disease outside the purview of respiratory involvement and especially focusing on the gastrointestinal (GI) system. The present study involving a large cohort of COVID-19-infected patients reports on the characteristics of GI manifestations in patients infected with COVID-19 as well as the predictive role in their association with disease severity and adverse outcomes. METHODS A retrospective cohort study was carried out in a tertiary care hospital in northern India. Descriptive analysis of GI symptoms was carried out followed by predictive analysis assessing COVID-19 severity and with the primary endpoint of 28-day in-hospital all-cause mortality. RESULTS Of 3842 hospitalized COVID-19 patients, 2113 (55%) were symptomatic. GI symptoms were present in 163 (7.1%) patients. Common GI symptoms were diarrhea 65 (3.1%), anorexia 61 (2.9%) and vomiting 37 (1.8%). Mild and moderate-to-severe disease was seen in 1725 (81.6%) and 388 (18.4%) patients, respectively. Logistic regression showed greater odds of moderate-to-severe disease in patients with any GI symptoms (odds ratio [OR] 1.849, 95% CI 1.289-2.651 [p = 0.001]) and anorexia in particular (OR 2.797, 95% CI 1.647-4.753 [p = 0.001]); however, on multivariable-analysis, this association lost its significance. A total of 172 patients succumbed to illness. In the Cox proportional hazards model for mortality, patients with any GI symptom (HR 2.184, 95 CI 1.439-3.317 [p < 0.001]) and anorexia (HR 3.556, 95% CI 2.155-5.870 [p < 0.001]) had higher risk. In multi-variable analysis after adjustment to age, sex, oxygen saturation and comorbidities, the presence of any GI symptom was a significant predictor of mortality (hazard ratio adjusted [HRadj] 1.758, 95% CI 1.147-2.694 [p = 0.010]). CONCLUSION GI symptoms were common among patients infected with COVID-19. The presence of any GI symptom was a significant predictor of the risk of mortality after adjustment to respiratory failure, age, sex and pre-existing comorbidities. The clinical and pathophysiological basis of these associations has been explored.
Collapse
Affiliation(s)
| | | | - Nishant Raman
- Base Hospital, Delhi Cantt, New Delhi, 110 010, India
| | | | - Aman Miglani
- Base Hospital, Delhi Cantt, New Delhi, 110 010, India
| | - Pankaj Summi
- Base Hospital, Delhi Cantt, New Delhi, 110 010, India
| | | |
Collapse
|
34
|
Tong J, Chen Y, He M, Wang W, Wang Y, Li N, Xia Q. The triangle relationship between human genome, gut microbiome, and COVID-19: opening of a Pandora's box. Front Microbiol 2023; 14:1190939. [PMID: 37455722 PMCID: PMC10344606 DOI: 10.3389/fmicb.2023.1190939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Since the pandemic started, the coronavirus disease 2019 (COVID-19) has spread worldwide. In patients with COVID-19, the gut microbiome (GM) has been supposed to be closely related to the progress of the disease. The gut microbiota composition and human genetic variation are also connected in COVID-19 patients, assuming a triangular relationship between the genome, GM, and COVID-19. Here, we reviewed the recent developments in the study of the relationship between gut microbiota and COVID-19. The keywords "COVID-19," "microbiome," and "genome" were used to search the literature in the PubMed database. We first found that the composition of the GM in COVID-19 patients varies according to the severity of the illness. Most obviously, Candida albicans abnormally increased while the probiotic Bifidobacterium decreased in severe cases of COVID-19. Interestingly, clinical studies have consistently emphasized that the family Lachnospiraceae plays a critical role in patients with COVID-19. Additionally, we have demonstrated the impact of microbiome-related genes on COVID-19. Specially, we focused on angiotensin-converting enzyme 2's dual functions in SARS-CoV-2 infection and gut microbiota alternation. In summary, these studies showed that the diversity of GMs is closely connected to COVID-19. A triangular relationship exists between COVID-19, the human genome, and the gut flora, suggesting that human genetic variations may offer a chance for a precise diagnosis of COVID-19, and the important relationships between genetic makeup and microbiome regulation may affect the therapy of COVID-19.
Collapse
Affiliation(s)
- Jie Tong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yuran Chen
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Mei He
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Wenjing Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yiyang Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Na Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
35
|
Fernández-de-Las-Peñas C, Torres-Macho J, Guijarro C, Martín-Guerrero JD, Pellicer-Valero OJ, Plaza-Manzano G. Trajectory of Gastrointestinal Symptoms in Previously Hospitalized COVID-19 Survivors: The Long COVID Experience Multicenter Study. Viruses 2023; 15:v15051134. [PMID: 37243220 DOI: 10.3390/v15051134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This multicenter cohort study used Sankey plots and exponential bar plots to visualize the fluctuating evolution and the trajectory of gastrointestinal symptoms in previously hospitalized COVID-19 survivors during the first 18 months after acute SARS-CoV-2 infection. A total of 1266 previously hospitalized COVID-19 survivors were assessed at four points: hospital admission (T0), at 8.4 months (T1), at 13.2 months (T2), and at 18.3 months (T3) after hospitalization. Participants were asked about their overall gastrointestinal symptoms and particularly diarrhea. Clinical and hospitalization data were collected from hospital medical records. The prevalence of overall gastrointestinal post-COVID symptomatology was 6.3% (n = 80) at T1, 3.99% (n = 50) at T2 and 2.39% (n = 32) at T3. The prevalence of diarrhea decreased from 10.69% (n = 135) at hospital admission (T0), to 2.55% (n = 32) at T1, to 1.04% (n = 14) at T2, and to 0.64% (n = 8) at T3. The Sankey plots revealed that just 20 (1.59%) and 4 (0.32%) patients exhibited overall gastrointestinal post-COVID symptoms or diarrhea, respectively, throughout the whole follow-up period. The recovery fitted exponential curves revealed a decreasing prevalence trend, showing that diarrhea and gastrointestinal symptoms recover during the first two or three years after COVID-19 in previously hospitalized COVID-19 survivors. The regression models did not reveal any symptoms to be associated with the presence of gastrointestinal post-COVID symptomatology or post-COVID diarrhea at hospital admission or at T1. The use of Sankey plots revealed the fluctuating evolution of gastrointestinal post-COVID symptoms during the first two years after infection. In addition, exponential bar plots revealed the decreased prevalence of gastrointestinal post-COVID symptomatology during the first three years after infection.
Collapse
Affiliation(s)
- César Fernández-de-Las-Peñas
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| | - Juan Torres-Macho
- Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, 28031 Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Guijarro
- Department of Internal Medicine, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain
- Department of Medicine, Universidad Rey Juan Carlos (URJC), 28922 Madrid, Spain
| | - José D Martín-Guerrero
- Intelligent Data Analysis Laboratory, Department of Electronic Engineering, ETSE (Engineering School), Universitat de València (UV), 46010 Valencia, Spain
| | - Oscar J Pellicer-Valero
- Image Processing Laboratory (IPL), Universitat de València, Parc Científic, Paterna, 46010 València, Spain
| | - Gustavo Plaza-Manzano
- Department of Radiology, Rehabilitation and Physiotherapy, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| |
Collapse
|
36
|
Parsa SM, Norozpour F, Elsheikh AH, Kabeel AE. Solar desalination/purification (solar stills, humidification-dehumidification, solar disinfection) in high altitude during COVID19: Insights of gastrointestinal manifestations and systems' mechanism. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 10:100259. [PMID: 36816517 PMCID: PMC9927827 DOI: 10.1016/j.hazadv.2023.100259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
From the starting of the pandemic different transmission routes of the pathogen was brought into the spotlight by researchers from different disciplines. This matter in high-altitudes was more boosted as the main parameters were not exactly realized. In this review we are about to highlight the possibility of consuming contaminated water generated form solar water desalination/disinfection systems in highlands. Three systems including solar still, solar disinfection (which experimented by the authors in 2019 in high altitude) and humidification-dehumidification were consider in this context. Ascribe to the risks of pathogens transmission in solar desalination/disinfection systems where the water resources are heavily polluted in every corner of the world, highlighting the risk of consuming water in high-altitude where there are many other parameters associated with spread of pathogen is of great importance. As it was reported, reliability of solar desalination and solar water disinfections systems against contaminated water by the novel coronavirus remained on the question because the virus can be transmitted by vapor in solar stills due to tiny particle size (60-140 nm) and would not be killed by solar disinfections due to low-temperature of operation <40 °C while for HDH contamination of both water and air by sars-cov-2 could be a concern. Although the SARS-CoV-2 is not a waterborne pathogen, its capability to replicate in stomach and infection of gastrointestinal glandular suggested the potential of transmission via fecal-oral. Eventually, it was concluded that using solar-based water treatment as drinking water in high altitude regions should be cautiously consider and recommendations and considerations are presented. Importantly, this critical review not only about the ongoing pandemic, but it aims is to highlight the importance of produced drinking water by systems for future epidemic/pandemic to prevent spread and entering a pathogen particularly in high-altitude regions via a new routes.
Collapse
Affiliation(s)
- Seyed Masoud Parsa
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fatemeh Norozpour
- Department of Environmental Engineering, Faculty of Marine Science and Technology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ammar H Elsheikh
- Department of Production Engineering and Mechanical Design, Tanta University, Tanta, Egypt
| | - A E Kabeel
- Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt
| |
Collapse
|
37
|
Xue W, Honda M, Hibi T. Mechanisms of gastrointestinal barrier dysfunction in COVID-19 patients. World J Gastroenterol 2023; 29:2283-2293. [PMID: 37124884 PMCID: PMC10134419 DOI: 10.3748/wjg.v29.i15.2283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a major global public health event, resulting in a significant social and economic burden. Although COVID-19 was initially characterized as an upper respiratory and pulmonary infection, recent evidence suggests that it is a complex disease including gastrointestinal symptoms, such as diarrhea, nausea, and vomiting. Moreover, it remains unclear whether the gastrointestinal symptoms are caused by direct infection of the gastrointestinal tract by SARS-CoV-2 or are the result of systemic immune activation and subsequent dysregulation of homeostatic mechanisms. This review provides a brief overview of the mechanisms by which SARS-CoV-2 disrupts the integrity of the gastrointestinal barrier including the mechanical barrier, chemical barrier, microbial barrier, and immune barrier.
Collapse
Affiliation(s)
- Weijie Xue
- Department of Transplantation and Pediatric Surgery, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaki Honda
- Department of Transplantation and Pediatric Surgery, Kumamoto University, Kumamoto 860-8556, Japan
| | - Taizo Hibi
- Department of Transplantation and Pediatric Surgery, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
38
|
Tsounis EP, Triantos C, Konstantakis C, Marangos M, Assimakopoulos SF. Intestinal barrier dysfunction as a key driver of severe COVID-19. World J Virol 2023; 12:68-90. [PMID: 37033148 PMCID: PMC10075050 DOI: 10.5501/wjv.v12.i2.68] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 03/21/2023] Open
Abstract
The intestinal lumen harbors a diverse consortium of microorganisms that participate in reciprocal crosstalk with intestinal immune cells and with epithelial and endothelial cells, forming a multi-layered barrier that enables the efficient absorption of nutrients without an excessive influx of pathogens. Despite being a lung-centered disease, severe coronavirus disease 2019 (COVID-19) affects multiple systems, including the gastrointestinal tract and the pertinent gut barrier function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can inflict either direct cytopathic injury to intestinal epithelial and endothelial cells or indirect immune-mediated damage. Alternatively, SARS-CoV-2 undermines the structural integrity of the barrier by modifying the expression of tight junction proteins. In addition, SARS-CoV-2 induces profound alterations to the intestinal microflora at phylogenetic and metabolomic levels (dysbiosis) that are accompanied by disruption of local immune responses. The ensuing dysregulation of the gut-lung axis impairs the ability of the respiratory immune system to elicit robust and timely responses to restrict viral infection. The intestinal vasculature is vulnerable to SARS-CoV-2-induced endothelial injury, which simultaneously triggers the activation of the innate immune and coagulation systems, a condition referred to as “immunothrombosis” that drives severe thrombotic complications. Finally, increased intestinal permeability allows an aberrant dissemination of bacteria, fungi, and endotoxin into the systemic circulation and contributes, to a certain degree, to the over-exuberant immune responses and hyper-inflammation that dictate the severe form of COVID-19. In this review, we aim to elucidate SARS-CoV-2-mediated effects on gut barrier homeostasis and their implications on the progression of the disease.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Christos Konstantakis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Patras 26504, Greece
| | - Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Patras 26504, Greece
| |
Collapse
|
39
|
Eleftheriotis G, Tsounis EP, Aggeletopoulou I, Dousdampanis P, Triantos C, Mouzaki A, Marangos M, Assimakopoulos SF. Alterations in gut immunological barrier in SARS-CoV-2 infection and their prognostic potential. Front Immunol 2023; 14:1129190. [PMID: 37006316 PMCID: PMC10050566 DOI: 10.3389/fimmu.2023.1129190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Although coronavirus disease 2019 (COVID-19) is primarily associated with mild respiratory symptoms, a subset of patients may develop more complicated disease with systemic complications and multiple organ injury. The gastrointestinal tract may be directly infected by SARS-CoV-2 or secondarily affected by viremia and the release of inflammatory mediators that cause viral entry from the respiratory epithelium. Impaired intestinal barrier function in SARS-CoV-2 infection is a key factor leading to excessive microbial and endotoxin translocation, which triggers a strong systemic immune response and leads to the development of viral sepsis syndrome with severe sequelae. Multiple components of the gut immune system are affected, resulting in a diminished or dysfunctional gut immunological barrier. Antiviral peptides, inflammatory mediators, immune cell chemotaxis, and secretory immunoglobulins are important parameters that are negatively affected in SARS-CoV-2 infection. Mucosal CD4+ and CD8+ T cells, Th17 cells, neutrophils, dendritic cells, and macrophages are activated, and the number of regulatory T cells decreases, promoting an overactivated immune response with increased expression of type I and III interferons and other proinflammatory cytokines. The changes in the immunologic barrier could be promoted in part by a dysbiotic gut microbiota, through commensal-derived signals and metabolites. On the other hand, the proinflammatory intestinal environment could further compromise the integrity of the intestinal epithelium by promoting enterocyte apoptosis and disruption of tight junctions. This review summarizes the changes in the gut immunological barrier during SARS-CoV-2 infection and their prognostic potential.
Collapse
Affiliation(s)
- Gerasimos Eleftheriotis
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Periklis Dousdampanis
- Department of Renal Diseases, “Agios Andreas” Patras State General Hospital, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stelios F. Assimakopoulos,
| |
Collapse
|
40
|
Zheng L, Zhang L, Zheng Y, An J, Wen G, Jin H, Tuo B. Digestive system infection by SARS‑CoV‑2: Entry mechanism, clinical symptoms and expression of major receptors (Review). Int J Mol Med 2023; 51:19. [PMID: 36660939 PMCID: PMC9911086 DOI: 10.3892/ijmm.2023.5222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2022] [Indexed: 01/21/2023] Open
Abstract
Besides causing severe acute respiratory syndrome (SARS), SARS‑coronavirus 2 (SARS‑CoV‑2) also harms the digestive system. Given the appearance of numerous cases of SARS‑CoV‑2, it has been demonstrated that SARS‑CoV‑2 is able to harm target organs such as the gastrointestinal tract, liver and pancreas, and either worsen the condition of patients with basic digestive illnesses or make their prognosis poor. According to several previously published studies, angiotensin‑converting enzyme II (ACE2) and transmembrane serine protease II (TMPRSS2) are expressed either singly or in combination in the digestive system and in other regions of the human body. In order to change the viral conformation, create a fusion hole and release viral RNA into the host cell for replication and transcription, SARS‑CoV‑2 is capable of binding to these two proteins through the spike protein on its surface. As a result, the body experiences an immune reaction and an inflammatory reaction, which may lead to nausea, diarrhea, abdominal pain and even gastrointestinal bleeding, elevated levels of liver enzymes, acute liver injury, pancreatitis and other serious lesions. In order to provide possible strategies for the clinical diagnosis and treatment of digestive system diseases during the COVID‑19 pandemic, the molecular structure of SARS‑CoV‑2 and the mechanism via which SARS‑CoV‑2 enters the human body through ACE2 and TMPRSS2 were discussed in the present review, and the clinical manifestations of SARS‑CoV‑2 infection in the digestive system were also summarized. Finally, the expression characteristics of ACE2 and TMPRSS2 in the main target organs of the digestive system were described.
Collapse
Affiliation(s)
- Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yi Zheng
- Department of Gastroenterology, The Fifth People's Hospital of Zunyi, Zunyi, Guizhou 563000, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
41
|
Zhang L, Zhang Y, Wang R, Liu X, Zhao J, Tsuda M, Li Y. SARS-CoV-2 infection of intestinal epithelia cells sensed by RIG-I and DHX-15 evokes innate immune response and immune cross-talk. Front Cell Infect Microbiol 2023; 12:1035711. [PMID: 36825215 PMCID: PMC9941539 DOI: 10.3389/fcimb.2022.1035711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/13/2022] [Indexed: 02/10/2023] Open
Abstract
SARS-CoV-2 causes a spectrum of clinical symptoms from respiratory damage to gastrointestinal disorders. Intestinal infection of SARS-CoV-2 triggers immune response. However, the cellular mechanism that how SARS-CoV-2 initiates and induces intestinal immunity is not understood. Here, we exploited SARS-CoV-2-GFP/ΔN trVLP pseudo-virus system and demonstrated that RIG-I and DHX15 are required for sensing SARS-CoV-2 and inducing cellular immune response through MAVS signaling in intestinal epithelial cells (IECs) upon SARS-CoV-2 infection. NLRP6 also engages in the regulation of SARS-CoV-2 immunity by producing IL-18. Furthermore, primary cellular immune response provoked by SARS-CoV-2 in IECs further cascades activation of MAIT cells and produces cytotoxic cytokines including IFN-γ, granzyme B via an IL-18 dependent mechanism. These findings taken together unveil molecular basis of immune recognition in IECs in response to SARS-CoV-2, and provide insights that intestinal immune cross-talk with other immune cells triggers amplified immunity and probably contributes to immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
- Lijuan Zhang
- School of Medicine, Huanghe Science and Technology College, Zhengzhou, China
| | - Yize Zhang
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiqin Wang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiaoning Liu
- School of Medicine, Huanghe Science and Technology College, Zhengzhou, China
| | - Jinmeng Zhao
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Masato Tsuda
- School of Medicine, Niigata University, Niigata, Japan
| | - You Li
- School of Medicine, Huanghe Science and Technology College, Zhengzhou, China,School of Life Science and Technology, Tongji University, Shanghai, China,*Correspondence: You Li,
| |
Collapse
|
42
|
Parsa SM. Mega-scale desalination efficacy (Reverse Osmosis, Electrodialysis, Membrane Distillation, MED, MSF) during COVID-19: Evidence from salinity, pretreatment methods, temperature of operation. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100217. [PMID: 37521749 PMCID: PMC9744688 DOI: 10.1016/j.hazadv.2022.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
The unprecedented situation of the COVID-19 pandemic heavily polluted water bodies whereas the presence of SARS-CoV-2, even in treated wastewater in every corner of the world is reported. The main aim of the present study is to show the effectiveness and feasibility of some well-known desalination technologies which are reverse osmosis (RO), Electrodialysis (ED), Membrane Distillation (MD), multi effect distillation (MED), and multi stage flashing (MSF) during the COVID-19 pandemic. Systems' effectiveness against the novel coronavirus based on three parameters of nasopharynx/nasal saline-irrigation, temperature of operation and pretreatment methods are evaluated. First, based on previous clinical studies, it showed that using saline solution (hypertonic saline >0.9% concentration) for gargling/irrigating of nasal/nasopharynx/throat results in reducing and replication of the viral in patients, subsequently the feed water of desalination plants which has concentration higher than 3.5% (35000ppm) is preventive against the SARS-CoV-2 virus. Second, the temperature operation of thermally-driven desalination; MSF and MED (70-120°C) and MD (55-85°C) is high enough to inhibit the contamination of plant structure and viral survival in feed water. The third factor is utilizing various pretreatment process such as chlorination, filtration, thermal/precipitation softening, ultrafiltration (mostly for RO, but also for MD, MED and MSF), which are powerful treatment methods against biologically-contaminated feed water particularly the SARS-CoV-2. Eventually, it can be concluded that large-scale desalination plants during COVID-19 and similar situation are completely reliable for providing safe drinking water.
Collapse
Affiliation(s)
- Seyed Masoud Parsa
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
43
|
Aukema SM, Glaser S, van den Hout MFCM, Dahlum S, Blok MJ, Hillmer M, Kolarova J, Sciot R, Schott DA, Siebert R, Stumpel CTRM. Molecular characterization of an embryonal rhabdomyosarcoma occurring in a patient with Kabuki syndrome: report and literature review in the light of tumor predisposition syndromes. Fam Cancer 2023; 22:103-118. [PMID: 35856126 PMCID: PMC9829644 DOI: 10.1007/s10689-022-00306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Kabuki syndrome is a well-recognized syndrome characterized by facial dysmorphism and developmental delay/intellectual disability and in the majority of patients a germline variant in KMT2D is found. As somatic KMT2D variants can be found in 5-10% of tumors a tumor predisposition in Kabuki syndrome is discussed. So far less than 20 patients with Kabuki syndrome and a concomitant malignancy have been published. Here we report on a female patient with Kabuki syndrome and a c.2558_2559delCT germline variant in KMT2D who developed an embryonal rhabdomyosarcoma (ERMS) at 10 years. On tumor tissue we performed DNA-methylation profiling and exome sequencing (ES). Copy number analyses revealed aneuploidies typical for ERMS including (partial) gains of chromosomes 2, 3, 7, 8, 12, 15, and 20 and 3 focal deletions of chromosome 11p. DNA methylation profiling mapped the case to ERMS by a DNA methylation-based sarcoma classifier. Sequencing suggested gain of the wild-type KMT2D allele in the trisomy 12. Including our patient literature review identified 18 patients with Kabuki syndrome and a malignancy. Overall, the landscape of malignancies in patients with Kabuki syndrome was reminiscent of that of the pediatric population in general. Histopathological and molecular data were only infrequently reported and no report included next generation sequencing and/or DNA-methylation profiling. Although we found no strong arguments pointing towards KS as a tumor predisposition syndrome, based on the small numbers any relation cannot be fully excluded. Further planned studies including profiling of additional tumors and long term follow-up of KS-patients into adulthood could provide further insights.
Collapse
Affiliation(s)
- Sietse M Aukema
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Mari F C M van den Hout
- Department of Pathology, Research Institute GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Morten Hillmer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Raf Sciot
- Department of Pathology, University Hospital, University of Leuven, 3000, Louvain, Belgium
| | - Dina A Schott
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Pediatrics, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
- Department of Clinical Genetics and GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
44
|
Lerner A, Benzvi C. SARS-CoV-2 induction and COVID-19 manifestations related to autoimmune gastrointestinal diseases. AUTOIMMUNITY, COVID-19, POST-COVID19 SYNDROME AND COVID-19 VACCINATION 2023:451-469. [DOI: 10.1016/b978-0-443-18566-3.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
45
|
Zhou B, Pang X, Wu J, Liu T, Wang B, Cao H. Gut microbiota in COVID-19: new insights from inside. Gut Microbes 2023; 15:2201157. [PMID: 37078497 PMCID: PMC10120564 DOI: 10.1080/19490976.2023.2201157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
The epidemic of coronavirus disease-19 (COVID-19) has grown to be a global health threat. Gastrointestinal symptoms are thought to be common clinical manifestations apart from a series of originally found respiratory symptoms. The human gut harbors trillions of microorganisms that are indispensable for complex physiological processes and homeostasis. Growing evidence demonstrate that gut microbiota alteration is associated with COVID-19 progress and severity, and post-COVID-19 syndrome, characterized by decrease of anti-inflammatory bacteria like Bifidobacterium and Faecalibacterium and enrichment of inflammation-associated microbiota including Streptococcus and Actinomyces. Therapeutic strategies such as diet, probiotics/prebiotics, herb, and fecal microbiota transplantation have shown positive effects on relieving clinical symptoms. In this article, we provide and summarize the recent evidence about the gut microbiota and their metabolites alterations during and after COVID-19 infection and focus on potential therapeutic strategies targeting gut microbiota. Understanding the connections between intestinal microbiota and COVID-19 would provide new insights into COVID-19 management in the future.
Collapse
Affiliation(s)
- Bingqian Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
46
|
Lee EJ, Han S, Hyun SW, Song GB, Ha SD. Survival of human coronavirus 229E at different temperatures on various food-contact surfaces and food and under simulated digestive conditions. Food Res Int 2022; 162:112014. [PMID: 36461303 PMCID: PMC9526873 DOI: 10.1016/j.foodres.2022.112014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has had a major impact on human health and the global economy. Various transmission possibilities of SARS-CoV-2 have been proposed, such as the surface of food in the cold chain and food packaging, as well as the fecal-oral route, although person-to-person contact via droplets and aerosols has been confirmed as the main route of transmission. This study evaluated the survivability of HCoV-229E, a SARS-CoV-2 surrogate, in suspension, on food-contact surfaces and on food at various temperatures, and in simulated digestive fluids by TCID50 assay. In suspension, HCoV-229E survived after 5 days at 20 °C with a 3.69 log reduction, after 28 days at 4 °C with a 3.07 log reduction, and after 12 weeks at -20 °C with a 1.18 log reduction. On food-contact surfaces, HCoV-229E was not detected on day 3 on stainless steel (SS), plastic (LDPE), and silicone rubber (SR) at 20 °C with a 3.28, 3.24 and 3.28 log reduction, respectively, and survived after 28 days on SS and LDPE at 4 °C with a 3.13 and 2.88 log reduction, respectively, and survived after 12 weeks on SS, LDPE, and SR at -20 °C with a 1.92, 1.32 and 1.99 log reduction, respectively. On food, HCoV-229E was not detected on day 3 on lettuce and day 4 on chicken breast and salmon at 20 °C with a 3.61, 3.26 and 3.08 log reduction, respectively, and on day 14 on lettuce and day 21 on chicken breast and salmon at 4 °C with a 3.88, 3.44 and 3.56 log reduction, respectively. The virus remained viable for 12 weeks in all foods at -20 °C with 2-2.47 log reduction. In addition, in simulated digestive fluid experiments, HCoV-229E was relatively resistant in simulated salivary fluid (SSF; pH 7, 5), fed state simulated gastric fluid (FeSSGF; pH 3, 5, 7), and fasted state simulated intestinal fluid (FaSSIF; pH 7). However, the virus was less tolerant in fasted state simulated gastric fluid (FaSSGF; pH 1.6) and fed state simulated intestinal fluid (FeSSIF; pH 5). Therefore, this study suggested that HCoV-229E remained infectious on various food-contact surfaces and foods; in particular, it survived longer at lower temperatures and survived depending on the pH of the simulated digestive fluid.
Collapse
|
47
|
Rossini V, Tolosa-Enguis V, Frances-Cuesta C, Sanz Y. Gut microbiome and anti-viral immunity in COVID-19. Crit Rev Food Sci Nutr 2022; 64:4587-4602. [PMID: 36382631 DOI: 10.1080/10408398.2022.2143476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SARS-CoV-2 mainly affects the respiratory system, but the gastrointestinal tract is also a target. Prolonged gut disorders, in COVID-19 patients, were correlated with decreased richness and diversity of the gut microbiota, immune deregulation and delayed viral clearance. Although there are no definitive conclusions, ample evidence would suggest that the gut microbiome composition and function play a role in COVID-19 progression. Microbiome modulation strategies for population stratification and management of COVID-19 infection are under investigation, representing an area of interest in the ongoing pandemic. In this review, we present the existing data related to the interaction between gut microbes and the host's immune response to SARS-CoV-2 and discuss the implications for current disease management and readiness to face future pandemics.
Collapse
Affiliation(s)
- V Rossini
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - V Tolosa-Enguis
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - C Frances-Cuesta
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Y Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
48
|
Iyer P, Chino T, Ojcius DM. Infection of the oral cavity with SARS-CoV-2 variants: Scope of salivary diagnostics. FRONTIERS IN ORAL HEALTH 2022; 3:1001790. [PMID: 36389278 PMCID: PMC9659966 DOI: 10.3389/froh.2022.1001790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023] Open
Abstract
Coronaviruses, including SARS-CoV-2, have caused pandemics in the past two decades. The most prevalent SARS-CoV-2 variants of concern can re-infect individuals who have been previously infected with other variants or had protection from vaccines targeting the original SARS-CoV-2 variant. Given the high risk of transmission of coronavirus via aerosols produced during dental procedures, it is important to understand the future risk of coronavirus infection for oral health professionals and to diagnose quickly early stages of outbreaks. Testing of saliva for coronavirus may be the least invasive and most convenient method for following the outbreak at the individual and community level. This review will describe strategies for diagnosis of coronavirus in saliva.
Collapse
Affiliation(s)
- Parvati Iyer
- Department of Diagnostic Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Takahiro Chino
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| | - David M. Ojcius
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| |
Collapse
|
49
|
B.1.351 SARS-CoV-2 Variant Exhibits Higher Virulence but Less Viral Shedding than That of the Ancestral Strain in Young Nonhuman Primates. Microbiol Spectr 2022; 10:e0226322. [PMID: 36069561 PMCID: PMC9603226 DOI: 10.1128/spectrum.02263-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We investigated the distribution, virulence, and pathogenic characteristics of mutated SARS-CoV-2 to clarify the association between virulence and the viral spreading ability of current and future circulating strains. Chinese rhesus macaques were infected with ancestral SARS-CoV-2 strain GD108 and Beta variant B.1.351 (B.1.351) and assessed for clinical signs, viral distribution, pathological changes, and pulmonary inflammation. We found that GD108 replicated more efficiently in the upper respiratory tract, whereas B.1.351 replicated more efficiently in the lower respiratory tract and lung tissue, implying a reduced viral shedding and spreading ability of B.1.351 compared with that of GD108. Importantly, B.1.351 caused more severe lung injury and dramatically elevated the level of inflammatory cytokines compared with those observed after infection with GD108. Moreover, both B.1.351 and GD108 induced spike-specific T-cell responses at an early stage of infection, with higher levels of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in the B.1.351 group and higher levels of interleukin 17 (IL-17) in the GD108 group, indicating a divergent pattern in the T-cell-mediated inflammatory "cytokine storm." This study provides a basis for exploring the pathogenesis of SARS-CoV-2 variants of concern (VOCs) and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs. IMPORTANCE One of the priorities of the current SARS-CoV-2 vaccine and drug research strategy is to determine the changes in transmission ability, virulence, and pathogenic characteristics of SARS-CoV-2 variants. In addition, nonhuman primates (NHPs) are suitable animal models for the study of the pathogenic characteristics of SARS-CoV-2 and could contribute to the understanding of pathogenicity and transmission mechanisms. As SARS-CoV-2 variants continually emerge and the viral biological characteristics change frequently, the establishment of NHP infection models for different VOCs is urgently needed. In the study, the virulence and tissue distribution of B.1.351 and GD108 were comprehensively studied in NHPs. We concluded that the B.1.351 strain was more virulent but exhibited less viral shedding than the latter. This study provides a basis for determining the pathogenic characteristics of SARS-CoV-2 and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs.
Collapse
|
50
|
Clerbaux LA, Mayasich SA, Muñoz A, Soares H, Petrillo M, Albertini MC, Lanthier N, Grenga L, Amorim MJ. Gut as an Alternative Entry Route for SARS-CoV-2: Current Evidence and Uncertainties of Productive Enteric Infection in COVID-19. J Clin Med 2022; 11:5691. [PMID: 36233559 PMCID: PMC9573230 DOI: 10.3390/jcm11195691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
The gut has been proposed as a potential alternative entry route for SARS-CoV-2. This was mainly based on the high levels of SARS-CoV-2 receptor expressed in the gastrointestinal (GI) tract, the observations of GI disorders (such as diarrhea) in some COVID-19 patients and the detection of SARS-CoV-2 RNA in feces. However, the underlying mechanisms remain poorly understood. It has been proposed that SARS-CoV-2 can productively infect enterocytes, damaging the intestinal barrier and contributing to inflammatory response, which might lead to GI manifestations, including diarrhea. Here, we report a methodological approach to assess the evidence supporting the sequence of events driving SARS-CoV-2 enteric infection up to gut adverse outcomes. Exploring evidence permits to highlight knowledge gaps and current inconsistencies in the literature and to guide further research. Based on the current insights on SARS-CoV-2 intestinal infection and transmission, we then discuss the potential implication on clinical practice, including on long COVID. A better understanding of the GI implication in COVID-19 is still needed to improve disease management and could help identify innovative therapies or preventive actions targeting the GI tract.
Collapse
Affiliation(s)
| | - Sally A. Mayasich
- University of Wisconsin-Madison Aquatic Sciences Center at US EPA, Duluth, MN 55804, USA
| | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium
| | - Helena Soares
- Laboratory of Human Immunobiology and Pathogenesis, iNOVA4Health, Faculdade de Ciências Médicas—Nova Medical School, Universidade Nova de Lisboa, 1099-085 Lisbon, Portugal
| | | | | | - Nicolas Lanthier
- Laboratory of Hepatogastroenterology, Service d’Hépato-Gastroentérologie, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Paris-Saclay, 91190 Paris, France
| | - Maria-Joao Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Lisbon, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| |
Collapse
|