1
|
Asiimwe JB, Kadubira E. Timeliness of malaria treatment in children under five years in Uganda: an analysis of 2016 demographic health survey data. BMC Pediatr 2025; 25:414. [PMID: 40413489 DOI: 10.1186/s12887-025-05768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Malaria is ranked among the major causes of morbidity and mortality in children under 5 years of age in Uganda. Prompt and early appropriate malaria treatment can prevent progression of illness to severe stages, thereby mitigating mortality and morbidity. Therefore, this study aimed at determining the factors associated with timeliness to malaria treatment in children under five years in Uganda. METHOD This study used 2016 Uganda Demographic and Health Survey data and a total of 4,063 children under age of five years who had fever as a proxy for malaria two weeks prior to the survey were included. The median time to malaria treatment using Kaplan Meier curve were computed. A multivariable Cox regression model were fitted to establish factors associated with time to malaria treatment. Proportional hazard assumption was checked graphically and using Schoenfeld residual statistical test. RESULTS Forty one percent of the children delayed to receive prompt malaria treatment beyond the recommended 24 hours. The median time to malaria treatment was 24 hours after onset of malaria symptoms. Children whose mothers made decisions jointly as a wife and a spouse on treatment were associated with faster time to malaria treatment (HR=1.11, 95%CI: 1.02-1.21) compared to when the mother made decisions alone. Children whose mothers sought treatment from community health workers were associated with faster time to malaria treatment (HR=1.17, 95%CI: 1.02-1.34) compared to those who did not. Children whose mothers/caregivers were from Western region (HR=0.84, 95%CI: 0.73-0.96) of the country were associated with delayed time to malaria treatment compared to other regions of the country. Similarly, children whose mothers frequently listened to radio were significantly associated with faster time (HR=1.11, 95%CI: 1.02-1.21) to treatment of malaria compared to those who did not listen to radio. CONCLUSION Faster time to malaria treatment was significantly associated with joint spousal health decision making, utilization of community health workers, not being in Western region of Uganda and frequency of listening to radio. Thus, the government and non-government organizations should organize community dialogues that involve both men and women to discuss malaria prevention, treatment, and the importance of joint decision-making, ensure Community Health Workers receive regular, in-depth training on malaria diagnosis (using Rapid Diagnostic Tests or RDTs), treatment, and prevention strategies, provide CHWs with adequate transportation to facilitate their visits to households and communities, develop engage radio programs that feature community leaders, CHWs and health experts to promote malaria prevention messages, ensure all communication materials and messages are in local languages to ensure maximum understanding and engagement.
Collapse
Affiliation(s)
- John Bosco Asiimwe
- Department of Planning and Applied Statistics, School of Statistics and Planning, Makerere University, Kampala, Uganda
| | - Eriot Kadubira
- Department of Planning and Applied Statistics, School of Statistics and Planning, Makerere University, Kampala, Uganda.
| |
Collapse
|
2
|
Alharbi A, Albasyouni S, Al-Shaebi E, Al Quraishy S, Abdel-Gaber R. Neuroprotective and antimalarial effects of Juglans regia leaf extracts in a murine model of cerebral malaria. Front Vet Sci 2025; 12:1537686. [PMID: 40260212 PMCID: PMC12009927 DOI: 10.3389/fvets.2025.1537686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Background Malaria is a major public health problem caused by the apicomplexan Plasmodium parasite. Cerebral malaria (CM) is the most critical outcome of Plasmodium infection. It is becoming more difficult to manage, particularly in areas of multi-drug resistance. Scientists are focused on identifying alternative strategies to combat malaria infection. Therefore, this study was designed to evaluate the activity of Juglans regia leaf extract (JRLE) in Plasmodium berghei-infected C57BL/6 mice. Methods The J. regia leaf extract (JRLE) was prepared using methanol and characterized by Fourier-transform infrared spectroscopy (FT-IR). Female C57BL/6 mice were divided into six groups (5 mice/group): control, non-infected but JRLE-treated (500 mg/kg), P. berghei-infected non-treated, and P. berghei-infected treated with JRLE (250 or 500 mg/kg) or chloroquine (10 mg/kg). Groups (3-6) were infected intraperitoneally with P. berghei (1 × 10⁵). Treatment (oral JRLE or chloroquine) was administered for 5 days starting on day 4. Parasitemia, survival, and body weight were assessed, and brains were collected on day 9 p.i. for histopathological analysis (H&E staining) and GFAP immunohistochemistry. GABA, glutamate, neurotransmitters (epinephrine, norepinephrine, dopamine, serotonin), and mRNA expression of signaling genes (Chrnb2, Gabbr1, Gnai1, Gria2) were evaluated using ELISA and real-time PCR. Results Phytochemical screening by FT-IR demonstrated the presence of 10 functional groups in the JRLE. By day 9 after infection with the P. berghei parasite, the parasitemia was significantly reduced after JRLE treatment with a dose of 500 mg/kg (6.33% ± 1.18%) compared to the infected group (23.84% ± 2.06%) with a positive correlation with body weight. Our data showed that JRLE prolonged the survival curve of the infected mice. JRLE ameliorates the reduction of the brain index caused by P. berghei infection. Furthermore, histological analysis showed that infection with P. berghei exacerbates brain damage as evidenced by degeneration of Purkinje cells, cerebral hemorrhage, intravascular sequestrations of parasitized red blood corpuscles (pRBCs), and infiltration of lymphocytes. At the same time, treatment with JRLE mitigates the brain injury induced by the infection. JRLE reduced the level of GFAP expression in the brain tissue of the infected mice. Additionally, treatment with JRLE ameliorates the brain neurotransmitter disbalance (i.e., epinephrine, norepinephrine, dopamine, and serotonin) after Plasmodium infection. Upon JRLE treatment, Chrnb2, Gnai1, and Gabbr1 mRNA expression were down-regulated in the brain tissues derived from infected female C57BL/6 mice. Meanwhile, mRNA expression of Gria2 was up-regulated after JRLE inoculation. Our study proved that JRLE significantly ameliorated the neurotransmitter markers by increasing GABA levels and decreasing the glutamate level in the brain of P. berghei-infected mice. Conclusion Taken together, the data reported here illustrate that J. regia leaf extracts possess potent antimalarial effects and may offer a potential drug lead for developing a safe, effective, and affordable antimalarial therapy. Further studies are recommended to include the broader organ-specific effects of plant extract.
Collapse
Affiliation(s)
| | | | | | | | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Yadav P, Rawat V, Love SK, Verma VP. Novel frontiers through nitrogen substitution at 6th, 10th and 11th position of artemisinin: Synthetic approaches and antimalarial activity. Eur J Med Chem 2025; 281:117032. [PMID: 39531931 DOI: 10.1016/j.ejmech.2024.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Malaria pertains to an array of catastrophic illnesses spurred on by the Plasmodium spp. Artemisinin (ART) is currently prescribed in conjunction with another medication as part of therapeutic regimens for acute malaria. These currently prescribed pharmaceuticals have been around for a while, even after lack of required thermos-metabolic stabilities, alongside fresh proclaims about surfacing resistance and neurotoxicity linked with sequential administration of such combination therapies. Over the years, ARTs seem to have gained popularity through the accelerated reduction in parasitaemia, thus dictating use of differentially stable ART derivatives, in combination or alone, to control the proliferation of malaria. The endoperoxide bridge in the ART pharmacophore plays a non-negotiable role in its action against multiple stages in the parasitic life cycle. However, shorter half-lives and limited bioavailability tend to open doors for another class of endoperoxides. Nitrogen substitution at 6th, 10th and 11th positions of ART draws attention as the best replacements through their disparate stabilities and inability to demonstrate in vivo hydrolytic decomposition into DHA. Discussions pertaining such azaartemisinins and aminoartemisinins reported over the past 30 years have been strongly focused upon, on account of their synthetic methodologies and antimalarial efficacies, in order to assign future candidature to the meritorious moiety.
Collapse
Affiliation(s)
- Priyanka Yadav
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India
| | - Varun Rawat
- Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shalini Kaushik Love
- Department of Education in Science and Mathematics (DESM), Regional Institute of Education (NCERT), Bhubaneshwar, 751022, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai, 304022, Rajasthan, India; Department of Education in Science and Mathematics (DESM), Regional Institute of Education (NCERT), Bhubaneshwar, 751022, India.
| |
Collapse
|
4
|
Mishra R, da Cunha Xavier J, Kumar N, Krishna G, Dhakad PK, Dos Santos HS, Bandeira PN, Rodrigues THS, Gondim DR, Ribeiro WHF, da Silva DS, Teixeira AMR, Pereira WF, Marinho ES, Sucheta. Exploring Quinoline Derivatives: Their Antimalarial Efficacy and Structural Features. Med Chem 2025; 21:96-121. [PMID: 40007183 DOI: 10.2174/0115734064318361240827072124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 02/27/2025]
Abstract
OBJECTIVES Malaria continues to be the primary cause of mortality worldwide, and timely recognition and prompt intervention are crucial in mitigating adverse consequences. This review article aims to examine the effectiveness and structural characteristics of quinoline-based compounds as antimalarial agents. It specifically focuses on their therapeutic effects as well as potential prospects for exploring structure-activity relationship (SAR). In addition, this study aims to identify lead compounds that can efficiently battle multidrug-resistant forms of Plasmodium falciparum and Plasmodium vivax. METHODS A comprehensive review was conducted to evaluate the effectiveness of quinoline-based antimalarial medications in eradicating P. falciparum and P. vivax. The mechanism of action and SAR of these compounds were analyzed. RESULTS Quinoline-based antimalarials demonstrated significant effectiveness in eliminating P. falciparum parasites, particularly in regions severely impacted by malaria, including Africa and Asia. These compounds were found to exhibit tolerance and immune-modulating properties, indicating their potential for more widespread utilization. The investigation identified various new quinoline compounds with improved antimalarial activity, including metal-chloroquine complexes, diaminealkyne chloroquines, and cinnamoylated chloroquine hybrids. This study explored different mechanisms by which these compounds interact with parasites, including their ability to accumulate in the parasite's acidic food vacuoles and disrupt heme detoxification. The derivatives demonstrated strong efficacy against chloroquine-resistant strains and yielded positive results. CONCLUSION Quinoline-based compounds represent a promising avenue for combating malaria due to their demonstrated efficacy against P. falciparum and P. vivax parasites. Further research on their mechanisms of action and SAR could lead to the development of more effective antimalarial medications.
Collapse
Affiliation(s)
- Raghav Mishra
- Department of Pharmacy, Lloyd School of Pharmacy, Knowledge Park II, Greater Noida, Uttar Pradesh 201306, India
| | | | - Nitin Kumar
- Department of Pharmacy, Saraswathi College of Pharmacy, Anwarpur, Pilkhuwa, India
| | - Gaurav Krishna
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Prashant Kumar Dhakad
- Department of Pharmacy, Suresh Gyan Vihar University, Gyan vihar Marg Jagatpura Jaipur, 302017, Rajasthan, India
| | - Helcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato-CE, Brazil
- Center for Exact Sciences and Technology - Chemistry Course, Vale do Acaraú University, Sobral, CE, Brazil
| | - Paulo Nogueira Bandeira
- Center for Exact Sciences and Technology - Chemistry Course, Vale do Acaraú University, Sobral, CE, Brazil
| | | | - Diego Romao Gondim
- Center for Exact Sciences and Technology - Chemistry Course, Vale do Acaraú University, Sobral, CE, Brazil
| | | | - Draulio Sales da Silva
- Center for Exact Sciences and Technology - Chemistry Course, Vale do Acaraú University, Sobral, CE, Brazil
| | | | | | - Emmanuel Silva Marinho
- Postgraduate Program in Natural Sciences, State University of Ceara, Fortaleza, CE, Brazil
| | - Sucheta
- School of Medical & Allied Sciences, K.R. Mangalam University, Sohna Road, Gurugram, India
| |
Collapse
|
5
|
Chisha Y, Feleke T, Zeleke EA, Aschalew Z, Abate ZG, Haile Y, Dalbo M, Endriyas M. Predictors of delayed health seeking for febrile children: multi-level analysis of cross-sectional study data from southern Ethiopia. Front Public Health 2024; 12:1417638. [PMID: 39324161 PMCID: PMC11423542 DOI: 10.3389/fpubh.2024.1417638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
Background Febrile illnesses are commonly reported as a primary reason for seeking healthcare in sub-Saharan Africa. Timely diagnosis and getting prompt treatment within 24 h of fever onset is crucial to avert the risk of developing severe complications and death. Understanding factors contributing to delayed health seeking is important for public health interventions. Hence, this study aimed to assess individual- and contextual-level factors associated with the delay in seeking prompt treatment for children with fever. Method A community-based cross-sectional study was conducted from September 2022 to June 2023 in Gamo zone, southern Ethiopia. Three districts were chosen, and then, from each district, six clusters or kebeles were chosen by simple random sampling. A total of 820 caregivers were randomly selected. A two-level mixed-effects logistic regression model was employed to identify factors associated with the delay in seeking prompt treatment. The associations were measured by an adjusted odds ratio (AOR), and statistical significance was declared at a 5% level of significance. Result The prevalence of the delay in seeking prompt care was 47.8%. Factors contributing to the delay were caregivers who were aged 30 years and above [AOR 0.23, 95% confidence interval (CI): 0.10-0.52], caregivers who followed the Protestant religion (AOR 3.67, 95% CI: 2.08-6.48), caregivers unable to read and write (AOR 5.32, 95% CI: 6.80-11.70), merchant caregivers (AOR 6.63, 95% CI: 2.75-15.97), caregivers who were exposed to only one media source (AOR 9.3, 95% CI: 8.43-15.60), caregivers with the experience of child death (AOR 0.05, 95% CI: 0.01-0.22), and caregivers seeking permission from their partners to access healthcare (AOR 12.64, 95% CI: 6.98-22.89). Conclusion and recommendations There was a high level of delay in seeking healthcare. Targeted community education through mass media, healthcare facilities, and community-level awareness campaigns should be strengthened to improve early treatment seeking and lessen the consequences of delayed treatment seeking.
Collapse
Affiliation(s)
- Yilma Chisha
- School of Public Health, Arba Minch University, Arba Minch, Ethiopia
| | - Tesfaye Feleke
- School of Public Health, Arba Minch University, Arba Minch, Ethiopia
| | - Eshetu Andarge Zeleke
- School of Public Health, Arba Minch University, Arba Minch, Ethiopia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Zeleke Aschalew
- School of Public Health, Arba Minch University, Arba Minch, Ethiopia
| | | | - Yosef Haile
- School of Public Health, Arba Minch University, Arba Minch, Ethiopia
| | - Mulugeta Dalbo
- Department of Public Health, Arba Minch College of Health Sciences, Arba Minch, Ethiopia
| | - Misganu Endriyas
- South Ethiopia Regional Public Health Institute, Jinka, Ethiopia
| |
Collapse
|
6
|
Peprah NY, Mohammed W, Adu GA, Dadzie D, Oppong S, Barikisu S, Narh J, Appiah S, Frimpong J, L Malm K. Patient socio-demographics and clinical factors associated with malaria mortality: a case control study in the northern region of Ghana. Malar J 2024; 23:230. [PMID: 39097728 PMCID: PMC11298073 DOI: 10.1186/s12936-024-05038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/07/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Ghana is a malaria-endemic country with the entire population at risk. The Northern region of the country recorded the highest malaria case fatality rate (CFR) for two consecutive years: 1.11% in 2013 and 1.07% in 2014. Even though the National Malaria Elimination Programme (NMEP) has achieved a reduction in malaria mortality, the existence of high case fatality in the Northern region was alarming. This study, therefore, aimed to determine the factors associated with malaria mortality in the northern region of Ghana to institute control measures. METHODS An unmatched case control study was conducted from July 2015 to August 2015. The study population consisted of patients admitted to health facilities for severe malaria in the Northern region of Ghana. A case was defined as a patient diagnosed with severe malaria at an eligible health facility who died as a result of malaria. A control was a patient diagnosed with severe malaria admitted to an eligible health facility who did not die. Health facilities that recorded CFRs of 1.0% and above were randomly sampled for this study, after which, 10 cases and 20 controls were recruited from each health facility. Information on cases and controls was then abstracted from hospital records using an electronically deployed abstraction tool. Continuous variables were expressed as means and medians, and categorical variables as frequencies and proportions. Multivariable logistic regression was used to assess the strength of the association between malaria mortality and factors predictive of malaria mortality. A p-value of < 0.05 was considered statistically significant. RESULTS In all, a total of 95 cases and 190 controls participated in this study. The median ages of cases and controls were 4.1 years (IQR = 21.6) and 5.7 years (IQR = 18.2), respectively. Fifty-four (56.8%) cases were females, while 93 (49.0%) of the controls were females. Factors associated with malaria mortality included: duration of hospital stay less than 24 h [aOR: 12.0, 95% CI (5.9-24.6)], severe pallor [aOR: 2.3, 95% CI (1.1-4.6)], children under 5 years [aOR: 2.8, 95% CI (1.4-5.6)], oral Artesunate/Amodiaquine administration [aOR: 0.4, 95% CI (0.2-0.9)] and sepsis as an additional diagnosis [aOR: 4.1, 95% CI (1.8-9.5)]. CONCLUSION Predictors of malaria mortality in the Northern region include children under 5 years, severe pallor, sepsis as an additional diagnosis, and use of oral anti-malarial. Patients with severe pallor and sepsis as co-morbidities should receive proactive management. The NMEP and its partners should implement measures to strengthen the referral system, anaemia prevention and management, and retrain health workers on malaria case management. Malaria control interventions targeted at under five children in the region should be reviewed and enhanced.
Collapse
Affiliation(s)
- Nana Yaw Peprah
- Public Health Division, National Malaria Elimination Programme, Ghana Health Service, Accra, Ghana.
| | - Wahjib Mohammed
- Public Health Division, National Malaria Elimination Programme, Ghana Health Service, Accra, Ghana
| | - George Asumah Adu
- Public Health Division, National Malaria Elimination Programme, Ghana Health Service, Accra, Ghana
| | - Dora Dadzie
- Public Health Division, National Malaria Elimination Programme, Ghana Health Service, Accra, Ghana
| | - Sammy Oppong
- Public Health Division, National Malaria Elimination Programme, Ghana Health Service, Accra, Ghana
| | - Seidu Barikisu
- Regional Health Directorate, Northern Region, Ghana Health Service, Accra, Ghana
| | - Joel Narh
- Public Health Division, National Malaria Elimination Programme, Ghana Health Service, Accra, Ghana
| | - Stephen Appiah
- Public Health Division, National Malaria Elimination Programme, Ghana Health Service, Accra, Ghana
| | - James Frimpong
- Public Health Division, National Malaria Elimination Programme, Ghana Health Service, Accra, Ghana
| | - Keziah L Malm
- Public Health Division, National Malaria Elimination Programme, Ghana Health Service, Accra, Ghana
| |
Collapse
|
7
|
Kunkel AA, McHugh KJ. Injectable controlled-release systems for the prevention and treatment of infectious diseases. J Biomed Mater Res A 2024; 112:1224-1240. [PMID: 37740704 DOI: 10.1002/jbm.a.37615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
Pharmaceutical drugs, including vaccines, pre- and post-exposure prophylactics, and chronic drug therapies, are crucial tools in the prevention and treatment of infectious diseases. These drugs have the ability to increase survival and improve patient quality of life; however, infectious diseases still accounted for more than 10.2 million deaths in 2019 before the COVID-19 pandemic. High mortality can be, in part, attributed to challenges in the availability of adequate drugs and vaccines, limited accessibility, poor drug bioavailability, the high cost of some treatments, and low patient adherence. A majority of these factors are logistical rather than technical challenges, providing an opportunity for existing drugs and vaccines to be improved through formulation. Injectable controlled-release drug delivery systems are one class of formulations that have the potential to overcome many of these limitations by releasing their contents in a sustained manner to reduce the need for frequent re-administration and improve clinical outcomes. This review provides an overview of injectable controlled drug delivery platforms, including microparticles, nanoparticles, and injectable gels, detailing recent developments using these systems for single-injection vaccination, long-acting prophylaxis, and sustained-release treatments for infectious disease.
Collapse
Affiliation(s)
- Alyssa A Kunkel
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
| |
Collapse
|
8
|
Chiodi D, Ishihara Y. The role of the methoxy group in approved drugs. Eur J Med Chem 2024; 273:116364. [PMID: 38781921 DOI: 10.1016/j.ejmech.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
The methoxy substituent is prevalent in natural products and, consequently, is present in many natural product-derived drugs. It has also been installed in modern drug molecules with no remnant of natural product features because medicinal chemists have been taking advantage of the benefits that this small functional group can bestow on ligand-target binding, physicochemical properties, and ADME parameters. Herein, over 230 methoxy-containing small-molecule drugs, as well as several fluoromethoxy-containing drugs, are presented from the vantage point of the methoxy group. Biochemical mechanisms of action, medicinal chemistry SAR studies, and numerous X-ray cocrystal structures are analyzed to identify the precise role of the methoxy group for many of the drugs and drug classes. Although the methoxy substituent can be considered as the hybridization of a hydroxy and a methyl group, the combination of these functionalities often results in unique effects that can amount to more than the sum of the individual parts.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
9
|
Jiang W, Jiang Y, Luo Y, Qiao W, Yang T. Facilitating the development of molecular glues: Opportunities from serendipity and rational design. Eur J Med Chem 2024; 263:115950. [PMID: 37984298 DOI: 10.1016/j.ejmech.2023.115950] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Molecular glues can specifically induce interactions between two or more proteins to modulate biological functions and have been proven to be a powerful therapeutic modality in drug discovery. It plays a variety of vital roles in several biological processes, such as complex stabilization, interactome modulation and transporter inhibition, thus enabling challenging therapeutic targets to be druggable. Most known molecular glues were identified serendipitously, such as IMiDs, auxin, and rapamycin. In recent years, more rational strategies were explored with the development of chemical biology and a deep understanding of the interaction between molecular glues and proteins, which led to the rational discovery of several molecular glues. Thus, in this review, we aim to highlight the discovery strategies of molecular glues from three aspects: serendipitous discovery, screening methods and rational design principles. We expect that this review will provide a reasonable reference and insights for the discovery of molecular glues.
Collapse
Affiliation(s)
- Weiqing Jiang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Anbalagan S. "Blind men and an elephant": The need for animals in research, drug safety studies, and understanding civilizational diseases. Animal Model Exp Med 2023; 6:627-633. [PMID: 38062666 PMCID: PMC10757217 DOI: 10.1002/ame2.12364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 12/31/2023] Open
Abstract
Animal-based research and drug safety studies are essential to understanding the mysteries of nature and the long-term survival of humans. Due to the rapid increase in the global human population, conflict- and economically driven human migration, tourism-related activities, densely populated metropolitan areas, and local policies, humans will be affected by a multitude of novel disease-causing microorganisms and civilizational diseases. Despite disparities among countries, recent and planned changes in regulations concerning animal research and drug safety studies could have detrimental effects on both the animal research community and nations lacking sufficient social support systems. Based on existing scientific literature, I argue that we need animal research encompassing aspects such as animal development, behavior, drug safety studies, and for the understanding of future civilizational diseases. Depending on the nature of the research questions and local challenges, a suitable animal model organism should be made mandatory.
Collapse
Affiliation(s)
- Savani Anbalagan
- Faculty of Biology, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz University in PoznańPoznańPoland
| |
Collapse
|
11
|
Hamelmann N, Paats JWD, Avalos-Padilla Y, Lantero E, Spanos L, Siden-Kiamos I, Fernàndez-Busquets X, Paulusse JMJ. Single-Chain Polymer Nanoparticles Targeting the Ookinete Stage of Malaria Parasites. ACS Infect Dis 2022; 9:56-64. [PMID: 36516858 PMCID: PMC9841520 DOI: 10.1021/acsinfecdis.2c00336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Malaria is an infectious disease transmitted by mosquitos, whose control is hampered by drug resistance evolution in the causing agent, protist parasites of the genus Plasmodium, as well as by the resistance of the mosquito to insecticides. New approaches to fight this disease are, therefore, needed. Research into targeted drug delivery is expanding as this strategy increases treatment efficacies. Alternatively, targeting the parasite in humans, here we use single-chain polymer nanoparticles (SCNPs) to target the parasite at the ookinete stage, which is one of the stages in the mosquito. This nanocarrier system provides uniquely sized and monodispersed particles of 5-20 nm, via thiol-Michael addition. The conjugation of succinic anhydride to the SCNP surface provides negative surface charges that have been shown to increase the targeting ability of SCNPs to Plasmodium berghei ookinetes. The biodistribution of SCNPs in mosquitos was studied, showing the presence of SCNPs in mosquito midguts. The presented results demonstrate the potential of anionic SCNPs for the targeting of malaria parasites in mosquitos and may lead to progress in the fight against malaria.
Collapse
Affiliation(s)
- Naomi
M. Hamelmann
- Department
of Molecules and Materials, MESA+ Institute for Nanotechnology and
TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| | - Jan-Willem D. Paats
- Department
of Molecules and Materials, MESA+ Institute for Nanotechnology and
TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| | - Yunuen Avalos-Padilla
- The
Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10−12, ES-08028 Barcelona, Spain,Barcelona
Institute for Global Health (ISGlobal, Hospital Clínic-Universitat
de Barcelona), Rosselló
149-153, ES-08036 Barcelona, Spain
| | - Elena Lantero
- The
Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10−12, ES-08028 Barcelona, Spain,Barcelona
Institute for Global Health (ISGlobal, Hospital Clínic-Universitat
de Barcelona), Rosselló
149-153, ES-08036 Barcelona, Spain
| | - Lefteris Spanos
- Institute
of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, 700 13 Heraklion, Greece
| | - Inga Siden-Kiamos
- Institute
of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, 700 13 Heraklion, Greece,
| | - Xavier Fernàndez-Busquets
- The
Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10−12, ES-08028 Barcelona, Spain,Barcelona
Institute for Global Health (ISGlobal, Hospital Clínic-Universitat
de Barcelona), Rosselló
149-153, ES-08036 Barcelona, Spain,Nanoscience
and Nanotechnology Institute (IN2UB, Universitat de Barcelona), Martí i Franquès 1, ES-08028 Barcelona, Spain,
| | - Jos M. J. Paulusse
- Department
of Molecules and Materials, MESA+ Institute for Nanotechnology and
TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands,
| |
Collapse
|
12
|
Rajendran S, Sivalingam K, Karnam Jayarampillai RP, Wang WL, Salas CO. Friedlӓnder's synthesis of quinolines as a pivotal step in the development of bioactive heterocyclic derivatives in the current era of medicinal chemistry. Chem Biol Drug Des 2022; 100:1042-1085. [PMID: 35322543 DOI: 10.1111/cbdd.14044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/14/2022] [Accepted: 03/20/2022] [Indexed: 01/25/2023]
Abstract
In the current scenario of medicinal chemistry, quinoline plays a pivotal role in the design of new heterocyclic compounds with several pharmacological properties, so the search for new synthetic methodologies and their application in drug discovery has been widely studied. So far, many procedures have been performed for the preparation of quinoline scaffolds, among which Friedländer quinoline synthesis plays an important role in obtaining these heterocycles. The Friedländer reaction involves condensation between 2-aminobenzaldehydes and keto-compounds. The quinoline nucleus, once obtained through the Friedländer synthesis, has been extensively modified so that these derivatives can exhibit a large number of biological activities such as anticancer, antimalarial, antimicrobial, antifungal, antituberculosis, and antileishmanial properties. In this work, the focus is on the applicability of the Friedländer reaction in the synthesis of various types of bioactive heterocyclic quinoline compounds, which to date has not been reported in the context of medicinal chemistry. The main part of this review selectively focuses on research from 2010 to date and will present highlights of the Friedländer quinoline synthesis procedures and findings to address biological and pharmacological activities.
Collapse
Affiliation(s)
- Satheeshkumar Rajendran
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kalaiselvi Sivalingam
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Wen-Long Wang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Morais CMG, Brito RMDM, Weselucha-Birczyńska A, Pereira VSDS, Pereira-Silva JW, Menezes A, Pessoa FAC, Kucharska M, Birczyńska-Zych M, Ríos-Velásquez CM, de Andrade-Neto VF. Blood-stage antiplasmodial activity and oocyst formation-blockage of metallo copper-cinchonine complex. Front Cell Infect Microbiol 2022; 12:1047269. [PMID: 36530433 PMCID: PMC9751060 DOI: 10.3389/fcimb.2022.1047269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
In the fight against malaria, the key is early treatment with antimalarial chemotherapy, such as artemisinin-based combination treatments (ACTs). However, Plasmodium has acquired multidrug resistance, including the emergence of P. falciparum strains with resistance to ACT. The development of novel antimalarial molecules, that are capable of interfering in the asexual and sexual blood stages, is important to slow down the transmission in endemic areas. In this work, we studied the ability of the mettalo copper-cinchonine complex to interfere in the sexual and asexual stages of Plasmodium. The tested compound in the in vitro assay was a cinchonine derivative, named CinCu (Bis[Cinchoninium Tetrachlorocuprate(II)]trihydrate). Its biological functions were assessed by antiplasmodial activity in vitro against chloroquine-resistant P. falciparum W2 strain. The mice model of P. berghei ANKA infection was used to analyze the antimalarial activity of CinCu and chloroquine and their acute toxicity. The oocyst formation-blocking assay was performed by experimental infection of Anopheles aquasalis with P. vivax infected blood, which was treated with different concentrations of CinCu, cinchonine, and primaquine. We found that CinCu was able to suppress as high as 81.58% of parasitemia in vitro, being considered a molecule with high antiplasmodial activity and low toxicity. The in vivo analysis showed that CinCu suppressed parasitemia at 34% up to 87.19%, being a partially active molecule against the blood-stage forms of P. berghei ANKA, without inducing severe clinical signs in the treated groups. The transmission-blocking assay revealed that both cinchonine and primaquine were able to reduce the infection intensity of P. vivax in A. aquasalis, leading to a decrease in the number of oocysts recovered from the mosquitoes' midgut. Regarding the effect of CinCu, the copper-complex was not able to induce inhibition of P. vivax infection; however, it was able to induce an important reduction in the intensity of oocyst formation by about 2.4 times. It is plausible that the metallo-compound also be able to interfere with the differentiation of parasite stages and/or ookinete-secreted chitinase into the peritrophic matrix of mosquitoes, promoting a reduction in the number of oocysts formed. Taken together, the results suggest that this compound is promising as a prototype for the development of new antimalarial drugs. Furthermore, our study can draw a new pathway for repositioning already-known antimalarial drugs by editing their chemical structure to improve the antimalarial activity against the asexual and sexual stages of the parasite.
Collapse
Affiliation(s)
- Camila Martins Gomes Morais
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil,Post-Graduate Program in Parasitic Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ramayana Morais de Medeiros Brito
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil,Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Valeska Santana de Sena Pereira
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil,Post-Graduate Program in Biochemistry and Molecular Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jordam William Pereira-Silva
- Laboratory of Infectious Disease Ecology in the Amazon, Leônidas and Maria Deane Institute, Fiocruz, Manaus, AM, Brazil,Post-Graduate Program in Living Conditions and Health Situations in the Amazon, Leônidas and Maria Deane Institute, Fiocruz, Manaus, AM, Brazil
| | - Alexandre Menezes
- Post-Graduate Program in Biology of Host-Pathogen interaction, Leônidas and Maria Deane Institute, Fiocruz, Manaus, AM, Brazil
| | - Felipe Arley Costa Pessoa
- Laboratory of Infectious Disease Ecology in the Amazon, Leônidas and Maria Deane Institute, Fiocruz, Manaus, AM, Brazil
| | - Martyna Kucharska
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Malwina Birczyńska-Zych
- Department of Infectious and Tropical Diseases, Medical College, Jagiellonian University, Kraków, Poland,Department of Infectious Diseases, The University Hospital in Kraków, Kraków, Poland
| | - Claudia María Ríos-Velásquez
- Laboratory of Infectious Disease Ecology in the Amazon, Leônidas and Maria Deane Institute, Fiocruz, Manaus, AM, Brazil,*Correspondence: Valter Ferreira de Andrade-Neto, ; ; Claudia María Ríos-Velásquez, ;
| | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil,*Correspondence: Valter Ferreira de Andrade-Neto, ; ; Claudia María Ríos-Velásquez, ;
| |
Collapse
|
14
|
Bhagat K, Kumar N, Kaur Gulati H, Sharma A, Kaur A, Singh JV, Singh H, Bedi PMS. Dihydrofolate reductase inhibitors: patent landscape and phases of clinical development (2001-2021). Expert Opin Ther Pat 2022; 32:1079-1095. [PMID: 36189616 DOI: 10.1080/13543776.2022.2130752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Dihydrofolate reductase (DHFR) plays an important role in the biosynthesis of amino acid and folic acid. It participates by reducing dihydrofolate to tetrahydrofolate, in the presence of nicotinamide dinucleotide phosphate cofactor, and has been verified by various clinical studies to use DHFR as a target for the treatment of cancer and various bacterial infections. AREA COVERED In this review, we have disclosed patents of synthetics and natural DHFR inhibitors with diaminopyrimidine and quinazoline nucleus from 2001. Additionally, this review highlights the clinical progression of numerous DHFR inhibitors received from the last five years. EXPERT OPINION From 2001 to 2021, numerous active chemical scaffolds have been introduced and are exposed as lead candidates that have entered clinical trials as potent DHFR inhibitors. Moreover, researchers have paid considerable attention to the development of a new class of DHFR inhibitors with higher selectivity and potency. This development includes synthesis of synthetic as well as natural compounds that are potent DHFR inhibitors. On the basis of literature review, we can anticipate that there are a huge number of novel active molecules available for the future that could possess superior abilities to target this enzyme with a profound pharmacological profile.
Collapse
Affiliation(s)
- Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India.,Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, Amritsar, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | | - Aanchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Amandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
15
|
Akilimali A, Bisimwa C, Aborode AT, Biamba C, Sironge L, Balume A, Sayadi R, Ajibade SB, Akintayo AA, Oluwadairo TO, Fajemisin EA. Self-medication and Anti-malarial Drug Resistance in the Democratic Republic of the Congo (DRC): A silent threat. Trop Med Health 2022; 50:73. [PMID: 36195896 PMCID: PMC9533625 DOI: 10.1186/s41182-022-00466-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Malaria is a global infectious (vector-borne: Anopheles mosquitoes) disease which is a leading cause of morbidity and mortality in Sub-Saharan Africa (SSA). Among all its parasitic (protozoan: Plasmodium sp.) variants, Plasmodium falciparum (PF) is the most virulent and responsible for above 90% of global malaria deaths hence making it a global public health threat. MAIN CONTEXT Despite current front-line antimalarial treatments options especially allopathic medications and malaria prevention (and control) strategies especially governmental policies and community malaria intervention programs in SSA, PF infections remains prevalent due to increased antimicrobial/antimalarial drug resistance caused by several factors especially genetic mutations and auto(self)-medication practices in SSA. In this article, we focused on the Democratic Republic of Congo (DRC) as the largest SSA country by bringing perspective into the impact of self-medication and antimalarial drug resistance, and provided recommendation for long-term improvement and future analysis in malaria prevention and control in SSA. CONCLUSIONS Self-medication and anti-malarial drug resistance is a major challenge to malaria control in DRC and sub-Saharan Africa, and to achieve sustainable control, individual, community and governmental efforts must be aligned to stop self-medication, and strengthen the health systems against malaria.
Collapse
Affiliation(s)
- Aymar Akilimali
- Faculty of Medicine, Official University of Bukavu, Bukavu, DR Congo
| | - Charles Bisimwa
- Faculty of Pharmacy and Public Health, Official University of Bukavu, Bukavu, DR Congo
| | | | | | - Leonard Sironge
- Faculty of Pharmacy and Public Health, Official University of Bukavu, Bukavu, DR Congo
| | - Alain Balume
- Faculty of Medicine, Official University of Bukavu, Bukavu, DR Congo
| | - Rahma Sayadi
- Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | | | - Akintola Ashraf Akintayo
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566 South Korea
| | | | | |
Collapse
|
16
|
Murase R, Shingu Y, Wakasa S. Cardioprotective effects of chloroquine pretreatment on ischemic and reperfusion injury via activation of ERK1/2 in isolated rat hearts. Mol Biol Rep 2022; 49:9429-9436. [PMID: 35896843 DOI: 10.1007/s11033-022-07801-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Several therapeutic agents have been found to prevent myocardial ischemic and reperfusion (I/R) injury after cardiac surgery; however, no drug is routinely used to afford cardioprotective benefits in clinical settings. Herein, we aimed to determine whether chloroquine (CQ) pretreatment attenuates I/R injury after global ischemia in isolated rat hearts and elucidate mechanisms underlying the effects of CQ. METHODS Isolated rat hearts were subjected to 30-min global ischemia, followed by 60-min reperfusion with Krebs-Henseleit buffer (KHB). Immediately before ischemia, 10 mL of pretreatment solutions (KHB, n = 4 or KHB + CQ [100 μM], n = 4) were injected through the aortic root. Cardiac function was examined based on the rate pressure product (RPP). Myocardial apoptosis was evaluated using TUNEL staining. To assess the reperfusion ischemia salvage kinase pathway, protein expression levels of AKT and extracellular signal-regulated kinase (ERK1/2) were determined using western blotting. To investigate the role of ERK1/2, an ERK1/2 selective inhibitor was used in eight additional rats. RESULTS The recovery rate of the RPP was higher in the KHB + CQ group than in the KHB group 60 min after I/R (KHB, 44 ± 3% vs. KHB + CQ, 69 ± 7%; P = 0.019, d = 2.2). CQ pretreatment reduced apoptosis and enhanced the phosphorylation of ERK1/2; however, AKT phosphorylation was unaltered. In addition, the ERK1/2 inhibitor abolished CQ-mediated cardioprotective effects. CONCLUSIONS CQ pretreatment showed protective effects on cardiac function after I/R by activating ERK1/2.
Collapse
Affiliation(s)
- Ryota Murase
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kitaku, Sapporo, 060-8638, Japan
| | - Yasushige Shingu
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kitaku, Sapporo, 060-8638, Japan.
| | - Satoru Wakasa
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kitaku, Sapporo, 060-8638, Japan
| |
Collapse
|
17
|
Assessing the Roles of Molecular Markers of Antimalarial Drug Resistance and the Host Pharmacogenetics in Drug-Resistant Malaria. J Trop Med 2022; 2022:3492696. [PMID: 35620049 PMCID: PMC9129956 DOI: 10.1155/2022/3492696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/17/2022] [Accepted: 04/29/2022] [Indexed: 01/11/2023] Open
Abstract
Malaria caused by the Plasmodium parasites is a major public health concern in malaria-endemic regions with P. falciparum causing the most severe form of the disease. The use of antimalarial drugs for the management of the disease proves to be one of the best methods to manage the disease. Unfortunately, P. falciparum has developed resistance to almost all the current in-use antimalarial drugs. Parasite development of resistance is primarily caused by both parasite and host genetic factors. The parasite genetic factors involve undergoing mutation in the drug target sites or increasing the drug target gene copy number to prevent the intended action of the antimalarial drugs. The host pharmacogenetic factors which determine how a particular antimalarial drug is metabolized could result in variations of drug plasma concentration and consequently contribute to variable treatment outcomes and the emergence or propagation of resistant parasites. Since both host and parasite genomes play a role in antimalarial drug action, a key question often asked is, “which of the two strongly drives or controls antimalarial drug resistance?” A major finding in our recent study published in the Malaria Journal indicates that the parasite's genetic factors rather than the host are likely to energize resistance to an antimalarial drug. However, others have reported contrary findings suggesting that the host genetic factors are the force behind resistance to antimalarial drugs. To bring clarity to these observations, there is the need for deciphering the major driving force behind antimalarial drug resistance through optimized strategies aimed at alleviating the phenomenon. In this direction, literature was systematically reviewed to establish the role and importance of each of the two factors aforementioned in the etiology of drug-resistant malaria. Using Internet search engines such as Pubmed and Google, we looked for terms likely to give the desired information which we herein present. We then went ahead to leverage the obtained information to discuss the globally avid aim of combating antimalarial drug resistance.
Collapse
|
18
|
Sureshan M, Rajamanikandan S, Srimari S, Prabhu D, Jeyakanthan J, Saraboji K. Designing specific inhibitors against dihydrofolate reductase of W. bancrofti towards drug discovery for lymphatic filariasis. Struct Chem 2022. [DOI: 10.1007/s11224-022-01896-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
QSAR and Molecular Docking Studies of Pyrimidine–Coumarin–Triazole Conjugates as Prospective Anti-Breast Cancer Agents. Molecules 2022; 27:molecules27061845. [PMID: 35335208 PMCID: PMC8955476 DOI: 10.3390/molecules27061845] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer is a life-threatening disease and is the second leading cause of death worldwide. Although many drugs are available for the treatment of cancer, survival outcomes are very low. Hence, rapid development of newer anticancer agents is a prime focus of the medicinal chemistry community. Since the recent past, computational methods have been extensively employed for accelerating the drug discovery process. In view of this, in the present study we performed 2D-QSAR (Quantitative Structure-Activity Relationship) analysis of a series of compounds reported with potential anticancer activity against breast cancer cell line MCF7 using QSARINS software. The best four models exhibited a r2 value of 0.99. From the generated QSAR equations, a series of pyrimidine-coumarin-triazole conjugates were designed and their MCF7 cell inhibitory activities were predicted using the QSAR equations. Furthermore, molecular docking studies were carried out for the designed compounds using AutoDock Vina against dihydrofolate reductase (DHFR), colchicine and vinblastine binding sites of tubulin, the key enzyme targets in breast cancer. The most active compounds identified through these computational studies will be useful for synthesizing and testing them as prospective novel anti-breast cancer agents.
Collapse
|
20
|
Castro-Cavadía CJ, Carmona-Fonseca J. ASSESSMENT OF THE EFFICACY AND SAFETY OF CHLOROQUINE MONOTHERAPY FOR THE TREATMENT OF ACUTE UNCOMPLICATED GESTATIONAL MALARIA CAUSED BY P. VIVAX, CÓRDOBA, COLOMBIA, 2015-2017. ACTA ACUST UNITED AC 2021; 71:21-33. [PMID: 32418373 DOI: 10.18597/rcog.3370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 03/02/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To determine the efficacy of chloroquine monotherapy in Colombian pregnant women with acute uncomplicated malaria vivax (GMV). METHODS Prospective cohort study in pregnant women who presented of their own accord between February 1, 2015 and December 31, 2017 to malaria or prenatal care centers in two Colombian towns and in whom the diagnosis of Plasmodium vivax was confirmed by means of blood spot test and and quantitative polymerase chain reaction (qPCR). Measured variables included sociodemographics, therapeutic failure (TF) and serious adverse events at 28 days and frequency of recurrence-relap (RR) over a follow-up period of 120 days. The WHO protocol was applied for the assessment of monotherapy with cloroquine (m-CQ) efficacy. RESULTS Overall, 47 pregnant women were identified. During the 28-day follow-up period there were no losses, and there were two cases of TP (4.2%=2/47). Of the 45 women followed between 29 and 120 days, 11 were lost (24.4%=11/45) and there were 13 cases of RR, with an RR frequency ranging between 29 and 53 % depending on the type of analysis. CONCLUSIONS Chloroquine is still highly effective as a cure of acute malaria vivax attack in GM in Colombia, and continues to be a good option for the treatment of acute phase GM. The RR frequency is high. Studies are required that evaluate therapeutic alternatives in MG. There is a pressing need for medications and/or procedures that can help reduce this very high risk.
Collapse
Affiliation(s)
- Carlos J Castro-Cavadía
- Bacteriólogo; estudiante de doctorado, Corporación de Ciencias Básicas Biomédicas, Universidad de Antioquia, Medellín, Colombia
| | - Jaime Carmona-Fonseca
- Médico, epidemiólogo, salubrista, microbiólogo; profesor titular, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
21
|
Memvanga PB, Nkanga CI. Liposomes for malaria management: the evolution from 1980 to 2020. Malar J 2021; 20:327. [PMID: 34315484 PMCID: PMC8313885 DOI: 10.1186/s12936-021-03858-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
Malaria is one of the most prevalent parasitic diseases and the foremost cause of morbidity in the tropical regions of the world. Strategies for the efficient management of this parasitic infection include adequate treatment with anti-malarial therapeutics and vaccination. However, the emergence and spread of resistant strains of malaria parasites to the majority of presently used anti-malarial medications, on the other hand, complicates malaria treatment. Other shortcomings of anti-malarial drugs include poor aqueous solubility, low permeability, poor bioavailability, and non-specific targeting of intracellular parasites, resulting in high dose requirements and toxic side effects. To address these limitations, liposome-based nanotechnology has been extensively explored as a new solution in malaria management. Liposome technology improves anti-malarial drug encapsulation, bioavailability, target delivery, and controlled release, resulting in increased effectiveness, reduced resistance progression, and fewer adverse effects. Furthermore, liposomes are exploited as immunological adjuvants and antigen carriers to boost the preventive effectiveness of malaria vaccine candidates. The present review discusses the findings from studies conducted over the last 40 years (1980-2020) using in vitro and in vivo settings to assess the prophylactic and curative anti-malarial potential of liposomes containing anti-malarial agents or antigens. This paper and the discussion herein provide a useful resource for further complementary investigations and may pave the way for the research and development of several available and affordable anti-malarial-based liposomes and liposomal malaria vaccines by allowing a thorough evaluation of liposomes developed to date for the management of malaria.
Collapse
Affiliation(s)
- Patrick B Memvanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo.
| | - Christian I Nkanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| |
Collapse
|
22
|
Christensen SB. Natural Products That Changed Society. Biomedicines 2021; 9:biomedicines9050472. [PMID: 33925870 PMCID: PMC8146924 DOI: 10.3390/biomedicines9050472] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022] Open
Abstract
Until the end of the 19th century all drugs were natural products or minerals. During the 19th century chemists succeeded in isolating pure natural products such as quinine, morphine, codeine and other compounds with beneficial effects. Pure compounds enabled accurate dosing to achieve serum levels within the pharmacological window and reproducible clinical effects. During the 20th and the 21st century synthetic compounds became the major source of drugs. In spite of the impressive results achieved within the art of synthetic chemistry, natural products or modified natural products still constitute almost half of drugs used for treatment of cancer and diseases like malaria, onchocerciasis and lymphatic filariasis caused by parasites. A turning point in the fight against the devastating burden of malaria was obtained in the 17th century by the discovery that bark from trees belonging to the genus Cinchona could be used for treatment with varying success. However isolation and use of the active principle, quinine, in 1820, afforded a breakthrough in the treatment. In the 20th century the synthetic drug chloroquine severely reduced the burden of malaria. However, resistance made this drug obsolete. Subsequently artemisinin isolated from traditional Chinese medicine turned out to be an efficient antimalarial drug overcoming the problem of chloroquine resistance for a while. The use of synthetic analogues such as chloroquine or semisynthetic drugs such as artemether or artesunate further improved the possibilities for healing malaria. Onchocerciasis (river blindness) made life in large parts of Africa and South America miserable. The discovery of the healing effects of the macrocyclic lactone ivermectin enabled control and partly elimination of the disease by annual mass distribution of the drug. Also in the case of ivermectin improved semisynthetic derivatives have found their way into the clinic. Ivermectin also is an efficient drug for treatment of lymphatic filariasis. The serendipitous discovery of the ability of the spindle toxins to control the growth of fast proliferating cancer cells armed physicians with a new efficient tool for treatment of some cancer diseases. These possibilities have been elaborated through preparation of semisynthetic analogues. Today vincristine and vinblastine and semisynthetic analogues are powerful weapons against cancer diseases.
Collapse
Affiliation(s)
- Søren Brøgger Christensen
- The Museum of Natural Medicine & The Pharmacognostic Collection, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for global infectious diseases. NATURE NANOTECHNOLOGY 2021; 16:369-384. [PMID: 33753915 DOI: 10.1038/s41565-021-00866-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/26/2021] [Indexed: 05/20/2023]
Abstract
Infectious diseases are a major driver of morbidity and mortality globally. Treatment of malaria, tuberculosis and human immunodeficiency virus infection are particularly challenging, as indicated by the ongoing transmission and high mortality associated with these diseases. The formulation of new and existing drugs in nano-sized carriers promises to overcome several challenges associated with the treatment of these diseases, including low on-target bioavailability, sub-therapeutic drug accumulation in microbial sanctuaries and reservoirs, and low patient adherence due to drug-related toxicities and extended therapeutic regimens. Further, nanocarriers can be used for formulating vaccines, which represent a major weapon in our fight against infectious diseases. Here we review the current burden of infectious diseases with a focus on major drivers of morbidity and mortality. We then highlight how nanotechnology could aid in improving existing treatment modalities. We summarize our progress so far and outline potential future directions to maximize the impact of nanotechnology on the global population.
Collapse
Affiliation(s)
- Ameya R Kirtane
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Malvika Verma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paramesh Karandikar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
24
|
Dutta RK, Maharjan Y, Lee JN, Park C, Ho YS, Park R. Catalase deficiency induces reactive oxygen species mediated pexophagy and cell death in the liver during prolonged fasting. Biofactors 2021; 47:112-125. [PMID: 33496364 DOI: 10.1002/biof.1708] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Peroxisomes are dynamic organelles that participate in a diverse array of cellular processes, including β-oxidation, which produces a considerable amount of reactive oxygen species (ROS). Although we showed that catalase depletion induces ROS-mediated pexophagy in cells, the effect of catalase deficiency during conditions that favor ROS generation remains elusive in mice. In this study, we reported that prolonged fasting in catalase-knockout (KO) mice drastically increased ROS production, which induced liver-specific pexophagy, an autophagic degradation of peroxisomes. In addition, increased ROS generation induced the production of pro-inflammatory cytokines in the liver tissues of catalase-KO mice. Furthermore, there was a significant increase in the levels of aspartate transaminase and alanine transaminase as well as apparent cell death in the liver of catalase-KO mice during prolonged fasting. However, an intra-peritoneal injection of the antioxidant N-acetyl-l-cysteine (NAC) and autophagy inhibitor chloroquine inhibited the inflammatory response, liver damage, and pexophagy in the liver of catalase-KO mice during prolonged fasting. Consistently, genetic ablation of autophagy, Atg5 led to suppression of pexophagy during catalase inhibition by 3-aminotriazole (3AT). Moreover, treatment with chloroquine also ameliorated the inflammatory response and cell death in embryonic fibroblast cells from catalase-KO mice. Taken together, our data suggest that ROS-mediated liver-specific pexophagy observed during prolonged fasting in catalase-KO mice may be responsible for the process associated with hepatic cell death.
Collapse
Affiliation(s)
- Raghbendra Kumar Dutta
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Yunash Maharjan
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Joon No Lee
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Channy Park
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, Michigan, USA
| | - Raekil Park
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| |
Collapse
|
25
|
Rizwan HM, Abbas H, Sajid MS, Maqbool M, Jones MK, Ullah MI, Ijaz N. Drug Resistance in Protozoal Infections. BIOCHEMISTRY OF DRUG RESISTANCE 2021:95-142. [DOI: 10.1007/978-3-030-76320-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Babayeva M, Loewy Z. Repurposing Drugs for COVID-19: Pharmacokinetics and Pharmacogenomics of Chloroquine and Hydroxychloroquine. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:531-542. [PMID: 33122936 PMCID: PMC7591012 DOI: 10.2147/pgpm.s275964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022]
Abstract
Background A new coronavirus SARS-CoV-2 has been identified as the etiological agent of the severe acute respiratory syndrome, COVID-19, the source and cause of the 2019–20 coronavirus pandemic. Hydroxychloroquine and chloroquine have gathered extraordinary attention as therapeutic candidates against SARS-CoV-2 infections. While there is growing scientific data on the therapeutic effect, there is also concern for toxicity of the medications. The therapy of COVID-19 by hydroxychloroquine and chloroquine is off-label. Studies to analyze the personalized effect and safety are lacking. Methods A review of the literature was performed using Medline/PubMed/Embase database. A variety of keywords were employed in keyword/title/abstract searches. The electronic search was followed by extensive hand searching using reference lists from the identified articles. Results A total of 126 results were obtained after screening all sources. Mechanisms underlying variability in drug concentrations and therapeutic response with chloroquine and hydroxychloroquine in mediating beneficial and adverse effects of chloroquine and hydroxychloroquine were reviewed and analyzed. Pharmacogenomic studies from various disease states were evaluated to elucidate the role of genetic variation in drug response and toxicity. Conclusion Knowledge of the pharmacokinetics and pharmacogenomics of chloroquine and hydroxychloroquine is necessary for effective and safe dosing and to avoid treatment failure and severe complications.
Collapse
Affiliation(s)
| | - Zvi Loewy
- Touro College of Pharmacy, New York, NY, USA.,New York Medical College, Valhalla, NY, USA
| |
Collapse
|
27
|
Weston S, Coleman CM, Haupt R, Logue J, Matthews K, Li Y, Reyes HM, Weiss SR, Frieman MB. Broad Anti-coronavirus Activity of Food and Drug Administration-Approved Drugs against SARS-CoV-2 In Vitro and SARS-CoV In Vivo. J Virol 2020; 94:e01218-20. [PMID: 32817221 PMCID: PMC7565640 DOI: 10.1128/jvi.01218-20] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China at the end of 2019 and has rapidly caused a pandemic, with over 20 million recorded COVID-19 cases in August 2020 (https://covid19.who.int/). There are no FDA-approved antivirals or vaccines for any coronavirus, including SARS-CoV-2. Current treatments for COVID-19 are limited to supportive therapies and off-label use of FDA-approved drugs. Rapid development and human testing of potential antivirals is urgently needed. Numerous drugs are already approved for human use, and subsequently, there is a good understanding of their safety profiles and potential side effects, making them easier to fast-track to clinical studies in COVID-19 patients. Here, we present data on the antiviral activity of 20 FDA-approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). We found that 17 of these inhibit SARS-CoV-2 at non-cytotoxic concentrations. We directly followed up seven of these to demonstrate that all are capable of inhibiting infectious SARS-CoV-2 production. Moreover, we evaluated two of these, chloroquine and chlorpromazine, in vivo using a mouse-adapted SARS-CoV model and found that both drugs protect mice from clinical disease.IMPORTANCE There are no FDA-approved antivirals for any coronavirus, including SARS-CoV-2. Numerous drugs are already approved for human use that may have antiviral activity and therefore could potentially be rapidly repurposed as antivirals. Here, we present data assessing the antiviral activity of 20 FDA-approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and MERS-CoV in vitro We found that 17 of these inhibit SARS-CoV-2, suggesting that they may have pan-anti-coronaviral activity. We directly followed up seven of these and found that they all inhibit infectious-SARS-CoV-2 production. Moreover, we evaluated chloroquine and chlorpromazine in vivo using mouse-adapted SARS-CoV. We found that neither drug inhibited viral replication in the lungs, but both protected against clinical disease.
Collapse
Affiliation(s)
- Stuart Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher M Coleman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert Haupt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Krystal Matthews
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yize Li
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hanako M Reyes
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Abamecha A, Yilma D, Addisu W, El-Abid H, Ibenthal A, Noedl H, Yewhalaw D, Moumni M, Abdissa A. Therapeutic efficacy of artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Chewaka District, Ethiopia. Malar J 2020; 19:240. [PMID: 32650784 PMCID: PMC7350688 DOI: 10.1186/s12936-020-03307-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background The efficacy of artemether-lumefantrine (AL) for treatment of uncomplicated Plasmodium falciparum malaria in south-western Ethiopia is poorly documented. Regular monitoring of drug efficacy is an important tool for supporting national treatment policies and practice. This study investigated the therapeutic efficacy of AL for the treatment of P. falciparum malaria in Ethiopia. Methods The study was a one-arm, prospective, evaluation of the clinical and parasitological, responses to directly observed treatment with AL among participants 6 months and older with uncomplicated P. falciparum malaria. Real-time polymerase chain reaction (PCR) and nested PCR reaction methods were used to quantify and genotype P. falciparum. A modified protocol based on the World Health Organization 2009 recommendations for the surveillance of anti-malarial drug efficacy was used for the study with primary outcomes, clinical and parasitological cure rates at day-28. Secondary outcomes assessed included patterns of fever and parasite clearance. Cure rate on day-28 was assessed by intention to treat (ITT) and per protocol (PP) analysis. Parasite genotyping was also performed at baseline and at the time of recurrence of parasitaemia to differentiate between recrudescence and new infection. Results Of the 80 study participants enrolled, 75 completed the follow-up at day-28 with ACPR. For per protocol (PP) analysis, PCR-uncorrected and-corrected cure rate of AL among the study participants was 94.7% (95% CI 87.1–98.5) and 96% (95% CI 88.8–99.2), respectively. For intention to treat (ITT) analysis, the cure rate was 90% (95% CI 88.8–99.2). Based on Kaplan–Meier survival estimate, the cumulative incidence of failure rate of AL was 3.8% (95% CI 1.3–11.4). Only three participants 3.8% (95% CI 0.8–10.6) of the 80 enrolled participants were found to be positive on day-3. The day three-positive participants were followed up to day 28 and did not correspond to treatment failures observed during follow-up. Only 7.5% (6/80) of the participants were gametocyte-positive on enrollment and gametocytaemia was absent on day-2 following treatment with AL. Conclusions The therapeutic efficacy of AL is considerably high (above 90%). AL remained highly efficacious in the treatment of uncomplicated malaria in the study area resulted in rapid fever and parasite clearance as well as low gametocyte carriage rates despite the use of this combination for more than 15 years.
Collapse
Affiliation(s)
- Abdulhakim Abamecha
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia. .,Department of Biomedical, College of Public Health and Medical Science, Mettu University, Mettu, Ethiopia. .,Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia.
| | - Daniel Yilma
- Department of Internal Medicine, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Wondimagegn Addisu
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Hassan El-Abid
- Biotechnology and Bio-Resources Development Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Achim Ibenthal
- Faculty of Science and Art, HAWK University, Gottingen, Germany
| | - Harald Noedl
- Malaria Research Initiative Bandarban (MARIB), Vienna, Austria
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Mohieddine Moumni
- Biotechnology and Bio-Resources Development Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Alemseged Abdissa
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
29
|
Hematological and biochemical effects of Morinda lucida and Alstonia boonei on the liver and kidney of mice infected with Plasmodium berghei. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00436-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Chloroquine and Rapamycin Augment Interleukin-37 Expression via the LC3, ERK, and AP-1 Axis in the Presence of Lipopolysaccharides. J Immunol Res 2020; 2020:6457879. [PMID: 32104716 PMCID: PMC7035573 DOI: 10.1155/2020/6457879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/28/2019] [Indexed: 12/24/2022] Open
Abstract
IL-37 is a cytokine that plays critical protective roles in many metabolic inflammatory diseases, and its therapeutic potential has been confirmed by exogenous IL-37 administration. However, its regulatory mechanisms remain unclear. U937 cells were treated with autophagy-modifying reagents (3-MA, chloroquine, and rapamycin) with or without LPS stimulation. Thereafter, IL-37 expression and autophagic markers (Beclin1, P62/SQSTM1, and LC3) were determined. For regulatory signal pathways, phosphorylated proteins of NF-κB (p65 and IκBα), AP-1 (c-Fos/c-Jun), and MAPK signal pathways (Erk1/2 and p38 MAPK) were quantified, and the agonists and antagonists of MAPK and NF-κB pathways were also used. Healthy human peripheral blood mononuclear cells were treated similarly to confirm our results. Four rhesus monkeys were also administered chloroquine to evaluate IL-37 induction in vivo and its bioactivity on CD4 proliferation and activation. IL-37 was upregulated by rapamycin and chloroquine in both U937 cells and human PBMCs in the presence of LPS. IL-37 was preferentially induced in autophagic cells associated with LC3 conversion. AP-1 and p65 binding motifs could be deduced in the sequence of the IL-37 promoter. Inductive IL-37 expression was accompanied with increased phosphorylated Erk1/2 and AP-1 and could be completely abolished by an Erk1/2 inhibitor or augmented by Erk1/2 agonists. In monkeys, chloroquine increased IL-37 expression, which was inversely correlated with CD4 proliferation and phosphorylated STAT3. IL-37 levels were induced by rapamycin and chloroquine through the LC3, Erk1/2, and NF-κB/AP-1 pathways. Functional IL-37 could also be induced in vivo.
Collapse
|
31
|
Histone deacetylase inhibitors with high in vitro activities against Plasmodium falciparum isolates collected from Gabonese children and adults. Sci Rep 2019; 9:17336. [PMID: 31758015 PMCID: PMC6874535 DOI: 10.1038/s41598-019-53912-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023] Open
Abstract
Histone deacetylase (HDAC) enzymes are targets for the development of antimalarial drugs with a different mode of action to established antimalarials. Broad-spectrum HDAC-inhibitors show high potency against Plasmodium falciparum, but displayed some toxicity towards human cells. Inhibitors of human HDAC6 are new drug candidates with supposed reduced toxicity to human cells and favorable activities against laboratory P. falciparum strains. We investigated the potency of 12 peptoid-based HDAC-inhibitors against asexual stages of P. falciparum clinical isolates. Parasites representing different genetic backgrounds were isolated from adults and children with uncomplicated malaria in Gabon. Clinical studies on (non-HDAC-inhibitors) antimalarials, moreover, found lower drug efficacy in children, mainly attributed to acquired immunity with age in endemic areas. Therefore, we compared the in vitro sensitivity profiles of adult- and child-derived isolates to antimalarials (HDAC and standard drugs). All HDAC-inhibitors showed 50% inhibitory concentrations at nanomolar ranges with higher activities than the FDA approved reference HDAC-inhibitor SAHA. We propose peptoid-based HDAC6-inhibitors to be lead structures for further development as antimalarial chemotherapeutics. Our results further suggest no differences in activity of the tested antimalarials between P. falciparum parasites isolated from children and adults.
Collapse
|
32
|
Prevalence of mutations in Plasmodium falciparum genes associated with resistance to different antimalarial drugs in Nyando, Kisumu County in Kenya. INFECTION GENETICS AND EVOLUTION 2019; 78:104121. [PMID: 31756512 DOI: 10.1016/j.meegid.2019.104121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 11/16/2019] [Indexed: 11/22/2022]
Abstract
Resistance to the mainstay antimalarial drugs is a major concern in the control of malaria. Delayed Plasmodium falciparum parasite clearance has been associated with Single Nucleotide Polymorphisms (SNPs) in the kelch propeller region (K13). However, SNPs in the Pf-adaptor protein complex 2 mu subunit (Pfap2-mu), Pfcrt and Pfmdr1 are possible markers associated with multi-drug resistance. Here, we explored the prevalence of SNPs in the K13, Pfap2-mu, Pfcrt, and Pfmdr1 in 94 dried blood spot field isolates collected from children aged below 12 years infected with P. falciparum during a cross-sectional study. The samples were collected in 2015 during the peak malaria transmission season in the Nyando region of Western Kenya before treatment with Artemether-Lumefantrine, the first-line artemisinin-based combination therapy (ACT) in Kenya. However, 47 of the 94 samples had recurrent parasitemia and were interrogated for the presence of the SNPs in K13 and Pfap2-mu. We used PCR amplification and sequencing to evaluate specific regions of K13 (codons 432-702), Pfap2-mu (codons 1-350), Pfmdr1 (codons 86, 1034-1246), and Pfcrt (codons 72-76) gene(s). The majority of parasites harbored the wild type K13 sequence. However, we found a unique non-synonymous W611S change. In silico studies on the impact of the W611S predicted structural changes in the overall topology of the K13 protein. Of the 47 samples analyzed for SNPs in the Pfap2-mu gene, 14 (29%) had S160 N/T mutation. The CVIET haplotype associated with CQ resistance in the Pfcrt yielded a 7.44% (7/94), while CVMNK haplotype was at 92.56%. Mutations in the Pfmdr1 region were detected only in three samples (3/94; 3.19%) at codon D1246Y. Our data suggest that parasites in the western part of Kenya harbor the wildtype strains. However, the detection of the unique SNP in K13 and Pfap2-mu linked with ACT delayed parasite clearance may suggest slow filtering of ACT-resistant parasites.
Collapse
|
33
|
Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 2019; 18:314-328. [PMID: 31119263 PMCID: PMC6859814 DOI: 10.1093/bfgp/elz008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax, the two protozoan parasite species that cause the majority of cases of human malaria, have developed resistance to nearly all known antimalarials. The ability of malaria parasites to develop resistance is primarily due to the high numbers of parasites in the infected person's bloodstream during the asexual blood stage of infection in conjunction with the mutability of their genomes. Identifying the genetic mutations that mediate antimalarial resistance has deepened our understanding of how the parasites evade our treatments and reveals molecular markers that can be used to track the emergence of resistance in clinical samples. In this review, we examine known genetic mutations that lead to resistance to the major classes of antimalarial medications: the 4-aminoquinolines (chloroquine, amodiaquine and piperaquine), antifolate drugs, aryl amino-alcohols (quinine, lumefantrine and mefloquine), artemisinin compounds, antibiotics (clindamycin and doxycycline) and a napthoquinone (atovaquone). We discuss how the evolution of antimalarial resistance informs strategies to design the next generation of antimalarial therapies.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| |
Collapse
|
34
|
Failures in the case management of children with uncomplicated malaria in Bata district of Equatorial Guinea and associated factors. PLoS One 2019; 14:e0220789. [PMID: 31374107 PMCID: PMC6677319 DOI: 10.1371/journal.pone.0220789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022] Open
Abstract
Background In Equatorial Guinea, malaria continues to be one of the main causes of morbidity and mortality among children. The National Therapeutic Guide established artesunate-amodiaquine (ASAQ) as first-line treatment for uncomplicated malaria, but compliance with this treatment is low. The aim of this study was to assess, for the first time, the performance of public healthcare workers in the diagnosis and treatment of uncomplicated malaria, their compliance with first-line Malaria National Therapeutic Guide and the associated factors. Methods A cross-sectional survey was conducted at the nine public health facilities in the Bata District of Equatorial Guinea to assess the management of uncomplicated malaria in children < 15 years of age. Bivariate and multivariate statistical analyses were used to determine the recommended treatment compliance and related factors. Results A total of 227 children with uncomplicated malaria were recorded from 9 public health facilities. Most of the treatments prescribed (83.3%) did not follow the first-line treatment recommended for uncomplicated malaria. The diagnosis was established with parasite confirmation in 182 cases (80.2%). After adjustment for other variables, children under 2 months of age, the use of parasite confirmation to the diagnosis of malaria and being familiar with the national therapeutic guide were significantly associated with the prescription of the first-line recommended treatment. Cases attended at the hospital or in a health facility with ASAQ in the pharmacy at the time of the study were also more likely to be prescribed with the recommended treatment, but with non-significant association after adjustment for other variables. Conclusions This study identified the factors associated with the low compliance with the first-line treatment by the public healthcare facilities of Bata District of Equatorial Guinea. It seems necessary to improve case management of children with uncomplicated malaria; to reinforce the use of Malaria National Therapeutic Guide and to inform about the danger of using artemisinin monotherapy. Furthermore, it is crucial to provide recommended first-line treatment to the pharmacies of all public health facilities to ensure access to this treatment.
Collapse
|
35
|
Kilonzi M, Minzi O, Mutagonda R, Sasi P, Kamuhabwa A, Aklillu E. Comparison of malaria treatment outcome of generic and innovator's anti-malarial drugs containing artemether-lumefantrine combination in the management of uncomplicated malaria amongst Tanzanian children. Malar J 2019; 18:133. [PMID: 30975147 PMCID: PMC6460845 DOI: 10.1186/s12936-019-2769-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/05/2019] [Indexed: 11/10/2022] Open
Abstract
Background In 2006, artemether–lumefantrine (ALU), specifically Coartem® (Novartis Pharma AG, Basel Switzerland), was approved as the first-line drug for treatment of uncomplicated malaria in Tanzania. Due to poor availability and affordability of the innovator’s product, the government of Tanzania in 2013 prequalified the use of generic anti-malarial drugs, whereby Artefan® (Ajanta, Pharma Ltd, India) was the first to be approved. Methods This was an equivalence prospective study that aimed to determine the effectiveness of anti-malarial generic Artefan® in comparison with innovator’s product Coartem®. Patients aged 6 to 59 months with uncomplicated malaria were recruited and randomized to either receive Artefan® or Coartem® as a control. Participants were required to revisit clinic five times as follow up to monitor treatment outcome as per World Health Organization recommendations. On each visit, thick and thin blood smears, dried blood spot (DBS), haemoglobin concentrations and auxiliary temperature were performed and documented. Results Out of 230 recruited participants, 200 met inclusion criteria and were randomized equally to receive Artefan® and Coartem®. The overall PCR uncorrected cure rate were 80% for Artefan® and 75% for Coartem® (p = 0.44). Adequate clinical and parasitological response were 82.1% for Artefan® and 74.7% for Coartem®, and there was no early treatment failure (ETF) observed in both arms of treatment. Both drugs showed excellent early parasite clearance, whereby no participants had peripheral parasitaemia on day 3. Late clinical failures (LCF) were 3.6% for Artefan® and 1.3% for Coartem® (p = 0.31), and late parasitological failure (LPF) were 15.4% for Artefan® and 22.7% for Coartem® (p = 0.32). Mean haemoglobin (g/dl) concentrations observed on day 28 were higher compared to day 0 for both drugs, although not statistically significant. Only one (1.3%) participant on Artefan® had temperature ≥ 37.5 °C on day 3. Conclusion The findings of this study indicate that both Artefan® and Coartem® are equivalent and effective in the management of uncomplicated malaria amongst children in the Coast part of Tanzania.
Collapse
Affiliation(s)
- Manase Kilonzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O. BOX 65013, Dar es Salaam, Tanzania.
| | - Omary Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O. BOX 65013, Dar es Salaam, Tanzania
| | - Ritah Mutagonda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O. BOX 65013, Dar es Salaam, Tanzania
| | - Philip Sasi
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, P. O. BOX 6515, Dar es Salaam, Tanzania
| | - Appolinary Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O. BOX 65013, Dar es Salaam, Tanzania
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge C1:68, 141 86, Stockholm, Sweden
| |
Collapse
|
36
|
DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents. Molecules 2019; 24:molecules24061140. [PMID: 30909399 PMCID: PMC6471984 DOI: 10.3390/molecules24061140] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
Collapse
|
37
|
Rouamba T, Sondo P, Yerbanga IW, Compaore A, Traore-Coulibaly M, Hien FS, Diande NA, Valia D, Valea I, Akweongo P, Baiden R, Binka F, Kirakoya-Samadoulougou F, Tinto H. High adherence level to artemisinin-based combination therapies in rural settlement 11 years after their introduction in the health system, Nanoro, Burkina Faso. Patient Prefer Adherence 2019; 13:371-380. [PMID: 30880921 PMCID: PMC6402368 DOI: 10.2147/ppa.s190927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE In 2005, Burkina Faso changed its first-line treatment for uncomplicated malaria from chloroquine to artemisinin-based combination therapies (ACTs). Patient adherence to ACTs regimen is a keystone to achieve the expected therapeutic outcome and prevent the emergence and spread of parasite resistance. Eleven years after the introduction of ACTs in the health system, this study aimed to measure adherence level of patients in rural settlement and investigate the determinants of nonadherence. PATIENTS AND METHODS The study was carried out at public peripheral health facilities from May 2017 to August 2017 in Nanoro health district, Burkina Faso. An electronic semi-structured questionnaire was used for data collection from patients with an ACT prescription at their medical consultation exit visit and during home visit at day 5±2. Adherence level was measured through self-report and pill counts. Logistic regression was performed to identify factors for nonadherence. RESULTS The analysis was conducted on 199 outpatients who received ACT as prescription. About 92.5% of ACT prescriptions included artemether-lumefantrine tablets. Adherence level was measured in 97.0% of included patients at day 5±2. Of these, 86.0% were classified as "complete adherent" and 14.0% as "nonadherent". In univariate analysis, patients/caregivers who considered that affordability of ACTs was easy seemed to be less adherent to the treatment regimen (OR: 0.26; 95% CI: 0.07-0.70). In univariate and multivariable analyses, patients/caregivers who did not receive advices from health care workers (HCWs) were more likely to be nonadherent to the prescribed ACTs (adjusted OR: 3.21; 95% CI: 1.13-9.12). CONCLUSION This study demonstrates that majority of those who get an ACT prescription comply with the recommended regimen. This emphasizes that in rural settings where ACTs are provided free of charge or at a subsidized price, patient adherence to ACTs is high, thus minimizing the risk of subtherapeutic concentrations of the drug in blood which is known to increase resistance and susceptibility to new infections. Therefore, to address the problem of patient nonadherence, strategy to strengthen communication between HCWs and patients should be given greater consideration.
Collapse
Affiliation(s)
- Toussaint Rouamba
- Center for Research in Epidemiology, Biostatistics and Clinical Research, School of Public Health, Université libre de Bruxelles (ULB), Brussels, Belgium,
- Clinical Research Unit of Nanoro, Institute for Research in Health Sciences, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso,
| | - Paul Sondo
- Clinical Research Unit of Nanoro, Institute for Research in Health Sciences, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso,
| | - Isidore W Yerbanga
- Clinical Research Unit of Nanoro, Institute for Research in Health Sciences, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso,
| | - Adelaide Compaore
- Clinical Research Unit of Nanoro, Institute for Research in Health Sciences, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso,
| | - Maminata Traore-Coulibaly
- Clinical Research Unit of Nanoro, Institute for Research in Health Sciences, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso,
| | - Franck S Hien
- Clinical Research Unit of Nanoro, Institute for Research in Health Sciences, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso,
| | - Nassirou A Diande
- Clinical Research Unit of Nanoro, Institute for Research in Health Sciences, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso,
| | - Daniel Valia
- Clinical Research Unit of Nanoro, Institute for Research in Health Sciences, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso,
| | - Innocent Valea
- Clinical Research Unit of Nanoro, Institute for Research in Health Sciences, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso,
| | - Patricia Akweongo
- Epidemiology and Disease Control Department, University of Ghana, Accra, Ghana
| | | | | | - Fati Kirakoya-Samadoulougou
- Center for Research in Epidemiology, Biostatistics and Clinical Research, School of Public Health, Université libre de Bruxelles (ULB), Brussels, Belgium,
| | - Halidou Tinto
- Clinical Research Unit of Nanoro, Institute for Research in Health Sciences, National Center for Scientific and Technological Research, Ouagadougou, Burkina Faso,
| |
Collapse
|
38
|
Nyamai DW, Tastan Bishop Ö. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar J 2019; 18:34. [PMID: 30728021 PMCID: PMC6366043 DOI: 10.1186/s12936-019-2665-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment of parasitic diseases has been challenging due to evolution of drug resistant parasites, and thus there is need to identify new class of drugs and drug targets. Protein translation is important for survival of malarial parasite, Plasmodium, and the pathway is present in all of its life cycle stages. Aminoacyl tRNA synthetases are primary enzymes in protein translation as they catalyse amino acid addition to the cognate tRNA. This study sought to understand differences between Plasmodium and human aminoacyl tRNA synthetases through bioinformatics analysis. METHODS Plasmodium berghei, Plasmodium falciparum, Plasmodium fragile, Plasmodium knowlesi, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax, Plasmodium yoelii and human aminoacyl tRNA synthetase sequences were retrieved from UniProt database and grouped into 20 families based on amino acid specificity. These families were further divided into two classes. Both families and classes were analysed. Motif discovery was carried out using the MEME software, sequence identity calculation was done using an in-house Python script, multiple sequence alignments were performed using PROMALS3D and TCOFFEE tools, and phylogenetic tree calculations were performed using MEGA vs 7.0 tool. Possible alternative binding sites were predicted using FTMap webserver and SiteMap tool. RESULTS Motif discovery revealed Plasmodium-specific motifs while phylogenetic tree calculations showed that Plasmodium proteins have different evolutionary history to the human homologues. Human aaRSs sequences showed low sequence identity (below 40%) compared to Plasmodium sequences. Prediction of alternative binding sites revealed potential druggable sites in PfArgRS, PfMetRS and PfProRS at regions that are weakly conserved when compared to the human homologues. Multiple sequence analysis, motif discovery, pairwise sequence identity calculations and phylogenetic tree analysis showed significant differences between parasite and human aaRSs proteins despite functional and structural conservation. These differences may provide a basis for further exploration of Plasmodium aminoacyl tRNA synthetases as potential drug targets. CONCLUSION This study showed that, despite, functional and structural conservation, Plasmodium aaRSs have key differences from the human homologues. These differences in Plasmodium aaRSs can be targeted to develop anti-malarial drugs with less toxicity to the host.
Collapse
Affiliation(s)
- Dorothy Wavinya Nyamai
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
39
|
Daher A, Silva JCAL, Stevens A, Marchesini P, Fontes CJ, Ter Kuile FO, Lalloo DG. Evaluation of Plasmodium vivax malaria recurrence in Brazil. Malar J 2019; 18:18. [PMID: 30670020 PMCID: PMC6343355 DOI: 10.1186/s12936-019-2644-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Control of vivax malaria in endemic areas requires management of recurrence. The Brazilian National Malaria Surveillance System (SIVEP-Malária) records every case of malaria in Brazil, but is not designed to differentiate between primary and recurrent infections. The aim of this study was to explore whether the information provided by SIVEP-Malária could be used to identify Plasmodium vivax recurrences, its risk factors and evaluate the effectiveness of short course primaquine (7-9 days: total dose 3-4.2 mg/kg) in preventing relapses. METHODS In this observational retrospective cohort study, data matching of SIVEP-Malária records was undertaken using bloom filters to identify potential recurrences defined as microscopically-confirmed P. vivax episodes from the same individual occurring within a year. Generalized Estimation Equation (GEE) models were used to determine predictors of recurrence. Extended Cox-based conditional Prentice-Williams-Peterson models (PWP) models were used to evaluate time to recurrence. RESULTS Between June 1, 2014 and May 31, 2015, 26,295 episodes fulfilled the criteria of potential recurrence among 154,970 reported malaria episodes. Age ≤ 3 years, being male, literate, not-indigenous and having domestic working activities were identified as risk factors for recurrence. There was no difference in time to recurrence or recurrence frequency between patients treated with 14-day or 7-9 day primaquine regimens (HR = 1.02, 0.96-1.09) and RR = 0.97 (0.90-1.04), respectively. The use of chloroquine alone was associated with a 1.43 (1.29-1.58, p < 0.0001) increased risk of P. vivax recurrence compared to patients who used chloroquine combined with short-course primaquine, the Brazilian standard of care. This was RR = 2.06 (1.48-2.86, p < 0.0001), RR = 1.90 (1.60-2.25, p = 0.0001) and RR = 1.14 (1.00-1.29, p = 0.05) for recurrences occurring between 3-28, 29-60 and > 60 days, respectively. PWP models showed that the time to recurrence was longer in recipients of both primaquine and artemisinin-based combination therapy (ACT) compared to patients treated with chloroquine alone or with concomitant primaquine, HR = 2.2 (1.62-2.99, p < 0.0001), HR = 1.27 (0.97-1.66, p = 0.08), respectively. CONCLUSION Short course primaquine was as effective as 14-day regimens and associated with a halving of the risk and delay in time to recurrence of P. vivax infections in comparison to chloroquine alone. The study demonstrates the feasibility of using record linkage on routine surveillance data to identify potential P. vivax recurrences, associated risk factors and impact of treatment.
Collapse
Affiliation(s)
- André Daher
- Vice-presidency of Research and Biological Collections, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Júlio C A L Silva
- National Institute of Infectious Disease, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Antony Stevens
- Secretariat of Health Surveillance, Ministry of Health, Brasília, Brazil
| | - Paola Marchesini
- Department of Transmissible Diseases Surveillance, Ministry of Health, Brasília, Brazil
| | - C J Fontes
- Faculty of Medicine, Mato Grosso Federal University, Cuiabá, Brazil
| | - F O Ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David G Lalloo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
40
|
Francklyn CS, Mullen P. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem 2019; 294:5365-5385. [PMID: 30670594 DOI: 10.1074/jbc.rev118.002956] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are universal enzymes that catalyze the attachment of amino acids to the 3' ends of their cognate tRNAs. The resulting aminoacylated tRNAs are escorted to the ribosome where they enter protein synthesis. By specifically matching amino acids to defined anticodon sequences in tRNAs, ARSs are essential to the physical interpretation of the genetic code. In addition to their canonical role in protein synthesis, ARSs are also involved in RNA splicing, transcriptional regulation, translation, and other aspects of cellular homeostasis. Likewise, aminoacylated tRNAs serve as amino acid donors for biosynthetic processes distinct from protein synthesis, including lipid modification and antibiotic biosynthesis. Thanks to the wealth of details on ARS structures and functions and the growing appreciation of their additional roles regulating cellular homeostasis, opportunities for the development of clinically useful ARS inhibitors are emerging to manage microbial and parasite infections. Exploitation of these opportunities has been stimulated by the discovery of new inhibitor frameworks, the use of semi-synthetic approaches combining chemistry and genome engineering, and more powerful techniques for identifying leads from the screening of large chemical libraries. Here, we review the inhibition of ARSs by small molecules, including the various families of natural products, as well as inhibitors developed by either rational design or high-throughput screening as antibiotics and anti-parasitic therapeutics.
Collapse
Affiliation(s)
- Christopher S Francklyn
- From the Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Patrick Mullen
- From the Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
41
|
Kalaria PN, Karad SC, Raval DK. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur J Med Chem 2018; 158:917-936. [PMID: 30261467 DOI: 10.1016/j.ejmech.2018.08.040] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/18/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
The upward extend of malaria collectively with the emergence of resistance against predictable drugs has put enormous pressure on public health systems to introduce new malaria treatments. Heterocycles play an important role in the design and discovery of new malaria active compounds. Heterocyclic compounds have attracted significant attention for malaria treatment because of simplicity of parallelization and the examining power with regard to chemical space. Introduction of a variety of heterocyclic compounds have enabled to maintain the high levels of antimalarial potency observed for other more lipophilic analogues whilst improving the solubility and the oral bioavailability in pre-clinical species. In this review, we present an overview of recent literature to provide imminent into the applications of different heterocyclic scaffolds in fighting against malaria.
Collapse
Affiliation(s)
- Piyush N Kalaria
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| | - Sharad C Karad
- Department of Chemistry, Marwadi University, Rajkot, Gujarat, India.
| | - Dipak K Raval
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India.
| |
Collapse
|
42
|
Mathews ES, Odom John AR. Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination. F1000Res 2018; 7. [PMID: 30135714 PMCID: PMC6073090 DOI: 10.12688/f1000research.14874.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Malaria remains a significant contributor to global human mortality, and roughly half the world’s population is at risk for infection with
Plasmodium spp. parasites. Aggressive control measures have reduced the global prevalence of malaria significantly over the past decade. However, resistance to available antimalarials continues to spread, including resistance to the widely used artemisinin-based combination therapies. Novel antimalarial compounds and therapeutic targets are greatly needed. This review will briefly discuss several promising current antimalarial development projects, including artefenomel, ferroquine, cipargamin, SJ733, KAF156, MMV048, and tafenoquine. In addition, we describe recent large-scale genetic and resistance screens that have been instrumental in target discovery. Finally, we highlight new antimalarial targets, which include essential transporters and proteases. These emerging antimalarial compounds and therapeutic targets have the potential to overcome multi-drug resistance in ongoing efforts toward malaria elimination.
Collapse
Affiliation(s)
- Emily S Mathews
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
43
|
Mace KE, Arguin PM, Tan KR. Malaria Surveillance - United States, 2015. MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES (WASHINGTON, D.C. : 2002) 2018; 67:1-28. [PMID: 29723168 PMCID: PMC5933858 DOI: 10.15585/mmwr.ss6707a1] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
PROBLEM/CONDITION Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles species mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to provide information on its occurrence (e.g., temporal, geographic, and demographic), guide prevention and treatment recommendations for travelers and patients, and facilitate transmission control measures if locally acquired cases are identified. PERIOD COVERED This report summarizes confirmed malaria cases in persons with onset of illness in 2015 and summarizes trends in previous years. DESCRIPTION OF SYSTEM Malaria cases diagnosed by blood film microscopy, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff members. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System (NMSS), the National Notifiable Diseases Surveillance System (NNDSS), or direct CDC consultations. CDC reference laboratories provide diagnostic assistance and conduct antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. This report summarizes data from the integration of all NMSS and NNDSS cases, CDC reference laboratory reports, and CDC clinical consultations. RESULTS CDC received reports of 1,517 confirmed malaria cases, including one congenital case, with an onset of symptoms in 2015 among persons who received their diagnoses in the United States. Although the number of malaria cases diagnosed in the United States has been increasing since the mid-1970s, the number of cases decreased by 208 from 2014 to 2015. Among the regions of acquisition (Africa, West Africa, Asia, Central America, the Caribbean, South America, Oceania, and the Middle East), the only region with significantly fewer imported cases in 2015 compared with 2014 was West Africa (781 versus 969). Plasmodium falciparum, P. vivax, P. ovale, and P. malariae were identified in 67.4%, 11.7%, 4.1%, and 3.1% of cases, respectively. Less than 1% of patients were infected by two species. The infecting species was unreported or undetermined in 12.9% of cases. CDC provided diagnostic assistance for 13.1% of patients with confirmed cases and tested 15.0% of P. falciparum specimens for antimalarial resistance markers. Of the U.S. resident patients who reported purpose of travel, 68.4% were visiting friends or relatives. A lower proportion of U.S. residents with malaria reported taking any chemoprophylaxis in 2015 (26.5%) compared with 2014 (32.5%), and adherence was poor in this group. Among the U.S residents for whom information on chemoprophylaxis use and travel region were known, 95.3% of patients with malaria did not adhere to or did not take a CDC-recommended chemoprophylaxis regimen. Among women with malaria, 32 were pregnant, and none had adhered to chemoprophylaxis. A total of 23 malaria cases occurred among U.S. military personnel in 2015. Three cases of malaria were imported from the approximately 3,000 military personnel deployed to an Ebola-affected country; two of these were not P. falciparum species, and one species was unspecified. Among all reported cases in 2015, 17.1% were classified as severe illnesses and 11 persons died, compared with an average of 6.1 deaths per year during 2000-2014. In 2015, CDC received 153 P. falciparum-positive samples for surveillance of antimalarial resistance markers (although certain loci were untestable for some samples); genetic polymorphisms associated with resistance to pyrimethamine were identified in 132 (86.3%), to sulfadoxine in 112 (73.7%), to chloroquine in 48 (31.4%), to mefloquine in six (4.3%), and to artemisinin in one (<1%), and no sample had resistance to atovaquone. Completion of data elements on the malaria case report form decreased from 2014 to 2015 and remains low, with 24.2% of case report forms missing at least one key element (species, travel history, and resident status). INTERPRETATION The decrease in malaria cases from 2014 to 2015 is associated with a decrease in imported cases from West Africa. This finding might be related to altered or curtailed travel to Ebola-affected countries in in this region. Despite progress in reducing malaria worldwide, the disease remains endemic in many regions, and the use of appropriate prevention measures by travelers is still inadequate. PUBLIC HEALTH ACTIONS The best way to prevent malaria is to take chemoprophylaxis medication during travel to a country where malaria is endemic. As demonstrated by the U.S. military during the Ebola response, use of chemoprophylaxis and other protection measures is possible in stressful environments, and this can prevent malaria, especially P. falciparum, even in high transmission areas. Detailed recommendations for preventing malaria are available to the general public at the CDC website (https://www.cdc.gov/malaria/travelers/drugs.html). Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient's age and medical history, the likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Health care providers should consult the CDC Guidelines for Treatment of Malaria in the United States and contact the CDC's Malaria Hotline for case management advice when needed. Malaria treatment recommendations are available online (https://www.cdc.gov/malaria/diagnosis_treatment) and from the Malaria Hotline (770-488-7788 or toll-free at 855-856-4713). Persons submitting malaria case reports (care providers, laboratories, and state and local public health officials) should provide complete information because incomplete reporting compromises case investigations and efforts to prevent infections and examine trends in malaria cases. Compliance with recommended malaria prevention strategies is low among U.S. travelers visiting friends and relatives. Evidence-based prevention strategies that effectively target travelers who are visiting friends and relatives need to be developed and implemented to reduce the numbers of imported malaria cases in the United States. Molecular surveillance of antimalarial drug resistance markers (https://www.cdc.gov/malaria/features/ars.html) has enabled CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and internationally. More samples are needed to improve the completeness of antimalarial drug resistance marker analysis; therefore, CDC requests that blood specimens be submitted for all cases diagnosed in the United States.
Collapse
Affiliation(s)
- Kimberly E. Mace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| | - Paul M. Arguin
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| | - Kathrine R. Tan
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| |
Collapse
|
44
|
Adamantane amine-linked chloroquinoline derivatives as chloroquine resistance modulating agents in Plasmodium falciparum. Bioorg Med Chem Lett 2018; 28:1287-1291. [DOI: 10.1016/j.bmcl.2018.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/27/2022]
|
45
|
Romay-Barja M, Ncogo P, Nseng G, Santana-Morales MA, Berzosa P, Herrador Z, Valladares B, Riloha M, Benito A. The use and preference of artemether as a first-choice treatment for malaria: results from a cross-sectional survey in the Bata district, Equatorial Guinea. Malar J 2018. [PMID: 29523144 PMCID: PMC5845225 DOI: 10.1186/s12936-018-2254-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is endemic in Equatorial Guinea with stable transmission, and it remains a major cause of morbidity and mortality in children under 5 years of age. Adherence to artemisinin-based combination therapy (ACT) as a first-line treatment for uncomplicated malaria is critical to malaria control. Six years after the introduction of artesunate-amodiaquine (AS/AQ) therapy in Equatorial Guinea, adherence to the first-line treatment seems to be low in the Bata district. The factors associated with the choice of malaria treatment have not been studied previously in this area; therefore, this study aimed to analyse the preference and use of artemether as malaria treatment and its related factors in the Bata district of Equatorial Guinea. METHODS In 2013, a cross-sectional study was conducted in the Bata district, which involved 428 households. Bivariate and multivariate statistical analyses were conducted to determine the relevance of socio-economic, geographical, and behavioural factors that played a role in the preference and use of artemether as malaria treatment. RESULTS Artemether was considered the best treatment for malaria by 110 caregivers (26%), and was the antimalarial most administrated in the Bata district. It was prescribed to 117 children (27.34%); while, only 6.78% were administered AS/AQ. Caregivers living ≤ 3 km from the nearest health facility were almost two times more likely to consider artemether as the best treatment than those living farther away (95% CI 0.31-0.86). Caregivers with at least a secondary school education were 2.7 times more likely to consider artemether as the best treatment than those less educated. Children whose caregivers considered artemether the best treatment against malaria were five times more likely to be treated with artemether than children with caregivers who did not consider it the best (OR 5.07, 95% CI 2.93-8.78). In contrast, children that reported weakness as a symptom were less likely to be treated with artemether than those with other symptoms (OR 0.47, 95% CI 0.28-0.78). CONCLUSION Caregivers, public and private health staff, and drug sellers need to understand the importance of using ACT to treat uncomplicated malaria and the dangers of using artemisinin monotherapy.
Collapse
Affiliation(s)
- Maria Romay-Barja
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain. .,Red de Investigación Colaborativa en Enfermedades Tropicales, RICET, Madrid, Spain.
| | - Policarpo Ncogo
- Centro de Referencia de Control de Endemias, Malabo, Equatorial Guinea
| | - Gloria Nseng
- Ministerio de Salud y Bienestar Social, Malabo, Equatorial Guinea
| | - Maria A Santana-Morales
- Red de Investigación Colaborativa en Enfermedades Tropicales, RICET, Madrid, Spain.,Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - Pedro Berzosa
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain.,Red de Investigación Colaborativa en Enfermedades Tropicales, RICET, Madrid, Spain
| | - Zaida Herrador
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain.,Red de Investigación Colaborativa en Enfermedades Tropicales, RICET, Madrid, Spain
| | - Basilio Valladares
- Red de Investigación Colaborativa en Enfermedades Tropicales, RICET, Madrid, Spain.,Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - Matilde Riloha
- Ministerio de Salud y Bienestar Social, Malabo, Equatorial Guinea
| | - Agustin Benito
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain.,Red de Investigación Colaborativa en Enfermedades Tropicales, RICET, Madrid, Spain
| |
Collapse
|
46
|
Schoenle LA, Kernbach M, Haussmann MF, Bonier F, Moore IT. An experimental test of the physiological consequences of avian malaria infection. J Anim Ecol 2017; 86:1483-1496. [DOI: 10.1111/1365-2656.12753] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/24/2017] [Indexed: 01/03/2023]
Affiliation(s)
| | - Meredith Kernbach
- Department of Biological Sciences Virginia Tech Blacksburg VA USA
- Department of Integrative Biology University of South Florida Tampa FL USA
| | | | - Frances Bonier
- Department of Biological Sciences Virginia Tech Blacksburg VA USA
- Biology Department Queen's University Kingston ON Canada
| | - Ignacio T. Moore
- Department of Biological Sciences Virginia Tech Blacksburg VA USA
| |
Collapse
|
47
|
Hay SI, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulkader RS, Abdulle AM, Abebo TA, Abera SF, Aboyans V, Abu-Raddad LJ, Ackerman IN, Adedeji IA, Adetokunboh O, Afshin A, Aggarwal R, Agrawal S, Agrawal A, Ahmed MB, Aichour MTE, Aichour AN, Aichour I, Aiyar S, Akinyemiju TF, Akseer N, Al Lami FH, Alahdab F, Al-Aly Z, Alam K, Alam N, Alam T, Alasfoor D, Alene KA, Ali R, Alizadeh-Navaei R, Alkaabi JM, Alkerwi A, Alla F, Allebeck P, Allen C, Al-Maskari F, AlMazroa MA, Al-Raddadi R, Alsharif U, Alsowaidi S, Althouse BM, Altirkawi KA, Alvis-Guzman N, Amare AT, Amini E, Ammar W, Amoako YA, Ansha MG, Antonio CAT, Anwari P, Ärnlöv J, Arora M, Artaman A, Aryal KK, Asgedom SW, Atey TM, Atnafu NT, Avila-Burgos L, Avokpaho EFGA, Awasthi A, Awasthi S, Azarpazhooh MR, Azzopardi P, Babalola TK, Bacha U, Badawi A, Balakrishnan K, Bannick MS, Barac A, Barker-Collo SL, Bärnighausen T, Barquera S, Barrero LH, Basu S, Battista R, Battle KE, Baune BT, Bazargan-Hejazi S, Beardsley J, Bedi N, Béjot Y, Bekele BB, Bell ML, Bennett DA, Bennett JR, Bensenor IM, Benson J, Berhane A, Berhe DF, Bernabé E, Betsu BD, Beuran M, Beyene AS, Bhansali A, et alHay SI, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulkader RS, Abdulle AM, Abebo TA, Abera SF, Aboyans V, Abu-Raddad LJ, Ackerman IN, Adedeji IA, Adetokunboh O, Afshin A, Aggarwal R, Agrawal S, Agrawal A, Ahmed MB, Aichour MTE, Aichour AN, Aichour I, Aiyar S, Akinyemiju TF, Akseer N, Al Lami FH, Alahdab F, Al-Aly Z, Alam K, Alam N, Alam T, Alasfoor D, Alene KA, Ali R, Alizadeh-Navaei R, Alkaabi JM, Alkerwi A, Alla F, Allebeck P, Allen C, Al-Maskari F, AlMazroa MA, Al-Raddadi R, Alsharif U, Alsowaidi S, Althouse BM, Altirkawi KA, Alvis-Guzman N, Amare AT, Amini E, Ammar W, Amoako YA, Ansha MG, Antonio CAT, Anwari P, Ärnlöv J, Arora M, Artaman A, Aryal KK, Asgedom SW, Atey TM, Atnafu NT, Avila-Burgos L, Avokpaho EFGA, Awasthi A, Awasthi S, Azarpazhooh MR, Azzopardi P, Babalola TK, Bacha U, Badawi A, Balakrishnan K, Bannick MS, Barac A, Barker-Collo SL, Bärnighausen T, Barquera S, Barrero LH, Basu S, Battista R, Battle KE, Baune BT, Bazargan-Hejazi S, Beardsley J, Bedi N, Béjot Y, Bekele BB, Bell ML, Bennett DA, Bennett JR, Bensenor IM, Benson J, Berhane A, Berhe DF, Bernabé E, Betsu BD, Beuran M, Beyene AS, Bhansali A, Bhatt S, Bhutta ZA, Biadgilign S, Bicer BK, Bienhoff K, Bikbov B, Birungi C, Biryukov S, Bisanzio D, Bizuayehu HM, Blyth FM, Boneya DJ, Bose D, Bou-Orm IR, Bourne RRA, Brainin M, Brayne C, Brazinova A, Breitborde NJK, Briant PS, Britton G, Brugha TS, Buchbinder R, Bulto LNB, Bumgarner BR, Butt ZA, Cahuana-Hurtado L, Cameron E, Campos-Nonato IR, Carabin H, Cárdenas R, Carpenter DO, Carrero JJ, Carter A, Carvalho F, Casey D, Castañeda-Orjuela CA, Castle CD, Catalá-López F, Chang JC, Charlson FJ, Chaturvedi P, Chen H, Chibalabala M, Chibueze CE, Chisumpa VH, Chitheer AA, Chowdhury R, Christopher DJ, Ciobanu LG, Cirillo M, Colombara D, Cooper LT, Cooper C, Cortesi PA, Cortinovis M, Criqui MH, Cromwell EA, Cross M, Crump JA, Dadi AF, Dalal K, Damasceno A, Dandona L, Dandona R, das Neves J, Davitoiu DV, Davletov K, de Courten B, De Leo D, De Steur H, Defo BK, Degenhardt L, Deiparine S, Dellavalle RP, Deribe K, Deribew A, Des Jarlais DC, Dey S, Dharmaratne SD, Dhillon PK, Dicker D, Djalainia S, Do HP, Dokova K, Doku DT, Dorsey ER, dos Santos KPB, Driscoll TR, Dubey M, Duncan BB, Ebel BE, Echko M, El-Khatib ZZ, Enayati A, Endries AY, Ermakov SP, Erskine HE, Eshetie S, Eshrati B, Esteghamati A, Estep K, Fanuel FBB, Farag T, Farinha CSES, Faro A, Farzadfar F, Fazeli MS, Feigin VL, Feigl AB, Fereshtehnejad SM, Fernandes JC, Ferrari AJ, Feyissa TR, Filip I, Fischer F, Fitzmaurice C, Flaxman AD, Foigt N, Foreman KJ, Franklin RC, Frostad JJ, Fullman N, Fürst T, Furtado JM, Futran ND, Gakidou E, Garcia-Basteiro AL, Gebre T, Gebregergs GB, Gebrehiwot TT, Geleijnse JM, Geleto A, Gemechu BL, Gesesew HA, Gething PW, Ghajar A, Gibney KB, Gillum RF, Ginawi IAM, Gishu MD, Giussani G, Godwin WW, Goel K, Goenka S, Goldberg EM, Gona PN, Goodridge A, Gopalani SV, Gosselin RA, Gotay CC, Goto A, Goulart AC, Graetz N, Gugnani HC, Gupta PC, Gupta R, Gupta T, Gupta V, Gupta R, Gutiérrez RA, Hachinski V, Hafezi-Nejad N, Hailu AD, Hailu GB, Hamadeh RR, Hamidi S, Hammami M, Handal AJ, Hankey GJ, Hao Y, Harb HL, Hareri HA, Haro JM, Harun KM, Harvey J, Hassanvand MS, Havmoeller R, Hay RJ, Hedayati MT, Hendrie D, Henry NJ, Heredia-Pi IB, Heydarpour P, Hoek HW, Hoffman HJ, Horino M, Horita N, Hosgood HD, Hostiuc S, Hotez PJ, Hoy DG, Htet AS, Hu G, Huang JJ, Huynh C, Iburg KM, Igumbor EU, Ikeda C, Irvine CMS, Islam SMS, Jacobsen KH, Jahanmehr N, Jakovljevic MB, James P, Jassal SK, Javanbakht M, Jayaraman SP, Jeemon P, Jensen PN, Jha V, Jiang G, John D, Johnson CO, Johnson SC, Jonas JB, Jürisson M, Kabir Z, Kadel R, Kahsay A, Kamal R, Kar C, Karam NE, Karch A, Karema CK, Karimi SM, Karimkhani C, Kasaeian A, Kassa GM, Kassaw NA, Kassebaum NJ, Kastor A, Katikireddi SV, Kaul A, Kawakami N, Keiyoro PN, Kemmer L, Kengne AP, Keren A, Kesavachandran CN, Khader YS, Khalil IA, Khan EA, Khang YH, Khoja AT, Khosravi A, Khubchandani J, Kiadaliri AA, Kieling C, Kim YJ, Kim D, Kimokoti RW, Kinfu Y, Kisa A, Kissimova-Skarbek KA, Kissoon N, Kivimaki M, Knudsen AK, Kokubo Y, Kolte D, Kopec JA, Kosen S, Kotsakis GA, Koul PA, Koyanagi A, Kravchenko M, Krohn KJ, Kumar GA, Kumar P, Kyu HH, Lager ACJ, Lal DK, Lalloo R, Lallukka T, Lambert N, Lan Q, Lansingh VC, Larsson A, Leasher JL, Lee PH, Leigh J, Leshargie CT, Leung J, Leung R, Levi M, Li Y, Li Y, Liang X, Liben ML, Lim SS, Linn S, Liu PY, Liu A, Liu S, Liu Y, Lodha R, Logroscino G, Looker KJ, Lopez AD, Lorkowski S, Lotufo PA, Lozano R, Lucas TCD, Lunevicius R, Lyons RA, Macarayan ERK, Maddison ER, Magdy Abd El Razek HMA, Magdy Abd El Razek M, Magis-Rodriguez C, Mahdavi M, Majdan M, Majdzadeh R, Majeed A, Malekzadeh R, Malhotra R, Malta DC, Mamun AA, Manguerra H, Manhertz T, Mantovani LG, Mapoma CC, March LM, Marczak LB, Martinez-Raga J, Martins PHV, Martins-Melo FR, Martopullo I, März W, Mathur MR, Mazidi M, McAlinden C, McGaughey M, McGrath JJ, McKee M, Mehata S, Meier T, Meles KG, Memiah P, Memish ZA, Mendoza W, Mengesha MM, Mengistie MA, Mengistu DT, Mensah GA, Meretoja TJ, Meretoja A, Mezgebe HB, Micha R, Millear A, Miller TR, Minnig S, Mirarefin M, Mirrakhimov EM, Misganaw A, Mishra SR, Mitchell PB, Mohammad KA, Mohammadi A, Mohammed MSK, Mohammed KE, Mohammed S, Mohan MBV, Mokdad AH, Mollenkopf SK, Monasta L, Montañez Hernandez JC, Montico M, Moradi-Lakeh M, Moraga P, Morawska L, Mori R, Morrison SD, Moses M, Mountjoy-Venning C, Mruts KB, Mueller UO, Muller K, Murdoch ME, Murthy GVS, Murthy S, Musa KI, Nachega JB, Nagel G, Naghavi M, Naheed A, Naidoo KS, Nangia V, Nasher JT, Natarajan G, Negasa DE, Negoi RI, Negoi I, Newton CR, Ngunjiri JW, Nguyen CT, Nguyen QL, Nguyen TH, Nguyen G, Nguyen M, Nichols E, Ningrum DNA, Nong VM, Norheim OF, Norrving B, Noubiap JJN, Nyandwi A, Obermeyer CM, O'Donnell MJ, Ogbo FA, Oh IH, Okoro A, Oladimeji O, Olagunju AT, Olagunju TO, Olsen HE, Olusanya BO, Olusanya JO, Ong K, Opio JN, Oren E, Ortiz A, Osborne RH, Osgood-Zimmerman A, Osman M, Ota E, Owolabi MO, PA M, Pacella RE, Panda BK, Pandian JD, Papachristou C, Park EK, Parry CD, Parsaeian M, Patil ST, Patten SB, Patton GC, Paudel D, Paulson K, Pearce N, Pereira DM, Perez KM, Perico N, Pesudovs K, Peterson CB, Petri WA, Petzold M, Phillips MR, Phipps G, Pigott DM, Pillay JD, Pinho C, Piradov MA, Plass D, Pletcher MA, Popova S, Poulton RG, Pourmalek F, Prabhakaran D, Prasad N, Purcell C, Purwar M, Qorbani M, Quintanilla BPA, Rabiee RHS, Radfar A, Rafay A, Rahimi K, Rahimi-Movaghar A, Rahimi-Movaghar V, Rahman MHU, Rahman MA, Rahman M, Rai RK, Rajsic S, Ram U, Ranabhat CL, Rangaswamy T, Rankin Z, Rao PV, Rao PC, Rawaf S, Ray SE, Reiner RC, Reinig N, Reitsma M, Remuzzi G, Renzaho AMN, Resnikoff S, Rezaei S, Ribeiro AL, Rivas JC, Roba HS, Robinson SR, Rojas-Rueda D, Rokni MB, Ronfani L, Roshandel G, Roth GA, Rothenbacher D, Roy A, Rubagotti E, Ruhago GM, Saadat S, Safdarian M, Safiri S, Sagar R, Sahathevan R, Sahraian MA, Salama J, Saleh MM, Salomon JA, Salvi SS, Samy AM, Sanabria JR, Sanchez-Niño MD, Santomauro D, Santos JV, Santos IS, Santric Milicevic MM, Sartorius B, Satpathy M, Sawhney M, Saxena S, Schelonka K, Schmidt MI, Schneider IJC, Schöttker B, Schutte AE, Schwebel DC, Schwendicke F, Seedat S, Sepanlou SG, Servan-Mori EE, Shaheen A, Shaikh MA, Shamsipour M, Sharma R, Sharma J, She J, Shi P, Shibuya K, Shields C, Shifa GT, Shiferaw MS, Shigematsu M, Shiri R, Shirkoohi R, Shirude S, Shishani K, Shoman H, Siabani S, Sibai AM, Sigfusdottir ID, Silberberg DH, Silva DAS, Silva JP, Silveira DGA, Singh JA, Singh OP, Singh NP, Singh V, Sinha DN, Skiadaresi E, Slepak EL, Smith DL, Smith M, Sobaih BHA, Sobngwi E, Soljak M, Sorensen RJD, Sousa TCM, Sposato LA, Sreeramareddy CT, Srinivasan V, Stanaway JD, Stathopoulou V, Steel N, Stein DJ, Steiner C, Steinke S, Stokes MA, Stovner LJ, Strub B, Subart M, Sufiyan MB, Sunguya BF, Sur PJ, Swaminathan S, Sykes BL, Sylte D, Szoeke CEI, Tabarés-Seisdedos R, Tadakamadla SK, Taffere GR, Takala JS, Tandon N, Tanne D, Tarekegn YL, Tavakkoli M, Taveira N, Taylor HR, Tegegne TK, Tehrani-Banihashemi A, Tekelab T, Terkawi AS, Tesfaye DJ, Tesssema B, Thakur JS, Thamsuwan O, Theadom AM, Theis AM, Thomas KE, Thomas N, Thompson R, Thrift AG, Tobe-Gai R, Tobollik M, Tonelli M, Topor-Madry R, Tortajada M, Touvier M, Traebert J, Tran BX, Troeger C, Truelsen T, Tsoi D, Tuzcu EM, Tymeson H, Tyrovolas S, Ukwaja KN, Undurraga EA, Uneke CJ, Updike R, Uthman OA, Uzochukwu BSC, van Boven JFM, Varughese S, Vasankari T, Veerman LJ, Venkatesh S, Venketasubramanian N, Vidavalur R, Vijayakumar L, Violante FS, Vishnu A, Vladimirov SK, Vlassov VV, Vollset SE, Vos T, Wadilo F, Wakayo T, Wallin MT, Wang YP, Weichenthal S, Weiderpass E, Weintraub RG, Weiss DJ, Werdecker A, Westerman R, Whiteford HA, Wijeratne T, Williams HC, Wiysonge CS, Woldeyes BG, Wolfe CDA, Woodbrook R, Woolf AD, Workicho A, Xavier D, Xu G, Yadgir S, Yaghoubi M, Yakob B, Yan LL, Yano Y, Ye P, Yihdego MG, Yimam HH, Yip P, Yonemoto N, Yoon SJ, Yotebieng M, Younis MZ, Yu C, Zaidi Z, Zaki MES, Zegeye EA, Zenebe ZM, Zhang X, Zheng Y, Zhou M, Zipkin B, Zodpey S, Zoeckler L, Zuhlke LJ, Murray CJL. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390:1260-1344. [PMID: 28919118 PMCID: PMC5605707 DOI: 10.1016/s0140-6736(17)32130-x] [Show More Authors] [Citation(s) in RCA: 1439] [Impact Index Per Article: 179.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). METHODS We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. FINDINGS The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. INTERPRETATION At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
48
|
Barber RM, Fullman N, Sorensen RJD, Bollyky T, McKee M, Nolte E, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulle AM, Abdurahman AA, Abera SF, Abraham B, Abreha GF, Adane K, Adelekan AL, Adetifa IMO, Afshin A, Agarwal A, Agarwal SK, Agarwal S, Agrawal A, Kiadaliri AA, Ahmadi A, Ahmed KY, Ahmed MB, Akinyemi RO, Akinyemiju TF, Akseer N, Al-Aly Z, Alam K, Alam N, Alam SS, Alemu ZA, Alene KA, Alexander L, Ali R, Ali SD, Alizadeh-Navaei R, Alkerwi A, Alla F, Allebeck P, Allen C, Al-Raddadi R, Alsharif U, Altirkawi KA, Martin EA, Alvis-Guzman N, Amare AT, Amini E, Ammar W, Amo-Adjei J, Amoako YA, Anderson BO, Androudi S, Ansari H, Ansha MG, Antonio CAT, Ärnlöv J, Artaman A, Asayesh H, Assadi R, Astatkie A, Atey TM, Atique S, Atnafu NT, Atre SR, Avila-Burgos L, Avokpaho EFGA, Quintanilla BPA, Awasthi A, Ayele NN, Azzopardi P, Saleem HOB, Bärnighausen T, Bacha U, Badawi A, Banerjee A, Barac A, Barboza MA, Barker-Collo SL, Barrero LH, Basu S, Baune BT, Baye K, Bayou YT, Bazargan-Hejazi S, Bedi N, Beghi E, Béjot Y, Bello AK, Bennett DA, Bensenor IM, Berhane A, Bernabé E, Bernal OA, Beyene AS, Beyene TJ, et alBarber RM, Fullman N, Sorensen RJD, Bollyky T, McKee M, Nolte E, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulle AM, Abdurahman AA, Abera SF, Abraham B, Abreha GF, Adane K, Adelekan AL, Adetifa IMO, Afshin A, Agarwal A, Agarwal SK, Agarwal S, Agrawal A, Kiadaliri AA, Ahmadi A, Ahmed KY, Ahmed MB, Akinyemi RO, Akinyemiju TF, Akseer N, Al-Aly Z, Alam K, Alam N, Alam SS, Alemu ZA, Alene KA, Alexander L, Ali R, Ali SD, Alizadeh-Navaei R, Alkerwi A, Alla F, Allebeck P, Allen C, Al-Raddadi R, Alsharif U, Altirkawi KA, Martin EA, Alvis-Guzman N, Amare AT, Amini E, Ammar W, Amo-Adjei J, Amoako YA, Anderson BO, Androudi S, Ansari H, Ansha MG, Antonio CAT, Ärnlöv J, Artaman A, Asayesh H, Assadi R, Astatkie A, Atey TM, Atique S, Atnafu NT, Atre SR, Avila-Burgos L, Avokpaho EFGA, Quintanilla BPA, Awasthi A, Ayele NN, Azzopardi P, Saleem HOB, Bärnighausen T, Bacha U, Badawi A, Banerjee A, Barac A, Barboza MA, Barker-Collo SL, Barrero LH, Basu S, Baune BT, Baye K, Bayou YT, Bazargan-Hejazi S, Bedi N, Beghi E, Béjot Y, Bello AK, Bennett DA, Bensenor IM, Berhane A, Bernabé E, Bernal OA, Beyene AS, Beyene TJ, Bhutta ZA, Biadgilign S, Bikbov B, Birlik SM, Birungi C, Biryukov S, Bisanzio D, Bizuayehu HM, Bose D, Brainin M, Brauer M, Brazinova A, Breitborde NJK, Brenner H, Butt ZA, Cárdenas R, Cahuana-Hurtado L, Campos-Nonato IR, Car J, Carrero JJ, Casey D, Caso V, Castañeda-Orjuela CA, Rivas JC, Catalá-López F, Cecilio P, Cercy K, Charlson FJ, Chen AZ, Chew A, Chibalabala M, Chibueze CE, Chisumpa VH, Chitheer AA, Chowdhury R, Christensen H, Christopher DJ, Ciobanu LG, Cirillo M, Coggeshall MS, Cooper LT, Cortinovis M, Crump JA, Dalal K, Danawi H, Dandona L, Dandona R, Dargan PI, das Neves J, Davey G, Davitoiu DV, Davletov K, De Leo D, Del Gobbo LC, del Pozo-Cruz B, Dellavalle RP, Deribe K, Deribew A, Des Jarlais DC, Dey S, Dharmaratne SD, Dicker D, Ding EL, Dokova K, Dorsey ER, Doyle KE, Dubey M, Ehrenkranz R, Ellingsen CL, Elyazar I, Enayati A, Ermakov SP, Eshrati B, Esteghamati A, Estep K, Fürst T, Faghmous IDA, Fanuel FBB, Faraon EJA, Farid TA, Farinha CSES, Faro A, Farvid MS, Farzadfar F, Feigin VL, Feigl AB, Fereshtehnejad SM, Fernandes JG, Fernandes JC, Feyissa TR, Fischer F, Fitzmaurice C, Fleming TD, Foigt N, Foreman KJ, Forouzanfar MH, Franklin RC, Frostad J, G/hiwot TT, Gakidou E, Gambashidze K, Gamkrelidze A, Gao W, Garcia-Basteiro AL, Gebre T, Gebremedhin AT, Gebremichael MW, Gebru AA, Gelaye AA, Geleijnse JM, Genova-Maleras R, Gibney KB, Giref AZ, Gishu MD, Giussani G, Godwin WW, Gold A, Goldberg EM, Gona PN, Goodridge A, Gopalani SV, Goto A, Graetz N, Greaves F, Griswold M, Guban PI, Gugnani HC, Gupta PC, Gupta R, Gupta R, Gupta T, Gupta V, Habtewold TD, Hafezi-Nejad N, Haile D, Hailu AD, Hailu GB, Hakuzimana A, Hamadeh RR, Hambisa MT, Hamidi S, Hammami M, Hankey GJ, Hao Y, Harb HL, Hareri HA, Haro JM, Hassanvand MS, Havmoeller R, Hay RJ, Hay SI, Hendrie D, Heredia-Pi IB, Hoek HW, Horino M, Horita N, Hosgood HD, Htet AS, Hu G, Huang H, Huang JJ, Huntley BM, Huynh C, Iburg KM, Ileanu BV, Innos K, Irenso AA, Jahanmehr N, Jakovljevic MB, James P, James SL, Javanbakht M, Jayaraman SP, Jayatilleke AU, Jeemon P, Jha V, John D, Johnson C, Johnson SC, Jonas JB, Juel K, Kabir Z, Kalkonde Y, Kamal R, Kan H, Karch A, Karema CK, Karimi SM, Kasaeian A, Kassebaum NJ, Kastor A, Katikireddi SV, Kazanjan K, Keiyoro PN, Kemmer L, Kemp AH, Kengne AP, Kerbo AA, Kereselidze M, Kesavachandran CN, Khader YS, Khalil I, Khan AR, Khan EA, Khan G, Khang YH, Khoja ATA, Khonelidze I, Khubchandani J, Kibret GD, Kim D, Kim P, Kim YJ, Kimokoti RW, Kinfu Y, Kissoon N, Kivipelto M, Kokubo Y, Kolk A, Kolte D, Kopec JA, Kosen S, Koul PA, Koyanagi A, Kravchenko M, Krishnaswami S, Krohn KJ, Defo BK, Bicer BK, Kuipers EJ, Kulkarni VS, Kumar GA, Kumsa FA, Kutz M, Kyu HH, Lager ACJ, Lal A, Lal DK, Lalloo R, Lallukka T, Lan Q, Langan SM, Lansingh VC, Larson HJ, Larsson A, Laryea DO, Latif AA, Lawrynowicz AEB, Leasher JL, Leigh J, Leinsalu M, Leshargie CT, Leung J, Leung R, Levi M, Liang X, Lim SS, Lind M, Linn S, Lipshultz SE, Liu P, Liu Y, Lo LT, Logroscino G, Lopez AD, Lorch SA, Lotufo PA, Lozano R, Lunevicius R, Lyons RA, Macarayan ERK, Mackay MT, El Razek HMA, El Razek MMA, Mahdavi M, Majeed A, Malekzadeh R, Malta DC, Mantovani LG, Manyazewal T, Mapoma CC, Marcenes W, Marks GB, Marquez N, Martinez-Raga J, Marzan MB, Massano J, Mathur MR, Maulik PK, Mazidi M, McAlinden C, McGrath JJ, McNellan C, Meaney PA, Mehari A, Mehndiratta MM, Meier T, Mekonnen AB, Meles KG, Memish ZA, Mengesha MM, Mengiste DT, Mengistie MA, Menota BG, Mensah GA, Mereta ST, Meretoja A, Meretoja TJ, Mezgebe HB, Micha R, Millear A, Mills EJ, Minnig S, Mirarefin M, Mirrakhimov EM, Mock CN, Mohammad KA, Mohammed S, Mohanty SK, Mokdad AH, Mola GLD, Molokhia M, Monasta L, Montico M, Moradi-Lakeh M, Moraga P, Morawska L, Mori R, Moses M, Mueller UO, Murthy S, Musa KI, Nachega JB, Nagata C, Nagel G, Naghavi M, Naheed A, Naldi L, Nangia V, Nascimento BR, Negoi I, Neupane SP, Newton CR, Ng M, Ngalesoni FN, Ngunjiri JW, Nguyen G, Ningrum DNA, Nolte S, Nomura M, Norheim OF, Norrving B, Noubiap JJN, Obermeyer CM, Ogbo FA, Oh IH, Okoro A, Oladimeji O, Olagunju AT, Olivares PR, Olsen HE, Olusanya BO, Olusanya JO, Opio JN, Oren E, Ortiz A, Osborne RH, Osman M, Owolabi MO, PA M, Pain AW, Pakhale S, Castillo EP, Pana A, Papachristou C, Parsaeian M, Patel T, Patton GC, Paudel D, Paul VK, Pearce N, Pereira DM, Perez-Padilla R, Perez-Ruiz F, Perico N, Pesudovs K, Petzold M, Phillips MR, Pigott DM, Pillay JD, Pinho C, Polinder S, Pond CD, Prakash V, Purwar M, Qorbani M, Quistberg DA, Radfar A, Rafay A, Rahimi K, Rahimi-Movaghar V, Rahman M, Rahman MHU, Rai RK, Ram U, Rana SM, Rankin Z, Rao PV, Rao PC, Rawaf S, Rego MAS, Reitsma M, Remuzzi G, Renzaho AMNN, Resnikoff S, Rezaei S, Rezai MS, Ribeiro AL, Roba HS, Rokni MB, Ronfani L, Roshandel G, Roth GA, Rothenbacher D, Roy NK, Sachdev PS, Sackey BB, Saeedi MY, Safiri S, Sagar R, Sahraian MA, Saleh MM, Salomon JA, Samy AM, Sanabria JR, Sanchez-Niño MD, Sandar L, Santos IS, Santos JV, Milicevic MMS, Sarmiento-Suarez R, Sartorius B, Satpathy M, Savic M, Sawhney M, Saylan MI, Schöttker B, Schutte AE, Schwebel DC, Seedat S, Seid AM, Seifu CN, Sepanlou SG, Serdar B, Servan-Mori EE, Setegn T, Shackelford KA, Shaheen A, Shahraz S, Shaikh MA, Shakh-Nazarova M, Shamsipour M, Islam SMS, Sharma J, Sharma R, She J, Sheikhbahaei S, Shen J, Shi P, Shigematsu M, Shin MJ, Shiri R, Shoman H, Shrime MG, Sibamo ELS, Sigfusdottir ID, Silva DAS, Silveira DGA, Sindi S, Singh A, Singh JA, Singh OP, Singh PK, Singh V, Sinke AH, Sinshaw AE, Skirbekk V, Sliwa K, Smith A, Sobngwi E, Soneji S, Soriano JB, Sousa TCM, Sposato LA, Sreeramareddy CT, Stathopoulou V, Steel N, Steiner C, Steinke S, Stokes MA, Stranges S, Strong M, Stroumpoulis K, Sturua L, Sufiyan MB, Suliankatchi RA, Sun J, Sur P, Swaminathan S, Sykes BL, Tabarés-Seisdedos R, Tabb KM, Taffere GR, Talongwa RT, Tarajia M, Tavakkoli M, Taveira N, Teeple S, Tegegne TK, Tehrani-Banihashemi A, Tekelab T, Tekle DY, Shifa GT, Terkawi AS, Tesema AG, Thakur JS, Thomson AJ, Tillmann T, Tiruye TY, Tobe-Gai R, Tonelli M, Topor-Madry R, Tortajada M, Troeger C, Truelsen T, Tura AK, Uchendu US, Ukwaja KN, Undurraga EA, Uneke CJ, Uthman OA, van Boven JFM, Van Dingenen R, Varughese S, Vasankari T, Venketasubramanian N, Violante FS, Vladimirov SK, Vlassov VV, Vollset SE, Vos T, Wagner JA, Wakayo T, Waller SG, Walson JL, Wang H, Wang YP, Watkins DA, Weiderpass E, Weintraub RG, Wen CP, Werdecker A, Wesana J, Westerman R, Whiteford HA, Wilkinson JD, Wiysonge CS, Woldeyes BG, Wolfe CDA, Won S, Workicho A, Workie SB, Wubshet M, Xavier D, Xu G, Yadav AK, Yaghoubi M, Yakob B, Yan LL, Yano Y, Yaseri M, Yimam HH, Yip P, Yonemoto N, Yoon SJ, Younis MZ, Yu C, Zaidi Z, El Sayed Zaki M, Zambrana-Torrelio C, Zapata T, Zenebe ZM, Zodpey S, Zoeckler L, Zuhlke LJ, Murray CJL. Healthcare Access and Quality Index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990-2015: a novel analysis from the Global Burden of Disease Study 2015. Lancet 2017; 390:231-266. [PMID: 28528753 PMCID: PMC5528124 DOI: 10.1016/s0140-6736(17)30818-8] [Show More Authors] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND National levels of personal health-care access and quality can be approximated by measuring mortality rates from causes that should not be fatal in the presence of effective medical care (ie, amenable mortality). Previous analyses of mortality amenable to health care only focused on high-income countries and faced several methodological challenges. In the present analysis, we use the highly standardised cause of death and risk factor estimates generated through the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) to improve and expand the quantification of personal health-care access and quality for 195 countries and territories from 1990 to 2015. METHODS We mapped the most widely used list of causes amenable to personal health care developed by Nolte and McKee to 32 GBD causes. We accounted for variations in cause of death certification and misclassifications through the extensive data standardisation processes and redistribution algorithms developed for GBD. To isolate the effects of personal health-care access and quality, we risk-standardised cause-specific mortality rates for each geography-year by removing the joint effects of local environmental and behavioural risks, and adding back the global levels of risk exposure as estimated for GBD 2015. We employed principal component analysis to create a single, interpretable summary measure-the Healthcare Quality and Access (HAQ) Index-on a scale of 0 to 100. The HAQ Index showed strong convergence validity as compared with other health-system indicators, including health expenditure per capita (r=0·88), an index of 11 universal health coverage interventions (r=0·83), and human resources for health per 1000 (r=0·77). We used free disposal hull analysis with bootstrapping to produce a frontier based on the relationship between the HAQ Index and the Socio-demographic Index (SDI), a measure of overall development consisting of income per capita, average years of education, and total fertility rates. This frontier allowed us to better quantify the maximum levels of personal health-care access and quality achieved across the development spectrum, and pinpoint geographies where gaps between observed and potential levels have narrowed or widened over time. FINDINGS Between 1990 and 2015, nearly all countries and territories saw their HAQ Index values improve; nonetheless, the difference between the highest and lowest observed HAQ Index was larger in 2015 than in 1990, ranging from 28·6 to 94·6. Of 195 geographies, 167 had statistically significant increases in HAQ Index levels since 1990, with South Korea, Turkey, Peru, China, and the Maldives recording among the largest gains by 2015. Performance on the HAQ Index and individual causes showed distinct patterns by region and level of development, yet substantial heterogeneities emerged for several causes, including cancers in highest-SDI countries; chronic kidney disease, diabetes, diarrhoeal diseases, and lower respiratory infections among middle-SDI countries; and measles and tetanus among lowest-SDI countries. While the global HAQ Index average rose from 40·7 (95% uncertainty interval, 39·0-42·8) in 1990 to 53·7 (52·2-55·4) in 2015, far less progress occurred in narrowing the gap between observed HAQ Index values and maximum levels achieved; at the global level, the difference between the observed and frontier HAQ Index only decreased from 21·2 in 1990 to 20·1 in 2015. If every country and territory had achieved the highest observed HAQ Index by their corresponding level of SDI, the global average would have been 73·8 in 2015. Several countries, particularly in eastern and western sub-Saharan Africa, reached HAQ Index values similar to or beyond their development levels, whereas others, namely in southern sub-Saharan Africa, the Middle East, and south Asia, lagged behind what geographies of similar development attained between 1990 and 2015. INTERPRETATION This novel extension of the GBD Study shows the untapped potential for personal health-care access and quality improvement across the development spectrum. Amid substantive advances in personal health care at the national level, heterogeneous patterns for individual causes in given countries or territories suggest that few places have consistently achieved optimal health-care access and quality across health-system functions and therapeutic areas. This is especially evident in middle-SDI countries, many of which have recently undergone or are currently experiencing epidemiological transitions. The HAQ Index, if paired with other measures of health-system characteristics such as intervention coverage, could provide a robust avenue for tracking progress on universal health coverage and identifying local priorities for strengthening personal health-care quality and access throughout the world. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
49
|
Mace KE, Arguin PM. Malaria Surveillance - United States, 2014. MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES (WASHINGTON, D.C. : 2002) 2017; 66:1-24. [PMID: 28542123 PMCID: PMC5829864 DOI: 10.15585/mmwr.ss6612a1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PROBLEM/CONDITION Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to identify episodes of local transmission and to guide prevention recommendations for travelers. PERIOD COVERED This report summarizes cases in persons with onset of illness in 2014 and trends during previous years. DESCRIPTION OF SYSTEM Malaria cases diagnosed by blood film, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System, National Notifiable Diseases Surveillance System, or direct CDC consultations. CDC conducts antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. Data from these reporting systems serve as the basis for this report. RESULTS CDC received reports of 1,724 confirmed malaria cases, including one congenital case and two cryptic cases, with onset of symptoms in 2014 among persons in the United States. The number of confirmed cases in 2014 is consistent with the number of confirmed cases reported in 2013 (n = 1,741; this number has been updated from a previous publication to account for delayed reporting for persons with symptom onset occurring in late 2013). Plasmodium falciparum, P. vivax, P. ovale, and P. malariae were identified in 66.1%, 13.3%, 5.2%, and 2.7% of cases, respectively. Less than 1.0% of patients were infected with two species. The infecting species was unreported or undetermined in 11.7% of cases. CDC provided diagnostic assistance for 14.2% of confirmed cases and tested 12.0% of P. falciparum specimens for antimalarial resistance markers. Of patients who reported purpose of travel, 57.5% were visiting friends and relatives (VFR). Among U.S. residents for whom information on chemoprophylaxis use and travel region was known, 7.8% reported that they initiated and adhered to a chemoprophylaxis drug regimen recommended by CDC for the regions to which they had traveled. Thirty-two cases were among pregnant women, none of whom had adhered to chemoprophylaxis. Among all reported cases, 17.0% were classified as severe illness, and five persons with malaria died. CDC received 137 P. falciparum-positive samples for the detection of antimalarial resistance markers (although some loci for chloroquine and mefloquine were untestable for up to nine samples). Of the 137 samples tested, 131 (95.6%) had genetic polymorphisms associated with pyrimethamine drug resistance, 96 (70.0%) with sulfadoxine resistance, 77 (57.5%) with chloroquine resistance, three (2.3%) with mefloquine drug resistance, one (<1.0%) with atovaquone resistance, and two (1.4%) with artemisinin resistance. INTERPRETATION The overall trend of malaria cases has been increasing since 1973; the number of cases reported in 2014 is the fourth highest annual total since then. Despite progress in reducing global prevalence of malaria, the disease remains endemic in many regions and use of appropriate prevention measures by travelers is still inadequate. PUBLIC HEALTH ACTION Completion of data elements on the malaria case report form increased slightly in 2014 compared with 2013, but still remains unacceptably low. In 2014, at least one essential element (i.e., species, travel history, or resident status) was missing in 21.3% of case report forms. Incomplete reporting compromises efforts to examine trends in malaria cases and prevent infections. VFR travelers continue to be a difficult population to reach with effective malaria prevention strategies. Evidence-based prevention strategies that effectively target VFR travelers need to be developed and implemented to have a substantial impact on the number of imported malaria cases in the United States. Fewer U.S. resident patients reported taking chemoprophylaxis in 2014 (27.2%) compared with 2013 (28.6%), and adherence was poor among those who did take chemoprophylaxis. Proper use of malaria chemoprophylaxis will prevent the majority of malaria illnesses and reduce risk for severe disease (https://www.cdc.gov/malaria/travelers/drugs.html). Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient's age and medical history, likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Recent molecular laboratory advances have enabled CDC to identify and conduct molecular surveillance of antimalarial drug resistance markers (https://www.cdc.gov/malaria/features/ars.html) and improve the ability of CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and globally. For this effort to be successful, specimens should be submitted for all cases diagnosed in the United States. Clinicians should consult CDC Guidelines for Treatment of Malaria in the United States and contact the CDC Malaria Hotline for case management advice, when needed. Malaria treatment recommendations can be obtained online at https://www.cdc.gov/malaria/diagnosis_treatment/ or by calling the Malaria Hotline at 770-488-7788 or toll-free at 855-856-4713.
Collapse
Affiliation(s)
- Kimberly E. Mace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| | - Paul M. Arguin
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| |
Collapse
|
50
|
Zuckerman JN. Travel Medicine. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|