1
|
Ishigaki H, Itoh Y. Translational research on pandemic virus infection using nonhuman primate models. Virology 2025; 606:110511. [PMID: 40139071 DOI: 10.1016/j.virol.2025.110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
After the COVID-19 pandemic, nonhuman primate (NHP) models, which are necessary for the rapid development of vaccines and new medical therapies, have become important in studies on infectious diseases because of their genetic, metabolic, and immunological similarities to humans. Our group has long been using NHP models in studies on infectious diseases including H1N1 influenza pandemic and COVID-19. Despite limitations such as the limited number of animals and the husbandry requirements, NHP models have contributed to the prediction of the pathogenicity of emerging viruses and the evaluation of the efficacy of vaccines and therapeutics due to the similarity of NHP models to humans before starting clinical trials to select good candidates of vaccines and drugs. In this review, the findings obtained in NHP infectious disease models of influenza and COVID-19 are summarized to clarify the benefits of NHP models for studies on infectious diseases. We believe that this review will support future research in exploring new perspectives for the development of vaccines and therapies targeting influenza, COVID-19, and infectious diseases in future pandemics.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, 460 Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, 460 Setatsukinowa, Otsu, Shiga, 520-2192, Japan; Central Research Laboratory, Shiga University of Medical Science, 205 Setatsukinowa, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
2
|
Rosenke K, Griffin A, Kaiser F, Altynova E, Mukesh R, Bushmaker T, Flagg M, Tipih T, Goldin K, Wickenhagen A, Williamson BN, Gallogly S, Leventhal SS, Lutterman T, Okumura A, Lewis MC, Kanakabandi K, Martens C, Yinda KC, Rao D, Smith BJ, Shaia C, Saturday G, Hanley P, van Doremalen N, de Wit E, Munster VJ, Feldmann H. Pathogenesis of bovine H5N1 clade 2.3.4.4b infection in macaques. Nature 2025; 640:1017-1021. [PMID: 39814072 DOI: 10.1038/s41586-025-08609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Since early 2022, highly pathogenic avian influenza (HPAI) H5N1 virus infections have been reported in wild aquatic birds and poultry throughout the USA with spillover into several mammalian species1-6. In March 2024, HPAIV H5N1 clade 2.3.4.4b was first detected in dairy cows in Texas, USA, and continues to circulate on dairy farms in many states7,8. Milk production and quality are diminished in infected dairy cows, with high virus titres in milk raising concerns of exposure to mammals including humans through consumption9-12. Here we investigated routes of infection with bovine HPAIV H5N1 clade 2.3.4.4b in cynomolgus macaques, a surrogate model for human infection13. We show that intranasal or intratracheal inoculation of macaques could cause systemic infection resulting in mild and severe respiratory disease, respectively. By contrast, infection by the orogastric route resulted in limited infection and seroconversion of macaques that remained subclinical.
Collapse
Affiliation(s)
- Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Amanda Griffin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Franziska Kaiser
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Ekaterina Altynova
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Reshma Mukesh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Thomas Tipih
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Kerry Goldin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Brandi N Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Shane Gallogly
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Shanna S Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Tessa Lutterman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Matthew C Lewis
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Kishore Kanakabandi
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Craig Martens
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Kwe C Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Brian J Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Patrick Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| |
Collapse
|
3
|
Dogadov DI, Kyuregyan KK, Minosyan AA, Goncharenko AM, Shmat EV, Mikhailov MI. [Acute respiratory viral infections in monkeys]. Vopr Virusol 2025; 70:7-24. [PMID: 40233333 DOI: 10.36233/0507-4088-293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Indexed: 04/17/2025]
Abstract
Acute respiratory viral infections (ARVI) are one of the most significant infections affecting the breeding of monkeys, especially among imported and captive primates. Respiratory diseases are also an important cause of morbidity and mortality in wild populations, and most of these infections can affect humans. Many anthropoid species, including apes, are susceptible to ARVI. Outbreaks of spontaneous respiratory infections have been described in many zoos and primatological centers around the world. Moreover, the study of spontaneous and experimental infection in laboratory primates provides an invaluable source of information on the biology and pathogenesis of ARVI and remains an indispensable tool for testing vaccines and drugs. The aim of this literature review was to summarize and analyze published data on the circulation of ARVI causative agents (parainfluenza viruses, adenoviruses, respiratory syncytial virus, influenza viruses, rhinoviruses, coronaviruses, metapneumoviruses, bocaviruses) among wild and captive primates, as well as the results of experimental modeling these infections in monkeys.
Collapse
Affiliation(s)
- D I Dogadov
- Kurchatov Complex of Medical Primatology of NRC «Kurchatov Institute»
| | - K K Kyuregyan
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- I.I. Mechnikov Research Institute of Vaccines and Sera
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia
| | - A A Minosyan
- Kurchatov Complex of Medical Primatology of NRC «Kurchatov Institute»
| | - A M Goncharenko
- Kurchatov Complex of Medical Primatology of NRC «Kurchatov Institute»
| | - E V Shmat
- Sochi Institute (branch) of the Federal State Autonomous Educational Institution of Higher Education Peoples' Friendship University of Russia named after Patrice Lumumba
| | - M I Mikhailov
- Central Research Institute of Epidemiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- I.I. Mechnikov Research Institute of Vaccines and Sera
| |
Collapse
|
4
|
Stegeman SK, Kourko O, Amsden H, Pellizzari Delano IE, Mamatis JE, Roth M, Colpitts CC, Gee K. RNA Viruses, Toll-Like Receptors, and Cytokines: The Perfect Storm? J Innate Immun 2025; 17:126-153. [PMID: 39820070 PMCID: PMC11845175 DOI: 10.1159/000543608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs. BACKGROUND The interactions between viruses and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation, and healing, which is crucial to resolving infection without destructive immunopathologies. SUMMARY Early innate immune responses are key to the generation of a beneficial or detrimental immune response. These initial responses are regulated by a plethora of surface bound, endosomal, and cytoplasmic innate immune receptors known as pattern recognition receptors. Of these, the Toll-like receptors (TLRs) play an important role in the induction of cytokines during virus infection. Recognizing pathogen-associated molecular patterns (PAMPs) such as viral proteins and/or nucleotide sequences, the TLRs act as sentinels for the initiation and propagation of immune responses. KEY MESSAGES TLRs are important receptors for initiating the innate response to single-stranded RNA (ssRNA) viruses like influenza A virus (IAV), severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1), SARS-CoV-2, Middle East respiratory syndrome coronavirus, dengue virus, and Ebola virus. Infection with these viruses is also associated with aberrant expression of proinflammatory cytokines that contribute to a harmful cytokine storm response. Herein we discuss the connections between these ssRNA viruses, cytokine storm, and the roles of TLRs.
Collapse
Affiliation(s)
- Sophia K Stegeman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Heather Amsden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - John E Mamatis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madison Roth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Kirk NM, Liang Y, Ly H. Comparative Pathology of Animal Models for Influenza A Virus Infection. Pathogens 2023; 13:35. [PMID: 38251342 PMCID: PMC10820042 DOI: 10.3390/pathogens13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Animal models are essential for studying disease pathogenesis and to test the efficacy and safety of new vaccines and therapeutics. For most diseases, there is no single model that can recapitulate all features of the human condition, so it is vital to understand the advantages and disadvantages of each. The purpose of this review is to describe popular comparative animal models, including mice, ferrets, hamsters, and non-human primates (NHPs), that are being used to study clinical and pathological changes caused by influenza A virus infection with the aim to aid in appropriate model selection for disease modeling.
Collapse
Affiliation(s)
| | | | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (N.M.K.); (Y.L.)
| |
Collapse
|
6
|
Kanekiyo M, Gillespie RA, Midgett M, O’Malley KJ, Williams C, Moin SM, Wallace M, Treaster L, Cooper K, Syeda H, Kettenburg G, Rannulu H, Schmer T, Ortiz L, Da Silva Castanha P, Corry J, Xia M, Olsen E, Perez D, Yun G, Graham BS, Barratt-Boyes SM, Reed DS. Refined semi-lethal aerosol H5N1 influenza model in cynomolgus macaques for evaluation of medical countermeasures. iScience 2023; 26:107830. [PMID: 37766976 PMCID: PMC10520834 DOI: 10.1016/j.isci.2023.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Highly pathogenic avian influenza A H5N1 viruses cause high mortality in humans and have pandemic potential. Effective vaccines and treatments against this threat are urgently needed. Here, we have refined our previously established model of lethal H5N1 infection in cynomolgus macaques. An inhaled aerosol virus dose of 5.1 log10 plaque-forming unit (pfu) induced a strong febrile response and acute respiratory disease, with four out of six macaques succumbing after challenge. Vaccination with three doses of adjuvanted seasonal quadrivalent influenza vaccine elicited low but detectable neutralizing antibody to H5N1. All six vaccinated macaques survived four times the 50% lethal dose of aerosolized H5N1, while four of six unvaccinated controls succumbed to disease. Although vaccination did not protect against severe influenza, vaccinees had reduced respiratory dysfunction and lower viral load in airways compared to controls. We anticipate that our macaque model will play a vital role in evaluating vaccines and antivirals against influenza pandemics.
Collapse
Affiliation(s)
- Masaru Kanekiyo
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A. Gillespie
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Morgan Midgett
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Connor Williams
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syed M. Moin
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Megan Wallace
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luke Treaster
- Division of Cardiothoracic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kristine Cooper
- Biostatistics Facility, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hubza Syeda
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Gwenddolen Kettenburg
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hasala Rannulu
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tabitha Schmer
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucia Ortiz
- Department of Population Health, University of Georgia, Athens, GA, USA
| | | | - Jacqueline Corry
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mengying Xia
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Olsen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Perez
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Gabin Yun
- Division of Cardiothoracic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Barney S. Graham
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Simon M. Barratt-Boyes
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Osborn RM, Leach J, Zanche M, Ashton JM, Chu C, Thakar J, Dewhurst S, Rosenberger S, Pavelka M, Pryhuber GS, Mariani TJ, Anderson CS. Preparation of noninfectious scRNAseq samples from SARS-CoV-2-infected epithelial cells. PLoS One 2023; 18:e0281898. [PMID: 36827401 PMCID: PMC9956660 DOI: 10.1371/journal.pone.0281898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS coronavirus 2 (SARS-CoV-2) virus. Direct assessment, detection, and quantitative analysis using high throughput methods like single-cell RNA sequencing (scRNAseq) is imperative to understanding the host response to SARS-CoV-2. One barrier to studying SARS-CoV-2 in the laboratory setting is the requirement to process virus-infected cell cultures, and potentially infectious materials derived therefrom, under Biosafety Level 3 (BSL-3) containment. However, there are only 190 BSL3 laboratory facilities registered with the U.S. Federal Select Agent Program, as of 2020, and only a subset of these are outfitted with the equipment needed to perform high-throughput molecular assays. Here, we describe a method for preparing non-hazardous RNA samples from SARS-CoV-2 infected cells, that enables scRNAseq analyses to be conducted safely in a BSL2 facility-thereby making molecular assays of SARS-CoV-2 cells accessible to a much larger community of researchers. Briefly, we infected African green monkey kidney epithelial cells (Vero-E6) with SARS-CoV-2 for 96 hours, trypsin-dissociated the cells, and inactivated them with methanol-acetone in a single-cell suspension. Fixed cells were tested for the presence of infectious SARS-CoV-2 virions using the Tissue Culture Infectious Dose Assay (TCID50), and also tested for viability using flow cytometry. We then tested the dissociation and methanol-acetone inactivation method on primary human lung epithelial cells that had been differentiated on an air-liquid interface. Finally, we performed scRNAseq quality control analysis on the resulting cell populations to evaluate the effects of our virus inactivation and sample preparation protocol on the quality of the cDNA produced. We found that methanol-acetone inactivated SARS-CoV-2, fixed the lung epithelial cells, and could be used to obtain noninfectious, high-quality cDNA libraries. This methodology makes investigating SARS-CoV-2, and related high-containment RNA viruses at a single-cell level more accessible to an expanded community of researchers.
Collapse
Affiliation(s)
- Raven M. Osborn
- Translational Biomedical Sciences Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Clinical and Translational Sciences Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Justin Leach
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Michelle Zanche
- Genomics Research Center, Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - John M. Ashton
- Genomics Research Center, Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - ChinYi Chu
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Juilee Thakar
- Translational Biomedical Sciences Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Clinical and Translational Sciences Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Biophysics, Structural, and Computational Biology Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Stephen Dewhurst
- Clinical and Translational Sciences Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Sonia Rosenberger
- Department of Environmental Health and Safety, University of Rochester, Rochester, New York, United States of America
- Biosafety Level 3 Facility, Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Martin Pavelka
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Biosafety Level 3 Facility, Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Gloria S. Pryhuber
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Thomas J. Mariani
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Christopher S. Anderson
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Division of Neonatology, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
8
|
Tang J, Xu Q, Tang K, Ye X, Cao Z, Zou M, Zeng J, Guan X, Han J, Wang Y, Yang L, Lin Y, Jiang K, Chen X, Zhao Y, Tian D, Li C, Shen W, Du X. Susceptibility identification for seasonal influenza A/H3N2 based on baseline blood transcriptome. Front Immunol 2023; 13:1048774. [PMID: 36713410 PMCID: PMC9878565 DOI: 10.3389/fimmu.2022.1048774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Influenza susceptibility difference is a widely existing trait that has great practical significance for the accurate prevention and control of influenza. Methods Here, we focused on the human susceptibility to the seasonal influenza A/H3N2 of healthy adults at baseline level. Whole blood expression data for influenza A/H3N2 susceptibility from GEO were collected firstly (30 symptomatic and 19 asymptomatic). Then to explore the differences at baseline, a suite of systems biology approaches - the differential expression analysis, co-expression network analysis, and immune cell frequencies analysis were utilized. Results We found the baseline condition, especially immune condition between symptomatic and asymptomatic, was different. Co-expression module that is positively related to asymptomatic is also related to immune cell type of naïve B cell. Function enrichment analysis showed significantly correlation with "B cell receptor signaling pathway", "immune response-activating cell surface receptor signaling pathway" and so on. Also, modules that are positively related to symptomatic are also correlated to immune cell type of neutrophils, with function enrichment analysis showing significantly correlations with "response to bacterium", "inflammatory response", "cAMP-dependent protein kinase complex" and so on. Responses of symptomatic and asymptomatic hosts after virus exposure show differences on resisting the virus, with more effective frontline defense for asymptomatic hosts. A prediction model was also built based on only baseline transcription information to differentiate symptomatic and asymptomatic population with accuracy of 0.79. Discussion The results not only improve our understanding of the immune system and influenza susceptibility, but also provide a new direction for precise and targeted prevention and therapy of influenza.
Collapse
Affiliation(s)
- Jing Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiumei Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China,Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kang Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ye
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zicheng Cao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China,School of Public Health, Shantou University, Shantou, China
| | - Min Zou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xinyan Guan
- Department of Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Jinglin Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yihan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China,School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yishan Lin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Kaiao Jiang
- Palos Verdes Peninsula High School, Rancho Palos Verdes, CA, United States
| | - Xiaoliang Chen
- Department of Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Dechao Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Shen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China,*Correspondence: Xiangjun Du, ; Wei Shen,
| | - Xiangjun Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China,*Correspondence: Xiangjun Du, ; Wei Shen,
| |
Collapse
|
9
|
Lee MC, Yu CP, Chen XH, Liu MT, Yang JR, Chen AY, Huang CH. Influenza A virus NS1 protein represses antiviral immune response by hijacking NF-κB to mediate transcription of type III IFN. Front Cell Infect Microbiol 2022; 12:998584. [PMID: 36189352 PMCID: PMC9519859 DOI: 10.3389/fcimb.2022.998584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background Non-structural protein 1 (NS1), one of the viral proteins of influenza A viruses (IAVs), plays a crucial role in evading host antiviral immune response. It is known that the IAV NS1 protein regulates the antiviral genes response mainly through several different molecular mechanisms in cytoplasm. Current evidence suggests that NS1 represses the transcription of IFNB1 gene by inhibiting the recruitment of Pol II to its exons and promoters in infected cells. However, IAV NS1 whether can utilize a common mechanism to antagonize antiviral response by interacting with cellular DNA and immune-related transcription factors in the nucleus, is not yet clear. Methods Chromatin immunoprecipitation and sequencing (ChIP-seq) was used to determine genome-wide transcriptional DNA-binding sites for NS1 and NF-κB in viral infection. Next, we used ChIP-reChIP, luciferase reporter assay and secreted embryonic alkaline phosphatase (SEAP) assay to provide information on the dynamic binding of NS1 and NF-κB to chromatin. RNA sequencing (RNA-seq) transcriptomic analyses were used to explore the critical role of NS1 and NF-κB in IAV infection as well as the detailed processes governing host antiviral response. Results Herein, NS1 was found to co-localize with NF-κB using ChIP-seq. ChIP-reChIP and luciferase reporter assay confirmed the co-localization of NS1 and NF-κB at type III IFN genes, such as IFNL1, IFNL2, and IFNL3. We discovered that NS1 disturbed binding manners of NF-κB to inhibit IFNL1 expression. NS1 hijacked NF-κB from a typical IFNL1 promoter to the exon-intron region of IFNL1 and decreased the enrichment of RNA polymerase II and H3K27ac, a chromatin accessibility marker, in the promoter region of IFNL1 during IAV infection, consequently reducing IFNL1 gene expression. NS1 deletion enhanced the enrichment of RNA polymerase II at the IFNL1 promoter and promoted its expression. Conclusion Overall, NS1 hijacked NF-κB to prevent its interaction with the IFNL1 promoter and restricted the open chromatin architecture of the promoter, thereby abating antiviral gene expression.
Collapse
Affiliation(s)
- Meng-Chang Lee
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Ping Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Xing-Hong Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ji-Rong Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - An-Yu Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Chih-Heng Huang,
| |
Collapse
|
10
|
Abstract
Influenza viruses cause respiratory tract infections, which lead to human disease outbreaks and pandemics. Influenza A virus (IAV) circulates in diverse animal species, predominantly aquatic birds. This often results in the emergence of novel viral strains causing severe human disease upon zoonotic transmission. Innate immune sensing of the IAV infection promotes host cell death and inflammatory responses to confer antiviral host defense. Dysregulated respiratory epithelial cell death and excessive proinflammatory responses drive immunopathology in highly pathogenic influenza infections. Here, we discuss the critical mechanisms regulating IAV-induced cell death and proinflammatory responses. We further describe the essential role of the Z-form nucleic acid sensor ZBP1/DAI and RIPK3 in triggering apoptosis, necroptosis, and pyroptosis during IAV infection and their impact on host defense and pathogenicity in vivo. We also discuss the functional importance of ZBP1-RIPK3 signaling in recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viral infections. Understanding these mechanisms of RNA virus-induced cytopathic and pathogenic inflammatory responses is crucial for targeting pathogenic lung infections and human respiratory illness.
Collapse
|
11
|
Wang H, Li W, Zheng SJ. Advances on Innate Immune Evasion by Avian Immunosuppressive Viruses. Front Immunol 2022; 13:901913. [PMID: 35634318 PMCID: PMC9133627 DOI: 10.3389/fimmu.2022.901913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
Innate immunity is not only the first line of host defense against pathogenic infection, but also the cornerstone of adaptive immune response. Upon pathogenic infection, pattern recognition receptors (PRRs) of host engage pathogen-associated molecular patterns (PAMPs) of pathogens, which initiates IFN production by activating interferon regulatory transcription factors (IRFs), nuclear factor-kappa B (NF-κB), and/or activating protein-1 (AP-1) signal transduction pathways in host cells. In order to replicate and survive, pathogens have evolved multiple strategies to evade host innate immune responses, including IFN-I signal transduction, autophagy, apoptosis, necrosis, inflammasome and/or metabolic pathways. Some avian viruses may not be highly pathogenic but they have evolved varied strategies to evade or suppress host immune response for survival, causing huge impacts on the poultry industry worldwide. In this review, we focus on the advances on innate immune evasion by several important avian immunosuppressive viruses (infectious bursal disease virus (IBDV), Marek’s disease virus (MDV), avian leukosis virus (ALV), etc.), especially their evasion of PRRs-mediated signal transduction pathways (IFN-I signal transduction pathway) and IFNAR-JAK-STAT signal pathways. A comprehensive understanding of the mechanism by which avian viruses evade or suppress host immune responses will be of help to the development of novel vaccines and therapeutic reagents for the prevention and control of infectious diseases in chickens.
Collapse
Affiliation(s)
- Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Shijun J. Zheng,
| |
Collapse
|
12
|
Kolter J, Henneke P, Groß O, Kierdorf K, Prinz M, Graf L, Schwemmle M. Paradoxical immunodeficiencies-When failures of innate immunity cause immunopathology. Eur J Immunol 2022; 52:1419-1430. [PMID: 35551651 DOI: 10.1002/eji.202149531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022]
Abstract
Innate immunity facilitates immediate defense against invading pathogens throughout all organs and tissues but also mediates tissue homeostasis and repair, thereby playing a key role in health and development. Recognition of pathogens is mediated by germline-encoded PRRs. Depending on the specific PRRs triggered, ligand binding leads to phagocytosis and pathogen killing and the controlled release of immune-modulatory factors such as IFNs, cytokines, or chemokines. PRR-mediated and other innate immune responses do not only prevent uncontrolled replication of intruding pathogens but also contribute to the tailoring of an effective adaptive immune response. Therefore, hereditary or acquired immunodeficiencies impairing innate responses may paradoxically cause severe immunopathology in patients. This can occur in the context of, but also independently of an increased microbial burden. It can include pathogen-dependent organ damage, autoinflammatory syndromes, and neurodevelopmental or neurodegenerative diseases. Here, we discuss the current state of research of several different such immune paradoxes. Understanding the underlying mechanisms causing immunopathology as a consequence of failures of innate immunity may help to prevent life-threatening disease.
Collapse
Affiliation(s)
- Julia Kolter
- Faculty of Medicine, Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Faculty of Medicine, Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Faculty of Medicine, Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Faculty of Medicine, Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Laura Graf
- Faculty of Medicine, Institute of Virology, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Faculty of Medicine, Institute of Virology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Li H, Zhao M, Zhang H, Quan C, Zhang D, Liu Y, Liu M, Xue C, Tan S, Guo Y, Zhao Y, Wu G, Gao GF, Cao B, Liu WJ. Pneumonia Severity and Phase Linked to Virus-Specific T Cell Responses with Distinct Immune Checkpoints during pH1N1 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2154-2162. [PMID: 35418471 DOI: 10.4049/jimmunol.2101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The detailed features and the longitudinal variation of influenza-specific T cell responses within naturally infected patients and the relationship with disease severity remain uncertain. In this study, we characterized the longitudinal influenza-specific CD4+ and CD8+ T cell responses, T cell activation, and migration-related cytokine/chemokine secretion in pH1N1-infected patients with or without viral pneumonia with human PBMCs. Both the influenza-specific CD4+ and CD8+ T cells presented higher responses in patients with severe infection than in mild ones, but with distinct longitudinal variations, phenotypes of memory markers, and immune checkpoints. At 7 ± 3 d after onset of illness, effector CD8+ T cells (CD45RA+CCR7-) with high expression of inhibitory immune receptor CD200R dominated the specific T cell responses. However, at 21 ± 3 d after onset of illness, effector memory CD4+ T cells (CD45RA-CCR7-) with high expression of PD1, CTLA4, and LAG3 were higher among the patients with severe disease. The specific T cell magnitude, T cell activation, and migration-related cytokines/chemokines possessed a strong connection with disease severity. Our findings illuminate the distinct characteristics of immune system activation during dynamic disease phases and its correlation with lung injury of pH1N1 patients.
Collapse
Affiliation(s)
- Hui Li
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hangjie Zhang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuansong Quan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dannie Zhang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingmei Liu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Meng Liu
- Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Chunxue Xue
- Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaxin Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
- University of Chinese Academy of Sciences, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, China;
- Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China; and
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China;
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
A comparison of the features of RT-PCR positive and negative COVID-19 pneumonia patients in the intensive care unit. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.961334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Corry J, Kettenburg G, Upadhyay AA, Wallace M, Marti MM, Wonderlich ER, Bissel SJ, Goss K, Sturgeon TJ, Watkins SC, Reed DS, Bosinger SE, Barratt-Boyes SM. Infiltration of inflammatory macrophages and neutrophils and widespread pyroptosis in lung drive influenza lethality in nonhuman primates. PLoS Pathog 2022; 18:e1010395. [PMID: 35271686 PMCID: PMC8939778 DOI: 10.1371/journal.ppat.1010395] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/22/2022] [Accepted: 02/24/2022] [Indexed: 01/04/2023] Open
Abstract
Severe influenza kills tens of thousands of individuals each year, yet the mechanisms driving lethality in humans are poorly understood. Here we used a unique translational model of lethal H5N1 influenza in cynomolgus macaques that utilizes inhalation of small-particle virus aerosols to define mechanisms driving lethal disease. RNA sequencing of lung tissue revealed an intense interferon response within two days of infection that resulted in widespread expression of interferon-stimulated genes, including inflammatory cytokines and chemokines. Macaques with lethal disease had rapid and profound loss of alveolar macrophages (AMs) and infiltration of activated CCR2+ CX3CR1+ interstitial macrophages (IMs) and neutrophils into lungs. Parallel changes of AMs and neutrophils in bronchoalveolar lavage (BAL) correlated with virus load when compared to macaques with mild influenza. Both AMs and IMs in lethal influenza were M1-type inflammatory macrophages which expressed neutrophil chemotactic factors, while neutrophils expressed genes associated with activation and generation of neutrophil extracellular traps (NETs). NETs were prominent in lung and were found in alveolar spaces as well as lung parenchyma. Genes associated with pyroptosis but not apoptosis were increased in lung, and activated inflammatory caspases, IL-1β and cleaved gasdermin D (GSDMD) were present in bronchoalveolar lavage fluid and lung homogenates. Cleaved GSDMD was expressed by lung macrophages and alveolar epithelial cells which were present in large numbers in alveolar spaces, consistent with loss of epithelial integrity. Cleaved GSDMD colocalized with viral NP-expressing cells in alveoli, reflecting pyroptosis of infected cells. These novel findings reveal that a potent interferon and inflammatory cascade in lung associated with infiltration of inflammatory macrophages and neutrophils, elaboration of NETs and cell death by pyroptosis mediates lethal H5N1 influenza in nonhuman primates, and by extension humans. These innate pathways represent promising therapeutic targets to prevent severe influenza and potentially other primary viral pneumonias in humans. Influenza can cause acute lung injury and death, but the mechanisms resulting in lethal influenza in humans are not well understood. We used a novel model of lethal influenza in nonhuman primates caused by aerosol infection with highly pathogenic avian influenza virus that closely resembles human disease to define how the virus causes severe pneumonia. We found that a potent innate immune response starting with high-level production of interferons and inflammatory factors in the lung drives severe disease. Inflammatory cells including macrophages and neutrophils were recruited into lung because of this early response, which in turn led to release of neutrophil extracellular traps that blocked lung alveoli. In addition, a particularly inflammatory form of cell death known as pyroptosis occurred in lungs during lethal influenza. These new findings show that an intense interferon response leading to an inflammatory cascade of macrophages and neutrophils, release of neutrophil extracellular traps, and cell death by pyroptosis is responsible for acute lung injury in lethal influenza. These innate pathways could be targeted by drugs to prevent lung injury in critically ill influenza patients.
Collapse
Affiliation(s)
- Jacqueline Corry
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JC); (SMBB)
| | - Gwenddolen Kettenburg
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amit A. Upadhyay
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Megan Wallace
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michelle M. Marti
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth R. Wonderlich
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stephanie J. Bissel
- Division of Neuropathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kyndal Goss
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Timothy J. Sturgeon
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Steven E. Bosinger
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JC); (SMBB)
| |
Collapse
|
16
|
Dou M, Song W, Lin Y, Chen Q, Lu C, Liu Z. Clinical characteristics and viral analysis of severe influenza A [H1N1]pdm09 in Guangzhou, 2019. J Med Virol 2022; 94:2568-2577. [PMID: 35146773 DOI: 10.1002/jmv.27642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/08/2022] [Accepted: 01/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To understand the clinical characteristics of and analyze viral genes in patients with severe pneumonia due to [H1N1]pdm09 influenza virus in Guangzhou, 2019. METHODS The clinical data of 120 inpatients with laboratory-confirmed influenza A H1N1 virus from January to March 2019 were collected and analyzed. The subjects were diagnosed according to the criteria of the "Diagnosis and Treatment Program of Influenza A H1N1 (third Edition 2009)" issued by the Ministry of Health and were divided into severe and nonsevere groups. Serum samples during fever were collected for cytokine analysis, and the viral genes were analyzed after the virus cultured in MDCK cells. The data were analyzed by SPSS 16 software, and the results of gene sequencing were analyzed by MEGA 6 software. RESULTS Among the 120 inpatients, 36 (30%) were severe and 84 (70%) were nonsevere patients. The average age of severe patients was 53.11 ±19.94 years, the average age of nonsevere patients, at 44.03 ±24.47 years. There was no significant difference between the two groups (p< 0.05). There were significant differences in the rates of moist rales and dyspnea in critically ill patients (p< 0.05). There were significant differences in the white blood cell count (WBC), lactate dehydrogenase (LDH), creatine kinase (CK), serum creatinine (sCr), procalcitonin (PCT) and C-reactive protein (CRP) in severe patients with type A H1N1. Chest radiologic findings in severe patients showed ground glass shadows or pulmonary solid changes, and the difference was statistically significant for pulmonary fibrosis. Chronic lung disease (52.8%) and cardiovascular disease (27.8%) were independent risk factors for severe disease (p< 0.05). There were significant differences in secondary infections by Staphylococcus aureus (11.1%), pulmonary Aspergillus (22%) and Acinetobacter baumannii (16.7%) in critically ill patients (p< 0.05). Serum IL-8 in critically ill patients was significantly higher than those in nonsevere patients and healthy controls. The origin of virus strains in severe and nonsevere patients was the same, and there was no obvious mutation in the amino acid region of the antigenic site of the HA protein, but compared with the results of gene sequencing in previous years, the mutation sites showed a trend of annual accumulation. In conclusion, there was a high risk of severe pneumonia caused by H1N1 influenza A virus in Guangzhou in spring 2019. Long-term continuous surveillance, prevention and control of the virus should be carried out to predict its epidemiology and distribution. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Min Dou
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjun Song
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yongping Lin
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Qigao Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chang Lu
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhongmin Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Uddin MB, Sajib EH, Hoque SF, Hassan MM, Ahmed SSU. Macrophages in respiratory system. RECENT ADVANCEMENTS IN MICROBIAL DIVERSITY 2022:299-333. [DOI: 10.1016/b978-0-12-822368-0.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Lack of Type I Interferon Signaling Ameliorates Respiratory Syncytial Virus-Induced Lung Inflammation and Restores Antioxidant Defenses. Antioxidants (Basel) 2021; 11:antiox11010067. [PMID: 35052571 PMCID: PMC8772717 DOI: 10.3390/antiox11010067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection in mouse and human lung is associated with pathogenic inflammation and oxidative injury. RSV impairs antioxidant responses by increasing the degradation of transcription factor NF-E2-related factor 2 (NRF2), which controls the expression of several antioxidant enzymes (AOEs). In addition to its protective effects, type I IFNs have been increasingly recognized as important mediators of host pathogenic responses during acute respiratory viral infections. We used a mouse model of RSV infection to investigate the effect of lack of type I interferon (IFN) receptor on viral-mediated clinical disease, airway inflammation, NRF2 expression, and antioxidant defenses. In the absence of type I IFN signaling, RSV-infected mice showed significantly less body weight loss and airway obstruction, as well as a significant reduction in cytokine and chemokine secretion and airway inflammation. Lack of type I IFN receptor was associated with greatly reduced virus-induced promyelocytic leukemia lung protein expression, which we showed to be necessary for virus-induced NRF2 degradation in a cell model of infection, resulting in restoration of NRF2 levels, AOE expression, and airway antioxidant capacity. Our data support the concept that modulation of type I IFN production and/or signaling could represent an important therapeutic strategy to ameliorate severity of RSV-induced lung disease.
Collapse
|
19
|
Rappe JC, Finsterbusch K, Crotta S, Mack M, Priestnall SL, Wack A. A TLR7 antagonist restricts interferon-dependent and -independent immunopathology in a mouse model of severe influenza. J Exp Med 2021; 218:e20201631. [PMID: 34473195 PMCID: PMC8421264 DOI: 10.1084/jem.20201631] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 11/04/2022] Open
Abstract
Cytokine-mediated immune-cell recruitment and inflammation contribute to protection in respiratory virus infection. However, uncontrolled inflammation and the "cytokine storm" are hallmarks of immunopathology in severe infection. Cytokine storm is a broad term for a phenomenon with diverse characteristics and drivers, depending on host genetics, age, and other factors. Taking advantage of the differential use of virus-sensing systems by different cell types, we test the hypothesis that specifically blocking TLR7-dependent, immune cell-produced cytokines reduces influenza-related immunopathology. In a mouse model of severe influenza characterized by a type I interferon (IFN-I)-driven cytokine storm, TLR7 antagonist treatment leaves epithelial antiviral responses unaltered but acts through pDCs and monocytes to reduce IFN-I and other cytokines in the lung, thus ameliorating inflammation and severity. Moreover, even in the absence of IFN-I signaling, TLR7 antagonism reduces inflammation and mortality driven by monocyte-produced chemoattractants and neutrophil recruitment into the infected lung. Hence, TLR7 antagonism reduces diverse types of cytokine storm in severe influenza.
Collapse
Affiliation(s)
- Julie C.F. Rappe
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | | | - Stefania Crotta
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Simon L. Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
- Experimental Histopathology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Andreas Wack
- Immunoregulation Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
20
|
Aponte-Serrano JO, Weaver JJA, Sego TJ, Glazier JA, Shoemaker JE. Multicellular spatial model of RNA virus replication and interferon responses reveals factors controlling plaque growth dynamics. PLoS Comput Biol 2021; 17:e1008874. [PMID: 34695114 PMCID: PMC8608315 DOI: 10.1371/journal.pcbi.1008874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/22/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Respiratory viruses present major public health challenges, as evidenced by the 1918 Spanish Flu, the 1957 H2N2, 1968 H3N2, and 2009 H1N1 influenza pandemics, and the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Severe RNA virus respiratory infections often correlate with high viral load and excessive inflammation. Understanding the dynamics of the innate immune response and its manifestations at the cell and tissue levels is vital to understanding the mechanisms of immunopathology and to developing strain-independent treatments. Here, we present a novel spatialized multicellular computational model of RNA virus infection and the type-I interferon-mediated antiviral response that it induces within lung epithelial cells. The model is built using the CompuCell3D multicellular simulation environment and is parameterized using data from influenza virus-infected cell cultures. Consistent with experimental observations, it exhibits either linear radial growth of viral plaques or arrested plaque growth depending on the local concentration of type I interferons. The model suggests that modifying the activity of signaling molecules in the JAK/STAT pathway or altering the ratio of the diffusion lengths of interferon and virus in the cell culture could lead to plaque growth arrest. The dependence of plaque growth arrest on diffusion lengths highlights the importance of developing validated spatial models of cytokine signaling and the need for in vitro measurement of these diffusion coefficients. Sensitivity analyses under conditions leading to continuous or arrested plaque growth found that plaque growth is more sensitive to variations of most parameters and more likely to have identifiable model parameters when conditions lead to plaque arrest. This result suggests that cytokine assay measurements may be most informative under conditions leading to arrested plaque growth. The model is easy to extend to include SARS-CoV-2-specific mechanisms or to use as a component in models linking epithelial cell signaling to systemic immune models.
Collapse
Affiliation(s)
- Josua O. Aponte-Serrano
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
- Biocomplexity Institute, Indiana University, Bloomington, Indiana, United States of America
| | - Jordan J. A. Weaver
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - T. J. Sego
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
- Biocomplexity Institute, Indiana University, Bloomington, Indiana, United States of America
| | - James A. Glazier
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
- Biocomplexity Institute, Indiana University, Bloomington, Indiana, United States of America
| | - Jason E. Shoemaker
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
21
|
Puri A, Bajpai S, Meredith S, Aravind L, Krause PJ, Kumar S. Babesia microti: Pathogen Genomics, Genetic Variability, Immunodominant Antigens, and Pathogenesis. Front Microbiol 2021; 12:697669. [PMID: 34539601 PMCID: PMC8446681 DOI: 10.3389/fmicb.2021.697669] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
More than 100 Babesia spp. tick-borne parasites are known to infect mammalian and avian hosts. Babesia belong to Order Piroplasmid ranked in the Phylum Apicomplexa. Recent phylogenetic studies have revealed that of the three genera that constitute Piroplasmida, Babesia and Theileria are polyphyletic while Cytauxzoon is nested within a clade of Theileria. Several Babesia spp. and sub-types have been found to cause human disease. Babesia microti, the most common species that infects humans, is endemic in the Northeastern and upper Midwestern United States and is sporadically reported elsewhere in the world. Most infections are transmitted by Ixodid (hard-bodied) ticks, although they occasionally can be spread through blood transfusion and rarely via perinatal transmission and organ transplantation. Babesiosis most often presents as a mild to moderate disease, however infection severity ranges from asymptomatic to lethal. Diagnosis is usually confirmed by blood smear or polymerase chain reaction (PCR). Treatment consists of atovaquone and azithromycin or clindamycin and quinine and usually is effective but may be problematic in immunocompromised hosts. There is no human Babesia vaccine. B. microti genomics studies have only recently been initiated, however they already have yielded important new insights regarding the pathogen, population structure, and pathogenesis. Continued genomic research holds great promise for improving the diagnosis, management, and prevention of human babesiosis, and in particular, the identification of lineage-specific families of cell-surface proteins with potential roles in cytoadherence, immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Ankit Puri
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Surabhi Bajpai
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| | - Scott Meredith
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health and Yale School of Medicine, New Haven, CT, United States
| | - Sanjai Kumar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
22
|
Liu Z, Yan J, Tong L, Liu S, Zhang Y. The role of exosomes from BALF in lung disease. J Cell Physiol 2021; 237:161-168. [PMID: 34388259 PMCID: PMC9292261 DOI: 10.1002/jcp.30553] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/06/2021] [Accepted: 07/30/2021] [Indexed: 01/03/2023]
Abstract
Exosomes are released from a variety of immune cells and nonimmune cells, the phospholipid vesicle bilayer membrane structure actively secreted into tissues. Recently, exosomes were demonstrated to be effectively delivered proteins, cholesterol, lipids, and amounts of DNA, mRNA, and noncoding RNAs to a target cell or tissue from a host cell. These can be detected in blood, urine, exhaled breath condensates, bronchoalveolar lavage fluid (BALF), ascites, and cerebrospinal fluid. BALF is a clinical examination method for obtaining alveolar cells and biochemical components, reflecting changes in the lungs, so it is also called liquid biopsy. Exosomes from BALF become a new method for intercellular communication and well‐documented in various pulmonary diseases. In chronic obstructive pulmonary disease (COPD), BALF exosomes can predict the degree of COPD damage and serve as an effective monitoring indicator for airflow limitation and airway remodeling. It also mediates antigen presentation in the airways to the adaptive immune system as well as costimulatory effects. Furthermore, BALF exosomes from acute lung injury and infective diseases are closely related to various infections and lack of oxygen status. BALF exosomes play an important role in the diagnosis and prognosis of lung cancer. The effect of immunomodulatory role for BALF exosomes in adaptive and innate immune responses has been studied in sarcoidosis. The intercellular communication in the microenvironment of BALF exosomes in pulmonary fibrosis and lung remodeling have been studied. In this review, we summarize the novel findings of exosomes in BALF, executed function by protein, miRNA, DNA cytokine, and so on in several pulmonary diseases.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China.,School of Life Science, Jilin University, Changchun, Jilin, China
| | - Jiaqing Yan
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Lingling Tong
- Department of Pathology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Shouyue Liu
- Department of Neurosurgery, Second Hospital, Jilin University, Changchun, China
| | - Ying Zhang
- Department of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Oyler-Yaniv J, Oyler-Yaniv A, Maltz E, Wollman R. TNF controls a speed-accuracy tradeoff in the cell death decision to restrict viral spread. Nat Commun 2021; 12:2992. [PMID: 34016976 PMCID: PMC8137918 DOI: 10.1038/s41467-021-23195-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rapid death of infected cells is an important antiviral strategy. However, fast decisions that are based on limited evidence can be erroneous and cause unnecessary cell death and subsequent tissue damage. How cells optimize their death decision making strategy to maximize both speed and accuracy is unclear. Here, we show that exposure to TNF, which is secreted by macrophages during viral infection, causes cells to change their decision strategy from "slow and accurate" to "fast and error-prone". Mathematical modeling combined with experiments in cell culture and whole organ culture show that the regulation of the cell death decision strategy is critical to prevent HSV-1 spread. These findings demonstrate that immune regulation of cellular cognitive processes dynamically changes a tissues' tolerance for self-damage, which is required to protect against viral spread.
Collapse
Affiliation(s)
- Jennifer Oyler-Yaniv
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Alon Oyler-Yaniv
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Evan Maltz
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Roy Wollman
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, University of California UCLA, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California UCLA, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Veldhuis Kroeze E, Bauer L, Caliendo V, van Riel D. In Vivo Models to Study the Pathogenesis of Extra-Respiratory Complications of Influenza A Virus Infection. Viruses 2021; 13:v13050848. [PMID: 34066589 PMCID: PMC8148586 DOI: 10.3390/v13050848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Animal models are an inimitable method to study the systemic pathogenesis of virus-induced disease. Extra-respiratory complications of influenza A virus infections are not extensively studied even though they are often associated with severe disease and mortality. Here we review and recommend mammalian animal models that can be used to study extra-respiratory complications of the central nervous system and cardiovascular system as well as involvement of the eye, placenta, fetus, lacteal gland, liver, pancreas, intestinal tract, and lymphoid tissues during influenza A virus infections.
Collapse
|
25
|
Watzenboeck ML, Drobits B, Zahalka S, Gorki AD, Farhat A, Quattrone F, Hladik A, Lakovits K, Richard GM, Lederer T, Strobl B, Versteeg GA, Boon L, Starkl P, Knapp S. Lipocalin 2 modulates dendritic cell activity and shapes immunity to influenza in a microbiome dependent manner. PLoS Pathog 2021; 17:e1009487. [PMID: 33905460 PMCID: PMC8078786 DOI: 10.1371/journal.ppat.1009487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
Lipocalin 2 (LCN2) is a secreted glycoprotein with roles in multiple biological processes. It contributes to host defense by interference with bacterial iron uptake and exerts immunomodulatory functions in various diseases. Here, we aimed to characterize the function of LCN2 in lung macrophages and dendritic cells (DCs) using Lcn2-/- mice. Transcriptome analysis revealed strong LCN2-related effects in CD103+ DCs during homeostasis, with differential regulation of antigen processing and presentation and antiviral immunity pathways. We next validated the relevance of LCN2 in a mouse model of influenza infection, wherein LCN2 protected from excessive weight loss and improved survival. LCN2-deficiency was associated with enlarged mediastinal lymph nodes and increased lung T cell numbers, indicating a dysregulated immune response to influenza infection. Depletion of CD8+ T cells equalized weight loss between WT and Lcn2-/- mice, proving that LCN2 protects from excessive disease morbidity by dampening CD8+ T cell responses. In vivo T cell chimerism and in vitro T cell proliferation assays indicated that improved antigen processing by CD103+ DCs, rather than T cell intrinsic effects of LCN2, contribute to the exacerbated T cell response. Considering the antibacterial potential of LCN2 and that commensal microbes can modulate antiviral immune responses, we speculated that LCN2 might cause the observed influenza phenotype via the microbiome. Comparing the lung and gut microbiome of WT and Lcn2-/- mice by 16S rRNA gene sequencing, we observed profound effects of LCN2 on gut microbial composition. Interestingly, antibiotic treatment or co-housing of WT and Lcn2-/- mice prior to influenza infection equalized lung CD8+ T cell counts, suggesting that the LCN2-related effects are mediated by the microbiome. In summary, our results highlight a novel regulatory function of LCN2 in the modulation of antiviral immunity.
Collapse
Affiliation(s)
- Martin L. Watzenboeck
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Barbara Drobits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Sophie Zahalka
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Anna-Dorothea Gorki
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Asma Farhat
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Federica Quattrone
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Anastasiya Hladik
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Karin Lakovits
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Gabriel M. Richard
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Therese Lederer
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gijs A. Versteeg
- Department of Microbiology, Immunobiology, and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Louis Boon
- Polpharma Biologics, Utrecht, The Netherlands
| | - Philipp Starkl
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| | - Sylvia Knapp
- Research Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria
| |
Collapse
|
26
|
DDX3X coordinates host defense against influenza virus by activating the NLRP3 inflammasome and type I interferon response. J Biol Chem 2021; 296:100579. [PMID: 33766561 PMCID: PMC8081917 DOI: 10.1016/j.jbc.2021.100579] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 11/21/2022] Open
Abstract
Viruses and hosts have coevolved for millions of years, leading to the development of complex host-pathogen interactions. Influenza A virus (IAV) causes severe pulmonary pathology and is a recurrent threat to human health. Innate immune sensing of IAV triggers a complex chain of host responses. IAV has adapted to evade host defense mechanisms, and the host has coevolved to counteract these evasion strategies. However, the molecular mechanisms governing the balance between host defense and viral immune evasion is poorly understood. Here, we show that the host protein DEAD-box helicase 3 X-linked (DDX3X) is critical to orchestrate a multifaceted antiviral innate response during IAV infection, coordinating the activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, assembly of stress granules, and type I interferon (IFN) responses. DDX3X activated the NLRP3 inflammasome in response to WT IAV, which carries the immune evasive nonstructural protein 1 (NS1). However, in the absence of NS1, DDX3X promoted the formation of stress granules that facilitated efficient activation of type I IFN signaling. Moreover, induction of DDX3X-containing stress granules by external stimuli after IAV infection led to increased type I IFN signaling, suggesting that NS1 actively inhibits stress granule-mediated host responses and DDX3X-mediated NLRP3 activation counteracts this action. Furthermore, the loss of DDX3X expression in myeloid cells caused severe pulmonary pathogenesis and morbidity in IAV-infected mice. Together, our findings show that DDX3X orchestrates alternate modes of innate host defense which are critical to fight against NS1-mediated immune evasion strategies during IAV infection.
Collapse
|
27
|
Rajak P, Ganguly A, Sarkar S, Mandi M, Dutta M, Podder S, Khatun S, Roy S. Immunotoxic role of organophosphates: An unseen risk escalating SARS-CoV-2 pathogenicity. Food Chem Toxicol 2021; 149:112007. [PMID: 33493637 PMCID: PMC7825955 DOI: 10.1016/j.fct.2021.112007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Consistent gathering of immunotoxic substances on earth is a serious global issue affecting people under pathogenic stress. Organophosphates are among such hazardous compounds that are ubiquitous in nature. They fuel oxidative stress to impair antiviral immune response in living entities. Aside, organophosphates promote cytokine burst and pyroptosis in broncho-alveolar chambers leading to severe respiratory ailments. At present, we witness COVID-19 outbreak caused by SARS-CoV-2. Infection triggers cytokine storm coupled with inflammatory manifestations and pulmonary disorders in patients. Since organophosphate-exposure promotes necroinflammation and respiratory troubles hence during current pandemic situation, additional exposure to such chemicals can exacerbate inflammatory outcome and pulmonary maladies in patients, or pre-exposure to organophosphates might turn-out to be a risk factor for compromised immunity. Fortunately, antioxidants alleviate organophosphate-induced immunosuppression and hence under co-exposure circumstances, dietary intake of antioxidants would be beneficial to boost immunity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Abhratanu Ganguly
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India.
| | - Saurabh Sarkar
- Department of Zoology, Gushkara Mahavidyalaya, Gushkara, Purba Bardhaman, West Bengal, India.
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India.
| | - Moumita Dutta
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA.
| | - Sayanti Podder
- Post Graduate Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, India.
| | - Salma Khatun
- Department of Zoology, Krishna Chandra College, Hetampur, West Bengal, India.
| | - Sumedha Roy
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Belgium.
| |
Collapse
|
28
|
Michael Lavigne G, Russell H, Sherry B, Ke R. Autocrine and paracrine interferon signalling as 'ring vaccination' and 'contact tracing' strategies to suppress virus infection in a host. Proc Biol Sci 2021; 288:20203002. [PMID: 33622135 PMCID: PMC7935137 DOI: 10.1098/rspb.2020.3002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The innate immune response, particularly the interferon response, represents a first line of defence against viral infections. The interferon molecules produced from infected cells act through autocrine and paracrine signalling to turn host cells into an antiviral state. Although the molecular mechanisms of IFN signalling have been well characterized, how the interferon response collectively contribute to the regulation of host cells to stop or suppress viral infection during early infection remain unclear. Here, we use mathematical models to delineate the roles of the autocrine and the paracrine signalling, and show that their impacts on viral spread are dependent on how infection proceeds. In particular, we found that when infection is well-mixed, the paracrine signalling is not as effective; by contrast, when infection spreads in a spatial manner, a likely scenario during initial infection in tissue, the paracrine signalling can impede the spread of infection by decreasing the number of susceptible cells close to the site of infection. Furthermore, we argue that the interferon response can be seen as a parallel to population-level epidemic prevention strategies such as ‘contact tracing’ or ‘ring vaccination’. Thus, our results here may have implications for the outbreak control at the population scale more broadly.
Collapse
Affiliation(s)
- G Michael Lavigne
- Department of Mathematics, North Carolina State University, Raleigh, NC 27606, USA
| | - Hayley Russell
- Department of Mathematics, North Carolina State University, Raleigh, NC 27606, USA
| | - Barbara Sherry
- School of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Ruian Ke
- Department of Mathematics, North Carolina State University, Raleigh, NC 27606, USA.,T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
29
|
Mooij P, Stammes MA, Mortier D, Fagrouch Z, van Driel N, Verschoor EJ, Kondova I, Bogers WMJM, Koopman G. Aerosolized Exposure to H5N1 Influenza Virus Causes Less Severe Disease Than Infection via Combined Intrabronchial, Oral, and Nasal Inoculation in Cynomolgus Macaques. Viruses 2021; 13:v13020345. [PMID: 33671829 PMCID: PMC7926951 DOI: 10.3390/v13020345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Infection with highly pathogenic avian H5N1 influenza virus in humans often leads to severe respiratory disease with high mortality. Experimental infection in non-human primates can provide additional insight into disease pathogenesis. However, such a model should recapitulate the disease symptoms observed in humans, such as pneumonia and inflammatory cytokine response. While previous studies in macaques have demonstrated the occurrence of typical lesions in the lungs early after infection and a high level of immune activation, progression to severe disease and lethality were rarely observed. Here, we evaluated a routinely used combined route of infection via intra-bronchial, oral, and intra-nasal virus inoculation with aerosolized H5N1 exposure, with or without the regular collection of bronchoalveolar lavages early after infection. Both combined route and aerosol exposure resulted in similar levels of virus replication in nose and throat and similar levels of immune activation, cytokine, and chemokine release in the blood. However, while animals exposed to H5N1 by combined-route inoculation developed severe disease with high lethality, aerosolized exposure resulted in less lesions, as measured by consecutive computed tomography and less fever and lethal disease. In conclusion, not virus levels or immune activation, but route of infection determines fatal outcome for highly pathogenic avian H5N1 influenza infection.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Marieke A. Stammes
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands;
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Nikki van Driel
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.v.D.); (I.K.)
| | - Ernst J. Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Ivanela Kondova
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.v.D.); (I.K.)
| | - Willy M. J. M. Bogers
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
- Correspondence: ; Tel.: +31-152842761
| |
Collapse
|
30
|
Liu L, Shi F, Tu P, Chen C, Zhang M, Li X, Li C. Arbidol combined with the Chinese medicine Lianhuaqingwen capsule versus arbidol alone in the treatment of COVID-19. Medicine (Baltimore) 2021; 100:e24475. [PMID: 33530261 PMCID: PMC7850685 DOI: 10.1097/md.0000000000024475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/03/2021] [Indexed: 01/05/2023] Open
Abstract
To evaluate the antiviral effect and safety of arbidol and Lianhuaqingwen Capsule (LH) in treating patients with Coronavirus disease 2019 (COVID-19).108 patients with COVID-19 were divided into 2 groups, including 40 patients in the arbidol group and 68 patients in the arbidol + LH group. Patients in the arbidol + LH group received 200 mg of arbidol and 1400 mg of LH per 8 hour, and the arbidol group was given 200 mg arbidol per 8 hour. Blood routine examination, blood biochemistry detection, SARS-CoV-2 nucleic acid detection, and chest CT scans were performed to evaluate the clinical effects between the 2 groups.No statistically significant differences were observed between the 2 groups in terms of preoperative characteristics including the baseline characteristics, laboratory indicators, and chest CT. On day 7 after admission, patients in the arbidol + LH group showed a higher level of Lymphocytes count, and a lower level of serum amyloid A and C-reactive protein levels (P < .05). Moreover, the median time from admission to the first negative result of the SARS-CoV-2 nucleic acid detection was shorter in the arbidol + LH group (P < .05). Analysis based on CT scan results showed a better extinction of lung inflammation in the arbidol + LH group. No apparent side effects were found in both groups. No patients were transferred to the intensive care unit (ICU) treatment.Arbidol combined with LH treatment may be more effective in improving the prognosis and accelerating the SARS-CoV-2 clearance in patients with COVID-19.
Collapse
Affiliation(s)
- Lei Liu
- Department of Cardiology, Hubei No.3 People's Hospital of Jianghan University
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Pei Tu
- Department of Cardiology, Hubei No.3 People's Hospital of Jianghan University
| | - Chen Chen
- Department of Cardiology, Hubei No.3 People's Hospital of Jianghan University
| | - Ming Zhang
- Department of Cardiology, Hubei No.3 People's Hospital of Jianghan University
| | - Xiaoguang Li
- Department of Cardiology, Hubei No.3 People's Hospital of Jianghan University
| | - Chang Li
- Department of Cardiology, Hubei No.3 People's Hospital of Jianghan University
| |
Collapse
|
31
|
Gao R, Gu M, Shi L, Liu K, Li X, Wang X, Hu J, Liu X, Hu S, Chen S, Peng D, Jiao X, Liu X. N-linked glycosylation at site 158 of the HA protein of H5N6 highly pathogenic avian influenza virus is important for viral biological properties and host immune responses. Vet Res 2021; 52:8. [PMID: 33436086 PMCID: PMC7805195 DOI: 10.1186/s13567-020-00879-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Since 2014, clade 2.3.4.4 has become the dominant epidemic branch of the Asian lineage H5 subtype highly pathogenic avian influenza virus (HPAIV) in southern and eastern China, while the H5N6 subtype is the most prevalent. We have shown earlier that lack of glycosylation at position 158 of the hemagglutinin (HA) glycoprotein due to the T160A mutation is a key determinant of the dual receptor binding property of clade 2.3.4.4 H5NX subtypes. Our present study aims to explore other effects of this site among H5N6 viruses. Here we report that N-linked glycosylation at site 158 facilitated the assembly of virus-like particles and enhanced virus replication in A549, MDCK, and chicken embryonic fibroblast (CEF) cells. Consistently, the HA-glycosylated H5N6 virus induced higher levels of inflammatory factors and resulted in stronger pathogenicity in mice than the virus without glycosylation at site 158. However, H5N6 viruses without glycosylation at site 158 were more resistant to heat and bound host cells better than the HA-glycosylated viruses. H5N6 virus without glycosylation at this site triggered the host immune response mechanism to antagonize the viral infection, making viral pathogenicity milder and favoring virus spread. These findings highlight the importance of glycosylation at site 158 of HA for the pathogenicity of the H5N6 viruses.
Collapse
Affiliation(s)
- Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Liwei Shi
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiuli Li
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xinan Jiao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
32
|
Forbester JL, Humphreys IR. Genetic influences on viral-induced cytokine responses in the lung. Mucosal Immunol 2021; 14:14-25. [PMID: 33184476 PMCID: PMC7658619 DOI: 10.1038/s41385-020-00355-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Infection with respiratory viruses such as influenza, respiratory syncytial virus and coronavirus provides a difficult immunological challenge for the host, where a balance must be established between controlling viral replication and limiting damage to the delicate lung structure. Although the genetic architecture of host responses to respiratory viral infections is not yet understood, it is clear there is underlying heritability that influences pathogenesis. Immune control of virus replication is essential in respiratory infections, but overt activation can enhance inflammation and disease severity. Cytokines initiate antiviral immune responses but are implicated in viral pathogenesis. Here, we discuss how host genetic variation may influence cytokine responses to respiratory viral infections and, based on our current understanding of the role that cytokines play in viral pathogenesis, how this may influence disease severity. We also discuss how induced pluripotent stem cells may be utilised to probe the mechanistic implications of allelic variation in genes in virus-induced inflammatory responses. Ultimately, this could help to design better immune modulators, stratify high risk patients and tailor anti-inflammatory treatments, potentially expanding the ability to treat respiratory virus outbreaks in the future.
Collapse
Affiliation(s)
- Jessica L Forbester
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DS, UK.
| | - Ian R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
33
|
The influenza virus RNA polymerase as an innate immune agonist and antagonist. Cell Mol Life Sci 2021; 78:7237-7256. [PMID: 34677644 PMCID: PMC8532088 DOI: 10.1007/s00018-021-03957-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Influenza A viruses cause a mild-to-severe respiratory disease that affects millions of people each year. One of the many determinants of disease outcome is the innate immune response to the viral infection. While antiviral responses are essential for viral clearance, excessive innate immune activation promotes lung damage and disease. The influenza A virus RNA polymerase is one of viral proteins that affect innate immune activation during infection, but the mechanisms behind this activity are not well understood. In this review, we discuss how the viral RNA polymerase can both activate and suppress innate immune responses by either producing immunostimulatory RNA species or directly targeting the components of the innate immune signalling pathway, respectively. Furthermore, we provide a comprehensive overview of the polymerase residues, and their mutations, associated with changes in innate immune activation, and discuss their putative effects on polymerase function based on recent advances in our understanding of the influenza A virus RNA polymerase structure.
Collapse
|
34
|
Asha K, Khanna M, Kumar B. Current Insights into the Host Immune Response to Respiratory Viral Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:59-83. [PMID: 34661891 DOI: 10.1007/978-3-030-67452-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Respiratory viral infections often lead to severe illnesses varying from mild or asymptomatic upper respiratory tract infections to severe bronchiolitis and pneumonia or/and chronic obstructive pulmonary disease. Common viral infections, including but not limited to influenza virus, respiratory syncytial virus, rhinovirus and coronavirus, are often the leading cause of morbidity and mortality. Since the lungs are continuously exposed to foreign particles, including respiratory pathogens, it is also well equipped for recognition and antiviral defense utilizing the complex network of innate and adaptive immune cells. Immediately upon infection, a range of proinflammatory cytokines, chemokines and an interferon response is generated, thereby making the immune response a two edged sword, on one hand it is required to eliminate viral pathogens while on other hand it's prolonged response can lead to chronic infection and significant pulmonary damage. Since vaccines to all respiratory viruses are not available, a better understanding of the virus-host interactions, leading to the development of immune response, is critically needed to design effective therapies to limit the severity of inflammatory damage, enhance viral clearance and to compliment the current strategies targeting the virus. In this chapter, we discuss the host responses to common respiratory viral infections, the key players of adaptive and innate immunity and the fine balance that exists between the viral clearance and immune-mediated damage.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Madhu Khanna
- Department of Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Binod Kumar
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
35
|
Deep sequencing of the transcriptome from murine lung infected with H5N8 subtype avian influenza virus with combined substitutions I283M and K526R in PB2 gene. INFECTION GENETICS AND EVOLUTION 2020; 87:104672. [PMID: 33309772 DOI: 10.1016/j.meegid.2020.104672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 01/04/2023]
Abstract
H5N8 subtype highly pathogenic avian influenza viruses (HPAIVs) pose a huge threat to poultry industry and general public health. Our previous study demonstrated that synergistic effect of 283M and 526R in PB2 gene was a critical factor for viral high pathogenicity in mammals. However, the potential pathogenic mechanism of the mutant virus is still unclear. Here, RNA-seq method was used to analyze the global host response of murine lungs after infecting with parental r-JY virus and JY-PB2-I283M-K526R mutant virus. We found that both amounts and the expression levels of host differentially expressed genes (DEGs) were higher in mutant virus-infected mice compared with the group of parental virus. Furthermore, the DEGs mainly related with innate immune response by GO and KEGG analysis. Especially, PB2-I283M-K526R mutation strongly induced a sharp expression of cytokine storm-related genes, including MX1, CXCL10, and IFN-γ, performed by qRT-PCR. We also found that PB2-I283M-K526R mutation accelerated the level of cell apoptosis by heat map analysis of apoptosis-related DEGs in lungs and apoptosis assay in vitro. Taken together, our data demonstrated that PB2-I283M-K526R of H5N8 subtype HPAIV exacerbated the innate immune response and the level of cell apoptosis, which might be a key pathogenic mechanism for the enhanced pathogenicity of mutants in mammals.
Collapse
|
36
|
Mooij P, Mortier D, Stammes M, Fagrouch Z, Verschoor EJ, Bogers WMJM, Koopman G. Aerosolized pH1N1 influenza infection induces less systemic and local immune activation in the lung than combined intrabronchial, nasal and oral exposure in cynomolgus macaques. J Gen Virol 2020; 101:1229-1241. [PMID: 32975505 DOI: 10.1099/jgv.0.001489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Non-human primates form an important animal model for the evaluation of immunogenicity and efficacy of novel 'universal' vaccine candidates against influenza virus. However, in most studies a combination of intra-tracheal or intra-bronchial, oral and nasal virus inoculation is used with a standard virus dose of between 1 and 10 million tissue culture infective doses, which differs from typical modes of virus exposure in humans. This paper studies the systemic and local inflammatory and immune effects of aerosolized versus combined-route exposure to pandemic H1N1 influenza virus. In agreement with a previous study, both combined-route and aerosol exposure resulted in similar levels of virus replication in nose, throat and lung lavages. However, the acute release of pro-inflammatory cytokines and chemokines, acute monocyte activation in peripheral blood as well as increased cytokine production and T-cell proliferation in the lungs were only observed after combined-route infection and not after aerosol exposure. Longitudinal evaluation by computed tomography demonstrated persistence of lung lesions after resolution of the infection and a tendency for more lesions in the lower lung lobes after combined-route exposure versus upper and middle lung lobes after aerosol exposure. Computed tomography scores were observed to correlate with fever. In conclusion, influenza virus infection by aerosol exposure is accompanied by less immune-activation and inflammation in comparison with direct virus installation, despite similar levels of virus replication and development of lesions in the lungs.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Marieke Stammes
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Willy M J M Bogers
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
37
|
Modelling within-host macrophage dynamics in influenza virus infection. J Theor Biol 2020; 508:110492. [PMID: 32966828 DOI: 10.1016/j.jtbi.2020.110492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
Human respiratory disease associated with influenza virus infection is of significant public health concern. Macrophages, as part of the front line of host innate cellular defence, have been shown to play an important role in controlling viral replication. However, fatal outcomes of infection, as evidenced in patients infected with highly pathogenic viral strains, are often associated with prompt activation and excessive accumulation of macrophages. Activated macrophages can produce a large amount of pro-inflammatory cytokines, which leads to severe symptoms and at times death. However, the mechanism for rapid activation and excessive accumulation of macrophages during infection remains unclear. It has been suggested that the phenomena may arise from complex interactions between macrophages and influenza virus. In this work, we develop a novel mathematical model to study the relationship between the level of macrophage activation and the level of viral load in influenza infection. Our model combines a dynamic model of viral infection, a dynamic model of macrophages and the essential interactions between the virus and macrophages. Our model predicts that the level of macrophage activation can be negatively correlated with the level of viral load when viral infectivity is sufficiently high. We further identify that temporary depletion of resting macrophages in response to viral infection is a major driver in our model for the negative relationship between the level of macrophage activation and viral load, providing new insight into the mechanisms that regulate macrophage activation. Our model serves as a framework to study the complex dynamics of virus-macrophage interactions and provides a mechanistic explanation for existing experimental observations, contributing to an enhanced understanding of the role of macrophages in influenza viral infection.
Collapse
|
38
|
Rioux M, McNeil M, Francis ME, Dawe N, Foley M, Langley JM, Kelvin AA. The Power of First Impressions: Can Influenza Imprinting during Infancy Inform Vaccine Design? Vaccines (Basel) 2020; 8:E546. [PMID: 32961707 PMCID: PMC7563765 DOI: 10.3390/vaccines8030546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Influenza virus infection causes severe respiratory illness in people worldwide, disproportionately affecting infants. The immature respiratory tract coupled with the developing immune system, and lack of previous exposure to the virus is thought to synergistically play a role in the increased disease severity in younger age groups. No influenza vaccines are available for those under six months, although maternal influenza immunization is recommended. In children aged six months to two years, vaccine immunogenicity is dampened compared to older children and adults. Unlike older children and adults, the infant immune system has fewer antigen-presenting cells and soluble immune factors. Paradoxically, we know that a person's first infection with the influenza virus during infancy or childhood leads to the establishment of life-long immunity toward that particular virus strain. This is called influenza imprinting. We contend that by understanding the influenza imprinting event in the context of the infant immune system, we will be able to design more effective influenza vaccines for both infants and adults. Working through the lens of imprinting, using infant influenza animal models such as mice and ferrets which have proven useful for infant immunity studies, we will gain a better understanding of imprinting and its implications regarding vaccine design. This review examines literature regarding infant immune and respiratory development, current vaccine strategies, and highlights the importance of research into the imprinting event in infant animal models to develop more effective and protective vaccines for all including young children.
Collapse
Affiliation(s)
- Melissa Rioux
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.); (M.M.); (M.E.F.); (N.D.); (M.F.)
| | - Mara McNeil
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.); (M.M.); (M.E.F.); (N.D.); (M.F.)
| | - Magen E. Francis
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.); (M.M.); (M.E.F.); (N.D.); (M.F.)
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), Saskatoon, SK S7N 5E3, Canada
| | - Nicholas Dawe
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.); (M.M.); (M.E.F.); (N.D.); (M.F.)
| | - Mary Foley
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.); (M.M.); (M.E.F.); (N.D.); (M.F.)
| | - Joanne M. Langley
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada;
- The Canadian Center for Vaccinology (IWK Health Centre, Dalhousie University and the Nova Scotia Health Authority), Halifax, NS B3K 6R8, Canada
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Alyson A. Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.); (M.M.); (M.E.F.); (N.D.); (M.F.)
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), Saskatoon, SK S7N 5E3, Canada
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada;
- The Canadian Center for Vaccinology (IWK Health Centre, Dalhousie University and the Nova Scotia Health Authority), Halifax, NS B3K 6R8, Canada
| |
Collapse
|
39
|
Zhang N, Zhu L, Zhang Y, Zhou C, Song R, Yang X, Huang L, Xiong S, Huang X, Xu F, Wang Y, Wan G, Chen Z, Li A, Zhan Q, Zeng H. Circulating Rather Than Alveolar Extracellular Deoxyribonucleic Acid Levels Predict Outcomes in Influenza. J Infect Dis 2020; 222:1145-1154. [PMID: 32436580 DOI: 10.1093/infdis/jiaa241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/05/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND High levels of circulating neutrophil extracellular traps (NETs) are associated with a poor prognosis in influenza A infection. It remains unclear whether NETs in the plasma or bronchoalveolar lavage fluid (BALF) can predict clinical outcomes in influenza. METHODS One hundred eighteen patients who were diagnosed with H1N1 influenza in 2017-2018 were recruited. The NETs were assessed in plasma and BALF samples by quantifying cell-free deoxyribonucleic acid (cfDNA) and protein-DNA complexes. Predictions of severe illness and 60-day mortality were analyzed with receiver operating characteristic curves. RESULTS The NET levels were significantly elevated in the BALF and contributed to the pathology of lungs, yet it was not associated with disease severity or mortality in patients severely infected with H1N1. Plasma NET levels were significantly increased in the patients with severe influenza and positively correlated with the oxygen index and sequential organ failure assessment scores. High levels of plasma cfDNA (>286.6 ng/mL) or histone-bound DNA (>9.4 ng/mL) discriminated severe influenza from mild, and even higher levels of cfDNA (>306.3 ng/mL) or histone-bound DNA (>23.1 ng/mL) predicted fatal outcomes in severely ill patients. CONCLUSIONS The cfDNA and histone-bound DNA in plasma represent early predictive biomarkers for the prognosis of influenza.
Collapse
Affiliation(s)
- Nannan Zhang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Liuluan Zhu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yue Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Chun Zhou
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Song
- The National Clinical Key Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Yang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Linna Huang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Shuyu Xiong
- Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Xu Huang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Fei Xu
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Gang Wan
- Statistics Room, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhihai Chen
- The National Clinical Key Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Intensive Care Unit, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qingyuan Zhan
- Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| |
Collapse
|
40
|
Frank K, Paust S. Dynamic Natural Killer Cell and T Cell Responses to Influenza Infection. Front Cell Infect Microbiol 2020; 10:425. [PMID: 32974217 PMCID: PMC7461885 DOI: 10.3389/fcimb.2020.00425] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses have perplexed scientists for over a hundred years. Yearly vaccines limit their spread, but they do not prevent all infections. Therapeutic treatments for those experiencing severe infection are limited; further advances are held back by insufficient understanding of the fundamental immune mechanisms responsible for immunopathology. NK cells and T cells are essential in host responses to influenza infection. They produce immunomodulatory cytokines and mediate the cytotoxic response to infection. An imbalance in NK and T cell responses can lead to two outcomes: excessive inflammation and tissue damage or insufficient anti-viral functions and uncontrolled infection. The main cause of death in influenza patients is the former, mediated by hyperinflammatory responses termed “cytokine storm.” NK cells and T cells contribute to cytokine storm, but they are also required for viral clearance. Many studies have attempted to distinguish protective and pathogenic components of the NK cell and T cell influenza response, but it has become clear that they are dynamic and integrated processes. This review will analyze how NK cell and T cell effector functions during influenza infection affect the host response and correlate with morbidity and mortality outcomes.
Collapse
Affiliation(s)
- Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
41
|
Zhao D, Yao F, Wang L, Zheng L, Gao Y, Ye J, Guo F, Zhao H, Gao R. A Comparative Study on the Clinical Features of Coronavirus 2019 (COVID-19) Pneumonia With Other Pneumonias. Clin Infect Dis 2020; 71:756-761. [PMID: 32161968 PMCID: PMC7108162 DOI: 10.1093/cid/ciaa247] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background A novel coronavirus (2019-nCoV) has raised world concern since it emerged in Wuhan Hubei China in December, 2019. The infection may result into severe pneumonia with clusters illness onsets. Its impacts on public health make it paramount to clarify the clinical features with other pneumonias. Methods Nineteen 2019-nCoV pneumonia (NCOVID-19) and fifteen other pneumonia patients (NON-NCOVID-19) in out of Hubei places were involved in this study. Both NCOVID-19 and NON-NCOVID-19 patients were confirmed to be infected in throat swabs or/and sputa with or without 2019-nCoV by real-time RT-PCR. We analyzed the demographic, epidemiological, clinical, and radiological features from those patients, and compared the difference between NCOVID-19 and NON-NCOVID-19. Results All patients had a history of exposure to confirmed case of 2019-nCoV or travel to Hubei before illness. The median duration, respectively, was 8 (IQR:6~11) and 5 (IQR:4~11) days from exposure to onset in NCOVID-19 and NON-NCOVID-19. The clinical symptoms were similar between NCOVID-19 and NON-NCOVID-19. The most common symptoms were fever and cough. Fifteen (78.95%) NCOVID-19 but 4 (26.67%) NON-NCOVID-19 patients had bilateral involvement while 17 (89.47%) NCOVID-19 but 1 (6.67%) NON-NCOVID-19 patients had multiple mottling and ground-glass opacity of chest CT images. Compared to NON-NCOVID-19, NCOVID-19 present remarkably more abnormal laboratory tests including AST, ALT, γ-GT, LDH and α-HBDH. Conclusion The 2019-nCoV infection caused similar onsets to other pneumonias. CT scan may be a reliable test for screening NCOVID-19 cases. Liver function damage is more frequent in NCOVID-19 than NON-NCOVID-19 patients. LDH and α-HBDH may be considerable markers for evaluation of NCOVID-19.
Collapse
Affiliation(s)
- Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Feifei Yao
- Department of Respiratory Medicine, Suzhou Municipal Hospital, Suzhou, Anhui, China
| | - Lijie Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ling Zheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yongjun Gao
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Ye
- Infectious Disease Department, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Feng Guo
- Department of Respiratory Medicine, Suzhou Municipal Hospital, Suzhou, Anhui, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Rongbao Gao
- NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
42
|
Shen CF, Ho TS, Wang SM, Liao YT, Hu YS, Tsai HP, Chen SH. The cellular immunophenotype expression of influenza A virus and influenza B virus infection in children. Clin Immunol 2020; 219:108548. [PMID: 32735869 DOI: 10.1016/j.clim.2020.108548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The innate immune response is the primary defense against influenza virus infection. METHODS This is a prospective study carried out in children <18 years of age who were diagnosed with influenza A or influenza B infection. Demographic and clinical data, laboratory findings and cell immunophenotypes on first presentation were compared. RESULTS With respect to immunophenotype, influenza A infection resulted in a higher fraction of CD14+ and CD4+IL-17A+cells compared to children infected with influenza B. By contrast, influenza B infection resulted in a comparatively higher percentage of double-negative CD4-CD8- lymphocyte subsets. Influenza A infection was associated with comparatively higher percentages of CD4+CD25highFoxp3+ and CD4+CD25lowFoxp3+ cells. By contrast, the percentage of CD8+CD25high and CD8+CD25low cells was similar among patients with influenza A infection and influenza B infection. CONCLUSIONS An improved understanding of the fraction of regulatory T cells with influenza virus infections may provide further understandings on immune responses.
Collapse
Affiliation(s)
- Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan
| | - Shih-Min Wang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan.
| | - Yu-Ting Liao
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan
| | - Yu-Shiang Hu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Shun-Hua Chen
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan; Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
43
|
Androgen receptor signaling in the lungs mitigates inflammation and improves the outcome of influenza in mice. PLoS Pathog 2020; 16:e1008506. [PMID: 32645119 PMCID: PMC7373319 DOI: 10.1371/journal.ppat.1008506] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/21/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023] Open
Abstract
Circulating androgens can modulate immune cell activity, but the impact of androgens on viral pathogenesis remains unclear. Previous data demonstrate that testosterone reduces the severity of influenza A virus (IAV) infection in male mice by mitigating pulmonary inflammation rather than by affecting viral replication. To examine the immune responses mediated by testosterone to mitigate IAV-induced inflammation, adult male mice remained gonadally intact or were gonadectomized and treated with either placebo or androgen-filled (i.e., testosterone or dihydrotestosterone) capsules prior to sublethal IAV infection. Like intact males, treatment of gonadectomized males with androgens improved the outcome of IAV infection, which was not mediated by changes in the control of virus replication or pulmonary cytokine activity. Instead, androgens accelerated pulmonary leukocyte contraction to limit inflammation. To identify which immune cells were contracting in response to androgens, the composition of pulmonary cellular infiltrates was analyzed and revealed that androgens specifically accelerated the contraction of total pulmonary inflammatory monocytes during peak disease, as well as CD8+ T cells, IAV-specific CD8+ T numbers, cytokine production and degranulation by IAV-specific CD8+ T cells, and the influx of eosinophils into the lungs following clearance of IAV. Neither depletion of eosinophils nor adoptive transfer of CD8+ T cells could reverse the ability of testosterone to protect males against IAV suggesting these were secondary immunologic effects. The effects of testosterone on the contraction of immune cell numbers and activity were blocked by co-administration of the androgen receptor antagonist flutamide and mimicked by treatment with dihydrotestosterone, which was also able to reduce the severity of IAV in female mice. These data suggest that androgen receptor signaling creates a local pulmonary environment that promotes downregulation of detrimental inflammatory immune responses to protect against prolonged influenza disease.
Collapse
|
44
|
Kandasamy M, Furlong K, Perez JT, Manicassamy S, Manicassamy B. Suppression of Cytotoxic T Cell Functions and Decreased Levels of Tissue-Resident Memory T Cells during H5N1 Infection. J Virol 2020; 94:e00057-20. [PMID: 32075925 PMCID: PMC7163117 DOI: 10.1128/jvi.00057-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Seasonal influenza virus infections cause mild illness in healthy adults, as timely viral clearance is mediated by the functions of cytotoxic T cells. However, avian H5N1 influenza virus infections can result in prolonged and fatal illness across all age groups, which has been attributed to the overt and uncontrolled activation of host immune responses. Here, we investigate how excessive innate immune responses to H5N1 impair subsequent adaptive T cell responses in the lungs. Using recombinant H1N1 and H5N1 strains sharing 6 internal genes, we demonstrate that H5N1 (2:6) infection in mice causes higher stimulation and increased migration of lung dendritic cells to the draining lymph nodes, resulting in greater numbers of virus-specific T cells in the lungs. Despite robust T cell responses in the lungs, H5N1 (2:6)-infected mice showed inefficient and delayed viral clearance compared with H1N1-infected mice. In addition, we observed higher levels of inhibitory signals, including increased PD-1 and interleukin-10 (IL-10) expression by cytotoxic T cells in H5N1 (2:6)-infected mice, suggesting that delayed viral clearance of H5N1 (2:6) was due to the suppression of T cell functions in vivo Importantly, H5N1 (2:6)-infected mice displayed decreased numbers of tissue-resident memory T cells compared with H1N1-infected mice; however, despite the decreased number of tissue-resident memory T cells, H5N1 (2:6) was protected against a heterologous challenge from H3N2 virus (X31). Taken together, our study provides mechanistic insight for the prolonged viral replication and protracted illness observed in H5N1-infected patients.IMPORTANCE Influenza viruses cause upper respiratory tract infections in humans. In healthy adults, seasonal influenza virus infections result in mild disease. Occasionally, influenza viruses endemic in domestic birds can cause severe and fatal disease even in healthy individuals. In avian influenza virus-infected patients, the host immune system is activated in an uncontrolled manner and is unable to control infection in a timely fashion. In this study, we investigated why the immune system fails to effectively control a modified form of avian influenza virus. Our studies show that T cell functions important for clearing virally infected cells are impaired by higher negative regulatory signals during modified avian influenza virus infection. In addition, memory T cell numbers were decreased in modified avian influenza virus-infected mice. Our studies provide a possible mechanism for the severe and prolonged disease associated with avian influenza virus infections in humans.
Collapse
Affiliation(s)
| | - Kevin Furlong
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jasmine T Perez
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
45
|
Momota M, Lelliott P, Kubo A, Kusakabe T, Kobiyama K, Kuroda E, Imai Y, Akira S, Coban C, Ishii KJ. ZBP1 governs the inflammasome-independent IL-1α and neutrophil inflammation that play a dual role in anti-influenza virus immunity. Int Immunol 2020; 32:203-212. [PMID: 31630209 PMCID: PMC10689344 DOI: 10.1093/intimm/dxz070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/17/2019] [Indexed: 11/14/2022] Open
Abstract
Influenza A virus (IAV) triggers the infected lung to produce IL-1 and recruit neutrophils. Unlike IL-1β, however, little is known about IL-1α in terms of its mechanism of induction, action and physiological relevance to the host immunity against IAV infection. In particular, whether Z-DNA-binding protein 1 (ZBP1), a key molecule for IAV-induced cell death, is involved in the IL-1α induction, neutrophil infiltration and the physiological outcome has not been elucidated. Here, we show in a murine model that the IAV-induced IL-1α is mediated solely by ZBP1, in an NLRP3-inflammasome-independent manner, and is required for the optimal IL-1β production followed by the formation of neutrophil extracellular traps (NETs). During IAV infection, ZBP1 displays a dual role in anti-IAV immune responses mediated by neutrophils, resulting in either protective or pathological outcomes in vivo. Thus, ZBP1-mediated IL-1α production is the key initial step of IAV-infected NETs, regulating the duality of the consequent lung inflammation.
Collapse
Affiliation(s)
- Masatoshi Momota
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Patrick Lelliott
- Malaria Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Atsuko Kubo
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takato Kusakabe
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Etsushi Kuroda
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | - Yumiko Imai
- Laboratory of Regulation of Intractable Infectious Diseases, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Shizuo Akira
- Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Cevayir Coban
- Malaria Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Malaria Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research Center (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Lin YT, Lin CF, Yeh TH. Influenza A virus infection induces indoleamine 2,3-dioxygenase (IDO) expression and modulates subsequent inflammatory mediators in nasal epithelial cells. Acta Otolaryngol 2020; 140:149-156. [PMID: 31852346 DOI: 10.1080/00016489.2019.1700304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Nasal epithelial cells are the first site of encounter of the influenza virus, and their innate immune response might define subsequent inflammatory direction.Aims/objectives: We used metabolomics analysis to identify metabolic changes and the regulation of inflammatory cytokines in nasal epithelial cells upon influenza virus infection.Material and methods: We cultured nasal epithelial cells using air-liquid interface (ALI) model. Influenza virus (PR8) infection followed by metabolomic analysis was performed. Furthermore, cytokine expression was analyzed by cytokine array and RT-qPCR.Results: Metabolomic analysis revealed depletion of the tryptophan and accumulation of its metabolite, kynurenine, within 48 h. The major enzyme involved in the tryptophan metabolic pathway, indoleamine 2,3-dioxygenase (IDO), was overexpressed after infection. Cytokine expression array after infection showed increased levels of IL-1α, CCL2, IL-6, CXCL10, CCL5, and CXCL11, and after using 1-methyltryptophan (1-MT) as inhibitor, the expression levels of IL-6 and G-CSF were reduced.Conclusions and significance: Viral infection results in depletion of tryptophan and accumulation of kynurenine via increased cellular IDO activity. Inhibition of IDO activity or replenishment of tryptophan by local application may be a good therapeutic strategy for limiting the initial damage caused by influenza virus in nasal epithelial cells.
Collapse
Affiliation(s)
- Yi-Tsen Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate School of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Feng Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Te-Huei Yeh
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Turianová L, Lachová V, Svetlíkova D, Kostrábová A, Betáková T. Comparison of cytokine profiles induced by nonlethal and lethal doses of influenza A virus in mice. Exp Ther Med 2019; 18:4397-4405. [PMID: 31777543 PMCID: PMC6862669 DOI: 10.3892/etm.2019.8096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Influenza viruses are among the most common human pathogens and are responsible for causing extensive seasonal morbidity and mortality. To investigate the immunological factors associated with severe influenza infection, the immune responses in mice infected with nonlethal (LD0) doses of A/PR/8/34 (H1N1) influenza virus were compared with those of mice infected with a lethal dose (LD100) of the virus. The virus titer and activation of retinoic acid-inducible gene (RIG)-I-like receptor signaling pathways were similar in the mice infected with LD0 and LD100 at 2 days post-infection; however, mice infected with LD100 exhibited a greater abundance of cytokines and a more diverse cytokine profile. Infection with LD100 induced the expression of the following factors: Interleukins (ILs), IL-4, IL-7, IL-10, IL-11, IL-12p40, IL-13 and IL-15; inflammatory chemokines, C-C motif chemokine ligand (CCL)2, CCL3/4, CCL12, CCL17, CCL19; and lung injury-associated cytokines, leptin, leukaemia inhibitory factor, macrophage colony stimulating factor, pentraxin (PTX)2 and PTX3, WNT1-inducible-signaling pathway protein 1, matrix metallopeptidase (MMP)-2, MMP-3, proprotein convertase subtilisin/kexin type 9, and T cell immunoglobulin and mucin domain. Switching in macrophage polarization from M1 to M2 was evidenced by the increase in M2 markers, including arginase-1 (Arg1) and early growth response protein 2 (Egr2), in the lungs of mice infected with LD100. Since IL-12 and interferon-γ are the major T helper (Th)1 cytokines, increased expression of interferon regulatory factor 4, IL-4, IL-10 and IL-13 promoted the differentiation of naïve CD4+ T cells into Th2 cells. In conclusion, the present study identified key cytokines involved in the pathogenicity of influenza infection, and demonstrated that lethal influenza virus infection induces a mixed Th1/Th2 response.
Collapse
Affiliation(s)
- Lucia Turianová
- Biomedical Research Center-Slovak Academy of Sciences, Institute of Virology, 84505 Bratislava, Slovak Republic
| | - Veronika Lachová
- Biomedical Research Center-Slovak Academy of Sciences, Institute of Virology, 84505 Bratislava, Slovak Republic
| | - Darina Svetlíkova
- Biomedical Research Center-Slovak Academy of Sciences, Institute of Virology, 84505 Bratislava, Slovak Republic
| | - Anna Kostrábová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovak Republic
| | - Tatiana Betáková
- Biomedical Research Center-Slovak Academy of Sciences, Institute of Virology, 84505 Bratislava, Slovak Republic.,Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovak Republic
| |
Collapse
|
48
|
Kim EH, Kim SW, Park SJ, Kim S, Yu KM, Kim SG, Lee SH, Seo YK, Cho NH, Kang K, Soung DY, Choi YK. Greater Efficacy of Black Ginseng (CJ EnerG) over Red Ginseng against Lethal Influenza A Virus Infection. Nutrients 2019; 11:nu11081879. [PMID: 31412594 PMCID: PMC6723933 DOI: 10.3390/nu11081879] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/28/2023] Open
Abstract
Black ginseng (BG, CJ EnerG), prepared via nine repeated cycles of steaming and drying of fresh ginseng, contains more accessible acid polysaccharides and smaller and less polar ginsenosides than red ginseng (RG) processed only once. Because RG exhibits the ability to increase host protection against viral respiratory infections, we investigated the antiviral effects of BG. Mice were orally administered either BG or RG extract at 10 mg/kg bw daily for two weeks. Mice were then infected with a A(H1N1) pdm09 (A/California/04/2009) virus and fed extracts for an additional week. Untreated, infected mice were assigned to either the negative control, without treatments, or the positive control, treated with Tamiflu. Infected mice were monitored for 14 days to determine the survival rate. Lung tissues were evaluated for virus titer and by histological analyses. Cytokine levels were measured in bronchoalveolar lavage fluid. Mice treated with BG displayed a 100% survival rate against infection, while mice treated with RG had a 50% survival rate. Further, mice treated with BG had fewer accumulated inflammatory cells in bronchioles following viral infection than did mice treated with RG. BG also enhanced the levels of GM-CSF and IL-10 during the early and late stages of infection, respectively, compared to RG. Thus, BG may be useful as an alternative antiviral adjuvant to modulate immune responses to influenza A virus.
Collapse
Affiliation(s)
- Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Son-Woo Kim
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Semi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | | | - Seung Hun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Yong-Ki Seo
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Nam-Hoon Cho
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Kimoon Kang
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Do Y Soung
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea.
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea.
- ID Bio Corporation, Cheongju 28370, Korea.
| |
Collapse
|
49
|
Huang Y, Dai H, Ke R. Principles of Effective and Robust Innate Immune Response to Viral Infections: A Multiplex Network Analysis. Front Immunol 2019; 10:1736. [PMID: 31396233 PMCID: PMC6667926 DOI: 10.3389/fimmu.2019.01736] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The human innate immune response, particularly the type-I interferon (IFN) response, is highly robust and effective first line of defense against virus invasion. IFN molecules are produced and secreted from infected cells upon virus infection and recognition. They then act as signaling/communication molecules to activate an antiviral response in neighboring cells so that those cells become refractory to infection. Previous experimental studies have identified the detailed molecular mechanisms for the IFN signaling and response. However, the principles underlying how host cells use IFN to communicate with each other to collectively and robustly halt an infection is not understood. Here we take a multiplex network modeling approach to provide a theoretical framework to identify key factors that determine the effectiveness of the IFN response against virus infection of a host. In this approach, we consider the virus spread among host cells and the interferon signaling to protect host cells as a competition process on a two-layer multiplex network. We focused on two types of network topology, i.e., the Erdős-Rényi (ER) network and the Geometric Random (GR) network, which represent the scenarios when infection of cells is mostly well mixed (e.g., in the blood) and when infection is spatially segregated (e.g., in tissues), respectively. We show that in general, the IFN response works effectively to stop viral infection when virus infection spreads spatially (a most likely scenario for initial virus infection of a host at the peripheral tissue). Importantly, we show that the effectiveness of the IFN response is robust against large variations in the distance of IFN diffusion as long as IFNs diffuse faster than viruses and they can effectively induce antiviral responses in susceptible host cells. This suggests that the effectiveness of the IFN response is insensitive to the specific arrangement of host cells in peripheral tissues. Thus, our work provides a quantitative explanation of why the IFN response can serve an effective and robust response in different tissue types to a wide range of viral infections of a host.
Collapse
Affiliation(s)
- Yufan Huang
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - Huaiyu Dai
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - Ruian Ke
- Department of Mathematics, North Carolina State University, Raleigh, NC, United States.,T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
50
|
Freer G, Maggi F, Pistello M. Virome and Inflammasomes, a Finely Tuned Balance with Important Consequences for the Host Health. Curr Med Chem 2019; 26:1027-1044. [PMID: 28982318 DOI: 10.2174/0929867324666171005112921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/06/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The virome is a network of viruses normally inhabiting humans. It forms a conspicuous portion of the so-called microbiome, once generically referred to as resident flora. Indeed, viruses infecting humans without leading to clinical disease are increasingly recognized as part of the microbiome and have an impact on the development of our immune system. In addition, they activate inflammasomes, multiprotein complexes that assemble in cells and that are responsible for the downstream effects of sensing pathogens. OBJECTIVE This review aims at summarizing the evidence on the role of the virome in modulating inflammation and emphasizes evidence for Anelloviruses as useful molecular markers to monitor inflammatory processes and immune system competence. METHOD We carried out a review of the literature published in the last 5 years and summarized older literature to take into account ground-breaking discoveries concerning inflammasome assembly and virome. RESULTS A massive amount of data recently emerging demonstrate that the microbiome closely reflects what we eat, and many other unexpected variables. Composition, location, and amount of the microbiome have an impact on innate and adaptive immune defences. Viruses making up the virome contribute to shaping the immune system. Anelloviruses, the best known of such viruses, are present in most human beings, persistently without causing apparent disease. Depending on their interplay with such viruses, inflammasomes instruct host defences to tolerate or forfeit a specific microorganism. CONCLUSION The virome plays an important role in shaping human immune defences and contributes to inflammatory processes by quenching or increasing them.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | | | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|