1
|
Cantrell R, Feldman HA, Rosenfeldt L, Ali A, Gourley B, Sprague C, Leino D, Crosby J, Revenko A, Monia B, Waggoner SN, Palumbo JS. Prothrombin prevents fatal T cell-dependent anemia during chronic virus infection of mice. JCI Insight 2025; 10:e181063. [PMID: 39820014 PMCID: PMC11949038 DOI: 10.1172/jci.insight.181063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025] Open
Abstract
Thrombin promotes the proliferation and function of CD8+ T cells. To test if thrombin prevents exhaustion and sustains antiviral T cell activity during chronic viral infection, we depleted the thrombin-precursor prothrombin to 10% of normal levels in mice prior to infection with the clone 13 strain of lymphocytic choriomeningitis virus. Unexpectedly, prothrombin insufficiency resulted in 100% mortality after infection that was prevented by depletion of CD8+ T cells, suggesting that reduced availability of prothrombin enhances virus-induced immunopathology. Yet, the number, function, and apparent exhaustion of virus-specific T cells were measurably unaffected by prothrombin depletion. Histological analysis of the lung, heart, liver, kidney, spleen, intestine, and brain did not reveal any evidence of hemorrhage or increased tissue damage in mice with low levels of prothrombin that could explain mortality. Viral loads were also similar in infected mice regardless of prothrombin levels. Instead, infection of prothrombin-depleted mice resulted in a severe, T cell-dependent anemia associated with increased hemolysis. Thus, thrombin plays an unexpected protective role in preventing hemolytic anemia during virus infection, with potential implications for patients who are using direct thrombin inhibitors as an anticoagulant therapy.
Collapse
Affiliation(s)
- Rachel Cantrell
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - H. Alex Feldman
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Leah Rosenfeldt
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ayad Ali
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Benjamin Gourley
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Cassandra Sprague
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Daniel Leino
- Division of Pathology, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jeff Crosby
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | - Brett Monia
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Stephen N. Waggoner
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Joseph S. Palumbo
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Shaabani N, Zak J, Johnson JL, Huang Z, Nguyen N, Lazar DC, Vartabedian VF, Honke N, Jardine JG, Woehl J, Prinz M, Knobeloch KP, Arimoto KI, Zhang DE, Catz SD, Teijaro JR. ISG15 Drives Immune Pathology and Respiratory Failure during Systemic Lymphocytic Choriomeningitis Virus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1811-1824. [PMID: 39495004 PMCID: PMC11784630 DOI: 10.4049/jimmunol.2400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024]
Abstract
ISG15, an IFN-stimulated gene, plays a crucial role in modulating immune responses during viral infections. Its upregulation is part of the host's defense mechanism against viruses, contributing to the antiviral state of cells. However, altered ISG15 expression can also lead to immune dysregulation and pathological outcomes, particularly during persistent viral infections. Understanding the balance of ISG15 in promoting antiviral immunity while avoiding immune-mediated pathology is essential for developing targeted therapeutic interventions against viral diseases. In this article, using Usp18-deficient, USP18 enzymatic-inactive and Isg15-deficient mouse models, we report that a lack of USP18 enzymatic function during persistent viral infection leads to severe immune pathology characterized by hematological disruptions described by reductions in platelets, total WBCs, and lymphocyte counts; pulmonary cytokine amplification; lung vascular leakage; and death. The lack of Usp18 in myeloid cells mimicked the pathological manifestations observed in Usp18-/- mice and required Isg15. Mechanistically, interrupting the enzymes that conjugate/deconjugate ISG15, using Uba7-/- or Usp18C61A mice, respectively, led to accumulation of ISG15 that was accompanied by inflammatory neutrophil accumulation, lung pathology, and death similar to that observed in Usp18-deficient mice. Moreover, myeloid cell depletion reversed pathological manifestations, morbidity, and mortality in Usp18C61A mice. Our results suggest that dysregulated ISG15 production and signaling during persistent lymphocytic choriomeningitis virus infection can produce lethal immune pathology and could serve as a therapeutic target during severe viral infections with pulmonary pathological manifestations.
Collapse
Affiliation(s)
- Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Zhe Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Nhan Nguyen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Daniel C Lazar
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Vincent F Vartabedian
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Nadine Honke
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Joseph G Jardine
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jordan Woehl
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA
- Department of Pathology, University of California San Diego, La Jolla, CA
- Division of Biological Science, University of California San Diego, La Jolla, CA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
3
|
Gadina M, O'Shea JJ. JAKing up immunity. Science 2024; 384:1303-1304. [PMID: 38900897 DOI: 10.1126/science.adq1717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Janus kinase (JAK) inhibitors improve antitumor responses.
Collapse
Affiliation(s)
- Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, NIAMS, NIH, Bethesda, MD, USA
| |
Collapse
|
4
|
Hashizume M, Takashima A, Iwasaki M. An mRNA-LNP-based Lassa virus vaccine induces protective immunity in mice. J Virol 2024; 98:e0057824. [PMID: 38767352 PMCID: PMC11237644 DOI: 10.1128/jvi.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.
Collapse
Affiliation(s)
- Mei Hashizume
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ayako Takashima
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, Japan
- RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication 2024; 16:032008. [PMID: 38749416 PMCID: PMC11151171 DOI: 10.1088/1758-5090/ad4c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.
Collapse
Affiliation(s)
- Evelyn Zarate-Sanchez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| |
Collapse
|
6
|
Nguyen W, Gyawali N, Stewart R, Tang B, Cox AL, Yan K, Larcher T, Bishop CR, Wood N, Devine GJ, Suhrbier A, Rawle DJ. Characterisation of a Japanese Encephalitis virus genotype 4 isolate from the 2022 Australian outbreak. NPJ VIRUSES 2024; 2:15. [PMID: 40295675 PMCID: PMC11721158 DOI: 10.1038/s44298-024-00025-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 04/30/2025]
Abstract
Human infections with the Japanese encephalitis virus (JEV) are a leading cause of viral encephalitis. An unprecedented outbreak of JEV genotype 4 was recently reported in Australia, with an isolate (JEVNSW/22) obtained from a stillborn piglet brain. Herein we conduct a thorough characterization of JEVNSW/22 in three different mouse strains and in human cortical brain organoids (hBOs), and determined the ability of JEVNSW/22 to be neutralized by sera from humans vaccinated with IMOJEV. JEVNSW/22 was less virulent than JEVFU (genotype 2) and JEVNakayama (genotype 3) in C57BL/6J mice and in interferon regulatory factor 7 deficient (Irf7-/-) mice, with infection of wild-type and knockout murine embryonic fibroblasts indicating JEVNSW/22 is more sensitive to type I interferon responses. Irf7-/- mice provide a new model for JEVNSW/22, showing higher viremia levels compared to C57BL/6J mice, and allowing for lethal neuroinvasive infection. All JEV strains were universally lethal in Ifnar-/- mice by day 3, with histological signs of brain hemorrhage, but no other lesions. There were no indications of brain infection in Ifnar-/- mice, with viral protein detected in blood vessels, but not neurons. All JEV isolates showed robust cytopathic infection of human cortical brain organoids, albeit lower for JEVNSW/22. IMOJEV vaccination in humans induced antibodies capable of neutralizing JEVNSW/22, although, for all JEV strains, cross-neutralization titers declined with increasing divergence from IMOJEV in the envelope amino acid sequences. Overall, our study establishes JEVNSW/22 mouse and hBO models of infection, allowing for possible lethal neuroinvasive infection in mice that was rarer than for other JEV genotypes. JEV vaccination regimens may afford protection against this newly emerged JEV genotype 4 strain, although neutralizing antibody responses are sub-optimal.
Collapse
Affiliation(s)
- Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Narayan Gyawali
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Romal Stewart
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | | | - Cameron R Bishop
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
7
|
Sahoo DK, Wong D, Patani A, Paital B, Yadav VK, Patel A, Jergens AE. Exploring the role of antioxidants in sepsis-associated oxidative stress: a comprehensive review. Front Cell Infect Microbiol 2024; 14:1348713. [PMID: 38510969 PMCID: PMC10952105 DOI: 10.3389/fcimb.2024.1348713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sepsis is a potentially fatal condition characterized by organ dysfunction caused by an imbalanced immune response to infection. Although an increased inflammatory response significantly contributes to the pathogenesis of sepsis, several molecular mechanisms underlying the progression of sepsis are associated with increased cellular reactive oxygen species (ROS) generation and exhausted antioxidant pathways. This review article provides a comprehensive overview of the involvement of ROS in the pathophysiology of sepsis and the potential application of antioxidants with antimicrobial properties as an adjunct to primary therapies (fluid and antibiotic therapies) against sepsis. This article delves into the advantages and disadvantages associated with the utilization of antioxidants in the therapeutic approach to sepsis, which has been explored in a variety of animal models and clinical trials. While the application of antioxidants has been suggested as a potential therapy to suppress the immune response in cases where an intensified inflammatory reaction occurs, the use of multiple antioxidant agents can be beneficial as they can act additively or synergistically on different pathways, thereby enhancing the antioxidant defense. Furthermore, the utilization of immunoadjuvant therapy, specifically in septic patients displaying immunosuppressive tendencies, represents a promising advancement in sepsis therapy.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Gujarat, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Bonni S, Brindley DN, Chamberlain MD, Daneshvar-Baghbadorani N, Freywald A, Hemmings DG, Hombach-Klonisch S, Klonisch T, Raouf A, Shemanko CS, Topolnitska D, Visser K, Vizeacoumar FJ, Wang E, Gibson SB. Breast Tumor Metastasis and Its Microenvironment: It Takes Both Seed and Soil to Grow a Tumor and Target It for Treatment. Cancers (Basel) 2024; 16:911. [PMID: 38473273 DOI: 10.3390/cancers16050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Metastasis remains a major challenge in treating breast cancer. Breast tumors metastasize to organ-specific locations such as the brain, lungs, and bone, but why some organs are favored over others remains unclear. Breast tumors also show heterogeneity, plasticity, and distinct microenvironments. This contributes to treatment failure and relapse. The interaction of breast cancer cells with their metastatic microenvironment has led to the concept that primary breast cancer cells act as seeds, whereas the metastatic tissue microenvironment (TME) is the soil. Improving our understanding of this interaction could lead to better treatment strategies for metastatic breast cancer. Targeted treatments for different subtypes of breast cancers have improved overall patient survival, even with metastasis. However, these targeted treatments are based upon the biology of the primary tumor and often these patients' relapse, after therapy, with metastatic tumors. The advent of immunotherapy allowed the immune system to target metastatic tumors. Unfortunately, immunotherapy has not been as effective in metastatic breast cancer relative to other cancers with metastases, such as melanoma. This review will describe the heterogeneic nature of breast cancer cells and their microenvironments. The distinct properties of metastatic breast cancer cells and their microenvironments that allow interactions, especially in bone and brain metastasis, will also be described. Finally, we will review immunotherapy approaches to treat metastatic breast tumors and discuss future therapeutic approaches to improve treatments for metastatic breast cancer.
Collapse
Affiliation(s)
- Shirin Bonni
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - M Dean Chamberlain
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Nima Daneshvar-Baghbadorani
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology, Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Afshin Raouf
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Carrie Simone Shemanko
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Diana Topolnitska
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Kaitlyn Visser
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Medical Genetics, and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Spencer B Gibson
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
9
|
Zhang Y, Xu J, Miranda-Katz M, Sojati J, Tollefson SJ, Manni ML, Alcorn JF, Sarkar SN, Williams JV. Distinct roles for type I and type III interferons in virulent human metapneumovirus pathogenesis. PLoS Pathog 2024; 20:e1011840. [PMID: 38315735 PMCID: PMC10868789 DOI: 10.1371/journal.ppat.1011840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/15/2024] [Accepted: 11/17/2023] [Indexed: 02/07/2024] Open
Abstract
Human metapneumovirus (HMPV) is an important cause of acute lower respiratory infection in children and adults worldwide. There are four genetic subgroups of HMPV and both neutralizing antibodies and T cells contribute to protection. However, little is known about mechanisms of pathogenesis and most published work is based on a few extensively passaged, laboratory-adapted strains of HMPV. In this study, we isolated and characterized a panel of low passage HMPV clinical isolates representing all four genetic subgroups. The clinical isolates exhibited lower levels of in vitro replication compared to a lab-adapted strain. We compared disease phenotypes using a well-established mouse model. Several virulent isolates caused severe weight loss, lung pathology, airway dysfunction, and fatal disease in mice, which was confirmed in three inbred mouse strains. Disease severity did not correlate with lung viral titer, as virulent strains exhibited restricted replication in the lower airway. Virulent HMPV isolates were associated with markedly increased proinflammatory cytokine production and neutrophil influx; however, depletion of neutrophils or genetic ablation of inflammasome components did not reverse disease. Virulent clinical isolates induced markedly increased type I and type III interferon (IFN) secretion in vitro and in vivo. STAT1/2-deficient mice lacking both type I and type III IFN signaling showed reduced disease severity and increased lung viral replication. Inhibition of type I IFN signaling using a blocking antibody or genetic ablation of the type I IFN receptor reduced pathology with minimal effect on viral replication. Conversely, blockade of type III IFN signaling with a neutralizing antibody or genetic ablation of the IFN-lambda receptor had no effect on pathogenesis but restored viral replication. Collectively, these results demonstrate distinct roles for type I and type III IFN in HMPV pathogenesis and immunity.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jiuyang Xu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Tsinghua University School of Medicine, Beijing, China
| | - Margot Miranda-Katz
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jorna Sojati
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sharon J. Tollefson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michelle L. Manni
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John F. Alcorn
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Saumendra N. Sarkar
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pennsylvania, United States of America
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pennsylvania, United States of America
- Institute for Infection, Inflammation, and Immunity in Children, University of Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
10
|
Carestia A, Godin LC, Jenne CN. Step up to the platelet: Role of platelets in inflammation and infection. Thromb Res 2023; 231:182-194. [PMID: 36307228 DOI: 10.1016/j.thromres.2022.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Platelets are anucleated cells derived from megakaryocytes that are primarily responsible for hemostasis. However, in recent years, these cytoplasts have become increasingly recognized as immune cells, able to detect, interact with, and kill pathogens. As platelets are involved in both immunity and coagulation, they have a central role in immunothrombosis, a physiological process in which immune cells induce the formation of microthrombi to both prevent the spread of pathogens, and to help facilitate clearance. In this review, we will highlight the role of platelets as key players in the inflammatory and innate immune response against bacterial and viral infection, including direct and indirect interactions with pathogens and other immune cells.
Collapse
Affiliation(s)
- Agostina Carestia
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| | - Laura C Godin
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
11
|
Medel B, Bernales JI, Lira A, Fernández D, Iwawaki T, Vargas P, Osorio F. The Unfolded Protein Response Sensor IRE1 Regulates Activation of In Vitro Differentiated Type 1 Conventional DCs with Viral Stimuli. Int J Mol Sci 2023; 24:10205. [PMID: 37373353 DOI: 10.3390/ijms241210205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Type 1 conventional dendritic cells (cDC1s) are leukocytes competent to coordinate antiviral immunity, and thus, the intracellular mechanisms controlling cDC1 function are a matter of intense research. The unfolded protein response (UPR) sensor IRE1 and its associated transcription factor XBP1s control relevant functional aspects in cDC1s including antigen cross-presentation and survival. However, most studies connecting IRE1 and cDC1 function are undertaken in vivo. Thus, the aim of this work is to elucidate whether IRE1 RNase activity can also be modeled in cDC1s differentiated in vitro and reveal the functional consequences of such activation in cells stimulated with viral components. Our data show that cultures of optimally differentiated cDC1s recapitulate several features of IRE1 activation noticed in in vivo counterparts and identify the viral analog Poly(I:C) as a potent UPR inducer in the lineage. In vitro differentiated cDC1s display constitutive IRE1 RNase activity and hyperactivate IRE1 RNase upon genetic deletion of XBP1s, which regulates production of the proinflammatory cytokines IL-12p40, TNF-α and IL-6, Ifna and Ifnb upon Poly(I:C) stimulation. Our results show that a strict regulation of the IRE1/XBP1s axis regulates cDC1 activation to viral agonists, expanding the scope of this UPR branch in potential DC-based therapies.
Collapse
Affiliation(s)
- Bernardita Medel
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - José Ignacio Bernales
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Alonso Lira
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Dominique Fernández
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan
| | - Pablo Vargas
- Leukomotion Lab, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Fabiola Osorio
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
12
|
Deguchi S, Kosugi K, Hashimoto R, Sakamoto A, Yamamoto M, Krol RP, Gee P, Negoro R, Noda T, Yamamoto T, Torisawa YS, Nagao M, Takayama K. Elucidation of the liver pathophysiology of COVID-19 patients using liver-on-a-chips. PNAS NEXUS 2023; 2:pgad029. [PMID: 36896132 PMCID: PMC9991504 DOI: 10.1093/pnasnexus/pgad029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 03/09/2023]
Abstract
SARS-CoV-2 induces severe organ damage not only in the lung but also in the liver, heart, kidney, and intestine. It is known that COVID-19 severity correlates with liver dysfunction, but few studies have investigated the liver pathophysiology in COVID-19 patients. Here, we elucidated liver pathophysiology in COVID-19 patients using organs-on-a-chip technology and clinical analyses. First, we developed liver-on-a-chip (LoC) which recapitulating hepatic functions around the intrahepatic bile duct and blood vessel. We found that hepatic dysfunctions, but not hepatobiliary diseases, were strongly induced by SARS-CoV-2 infection. Next, we evaluated the therapeutic effects of COVID-19 drugs to inhibit viral replication and recover hepatic dysfunctions, and found that the combination of anti-viral and immunosuppressive drugs (Remdesivir and Baricitinib) is effective to treat hepatic dysfunctions caused by SARS-CoV-2 infection. Finally, we analyzed the sera obtained from COVID-19 patients, and revealed that COVID-19 patients, who were positive for serum viral RNA, are likely to become severe and develop hepatic dysfunctions, as compared with COVID-19 patients who were negative for serum viral RNA. We succeeded in modeling the liver pathophysiology of COVID-19 patients using LoC technology and clinical samples.
Collapse
Affiliation(s)
- Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.,Department of Medical Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kaori Kosugi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Ayaka Sakamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Rafal P Krol
- CiRA Foundation, Research and Development Center, Kyoto 606-8397, Japan
| | - Peter Gee
- MaxCyte, Inc., Gaithersburg, MD 20878, USA
| | - Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,CREST, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Yu-Suke Torisawa
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.,AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| |
Collapse
|
13
|
Stachura P, Stencel O, Lu Z, Borkhardt A, Pandyra AA. Arenaviruses: Old viruses present new solutions for cancer therapy. Front Immunol 2023; 14:1110522. [PMID: 37033933 PMCID: PMC10079900 DOI: 10.3389/fimmu.2023.1110522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Viral-based cancer therapies have tremendous potential, especially in the context of treating poorly infiltrated cold tumors. However, in tumors with intact anti-viral interferon (IFN) pathways, while some oncolytic viruses induce strong innate and adaptive immune responses, they are neutralized before exerting their therapeutic effect. Arenaviruses, particularly the lymphocytic choriomeningitis virus (LCMV) is a noncytopathic virus with preferential cancer tropism and evolutionary mechanisms to escape the immune system for longer and to block early clearance. These escape mechanisms include inhibition of the MAVS dependent IFN pathway and spike protein antigen masking. Regarding its potential for cancer treatment, LCMV is therefore able to elicit long-term responses within the tumor microenvironment (TME), boost anti-tumor immune responses and polarize poorly infiltrating tumors towards a hot phenotype. Other arenaviruses including the attenuated Junin virus vaccine also have anti-tumor effects. Furthermore, the LCMV and Pichinde arenaviruses are currently being used to create vector-based vaccines with attenuated but replicating virus. This review focuses on highlighting the potential of arenaviruses as anti-cancer therapies. This includes providing a molecular understanding of its tropism as well as highlighting past and present preclinical and clinical applications of noncytophatic arenavirus therapies and their potential in bridging the gap in the treatment of cancers weakly responsive or unresponsive to oncolytic viruses. In summary, arenaviruses represent promising new therapies to broaden the arsenal of anti-tumor therapies for generating an immunogenic tumor microenvironment.
Collapse
Affiliation(s)
- Paweł Stachura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Olivia Stencel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Zhe Lu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Aleksandra A. Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- *Correspondence: Aleksandra A. Pandyra,
| |
Collapse
|
14
|
Guijas C, Horton LE, Hoang L, Domingo-Almenara X, Billings EM, Ware BC, Sullivan B, Siuzdak G. Microbial Metabolite 3-Indolepropionic Acid Mediates Immunosuppression. Metabolites 2022; 12:metabo12070645. [PMID: 35888769 PMCID: PMC9317520 DOI: 10.3390/metabo12070645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023] Open
Abstract
The microbial-derived metabolite, 3-indolepropionic acid (3-IPA), has been intensely studied since its origins were discovered in 2009; however, 3-IPA's role in immunosuppression has had limited attention. Untargeted metabolomic analyses of T-cell exhaustion and immunosuppression, represented by dysfunctional under-responsive CD8+ T cells, reveal a potential role of 3-IPA in these responses. T-cell exhaustion was examined via infection of two genetically related mouse strains, DBA/1J and DBA/2J, with lymphocytic choriomeningitis virus (LCMV) Clone 13 (Cl13). The different mouse strains produced disparate outcomes driven by their T-cell responses. Infected DBA/2J presented with exhausted T cells and persistent infection, and DBA/1J mice died one week after infection from cytotoxic T lymphocytes (CTLs)-mediated pulmonary failure. Metabolomics revealed over 70 metabolites were altered between the DBA/1J and DBA/2J models over the course of the infection, most of them in mice with a fatal outcome. Cognitive-driven prioritization combined with statistical significance and fold change were used to prioritize the metabolites. 3-IPA, a tryptophan-derived metabolite, was identified as a high-priority candidate for testing. To test its activity 3-IPA was added to the drinking water of the mouse models during LCMV Cl13 infection, with the results showing that 3-IPA allowed the mice to survive longer. This negative immune-modulation effect might be of interest for the modulation of CTL responses in events such as autoimmune diseases, type I diabetes or even COVID-19. Moreover, 3-IPA's bacterial origin raises the possibility of targeting the microbiome to enhance CTL responses in diseases such as cancer and chronic infection.
Collapse
Affiliation(s)
- Carlos Guijas
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (C.G.); (L.H.); (E.M.B.)
| | - Lucy E. Horton
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.E.H.); (B.C.W.)
| | - Linh Hoang
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (C.G.); (L.H.); (E.M.B.)
| | - Xavier Domingo-Almenara
- Computational Metabolomics for Systems Biology Lab, Omics Sciences Unit, Eurecat—Technology Centre of Catalonia, 08005 Barcelona, Catalonia, Spain;
| | - Elizabeth M. Billings
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (C.G.); (L.H.); (E.M.B.)
| | - Brian C. Ware
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.E.H.); (B.C.W.)
| | - Brian Sullivan
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.E.H.); (B.C.W.)
- Correspondence: (B.S.); (G.S.); Tel.: +1-858-784-9425 (G.S.)
| | - Gary Siuzdak
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (C.G.); (L.H.); (E.M.B.)
- Departments of Chemistry, Molecular, and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Correspondence: (B.S.); (G.S.); Tel.: +1-858-784-9425 (G.S.)
| |
Collapse
|
15
|
Merabet O, Pietrosemoli N, Perthame E, Armengaud J, Gaillard JC, Borges-Cardoso V, Daniau M, Legras-Lachuer C, Carnec X, Baize S. Infection of Human Endothelial Cells with Lassa Virus Induces Early but Transient Activation and Low Type I IFN Response Compared to the Closely-Related Nonpathogenic Mopeia Virus. Viruses 2022; 14:v14030652. [PMID: 35337059 PMCID: PMC8953476 DOI: 10.3390/v14030652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Lassa virus (LASV), an Old World arenavirus, is responsible for hemorrhagic fevers in western Africa. The privileged tropism of LASV for endothelial cells combined with a dysregulated inflammatory response are the main cause of the increase in vascular permeability observed during the disease. Mopeia virus (MOPV) is another arenavirus closely related to LASV but nonpathogenic for non-human primates (NHPs) and has never been described in humans. MOPV is more immunogenic than LASV in NHPs and in vitro in human immune cell models, with more intense type I IFN and adaptive cellular responses. Here, we compared the transcriptomic and proteomic responses of human umbilical vein endothelial cells (HUVECs) to infection with the two viruses to further decipher the mechanisms involved in their differences in immunogenicity and pathogenicity. Both viruses replicated durably and efficiently in HUVECs, but the responses they induced were strikingly different. Modest activation was observed at an early stage of LASV infection and then rapidly shut down. By contrast, MOPV induced a late but more intense response, characterized by the expression of genes and proteins mainly associated with the type I IFN response and antigen processing/presentation. Such a response is consistent with the higher immunogenicity of MOPV relative to LASV, whereas the lack of an innate response induced in HUVECs by LASV is consistent with its uncontrolled systemic dissemination through the vascular endothelium.
Collapse
Affiliation(s)
- Othmann Merabet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France; (O.M.); (V.B.-C.); (X.C.)
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, 69007 Lyon, France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université de Paris, 75015 Paris, France; (N.P.); (E.P.)
| | - Emeline Perthame
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université de Paris, 75015 Paris, France; (N.P.); (E.P.)
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Commissariat à l’Energie Atomique, 30200 Bagnols-sur-Cèze, France; (J.A.); (J.-C.G.)
| | - Jean-Charles Gaillard
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (LI2D), Service de Pharmacologie et Immunoanalyse (SPI), Commissariat à l’Energie Atomique, 30200 Bagnols-sur-Cèze, France; (J.A.); (J.-C.G.)
| | - Virginie Borges-Cardoso
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France; (O.M.); (V.B.-C.); (X.C.)
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, 69007 Lyon, France
| | - Maïlys Daniau
- ViroScan3D SAS, 01600 Trévoux, France; (M.D.); (C.L.-L.)
| | | | - Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France; (O.M.); (V.B.-C.); (X.C.)
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, 69007 Lyon, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France; (O.M.); (V.B.-C.); (X.C.)
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, 69007 Lyon, France
- Correspondence: ; Tel.: +33-4-3728-2440
| |
Collapse
|
16
|
Aiolfi R, Sitia G, Iannacone M, Brunetta I, Guidotti LG, Ruggeri ZM. Arenaviral infection causes bleeding in mice due to reduced serotonin release from platelets. Sci Signal 2022; 15:eabb0384. [PMID: 35192415 PMCID: PMC11583808 DOI: 10.1126/scisignal.abb0384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bleeding correlates with disease severity in viral hemorrhagic fevers. We found that the increase in type I interferon (IFN-I) in mice caused by infection with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV; an arenavirus) reduced the megakaryocytic expression of genes encoding enzymes involved in lipid biosynthesis (cyclooxygenase 1 and thromboxane A synthase 1) and a thrombopoietic transcription factor (Nf-e2). The decreased expression of these genes was associated with reduced numbers of circulating platelets and defects in the arachidonic acid synthetic pathway, thereby suppressing serotonin release from δ-granules in platelets. Bleeding resulted when severe thrombocytopenia and altered platelet function reduced the amount of platelet-derived serotonin below a critical threshold. Bleeding was facilitated by the absence of the activity of the kinase Lyn or the administration of aspirin, an inhibitor of arachidonic acid synthesis. Mouse platelets were not directly affected by IFN-I because they lack the receptor for the cytokine (IFNAR1), suggesting that transfusion of normal platelets into LCMV-infected mice could increase the amount of platelet-released serotonin and help to control hemorrhage.
Collapse
Affiliation(s)
- Roberto Aiolfi
- Department of Molecular Medicine, MERU-Roon Research Center for Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Sitia
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ivan Brunetta
- Department of Molecular Medicine, MERU-Roon Research Center for Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Luca G. Guidotti
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Zaverio M. Ruggeri
- Department of Molecular Medicine, MERU-Roon Research Center for Vascular Biology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Moioffer SJ, Danahy DB, van de Wall S, Jensen IJ, Sjaastad FV, Anthony SM, Harty JT, Griffith TS, Badovinac VP. Severity of Sepsis Determines the Degree of Impairment Observed in Circulatory and Tissue-Resident Memory CD8 T Cell Populations. THE JOURNAL OF IMMUNOLOGY 2021; 207:1871-1881. [PMID: 34479943 DOI: 10.4049/jimmunol.2001142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/27/2021] [Indexed: 12/29/2022]
Abstract
Sepsis reduces the number and function of memory CD8 T cells within the host, contributing to the long-lasting state of immunoparalysis. Interestingly, the relative susceptibility of memory CD8 T cell subsets to quantitative/qualitative changes differ after cecal ligation and puncture (CLP)-induced sepsis. Compared with circulatory memory CD8 T cells (TCIRCM), moderate sepsis (0-10% mortality) does not result in numerical decline of CD8 tissue-resident memory T cells (TRM), which retain their "sensing and alarm" IFN-γ-mediated effector function. To interrogate this biologically important dichotomy, vaccinia virus-immune C57BL/6 (B6) mice containing CD8 TCIRCM and skin TRM underwent moderate or severe (∼50% mortality) sepsis. Severe sepsis led to increased morbidity and mortality characterized by increased inflammation compared with moderate CLP or sham controls. Severe CLP mice also displayed increased vascular permeability in the ears. Interestingly, skin CD103+ CD8 TRM, detected by i.v. exclusion or two-photon microscopy, underwent apoptosis and subsequent numerical loss following severe sepsis, which was not observed in mice that experienced moderate CLP or sham surgeries. Consequently, severe septic mice showed diminished CD8 T cell-mediated protection to localized skin reinfection. Finally, the relationship between severity of sepsis and demise in circulatory versus tissue-embedded memory CD8 T cell populations was confirmed by examining tumor-infiltrating and nonspecific CD8 T cells in B16 melanoma tumors. Thus, sepsis can differentially affect the presence and function of Ag-specific CD8 T cells that reside inside tissues/tumors depending on the severity of the insult, a notion with direct relevance to sepsis survivors and their ability to mount protective memory CD8 T cell-dependent responses to localized Ag re-encounter.
Collapse
Affiliation(s)
| | - Derek B Danahy
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Isaac J Jensen
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | | | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN.,Minneapolis Veterans Affairs Health Care System, Minneapolis, MN; and
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA; .,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
18
|
Lan S, Shieh WJ, Huang Q, Zaki SR, Liang Y, Ly H. Virulent infection of outbred Hartley guinea pigs with recombinant Pichinde virus as a surrogate small animal model for human Lassa fever. Virulence 2021; 11:1131-1141. [PMID: 32799623 PMCID: PMC7549944 DOI: 10.1080/21505594.2020.1809328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Arenaviruses, such as Lassa virus (LASV), can cause severe and fatal hemorrhagic fevers (e.g., Lassa fever, LF) in humans with no vaccines or therapeutics. Research on arenavirus-induced hemorrhagic fevers (AHFs) has been hampered by the highly virulent nature of these viral pathogens, which require high biocontainment laboratory, and the lack of an immune-competent small animal model that can recapitulate AHF disease and pathological features. Guinea pig infected with Pichinde virus (PICV), an arenavirus that does not cause disease in humans, has been established as a convenient surrogate animal model for AHFs as it can be handled in a conventional laboratory. The PICV strain P18, derived from sequential passaging of the virus 18 times in strain 13 inbred guinea pigs, causes severe febrile illness in guinea pigs that is reminiscent of lethal LF in humans. As inbred guinea pigs are not readily available and are difficult to maintain, outbred Hartley guinea pigs have been used but they show a high degree of disease heterogeneity upon virulent P18 PICV infection. Here, we describe an improved outbred guinea-pig infection model using recombinant rP18 PICV generated by reverse genetics technique followed by plaque purification, which consistently shows >90% mortality and virulent infection. Comprehensive virological, histopathological, and immunohistochemical analyses of the rP18-virus infected animals show similar features of human LASV infection. Our data demonstrate that this improved animal model can serve as a safe, affordable, and convenient surrogate small animal model for studying human LF pathogenesis and for evaluating efficacy of preventative or therapeutic approaches.
Collapse
Affiliation(s)
- Shuiyun Lan
- Department of Pathology and Laboratory Medicine, Emory University , Atlanta, GA, USA
| | - Wun-Ju Shieh
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , St Paul, MN, USA
| | - Sherif R Zaki
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention , Atlanta, GA, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , St Paul, MN, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , St Paul, MN, USA
| |
Collapse
|
19
|
Kawashima K, Isogawa M, Onishi M, Baudi I, Saito S, Nakajima A, Fujita T, Tanaka Y. Restoration of type I interferon signaling in intrahepatically primed CD8+ T cells promotes functional differentiation. JCI Insight 2021; 6:e145761. [PMID: 33400688 PMCID: PMC7934883 DOI: 10.1172/jci.insight.145761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatitis B virus-specific (HBV-specific) CD8+ T cells fail to acquire effector functions after priming in the liver, but the molecular basis for the dysfunction is poorly understood. By comparing the gene expression profile of intrahepatically primed, dysfunctional HBV-specific CD8+ T cells with that of systemically primed, functional effector counterparts, we found that the expression of interferon-stimulated genes (ISGs) is selectively suppressed in the dysfunctional CD8+ T cells. The ISG suppression was associated with impaired phosphorylation of STAT1 in response to IFN-α treatment. Importantly, a strong induction of type I interferons (IFN-Is) in the liver facilitated the functional differentiation of intrahepatically primed HBV-specific CD8+ T cells in association with the restoration of ISGs' expression in the T cells. These results suggest that intrahepatic priming suppresses IFN-I signaling in CD8+ T cells, which may contribute to the dysfunction. The data also suggest a therapeutic value of the robust induction of intrahepatic IFN-Is for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Keigo Kawashima
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masanori Isogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaya Onishi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology/Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ian Baudi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Science, and
- Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Fox LE, Locke MC, Lenschow DJ. Context Is Key: Delineating the Unique Functions of IFNα and IFNβ in Disease. Front Immunol 2020; 11:606874. [PMID: 33408718 PMCID: PMC7779635 DOI: 10.3389/fimmu.2020.606874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) are critical effector cytokines of the immune system and were originally known for their important role in protecting against viral infections; however, they have more recently been shown to play protective or detrimental roles in many disease states. Type I IFNs consist of IFNα, IFNβ, IFNϵ, IFNκ, IFNω, and a few others, and they all signal through a shared receptor to exert a wide range of biological activities, including antiviral, antiproliferative, proapoptotic, and immunomodulatory effects. Though the individual type I IFN subtypes possess overlapping functions, there is growing appreciation that they also have unique properties. In this review, we summarize some of the mechanisms underlying differential expression of and signaling by type I IFNs, and we discuss examples of differential functions of IFNα and IFNβ in models of infectious disease, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Lindsey E. Fox
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Marissa C. Locke
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Deborah J. Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
21
|
Tang H, Abouleila Y, Mashaghi A. Lassa hemorrhagic shock syndrome-on-a-chip. Biotechnol Bioeng 2020; 118:1405-1410. [PMID: 33241859 PMCID: PMC7983903 DOI: 10.1002/bit.27636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Lack of experimental human models hinders research on Lassa hemorrhagic fever and the development of treatment strategies. Here, we report the first chip-based model for Lassa hemorrhagic syndrome. The chip features a microvessel interfacing collagen network as a simple mimic for extracellular matrix, allowing for quantitative and real-time vascular integrity assessment. Luminal infusion of Lassa virus-like particles led to a dramatic increase in vascular permeability in a viral load-dependent manner. Using this platform, we showed that Fibrin-derived peptide FX06 can be used to suppress the vascular integrity loss. This simple chip-based model proved promising in the assessment of disease severity and provides an easy-to-use platform for future investigation of Lassa pathogenesis and drug development in a human-like setting.
Collapse
Affiliation(s)
- Huaqi Tang
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yasmine Abouleila
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
22
|
Horton LE, Cross RW, Hartnett JN, Engel EJ, Sakabe S, Goba A, Momoh M, Sandi JD, Geisbert TW, Garry RF, Schieffelin JS, Grant DS, Sullivan BM. Endotheliopathy and Platelet Dysfunction as Hallmarks of Fatal Lassa Fever. Emerg Infect Dis 2020; 26:2625-2637. [PMID: 33079033 PMCID: PMC7588510 DOI: 10.3201/eid2611.191694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lassa fever (LF) causes multisystem disease and has a fatality rate <70%. Severe cases exhibit abnormal coagulation, endothelial barrier disruption, and dysfunctional platelet aggregation but the underlying mechanisms remain poorly understood. In Sierra Leone during 2015-2018, we assessed LF patients' day-of-admission plasma samples for levels of proteins necessary for coagulation, fibrinolysis, and platelet function. P-selectin, soluble endothelial protein C receptor, soluble thrombomodulin, plasminogen activator inhibitor 1, ADAMTS-13, von Willebrand factor, tissue factor, soluble intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 were more elevated in LF patients than in controls. Endothelial protein C receptor, thrombomodulin, intercellular adhesion molecule 1, plasminogen activator inhibitor 1, D-dimer, and hepatocyte growth factor were higher in fatal than nonfatal LF cases. Platelet disaggregation occurred only in samples from fatal LF cases. The impaired homeostasis and platelet dysfunction implicate alterations in the protein C pathway, which might contribute to the loss of endothelial barrier function in fatal infections.
Collapse
|
23
|
Raju S, Verbaro DJ, Egawa T. PD-1 Signaling Promotes Control of Chronic Viral Infection by Restricting Type-I-Interferon-Mediated Tissue Damage. Cell Rep 2020; 29:2556-2564.e3. [PMID: 31775026 PMCID: PMC6894421 DOI: 10.1016/j.celrep.2019.10.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 01/15/2023] Open
Abstract
Immune responses are essential for pathogen elimination but also cause tissue damage, leading to disease or death. However, it is unclear how the host immune system balances control of infection and protection from the collateral tissue damage. Here, we show that PD-1-mediated restriction of immune responses is essential for durable control of chronic LCMV infection in mice. In contrast to responses in the chronic phase, PD-1 blockade in the subacute phase of infection paradoxically results in viral persistence. This effect is associated with damage to lymphoid architecture and subsequently decreases adaptive immune responses. Moreover, this tissue damage is type I interferon dependent, as sequential blockade of the interferon receptor and PD-1 pathways prevents immunopathology and enhances control of infection. We conclude that PD-1-mediated suppression is required as an immunoregulatory mechanism for sustained responses to chronic viral infection by antagonizing type-I interferon-dependent immunopathology. Using stage-specific PD-1 blockade in LCMV-infected mice, Raju et al. uncover the requirement for PD-1-mediated suppression of CD8 T cells for durable immune response to chronic viral infection, as well as the requirement for IFNAR signaling in programming of CD8 T cells toward effectors that cause immunopathology.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel J Verbaro
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
24
|
Severe Human Lassa Fever Is Characterized by Nonspecific T-Cell Activation and Lymphocyte Homing to Inflamed Tissues. J Virol 2020; 94:JVI.01367-20. [PMID: 32817220 PMCID: PMC7565638 DOI: 10.1128/jvi.01367-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Lassa fever may cause severe disease in humans, in particular in areas of endemicity like Sierra Leone and Nigeria. Despite its public health importance, the pathophysiology of Lassa fever in humans is poorly understood. Here, we present clinical immunology data obtained in the field during the 2018 Lassa fever outbreak in Nigeria indicating that severe Lassa fever is associated with activation of T cells antigenically unrelated to Lassa virus and poor Lassa virus-specific effector T-cell responses. Mechanistically, we show that these bystander T cells express defined tissue homing signatures that suggest their recruitment to inflamed tissues and a putative role of these T cells in immunopathology. These findings open a window of opportunity to consider T-cell targeting as a potential postexposure therapeutic strategy against severe Lassa fever, a hypothesis that could be tested in relevant animal models, such as nonhuman primates. Lassa fever (LF) is a zoonotic viral hemorrhagic fever caused by Lassa virus (LASV), which is endemic to West African countries. Previous studies have suggested an important role for T-cell-mediated immunopathology in LF pathogenesis, but the mechanisms by which T cells influence disease severity and outcome are not well understood. Here, we present a multiparametric analysis of clinical immunology data collected during the 2017–2018 Lassa fever outbreak in Nigeria. During the acute phase of LF, we observed robust activation of the polyclonal T-cell repertoire, which included LASV-specific and antigenically unrelated T cells. However, severe and fatal LF cases were characterized by poor LASV-specific effector T-cell responses. Severe LF was also characterized by the presence of circulating T cells with homing capacity to inflamed tissues, including the gut mucosa. These findings in LF patients were recapitulated in a mouse model of LASV infection, in which mucosal exposure resulted in remarkably high lethality compared to skin exposure. Taken together, our findings indicate that poor LASV-specific T-cell responses and activation of nonspecific T cells with homing capacity to inflamed tissues are associated with severe LF. IMPORTANCE Lassa fever may cause severe disease in humans, in particular in areas of endemicity like Sierra Leone and Nigeria. Despite its public health importance, the pathophysiology of Lassa fever in humans is poorly understood. Here, we present clinical immunology data obtained in the field during the 2018 Lassa fever outbreak in Nigeria indicating that severe Lassa fever is associated with activation of T cells antigenically unrelated to Lassa virus and poor Lassa virus-specific effector T-cell responses. Mechanistically, we show that these bystander T cells express defined tissue homing signatures that suggest their recruitment to inflamed tissues and a putative role of these T cells in immunopathology. These findings open a window of opportunity to consider T-cell targeting as a potential postexposure therapeutic strategy against severe Lassa fever, a hypothesis that could be tested in relevant animal models, such as nonhuman primates.
Collapse
|
25
|
Misumi I, Cook KD, Mitchell JE, Lund MM, Vick SC, Lee RH, Uchimura T, Bergmeier W, Mieczkowski P, Pardo-Manuel de Villena F, Ting JPY, Whitmire JK. Identification of a Locus in Mice that Regulates the Collateral Damage and Lethality of Virus Infection. Cell Rep 2020; 27:1387-1396.e5. [PMID: 31042467 DOI: 10.1016/j.celrep.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/10/2019] [Accepted: 03/28/2019] [Indexed: 10/26/2022] Open
Abstract
Arenaviruses can cause severe hemorrhagic disease in humans, which can progress to organ failure and death. The underlying mechanisms causing lethality and person-to-person variation in outcome remain incompletely explained. Herein, we characterize a mouse model that recapitulates many features of pathogenesis observed in humans with arenavirus-induced hemorrhagic disease, including thrombocytopenia, severe vascular leakage, lung edema, and lethality. The susceptibility of congenic B6.PL mice to lymphocytic choriomeningitis virus (LCMV) infection is associated with increased antiviral T cell responses in B6.PL mice compared with C57BL/6 mice and is T cell dependent. Pathogenesis imparted by the causative locus is inherited in a semi-dominant manner in F1 crosses. The locus includes PL-derived sequence variants in both poorly annotated genes and genes known to contribute to immune responses. This model can be used to further interrogate how limited genetic differences in the host can remarkably alter the disease course of viral infection.
Collapse
Affiliation(s)
- Ichiro Misumi
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Kevin D Cook
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Joseph E Mitchell
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Makayla M Lund
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sarah C Vick
- Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Robert H Lee
- Department of Biochemistry/Biophysics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Toru Uchimura
- Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry/Biophysics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Piotr Mieczkowski
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jenny P Y Ting
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason K Whitmire
- Department of Genetics, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
26
|
Hickerson BT, Sefing EJ, Bailey KW, Van Wettere AJ, Penichet ML, Gowen BB. Type I interferon underlies severe disease associated with Junín virus infection in mice. eLife 2020; 9:55352. [PMID: 32452770 PMCID: PMC7297529 DOI: 10.7554/elife.55352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Junín virus (JUNV) is one of five New World mammarenaviruses (NWMs) that causes fatal hemorrhagic disease in humans and is the etiological agent of Argentine hemorrhagic fever (AHF). The pathogenesis underlying AHF is poorly understood; however, a prolonged, elevated interferon-α (IFN-α) response is associated with a negative disease outcome. A feature of all NWMs that cause viral hemorrhagic fever is the use of human transferrin receptor 1 (hTfR1) for cellular entry. Here, we show that mice expressing hTfR1 develop a lethal disease course marked by an increase in serum IFN-α concentration when challenged with JUNV. Further, we provide evidence that the type I IFN response is central to the development of severe JUNV disease in hTfR1 mice. Our findings identify hTfR1-mediated entry and the type I IFN response as key factors in the pathogenesis of JUNV infection in mice.
Collapse
Affiliation(s)
- Brady T Hickerson
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
| | - Eric J Sefing
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
| | - Kevin W Bailey
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
| | - Arnaud J Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
- Utah Veterinary Diagnostic Laboratory, Utah State UniversityLoganUnited States
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA)Los AngelesUnited States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLALos AngelesUnited States
- UCLA Molecular Biology InstituteLos AngelesUnited States
- UCLA Jonsson Comprehensive Cancer CenterLos AngelesUnited States
- UCLA AIDS InstituteLos AngelesUnited States
| | - Brian B Gowen
- Department of Animal, Dairy and Veterinary Sciences, Utah State UniversityLoganUnited States
| |
Collapse
|
27
|
Jung SR, Ashhurst TM, West PK, Viengkhou B, King NJC, Campbell IL, Hofer MJ. Contribution of STAT1 to innate and adaptive immunity during type I interferon-mediated lethal virus infection. PLoS Pathog 2020; 16:e1008525. [PMID: 32310998 PMCID: PMC7192509 DOI: 10.1371/journal.ppat.1008525] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/30/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Signal transducers and activators of transcription (STAT) 1 is critical for cellular responses to type I interferons (IFN-Is), with the capacity to determine the outcome of viral infection. We previously showed that while wildtype (WT) mice develop mild disease and survive infection with lymphocytic choriomeningitis virus (LCMV), LCMV infection of STAT1-deficient mice results in a lethal wasting disease that is dependent on IFN-I and CD4+ cells. IFN-Is are considered to act as a bridge between innate and adaptive immunity. Here, we determined the relative contribution of STAT1 on innate and adaptive immunity during LCMV infection. We show that STAT1 deficiency results in a biphasic disease following LCMV infection. The initial, innate immunity-driven phase of disease was characterized by rapid weight loss, thrombocytopenia, systemic cytokine and chemokine responses and leukocyte infiltration of infected organs. In the absence of an adaptive immune response, this first phase of disease largely resolved resulting in survival of the infected host. However, in the presence of adaptive immunity, the disease progressed into a second phase with continued cytokine and chemokine production, persistent leukocyte extravasation into infected tissues and ultimately, host death. Overall, our findings demonstrate the key contribution of STAT1 in modulating innate and adaptive immunity during type I interferon-mediated lethal virus infection. The mammalian immune system is divided into innate and adaptive immunity. In response to harmful agents, innate immunity acts first, followed by late-acting, specialized, adaptive immunity. Type I interferons (IFN-Is) are important means of communication between innate and adaptive immunity. IFN-Is mediate their effects via a number of signaling molecules, principally including signal transducers and activators of transcription 1 (STAT1). The importance of STAT1 to the immune response is evident from our previous finding that mice deficient in STAT1 develop a lethal, host immunity-mediated disease following infection with the otherwise harmless lymphocytic choriomeningitis virus (LCMV). In the present study, we characterized the role of STAT1 in protecting against harmful host immune responses against LCMV. We report that STAT1 plays a significant role in lessening both the early, inflammatory responses of innate immunity and the sustained, destructive actions of adaptive immunity. These findings exemplify the extent of STAT1’s role as a key immune response modulating factor.
Collapse
Affiliation(s)
- So Ri Jung
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Thomas M. Ashhurst
- Sydney Cytometry Core Facility, The University of Sydney and Centenary Institute, Sydney, Australia
- Department of Pathology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Phillip K. West
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Barney Viengkhou
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Nicholas J. C. King
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre and the Bosch Institute, The University of Sydney, Sydney, Australia
- Sydney Cytometry Core Facility, The University of Sydney and Centenary Institute, Sydney, Australia
- Department of Pathology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Iain L. Campbell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre and the Bosch Institute, The University of Sydney, Sydney, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre and the Bosch Institute, The University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
28
|
High crossreactivity of human T cell responses between Lassa virus lineages. PLoS Pathog 2020; 16:e1008352. [PMID: 32142546 PMCID: PMC7080273 DOI: 10.1371/journal.ppat.1008352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/18/2020] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
Lassa virus infects hundreds of thousands of people each year across rural West Africa, resulting in a high number of cases of Lassa fever (LF), a febrile disease associated with high morbidity and significant mortality. The lack of approved treatments or interventions underscores the need for an effective vaccine. At least four viral lineages circulate in defined regions throughout West Africa with substantial interlineage nucleotide and amino acid diversity. An effective vaccine should be designed to elicit Lassa virus specific humoral and cell mediated immunity across all lineages. Most current vaccine candidates use only lineage IV antigens encoded by Lassa viruses circulating around Sierra Leone, Liberia, and Guinea but not Nigeria where lineages I-III are found. As previous infection is known to protect against disease from subsequent exposure, we sought to determine whether LF survivors from Nigeria and Sierra Leone harbor memory T cells that respond to lineage IV antigens. Our results indicate a high degree of cross-reactivity of CD8+ T cells from Nigerian LF survivors to lineage IV antigens. In addition, we identified regions within the Lassa virus glycoprotein complex and nucleoprotein that contributed to these responses while T cell epitopes were not widely conserved across our study group. These data are important for current efforts to design effective and efficient vaccine candidates that can elicit protective immunity across all Lassa virus lineages. Lassa virus (LASV), the causative agent of the hemorrhagic illness Lassa fever (LF), is found throughout West Africa. Humans are usually infected after contact with infected rodent excreta or aerosolized virus. The mortality rate among hospitalized LF cases is high and no effective treatments or vaccines exist. A vaccine effective against the four main lineages of LASV is needed to protect susceptible individuals across West Africa. To understand how this protection could occur, we examined the immune responses of LF survivors from two different regions of West Africa. As previous infection with Lassa virus protects from disease after subsequent exposure, the immune response of LF survivors provides a model of protective immunity that could be induced after vaccination. We found that LASV strains from lineages different from those that infected the LF survivors efficiently activated memory CD8+ T cell responses. We identified regions within LASV proteins that elicit memory responses in the majority of individuals. From these data, we propose that an effective vaccine that protects against lineages across West Africa should be designed to elicit memory CD8+ T cell responses in addition to antibody responses.
Collapse
|
29
|
de la Torre JC. Extending the Antiviral Value of Favipiravir. J Infect Dis 2019; 218:509-511. [PMID: 29762707 DOI: 10.1093/infdis/jiy153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/11/2018] [Indexed: 02/01/2023] Open
Affiliation(s)
- Juan C de la Torre
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California
| |
Collapse
|
30
|
Straub T, Pircher H. Enhancing immunity prevents virus-induced T-cell-mediated immunopathology in B cell-deficient mice. Eur J Immunol 2019; 49:782-789. [PMID: 30793761 PMCID: PMC6593698 DOI: 10.1002/eji.201847962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 01/08/2023]
Abstract
Hyper-activated or deviated immune responses can result in immunopathological diseases. Paradoxically, immunodeficiency represents a frequent cause of such immune-mediated pathologies. Immunopathological manifestations are commonly treated by immunosuppression, but in situations in which immunodeficiency is the basis of disease development, enhancing immunity may represent an alternative treatment option. Here, we tested this counterintuitive concept in a preclinical model using infection of mice with lymphocytic choriomeningitis virus (LCMV). Firstly, we demonstrate that infection of B-cell-deficient (B-/- ) but not of wild-type (WT) mice with the LCMV strain Docile induced a rapid and fatal CD8+ T-cell-mediated immunopathological disease. Similar to WT mice, LCMV-infected B-/- mice generated a potent, functional LCMV-specific CD8+ T-cell response but exhibited prolonged viral antigen presentation and increased vascular leakage in liver and lungs. Secondly, we were able to prevent this virus-induced immunopathology in B-/- mice by active or passive T-cell immunizations or by treatment with LCMV-specific virus neutralizing or non-neutralizing monoclonal antibodies (mAb). Thus, boosting antiviral immunity did not aggravate immunopathology in this model, but prevented it by decreasing the formation of target structures for damage-causing CD8+ T cells.
Collapse
Affiliation(s)
- Tobias Straub
- Institute for Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Hanspeter Pircher
- Institute for Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
31
|
Dolin HH, Papadimos TJ, Chen X, Pan ZK. Characterization of Pathogenic Sepsis Etiologies and Patient Profiles: A Novel Approach to Triage and Treatment. Microbiol Insights 2019; 12:1178636118825081. [PMID: 30728724 PMCID: PMC6350122 DOI: 10.1177/1178636118825081] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
Pathogenic sepsis is not a monolithic condition. Three major types of sepsis exist within this category: bacterial, viral, and fungal, each with its own mechanism of action. While similar in symptoms, the etiologies and immune mechanisms of these types differ enough that a discrete patient base can be recognized for each one. Non-specific treatment, such as broad-spectrum antibiotics, without determination of sepsis origins may worsen sepsis symptoms and leads to increased morbidity and mortality in patients. However, recognition of current and historical patterns in likely patients for each sepsis type may aid in differentiation between pathogens prior to definitive blood testing. Clinicians may ultimately be able to diagnose and treat bacterial, viral, and fungal sepsis using analysis of previous patient patterns and circumstances in addition to standard care. This method is likely to decrease incidence of multidrug-resistant organisms, organ failure due to ineffective treatment, and turnaround time to the correct treatment for each sepsis patient. Ultimately, we aim to provide classification information on these patient populations and to suggest epidemiology-based screening methods that can be integrated into critical care medicine, specifically triage and treatment of sepsis.
Collapse
Affiliation(s)
- Hallie H Dolin
- Departments of Medicine and Medical Microbiology and Immunology, University of Toledo Medical Center, Toledo, OH, USA
| | - Thomas J Papadimos
- Departments of Medicine and Medical Microbiology and Immunology, University of Toledo Medical Center, Toledo, OH, USA
| | - Xiaohuan Chen
- Departments of Medicine and Medical Microbiology and Immunology, University of Toledo Medical Center, Toledo, OH, USA
| | - Zhixing K Pan
- Departments of Medicine and Medical Microbiology and Immunology, University of Toledo Medical Center, Toledo, OH, USA
| |
Collapse
|
32
|
Ogasawara D, Ichu TA, Vartabedian VF, Benthuysen J, Jing H, Reed A, Ulanovskaya OA, Hulce JJ, Roberts A, Brown S, Rosen H, Teijaro JR, Cravatt BF. Selective blockade of the lyso-PS lipase ABHD12 stimulates immune responses in vivo. Nat Chem Biol 2018; 14:1099-1108. [PMID: 30420694 PMCID: PMC6263940 DOI: 10.1038/s41589-018-0155-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022]
Abstract
ABHD12 metabolizes bioactive lysophospholipids, including lysophosphatidylserine (lyso-PS). Deleterious mutations in human ABHD12 cause the neurological disease PHARC, and ABHD12-/- mice display PHARC-like phenotypes, including hearing loss, along with elevated brain lyso-PS and features of stimulated innate immune cell function. Here, we develop a selective and in vivo-active inhibitor of ABHD12 termed DO264 and show that this compound elevates lyso-PS in mouse brain and primary human macrophages. Unlike ABHD12-/- mice, adult mice treated with DO264 exhibited minimal perturbations in auditory function. On the other hand, both DO264-treated and ABHD12-/- mice displayed heightened immunological responses to lymphocytic choriomeningitis virus (LCMV) clone 13 infection that manifested as severe lung pathology with elevated proinflammatory chemokines. These results reveal similarities and differences in the phenotypic impact of pharmacological versus genetic blockade of ABHD12 and point to a key role for this enzyme in regulating immunostimulatory lipid pathways in vivo.
Collapse
Affiliation(s)
- Daisuke Ogasawara
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Taka-Aki Ichu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Vincent F Vartabedian
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Hui Jing
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Alex Reed
- Abide Therapeutics, San Diego, CA, USA
| | | | - Jonathan J Hulce
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Amanda Roberts
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Steven Brown
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Hugh Rosen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Teijaro
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
33
|
Rossaint J, Margraf A, Zarbock A. Role of Platelets in Leukocyte Recruitment and Resolution of Inflammation. Front Immunol 2018; 9:2712. [PMID: 30515177 PMCID: PMC6255980 DOI: 10.3389/fimmu.2018.02712] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022] Open
Abstract
Platelets are most often recognized for their crucial role in the control of acute hemorrhage. However, current research has greatly expanded the appreciation of platelets beyond their contribution to primary hemostasis, indicating that platelets also actively participate in leukocyte recruitment and the regulation of the host defense in response to exogenous pathogens and sterile injury. Early recruitment of leukocytes, especially neutrophils, is the evolutionary stronghold of the innate immune response to successfully control exogenous infections. Platelets have been shown to physically interact with different leukocyte subsets during inflammatory processes. This interaction holds far-reaching implications for the leukocyte recruitment into peripheral tissues as well as the regulation of leukocyte cell autonomous functions, including the formation and liberation of neutrophil extracellular traps. These functions critically depend on the interaction of platelets with leukocytes. The host immune response and leukocyte recruitment must be tightly regulated to avoid excessive tissue and organ damage and to avoid chronification of inflammation. Thus, platelet-leukocyte interactions and the resulting leukocyte activation and recruitment also underlies tight regulation by several inherited feedback mechanisms to limit the extend of vascular inflammation and to protect the host from collateral damage caused by overshooting immune system activation. After the acute inflammatory phase has been overcome the host defense response must eventually be terminated to allow for resolution from inflammation and restoration of tissue and organ function. Besides their essential role for leukocyte recruitment and the initiation and propagation of vascular inflammation, platelets have lately also been implicated in the resolution process. Here, their contribution to phagocyte clearance, T cell recruitment and macrophage reprogramming is also of outmost importance. This review will focus on the role of platelets in leukocyte recruitment during the initiation of the host defense and we will also discuss the participation of platelets in the resolution process after acute inflammation.
Collapse
Affiliation(s)
- Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany.,Interdisciplinary Centre for Clinical Research, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
34
|
Lymphocytic choriomeningitis virus Clone 13 infection causes either persistence or acute death dependent on IFN-1, cytotoxic T lymphocytes (CTLs), and host genetics. Proc Natl Acad Sci U S A 2018; 115:E7814-E7823. [PMID: 30061383 DOI: 10.1073/pnas.1804674115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding of T cell exhaustion and successful therapy to restore T cell function was first described using Clone (Cl) 13 variant selected from the lymphocytic choriomeningitis virus (LCMV) Armstrong (ARM) 53b parental strain. T cell exhaustion plays a pivotal role in both persistent infections and cancers of mice and humans. C57BL/6, BALB, SWR/J, A/J, 129, C3H, and all but one collaborative cross (CC) mouse strain following Cl 13 infection have immunosuppressed T cell responses, high PD-1, and viral titers leading to persistent infection and normal life spans. In contrast, the profile of FVB/N, NZB, PL/J, SL/J, and CC NZO mice challenged with Cl 13 is a robust T cell response, high titers of virus, PD-1, and Lag3 markers on T cells. These mice all die 7 to 9 d after Cl 13 infection. Death is due to enhanced pulmonary endothelial vascular permeability, pulmonary edema, collapse of alveolar air spaces, and respiratory failure. Pathogenesis involves abundant levels of Cl 13 receptor alpha-dystroglycan on endothelial cells, with high viral replication in such cells leading to immunopathologic injury. Death is aborted by blockade of interferon-1 (IFN-1) signaling or deletion of CD8 T cells.
Collapse
|
35
|
Hickerson BT, Westover JB, Jung KH, Komeno T, Furuta Y, Gowen BB. Effective Treatment of Experimental Lymphocytic Choriomeningitis Virus Infection: Consideration of Favipiravir for Use With Infected Organ Transplant Recipients. J Infect Dis 2018; 218:522-527. [PMID: 29762684 PMCID: PMC6047442 DOI: 10.1093/infdis/jiy159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 11/12/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) poses a substantial risk to immunocompromised individuals. The case fatality rate in recent clusters of LCMV infection in immunosuppressed organ transplantation recipients has exceeded 70%. In the present study, we demonstrate potent antiviral activity of favipiravir against acute, disseminated LCMV infection in NZB mice. Treatment resulted in complete protection against mortality and dramatic reductions in viral loads. In contrast, ribavirin, the current antiviral of choice, was mostly ineffective. Our findings, and the high lethality associated with LCMV infection in transplant recipients, support the consideration of favipiravir as a first-line therapeutic option.
Collapse
Affiliation(s)
- Brady T Hickerson
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan
| | - Jonna B Westover
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan
| | - Kie-Hoon Jung
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan
| | | | | | - Brian B Gowen
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan
| |
Collapse
|
36
|
Gonzalez-Quintial R, Baccala R. Murine Models for Viral Hemorrhagic Fever. Methods Mol Biol 2018; 1604:257-267. [PMID: 28986841 DOI: 10.1007/978-1-4939-6981-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hemorrhagic fever (HF) viruses, such as Lassa, Ebola, and dengue viruses, represent major human health risks due to their highly contagious nature, the severity of the clinical manifestations induced, the lack of vaccines, and the very limited therapeutic options currently available. Appropriate animal models are obviously critical to study disease pathogenesis and develop efficient therapies. We recently reported that the clone 13 (Cl13) variant of the lymphocytic choriomeningitis virus (LCMV-Cl13), a prototype arenavirus closely related to Lassa virus, causes in some mouse strains endothelial damage, vascular leakage, platelet loss, and death, mimicking pathological aspects typically observed in Lassa and other HF syndromes. This model has the advantage that the mice used are fully immunocompetent, allowing studies on the contribution of the immune response to disease progression. Moreover, LCMV is very well characterized and exhibits limited pathogenicity in humans, allowing handling in convenient BSL-2 facilities. In this chapter we outline protocols for the induction and analysis of arenavirus-mediated pathogenesis in the NZB/LCMV model, including mouse infection, virus titer determination, platelet counting, phenotypic analysis of virus-specific T cells, and assessment of vascular permeability.
Collapse
Affiliation(s)
- Rosana Gonzalez-Quintial
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Roberto Baccala
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
37
|
Abstract
Sjögren syndrome (SS) comprises glandular and extraglandular manifestations. Double-blind prospective trials of traditional disease-modifying antirheumatic drugs and biologics have failed because they have not improved benign symptoms, the major cause of lowered quality of life. Rituximab has proven effective in SS patients with associated mixed cryoglobulinemia, parotid gland swelling, lymphocytic interstitial pneumonitis, thrombocytopenia, and other manifestations. There were few of these SS patients in the trials required for FDA approval. Most patients had benign symptoms and did not show benefit, leading to failure of the study. This article examines the reasons for these failures and proposes future directions.
Collapse
|
38
|
Rowley AH, Baker SC, Kim KYA, Shulman ST, Yang A, Arrollo D, DeBerge M, Han S, Sibinga NES, Pink AJ, Thorp EB. Allograft Inflammatory Factor-1 Links T-Cell Activation, Interferon Response, and Macrophage Activation in Chronic Kawasaki Disease Arteritis. J Pediatric Infect Dis Soc 2017; 6:e94-e102. [PMID: 28505365 PMCID: PMC5907862 DOI: 10.1093/jpids/pix025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/13/2017] [Indexed: 11/13/2022]
Abstract
BACKGROUND Kawasaki disease (KD) is widely viewed as an acute arteritis. However, our pathologic studies show that chronic coronary arteritis can persist long after disease onset and is closely linked with arterial stenosis. Transcriptome profiling of acute KD arteritis tissues revealed upregulation of T lymphocyte, type I interferon, and allograft inflammatory factor-1 (AIF1) genes. We determined whether these immune responses persist in chronic KD arteritis, and we investigated the role of AIF1 in these responses. METHODS Gene expression in chronic KD and childhood control arteries was determined by real-time reverse-transcriptase polymerase chain reaction, and arterial protein expression was determined by immunohistochemistry and immunofluorescence. Allograft inflammatory factor-1 small-interfering ribonucleic acid macrophage treatment was performed to investigate the role of AIF1 in macrophage and T lymphocyte activation. RESULTS Allograft inflammatory factor-1 protein was highly expressed in stenotic KD arteries and colocalized with the macrophage marker CD68. T lymphocyte and interferon pathway genes were significantly upregulated in chronic KD coronary artery tissues. Alpha interferon-induced macrophage expression of CD80 and major histocompatibility complex class II was dependent on AIF1, and macrophage expression of AIF1 was required for antigen-specific T lymphocyte activation. CONCLUSIONS Allograft inflammatory factor-1, originally identified in posttransplant arterial stenosis, is markedly upregulated in KD stenotic arterial tissues. T lymphocyte and type I interferon responses persist in chronic KD arteritis. Allograft inflammatory factor-1 may play multiple roles linking type I interferon response, macrophage activation, and antigen-specific T lymphocyte activation. These results suggest the likely importance of lymphocyte-myeloid cell cross-talk in the pathogenesis of KD arteritis and can inform selection of new immunotherapies for clinical trials in high-risk KD children.
Collapse
MESH Headings
- Adolescent
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Apoptosis/genetics
- Arteritis/immunology
- Arteritis/metabolism
- B7-1 Antigen/genetics
- B7-1 Antigen/metabolism
- CD8-Positive T-Lymphocytes
- Calcium-Binding Proteins
- Chicago
- Child
- Child, Preschool
- Coronary Vessels/pathology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Fibrinogen
- Fluorescent Antibody Technique
- Gene Expression
- Humans
- Immunohistochemistry
- Infant
- Infant, Newborn
- Intercellular Signaling Peptides and Proteins/genetics
- Interferons/genetics
- Interferons/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Macrophage Activation
- Macrophages/metabolism
- Male
- Microfilament Proteins
- Mucocutaneous Lymph Node Syndrome/genetics
- Mucocutaneous Lymph Node Syndrome/immunology
- Mucocutaneous Lymph Node Syndrome/metabolism
- Mucocutaneous Lymph Node Syndrome/pathology
- Receptors, Interferon/genetics
- T-Lymphocytes/immunology
- Young Adult
Collapse
Affiliation(s)
- Anne H Rowley
- Departments of Pediatrics
- Microbiology and Immunology
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Illinois
| | - Susan C Baker
- Department of Microbiology/Immunology, Loyola University Stritch School of Medicine, Maywood, Illinois
| | | | - Stanford T Shulman
- Departments of Pediatrics
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Illinois
| | | | | | - Matthew DeBerge
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shuling Han
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | | | - Edward B Thorp
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
39
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
40
|
Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:4046-4053. [PMID: 28373583 DOI: 10.4049/jimmunol.1601896] [Citation(s) in RCA: 574] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/10/2017] [Indexed: 11/19/2022]
Abstract
Pathogenic human coronaviruses (CoVs), such as the severe acute respiratory syndrome (SARS)-CoV and the Middle East respiratory syndrome-CoV, cause acute respiratory illness. Epidemiological data from the 2002-2003 SARS epidemic and recent Middle East respiratory syndrome outbreak indicate that there may be sex-dependent differences in disease outcomes. To investigate these differences, we infected male and female mice of different age groups with SARS-CoV and analyzed their susceptibility to the infection. Our results showed that male mice were more susceptible to SARS-CoV infection compared with age-matched females. The degree of sex bias to SARS-CoV infection increased with advancing age, such that middle-aged mice showed much more pronounced differences compared with young mice. Enhanced susceptibility of male mice to SARS-CoV was associated with elevated virus titers, enhanced vascular leakage, and alveolar edema. These changes were accompanied by increased accumulation of inflammatory monocyte macrophages and neutrophils in the lungs of male mice, and depletion of inflammatory monocyte macrophages partially protected these mice from lethal SARS. Moreover, the sex-specific differences were independent of T and B cell responses. Furthermore, ovariectomy or treating female mice with an estrogen receptor antagonist increased mortality, indicating a protective effect for estrogen receptor signaling in mice infected with SARS-CoV. Together, these data suggest that sex differences in the susceptibility to SARS-CoV in mice parallel those observed in patients and also identify estrogen receptor signaling as critical for protection in females.
Collapse
Affiliation(s)
| | - Craig Fett
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Matthias Mack
- Department of Internal Medicine, University Hospital Regensburg, Regensburg 93042, Germany
| | - Patrick P Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA 52242; and
| | | | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, IA 52242;
| |
Collapse
|
41
|
Li MMH, Bozzacco L, Hoffmann HH, Breton G, Loschko J, Xiao JW, Monette S, Rice CM, MacDonald MR. Interferon regulatory factor 2 protects mice from lethal viral neuroinvasion. J Exp Med 2016; 213:2931-2947. [PMID: 27899441 PMCID: PMC5154937 DOI: 10.1084/jem.20160303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/09/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023] Open
Abstract
Li et al. describe a novel role for IRF2, previously known as a negative regulator of type I IFN signaling, in protection of mice from lethal viral neuroinvasion by facilitating the proper localization of B cells and antibodies to the central nervous system. The host responds to virus infection by activating type I interferon (IFN) signaling leading to expression of IFN-stimulated genes (ISGs). Dysregulation of the IFN response results in inflammatory diseases and chronic infections. In this study, we demonstrate that IFN regulatory factor 2 (IRF2), an ISG and a negative regulator of IFN signaling, influences alphavirus neuroinvasion and pathogenesis. A Sindbis virus strain that in wild-type (WT) mice only causes disease when injected into the brain leads to lethal encephalitis in Irf2−/− mice after peripheral inoculation. Irf2−/− mice fail to control virus replication and recruit immune infiltrates into the brain. Reduced B cells and virus-specific IgG are observed in the Irf2−/− mouse brains despite the presence of peripheral neutralizing antibodies, suggesting a defect in B cell trafficking to the central nervous system (CNS). B cell–deficient μMT mice are significantly more susceptible to viral infection, yet WT B cells and serum are unable to rescue the Irf2−/− mice. Collectively, our data demonstrate that proper localization of B cells and local production of antibodies in the CNS are required for protection. The work advances our understanding of host mechanisms that affect viral neuroinvasion and their contribution to immunity against CNS infections.
Collapse
Affiliation(s)
- Melody M H Li
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Jakob Loschko
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Jing W Xiao
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, The Rockefeller University, Weill Cornell Medical College, New York, NY 10065
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| |
Collapse
|
42
|
Laidlaw BJ, Cyster JG. Interfer'n with antibody responses. Sci Immunol 2016; 1:1/4/eaaj1836. [PMID: 28783688 DOI: 10.1126/sciimmunol.aaj1836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
Abstract
Type I interferon blocks the generation of neutralizing antibodies in response to chronic infection.
Collapse
Affiliation(s)
- Brian J Laidlaw
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jason G Cyster
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
43
|
Hosking MP, Flynn CT, Whitton JL. Type I IFN Signaling Is Dispensable during Secondary Viral Infection. PLoS Pathog 2016; 12:e1005861. [PMID: 27580079 PMCID: PMC5006979 DOI: 10.1371/journal.ppat.1005861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022] Open
Abstract
Innate immune responses in general, and type I interferons (T1IFNs) in particular, play an important and often essential role during primary viral infections, by directly combatting the virus and by maximizing the primary adaptive immune response. Several studies have suggested that T1IFNs also contribute very substantially to the secondary (recall) response; they are thought (i) to be required to drive the early attrition of memory T cells, (ii) to support the subsequent expansion of surviving virus-specific memory cells, and (iii) to assist in the suppression and clearance of the infectious agent. However, many of these observations were predicated upon models in which T1IFN signaling was interrupted prior to a primary immune response, raising the possibility that the resulting memory cells might be intrinsically abnormal. We have directly addressed this by using an inducible-Cre model system in which the host remains genetically-intact during the primary response to infection, and in which T1IFN signaling can be effectively ablated prior to secondary viral challenge. We report that, in stark contrast to primary infection, T1IFN signaling is not required during the recall response. IFNαβR-deficient memory CD8+ and CD4+ memory T cells undergo attrition and expansion with kinetics that are indistinguishable from those of receptor-sufficient cells. Moreover, even in the absence of functional T1IFN signaling, the host's immune capacity to rapidly suppress, and then to eradicate, a secondary infection remains intact. Thus, this study shows that T1IFN signaling is dispensable during the recall response to a virus infection. Moreover, two broader implications may be drawn. First, a T cell's requirement for a cytokine is highly dependent on the cell's maturation / differentiation status. Consequently, second, these data underscore the importance of evaluating a gene's impact by modulating its expression or function in a temporally-controllable manner.
Collapse
Affiliation(s)
- Martin P. Hosking
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Claudia T. Flynn
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - J. Lindsay Whitton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Crow MK. Autoimmunity: Interferon α or β: which is the culprit in autoimmune disease? Nat Rev Rheumatol 2016; 12:439-40. [PMID: 27411904 DOI: 10.1038/nrrheum.2016.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA and at the Rheumatology Division, Department of Medicine, Weill Cornell Medical College, Hospital for Special Surgery, 535 East 70th Street, New York, New York, 10021, USA
| |
Collapse
|
45
|
Ng CT, Mendoza JL, Garcia KC, Oldstone MBA. Alpha and Beta Type 1 Interferon Signaling: Passage for Diverse Biologic Outcomes. Cell 2016; 164:349-52. [PMID: 26824652 DOI: 10.1016/j.cell.2015.12.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/03/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022]
Abstract
Type I interferon (IFN-I) elicits a complex cascade of events in response to microbial infection. Here, we review recent developments illuminating the large number of IFN-I species and describing their unique biologic functions.
Collapse
Affiliation(s)
- Cherie T Ng
- Department of Immunology & Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Juan L Mendoza
- Department of Molecular & Cellular Physiology and Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular & Cellular Physiology and Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Michael B A Oldstone
- Department of Immunology & Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
46
|
Oestereich L, Lüdtke A, Ruibal P, Pallasch E, Kerber R, Rieger T, Wurr S, Bockholt S, Pérez-Girón JV, Krasemann S, Günther S, Muñoz-Fontela C. Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever. PLoS Pathog 2016; 12:e1005656. [PMID: 27191716 PMCID: PMC4871546 DOI: 10.1371/journal.ppat.1005656] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023] Open
Abstract
Lassa fever (LASF) is a highly severe viral syndrome endemic to West African countries. Despite the annual high morbidity and mortality caused by LASF, very little is known about the pathophysiology of the disease. Basic research on LASF has been precluded due to the lack of relevant small animal models that reproduce the human disease. Immunocompetent laboratory mice are resistant to infection with Lassa virus (LASV) and, to date, only immunodeficient mice, or mice expressing human HLA, have shown some degree of susceptibility to experimental infection. Here, transplantation of wild-type bone marrow cells into irradiated type I interferon receptor knockout mice (IFNAR-/-) was used to generate chimeric mice that reproduced important features of severe LASF in humans. This included high lethality, liver damage, vascular leakage and systemic virus dissemination. In addition, this model indicated that T cell-mediated immunopathology was an important component of LASF pathogenesis that was directly correlated with vascular leakage. Our strategy allows easy generation of a suitable small animal model to test new vaccines and antivirals and to dissect the basic components of LASF pathophysiology.
Collapse
Affiliation(s)
- Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Anja Lüdtke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Hamburg, Germany
| | - Paula Ruibal
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Hamburg, Germany
| | - Elisa Pallasch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Romy Kerber
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Toni Rieger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Stephanie Wurr
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - Sabrina Bockholt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - José V. Pérez-Girón
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Hamburg, Germany
| | - Susanne Krasemann
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
47
|
Ng CT, Sullivan BM, Teijaro JR, Lee AM, Welch M, Rice S, Sheehan KCF, Schreiber RD, Oldstone MBA. Blockade of interferon Beta, but not interferon alpha, signaling controls persistent viral infection. Cell Host Microbe 2016; 17:653-61. [PMID: 25974304 DOI: 10.1016/j.chom.2015.04.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/09/2015] [Accepted: 03/19/2015] [Indexed: 12/16/2022]
Abstract
Although type I interferon (IFN-I) is thought to be beneficial against microbial infections, persistent viral infections are characterized by high interferon signatures suggesting that IFN-I signaling may promote disease pathogenesis. During persistent lymphocytic choriomeningitis virus (LCMV) infection, IFNα and IFNβ are highly induced early after infection, and blocking IFN-I receptor (IFNAR) signaling promotes virus clearance. We assessed the specific roles of IFNβ versus IFNα in controlling LCMV infection. While blockade of IFNβ alone does not alter early viral dissemination, it is important in determining lymphoid structure, lymphocyte migration, and anti-viral T cell responses that lead to accelerated virus clearance, approximating what occurs during attenuation of IFNAR signaling. Comparatively, blockade of IFNα was not associated with improved viral control, but with early dissemination of virus. Thus, despite their use of the same receptor, IFNβ and IFNα have unique and distinguishable biologic functions, with IFNβ being mainly responsible for promoting viral persistence.
Collapse
Affiliation(s)
- Cherie T Ng
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian M Sullivan
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew M Lee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Megan Welch
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephanie Rice
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kathleen C F Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael B A Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-α autoamplification. Proc Natl Acad Sci U S A 2016; 113:1351-6. [PMID: 26787880 DOI: 10.1073/pnas.1525356113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Blunting immunopathology without abolishing host defense is the foundation for safe and effective modulation of infectious and autoimmune diseases. Sphingosine 1-phosphate receptor 1 (S1PR1) agonists are effective in treating infectious and multiple autoimmune pathologies; however, mechanisms underlying their clinical efficacy are yet to be fully elucidated. Here, we uncover an unexpected mechanism of convergence between S1PR1 and interferon alpha receptor 1 (IFNAR1) signaling pathways. Activation of S1PR1 signaling by pharmacological tools or endogenous ligand sphingosine-1 phosphate (S1P) inhibits type 1 IFN responses that exacerbate numerous pathogenic conditions. Mechanistically, S1PR1 selectively suppresses the type I IFN autoamplification loop in plasmacytoid dendritic cells (pDCs), a specialized DC subset, for robust type I IFN release. S1PR1 agonist suppression is pertussis toxin-resistant, but inhibited by an S1PR1 C-terminal-derived transactivating transcriptional activator (Tat)-fusion peptide that blocks receptor internalization. S1PR1 agonist treatment accelerates turnover of IFNAR1, suppresses signal transducer and activator of transcription 1 (STAT1) phosphorylation, and down-modulates total STAT1 levels, thereby inactivating the autoamplification loop. Inhibition of S1P-S1PR1 signaling in vivo using the selective antagonist Ex26 significantly elevates IFN-α production in response to CpG-A. Thus, multiple lines of evidence demonstrate that S1PR1 signaling sets the sensitivity of pDC amplification of IFN responses, thereby blunting pathogenic immune responses. These data illustrate a lipid G-protein coupled receptor (GPCR)-IFNAR1 regulatory loop that balances effective and detrimental immune responses and elevated endogenous S1PR1 signaling. This mechanism will likely be advantageous in individuals subject to a range of inflammatory conditions.
Collapse
|
49
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
50
|
Abstract
Since Isaac's and Lindenmann's seminal experiments over 50 years ago demonstrating a soluble factor generated from heat killed virus-stimulated chicken embryos could inhibit live influenza virus replication, the term interferon has been synonymous with inhibition of virus replication. While the antiviral properties of type 1 interferon (IFN-I) are undeniable, recent studies have reported expanding and somewhat unexpected roles of IFN-I signaling during both acute and persistent viral infections. IFN-I signaling can promote morbidity and mortality through induction of aberrant inflammatory responses and recruitment of inflammatory innate immune cell populations during acute respiratory viral infections. During persistent viral infection, IFN-I signaling promotes containment of early viral replication/dissemination, however, also initiates and maintains immune suppression, lymphoid tissue disorganization, and CD4 T cell dysfunction through modulation of multiple immune cell populations. Finally, new data are emerging illuminating how specific IFN-I species regulate immune pathology and suppression during acute and persistent viral infections, respectively. Systematic characterization of the cellular populations that produce IFN-I, how the timing of IFN-I induction and intricacies of subtype specific IFN-I signaling promote pathology or immune suppression during acute and persistent viral infections should inform the development of treatments and modalities to control viral associated pathologies.
Collapse
|