1
|
Liu Z, Li JP, Chen M, Wu M, Shi Y, Li W, Teijaro JR, Wu P. Detecting Tumor Antigen-Specific T Cells via Interaction-Dependent Fucosyl-Biotinylation. Cell 2020; 183:1117-1133.e19. [PMID: 33096019 DOI: 10.1016/j.cell.2020.09.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/27/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Re-activation and clonal expansion of tumor-specific antigen (TSA)-reactive T cells are critical to the success of checkpoint blockade and adoptive transfer of tumor-infiltrating lymphocyte (TIL)-based therapies. There are no reliable markers to specifically identify the repertoire of TSA-reactive T cells due to their heterogeneous composition. We introduce FucoID as a general platform to detect endogenous antigen-specific T cells for studying their biology. Through this interaction-dependent labeling approach, intratumoral TSA-reactive CD4+, CD8+ T cells, and TSA-suppressive CD4+ T cells can be detected and separated from bystander T cells based on their cell-surface enzymatic fucosyl-biotinylation. Compared to bystander TILs, TSA-reactive TILs possess a distinct T cell receptor (TCR) repertoire and unique gene features. Although exhibiting a dysfunctional phenotype, TSA-reactive CD8+ TILs possess substantial capabilities of proliferation and tumor-specific killing. Featuring genetic manipulation-free procedures and a quick turnover cycle, FucoID should have the potential of accelerating the pace of personalized cancer treatment.
Collapse
Affiliation(s)
- Zilei Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jie P Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Mingkuan Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mengyao Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yujie Shi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Rapid Assessment of Functional Avidity of Tumor-Specific T Cell Receptors Using an Antigen-Presenting Tumor Cell Line Electroporated with Full-Length Tumor Antigen mRNA. Cancers (Basel) 2020; 12:cancers12020256. [PMID: 31972992 PMCID: PMC7072428 DOI: 10.3390/cancers12020256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
The functional avidity of T-cell receptor (TCR)-engineered T cells towards their cognate epitope plays a crucial role in successfully targeting and killing tumor cells expressing the tumor-associated antigen (TAA). When evaluating in vitro functional T-cell avidity, an important aspect that is often neglected is the antigen-presenting cell (APC) used in the assay. Cell-based models for antigen-presentation, such as tumor cell lines, represent a valid alternative to autologous APCs due to their availability, off-the-shelf capabilities, and the broad range of possibilities for modification via DNA or messenger RNA (mRNA) transfection. To find a valuable model APC for in vitro validation of TAA Wilms’ tumor 1 (WT1)-specific TCRs, we tested four different WT1 peptide-pulsed HLA-A2+ tumor cell lines commonly used in T-cell stimulation assays. We found the multiple myeloma cell line U266 to be a suitable model APC to evaluate differences in mean functional avidity (EC50) values of transgenic TCRs following transfection in 2D3 Jurkat T cells. Next, to assess the dose-dependent antigen-specific responsiveness of WT1 TCR-engineered 2D3 T cells to endogenously processed epitopes, we electroporated U266 cells with different amounts of full-length antigen WT1 mRNA. Finally, we analyzed the functional avidity of WT1 TCR-transfected primary CD8 T cells towards WT1 mRNA-electroporated U266 cells. In this study, we demonstrate that both the APC and the antigen loading method (peptide pulsing versus full-length mRNA transfection) to analyze T-cell functional avidity have a significant impact on the EC50 values of a given TCR. For rapid assessment of the functional avidity of a cloned TCR towards its endogenously processed MHC I-restricted epitope, we showcase that the TAA mRNA-transfected U266 cell line is a suitable and versatile model APC.
Collapse
|
3
|
Durgeau A, Virk Y, Gros G, Voilin E, Corgnac S, Djenidi F, Salmon J, Adam J, de Montpréville V, Validire P, Ferrone S, Chouaib S, Eggermont A, Soria JC, Lemonnier F, Tartour E, Chaput N, Besse B, Mami-Chouaib F. Human preprocalcitonin self-antigen generates TAP-dependent and -independent epitopes triggering optimised T-cell responses toward immune-escaped tumours. Nat Commun 2018; 9:5097. [PMID: 30504837 PMCID: PMC6269466 DOI: 10.1038/s41467-018-07603-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
Tumours often evade CD8 T-cell immunity by downregulating TAP. T-cell epitopes associated with impaired peptide processing are immunogenic non-mutated neoantigens that emerge during tumour immune evasion. The preprocalcitonin (ppCT)16-25 neoepitope belongs to this category of antigens. Here we show that most human lung tumours display altered expression of TAP and frequently express ppCT self-antigen. We also show that ppCT includes HLA-A2-restricted epitopes that are processed by TAP-independent and -dependent pathways. Processing occurs in either the endoplasmic reticulum, by signal peptidase and signal peptide peptidase, or in the cytosol after release of a signal peptide precursor or retrotranslocation of a procalcitonin substrate by endoplasmic-reticulum-associated degradation. Remarkably, ppCT peptide-based immunotherapy induces efficient T-cell responses toward antigen processing and presenting machinery-impaired tumours transplanted into HLA-A*0201-transgenic mice and in NOD-scid-Il2rγnull mice adoptively transferred with human PBMC. Thus, ppCT-specific T lymphocytes are promising effectors for treatment of tumours that have escaped immune recognition.
Collapse
Affiliation(s)
- Aurélie Durgeau
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.,ElyssaMed, Paris Biotech Santé, 75014, Paris, France
| | - Yasemin Virk
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Gwendoline Gros
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Elodie Voilin
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Fayçal Djenidi
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Jérôme Salmon
- CNRS (Centre National de la Recherche Scientifique) UMR 8122, Gustave Roussy, Faculté de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Julien Adam
- INSERM U 981, Gustave Roussy, Faculté de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Vincent de Montpréville
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.,Service d'Anatomie Pathologique, Centre Chirurgical Marie-Lannelongue, 92350, Le-Plessis-Robinson, France
| | - Pierre Validire
- Service d'Anatomie Pathologique, Institut Mutualiste Montsouris, 75014, Paris, France
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.,Thumbay Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, UAE
| | - Alexander Eggermont
- Cancer Institute, Gustave Roussy Cancer Campus, Grand Paris, 94805, Villejuif, France
| | - Jean-Charles Soria
- Department of Drug Development (DITEP), Gustave Roussy, 94805, Villejuif, France
| | - François Lemonnier
- Département Endocrinologie, Métabolisme et Diabète, Equipe Immunologie des Diabètes, INSERM U1016, 75014, Paris, France
| | - Eric Tartour
- INSERM U970, Paris Cardiovascular Research Centre, Université Paris-Descartes, Sorbonne Paris Cité, Equipe Labellisée Ligue Contre le Cancer, Hôpital Européen Georges Pompidou, Service d'Immunologie Biologique, 75015, Paris, France
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, and CNRS-UMS 3655 and INSERM-US23, Gustave Roussy Cancer Campus, Villejuif, France.,Faculté de Pharmacie, University Paris-Sud, F-92296, Chatenay-Malabry, France
| | - Benjamin Besse
- Département de Médecine, Gustave Roussy, 94805, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.
| |
Collapse
|
4
|
Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Front Immunol 2018; 9:14. [PMID: 29403496 PMCID: PMC5786548 DOI: 10.3389/fimmu.2018.00014] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022] Open
Abstract
Recent advances in cancer treatment have emerged from new immunotherapies targeting T-cell inhibitory receptors, including cytotoxic T-lymphocyte associated antigen (CTLA)-4 and programmed cell death (PD)-1. In this context, anti-CTLA-4 and anti-PD-1 monoclonal antibodies have demonstrated survival benefits in numerous cancers, including melanoma and non-small-cell lung carcinoma. PD-1-expressing CD8+ T lymphocytes appear to play a major role in the response to these immune checkpoint inhibitors (ICI). Cytotoxic T lymphocytes (CTL) eliminate malignant cells through recognition by the T-cell receptor (TCR) of specific antigenic peptides presented on the surface of cancer cells by major histocompatibility complex class I/beta-2-microglobulin complexes, and through killing of target cells, mainly by releasing the content of secretory lysosomes containing perforin and granzyme B. T-cell adhesion molecules and, in particular, lymphocyte-function-associated antigen-1 and CD103 integrins, and their cognate ligands, respectively, intercellular adhesion molecule 1 and E-cadherin, on target cells, are involved in strengthening the interaction between CTL and tumor cells. Tumor-specific CTL have been isolated from tumor-infiltrating lymphocytes and peripheral blood lymphocytes (PBL) of patients with varied cancers. TCRβ-chain gene usage indicated that CTL identified in vitro selectively expanded in vivo at the tumor site compared to autologous PBL. Moreover, functional studies indicated that these CTL mediate human leukocyte antigen class I-restricted cytotoxic activity toward autologous tumor cells. Several of them recognize truly tumor-specific antigens encoded by mutated genes, also known as neoantigens, which likely play a key role in antitumor CD8 T-cell immunity. Accordingly, it has been shown that the presence of T lymphocytes directed toward tumor neoantigens is associated with patient response to immunotherapies, including ICI, adoptive cell transfer, and dendritic cell-based vaccines. These tumor-specific mutation-derived antigens open up new perspectives for development of effective second-generation therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Aurélie Durgeau
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,ElyssaMed, Paris Biotech Santé, Paris, France
| | - Yasemin Virk
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
5
|
Paxillin Binding to the Cytoplasmic Domain of CD103 Promotes Cell Adhesion and Effector Functions for CD8+ Resident Memory T Cells in Tumors. Cancer Res 2017; 77:7072-7082. [DOI: 10.1158/0008-5472.can-17-1487] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/05/2017] [Accepted: 10/05/2017] [Indexed: 11/16/2022]
|
6
|
Hu Z, Zhu L, Wang J, Wan Y, Yuan S, Chen J, Ding X, Qiu C, Zhang X, Qiu C, Xu J. Immune Signature of Enhanced Functional Avidity CD8 + T Cells in vivo Induced by Vaccinia Vectored Vaccine. Sci Rep 2017; 7:41558. [PMID: 28155878 PMCID: PMC5290741 DOI: 10.1038/srep41558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/21/2016] [Indexed: 11/09/2022] Open
Abstract
Functional avidity of T cells is a critical determinant for clearing viral infection and eliminating tumor. Understanding how functional avidity is maintained in T cells is imperative for immunotherapy. However, studies systematically characterize T cell with high functional avidity induced in vivo are still lacking. Previously, we and others found vaccinia vectored vaccine (VACV) induced antigen-specific CD8+ T cells with relatively high functional avidity to those from DNA vaccine. Herein, we used functional, immune phenotyping and transcriptomic studies to define the immune signature of these CD8+ T cells with high functional avidity. Antigen-specific CD8+ T cells induced by VACV executed superior in vivo killing activity and displayed a distinct transcriptional profile, whereas no significantly differences were found in composition of memory sub-populations and cytokine poly-functionality. Transcriptional analyses revealed unique features of VACV induced CD8+ T cells in several biological processes, including transport, cell cycle, cell communication and metabolic processes. In summary, we characterize CD8+ T cells of high functional avidity induced in vivo by VACV, which not only improves our understanding of adaptive T cell immunity in VACV vaccination, but also provides clues to modulate functional avidity of CD8+ T cells for T cell based immunotherapy.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lingyan Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jing Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanmin Wan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jian Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chenli Qiu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of MOE/ MOH, Fudan University, Shanghai, China
| | - Chao Qiu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of MOE/ MOH, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of MOE/ MOH, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Hou XL, Wang L, Ding YL, Xie Q, Diao HY. Current status and recent advances of next generation sequencing techniques in immunological repertoire. Genes Immun 2016; 17:153-64. [PMID: 26963138 DOI: 10.1038/gene.2016.9] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 01/26/2023]
Abstract
To ward off a wide variety of pathogens, the human adaptive immune system harbors a vast array of T-cell receptors (TCRs) and B-cell receptors (BCRs), collectively referred to as the immune repertoire. High-throughput sequencing (HTS) of TCR/BCR genes allows in-depth molecular analysis of T/B-cell clones, providing an unprecedented level of detail when examining the T/B-cell repertoire of individuals. It can evaluate TCR/BCR complementarity-determining region 3 (CDR3) diversity and assess the clonal composition, including the size of the repertoire; similarities between repertoires; V(D)J segment use; nucleotide insertions and deletions; CDR3 lengths; and amino acid distributions along the CDR3s at sequence-level resolution. Deep sequencing of B-cell and T-cell repertoires offers the potential for a quantitative understanding of the adaptive immune system in healthy and disease states. Recently, paired sequencing strategies have also been developed, which can provide information about the identity of immune receptor pairs encoded by individual T or B lymphocytes. HTS technology provides a previously unimaginable amount of sequence data, accompanied, however, by numerous challenges associated with error correction and interpretation that remain to be solved. The review details some of the technologies and some of the recent achievements in this field.
Collapse
Affiliation(s)
- X-L Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - L Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Y-L Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Q Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - H-Y Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Reguzova AY, Karpenko LI, Mechetina LV, Belyakov IM. Peptide-MHC multimer-based monitoring of CD8 T-cells in HIV-1 infection and AIDS vaccine development. Expert Rev Vaccines 2014; 14:69-84. [PMID: 25373312 DOI: 10.1586/14760584.2015.962520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of MHC multimers allows precise and direct detecting and analyzing of antigen-specific T-cell populations and provides new opportunities to characterize T-cell responses in humans and animals. MHC-multimers enable us to enumerate specific T-cells targeting to viral, tumor and vaccine antigens with exceptional sensitivity and specificity. In the field of HIV/SIV immunology, this technique provides valuable information about the frequencies of HIV- and SIV-specific CD8(+) cytotoxic T lymphocytes (CTLs) in different tissues and sites of infection, AIDS progression, and pathogenesis. Peptide-MHC multimer technology remains a very sensitive tool in detecting virus-specific T -cells for evaluation of the immunogenicity of vaccines against HIV-1 in preclinical trials. Moreover, it helps to understand how immune responses are formed following vaccination in the dynamics from priming point until T-cell memory is matured. Here we review a diversity of peptide-MHC class I multimer applications for fundamental immunological studies in different aspects of HIV/SIV infection and vaccine development.
Collapse
Affiliation(s)
- Alena Y Reguzova
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, 630559, Russia
| | | | | | | |
Collapse
|
9
|
Holbrook BC, Yammani RD, Blevins LK, Alexander-Miller MA. In vivo modulation of avidity in highly sensitive CD8(+) effector T cells following viral infection. Viral Immunol 2013; 26:302-13. [PMID: 23971914 DOI: 10.1089/vim.2013.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Numerous studies have demonstrated a critical role for T cell avidity in predicting in vivo efficacy. Even though the measurement of avidity is now a routine assessment for the analysis of effector and memory T cell populations, our understanding of how this property is controlled in vivo at both the population and individual cell levels is limited. Our previous studies have identified high avidity as a property of the initial effector population generated in mice following respiratory virus infection. As the response progresses, lower avidity cells appear in the effector pool. The studies described here investigate the mechanistic basis of this in vivo regulation of avidity. We present data supporting in vivo avidity modulation within the early high avidity responders that results in a population of lower avidity effector cells. Changes in avidity were correlated with decreased lck expression and increased sensitivity to lck inhibitors in effector cells present at late versus early times postinfection. The possibility of tuning within select individual effectors is a previously unappreciated mechanism for the control of avidity in vivo.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | | | | | | |
Collapse
|
10
|
Tewari M, Sahai S, Mishra RR, Shukla SK, Shukla HS. Dendritic cell therapy in advanced gastric cancer: a promising new hope? Surg Oncol 2012; 21:164-71. [PMID: 22521560 DOI: 10.1016/j.suronc.2012.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/02/2012] [Accepted: 03/27/2012] [Indexed: 01/28/2023]
Abstract
Advanced gastric cancer carries a very poor prognosis when the tumor becomes unresectable. Even with the best currently available chemotherapy regimens the survival rate remains dismal. A recent breakthrough in the treatment paradigm has been the approval of trastuzumab, a monoclonal antibody, in HER2-positive metastatic gastric cancer. A large number of trials are underway using dendritic cells (DCs) in a number of human malignancies and do show a ray of hope in management of these patients. This review attempts to summarize tumor immunology and the current data regarding use of DCs in gastric cancer therapy.
Collapse
Affiliation(s)
- Mallika Tewari
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, 7 SKG Colony, Lanka, Varanasi 221005, U.P., India
| | | | | | | | | |
Collapse
|
11
|
Durgeau A, El Hage F, Vergnon I, Validire P, de Montpréville V, Besse B, Soria JC, van Hall T, Mami-Chouaib F. Different expression levels of the TAP peptide transporter lead to recognition of different antigenic peptides by tumor-specific CTL. THE JOURNAL OF IMMUNOLOGY 2011; 187:5532-9. [PMID: 22025554 DOI: 10.4049/jimmunol.1102060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Decreased antigenicity of cancer cells is a major problem in tumor immunology. This is often acquired by an expression defect in the TAP. However, it has been reported that certain murine Ags appear on the target cell surface upon impairment of TAP expression. In this study, we identified a human CTL epitope belonging to this Ag category. This epitope is derived from preprocalcitonin (ppCT) signal peptide and is generated within the endoplasmic reticulum by signal peptidase and signal peptide peptidase. Lung cancer cells bearing this antigenic peptide displayed low levels of TAP, but restoration of their expression by IFN-γ treatment or TAP1 and TAP2 gene transfer abrogated ppCT Ag presentation. In contrast, TAP upregulation in the same tumor cells increased their recognition by proteasome/TAP-dependent peptide-specific CTLs. Thus, to our knowledge, ppCT(16-25) is the first human tumor epitope whose surface expression requires loss or downregulation of TAP. Lung tumors frequently display low levels of TAP molecules and might thus be ignored by the immune system. Our results suggest that emerging signal peptidase-generated peptides represent alternative T cell targets, which permit CTLs to destroy TAP-impaired tumors and thus overcome tumor escape from CD8(+) T cell immunity.
Collapse
Affiliation(s)
- Aurélie Durgeau
- INSERM U753, Team 1, Tumor Antigens and CTL Reactivity, Integrated Research Cancer Institute in Villejuif, Gustave Roussy Institute, 94805 Villejuif Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kemmler CB, Clambey ET, Kedl RM, Slansky JE. Elevated tumor-associated antigen expression suppresses variant peptide vaccine responses. THE JOURNAL OF IMMUNOLOGY 2011; 187:4431-9. [PMID: 21940675 DOI: 10.4049/jimmunol.1101555] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Variant peptide vaccines are used clinically to expand T cells that cross-react with tumor-associated Ags (TAA). To investigate the effects of elevated endogenous TAA expression on variant peptide-induced responses, we used the GP70 TAA model. Although young BALB/c mice display T cell tolerance to the TAA GP70(423-431) (AH1), expression of GP70 and suppression of AH1-specific responses increases with age. We hypothesized that as TAA expression increases, the AH1 cross-reactivity of variant peptide-elicited T cell responses diminishes. Controlling for immunosenescence, we showed that elevated GP70 expression suppressed AH1 cross-reactive responses elicited by two AH1 peptide variants. A variant that elicited almost exclusively AH1 cross-reactive T cells in young mice elicited few or no T cells in aging mice with Ab-detectable GP70 expression. In contrast, a variant that elicited a less AH1 cross-reactive T cell response in young mice successfully expanded AH1 cross-reactive T cells in all aging mice tested. However, these T cells bound the AH1/MHC complex with a relatively short half-life and responded poorly to ex vivo stimulation with the AH1 peptide. Variant peptide vaccine responses were also suppressed when AH1 peptide is administered tolerogenically to young mice before vaccination. Analyses of variant-specific precursor T cells from naive mice with Ab-detectable GP70 expression determined that these T cells expressed PD-1 and had downregulated IL-7Rα expression, suggesting they were anergic or undergoing deletion. Although variant peptide vaccines were less effective as TAA expression increases, data presented in this article also suggest that complementary immunotherapies may induce the expansion of T cells with functional TAA recognition.
Collapse
Affiliation(s)
- Charles B Kemmler
- Integrated Department of Immunology, School of Medicine, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
13
|
Sharma SK, Alexander-Miller MA. Increased sensitivity to antigen in high avidity CD8(+) T cells results from augmented membrane proximal T-cell receptor signal transduction. Immunology 2011; 133:307-17. [PMID: 21501160 DOI: 10.1111/j.1365-2567.2011.03440.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The functional avidity of a cytotoxic T lymphocyte (CTL) is known to be a critical determinant of the efficacy with which it clears pathogens. High avidity cells, which are by definition highly sensitive to peptide antigen, are superior for elimination of viruses and tumours. Our studies have established the ability of T cells to undergo avidity modulation as a result of antigen encounter. High and low avidity cells established in this manner exhibit significant differences in the amount of peptide required to elicit effector function. However, how signalling is regulated in these cells as it relates to the control of peptide sensitivity remains to be defined. To address this question, we compared T-cell receptor (TCR) signal transduction events in high and low avidity CTL generated from OT-I(rag2-) TCR transgenic mice. Our data suggest that divergent signalling is initiated at the TCR-associated CD3ζ, with low avidity CTL requiring higher amounts of pMHC to achieve threshold levels of phosphorylated CD3ζ compared with high avidity CTL. Further, this difference is transduced further downstream to mitogen-activated protein kinase and Ca(2+) signalling pathways. These results suggest that regulated control of the initiation of TCR signalling in high versus low avidity cells determines the amount of peptide required for T-cell activation.
Collapse
Affiliation(s)
- Sharad K Sharma
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
14
|
Use of HLA-DR*08032/E7 and HLA-DR*0818/E7 tetramers in tracking of epitope-specific CD4+ T cells in active and convalescent tuberculosis patients compared with control donors. Immunobiology 2011; 216:947-60. [PMID: 21281984 DOI: 10.1016/j.imbio.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 01/02/2011] [Accepted: 01/04/2011] [Indexed: 11/22/2022]
Abstract
Comparative tracking of tetramer-positive and epitope-specific CD4(+) T cells in blood and other tissues from tuberculosis (TB) patients during TB development and treatment using control donor samples is not well characterized. In this study, a novel HLA-DR-restricted peptide E7 from the ESAT-6 protein of Mycobacterium tuberculosis (MTB) was used to prepare modified HLA-DR*08032/E7 tetramer (tetramer 1) and HLA-DR*0818/E7 tetramer (tetramer 2) to monitor a series of samples from TB patients and control donors. Tetramer staining showed that (1) by direct staining of single sample and flow cytometric analyses, detection of tetramer-positive CD4(+) T cells ranged from 0.1% to 8.8% (median 0.67% in tetramer 1 and 0.5% in tetramer 2), 0.1 to 10.7% (0.74% and 0.71%), 0.02 to 2.2% (0.25% and 0.25%), 0.02 to 0.48% (0.2% and 0.2%) and most at under 0-0.2% (0.2% and 0.16%) in the initial pulmonary TB (PTB) patients' blood, pleural fluid (PLF) of initial tuberculous pleuritis patients, non-TB patients' blood, healthy donors' blood and umbilical cord blood, respectively; significantly higher levels of CD4(+) T cells were detected in samples of TB patients than in three control donor groups; (2) by direct staining of time point TB samples and flow cytometric analyses, along with TB symptom amendment at day 60, tetramer-positive CD4(+) T cells began to decrease, until after 90-120 days, reached and kept at a relatively low even normal level about at 0.03-0.3%; (3) by enrichment approach, at least 10-fold increased memory tetramer-positive CD4(+) T cells were seen; (4) by in situ staining, tetramer-positive, IFN-γ-producing and/or TNF-α-producing CD4(+) T cells in the lymph node and lung granuloma and cavernous tissues of TB patients could be determined. Therefore, by further increasing the sample size tested to confirm the specificity and sensitivity of tetrameric molecules, it should be possible to develop them for use as research and diagnostic reagents.
Collapse
|
15
|
Wang B, Han S, Lien L, Chang LJ. Lentiviral calnexin-modified dendritic cells promote expansion of high-avidity effector T cells with central memory phenotype. Immunology 2009; 128:43-57. [PMID: 19689735 DOI: 10.1111/j.1365-2567.2009.03067.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) are key immune mediators for the education and activation of effector cytotoxic T lymphocytes (CTLs). Ex vivo manipulation of DCs is an attractive strategy in immunotherapy. The chaperone proteins are known to hold the keys to proper protein folding and antigen processing. However, little is known of the role of molecular chaperones in DC and T-cell functions. We report that DCs expressing supraphysiological levels of calnexin, a chaperone protein, via lentiviral gene transfer stimulated the expansion of high-avidity CTLs with increased central memory phenotype. Microarray RNA profiling and analyses of protein expression with flow cytometry and multiplex enzyme-linked immunosorbent assay indicated that calnexin had a global effect on DCs with up-regulation of immune modulatory signals including costimulatory molecules, cytokines, chemokines and adhesion molecules. Compared with unmodified DCs, calnexin-DCs were capable of activating T cells to exhibit increased functional avidity associated with up-regulation of CCR7 and costimulatory tumour necrosis factor receptor superfamily molecules. These findings demonstrate a prominent role of calnexin in optimizing DC immunity with potential for improving immunotherapy.
Collapse
Affiliation(s)
- Bei Wang
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Cell-based cancer vaccines are a highly attractive alternative to standard cancer therapies. They theoretically have the capability of inciting a multitargeted therapeutic response that functions by reshaping the host-tumor interaction, tipping the balance in favor of tumor rejection. Due to the polyclonal immune response induced, they are less likely to result in therapeutic escape than most cancer treatments in use today. Their immune-based mechanism of action offers a unique approach to management that should not be limited by traditional modes of drug resistance. Their favorable side-effect profile further identifies them as a potential treatment modality of choice. Despite these positive features, a number of hurdles must be overcome in order for cancer vaccines to take their place in the clinic as part of standard cancer therapy. Vaccine protocols must be optimized both to induce a high-quality antitumor T-cell response and to abrogate established mechanisms of immune tolerance that actively function to shut antitumor T cells down. By applying basic knowledge of the molecular features of T-cell biology and immune tolerance to the design of trials that combine tumor vaccines with targeted immunomodulatory drugs, potent strategies for inducing effective antitumor immunity can be developed. The first of these combinatorial trials have already been reported and offer a tantalizing glimpse of the future of cancer immunotherapy.
Collapse
Affiliation(s)
- Leisha A Emens
- Department of Oncology, Johns Hopkins University and the Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231-1000, USA.
| |
Collapse
|
17
|
Serana F, Sottini A, Caimi L, Palermo B, Natali PG, Nisticò P, Imberti L. Identification of a public CDR3 motif and a biased utilization of T-cell receptor V beta and J beta chains in HLA-A2/Melan-A-specific T-cell clonotypes of melanoma patients. J Transl Med 2009; 7:21. [PMID: 19317896 PMCID: PMC2667493 DOI: 10.1186/1479-5876-7-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/24/2009] [Indexed: 12/26/2022] Open
Abstract
Background Assessment of T-cell diversity, besides giving insights about the molecular basis of tumor antigen recognition, has clinical implications since it provides criteria for evaluating antigen-specific T cells clinically relevant for spontaneous and vaccine-induced anti-tumor activity. Melan-A is one of the melanoma antigens most frequently recognized by peripheral and tumor-infiltrating lymphocytes in HLA-A2+ melanoma patients. Many clinical trials involving anti-tumor vaccination have been conducted using modified versions of this peptide. Methods We conducted an in-depth characterization of 210 T-cell receptor beta chain (TRB) clonotypes derived from T cells of HLA-A2+ melanoma patients displaying cytotoxic activity against natural and A27L-modified Melan-A peptides. One hundred and thirteen Melan-A-specific clonotypes from melanoma-free subjects, 199 clonotypes from T-cell clones from melanoma patients specific for melanoma antigens other than Melan-A, and 305 clonotypes derived from T cells of HLA-A2+ individuals showing unrelated specificities, were used as control. After sequence analysis, performed according to the IMGT definitions, TRBV and TRBJ usage, CDR3 length and amino acid composition were compared in the four groups of clonotypes. Results TRB sequences of Melan-A-specific clonotypes obtained from melanoma patients were highly heterogeneous, but displayed a preferential usage of few TRBV and TRBJ segments. Furthermore, they included a recurrent "public" amino acid motif (Glycine-Leucine-Glycine at positions 110-112-113 of the CDR3) rearranged with dominant TRBV and TRBJ segments and, in one case, associated with a full conservation of the entire TRB sequence. Conclusion Contrary to what observed for public anti-Melan-A T-cell receptor alpha motifs, which had been identified in several clonotypes of both melanoma patients and healthy controls, the unexpectedly high contribution of a public TRB motif in the recognition of a dominant melanoma epitope in melanoma patients may provide important information about the biology of anti-tumor T-cell responses and improve monitoring strategies of anti-tumor vaccines.
Collapse
Affiliation(s)
- Federico Serana
- Diagnostics Department, Spedali Civili di Brescia, 25123 Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Preprocalcitonin signal peptide generates a cytotoxic T lymphocyte-defined tumor epitope processed by a proteasome-independent pathway. Proc Natl Acad Sci U S A 2008; 105:10119-24. [PMID: 18626012 DOI: 10.1073/pnas.0802753105] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identified an antigen recognized on a human non-small-cell lung carcinoma by a cytotoxic T lymphocyte clone derived from autologous tumor-infiltrating lymphocytes. The antigenic peptide is presented by HLA-A2 and is encoded by the CALCA gene, which codes for calcitonin and for the alpha-calcitonin gene-related peptide. The peptide is derived from the carboxy-terminal region of the preprocalcitonin signal peptide and is processed independently of proteasomes and the transporter associated with antigen processing. Processing occurs within the endoplasmic reticulum of all tumoral and normal cells tested, including dendritic cells, and it involves signal peptidase and the aspartic protease, signal peptide peptidase. The CALCA gene is overexpressed in medullary thyroid carcinomas and in several lung carcinomas compared with normal tissues, leading to recognition by the T cell clone. This new epitope is, therefore, a promising candidate for cancer immunotherapy.
Collapse
|
19
|
Huang X, Liu L, Ren L, Qiu C, Wan Y, Xu J. Mucosal priming with replicative Tiantan vaccinia and systemic boosting with DNA vaccine raised strong mucosal and systemic HIV-specific immune responses. Vaccine 2007; 25:8874-84. [DOI: 10.1016/j.vaccine.2007.08.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/21/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
|
20
|
Sensi M, Anichini A. Unique tumor antigens: evidence for immune control of genome integrity and immunogenic targets for T cell-mediated patient-specific immunotherapy. Clin Cancer Res 2007; 12:5023-32. [PMID: 16951217 DOI: 10.1158/1078-0432.ccr-05-2682] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular identification and characterization of antigenic epitopes recognized by T cells on human cancers has rapidly evolved since the cloning in 1991 of MAGEA1, the first gene reported to encode a CTL-defined human tumor antigen. In the expanding field of human tumor immunology, unique tumor antigens constitute a growing class of T cell-defined epitopes that exhibit strong immunogenicity. Some of these antigens, which often derive from mutation of genes that have relevant biological functions, are less susceptible to immunoselection and may be retained even in advanced tumors. Immunogenicity and constitutive expression of the unique tumor antigens provide a strong rationale for the design of novel, patient-tailored therapies that target such determinants. Here we discuss the immunologic relevance of unique tumor antigens in the light of the prospects for exploiting such epitopes as targets for patient-specific immune intervention strategies.
Collapse
Affiliation(s)
- Marialuisa Sensi
- Human Tumor Immunobiology Unit, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | |
Collapse
|
21
|
Friedlein G, El Hage F, Vergnon I, Richon C, Saulnier P, Lécluse Y, Caignard A, Boumsell L, Bismuth G, Chouaib S, Mami-Chouaib F. Human CD5 protects circulating tumor antigen-specific CTL from tumor-mediated activation-induced cell death. THE JOURNAL OF IMMUNOLOGY 2007; 178:6821-7. [PMID: 17513730 DOI: 10.4049/jimmunol.178.11.6821] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously characterized several tumor-specific T cell clones from PBL and tumor-infiltrating lymphocytes of a lung cancer patient with identical TCR rearrangements and similar lytic potential, but with different antitumor response. A role of the TCR inhibitory molecule CD5 to impair reactivity of peripheral T cells against the tumor was found to be involved in this process. In this report, we demonstrate that CD5 also controls the susceptibility of specific T cells to activation-induced cell death (AICD) triggered by the tumor. Using a panel of tumor-infiltrating lymphocytes and PBL-derived clones expressing different levels of CD5, our results indicate that T lymphocyte AICD in response to the cognate tumor is inversely proportional to the surface expression level of CD5. They also suggest a direct involvement of CD5 in this process, as revealed by an increase in tumor-mediated T lymphocyte AICD following neutralization of the molecule with specific mAb. Mechanistically, our data indicate that down-regulation of FasL expression and subsequent inhibition of caspase-8 activation are involved in CD5-induced T cell survival. These results provide evidence for a role of CD5 in the fate of peripheral tumor-specific T cells and further suggest its contribution to regulate the extension of CTL response against tumor.
Collapse
MESH Headings
- Antigens, Neoplasm/blood
- Antigens, Neoplasm/immunology
- CD5 Antigens/immunology
- CD5 Antigens/metabolism
- CD5 Antigens/physiology
- Caspase 8/metabolism
- Caspase Inhibitors
- Cell Death/immunology
- Cell Line, Tumor
- Cell Survival/immunology
- Cytotoxicity, Immunologic
- Enzyme Activation/immunology
- Epitopes, T-Lymphocyte/blood
- Epitopes, T-Lymphocyte/immunology
- Fas Ligand Protein/antagonists & inhibitors
- Fas Ligand Protein/biosynthesis
- Fas Ligand Protein/genetics
- Humans
- Jurkat Cells
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/enzymology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Neoplastic Cells, Circulating/immunology
- Neoplastic Cells, Circulating/pathology
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
Collapse
Affiliation(s)
- Grzegorz Friedlein
- Laboratoire "Immunologie des tumeurs humaines: Interaction effecteurs cytotoxiques-système tumoral," Institut National de la Santé et de la Recherche Médicale Unité 753, Institut Fédératif de Recherche 54, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Le Floc'h A, Jalil A, Vergnon I, Le Maux Chansac B, Lazar V, Bismuth G, Chouaib S, Mami-Chouaib F. Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. ACTA ACUST UNITED AC 2007; 204:559-70. [PMID: 17325197 PMCID: PMC2137907 DOI: 10.1084/jem.20061524] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Various T cell adhesion molecules and their cognate receptors on target cells promote T cell receptor (TCR)–mediated cell killing. In this report, we demonstrate that the interaction of epithelial cell marker E-cadherin with integrin αE(CD103)β7, often expressed by tumor-infiltrating lymphocytes (TILs), plays a major role in effective tumor cell lysis. Indeed, we found that although tumor-specific CD103+ TIL-derived cytotoxic T lymphocyte (CTL) clones are able to kill E-cadherin+/intercellular adhesion molecule 1− autologous tumor cells, CD103− peripheral blood lymphocyte (PBL)-derived counterparts are inefficient. This cell killing is abrogated after treatment of the TIL clones with a blocking anti-CD103 monoclonal antibody or after targeting E-cadherin in the tumor using ribonucleic acid interference. Confocal microscopy analysis also demonstrated that αEβ7 is recruited at the immunological synapse and that its interaction with E-cadherin is required for cytolytic granule polarization and subsequent exocytosis. Moreover, we report that the CD103− profile, frequently observed in PBL-derived CTL clones and associated with poor cytotoxicity against the cognate tumor, is up-regulated upon TCR engagement and transforming growth factor β1 treatment, resulting in strong potentiation of antitumor lytic function. Thus, CD8+/CD103+ tumor-reactive T lymphocytes infiltrating epithelial tumors most likely play a major role in antitumor cytotoxic response through αEβ7–E-cadherin interactions.
Collapse
Affiliation(s)
- Audrey Le Floc'h
- Institut National de la Santé et de la Recherche Médicale (INSERM) U753 and 2Unité de génomique fonctionnelle, Institut Fédératif de Recherche (IFR)-54, Institut Gustave Roussy, Villejuif Cedex 94805, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Johnson LA, Heemskerk B, Powell DJ, Cohen CJ, Morgan RA, Dudley ME, Robbins PF, Rosenberg SA. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:6548-59. [PMID: 17056587 PMCID: PMC2174608 DOI: 10.4049/jimmunol.177.9.6548] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell-based antitumor immunity is driven by CD8(+) cytotoxic T cells bearing TCR that recognize specific tumor-associated peptides bound to class I MHC molecules. Of several cellular proteins involved in T cell:target-cell interaction, the TCR determines specificity of binding; however, the relative amount of its contribution to cellular avidity remains unknown. To study the relationship between TCR affinity and cellular avidity, with the intent of identifying optimal TCR for gene therapy, we derived 24 MART-1:27-35 (MART-1) melanoma Ag-reactive tumor-infiltrating lymphocyte (TIL) clones from the tumors of five patients. These MART-1-reactive clones displayed a wide variety of cellular avidities. alpha and beta TCR genes were isolated from these clones, and TCR RNA was electroporated into the same non-MART-1-reactive allogeneic donor PBMC and TIL. TCR recipient cells gained the ability to recognize both MART-1 peptide and MART-1-expressing tumors in vitro, with avidities that closely corresponded to the original TCR clones (p = 0.018-0.0003). Clone DMF5, from a TIL infusion that mediated tumor regression clinically, showed the highest avidity against MART-1 expressing tumors in vitro, both endogenously in the TIL clone, and after RNA electroporation into donor T cells. Thus, we demonstrated that the TCR appeared to be the core determinant of MART-1 Ag-specific cellular avidity in these activated T cells and that nonreactive PBMC or TIL could be made tumor-reactive with a specific and predetermined avidity. We propose that inducing expression of this highly avid TCR in patient PBMC has the potential to induce tumor regression, as an "off-the-shelf" reagent for allogeneic melanoma patient gene therapy.
Collapse
Affiliation(s)
- Laura A. Johnson
- Surgery Branch, National Cancer Institute, Clinical Research Center, Bethesda, MD 20892
| | - Bianca Heemskerk
- Surgery Branch, National Cancer Institute, Clinical Research Center, Bethesda, MD 20892
| | - Daniel J. Powell
- Surgery Branch, National Cancer Institute, Clinical Research Center, Bethesda, MD 20892
| | - Cyrille J. Cohen
- Surgery Branch, National Cancer Institute, Clinical Research Center, Bethesda, MD 20892
| | - Richard A. Morgan
- Surgery Branch, National Cancer Institute, Clinical Research Center, Bethesda, MD 20892
| | - Mark E. Dudley
- Surgery Branch, National Cancer Institute, Clinical Research Center, Bethesda, MD 20892
| | - Paul F. Robbins
- Surgery Branch, National Cancer Institute, Clinical Research Center, Bethesda, MD 20892
| | - Steven A. Rosenberg
- Surgery Branch, National Cancer Institute, Clinical Research Center, Bethesda, MD 20892
| |
Collapse
|
24
|
Viatte S, Alves PM, Romero P. Reverse immunology approach for the identification of CD8 T-cell-defined antigens: advantages and hurdles. Immunol Cell Biol 2006; 84:318-30. [PMID: 16681829 DOI: 10.1111/j.1440-1711.2006.01447.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the challenges of tumour immunology remains the identification of strongly immunogenic tumour antigens for vaccination. Reverse immunology, that is, the procedure to predict and identify immunogenic peptides from the sequence of a gene product of interest, has been postulated to be a particularly efficient, high-throughput approach for tumour antigen discovery. Over one decade after this concept was born, we discuss the reverse immunology approach in terms of costs and efficacy: data mining with bioinformatic algorithms, molecular methods to identify tumour-specific transcripts, prediction and determination of proteasomal cleavage sites, peptide-binding prediction to HLA molecules and experimental validation, assessment of the in vitro and in vivo immunogenic potential of selected peptide antigens, isolation of specific cytolytic T lymphocyte clones and final validation in functional assays of tumour cell recognition. We conclude that the overall low sensitivity and yield of every prediction step often requires a compensatory up-scaling of the initial number of candidate sequences to be screened, rendering reverse immunology an unexpectedly complex approach.
Collapse
Affiliation(s)
- Sebastien Viatte
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne branch, University Hospital, CHUV, and National Center for Competence in Research, NCCR, Molecular Oncology, Lausanne, Switzerland
| | | | | |
Collapse
|
25
|
Joncker NT, Marloie MA, Chernysheva A, Lonchay C, Cuff S, Klijanienko J, Sigal-Zafrani B, Vincent-Salomon A, Sastre X, Lantz O. Antigen-independent accumulation of activated effector/memory T lymphocytes into human and murine tumors. Int J Cancer 2006; 118:1205-14. [PMID: 16152614 DOI: 10.1002/ijc.21472] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tumor infiltrating lymphocytes (TIL) display activation markers and their presence is often associated with a favorable outcome. The role of tumor antigens in T cell recruitment into tumors is unclear. In an attempt to address this issue, we purified lymphocytes from breast tumor or nontumor, mammary tissue from patients, and normal mammary tissue from healthy individuals. In all groups, including healthy individuals, the majority of cells displayed an effector/memory (CD45RA(lo)/CD27(+/-)) phenotype and quite surprisingly the early and transient activation marker CD69, thus, questioning the tumor antigen specificity of TIL. Because the human repertoire is diverse, the T cells found in the tumors could recognize both self/tumor and environmental antigens through cross-reactivity. To test this hypothesis, we used two anti-male HY monospecific TCR transgenic mouse models. We found an infiltration of HY negative tumors by the CD4(+) and CD8(+) monoclonal T cells after priming with HY positive cells in the periphery. Thus, the presence of activated effector/memory T lymphocytes in tumors can be independent of reactivity against tumor antigens. These results suggest that to find activated effector T cells in a tissue does not always mean that a specific immune response is taking place.
Collapse
Affiliation(s)
- Nathalie T Joncker
- Laboratoire d'Immunologie, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang S, Tsang KY, Schlom J. Induction of higher-avidity human CTLs by vector-mediated enhanced costimulation of antigen-presenting cells. Clin Cancer Res 2006; 11:5603-15. [PMID: 16061879 PMCID: PMC1351007 DOI: 10.1158/1078-0432.ccr-05-0670] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efficacy of antigen-specific CD8(+) CTLs depends not only on the quantity of CTLs generated but also perhaps, more importantly, on the avidity of the CTLs. To date, however, no strategy has been shown to preferentially induce higher-avidity human CTLs. In the present study, antigen-presenting cells (APC) generated from human peripheral blood mononuclear cells were infected with a recombinant avipox vector (rF-) containing the transgenes for a triad of costimulatory molecules (human B7.1, intercellular adhesion molecule-1, and LFA-3, designated as rF-TRICOM) and then used to elicit peptide-specific CTLs from autologous T cells. Compared with peptide-pulsed noninfected APCs or peptide-pulsed APCs infected with wild-type vector, peptide-pulsed APCs infected with rF-TRICOM induced not only more CTLs but also higher-avidity CTLs; this was shown by tetramer staining, tetramer dissociation, IFN-gamma production, and cytolytic assays. Peptide-pulsed rF-TRICOM-infected dendritic cells were also shown to induce CTLs with a >10-fold higher avidity than CTLs induced using CD40L-matured dendritic cells; the use of peptide-pulsed CD40L-matured dendritic cells infected with rF-TRICOM as APCs induced CTLs of even greater avidity. To our knowledge, these studies are the first to show a methodology to induce higher-avidity human CTLs and have implications for the development of more efficient vaccines for a range of human cancers.
Collapse
Affiliation(s)
| | | | - Jeffrey Schlom
- Requests for reprints: Jeffrey Schlom, Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Room 8B09, Bethesda, MD 20892-1750. Phone: (301) 496-4343; Fax: (301) 496-2756; E-mail:
| |
Collapse
|
27
|
Egorov IK. Mouse models of efficient and inefficient anti-tumor immunity, with emphasis on minimal residual disease and tumor escape. Cancer Immunol Immunother 2006; 55:1-22. [PMID: 16091932 PMCID: PMC11030122 DOI: 10.1007/s00262-005-0007-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
Tumor escape from the host immune response remains the major problem holding the development of immunotherapies for cancer. In this review, congenic mouse lines are discussed that differ dramatically in their ability to respond to tumors tested and, thereby, to survive or to succumb to the tumor and/or its metastases. This ability is under the control of either MHC class I or nontrivial MHC class II beta genes expressed in a small subpopulation of antigen-presenting cells. Two hypotheses can explain the results obtained so far: (1) emergence of tumor cell variants that escape the host immune response in morbid mice but are eliminated in survivors, and (2) tumor-induced immunosuppression, which is either efficient or not, depending on the congenic line used. It is argued that further experimentation on these congenics will allow to choose the correct hypothesis, and to characterize the mechanism(s) of elimination of minimal residual disease and prevention of tumor escape by the immune system of survivors as well as the reason(s) for its failure in morbid mice. It is also argued that the use of these models will substantially increase the chance to resolve the controversy of poor correlation of immunotherapy testing in mice with clinical results.
Collapse
Affiliation(s)
- Igor K Egorov
- The Jackson Laboratory, Bar Harbor, ME 04609-1500, USA,
| |
Collapse
|
28
|
Hodge JW, Chakraborty M, Kudo-Saito C, Garnett CT, Schlom J. Multiple costimulatory modalities enhance CTL avidity. THE JOURNAL OF IMMUNOLOGY 2005; 174:5994-6004. [PMID: 15879092 PMCID: PMC1924685 DOI: 10.4049/jimmunol.174.10.5994] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies in both animal models and clinical trials have demonstrated that the avidity of T cells is a major determinant of antitumor and antiviral immunity. In this study, we evaluated several different vaccine strategies for their ability to enhance both the quantity and avidity of CTL responses. CD8(+) T cell quantity was measured by tetramer binding precursor frequency, and avidity was measured by both tetramer dissociation and quantitative cytolytic function. We have evaluated a peptide, a viral vector expressing the Ag transgene alone, with one costimulatory molecule (B7-1), and with three costimulatory molecules (B7-1, ICAM-1, and LFA-3), with anti-CTLA-4 mAb, with GM-CSF, and combinations of the above. We have evaluated these strategies in both a foreign Ag model using beta-galactosidase as immunogen, and in a "self" Ag model, using carcinoembryonic Ag as immunogen in carcinoembryonic Ag transgenic mice. The combined use of several of these strategies was shown to enhance not only the quantity, but, to a greater magnitude, the avidity of T cells generated; a combination strategy is also shown to enhance antitumor effects. The results reported in this study thus demonstrate multiple strategies that can be used in both antitumor and antiviral vaccine settings to generate higher avidity host T cell responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antigens, CD
- Antigens, Differentiation/immunology
- CTLA-4 Antigen
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Carcinoembryonic Antigen/administration & dosage
- Carcinoembryonic Antigen/genetics
- Carcinoembryonic Antigen/immunology
- Cell Line, Tumor
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/prevention & control
- Combined Modality Therapy
- Cytotoxicity Tests, Immunologic/methods
- Female
- Genetic Vectors
- Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- beta-Galactosidase/administration & dosage
- beta-Galactosidase/genetics
- beta-Galactosidase/immunology
Collapse
Affiliation(s)
- James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Kohrt HE, Shu CT, Stuge TB, Holmes SP, Weber J, Lee PP. Rapid assessment of recognition efficiency and functional capacity of antigen-specific T-cell responses. J Immunother 2005; 28:297-305. [PMID: 16000947 DOI: 10.1097/01.cji.0000162780.96310.e4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It is increasingly recognized that cells within an antigen-specific CD8 T-cell population may be diverse in recognition efficiency for target, which may significantly affect the overall efficacy of the response in clinical settings such as viral infections and cancer. CD8 T cells with seemingly identical antigen specificity, particularly those elicited by cancer vaccines, may be heterogeneous for sensitivity and recognition efficiency for the cognate peptide and functional state in vivo. Analysis of individual T-cell clones derived from an antigen-specific T-cell population would provide an accurate assessment of the overall response; however, this is time- and labor-intensive, preventing rapid and routine assessment of patient samples from clinical trials. By stimulating antigen-specific T cells that otherwise appear homogeneous on tetramer staining with graded amounts of cognate peptides, the authors show that individual cells downmodulate surface T-cell receptors (TCR) and thus lose tetramer reactivity with variable dynamics within the T-cell population. The dynamics of TCR downregulation represent an accurate assessment of an individual cell's antigen sensitivity, recognition efficiency, and relative functional state within an antigen-specific population and have direct correlation to killing capacity by chromium release as well as degranulation by CD107 mobilization. Furthermore, despite correlation of average T-cell function by all three techniques, TCR downregulation uncovered heterogeneity in T-cell responses after vaccination among patient samples directly ex vivo. When examined using this novel technique, antigen-specific T cells elicited by vaccination with heteroclitic peptides exhibited significantly different recognition efficiencies for the heteroclitic versus native peptides, translating into differences in functional responses. With advancing cancer vaccine trials, the capacity to detect and functionally characterize antigen-specific T-cell responses in detail is critical. Techniques, as presented here, that rapidly assess the overall antigen sensitivity, recognition efficiency, and functional status of patients' T-cell responses will guide future vaccine trials and immunotherapies.
Collapse
Affiliation(s)
- Holbrook E Kohrt
- Department of Medicine, Division of Hematology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
30
|
Dorothée G, Vergnon I, El Hage F, Le Maux Chansac B, Ferrand V, Lécluse Y, Opolon P, Chouaib S, Bismuth G, Mami-Chouaib F. In Situ Sensory Adaptation of Tumor-Infiltrating T Lymphocytes to Peptide-MHC Levels Elicits Strong Antitumor Reactivity. THE JOURNAL OF IMMUNOLOGY 2005; 174:6888-97. [PMID: 15905531 DOI: 10.4049/jimmunol.174.11.6888] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have isolated from tumor-infiltrating lymphocytes (TIL) and PBL of a lung carcinoma patient several tumor-specific T cell clones displaying similar peptide-MHC tetramer staining and expressing a unique TCR. Although these clones elicited identical functional avidity and similar cytolytic potential, only T cell clones derived from TIL efficiently lysed autologous tumor cells. Interestingly, all of these clones expressed the same T cell surface markers except for the TCR inhibitory molecule CD5, which was expressed at much lower levels in TIL than in PBL. Video-imaging recordings demonstrated that, although both T cell clones could form stable conjugates with tumor cells, the Ca(2+) response occurred in TIL clones only. Significantly, analysis of a panel of circulating clones indicated that antitumor cytolytic activity was inversely proportional to CD5 expression levels. Importantly, CD5 levels in TIL appeared to parallel the signaling intensity of the TCR/peptide-MHC interaction. Thus, in situ regulation of CD5 expression may be a strategy used by CTL to adapt their sensitivity to intratumoral peptide-MHC levels.
Collapse
MESH Headings
- Adaptation, Physiological/immunology
- CD5 Antigens/biosynthesis
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/prevention & control
- Cell Communication/immunology
- Cell Line, Tumor
- Clone Cells
- Cytotoxicity, Immunologic/immunology
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class I/physiology
- Humans
- Immunotherapy, Adoptive/methods
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/prevention & control
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Peptide Fragments/biosynthesis
- Peptide Fragments/metabolism
- Peptide Fragments/physiology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/immunology
- Staining and Labeling
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Guillaume Dorothée
- Laboratoire Cytokines et Immunologie des Tumeurs Humaines, Institut National de la Santé et de la Recherche Médicale Unité 487, Institut Fédératif de Recherche 54, Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ueno T, Tomiyama H, Fujiwara M, Oka S, Takiguchi M. Functionally impaired HIV-specific CD8 T cells show high affinity TCR-ligand interactions. THE JOURNAL OF IMMUNOLOGY 2004; 173:5451-7. [PMID: 15494492 DOI: 10.4049/jimmunol.173.9.5451] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We eventually isolated two different clonotypic CD8 T cell subsets recognizing an HIV Pol-derived epitope peptide (IPLTEEAEL) in association with HLA-B35 from a chronic HIV-infected patient. By kinetic analysis experiments, the subsets showed a >3-fold difference in half-lives for the HLA tetramer in complex with the Pol peptide. In functional assays in vitro and ex vivo, both subsets showed substantial functional avidity toward peptide-loaded cells. However, the high affinity subset did not show cytolytic activity, cytokine production, or proliferation activity toward HIV-infected cells, whereas the moderate affinity one showed potent activities. Furthermore, using ectopic expression of each of the TCR genes into primary human CD8 T cells, the CD8 T cells transduced with the high affinity TCR showed greater binding activity toward the tetramer and impaired cytotoxic activity toward HIV-infected cells, corroborating the results obtained with parental CD8 T cells. Taken together, these data indicate that impaired responsiveness of T cells toward HIV-infected cells can occur at the level of TCR-ligand interactions, providing us further insight into the immune evasion mechanisms by HIV.
Collapse
MESH Headings
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Clone Cells
- Coculture Techniques
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Products, pol/biosynthesis
- Gene Products, pol/immunology
- Gene Products, pol/metabolism
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- HIV/immunology
- Humans
- Kinetics
- Ligands
- Lymphocyte Activation/genetics
- Molecular Sequence Data
- Protein Binding/genetics
- Protein Binding/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Transduction, Genetic
Collapse
Affiliation(s)
- Takamasa Ueno
- Division of Viral Immunology, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
32
|
Maus MV, Kovacs B, Kwok WW, Nepom GT, Schlienger K, Riley JL, Allman D, Finkel TH, June CH. Extensive replicative capacity of human central memory T cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:6675-83. [PMID: 15153483 DOI: 10.4049/jimmunol.172.11.6675] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To characterize the replicative capacity of human central memory (T(CM)) CD4 T cells, we have developed a defined culture system optimized for the ex vivo expansion of Ag-specific CD4(+) T cells. Artificial APCs (aAPCs) consisting of magnetic beads coated with Abs to HLA class II and a costimulatory Ab to CD28 were prepared; peptide-charged HLA class II tetramers were then loaded on the beads to provide Ag specificity. Influenza-specific DR*0401 CD4 T(CM) were isolated from the peripheral blood of normal donors by flow cytometry. Peptide-loaded aAPC were not sufficient to induce resting CD4 T(CM) to proliferate. In contrast, we found that the beads efficiently promoted the growth of previously activated CD4 T(CM) cells, yielding cultures with >80% Ag-specific CD4 cells after two stimulations. Further stimulation with peptide-loaded aAPC increased purity to >99% Ag-specific T cells. After in vitro culture for 3-12 wk, the flu-specific CD4 T(CM) had surface markers that were generally consistent with an effector phenotype described for CD8 T cells, except for the maintenance of CD28 expression. The T(CM) were capable of 20-40 mean population doublings in vitro, and the expanded cells produced IFN-gamma, IL-2, and TNF-alpha in response to Ag, and a subset of cells also secreted IL-4 with PMA/ionomycin treatment. In conclusion, aAPCs expand T(CM) that have extensive replicative capacity, and have potential applications in adoptive immunotherapy as well as for studying the biology of human MHC class II-restricted T cells.
Collapse
Affiliation(s)
- Marcela V Maus
- Abramson Family Cancer Research Institute, University of Pennsylvania Cancer Center,University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:1432-1436. [DOI: 10.11569/wcjd.v12.i6.1432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
34
|
Hegmans JPJJ, Bard MPL, Hemmes A, Luider TM, Kleijmeer MJ, Prins JB, Zitvogel L, Burgers SA, Hoogsteden HC, Lambrecht BN. Proteomic analysis of exosomes secreted by human mesothelioma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1807-15. [PMID: 15111327 PMCID: PMC1615654 DOI: 10.1016/s0002-9440(10)63739-x] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. Tumor exosomes may be involved in the sampling of antigens to antigen presenting cells or as decoys allowing the tumor to escape immune-directed destruction. The proteins present in exosomes secreted by tumor cells have been poorly defined. This study describes the protein composition of mesothelioma cell-derived exosomes in more detail. After electrophoresis of exosome preparations, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) was used to characterize the protein spots. MHC class I was found to be present together with the heat shock proteins HSC70 and HSP90. In addition, we found annexins and PV-1, proteins involved in membrane transport and function. Cytoskeleton proteins and their associated proteins ezrin, moesin, actinin-4, desmoplakin, and fascin were also detected. Besides the molecular motor kinesin-like protein, many enzymes were detected revealing the cytoplasmic orientation of exosomes. Most interesting was the detection of developmental endothelial locus-1 (DEL-1), which can act as a strong angiogenic factor and can increase the vascular development in the neighborhood of the tumor. In conclusion, mesothelioma cells release exosomes that express a discrete set of proteins involved in antigen presentation, signal transduction, migration, and adhesion. Exosomes may play an important role in the interaction between tumor cells and their environment.
Collapse
|
35
|
Nikolich-Zugich J, Slifka MK, Messaoudi I. The many important facets of T-cell repertoire diversity. Nat Rev Immunol 2004; 4:123-32. [PMID: 15040585 DOI: 10.1038/nri1292] [Citation(s) in RCA: 480] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the thymus, a diverse and polymorphic T-cell repertoire is generated by random recombination of discrete T-cell receptor (TCR)-alphabeta gene segments. This repertoire is then shaped by intrathymic selection events to generate a peripheral T-cell pool of self-MHC restricted, non-autoaggressive T cells. It has long been postulated that some optimal level of TCR diversity allows efficient protection against pathogens. This article focuses on several recent advances that address the required diversity for the generation of an optimal immune response.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Vaccine and Gene Therapy Institute, Department of Molecular Microbiology and Immunology and the Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | | | |
Collapse
|
36
|
Menez J, Le Maux Chansac B, Dorothée G, Vergnon I, Jalil A, Carlier MF, Chouaib S, Mami-Chouaib F. Mutant α-actinin-4 promotes tumorigenicity and regulates cell motility of a human lung carcinoma. Oncogene 2004; 23:2630-9. [PMID: 15048094 DOI: 10.1038/sj.onc.1207347] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The precise role of alpha-actinin-4 encoding gene (ACTN4) is not very well understood. It has been reported to elicit tumor suppressor activity and to regulate cellular motility. To further assess the function of human ACTN4, we studied a lung carcinoma cell line expressing a mutated alpha-actinin-4, which is recognized as a tumor antigen by autologous CD8(+) cytotoxic T lymphocytes (CTL). Confocal immunofluorescence microscopy indicated that, while wild-type (WT) alpha-actinin-4 stains into actin cytoskeleton and cell surface ruffles, the mutated protein is only dispersed in the cytoplasm of the lung carcinoma cells. This loss of association with the cell surface did not appear to correlate with a decrease in in vitro alpha-actinin-4 crosslinking to filamentous (F)-actin. Interestingly, experiments using cell lines stably expressing ACTN4 demonstrated that as opposed to WT gene, mutant ACTN4 was unable to inhibit tumor cell growth in vitro and in vivo. Moreover, the expression of mutant alpha-actinin-4 resulted in the loss of tumor cell capacity to migrate. The identification of an inactivating mutation in ACTN4 emphasizes its role as a tumor suppressor gene and underlines the involvement of cytoskeleton alteration in tumor development and metastasis.
Collapse
Affiliation(s)
- Jeanne Menez
- Laboratoire Cytokines et Immunologie des tumeurs Humaines, U487 INSERM, Institut Fédératif de Recherche 54, Institut Gustave Roussy, F-94805 Villejuif Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wan YL, Zheng SS, Zhao ZC, Li MW, Jia CK, Zhang H. Expression of co-stimulator 4-1BB molecule in hepatocellular carcinoma and adjacent non-tumor liver tissue, and its possible role in tumor immunity. World J Gastroenterol 2004; 10:195-9. [PMID: 14716821 PMCID: PMC4717002 DOI: 10.3748/wjg.v10.i2.195] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the expression of 4-1BB molecule in hepatocellular carcinoma (HCC) and its adjacent tissues.
METHODS: Reverse transcription–polymerase chain reaction (RT-PCR) was used to determine the gene expression of 4-1BB in hepatocarcinoma and its adjacent tissues, and peripheral blood mononuclear cells (PBMCs) from both HCC and health control groups. Flow cytometry was used to analyse the phenotypes of T cell subsets from the blood of HCC patients and healthy volunteers, and further to determine whether 4-1BB molecules were also expressed on the surface of CD4+ and CD8+ T cells. The localization of 4-1BB proteins on tumor infiltrating T cells was determined by direct immunofluorescence cytochemical staining and detected by confocal microscopy.
RESULTS: 4-1BB mRNA, which was not detectable in normal liver, was found in 19 liver tissues adjacent to tumor edge (< 1.0 cm). Low expression of 4-1BB mRNA was shown in 8 tumor tissues and 6 liver tissues located within 1 to 5 cm away from tumor edge. In PBMCs, 4-1BB mRNA was almost not detected. Percentage of CD4+, CD8+ and CD3+/CD25+ T cells, as well as ratio of CD4 to CD8 revealed no difference between groups (P > 0.05, respectively), while a significant lower percentage of CD3+ T cell was found in HCC group as compared to healthy control group (P < 0.05). However, 4-1BB molecules were almost not found on the surface of CD4+ and CD8+ T cells in HCC and healthy control group. Double-staining of 4-1BB+/CD4+ and 4-1BB+/CD8+ immunofluorescence on tumor infiltrating T cells was detected in 13 liver tissues adjacent to tumor edge (< 1.0 cm) by confocal microscopy.
CONCLUSION: Although HCC may escape from immune attack by weak immunogenicity or downregulated expression of MHC-1 molecules on the tumor cell surface, tumor infiltrating T cells can be activated via other costimulatory signal pathways to exert a limited antitumor effect on local microenvironment. The present study also implicates that modulating 4-1BB/4-1BBL costimulatory pathway may be an effective immunotherapy strateg to augment the host response.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD
- CD4-Positive T-Lymphocytes/physiology
- CD8-Positive T-Lymphocytes/physiology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/physiopathology
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Liver Neoplasms/immunology
- Liver Neoplasms/physiopathology
- Male
- Middle Aged
- Phenotype
- RNA, Messenger/analysis
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/immunology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9
Collapse
Affiliation(s)
- Yun-Le Wan
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China.
| | | | | | | | | | | |
Collapse
|
38
|
Lee PP. T-cell responses to cancer. Methods Cell Biol 2004; 75:513-32. [PMID: 15603440 DOI: 10.1016/s0091-679x(04)75021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Peter P Lee
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
39
|
Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M, Lee PP. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 2003; 9:1377-82. [PMID: 14528297 DOI: 10.1038/nm942] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 09/03/2003] [Indexed: 11/08/2022]
Abstract
We isolated pure, viable populations of tumor-cytolytic T cells directly from patient blood samples using flow cytometric quantification of the surface mobilization of CD107a-an integral membrane protein in cytolytic granules-as a marker for degranulation after tumor stimulation. We show that tumor-cytolytic T cells are indeed elicited in patients after cancer vaccination, and that tumor reactivity is strongly correlated with efficient T-cell recognition of peptide-bearing targets. We combined CD107a mobilization with peptide-major histocompatibility complex (P-MHC) tetramer staining to directly correlate antigen specificity and cytolytic ability on a single-cell level. This showed that tumor-cytolytic T cells with high recognition efficiency represent only a minority of peptide-specific T cells elicited in patients after heteroclitic peptide vaccination. We were also able to expand these cells to high numbers ex vivo while maintaining their cytolytic potential. These techniques will be useful not only for immune monitoring of cancer vaccine trials, but also for adoptive cellular immunotherapy after ex vivo expansion. The ability to rapidly identify and isolate tumor-cytolytic T cells would be very useful in cancer immunotherapy.
Collapse
Affiliation(s)
- Valerie Rubio
- Department of Medicine, Stanford University, 269 Campus Drive, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Dorothée G, Echchakir H, Le Maux Chansac B, Vergnon I, El Hage F, Moretta A, Bensussan A, Chouaib S, Mami-Chouaib F. Functional and molecular characterization of a KIR3DL2/p140 expressing tumor-specific cytotoxic T lymphocyte clone infiltrating a human lung carcinoma. Oncogene 2003; 22:7192-8. [PMID: 14562047 DOI: 10.1038/sj.onc.1206627] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T lymphocytes infiltrating a human lung carcinoma stimulated in vitro with autologous tumor cell line showed a TCRVbeta13.6(+) T-cell expansion. This subset was isolated using TCRVbeta-specific antibody and several T-cell clones were generated. All these clones expressed a unique Vbeta13.6-Jbeta2.7 TCR with the same junctional region strongly suggesting that they derived from the same cell. They were CD8(+)/CD28(-) and expressed the MHC class I binding killer cell Ig-like receptor (KIR)3DL2/p140, but not KIR3DL1/p70, KIR2DL1/p58.1 and KIR2DL2/3/p58.2. Sequence analysis indicated that KIR3DL2/p140 cDNA was identical to the previously reported 3DL2*002 allele except for two nucleic acid substitutions. Functional studies showed that KIR3DL2/p140(+) CTL secrete a significant level of IFNgamma and mediate an HLA-A2-restricted cytotoxicity against the autologous and some allogeneic tumor cells but not towards the autologous EBV-B cells. Strikingly, both the lytic and the cytokine secretion activities induced upon specific cell interactions were unaffected by anti-KIR3DL2/p140 antibody. In addition, crosslinking KIR3DL2/p140 molecules on CTL did not result into the modification of cytotoxicity and cytokine production triggered by anti-CD3 antibody. These results strongly suggest that, as opposed to distinct KIR expressed by CTL, the in vitro KIR3DL2/p140 engagement does not result into inhibitory (nor activatory) effects on tumor-specific CTL.
Collapse
MESH Headings
- Antigens, CD/analysis
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Clone Cells
- Cytotoxicity, Immunologic
- Fluorescent Antibody Technique
- Humans
- Killer Cells, Natural/immunology
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, KIR
- Receptors, KIR2DL1
- Receptors, KIR2DL2
- Receptors, KIR2DL3
- Receptors, KIR3DL1
- Receptors, KIR3DL2
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Cytotoxic/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Guillaume Dorothée
- Laboratoire Cytokines et Immunologie des tumeurs Humaines, INSERM U487, Institut Gustave Roussy, F-94805 Villejuif, Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Oh S, Hodge JW, Ahlers JD, Burke DS, Schlom J, Berzofsky JA. Selective induction of high avidity CTL by altering the balance of signals from APC. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2523-30. [PMID: 12594278 DOI: 10.4049/jimmunol.170.5.2523] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
High avidity CTL are most effective at clearing viruses and cancer cells. Therefore, understanding the mechanisms involved in induction of high avidity CTL is critical for effective vaccines. However, no vaccine approach to selectively induce high avidity CTL in vivo has been discovered. In a new approach, signals from MHC class I (signal 1) and costimulatory molecules (signal 2) were adjusted by varying Ag dose and by use of recombinant poxvirus expressing a triad of costimulatory molecules (B7-1, ICAM-1, and LFA-3), respectively. Independent of CTL avidity, a strong signal 1 resulted in an increased frequency of CD8(+) CTL. However, a strong signal 2 was necessary for the induction of high avidity CD8(+) CTL that killed target cells more efficiently, and signal 2 played a more crucial role in the absence of a strong signal 1. Only CTL induced with strong signal 2 killed tumor cells endogenously expressing low levels of Ag. Signal 2 contributed to the induction of high avidity CD8(+) CTL in both primary and secondary responses. Thus, although signal 2 has been known to increase the quantity of CTL response, in this study we show that it also improves the quality of CTL response. Our data also suggested that dendritic cells play an important role in induction of high avidity CD8(+) CTL in vivo. This strategy to selectively induce higher avidity CTL may lead to more effective vaccines for viruses and cancer.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigen Presentation/genetics
- B7-1 Antigen/genetics
- B7-1 Antigen/physiology
- CD58 Antigens/genetics
- CD58 Antigens/physiology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cancer Vaccines
- Cell Division/genetics
- Cell Division/immunology
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/genetics
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Dendritic Cells/virology
- Dose-Response Relationship, Immunologic
- Epitopes, T-Lymphocyte/analysis
- Female
- Humans
- Immunization, Secondary
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/physiology
- Interferon-gamma/biosynthesis
- Lymphocyte Activation/genetics
- Lymphocyte Count
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Peptides/immunology
- Peptides/metabolism
- Poxviridae/genetics
- Poxviridae/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Cells, Cultured
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/pharmacology
Collapse
Affiliation(s)
- SangKon Oh
- Molecular Immunogenetics and Vaccine Research Section, Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
42
|
Molldrem JJ, Lee PP, Kant S, Wieder E, Jiang W, Lu S, Wang C, Davis MM. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 2003. [DOI: 10.1172/jci200316398] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
43
|
Chouaib S. Integrating the quality of the cytotoxic response and tumor susceptibility into the design of protective vaccines in tumor immunotherapy. J Clin Invest 2003; 111:595-7. [PMID: 12618511 PMCID: PMC151911 DOI: 10.1172/jci18044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Salem Chouaib
- INSERM U487, Institut Fédératif de Recherches 54, Institut Gustave Roussy, Villejuif, France.
| |
Collapse
|
44
|
Molldrem JJ, Lee PP, Kant S, Wieder E, Jiang W, Lu S, Wang C, Davis MM. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 2003; 111:639-47. [PMID: 12618518 PMCID: PMC151894 DOI: 10.1172/jci16398] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2002] [Accepted: 12/17/2002] [Indexed: 11/17/2022] Open
Abstract
We have shown that cytotoxic T lymphocytes specific for PR1, an HLA-A2-restricted nonopeptide derived from proteinase 3, kill leukemia cells and may contribute to the elimination of chronic myelogenous leukemia (CML) after treatment with IFN or allogeneic bone marrow transplant. Some patients with persistent disease also have circulating PR1-specific T cells, however, suggesting the likelihood of immune tolerance. Here we show that both high- and low-avidity PR1-specific T cells from the peripheral blood of healthy donors can be identified and selectively expanded in vitro. Although high-avidity PR1-specific T cells killed CML more effectively than low-avidity T cells, only high-avidity T cells underwent apoptosis when stimulated with high PR1 peptide concentration or when exposed to leukemia that overexpressed proteinase 3. No high-avidity PR1-specific T cells could be identified or expanded from newly diagnosed leukemia patients, whereas low-avidity T cells were readily expanded. Circulating high-avidity PR1-specific T cells were identified in IFN-sensitive patients in cytogenetic remission, however. These results provide evidence that CML shapes the host immune response and that leukemia outgrowth may result in part from leukemia-induced selective deletion of high-avidity PR1-specific T cells.
Collapse
MESH Headings
- Apoptosis
- Cytotoxicity, Immunologic
- HLA-A2 Antigen/immunology
- Humans
- Interferon-alpha/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Myeloblastin
- Serine Endopeptidases/analysis
- Serine Endopeptidases/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Jeffrey J Molldrem
- Section of Transplantation Immunology, Department of Blood and Marrow Transplantation, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|