1
|
Brito Nunes C, Borges MC, Freathy RM, Lawlor DA, Qvigstad E, Evans DM, Moen GH. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites 2024; 14:508. [PMID: 39330515 PMCID: PMC11434570 DOI: 10.3390/metabo14090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: During pregnancy, physiological changes in maternal circulating glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women, this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM), a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies globally, and it is often associated with short- and long-term adverse health outcomes in both mothers and offspring. Although recent studies have highlighted the role of genetic determinants in the development of GDM, research in this area is still lacking, hindering the development of prevention and treatment strategies. Methods: In this paper, we review recent advances in the understanding of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions: Our review highlights the need for further collaborative efforts as well as larger and more diverse genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address research gaps, and further improve diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Caroline Brito Nunes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David M. Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
2
|
Francis D, Chacko AM, Anoop A, Nadimuthu S, Venugopal V. Evolution of biosynthetic human insulin and its analogues for diabetes management. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:191-256. [PMID: 39059986 DOI: 10.1016/bs.apcsb.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Hormones play a crucial role in maintaining the normal human physiology. By acting as chemical messengers that facilitate the communication between different organs, tissues and cells of the body hormones assist in responding appropriately to external and internal stimuli that trigger growth, development and metabolic activities of the body. Any abnormalities in the hormonal composition and balance can lead to devastating health consequences. Hormones have been important therapeutic agents since the early 20th century, when it was realized that their exogenous supply could serve as a functional substitution for those hormones which are not produced enough or are completely lacking, endogenously. Insulin, the pivotal anabolic hormone in the body, was used for the treatment of diabetes mellitus, a metabolic disorder due to the absence or intolerance towards insulin, since 1921 and is the trailblazer in hormone therapeutics. At present the largest market share for therapeutic hormones is held by insulin. Many other hormones were introduced into clinical practice following the success with insulin. However, for the six decades following the introduction the first therapeutic hormone, there was no reliable method for producing human hormones. The most common source for hormones were animals, although semisynthetic and synthetic hormones were also developed. However, none of these were optimal because of their allergenicity, immunogenicity, lack of consistency in purity and most importantly, scalability. The advent of recombinant DNA technology was a game changer for hormone therapeutics. This revolutionary molecular biology tool made it possible to synthesize human hormones in microbial cell factories. The approach allowed for the synthesis of highly pure hormones which were structurally and biochemically identical to the human hormones. Further, the fermentation techniques utilized to produce recombinant hormones were highly scalable. Moreover, by employing tools such as site directed mutagenesis along with recombinant DNA technology, it became possible to amend the molecular structure of the hormones to achieve better efficacy and mimic the exact physiology of the endogenous hormone. The first recombinant hormone to be deployed in clinical practice was insulin. It was called biosynthetic human insulin to reflect the biological route of production. Subsequently, the biochemistry of recombinant insulin was modified using the possibilities of recombinant DNA technology and genetic engineering to produce analogues that better mimic physiological insulin. These analogues were tailored to exhibit pharmacokinetic and pharmacodynamic properties of the prandial and basal human insulins to achieve better glycemic control. The present chapter explores the principles of genetic engineering applied to therapeutic hormones by reviewing the evolution of therapeutic insulin and its analogues. It also focuses on how recombinant analogues account for the better management of diabetes mellitus.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Aksa Mariyam Chacko
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Anagha Anoop
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Subramani Nadimuthu
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Vaishnavi Venugopal
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Wu T, Shao Y, Li X, Wu T, Yu L, Liang J, Zhang Y, Wang J, Sun T, Zhu Y, Chang X, Wang S, Chen F, Han X. NR3C1/Glucocorticoid receptor activation promotes pancreatic β-cell autophagy overload in response to glucolipotoxicity. Autophagy 2023; 19:2538-2557. [PMID: 37039556 PMCID: PMC10392762 DOI: 10.1080/15548627.2023.2200625] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Diabetes is a complex and heterogeneous disorder characterized by chronic hyperglycemia. Its core cause is progressively impaired insulin secretion by pancreatic β-cell failures, usually upon a background of preexisting insulin resistance. Recent studies demonstrate that macroautophagy/autophagy is essential to maintain architecture and function of β-cells, whereas excessive autophagy is also involved in β-cell dysfunction and death. It has been poorly understood whether autophagy plays a protective or harmful role in β-cells, while we report here that it is dependent on NR3C1/glucocorticoid receptor activation. We proved that deleterious hyperactive autophagy happened only upon NR3C1 activation in β-cells under glucolipotoxic conditions, which eventually promoted diabetes. The transcriptome and the N6-methyladenosine (m6A) methylome revealed that NR3C1-enhancement upregulated the RNA demethylase FTO (fat mass and obesity associated) protein in β-cells, which caused diminished m6A modifications on mRNAs of four core Atg (autophagy related) genes (Atg12, Atg5, Atg16l2, Atg9a) and, hence, hyperactive autophagy and defective insulin output; by contrast, FTO inhibition, achieved by the specific FTO inhibitor Dac51, prevented NR3C1-instigated excessive autophagy activation. Importantly, Dac51 effectively alleviated impaired insulin secretion and glucose intolerance in hyperglycemic β-cell specific NR3C1 overexpression mice. Our results determine that the NR3C1-FTO-m6A modifications-Atg genes axis acts as a key mediator of balanced autophagic flux in pancreatic β-cells, which offers a novel therapeutic target for the treatment of diabetes.Abbreviations: 3-MA: 3-methyladenine; AAV: adeno-associated virus; Ac: acetylation; Ad: adenovirus; AL: autolysosome; ATG: autophagy related; AUC: area under curve; Baf A1: bafilomycin A1; βNR3C1 mice: pancreatic β-cell-specific NR3C1 overexpression mice; cFBS: charcoal-stripped FBS; Ctrl: control; ER: endoplasmic reticulum; FTO: fat mass and obesity associated; GC: glucocorticoid; GRE: glucocorticoid response element; GSIS: glucose-stimulated insulin secretion assay; HFD: high-fat diet; HG: high glucose; HsND: non-diabetic human; HsT2D: type 2 diabetic human; i.p.: intraperitoneal injected; KSIS: potassium-stimulated insulin secretion assay; m6A: N6-methyladenosine; MeRIP-seq: methylated RNA immunoprecipitation sequencing; NR3C1/GR: nuclear receptor subfamily 3, group C, member 1; NR3C1-Enhc.: NR3C1-enhancement; NC: negative control; Palm.: palmitate; RNA-seq: RNA sequencing; T2D: type 2 diabetes; TEM: transmission electron microscopy; UTR: untranslated region; WT: wild-type.
Collapse
Affiliation(s)
- Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yixue Shao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xirui Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Yu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Liang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaru Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiahui Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Chen YC, Taylor AJ, Fulcher JM, Swensen AC, Dai XQ, Komba M, Wrightson KL, Fok K, Patterson AE, Klein Geltink RI, MacDonald PE, Qian WJ, Verchere CB. Deletion of Carboxypeptidase E in β-Cells Disrupts Proinsulin Processing but Does Not Lead to Spontaneous Development of Diabetes in Mice. Diabetes 2023; 72:1277-1288. [PMID: 37364047 PMCID: PMC10450824 DOI: 10.2337/db22-0945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Carboxypeptidase E (CPE) facilitates the conversion of prohormones into mature hormones and is highly expressed in multiple neuroendocrine tissues. Carriers of CPE mutations have elevated plasma proinsulin and develop severe obesity and hyperglycemia. We aimed to determine whether loss of Cpe in pancreatic β-cells disrupts proinsulin processing and accelerates development of diabetes and obesity in mice. Pancreatic β-cell-specific Cpe knockout mice (βCpeKO; Cpefl/fl x Ins1Cre/+) lack mature insulin granules and have elevated proinsulin in plasma; however, glucose-and KCl-stimulated insulin secretion in βCpeKO islets remained intact. High-fat diet-fed βCpeKO mice showed weight gain and glucose tolerance comparable with those of Wt littermates. Notably, β-cell area was increased in chow-fed βCpeKO mice and β-cell replication was elevated in βCpeKO islets. Transcriptomic analysis of βCpeKO β-cells revealed elevated glycolysis and Hif1α-target gene expression. On high glucose challenge, β-cells from βCpeKO mice showed reduced mitochondrial membrane potential, increased reactive oxygen species, reduced MafA, and elevated Aldh1a3 transcript levels. Following multiple low-dose streptozotocin injections, βCpeKO mice had accelerated development of hyperglycemia with reduced β-cell insulin and Glut2 expression. These findings suggest that Cpe and proper proinsulin processing are critical in maintaining β-cell function during the development of hyperglycemia. ARTICLE HIGHLIGHTS Carboxypeptidase E (Cpe) is an enzyme that removes the carboxy-terminal arginine and lysine residues from peptide precursors. Mutations in CPE lead to obesity and type 2 diabetes in humans, and whole-body Cpe knockout or mutant mice are obese and hyperglycemic and fail to convert proinsulin to insulin. We show that β-cell-specific Cpe deletion in mice (βCpeKO) does not lead to the development of obesity or hyperglycemia, even after prolonged high-fat diet treatment. However, β-cell proliferation rate and β-cell area are increased, and the development of hyperglycemia induced by multiple low-dose streptozotocin injections is accelerated in βCpeKO mice.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Austin J. Taylor
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - James M. Fulcher
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Adam C. Swensen
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Mitsuhiro Komba
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | | | - Kenny Fok
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Annette E. Patterson
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ramon I. Klein Geltink
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - C. Bruce Verchere
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Basu J, Mukherjee R, Sahu P, Datta C, Chowdhury S, Mandal D, Ghosh A. Association of common variants of TCF7L2 and PCSK2 with gestational diabetes mellitus in West Bengal, India. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:185-202. [PMID: 37610142 DOI: 10.1080/15257770.2023.2248201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
The genetic etiology of gestational diabetes mellitus (GDM) was suggested to overlap with type-2 diabetes(T2D). Transcription factor 7-like 2 (TCF7L2) and Proprotein Convertase Subtilisin/Kexin type 2 (PCSK2) are T2D susceptibility genes of the insulin synthesis/processing pathway. We analyzed associations of TCF7L2 and PCSK2 variants with GDM risk and evaluated their potential impact on impaired insulin processing in an eastern Indian population. The study included 114 GDM (case) and 228 non-GDM pregnant women (control). rs7903146, rs4132670, rs12255372 of TCF7L2, and rs2269023 of PCSK2 were genotyped by PCR-RFLP, and genotype distributions were compared between case and control. Fasting serum proinsulin and C-peptide levels were measured by ELISA and the Proinsulin/C-peptide ratio was considered an indicator of proinsulin conversion. Significantly higher frequency of risk allele (T) of rs12255372 (p = 0.02, OR = 2.0, 95%CI = 1.11-3.64) and rs4132670 (p = 0.002, OR = 2.26, 95%CI = 1.32-3.87) of TCF7L2 was found in GDM cases than non-GDM controls; TT genotype was associated with significantly increased disease risk. In rs7903146 (TCF7L2) and rs2269023 (PCSK2), although the frequency of risk allele (T) was not significantly higher in cases than controls, an association of TT for both variants remained significant with higher GDM risk in the recessive model. Increased serum pro-insulin and proinsulin:c-peptide ratio was found in GDM than non-GDM women and the phenomenon showed significant association with careers of risk alleles for TCF7L2 variants. In conclusion, TCF7L2 and PCSK2 variants are related to GDM risk in the studied population and hence may serve as potential biomarkers for assessing the disease risk. TCF7L2 variants contribute to impaired insulin processing.
Collapse
Affiliation(s)
- Jayita Basu
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Pooja Sahu
- Department of Gynecology and Obstetrics, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Chhanda Datta
- Department of Pathology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Subhankar Chowdhury
- Department of Endocrinology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Debasmita Mandal
- Department of Gynecology and Obstetrics, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amlan Ghosh
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
6
|
Boyer CK, Bauchle CJ, Zhang J, Wang Y, Stephens SB. Synchronized proinsulin trafficking reveals delayed Golgi export accompanies β-cell secretory dysfunction in rodent models of hyperglycemia. Sci Rep 2023; 13:5218. [PMID: 36997560 PMCID: PMC10063606 DOI: 10.1038/s41598-023-32322-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
The pancreatic islet β-cell's preference for release of newly synthesized insulin requires careful coordination of insulin exocytosis with sufficient insulin granule production to ensure that insulin stores exceed peripheral demands for glucose homeostasis. Thus, the cellular mechanisms regulating insulin granule production are critical to maintaining β-cell function. In this report, we utilized the synchronous protein trafficking system, RUSH, in primary β-cells to evaluate proinsulin transit through the secretory pathway leading to insulin granule formation. We demonstrate that the trafficking, processing, and secretion of the proinsulin RUSH reporter, proCpepRUSH, are consistent with current models of insulin maturation and release. Using both a rodent dietary and genetic model of hyperglycemia and β-cell dysfunction, we show that proinsulin trafficking is impeded at the Golgi and coincides with the decreased appearance of nascent insulin granules at the plasma membrane. Ultrastructural analysis of β-cells from diabetic leptin receptor deficient mice revealed gross morphological changes in Golgi structure, including shortened and swollen cisternae, and partial Golgi vesiculation, which are consistent with defects in secretory protein export. Collectively, this work highlights the utility of the proCpepRUSH reporter in studying proinsulin trafficking dynamics and suggests that altered Golgi export function contributes to β-cell secretory defects in the pathogenesis of Type 2 diabetes.
Collapse
Affiliation(s)
- Cierra K Boyer
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52246, USA
| | - Casey J Bauchle
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52246, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA, 52246, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52246, USA.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA, 52246, USA.
| |
Collapse
|
7
|
Griess K, Rieck M, Müller N, Karsai G, Hartwig S, Pelligra A, Hardt R, Schlegel C, Kuboth J, Uhlemeyer C, Trenkamp S, Jeruschke K, Weiss J, Peifer-Weiss L, Xu W, Cames S, Yi X, Cnop M, Beller M, Stark H, Kondadi AK, Reichert AS, Markgraf D, Wammers M, Häussinger D, Kuss O, Lehr S, Eizirik D, Lickert H, Lammert E, Roden M, Winter D, Al-Hasani H, Höglinger D, Hornemann T, Brüning JC, Belgardt BF. Sphingolipid subtypes differentially control proinsulin processing and systemic glucose homeostasis. Nat Cell Biol 2023; 25:20-29. [PMID: 36543979 PMCID: PMC9859757 DOI: 10.1038/s41556-022-01027-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/11/2022] [Indexed: 12/24/2022]
Abstract
Impaired proinsulin-to-insulin processing in pancreatic β-cells is a key defective step in both type 1 diabetes and type 2 diabetes (T2D) (refs. 1,2), but the mechanisms involved remain to be defined. Altered metabolism of sphingolipids (SLs) has been linked to development of obesity, type 1 diabetes and T2D (refs. 3-8); nonetheless, the role of specific SL species in β-cell function and demise is unclear. Here we define the lipid signature of T2D-associated β-cell failure, including an imbalance of specific very-long-chain SLs and long-chain SLs. β-cell-specific ablation of CerS2, the enzyme necessary for generation of very-long-chain SLs, selectively reduces insulin content, impairs insulin secretion and disturbs systemic glucose tolerance in multiple complementary models. In contrast, ablation of long-chain-SL-synthesizing enzymes has no effect on insulin content. By quantitatively defining the SL-protein interactome, we reveal that CerS2 ablation affects SL binding to several endoplasmic reticulum-Golgi transport proteins, including Tmed2, which we define as an endogenous regulator of the essential proinsulin processing enzyme Pcsk1. Our study uncovers roles for specific SL subtypes and SL-binding proteins in β-cell function and T2D-associated β-cell failure.
Collapse
Affiliation(s)
- Kerstin Griess
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Michael Rieck
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nadine Müller
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Gergely Karsai
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Sonja Hartwig
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Pelligra
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Robert Hardt
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Caroline Schlegel
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Jennifer Kuboth
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Sandra Trenkamp
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kay Jeruschke
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Leon Peifer-Weiss
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Weiwei Xu
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Sandra Cames
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Xiaoyan Yi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems and Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Markgraf
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marianne Wammers
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Kuss
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Lehr
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Decio Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
- Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Heiko Lickert
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Eckhard Lammert
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| |
Collapse
|
8
|
ZnT8 loss-of-function accelerates functional maturation of hESC-derived β cells and resists metabolic stress in diabetes. Nat Commun 2022; 13:4142. [PMID: 35842441 PMCID: PMC9288460 DOI: 10.1038/s41467-022-31829-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/04/2022] [Indexed: 12/21/2022] Open
Abstract
Human embryonic stem cell-derived β cells (SC-β cells) hold great promise for treatment of diabetes, yet how to achieve functional maturation and protect them against metabolic stresses such as glucotoxicity and lipotoxicity remains elusive. Our single-cell RNA-seq analysis reveals that ZnT8 loss of function (LOF) accelerates the functional maturation of SC-β cells. As a result, ZnT8 LOF improves glucose-stimulated insulin secretion (GSIS) by releasing the negative feedback of zinc inhibition on insulin secretion. Furthermore, we demonstrate that ZnT8 LOF mutations endow SC-β cells with resistance to lipotoxicity/glucotoxicity-triggered cell death by alleviating endoplasmic reticulum (ER) stress through modulation of zinc levels. Importantly, transplantation of SC-β cells with ZnT8 LOF into mice with preexisting diabetes significantly improves glycemia restoration and glucose tolerance. These findings highlight the beneficial effect of ZnT8 LOF on the functional maturation and survival of SC-β cells that are useful as a potential source for cell replacement therapies. Immature function and fragility hinder application of hESC-derived β cells (SC-β cell) for diabetes cell therapy. Here, the authors identify ZnT8 as a gene editing target to enhance the insulin secretion and cell survival under metabolic stress by abolishing zinc transport in SC-β cells.
Collapse
|
9
|
Nagao M, Lagerstedt JO, Eliasson L. Secretory granule exocytosis and its amplification by cAMP in pancreatic β-cells. Diabetol Int 2022; 13:471-479. [PMID: 35694000 PMCID: PMC9174382 DOI: 10.1007/s13340-022-00580-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
The sequence of events for secreting insulin in response to glucose in pancreatic β-cells is termed "stimulus-secretion coupling". The core of stimulus-secretion coupling is a process which generates electrical activity in response to glucose uptake and causes Ca2+ oscillation for triggering exocytosis of insulin-containing secretory granules. Prior to exocytosis, the secretory granules are mobilized and docked to the plasma membrane and primed for fusion with the plasma membrane. Together with the final fusion with the plasma membrane, these steps are named the exocytosis process of insulin secretion. The steps involved in the exocytosis process are crucial for insulin release from β-cells and considered indispensable for glucose homeostasis. We recently confirmed a signature of defective exocytosis process in human islets and β-cells of obese donors with type 2 diabetes (T2D). Furthermore, cyclic AMP (cAMP) potentiates glucose-stimulated insulin secretion through mechanisms including accelerating the exocytosis process. In this mini-review, we aimed to organize essential knowledge of the secretory granule exocytosis and its amplification by cAMP. Then, we suggest the fatty acid translocase CD36 as a predisposition in β-cells for causing defective exocytosis, which is considered a pathogenesis of T2D in relation to obesity. Finally, we propose potential therapeutics of the defective exocytosis based on a CD36-neutralizing antibody and on Apolipoprotein A-I (ApoA-I), for improving β-cell function in T2D.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - Jens O. Lagerstedt
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
- Novo Nordisk A/S, Copenhagen, Denmark
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| |
Collapse
|
10
|
Shakya M, Martin NK, Arunagiri A, Martin MG, Arvan P, Low MJ, Lindberg I. The G209R mutant mouse as a model for human PCSK1 polyendocrinopathy. Endocrinology 2022; 163:6542675. [PMID: 35245347 PMCID: PMC9044177 DOI: 10.1210/endocr/bqac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/19/2022]
Abstract
PCSK1 encodes an enzyme required for prohormone maturation into bioactive peptides. A striking number of SNPs and rare mutations in PCSK1 are associated with a range of clinical phenotypes. Infants bearing two copies of a catalytically inactivating mutation, such as G209R, exhibit life-threatening chronic diarrhea and subsequently develop systemic endocrinopathies. Using CRISPR/Cas9 technology, we have engineered a mouse model bearing a G209R missense mutation in exon 6 of the murine Pcsk1 locus. Most pups homozygous for the G209R mutation succumbed by day 2, and surviving pups were severely dwarfed. In homozygous (but not heterozygous) pups, blood glucose levels were significantly lower, accompanied by elevated plasma insulin-like immunoreactivity and accumulation of large quantities of unprocessed proinsulin in the pancreas. Peptide hormone processing was also aberrant in G209R mouse pituitary, with mature ACTH levels markedly reduced in homozygotes, accompanied by a significant accumulation of POMC. We also observed a significant reduction in PC1/3 protein in the brains of G209R homozygous mice by Western blotting, while PC2 levels remained unaffected. Most likely due to the continued presence of PC2, pituitary and brain levels of α-MSH were not impaired. Analysis of intestinal cell types indicated a modest reduction of enteroendocrine cells in G209R homozygotes. We suggest that the G209R Pcsk1 mouse model recapitulates many of the dramatic neonatal deficiencies of human patients with this homozygous mutation.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy & Neurobiology, University of Maryland School of
Medicine, Baltimore, MD, USA
| | - Surbhi
- Department Molecular & Integrative Physiology, University of
Michigan, Ann Arbor, MI, USA
| | - Nicolle K Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel
Children’s Hospital and the David Geffen School of Medicine, University of California Los
Angeles, Los Angeles, CA, USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of
Michigan, Ann Arbor, MI, USA
| | - Martin G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel
Children’s Hospital and the David Geffen School of Medicine, University of California Los
Angeles, Los Angeles, CA, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of
Michigan, Ann Arbor, MI, USA
| | - Malcolm J Low
- Department Molecular & Integrative Physiology, University of
Michigan, Ann Arbor, MI, USA
| | - Iris Lindberg
- Department of Anatomy & Neurobiology, University of Maryland School of
Medicine, Baltimore, MD, USA
- Correspondence: Iris Lindberg, PhD, Department of Anatomy and Neurobiology, University of Maryland
School of Medicine, 20 Penn St, HSF2, S218, Baltimore, MD 21201, USA.
| |
Collapse
|
11
|
Yau B, Hocking S, Andrikopoulos S, Kebede MA. Targeting the insulin granule for modulation of insulin exocytosis. Biochem Pharmacol 2021; 194:114821. [PMID: 34748819 DOI: 10.1016/j.bcp.2021.114821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
The pancreatic β-cells control insulin secretion in the body to regulate glucose homeostasis, and β-cell stress and dysfunction is characteristic of Type 2 Diabetes. Pharmacological targeting of the β-cell to increase insulin secretion is typically utilised, however, extended use of common drugs such as sulfonylureas are known to result in secondary failure. Moreover, there is evidence they may induce β-cell failure in the long term. Within β-cells, insulin secretory granules (ISG) serve as compartments to store, process and traffic insulin for exocytosis. There is now growing evidence that ISG exist in multiple populations, distinct in their protein composition, motility, age, and capacity for secretion. In this review, we discuss the implications of a heterogenous ISG population in β-cells and highlight the need for more understanding into how unique ISG populations may be targeted in anti-diabetic therapies.
Collapse
Affiliation(s)
- Belinda Yau
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
| | - Samantha Hocking
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia; Central Clinical School, Faculty of Medicine and Health and Department of Endocrinology Royal Prince Alfred Hospital, NSW, Australia
| | | | - Melkam A Kebede
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
12
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
13
|
Germanos M, Gao A, Taper M, Yau B, Kebede MA. Inside the Insulin Secretory Granule. Metabolites 2021; 11:metabo11080515. [PMID: 34436456 PMCID: PMC8401130 DOI: 10.3390/metabo11080515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.
Collapse
|
14
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
16
|
Shakya M, White A, Verchere CB, Low MJ, Lindberg I. Mice lacking PC1/3 expression in POMC-expressing cells do not develop obesity. Endocrinology 2021; 162:6167813. [PMID: 33693631 PMCID: PMC8253230 DOI: 10.1210/endocr/bqab055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Pro-opiomelanocortin (POMC) neurons form an integral part of the central melanocortin system regulating food intake and energy expenditure. Genetic and pharmacological studies have revealed that defects in POMC synthesis, processing, and receptor signaling lead to obesity. It is well established that POMC is extensively processed by a series of enzymes, including prohormone convertases PC1/3 and PC2, and that genetic insufficiency of both PC1/3 and POMC is strongly associated with obesity risk. However, whether PC1/3-mediated POMC processing is absolutely tied to body weight regulation is not known. To investigate this question, we generated a Pomc-CreER T2; Pcsk1 lox/lox mouse model in which Pcsk1 is specifically and temporally knocked out in POMC-expressing cells of adult mice by injecting tamoxifen at eight weeks of age. We then measured the impact of Pcsk1 deletion on POMC cleavage to ACTH and α-MSH, and on body weight. In whole pituitary, POMC cleavage was significantly impacted by the loss of Pcsk1, while hypothalamic POMC-derived peptide levels remained similar in all genotypes. However, intact POMC levels were greatly elevated in Pomc-CreER T2; Pcsk1 lox/lox mice. Males expressed two-fold greater levels of pituitary PC1/3 protein than females, consistent with their increased POMC cleavage. Past studies show that mice with germline removal of PC1/3 do not develop obesity, while mice expressing mutant PC1/3 forms do develop obesity. We conclude that obesity pathways are not disrupted by PC1/3 loss solely in POMC-expressing cells, further disfavoring the idea that alterations in POMC processing underlie obesity in PCSK1 deficiency.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of
Maryland-Baltimore, Baltimore, MD 21201,
USA
| | - Surbhi
- Department of Molecular & Integrative Physiology,
University of Michigan, Ann Arbor, MI
481091, USA
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology,
University of Manchester, Manchester, M13
9PT, United Kingdom
| | - C Bruce Verchere
- Departments of Pathology & Laboratory Medicine and
Surgery, University of British Columbia, British
Columbia, V5Z 4H4, Canada
| | - Malcolm J Low
- Department of Molecular & Integrative Physiology,
University of Michigan, Ann Arbor, MI
481091, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of
Maryland-Baltimore, Baltimore, MD 21201,
USA
- Correspondence: Iris Lindberg, PhD,
Department of Anatomy and Neurobiology, 20 Penn St., HSF2, S267, University of
Maryland-Baltimore, Baltimore, MD 21201, USA. E-mail:
| |
Collapse
|
17
|
Enhanced differentiation of human pluripotent stem cells into pancreatic endocrine cells in 3D culture by inhibition of focal adhesion kinase. Stem Cell Res Ther 2020; 11:488. [PMID: 33198821 PMCID: PMC7667734 DOI: 10.1186/s13287-020-02003-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Generation of insulin-producing cells from human pluripotent stem cells (hPSCs) in vitro would be useful for drug discovery and cell therapy in diabetes. Three-dimensional (3D) culture is important for the acquisition of mature insulin-producing cells from hPSCs, but the mechanism by which it promotes β cell maturation is poorly understood. Methods We established a stepwise method to induce high-efficiency differentiation of human embryonic stem cells (hESCs) into mature monohormonal pancreatic endocrine cells (PECs), with the last maturation stage in 3D culture. To comprehensively compare two-dimensional (2D) and 3D cultures, we examined gene expression, pancreas-specific markers, and functional characteristics in 2D culture-induced PECs and 3D culture-induced PECs. The mechanisms were considered from the perspectives of cell–cell and cell–extracellular matrix interactions which are fundamentally different between 2D and 3D cultures. Results The expression of the pancreatic endocrine-specific transcription factors PDX1, NKX6.1, NGN3, ISL1, and PAX6 and the hormones INS, GCG, and SST was significantly increased in 3D culture-induced PECs. 3D culture yielded monohormonal endocrine cells, while 2D culture-induced PECs co-expressed INS and GCG or INS and SST or even expressed all three hormones. We found that focal adhesion kinase (FAK) phosphorylation was significantly downregulated in 3D culture-induced PECs, and treatment with the selective FAK inhibitor PF-228 improved the expression of β cell-specific transcription factors in 2D culture-induced PECs. We further demonstrated that 3D culture may promote endocrine commitment by limiting FAK-dependent activation of the SMAD2/3 pathway. Moreover, the expression of the gap junction protein Connexin 36 was much higher in 3D culture-induced PECs than in 2D culture-induced PECs, and inhibition of the FAK pathway in 2D culture increased Connexin 36 expression. Conclusion We developed a strategy to induce differentiation of monohormonal mature PECs from hPSCs and found limited FAK-dependent activation of the SMAD2/3 pathway and unregulated expression of Connexin 36 in 3D culture-induced PECs. This study has important implications for the generation of mature, functional β cells for drug discovery and cell transplantation therapy for diabetes and sheds new light on the signaling events that regulate endocrine specification. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02003-z.
Collapse
|
18
|
Ramzy A, Asadi A, Kieffer TJ. Revisiting Proinsulin Processing: Evidence That Human β-Cells Process Proinsulin With Prohormone Convertase (PC) 1/3 but Not PC2. Diabetes 2020; 69:1451-1462. [PMID: 32291281 DOI: 10.2337/db19-0276] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/03/2020] [Indexed: 11/13/2022]
Abstract
Insulin is first produced in pancreatic β-cells as the precursor prohormone proinsulin. Defective proinsulin processing has been implicated in the pathogenesis of both type 1 and type 2 diabetes. Though there is substantial evidence that mouse β-cells process proinsulin using prohormone convertase 1/3 (PC1/3) and then prohormone convertase 2 (PC2), this finding has not been verified in human β-cells. Immunofluorescence with validated antibodies revealed that there was no detectable PC2 immunoreactivity in human β-cells and little PCSK2 mRNA by in situ hybridization. Similarly, rat β-cells were not immunoreactive for PC2. In all histological experiments, PC2 immunoreactivity in neighboring α-cells acted as a positive control. In donors with type 2 diabetes, β-cells had elevated PC2 immunoreactivity, suggesting that aberrant PC2 expression may contribute to impaired proinsulin processing in β-cells of patients with diabetes. To support histological findings using a biochemical approach, human islets were used for pulse-chase experiments. Despite inhibition of PC2 function by temperature blockade, brefeldin A, chloroquine, and multiple inhibitors that blocked production of mature glucagon from proglucagon, β-cells retained the ability to produce mature insulin. Conversely, suppression of PC1/3 blocked processing of proinsulin but not proglucagon. By demonstrating that healthy human β-cells process proinsulin by PC1/3 but not PC2, we suggest that there is a need to revise the long-standing theory of proinsulin processing.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Asadi
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Muhsin NIA, Bentley L, Bai Y, Goldsworthy M, Cox RD. A novel mutation in the mouse Pcsk1 gene showing obesity and diabetes. Mamm Genome 2020; 31:17-29. [PMID: 31974728 PMCID: PMC7060156 DOI: 10.1007/s00335-020-09826-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
The proprotein convertase subtilisin/Kexin type 1 (PCSK1/PC1) protein processes inactive pro-hormone precursors into biologically active hormones in a number of neuroendocrine and endocrine cell types. Patients with recessive mutations in PCSK1 exhibit a complex spectrum of traits including obesity, diarrhoea and endocrine disorders. We describe here a new mouse model with a point mutation in the Pcsk1 gene that exhibits obesity, hyperphagia, transient diarrhoea and hyperproinsulinaemia, phenotypes consistent with human patient traits. The mutation results in a pV96L amino acid substitution and changes the first nucleotide of mouse exon 3 leading to skipping of that exon and in homozygotes very little full-length transcript. Overexpression of the exon 3 deleted protein or the 96L protein results in ER retention in Neuro2a cells. This is the second Pcsk1 mouse model to display obesity phenotypes, contrasting knockout mouse alleles. This model will be useful in investigating the basis of endocrine disease resulting from prohormone processing defects.
Collapse
Affiliation(s)
- Nor I A Muhsin
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Liz Bentley
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Ying Bai
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Michelle Goldsworthy
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Roger D Cox
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
20
|
Saghahazrati S, Ayatollahi SAM, Kobarfard F, Minaii Zang B. The Synergistic Effect of Glucagon-Like Peptide-1 and Chamomile Oil on Differentiation of Mesenchymal Stem Cells into Insulin-Producing Cells. CELL JOURNAL 2020; 21:371-378. [PMID: 31376318 PMCID: PMC6722451 DOI: 10.22074/cellj.2020.6325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/17/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) has attracted tremendous attention for treatment of diabetes. Likewise, it seems that active ingredients of chamomile oil might have anti-diabetic effects. This work was conducted to investigate the effects of the combination of GLP-1 and chamomile oil on differentiation of mesenchymal stem cells (MSCs) into functional insulin-producing cells (IPCs). MATERIALS AND METHODS In this experimental study, adipose MSCs derived from the adult male New Zealand white rabbits were assigned into four groups: control (without any treatment); GLP-1 (in which cells were treated with 10 nM GLP-1 every other day for 5 days); chamomile oil (in which cells were treated with 100 ug/ml Matricaria chamomilla L. flower oil every other day for 5 days); and GLP-1+ chamomile oil (in which cells were treated with 10 nM GLP-1 and 100 μg/ml M. chamomilla flower oil every other day for 5 days). Characterization of isolated MSCs was performed using flow cytometry, Alizarin red S staining and Oil red O staining. The expressions of genes specific for IPCs were measured using reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Measurement of insulin and the cleaved connecting peptide (C-peptide) in response to different concentrations of glucose, were performed using ELISA kits. RESULTS Our results demonstrated that isolated cells highly expressed MSC markers and were able to differentiate into osteocytes and adipocytes. Additionally, using GLP-1 in combination with chamomile oil exhibited higher levels of IPCs gene markers including NK homeobox gene 2.2 (NKX-2.2), paired box gene 4 (PAX4), insulin (INS) and pancreatic duodenal homeobox-1 (PDX1) as well as insulin and C-peptide secretion in response to different glucose concentrations compared to GLP-1 or chamomile oil alone (P<0.05). CONCLUSION Collectively, these findings establish a substantial foundation for using peptides in combination with natural products to obtain higher efficiency in regenerative medicine and peptide therapy.
Collapse
Affiliation(s)
- Saeid Saghahazrati
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Abdul Majid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.Electronic Address:
- Department of Chemistry, Richardson College for The Environmental Science Complex, The University of Winnipeg, Winnipeg, Canada
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, Shahid Beheshti School of Pharmacy, Tehran, Iran
| | - Bagher Minaii Zang
- Department of Histology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.Electronic Address:
| |
Collapse
|
21
|
Jarvela TS, Shakya M, Bachor T, White A, Low MJ, Lindberg I. Reduced Stability and pH-Dependent Activity of a Common Obesity-Linked PCSK1 Polymorphism, N221D. Endocrinology 2019; 160:2630-2645. [PMID: 31504391 PMCID: PMC6892424 DOI: 10.1210/en.2019-00418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
Common mutations in the human prohormone convertase (PC)1/3 gene (PCKSI) are linked to increased risk of obesity. Previous work has shown that the rs6232 single-nucleotide polymorphism (N221D) results in slightly decreased activity, although whether this decrease underlies obesity risk is not clear. We observed significantly decreased activity of the N221D PC1/3 enzyme at the pH of the trans-Golgi network; at this pH, the mutant enzyme was less stable than wild-type enzyme. Recombinant N221D PC1/3 also showed enhanced susceptibility to heat stress. Enhanced susceptibility to tunicamycin-induced endoplasmic reticulum stress was observed in AtT-20/PC2 cell clones in which murine PC1/3 was replaced by human N221D PC1/3, as compared with wild-type human PC1/3. However, N221D PC1/3-expressing AtT-20/PC2 clones processed proopiomelanocortin to α-MSH similarly to wild-type PC1/3. We also generated a CRISPR-edited mouse line expressing the N221D mutation in the PCKSI gene. When homozygous N221D mice were fed either a standard or a high-fat diet, we found no increase in body weight compared with their wild-type sibling controls. Sexual dimorphism was observed in pituitary ACTH for both genotypes, with females exhibiting lower levels of pituitary ACTH. In contrast, hypothalamic α-MSH content for both genotypes was higher in females compared with males. Hypothalamic corticotropin-like intermediate peptide content was higher in wild-type females compared with wild-type, but not N221D, males. Taken together, these data suggest that the increased obesity risk linked to the N221D allele in humans may be due in part to PC1/3-induced loss of resilience to stressors rather than strictly to decreased enzymatic activity on peptide precursors.
Collapse
Affiliation(s)
- Timothy S Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Surbhi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tomas Bachor
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
- Correspondence: Iris Lindberg, PhD, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Room S267, Baltimore, Maryland 21210. E-mail:
| |
Collapse
|
22
|
Bearrows SC, Bauchle CJ, Becker M, Haldeman JM, Swaminathan S, Stephens SB. Chromogranin B regulates early-stage insulin granule trafficking from the Golgi in pancreatic islet β-cells. J Cell Sci 2019; 132:jcs.231373. [PMID: 31182646 DOI: 10.1242/jcs.231373] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Chromogranin B (CgB, also known as CHGB) is abundantly expressed in dense core secretory granules of multiple endocrine tissues and has been suggested to regulate granule biogenesis in some cell types, including the pancreatic islet β-cell, though the mechanisms are poorly understood. Here, we demonstrate a critical role for CgB in regulating secretory granule trafficking in the β-cell. Loss of CgB impairs glucose-stimulated insulin secretion, impedes proinsulin processing to yield increased proinsulin content, and alters the density of insulin-containing granules. Using an in situ fluorescent pulse-chase strategy to track nascent proinsulin, we show that loss of CgB impairs Golgi budding of proinsulin-containing secretory granules, resulting in a substantial delay in trafficking of nascent granules to the plasma membrane with an overall decrease in total plasma membrane-associated granules. These studies demonstrate that CgB is necessary for efficient trafficking of secretory proteins into the budding granule, which impacts the availability of insulin-containing secretory granules for exocytic release.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shelby C Bearrows
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - Casey J Bauchle
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - McKenzie Becker
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - Jonathan M Haldeman
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Svetha Swaminathan
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA .,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
23
|
Zhang Q, Pan Y, Zeng B, Zheng X, Wang H, Shen X, Li H, Jiang Q, Zhao J, Meng ZX, Li P, Chen Z, Wei H, Liu Z. Intestinal lysozyme liberates Nod1 ligands from microbes to direct insulin trafficking in pancreatic beta cells. Cell Res 2019; 29:516-532. [PMID: 31201384 PMCID: PMC6796897 DOI: 10.1038/s41422-019-0190-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Long-range communication between intestinal symbiotic bacteria and extra-intestinal organs can occur through circulating bacterial signal molecules, through neural circuits, or through cytokines or hormones from host cells. Here we report that Nod1 ligands derived from intestinal bacteria act as signal molecules and directly modulate insulin trafficking in pancreatic beta cells. The cytosolic peptidoglycan receptor Nod1 and its downstream adapter Rip2 are required for insulin trafficking in beta cells in a cell-autonomous manner. Mechanistically, upon recognizing cognate ligands, Nod1 and Rip2 localize to insulin vesicles, recruiting Rab1a to direct insulin trafficking through the cytoplasm. Importantly, intestinal lysozyme liberates Nod1 ligands into the circulation, thus enabling long-range communication between intestinal microbes and islets. The intestine-islet crosstalk bridged by Nod1 ligands modulates host glucose tolerance. Our study defines a new type of inter-organ communication based on circulating bacterial signal molecules, which has broad implications for understanding the mutualistic relationship between microbes and host.
Collapse
Affiliation(s)
- Qin Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Pan
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | - Xiaojiao Zheng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haifang Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueying Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Jiang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiaxu Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China.,Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pingping Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China.,Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China.,ShanghaiTech Univ, Sch Life Sci & Technol, 100 Haike Rd, Shanghai, 201210, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Zhihua Liu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
24
|
Culture in 10% O 2 enhances the production of active hormones in neuro-endocrine cells by up-regulating the expression of processing enzymes. Biochem J 2019; 476:827-842. [PMID: 30787050 DOI: 10.1042/bcj20180832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
To closely mimic physiological conditions, low oxygen cultures have been employed in stem cell and cancer research. Although in vivo oxygen concentrations in tissues are often much lower than ambient 21% O2 (ranging from 3.6 to 12.8% O2), most cell cultures are maintained at 21% O2 To clarify the effects of the O2 culture concentration on the regulated secretion of peptide hormones in neuro-endocrine cells, we examined the changes in the storage and release of peptide hormones in neuro-endocrine cell lines and endocrine tissues cultured in a relatively lower O2 concentration. In both AtT-20 cells derived from the mouse anterior pituitary and freshly prepared mouse pituitaries cultured in 10% O2 for 24 h, the storage and regulated secretion of the mature peptide hormone adrenocorticotropic hormone were significantly increased compared with those in cells and pituitaries cultured in ambient 21% O2, whereas its precursor proopiomelanocortin was not increased in the cells and tissues after being cultured in 10% O2 Simultaneously, the prohormone-processing enzymes PC1/3 and carboxypeptidase E were up-regulated in cells cultured in 10% O2, thus facilitating the conversion of prohormones to their active form. Similarly, culturing the mouse β-cell line MIN6 and islet tissue in 10% O2 also significantly increased the conversion of proinsulin into mature insulin, which was secreted in a regulated manner. These results suggest that culture under 10% O2 is more optimal for endocrine tissues/cells to efficiently generate and secrete active peptide hormones than ambient 21% O2.
Collapse
|
25
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
26
|
Guest PC. Biogenesis of the Insulin Secretory Granule in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:17-32. [PMID: 30919330 DOI: 10.1007/978-3-030-12668-1_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The secretory granules of pancreatic beta cells are specialized organelles responsible for the packaging, storage and secretion of the vital hormone insulin. The insulin secretory granules also contain more than 100 other proteins including the proteases involved in proinsulin-to insulin conversion, other precursor proteins, minor co-secreted peptides, membrane proteins involved in cell trafficking and ion translocation proteins essential for regulation of the intragranular environment. The synthesis, transport and packaging of these proteins into nascent granules must be carried out in a co-ordinated manner to ensure correct functioning of the granule. The process is regulated by many circulating nutrients such as glucose and can change under different physiological states. This chapter discusses the various processes involved in insulin granule biogenesis with a focus on the granule composition in health and disease.
Collapse
Affiliation(s)
- Paul C Guest
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
27
|
Chen YC, Taylor AJ, Verchere CB. Islet prohormone processing in health and disease. Diabetes Obes Metab 2018; 20 Suppl 2:64-76. [PMID: 30230179 DOI: 10.1111/dom.13401] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
Biosynthesis of peptide hormones by pancreatic islet endocrine cells is a tightly orchestrated process that is critical for metabolic homeostasis. Like neuroendocrine peptides, insulin and other islet hormones are first synthesized as larger precursor molecules that are processed to their mature secreted products through a series of proteolytic cleavages, mediated by the prohormone convertases Pc1/3 and Pc2, and carboxypeptidase E. Additional posttranslational modifications including C-terminal amidation of the β-cell peptide islet amyloid polypeptide (IAPP) by peptidyl-glycine α-amidating monooxygenase (Pam) may also occur. Genome-wide association studies (GWAS) have showed genetic linkage of these processing enzymes to obesity, β-cell dysfunction, and type 2 diabetes (T2D), pointing to their important roles in metabolism and blood glucose regulation. In both type 1 diabetes (T1D) and T2D, and in the face of metabolic or inflammatory stresses, islet prohormone processing may become impaired; indeed elevated proinsulin:insulin (PI:I) ratios are a hallmark of the β-cell dysfunction in T2D. Recent studies suggest that genetic or acquired defects in proIAPP processing may lead to the production and secretion of incompletely processed forms of proIAPP that could contribute to T2D pathogenesis, and additionally that impaired processing of both PI and proIAPP may be characteristic of β-cell dysfunction in T1D. In islet α-cells, the prohormone proglucagon is normally processed to bioactive glucagon by Pc2 but may express Pc1/3 under certain conditions leading to production of GLP-1(7-36NH2 ). A better understanding of how β-cell processing of PI and proIAPP, as well as α-cell processing of proglucagon, are impacted by genetic susceptibility and in the face of diabetogenic stresses, may lead to new therapeutic approaches for improving islet function in diabetes.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| | - Austin J Taylor
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| | - C Bruce Verchere
- Department of Surgery, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Ramos-Molina B, Molina-Vega M, Fernández-García JC, Creemers JW. Hyperphagia and Obesity in Prader⁻Willi Syndrome: PCSK1 Deficiency and Beyond? Genes (Basel) 2018; 9:genes9060288. [PMID: 29880780 PMCID: PMC6027271 DOI: 10.3390/genes9060288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/31/2023] Open
Abstract
Prader–Willi syndrome (PWS) is a complex genetic disorder that, besides cognitive impairments, is characterized by hyperphagia, obesity, hypogonadism, and growth impairment. Proprotein convertase subtilisin/kexin type 1 (PCSK1) deficiency, a rare recessive congenital disorder, partially overlaps phenotypically with PWS, but both genetic disorders show clear dissimilarities as well. The recent observation that PCSK1 is downregulated in a model of human PWS suggests that overlapping pathways are affected. In this review we will not only discuss the mechanisms by which PWS and PCSK1 deficiency could lead to hyperphagia but also the therapeutic interventions to treat obesity in both genetic disorders.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Laboratory of Cellular and Molecular Endocrinology, Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
| | - María Molina-Vega
- Department of Endocrinology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
| | - José C Fernández-García
- Laboratory of Cellular and Molecular Endocrinology, Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
- Department of Endocrinology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn CB06/003), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - John W Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
29
|
|
30
|
Maeda Y, Kudo S, Tsushima K, Sato E, Kubota C, Kayamori A, Bochimoto H, Koga D, Torii S, Gomi H, Watanabe T, Hosaka M. Impaired Processing of Prohormones in Secretogranin III-Null Mice Causes Maladaptation to an Inadequate Diet and Stress. Endocrinology 2018; 159:1213-1227. [PMID: 29281094 DOI: 10.1210/en.2017-00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022]
Abstract
Secretogranin III (SgIII), a member of the granin family, binds both to another granin, chromogranin A (CgA), and to a cholesterol-rich membrane that is destined for secretory granules (SGs). The knockdown of SgIII in adrenocorticotropic hormone (ACTH)-producing AtT-20 cells largely impairs the regulated secretion of CgA and ACTH. To clarify the physiological roles of SgIII in vivo, we analyzed hormone secretion and SG biogenesis in newly established SgIII-knockout (KO) mice. Although the SgIII-KO mice were viable and fertile and exhibited no overt abnormalities under ordinary rearing conditions, a high-fat/high-sucrose diet caused pronounced obesity in the mice. Furthermore, in the SgIII-KO mice compared with wild-type (WT) mice, the stimulated secretion of active insulin decreased substantially, whereas the storage of proinsulin increased in the islets. The plasma ACTH was also less elevated in the SgIII-KO mice than in the WT mice after chronic restraint stress, whereas the storage level of the precursor proopiomelanocortin in the pituitary gland was somewhat increased. These findings suggest that the lack of SgIII causes maladaptation of endocrine cells to an inadequate diet and stress by impairing the proteolytic conversion of prohormones in SGs, whereas SG biogenesis and the basal secretion of peptide hormones under ordinary conditions are ensured by the compensatory upregulation of other residual granins or factors.
Collapse
Affiliation(s)
- Yoshinori Maeda
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Saki Kudo
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Ken Tsushima
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Eri Sato
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Chisato Kubota
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Aika Kayamori
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Hiroki Bochimoto
- Health Care Administration Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| | - Seiji Torii
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| | - Masahiro Hosaka
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| |
Collapse
|
31
|
Abstract
Zusammenfassung
Autosomal-rezessiv vererbte Mutationen in den Genen für Leptin, Leptinrezeptor, Proopiomelanocortin (POMC) und Prohormon-Convertase (PC1) führen zu einer ausgeprägten frühkindlichen Adipositas. Patienten mit biologisch inaktivem Leptin oder Leptinmangel können mit humanem rekombinanten Leptin erfolgreich behandelt werden. Für die anderen Patienten hat sich die Behandlung mit einem α‑MSH-Analogon als erfolgreich erwiesen (POMC-Patienten) bzw. befindet sich derzeit in Erprobung.
Kodominant vererbte Mutationen im MC4R-Gen stellen die häufigste Form der monogenen Adipositas dar. Eine kausale Therapie ist hier allerdings nicht möglich.
Es sind inzwischen noch weitere, autosomal-rezessiv vererbte Genmutationen identifiziert worden, die ebenfalls mit einer ausgeprägten Adipositas assoziiert sind. Die meisten dieser Mutationen liegen in Genen, die in die Signaltransduktion von MC4R oder dem Leptinrezeptor involviert sind. Auch für diese Patienten gibt es aktuell noch keine kausale Therapie.
Schlussfolgerung: Bei Patienten mit extremer frühkindlicher Adipositas sollte eine molekulargenetische Diagnostik eingeleitet werden, da die Diagnosestellung für die Betroffenen und ihre Familie eine enorme Erleichterung bedeuten kann. Außerdem gewinnen die Familien Klarheit über das Wiederholungsrisiko und eventuell ist sogar eine kausale oder zumindest optimierte Therapie möglich.
Collapse
Affiliation(s)
- Julia von Schnurbein
- Aff1 grid.410712.1 Klinik für Kinder- und Jugendmedizin, Zentrum für Seltene Erkrankungen (ZSE) Ulm, Sektion Pädiatrische Endokrinologie und Diabetologie Universitätsklinik für Kinder- und Jugendmedizin Eythstr. 24 89075 Ulm Deutschland
| | - Martin Wabitsch
- Aff1 grid.410712.1 Klinik für Kinder- und Jugendmedizin, Zentrum für Seltene Erkrankungen (ZSE) Ulm, Sektion Pädiatrische Endokrinologie und Diabetologie Universitätsklinik für Kinder- und Jugendmedizin Eythstr. 24 89075 Ulm Deutschland
| |
Collapse
|
32
|
Ullsten S, Bohman S, Oskarsson ME, Nilsson KPR, Westermark GT, Carlsson PO. Islet amyloid deposits preferentially in the highly functional and most blood-perfused islets. Endocr Connect 2017; 6:458-468. [PMID: 28790139 PMCID: PMC5574281 DOI: 10.1530/ec-17-0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/08/2017] [Indexed: 01/13/2023]
Abstract
Islet amyloid and beta cell death in type 2 diabetes are heterogeneous events, where some islets are affected early in the disease process, whereas others remain visibly unaffected. This study investigated the possibility that inter-islet functional and vascular differences may explain the propensity for amyloid accumulation in certain islets. Highly blood-perfused islets were identified by microspheres in human islet amyloid polypeptide expressing mice fed a high-fat diet for three or 10 months. These highly blood-perfused islets had better glucose-stimulated insulin secretion capacity than other islets and developed more amyloid deposits after 10 months of high-fat diet. Similarly, human islets with a superior release capacity formed more amyloid in high glucose culture than islets with a lower release capacity. The amyloid formation in mouse islets was associated with a higher amount of prohormone convertase 1/3 and with a decreased expression of its inhibitor proSAAS when compared to islets with less amyloid. In contrast, levels of prohormone convertase 2 and expression of its inhibitor neuroendocrine protein 7B2 were unaltered. A misbalance in prohormone convertase levels may interrupt the normal processing of islet amyloid polypeptide and induce amyloid formation. Preferential amyloid load in the most blood-perfused and functional islets may accelerate the progression of type 2 diabetes.
Collapse
Affiliation(s)
- Sara Ullsten
- Department of Medical Cell BiologyUppsala University, Uppsala, Sweden
| | - Sara Bohman
- Department of Medical Cell BiologyUppsala University, Uppsala, Sweden
| | - Marie E Oskarsson
- Department of Medical Cell BiologyUppsala University, Uppsala, Sweden
| | | | | | - Per-Ola Carlsson
- Department of Medical Cell BiologyUppsala University, Uppsala, Sweden
- Department of Medical SciencesUppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Courtade JA, Klimek-Abercrombie AM, Chen YC, Patel N, Lu PYT, Speake C, Orban PC, Najafian B, Meneilly G, Greenbaum CJ, Warnock GL, Panagiotopoulos C, Verchere CB. Measurement of Pro-Islet Amyloid Polypeptide (1-48) in Diabetes and Islet Transplants. J Clin Endocrinol Metab 2017; 102:2595-2603. [PMID: 28368485 DOI: 10.1210/jc.2016-2773] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/20/2017] [Indexed: 12/21/2022]
Abstract
CONTEXT Islet amyloid is a feature of β-cell failure in type 2 diabetes (T2D) and type 1 diabetes (T1D) recipients of islet transplants. Islet amyloid contains islet amyloid polypeptide (IAPP; amylin), a circulating peptide that is produced in β cells by processing of its precursor, proIAPP1-67, via an intermediate form, proIAPP1-48. Elevated proinsulin to C-peptide ratios in the plasma of persons with diabetes suggest defects in β-cell prohormone processing. OBJECTIVE Determine whether plasma levels of precursor forms of IAPP are elevated in diabetes. DESIGN, SETTING, AND PATIENTS We developed an immunoassay to detect proIAPP1-48 in human plasma, and we determined the ratio of proIAPP1-48 to mature IAPP in subjects with T1D, T2D, recipients of islet transplants, and healthy controls. RESULTS The proIAPP1-48 immunoassay had a limit of detection of 0.18 ± 0.06 pM and cross-reactivity with intact proIAPP1-67 <15%. Healthy individuals had plasma concentrations of proIAPP1-48 immunoreactivity of 1.5 ± 0.2 pM and a proIAPP1-48 to total IAPP ratio of 0.28 ± 0.03. Plasma concentrations of proIAPP1-48 immunoreactivity were not significantly different in subjects with T2D but were markedly increased in T1D recipients of islet transplants. Children and adults with T1D had reduced mature IAPP levels relative to age-matched controls but an elevated ratio of proIAPP1-48 to total IAPP. CONCLUSION The β cells in T1D and islet transplants have impaired processing of the proIAPP1-48 intermediate. The ratio of proIAPP1-48-to-IAPP immunoreactivity may have value as a biomarker of β-cell stress and dysfunction.
Collapse
Affiliation(s)
- Jaques A Courtade
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
| | - Agnieszka M Klimek-Abercrombie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
| | - Yi-Chun Chen
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Nirja Patel
- American Laboratory Products Company, Salem, New Hampshire 03079
| | - Phoebe Y T Lu
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Genetics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, Washington 98101
| | - Paul C Orban
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
| | - Behzad Najafian
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Graydon Meneilly
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, Washington 98101
| | - Garth L Warnock
- Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Constadina Panagiotopoulos
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - C Bruce Verchere
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
34
|
Courtade JA, Wang EY, Yen P, Dai DL, Soukhatcheva G, Orban PC, Verchere CB. Loss of prohormone convertase 2 promotes beta cell dysfunction in a rodent transplant model expressing human pro-islet amyloid polypeptide. Diabetologia 2017; 60:453-463. [PMID: 27999871 DOI: 10.1007/s00125-016-4174-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS A contributor to beta cell failure in type 2 diabetes and islet transplants is amyloid formation by aggregation of the beta cell peptide, islet amyloid polypeptide (IAPP). Similar to the proinsulin processing pathway that generates insulin, IAPP is derived from a prohormone precursor, proIAPP, which requires cleavage by prohormone convertase (PC) 1/3 and PC2 in rodent pancreatic beta cells. We hypothesised that loss of PC2 would promote beta cell death and dysfunction in a rodent model of human beta cell proIAPP overexpression. METHODS We generated an islet transplant model wherein immune-deficient mouse models of diabetes received islets expressing amyloidogenic human proIAPP and lacking PC2, leading to restoration of normoglycaemia accompanied by increased secretion of human proIAPP. Blood glucose levels were analysed for up to 16 weeks in transplant recipients and grafts were assessed for islet amyloid and beta cell number and death. RESULTS Hyperglycaemia (blood glucose >16.9 mmol/l) returned in 94% of recipients of islets expressing human proIAPP and lacking PC2, whereas recipients of islets that express human proIAPP and normal PC2 levels remained normoglycaemic for at least 16 weeks. Islet graft failure was accompanied by a ∼20% reduction in insulin-positive cells, yet the degree of amyloid deposition and beta cell apoptosis was similar to those of controls expressing human proIAPP with functional PC2 levels. CONCLUSIONS/INTERPRETATION PC2 deficiency in transplanted mouse islets expressing human proIAPP promotes beta cell loss and graft failure. Our data suggest that impaired NH2-terminal processing and increased secretion of human proIAPP promote beta cell failure.
Collapse
Affiliation(s)
- Jaques A Courtade
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Evan Y Wang
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul Yen
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Derek L Dai
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Galina Soukhatcheva
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paul C Orban
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - C Bruce Verchere
- Research Institute, BC Children's Hospital, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
35
|
Burnett LC, LeDuc CA, Sulsona CR, Paull D, Rausch R, Eddiry S, Carli JFM, Morabito MV, Skowronski AA, Hubner G, Zimmer M, Wang L, Day R, Levy B, Fennoy I, Dubern B, Poitou C, Clement K, Butler MG, Rosenbaum M, Salles JP, Tauber M, Driscoll DJ, Egli D, Leibel RL. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J Clin Invest 2017; 127:293-305. [PMID: 27941249 PMCID: PMC5199710 DOI: 10.1172/jci88648] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/20/2016] [Indexed: 12/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene SNORD116. Here, we found that protein and transcript levels of nescient helix loop helix 2 (NHLH2) and the prohormone convertase PC1 (encoded by PCSK1) were reduced in PWS patient induced pluripotent stem cell-derived (iPSC-derived) neurons. Moreover, Nhlh2 and Pcsk1 expression were reduced in hypothalami of fasted Snord116 paternal knockout (Snord116p-/m+) mice. Hypothalamic Agrp and Npy remained elevated following refeeding in association with relative hyperphagia in Snord116p-/m+ mice. Nhlh2-deficient mice display growth deficiencies as adolescents and hypogonadism, hyperphagia, and obesity as adults. Nhlh2 has also been shown to promote Pcsk1 expression. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased GH, and hypoinsulinemic diabetes due to impaired prohormone processing. Here, we found that Snord116p-/m+ mice displayed in vivo functional defects in prohormone processing of proinsulin, pro-GH-releasing hormone, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency.
Collapse
Affiliation(s)
- Lisa C. Burnett
- Institute of Human Nutrition
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Charles A. LeDuc
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- New York Obesity Research Center, New York, New York, USA
| | - Carlos R. Sulsona
- Department of Pediatrics, Division of Genetics and Metabolism, University of Florida College of Medicine Gainesville, Florida, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Richard Rausch
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Sanaa Eddiry
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS UMR 5282, INSERM UMR 1043, Université Paul Sabatier, Toulouse, France
| | - Jayne F. Martin Carli
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | - Michael V. Morabito
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Alicja A. Skowronski
- Institute of Human Nutrition
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | | | - Matthew Zimmer
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Liheng Wang
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Robert Day
- Institut de pharmacologie de Sherbrooke, Department of Surgery, Division of Urology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Ilene Fennoy
- Department of Pediatrics, Division of Pediatric Diabetes, Endocrinology and Metabolism, Columbia University, New York, New York, USA
| | - Beatrice Dubern
- Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Sorbonne University, University Pierre et Marie-Curie, INSERM UMRS 1166, Paris, France
| | - Christine Poitou
- Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Sorbonne University, University Pierre et Marie-Curie, INSERM UMRS 1166, Paris, France
| | - Karine Clement
- Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Sorbonne University, University Pierre et Marie-Curie, INSERM UMRS 1166, Paris, France
| | - Merlin G. Butler
- Department of Psychiatry and Behavioral Sciences, Division of Research and Genetics, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Michael Rosenbaum
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Jean Pierre Salles
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS UMR 5282, INSERM UMR 1043, Université Paul Sabatier, Toulouse, France
- Unité d’Endocrinologie, Hôpital des Enfants, and
| | - Maithe Tauber
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS UMR 5282, INSERM UMR 1043, Université Paul Sabatier, Toulouse, France
- Unité d’Endocrinologie, Hôpital des Enfants, and
- Centre de Référence du Syndrome de Prader-Willi, CHU Toulouse, Toulouse, France
| | - Daniel J. Driscoll
- Department of Pediatrics, Division of Genetics and Metabolism, University of Florida College of Medicine Gainesville, Florida, USA
- Center for Epigenetics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Dieter Egli
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Rudolph L. Leibel
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- New York Obesity Research Center, New York, New York, USA
| |
Collapse
|
36
|
Du W, Zhou M, Zhao W, Cheng D, Wang L, Lu J, Song E, Feng W, Xue Y, Xu P, Xu T. HID-1 is required for homotypic fusion of immature secretory granules during maturation. eLife 2016; 5. [PMID: 27751232 PMCID: PMC5094852 DOI: 10.7554/elife.18134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Secretory granules, also known as dense core vesicles, are generated at the trans-Golgi network and undergo several maturation steps, including homotypic fusion of immature secretory granules (ISGs) and processing of prehormones to yield active peptides. The molecular mechanisms governing secretory granule maturation are largely unknown. Here, we investigate a highly conserved protein named HID-1 in a mouse model. A conditional knockout of HID-1 in pancreatic β cells leads to glucose intolerance and a remarkable increase in the serum proinsulin/insulin ratio caused by defective proinsulin processing. Large volume three-dimensional electron microscopy and immunofluorescence imaging reveal that ISGs are much more abundant in the absence of HID-1. We further demonstrate that HID-1 deficiency prevented secretory granule maturation by blocking homotypic fusion of immature secretory granules. Our data identify a novel player during the early maturation of immature secretory granules.
Collapse
Affiliation(s)
- Wen Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Maoge Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dongwan Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lifen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingze Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingyong Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Stijnen P, Ramos-Molina B, O'Rahilly S, Creemers JWM. PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders. Endocr Rev 2016; 37:347-71. [PMID: 27187081 DOI: 10.1210/er.2015-1117] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prohormone convertase 1/3, encoded by the PCSK1 gene, is a serine endoprotease that is involved in the processing of a variety of proneuropeptides and prohormones. Humans who are homozygous or compound heterozygous for loss-of-function mutations in PCSK1 exhibit a variable and pleiotropic syndrome consisting of some or all of the following: obesity, malabsorptive diarrhea, hypogonadotropic hypogonadism, altered thyroid and adrenal function, and impaired regulation of plasma glucose levels in association with elevated circulating proinsulin-to-insulin ratio. Recently, more common variants in the PCSK1 gene have been found to be associated with alterations in body mass index, increased circulating proinsulin levels, and defects in glucose homeostasis. This review provides an overview of the endocrinopathies and other disorders observed in prohormone convertase 1/3-deficient patients, discusses the possible biochemical basis for these manifestations of the disease, and proposes a model whereby certain missense mutations in PCSK1 may result in proteins with a dominant negative action.
Collapse
Affiliation(s)
- Pieter Stijnen
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Bruno Ramos-Molina
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Stephen O'Rahilly
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
38
|
Ramos-Molina B, Martin MG, Lindberg I. PCSK1 Variants and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:47-74. [PMID: 27288825 DOI: 10.1016/bs.pmbts.2015.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PCSK1, encoding prohormone convertase 1/3 (PC1/3), was one of the first genes linked to monogenic early-onset obesity. PC1/3 is a protease involved in the biosynthetic processing of a variety of neuropeptides and prohormones in endocrine tissues. PC1/3 activity is essential for the activating cleavage of many peptide hormone precursors implicated in the regulation of food ingestion, glucose homeostasis, and energy homeostasis, for example, proopiomelanocortin, proinsulin, proglucagon, and proghrelin. A large number of genome-wide association studies in a variety of different populations have now firmly established a link between three PCSK1 polymorphisms frequent in the population and increased risk of obesity. Human subjects with PC1/3 deficiency, a rare autosomal-recessive disorder caused by the presence of loss-of-function mutations in both alleles, are obese and display a complex set of endocrinopathies. Increasing numbers of genetic diagnoses of infants with persistent diarrhea has recently led to the finding of many novel PCSK1 mutations. PCSK1-deficient infants experience severe intestinal malabsorption during the first years of life, requiring controlled nutrition; these children then become hyperphagic, with associated obesity. The biochemical characterization of novel loss-of-function PCSK1 mutations has resulted in the discovery of new pathological mechanisms affecting the cell biology of the endocrine cell beyond simple loss of enzyme activity, for example, dominant-negative effects of certain mutants on wild-type PC1/3 protein, and activation of the cellular unfolded protein response by endoplasmic reticulum-retained mutants. A better understanding of these molecular and cellular pathologies may illuminate possible treatments for the complex endocrinopathy of PCSK1 deficiency, including obesity.
Collapse
Affiliation(s)
- B Ramos-Molina
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - M G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - I Lindberg
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, MD, United States of America.
| |
Collapse
|
39
|
Maj M, Hoermann G, Rasul S, Base W, Wagner L, Attems J. The Microtubule-Associated Protein Tau and Its Relevance for Pancreatic Beta Cells. J Diabetes Res 2016; 2016:1964634. [PMID: 26824039 PMCID: PMC4707345 DOI: 10.1155/2016/1964634] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/24/2015] [Indexed: 12/02/2022] Open
Abstract
Structural and biochemical alterations of the microtubule-associated protein tau (MAPT) are associated with degenerative disorders referred to as tauopathies. We have previously shown that MAPT is present in human islets of Langerhans, human insulinomas, and pancreatic beta-cell line models, with biophysical similarities to the pathological MAPT in the brain. Here, we further studied MAPT in pancreatic endocrine tissue to better understand the mechanisms that lead to functional dysregulation of pancreatic beta cells. We found upregulation of MAPT protein expression in human insulinomas when compared to human pancreatic islets of Langerhans and an imbalance between MAPT isoforms in insulinomas tissue. We cloned one 3-repeat domain MAPT and transduced this into a beta-cell derived rodent cell line Rin-5F. Proliferation experiments showed higher growth rates and metabolic activities of cells overexpressing MAPT protein. We observed that a MAPT overexpressing cell line demonstrates altered insulin transcription, translation, and insulin secretion rates. We found the relative insulin secretion rates were significantly decreased in a MAPT overexpressing cell line and these findings could be confirmed using partial MAPT knock-down cell lines. Our findings support that MAPT may play an important role in insulin granule trafficking and indicate the importance of balanced MAPT phosphorylation and dephosphorylation for adequate insulin release.
Collapse
Affiliation(s)
- Magdalena Maj
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
- *Magdalena Maj:
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Sazan Rasul
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Base
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Ludwig Wagner
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
40
|
Bruin JE, Asadi A, Fox JK, Erener S, Rezania A, Kieffer TJ. Accelerated Maturation of Human Stem Cell-Derived Pancreatic Progenitor Cells into Insulin-Secreting Cells in Immunodeficient Rats Relative to Mice. Stem Cell Reports 2015; 5:1081-1096. [PMID: 26677767 PMCID: PMC4682152 DOI: 10.1016/j.stemcr.2015.10.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 11/30/2022] Open
Abstract
Pluripotent human embryonic stem cells (hESCs) are a potential source of transplantable cells for treating patients with diabetes. To investigate the impact of the host recipient on hESC-derived pancreatic progenitor cell maturation, cells were transplanted into immunodeficient SCID-beige mice or nude rats. Following the transplant, basal human C-peptide levels were consistently higher in mice compared with rats, but only rats showed robust meal- and glucose-responsive human C-peptide secretion by 19-21 weeks. Grafts from rats contained a higher proportion of insulin:glucagon immunoreactivity, fewer exocrine cells, and improved expression of mature β cell markers compared with mice. Moreover, ECM-related genes were enriched, the collagen network was denser, and blood vessels were more intricately integrated into the engrafted endocrine tissue in rats relative to mice. Overall, hESC-derived pancreatic progenitor cells matured faster in nude rats compared with SCID-beige mice, indicating that the host recipient can greatly influence the fate of immature pancreatic progenitor cells post-transplantation.
Collapse
Affiliation(s)
- Jennifer E Bruin
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ali Asadi
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jessica K Fox
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Suheda Erener
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Alireza Rezania
- BetaLogics Venture, Janssen R&D LLC, 1000 Route 202 South, Room J108A, Raritan, NJ 08869, USA
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Surgery, University of British Columbia, 950 West 10(th) Avenue, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
41
|
Asadi A, Bruin JE, Kieffer TJ. Characterization of Antibodies to Products of Proinsulin Processing Using Immunofluorescence Staining of Pancreas in Multiple Species. J Histochem Cytochem 2015. [PMID: 26216140 DOI: 10.1369/0022155415576541] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The efficient processing of proinsulin into mature insulin and C-peptide is often compromised under conditions of beta cell stress, including diabetes. Impaired proinsulin processing has been challenging to examine by immunofluorescence staining in pancreas tissue because the characterization of antibodies specific for proinsulin, proinsulin intermediates, processed insulin and C-peptide has been limited. This study aimed to identify and characterize antibodies that can be used to detect products of proinsulin processing by immunofluorescence staining in pancreata from different species (mice, rats, dog, pig and human). We took advantage of several knockout mouse lines that lack either an enzyme involved in proinsulin processing or an insulin gene. Briefly, we report antibodies that are specific for several proinsulin processing products, including: a) insulin or proinsulin that has been appropriately processed at the B-C junction; b) proinsulin with a non-processed B-C junction; c) proinsulin with a non-processed A-C junction; d) rodent-specific C-peptide 1; e) rodent-specific C-peptide 2; and f) human-specific C-peptide or proinsulin. In addition, we also describe two 'pan-insulin' antibodies that react with all forms of insulin and proinsulin intermediates, regardless of the species. These antibodies are valuable tools for studying proinsulin processing by immunofluorescence staining and distinguishing between proinsulin products in different species.
Collapse
Affiliation(s)
- Ali Asadi
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada (AA, JEB, TJK)
| | - Jennifer E Bruin
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada (AA, JEB, TJK)
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada (AA, JEB, TJK),Department of Surgery, University of British Columbia, Vancouver, BC, Canada (TJK)
| |
Collapse
|
42
|
Moore WT, Bowser SM, Fausnacht DW, Staley LL, Suh KS, Liu D. Beta Cell Function and the Nutritional State: Dietary Factors that Influence Insulin Secretion. Curr Diab Rep 2015; 15:76. [PMID: 26294335 DOI: 10.1007/s11892-015-0650-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Approximately 366 million people worldwide have been diagnosed with type-2 diabetes (T2D). Chronic insulin resistance, decreased functional β-cell mass, and elevated blood glucose are defining characteristics of T2D. Great advances have been made in understanding the pathogenesis of T2D with respect to the effects of dietary macronutrient composition and energy intake on β-cell physiology and glucose homeostasis. It has been further established that obesity is a leading pathogenic factor for developing insulin resistance. However, insulin resistance may not progress to T2D unless β-cells are unable to secret an adequate amount of insulin to compensate for decreased insulin sensitivity. Therefore, pancreatic β-cell dysfunction plays an important role in the development of overt diabetes. This paper reviews recent research findings on the effects of several micronutrients (zinc, vitamin D, iron, vitamin A), leucine, and the phytochemical, genistein on pancreatic β-cell physiology with emphasis on their effects on insulin secretion, specifically in the context of T2D.
Collapse
Affiliation(s)
- William T Moore
- Department of Human Nutrition, Foods and Exercises, College of Agricultural and Life Sciences, Virginia Tech Corporate Research Center, 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | | | | | | | | | | |
Collapse
|
43
|
Fan F, Ji C, Wu Y, Ferguson SM, Tamarina N, Philipson LH, Lou X. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis. J Clin Invest 2015; 125:4026-41. [PMID: 26413867 DOI: 10.1172/jci80652] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/20/2015] [Indexed: 12/18/2022] Open
Abstract
Alterations in insulin granule exocytosis and endocytosis are paramount to pancreatic β cell dysfunction in diabetes mellitus. Here, using temporally controlled gene ablation specifically in β cells in mice, we identified an essential role of dynamin 2 GTPase in preserving normal biphasic insulin secretion and blood glucose homeostasis. Dynamin 2 deletion in β cells caused glucose intolerance and substantial reduction of the second phase of glucose-stimulated insulin secretion (GSIS); however, mutant β cells still maintained abundant insulin granules, with no signs of cell surface expansion. Compared with control β cells, real-time capacitance measurements demonstrated that exocytosis-endocytosis coupling was less efficient but not abolished; clathrin-mediated endocytosis (CME) was severely impaired at the step of membrane fission, which resulted in accumulation of clathrin-coated endocytic intermediates on the plasma membrane. Moreover, dynamin 2 ablation in β cells led to striking reorganization and enhancement of actin filaments, and insulin granule recruitment and mobilization were impaired at the later stage of GSIS. Together, our results demonstrate that dynamin 2 regulates insulin secretory capacity and dynamics in vivo through a mechanism depending on CME and F-actin remodeling. Moreover, this study indicates a potential pathophysiological link between endocytosis and diabetes mellitus.
Collapse
|
44
|
Imai S, Takahashi T, Naito S, Yamauchi A, Okada C, Notsu Y, Sakikawa I, Hatanaka M, Iwasaki T, Morita A, Fujii I, Yamane S. Development of a novel immunoassay specific for mouse intact proinsulin. Anal Biochem 2015; 484:91-8. [DOI: 10.1016/j.ab.2015.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 11/16/2022]
|
45
|
Dai FF, Bhattacharjee A, Liu Y, Batchuluun B, Zhang M, Wang XS, Huang X, Luu L, Zhu D, Gaisano H, Wheeler MB. A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells. J Biol Chem 2015; 290:25045-61. [PMID: 26272612 DOI: 10.1074/jbc.m115.648592] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 11/06/2022] Open
Abstract
GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H(+)-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca(2+) influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion.
Collapse
Affiliation(s)
- Feihan F Dai
- From the Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Alpana Bhattacharjee
- From the Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ying Liu
- From the Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Battsetseg Batchuluun
- From the Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ming Zhang
- From the Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xinye Serena Wang
- From the Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xinyi Huang
- From the Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lemieux Luu
- From the Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dan Zhu
- From the Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Herbert Gaisano
- From the Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michael B Wheeler
- From the Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
46
|
Yosten GLC, Kolar GR. The Physiology of Proinsulin C-Peptide: Unanswered Questions and a Proposed Model. Physiology (Bethesda) 2015; 30:327-32. [DOI: 10.1152/physiol.00008.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
C-peptide is produced, processed, and secreted with insulin, and appears to exert separate but intimately related effects. In this review, we address the existence of the C-peptide receptor, the interaction between C-peptide and insulin, and the potential physiological significance of proinsulin C-peptide.
Collapse
Affiliation(s)
- Gina L. C. Yosten
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri; and
| | - Grant R. Kolar
- Department of Pathology, St. Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
47
|
|
48
|
Katsuta H, Ozawa S, Suzuki K, Takahashi K, Tanaka T, Sumitani Y, Nishida S, Kondo T, Hosaka T, Inukai K, Ishida H. The association between impaired proinsulin processing and type 2 diabetes mellitus in non-obese Japanese individuals. Endocr J 2015; 62:485-92. [PMID: 25892189 DOI: 10.1507/endocrj.ej14-0611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We aimed to examine the association between impaired proinsulin processing in pancreatic beta cells and type 2 diabetes mellitus in non-obese Japanese patients. Participants were divided into groups for normal glucose tolerance, prediabetes, and type 2 diabetes based on the oral glucose tolerance test (OGTT). Activities of prohormone convertase (PC) 1/3 and PC2 in fasting states were estimated. Multiple regression analysis was undertaken to ascertain if alteration of the activities of these enzymes contributes to the development of impaired glucose tolerance by comparison with HOMA-β and the oral disposition index (DI(O)). Overall, 452 subjects were included. PC1/3 activity tended to decrease in type 2 diabetes compared with normal glucose tolerance. PC2 activity showed no difference among the three groups. Decreased estimated PC1/3 activity was significantly associated with type 2 diabetes after adjustment for sex, age, creatinine, triglycerides, HOMA-β and DI(O). Odds ratios (95% CI) of PC1/3, HOMA-β, and DI(O) were 2.16 (1.12-4.19), 3.44 (1.82-6.52) and 14.60 (7.87-27.11), respectively. Furthermore, decreased PC1/3(≤1.7) combined with decreased HOMA-β (≤30) had a sensitivity of 73% and specificity of 62%. Decreased PC1/3 activity may be a useful measurement of beta-cell function alongside decreased HOMA-β or DI(O). A combined decrease in estimated fasting PC1/3 activity and HOMA-β measurement led to suspicion of type 2 diabetes in the non-obese Japanese population studied.
Collapse
Affiliation(s)
- Hidenori Katsuta
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
O’Malley TJ, Fava GE, Zhang Y, Fonseca VA, Wu H. Progressive change of intra-islet GLP-1 production during diabetes development. Diabetes Metab Res Rev 2014; 30:661-8. [PMID: 24510483 PMCID: PMC4126896 DOI: 10.1002/dmrr.2534] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/19/2014] [Accepted: 02/01/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Glucagon-like peptide 1 (GLP-1) and glucagon share the same precursor molecule proglucagon, but each arises from a distinct posttranslational process in a tissue-specific manner. Recently, it has been shown that GLP-1 is co-expressed with glucagon in pancreatic islet cells. This study was aimed to investigate the progressive changes of GLP-1 versus glucagon production in pancreatic islets during the course of diabetes development. METHODS Both type 1 (non-obese diabetes mice) and type 2 (db/db mice) diabetes models were employed in this study. The mice were monitored closely for their diabetes progression and were sacrificed at different stages according to their blood glucose levels. GLP-1 and glucagon expression in the pancreatic islets was examined using immunohistochemistry assays. Quantitative analysis was performed to evaluate the significance of the changes. RESULTS The ratio of GLP-1-expressing cells to glucagon-expressing cells in the islets showed significant, progressive increase with the development of diabetes in db/db mice. The increase of GLP-1 expression was in agreement with the upregulation of PC1/3 expression in these cells. Interestingly, intra-islet GLP-1 expression was not significantly changed during the development of type 1 diabetes in non-obese diabetes mice. CONCLUSIONS The study demonstrated that GLP-1 was progressively upregulated in pancreatic islets during type 2 diabetes development. In addition, the data suggest clear differences in intra-islet GLP-1 production between type 1 and type 2 diabetes developments. These differences may have an effect on the clinical and pathophysiological processes of these diseases and may be a target for therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Hongju Wu
- Corresponding author: Dr. Hongju Wu, Department of Medicine, Tulane University, 1430 Tulane Ave.-SL53, New Orleans, LA 70112. Phone: 504-988-2153. Fax: 504-988-6271.
| |
Collapse
|
50
|
Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O'Neil JJ, Kieffer TJ. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 2014; 31:2432-42. [PMID: 23897760 DOI: 10.1002/stem.1489] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/09/2013] [Accepted: 07/01/2013] [Indexed: 12/24/2022]
Abstract
Human embryonic stem cells (hESCs) are considered a potential alternative to cadaveric islets as a source of transplantable cells for treating patients with diabetes. We previously described a differentiation protocol to generate pancreatic progenitor cells from hESCs, composed of mainly pancreatic endoderm (PDX1/NKX6.1-positive), endocrine precursors (NKX2.2/synaptophysin-positive, hormone/NKX6.1-negative), and polyhormonal cells (insulin/glucagon-positive, NKX6.1-negative). However, the relative contributions of NKX6.1-negative versus NKX6.1-positive cell fractions to the maturation of functional β-cells remained unclear. To address this question, we generated two distinct pancreatic progenitor cell populations using modified differentiation protocols. Prior to transplant, both populations contained a high proportion of PDX1-expressing cells (~85%-90%) but were distinguished by their relatively high (~80%) or low (~25%) expression of NKX6.1. NKX6.1-high and NKX6.1-low progenitor populations were transplanted subcutaneously within macroencapsulation devices into diabetic mice. Mice transplanted with NKX6.1-low cells remained hyperglycemic throughout the 5-month post-transplant period whereas diabetes was reversed in NKX6.1-high recipients within 3 months. Fasting human C-peptide levels were similar between groups throughout the study, but only NKX6.1-high grafts displayed robust meal-, glucose- and arginine-responsive insulin secretion as early as 3 months post-transplant. NKX6.1-low recipients displayed elevated fasting glucagon levels. Theracyte devices from both groups contained almost exclusively pancreatic endocrine tissue, but NKX6.1-high grafts contained a greater proportion of insulin-positive and somatostatin-positive cells, whereas NKX6.1-low grafts contained mainly glucagon-expressing cells. Insulin-positive cells in NKX6.1-high, but not NKX6.1-low grafts expressed nuclear MAFA. Collectively, this study demonstrates that a pancreatic endoderm-enriched population can mature into highly functional β-cells with only a minor contribution from the endocrine subpopulation.
Collapse
Affiliation(s)
- Alireza Rezania
- BetaLogics Venture, Janssen R & D LLC, Raritan, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|