1
|
Atarashi Y, Kim J, Irino Y, Amano M, Tsuchiya K, Maeda K, Terada M, Iwamoto N, Shimada S, Mitsuya H, Yanagida M, Takamatsu Y. A high-throughput, fully automated competition assay to evaluate SARS-CoV-2 neutralizing responses and epitope specificity in clinical samples. Sci Rep 2025; 15:11589. [PMID: 40185856 PMCID: PMC11971398 DOI: 10.1038/s41598-025-94317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Abstract
Coronavirus disease-2019 (COVID-19) remains a critical global health concern. We developed a fully automated, high-throughput competition immunoassay to elucidate how epitope recognition on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor-binding domain (RBD) correlates with neutralizing activity. Analysis of clinical samples from both SARS-CoV-2-infected and vaccinated individuals revealed that vaccination elicits significantly higher antibody titers across multiple S1 subunit epitopes compared to natural infection. Notably, median antibody levels against the receptor-binding motif (RBM) exceeded 50% in both cohorts, highlighting the RBM as a key target for antibody induction irrespective of immune origin. Furthermore, the strongest correlation with neutralizing activity was observed for antibodies directed against the broader S1 subunit, indicating that epitopes outside the RBM also contribute to neutralization. These findings underscore the importance of both RBM- and non-RBM-directed antibodies in effective immune defense against SARS-CoV-2. Our assay enables large-scale, reliable quantification of neutralizing antibodies and provides critical insights for developing improved diagnostic antigens and vaccine strategies aimed at eliciting robust, multi-epitope immune responses.
Collapse
Affiliation(s)
- Yusuke Atarashi
- Central Research Laboratories, Sysmex Corporation, Kobe, 651-2271, Japan
| | - Jeeeun Kim
- Central Research Laboratories, Sysmex Corporation, Kobe, 651-2271, Japan
| | - Yasuhiro Irino
- Central Research Laboratories, Sysmex Corporation, Kobe, 651-2271, Japan
| | - Masayuki Amano
- Department of Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, Center hospital of the National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Kenji Maeda
- Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan, 890-8544
| | - Mari Terada
- Department of Disease Control Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Noriko Iwamoto
- Department of Disease Control Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Shinya Shimada
- Japan Community Healthcare Organization, Kumamoto General Hospital, 866- 8660, Kumamoto, Japan
| | - Hiroaki Mitsuya
- Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, 20892-1868, Bethesda, MD, USA
- Division of Clinical Sciences, Kumamoto University Hospital, 860-8556, Kumamoto, Japan
| | - Masatoshi Yanagida
- Central Research Laboratories, Sysmex Corporation, Kobe, 651-2271, Japan
| | - Yuki Takamatsu
- Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan.
| |
Collapse
|
2
|
Saraswat A, Nomani A, Yong LK, Kuo JCT, Brown H, Narayanareddygari M, Peace A, Fazily R, Blake T, Petro CD, Rayaprolu B, Hansen J, Bhalla AS, Shameem M. A Polysorbate-Based Lipid Nanoparticle Vaccine Formulation Induces In Vivo Immune Response Against SARS-CoV-2. Pharmaceutics 2025; 17:441. [PMID: 40284436 PMCID: PMC12030230 DOI: 10.3390/pharmaceutics17040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Lipid nanoparticles (LNPs) have proven effective in delivering RNA-based modalities. Rapid approval of the COVID-19 vaccines highlights the promise of LNPs as a delivery platform for nucleic acid-based therapies and vaccines. Nevertheless, improved LNP designs are needed to advance next-generation vaccines and other gene therapies toward greater clinical success. Lipid components and LNP formulation excipients play a central role in biodistribution, immunogenicity, and stability. Therefore, it is important to understand, identify, and assess the appropriate lipid components for developing a safe and effective formulation. Herein, this study focused on developing a novel Polysorbate-80 (PS-80)-based LNP. We hypothesized that substituting conventional linear PEG-lipids with PS-80, a widely used, biocompatible injectable surfactant featuring a branched PEG-like structure, may change the LNPs biodistribution pattern and enhance long-term stability. By leveraging PS-80's unique structural properties, this study aimed to develop an mRNA-LNP platform with improved extrahepatic delivery and robust freeze/thaw tolerance. Methods: We employed a stepwise optimization to establish both the lipid composition and formulation buffer to yield a stable, high-performing PS-80-based SARS-CoV-2 mRNA-LNP (SC2-PS80 LNP). We compared phosphate- versus tris-based buffers for long-term stability, examined multiple lipid ratios, and evaluated the impact of incorporating PS-80 (a branched PEG-lipid) on in vivo biodistribution. Various analytical assays were performed to assess particle size, encapsulation efficiency, mRNA purity, and in vitro potency of the developed formulation and a humanized mouse model was used to measure its immunogenicity over six months of storage at -80 °C. Results: Replacing the standard 1,2-dimyristoyl-rac-glycero-3-methoxy polyethylene glycol-2000 (PEG-DMG) lipid with PS-80 increased spleen-specific expression of the mRNA-LNPs after intramuscular injection. Formulating in a tris-sucrose-salt (TSS) buffer preserved the LNP's physicochemical properties and in vitro potency over six months at -80 °C, whereas a conventional PBS-sucrose (PSS) buffer was less protective under frozen conditions. Notably, TSS-based SC2-PS80 LNPs elicited potent humoral immunity in mice, including high anti-spike IgG titers and robust pseudovirus neutralization, comparable to freshly prepared formulations. Conclusions: A PS-80-based mRNA-LNP platform formulated in TSS buffer confers improved extrahepatic delivery, long-term frozen stability, and strong immunogenicity against SARS-CoV-2 following six months. These findings offer a promising pathway for the design of next-generation mRNA vaccines and therapeutics with enhanced stability and clinical potential.
Collapse
Affiliation(s)
- Aishwarya Saraswat
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (A.S.)
| | - Alireza Nomani
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (A.S.)
| | - Lin-Kin Yong
- Vaccine Technology, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Jimmy Chun-Tien Kuo
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Heather Brown
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Avery Peace
- Infectious Diseases, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Rizan Fazily
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (A.S.)
| | - Timothy Blake
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Bindhu Rayaprolu
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (A.S.)
| | - Johanna Hansen
- Vaccine Technology, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Amardeep Singh Bhalla
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (A.S.)
| | - Mohammed Shameem
- Formulation Development Group, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (A.S.)
| |
Collapse
|
3
|
Chakraborty D, Singh R, Rajmani RS, Kumar S, Ringe RP, Varadarajan R. Stabilizing Prefusion SARS-CoV-2 Spike by Destabilizing the Postfusion Conformation. Vaccines (Basel) 2025; 13:315. [PMID: 40266205 PMCID: PMC11946859 DOI: 10.3390/vaccines13030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025] Open
Abstract
Background/Objectives: As with many viral fusion proteins, the native conformation of SARS-CoV-2 Spike is metastable. Most COVID-19 vaccines utilize a stabilized Spike (Spike-2P) containing two proline substitutions, and subsequently, a further stabilized variant with four additional proline substitutions, Spike-6P, has been developed. In an alternative approach, we introduced two aspartic acid residues (2D) in the HR1 region of Spike at positions that are exposed and buried in the pre- and postfusion states, respectively, to destabilize the postfusion conformation. Methods: The recombinant protein constructs were expressed in a mammalian cell culture and characterized for their yield and antigenicity, and the formulations were then used to immunize hamsters. After two immunizations, the hamsters were challenged with live B.1.351 SARS-CoV-2 virus for an evaluation of the protective efficacy. Results: The introduction of the two aspartic acid mutations resulted in an approximately six-fold increase in expression, comparable to that in Spike-2P. When the 2D mutations were combined with the above four proline mutations (Spike-4P-2D), this led to a further three- to four-fold enhancement of protein expression, similar to that seen in Spike-6P. When formulated with the oil-in-water emulsion adjuvant Sepivac SWE, the 2P, 2D, 6P, and 4P-2D Spike variants all protected female hamsters against heterologous challenge with the B.1.351 SARS-CoV-2 virus and elicited high titers of neutralizing antibodies. Conclusions: We suggest that destabilization of the postfusion conformation through the introduction of charged amino acids at sites that are exposed in the pre- and buried in the postfusion conformation offers a general strategy to enhance the yield and stability of the native, prefusion conformation of viral surface proteins.
Collapse
Affiliation(s)
- Debajyoti Chakraborty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (D.C.); (R.S.R.)
| | - Randhir Singh
- Mynvax Private Limited, 3rd Floor, Brigade MLR Centre, No.50, Vani Vilas Road, Basavanagudi, Bengaluru 560004, India;
| | - Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (D.C.); (R.S.R.)
| | - Sahil Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India; (S.K.); (R.P.R.)
| | - Rajesh P. Ringe
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India; (S.K.); (R.P.R.)
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (D.C.); (R.S.R.)
| |
Collapse
|
4
|
McMillan CL, Corner AV, Wijesundara DK, Choo JJ, Pittayakhajonwut D, Poredi I, Parry RH, Bindra GK, Bruce KL, Khromykh AA, Fernando GJ, Dapremont L, Young PR, Muller DA. Skin patch delivery of a SARS-CoV-2 spike DNA vaccine produces broad neutralising antibody responses. Heliyon 2025; 11:e42533. [PMID: 40034315 PMCID: PMC11872540 DOI: 10.1016/j.heliyon.2025.e42533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
The ongoing SARS-CoV-2 pandemic continues to be a major health burden globally, especially in resource-limited areas. Continued research into more effective and accessible vaccines is required to reduce the burden of disease. Here, we use an emerging vaccine delivery system, the high-density microarray patch (HD-MAP) to deliver a plasmid DNA vaccine (Delta 6P) encoding for the SARS-CoV-2 spike protein. HD-MAP delivery of this vaccine resulted in robust IgG responses in mice against multiple domains of the spike protein. The cellular response to vaccination was also measured, and comparative analysis showed that relative to intramuscular vaccination, HD-MAP vaccination elicited spike-specific CD4+ T and CD8+ T cell responses that were largely comparable, but the number of polyfunctional CD4+ T cells was higher in the HD-MAP group. Collectively, this work suggests that HD-MAP delivery of the Delta 6P vaccine is effective against SARS-CoV-2, warranting further investigation.
Collapse
Affiliation(s)
- Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| | - Andrea V. Corner
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Jovin J.Y. Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Indrajeet Poredi
- BioNet-Asia, Hi-Tech Industrial Estate, 81 Moo 1, Baan-Lane, Bang Pa-In, Ayutthaya, 13160, Thailand
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guneet K. Bindra
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kimberley L. Bruce
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| | - Germain J.P. Fernando
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Vaxxas Biomedical Facility, Brisbane, QLD, 4007, Australia
| | | | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, 4072, Australia
| |
Collapse
|
5
|
Wu Y, Jia X, Wu N, Zhang X, Wu Y, Liu Y, Zhou M, Shen Y, Li E, Wang W, Lan J, Wang Y, Chiu S. Boosting with Omicron-specific mRNA vaccine or historical SARS-CoV-2 vaccines elicits discriminating immune responses against Omicron variants. Acta Pharm Sin B 2025; 15:947-962. [PMID: 40177579 PMCID: PMC11959960 DOI: 10.1016/j.apsb.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/06/2024] [Accepted: 11/05/2024] [Indexed: 04/05/2025] Open
Abstract
Booster vaccinations are highly recommended in combating the SARS-CoV-2 Omicron variant and its subvariants. However, the optimal booster vaccination strategies and related immune mechanisms with different prior vaccinations are under-revealed. In this study, we systematically evaluated the immune responses in mice and hamsters with different prime-boost regimens before their protective efficacies against Omicron were detected. We found that boosting with Ad5-nCoV, SWT-2P or SOmicron-6P induced significantly higher levels of neutralization activities against Omicron variants than CoronaVac and ZF2001 by eliciting stronger germinal center (GC) responses. Specifically, SOmicron-6P induced even stronger antibody responses against Omicron variants in CoronaVac and Ad5-nCoV-primed animals than non-Omicron-specific vaccines but with limited differences as compared to Ad5-nCoV and SWT-2P. In addition, boosting with a specific vaccine has the potential to remodel the existing immune profiles. These findings indicated that adenovirus-vectored vaccines and mRNA vaccines would be more effective than other types of vaccines as booster shots in combating Omicron infections. Moreover, the protective efficacies of the vaccines in booster vaccinations are highly related to GC reactions in secondary lymphatic organs. In summary, these findings provide timely important information on prime-boost regimens and future vaccine design.
Collapse
Affiliation(s)
- Yi Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Namei Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Minmin Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Entao Li
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230026, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Lan
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yucai Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- RNAlfa Biotech, Hefei 230088, China
| | - Sandra Chiu
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei 230031, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230026, China
| |
Collapse
|
6
|
Bong YS, Brown D, Chung E, Ananthaswamy N, Chen R, Lewoczko E, Sabbers W, Patterson-Orazem AC, Dorsey Z, Zou Y, Yu X, Liang J, He J, Long S, Shen D. S6P mutation in Delta and Omicron variant spike protein significantly enhances the efficacy of mRNA COVID-19 vaccines. Front Immunol 2025; 15:1495561. [PMID: 39830514 PMCID: PMC11739128 DOI: 10.3389/fimmu.2024.1495561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Background The unrelenting emergence of SARS-CoV-2 variants has significantly challenged the efficacy of existing COVID-19 vaccines. Enhancing the stability and immunogenicity of the spike protein is critical for improving vaccine performance and addressing variant-driven immune evasion. Methods We developed an mRNA-based vaccine, RV-1730, encoding the Delta variant spike protein with the S6P mutation to enhance stability and immunogenicity. The vaccine's immunogenicity and protective efficacy were evaluated in preclinical models, including monovalent (RV-1730) and bivalent (RV-1731) formulations targeting the Delta and BA.1 variants. Additionally, the effectiveness of RV-1730 as a heterologous booster following primary vaccination with BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna-NIAID) was assessed. Results RV-1730 elicited significantly stronger B and T cell responses and more durable neutralizing antibodies compared to S2P-based vaccines. The bivalent RV-1731 vaccine demonstrated broad neutralizing activity against emerging variants, including XBB1.5 and JN.1. Importantly, RV-1730, when used as a heterologous booster following initial immunization with BNT162b2 or mRNA-1273, significantly enhanced neutralizing antibody titers against multiple variants, including Delta and Omicron. Both RV-1730 and RV-1731 provided superior protection in preclinical models, indicating enhanced efficacy due to the S6P mutation. Conclusion The incorporation of the S6P mutation into the Delta variant spike protein significantly enhances the immunogenicity and efficacy of mRNA-based COVID-19 vaccines. The strong performance of RV-1730 as a heterologous booster and the broad-spectrum activity of the bivalent RV-1731 vaccine underscore their potential as versatile and effective vaccination strategies against SARS-CoV-2 and its evolving variants.
Collapse
Affiliation(s)
| | - David Brown
- RNAimmune, Inc., Germantown, MD, United States
| | - Ezra Chung
- RNAimmune, Inc., Germantown, MD, United States
| | | | - Renxiang Chen
- RNAimmune, Inc., Germantown, MD, United States
- Guangzhou RNAimmune, Ltd., Guangzhou, China
| | | | | | | | | | - Yiqing Zou
- Guangzhou RNAimmune, Ltd., Guangzhou, China
| | - Xue Yu
- Guangzhou RNAimmune, Ltd., Guangzhou, China
| | | | - Jiaxi He
- Guangzhou RNAimmune, Ltd., Guangzhou, China
| | - Steven Long
- RNAimmune, Inc., Germantown, MD, United States
| | - Dong Shen
- RNAimmune, Inc., Germantown, MD, United States
| |
Collapse
|
7
|
Kulkarni PM, Basagoudanavar SH, Gopinath S, Patangia H, Gupta PK, Sreenivasa BP, Senthilkumar D, Sharma R, Bhatia S, Sharma GK, Bhanuprakash V, Saikumar G, Yadav P, Singh RK, Sanyal A, Hosamani M. Characterization of monoclonal antibodies targeting SARS-CoV-2 spike glycoprotein: Reactivity against Delta and Omicron BA.1 variants. J Virol Methods 2024; 330:115027. [PMID: 39216601 DOI: 10.1016/j.jviromet.2024.115027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The cross-species transmissibility of SARS-CoV-2 infection has necessitated development of specific reagents for detecting infection in various animal species. The spike glycoprotein of SARS-CoV-2, which is involved in viral entry, is a highly immunogenic protein. To develop assays targeting this protein, we generated eight monoclonal antibodies (mAbs) against the S1 and seven against the S1/S2 protein (ectodomain) of SARS CoV-2. Based on neutralization capability and reactivity profile observed in ELISA, the mAbs generated against the S1/S2 antigen exhibited a broader spectrum of epitope specificity than those produced against the S1 domain alone. The full-length ectodomain induced antibodies that could neutralize the two most important variants of the virus encountered during the pandemic, namely Delta and Omicron. The availability of these reagents could greatly enhance the development of precise diagnostics for detecting COVID-19 infections in various host species and contribute to the advancement of mAb-based therapeutics.
Collapse
Affiliation(s)
- Pratik M Kulkarni
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | | | - Shreya Gopinath
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | - Harshita Patangia
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | - P K Gupta
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - B P Sreenivasa
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | - Dhanpal Senthilkumar
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP 462021, India
| | - Rahul Sharma
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP 462021, India
| | - Sandeep Bhatia
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP 462021, India
| | - Gaurav Kumar Sharma
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - V Bhanuprakash
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | - G Saikumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Pragya Yadav
- ICMR-National Institute of Virology, 20/ A Dr. Ambedkar Road, Pune, Maharashtra 411001, India
| | - R K Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Aniket Sanyal
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP 462021, India
| | - M Hosamani
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India.
| |
Collapse
|
8
|
Liu J, Sun J, Ding X, Liu W, Wang Y, Wang Z, Peng H, Zhang Y, Su W, Jiang C. A nucleoside-modified mRNA vaccine forming rabies virus-like particle elicits strong cellular and humoral immune responses against rabies virus infection in mice. Emerg Microbes Infect 2024; 13:2389115. [PMID: 39129566 PMCID: PMC11328811 DOI: 10.1080/22221751.2024.2389115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Rabies is a lethal zoonotic disease that threatens human health. As the only viral surface protein, the rabies virus (RABV) glycoprotein (G) induces main neutralizing antibody (Nab) responses; however, Nab titre is closely correlated with the conformation of G. Virus-like particles (VLP) formed by the co-expression of RABV G and matrix protein (M) improve retention and antigen presentation, inducing broad, durable immune responses. RABV nucleoprotein (N) can elicit humoral and cellular immune responses. Hence, we developed a series of nucleoside-modified RABV mRNA vaccines encoding wild-type G, soluble trimeric RABV G formed by an artificial trimer motif (tG-MTQ), membrane-anchored prefusion-stabilized G (preG). Furthermore, we also developed RABV VLP mRNA vaccine co-expressing preG and M to generate VLPs, and VLP/N mRNA vaccine co-expressing preG, M, and N. The RABV mRNA vaccines induced higher humoral and cellular responses than inactivated rabies vaccine, and completely protected mice against intracerebral challenge. Additionally, the IgG and Nab titres in RABV preG, VLP and VLP/N mRNA groups were significantly higher than those in G and tG-MTQ groups. A single administration of VLP or VLP/N mRNA vaccines elicited protective Nab responses, the Nab titres were significantly higher than that in inactivated rabies vaccine group at day 7. Moreover, RABV VLP and VLP/N mRNA vaccines showed superior capacities to elicit potent germinal centre, long-lived plasma cell and memory B cell responses, which linked to high titre and durable Nab responses. In summary, our data demonstrated that RABV VLP and VLP/N mRNA vaccines could be promising candidates against rabies.
Collapse
MESH Headings
- Animals
- Rabies Vaccines/immunology
- Rabies Vaccines/administration & dosage
- Rabies Vaccines/genetics
- Rabies/prevention & control
- Rabies/immunology
- Rabies virus/immunology
- Rabies virus/genetics
- Mice
- Immunity, Humoral
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Immunity, Cellular
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Female
- mRNA Vaccines/immunology
- Mice, Inbred BALB C
- Nucleosides/immunology
- Glycoproteins/immunology
- Glycoproteins/genetics
- Humans
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/genetics
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/immunology
Collapse
Affiliation(s)
- Jie Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Jie Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xue Ding
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Wenhao Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yipeng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Zihan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Hanyu Peng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
9
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Rathore D, Chauhan P, Bonagiri A, Gandhi L, Maisnam D, Kumar R, Row AT, Kesavulu MM, Venkataramana M. Non-RBD peptides of SARS-CoV-2 spike protein exhibit immunodominance as they elicit both innate and adaptive immune responses. Heliyon 2024; 10:e39941. [PMID: 39568852 PMCID: PMC11577203 DOI: 10.1016/j.heliyon.2024.e39941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
Severe acute respiratory coronavirus-2 (SARS-CoV-2) emerged in 2019 as a new virus and caused worldwide outbreaks, quickly turning into a pandemic disease called coronavirus disease-19 (COVID-19). All the existing methodologies were used for developing vaccines for this virus. But sporadic infections of this virus and the emergence of new strains to date suggest the incomplete protection offered by the developed vaccines and the need for new research. In this direction, we identified five epitopes present in the non-RBD region and on the surface of the spike protein by in silico analysis. They are epitope I (aa 80-90), epitope II (aa 262-270), and a small protein with three epitopes (aa 1059-1124). Antigenicity scores of these epitopes were found to be higher than the full length spike protein and its RBD region. These epitopes showed high conserveness across the emerging strains, high immunogenicity, non-toxicity, no homology with human sequences and high affinity for MHC class I & II molecules. Antibodies raised against these epitopes interacted with the bacterially expressed spike protein in western blotting. The antiserum of COVID-19 recovered participants reacted with the developed epitopes (small protein). Furthermore, in the presence of the respective antiserum and COVID-19 convalescent serum, these epitopes successfully fixed the complement, implying a possible role in innate immunity. The epitopes were also found to activate the peripheral blood mononuclear cells (PBMCs) isolated from the blood samples of COVID-19 recovered/vaccinated participants, suggesting a possible role in adaptive immunity. The need for the new SARS-CoV-2 vaccines is further highlighted in light of current reports about the side effects of a developed vaccine (AstraZeneca) and the circulating new strains. The epitopes presented in this study represent the potential immunogens and expect certain pitfalls of the existing vaccines would be sealed.
Collapse
Affiliation(s)
- Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Ramesh Kumar
- Health Centre, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Anupama T Row
- Health Centre, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - M M Kesavulu
- Department of Basic Sciences and Humanities, Sree Vidyanikethan Engineering College, Tirupati, Andhra Pradesh, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| |
Collapse
|
11
|
Paiardi G, Ferraz M, Rusnati M, Wade RC. The accomplices: Heparan sulfates and N-glycans foster SARS-CoV-2 spike:ACE2 receptor binding and virus priming. Proc Natl Acad Sci U S A 2024; 121:e2404892121. [PMID: 39401361 PMCID: PMC11513917 DOI: 10.1073/pnas.2404892121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/23/2024] [Indexed: 10/18/2024] Open
Abstract
Although it is well established that the SARS-CoV-2 spike glycoprotein binds to the host cell ACE2 receptor to initiate infection, far less is known about the tissue tropism and host cell susceptibility to the virus. Differential expression across different cell types of heparan sulfate (HS) proteoglycans, with variably sulfated glycosaminoglycans (GAGs), and their synergistic interactions with host and viral N-glycans may contribute to tissue tropism and host cell susceptibility. Nevertheless, their contribution remains unclear since HS and N-glycans evade experimental characterization. We, therefore, carried out microsecond-long all-atom molecular dynamics simulations, followed by random acceleration molecular dynamics simulations, of the fully glycosylated spike:ACE2 complex with and without highly sulfated GAG chains bound. By considering the model GAGs as surrogates for the highly sulfated HS expressed in lung cells, we identified key cell entry mechanisms of spike SARS-CoV-2. We find that HS promotes structural and energetic stabilization of the active conformation of the spike receptor-binding domain (RBD) and reorientation of ACE2 toward the N-terminal domain in the same spike subunit as the RBD. Spike and ACE2 N-glycans exert synergistic effects, promoting better packing, strengthening the protein:protein interaction, and prolonging the residence time of the complex. ACE2 and HS binding trigger rearrangement of the S2' functional protease cleavage site through allosteric interdomain communication. These results thus show that HS has a multifaceted role in facilitating SARS-CoV-2 infection, and they provide a mechanistic basis for the development of GAG derivatives with anti-SARS-CoV-2 potential.
Collapse
Affiliation(s)
- Giulia Paiardi
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg69118, Germany
- Heidelberg University, Heidelberg69117, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg69120, Germany
| | - Matheus Ferraz
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg69118, Germany
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE50740-465, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE50740-560, Brazil
| | - Marco Rusnati
- Macromolecular Interaction Analysis Unit, Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, Brescia25123, Italy
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg69118, Germany
- Heidelberg University, Heidelberg69117, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg69120, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg69120, Germany
| |
Collapse
|
12
|
O’Reilly S, Byrne J, Feeney ER, Mallon PWG, Gautier V. Navigating the Landscape of B Cell Mediated Immunity and Antibody Monitoring in SARS-CoV-2 Vaccine Efficacy: Tools, Strategies and Clinical Trial Insights. Vaccines (Basel) 2024; 12:1089. [PMID: 39460256 PMCID: PMC11511438 DOI: 10.3390/vaccines12101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Correlates of Protection (CoP) are biomarkers above a defined threshold that can replace clinical outcomes as primary endpoints, predicting vaccine effectiveness to support the approval of new vaccines or follow up studies. In the context of COVID-19 vaccination, CoPs can help address challenges such as demonstrating vaccine effectiveness in special populations, against emerging SARS-CoV-2 variants or determining the durability of vaccine-elicited immunity. While anti-spike IgG titres and viral neutralising capacity have been characterised as CoPs for COVID-19 vaccination, the contribution of other components of the humoral immune response to immediate and long-term protective immunity is less well characterised. This review examines the evidence supporting the use of CoPs in COVID-19 clinical vaccine trials, and how they can be used to define a protective threshold of immunity. It also highlights alternative humoral immune biomarkers, including Fc effector function, mucosal immunity, and the generation of long-lived plasma and memory B cells and discuss how these can be applied to clinical studies and the tools available to study them.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Byrne
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Koolaparambil Mukesh R, Yinda CK, Munster VJ, van Doremalen N. Beyond COVID-19: the promise of next-generation coronavirus vaccines. NPJ VIRUSES 2024; 2:39. [PMID: 40295763 PMCID: PMC11721646 DOI: 10.1038/s44298-024-00043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 04/30/2025]
Abstract
Coronaviruses (CoVs) have caused three global outbreaks: severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) in 2003, Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, and SARS-CoV-2 in 2019, with significant mortality and morbidity. The impact of coronavirus disease 2019 (COVID-19) raised serious concerns about the global preparedness for a pandemic. Furthermore, the changing antigenic landscape of SARS-CoV-2 led to new variants with increased transmissibility and immune evasion. Thus, the development of broad-spectrum vaccines against current and future emerging variants of CoVs will be an essential tool in pandemic preparedness. Distinct phylogenetic features within CoVs complicate and limit the process of generating a pan-CoV vaccine capable of targeting the entire Coronaviridae family. In this review, we aim to provide a detailed overview of the features of CoVs, their phylogeny, current vaccines against various CoVs, the efforts in developing broad-spectrum coronavirus vaccines, and the future.
Collapse
Affiliation(s)
| | - Claude K Yinda
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
14
|
Jitender, Vikram Kumar B, Singh S, Verma G, Kumar R, Mishra PM, Kumar S, Nagaraj SK, Nag J, Joy CM, Nikam B, Singh D, Pooja, Kalidas N, Singh S, Mumtaz, Bhardwaj AK, Mankotia DS, Ringe RP, Gupta N, Tripathi S, Mishra RPN. Mammalian cell expressed recombinant trimeric spike protein is a potent vaccine antigen and confers near-complete protection against SARS-CoV-2 infection in Hamster. Vaccine 2024; 42:126099. [PMID: 38981743 DOI: 10.1016/j.vaccine.2024.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Numerous vaccine candidates have emerged in the fight against SARS-CoV-2, yet the challenges posed by viral evolution and the evasion of vaccine-induced immunity persist. The development of broadly protective vaccines is essential in countering the threat posed by variants of concern (VoC) capable of eluding existing vaccine defenses. Among the diverse SARS-CoV-2 vaccine candidates, detailed characterization of those based on the expression of the entire spike protein in mammalian cells have been limited. In our study, we engineered a recombinant prefusion-stabilized trimeric spike protein antigen, IMT-CVAX, encoded by the IMT-C20 gene. This antigen was expressed utilizing a suspension mammalian cell line (CHO-S). The establishment of a stable cell line expressing IMT-CVAX involved the integration of the gene into the CHO genome, followed by the expression, purification, and characterization of the protein. To gauge the vaccine potential of adjuvanted IMT-CVAX, we conducted assessments in small animals. Analyses of blood collected from immunized animals included measurements of anti-spike IgG, SARS-CoV-2 neutralization, and responses from GC-B and Tfh cells. Furthermore, the protective efficacy of IMT-CVAX was evaluated using a Hamster challenge model. Our findings indicate that adjuvanted IMT-CVAX elicits an excellent immune response in both mice and hamsters. Notably, sera from animals immunized with IMT-CVAX effectively neutralize a diverse range of SARS-CoV-2 variants. Moreover, IMT-CVAX immunization conferred complete protection to hamsters against SARS-CoV-2 infection. In hACE2 transgenic mice, IMT-CVAX vaccination induced a robust response from GC-B and Tfh cells. Based on our preclinical model assessments, adjuvanted IMT-CVAX emerges as a highly efficacious vaccine candidate. This protein-subunit-based vaccine exhibits promise for clinical development, offering an affordable solution for both primary and heterologous immunization against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jitender
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - B Vikram Kumar
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sneha Singh
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Geetika Verma
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Reetesh Kumar
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Pranaya M Mishra
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sahil Kumar
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Santhosh K Nagaraj
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Joydeep Nag
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Christy M Joy
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | | | | | - Pooja
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Nidhi Kalidas
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shubham Singh
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mumtaz
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ashwani K Bhardwaj
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Dhananjay S Mankotia
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rajesh P Ringe
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Nimesh Gupta
- National Institute of Immunology, New Delhi, India
| | - Shashank Tripathi
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India; Microbiology & Cell Biology Department, Indian Institute of Science, Bengaluru, India
| | - Ravi P N Mishra
- Vaccine & Biotherapeutics Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
15
|
Dutta M, Acharya P. Cryo-electron microscopy in the study of virus entry and infection. Front Mol Biosci 2024; 11:1429180. [PMID: 39114367 PMCID: PMC11303226 DOI: 10.3389/fmolb.2024.1429180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses have been responsible for many epidemics and pandemics that have impacted human life globally. The COVID-19 pandemic highlighted both our vulnerability to viral outbreaks, as well as the mobilization of the scientific community to come together to combat the unprecedented threat to humanity. Cryo-electron microscopy (cryo-EM) played a central role in our understanding of SARS-CoV-2 during the pandemic and continues to inform about this evolving pathogen. Cryo-EM with its two popular imaging modalities, single particle analysis (SPA) and cryo-electron tomography (cryo-ET), has contributed immensely to understanding the structure of viruses and interactions that define their life cycles and pathogenicity. Here, we review how cryo-EM has informed our understanding of three distinct viruses, of which two - HIV-1 and SARS-CoV-2 infect humans, and the third, bacteriophages, infect bacteria. For HIV-1 and SARS-CoV-2 our focus is on the surface glycoproteins that are responsible for mediating host receptor binding, and host and cell membrane fusion, while for bacteriophages, we review their structure, capsid maturation, attachment to the bacterial cell surface and infection initiation mechanism.
Collapse
Affiliation(s)
- Moumita Dutta
- Duke Human Vaccine Institute, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, United States
- Department of Surgery, Durham, NC, United States
- Department of Biochemistry, Duke University, Durham, NC, United States
| |
Collapse
|
16
|
Felbinger N, Ribeiro-Filho H, Pierce B. Proscan: a structure-based proline design web server. Nucleic Acids Res 2024; 52:W280-W286. [PMID: 38769060 PMCID: PMC11223860 DOI: 10.1093/nar/gkae408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
The ability to control protein conformations and dynamics through structure-based design has been useful in various scenarios, including engineering of viral antigens for vaccines. One effective design strategy is the substitution of residues to proline amino acids, which due to its unique cyclic side chain can favor and rigidify key backbone conformations. To provide the community with a means to readily identify and explore proline designs for target proteins of interest, we developed the Proscan web server. Proscan provides assessment of backbone angles, energetic and deep learning-based favorability scores, and other parameters for proline substitutions at each position of an input structure, along with interactive visualization of backbone angles and candidate substitution sites on structures. It identifies known favorable proline substitutions for viral antigens, and was benchmarked against datasets of proline substitution stability effects from deep mutational scanning and thermodynamic measurements. This tool can enable researchers to identify and prioritize designs for prospective vaccine antigen targets, or other designs to favor stability of key protein conformations. Proscan is available at: https://proscan.ibbr.umd.edu.
Collapse
Affiliation(s)
- Nathaniel Felbinger
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Helder V Ribeiro-Filho
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-100, Brazil
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
17
|
Zhang Y, Chamblee M, Xu J, Qu P, Shamseldin MM, Yoo SJ, Misny J, Thongpan I, Kc M, Hall JM, Gupta YA, Evans JP, Lu M, Ye C, Hsu CC, Liang X, Martinez-Sobrido L, Yount JS, Boyaka PN, Liu SL, Dubey P, Peeples ME, Li J. Three SARS-CoV-2 spike protein variants delivered intranasally by measles and mumps vaccines are broadly protective. Nat Commun 2024; 15:5589. [PMID: 38961063 PMCID: PMC11222507 DOI: 10.1038/s41467-024-49443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
- Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jiayu Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Panke Qu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Mohamed M Shamseldin
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Egypt
| | - Sung J Yoo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jack Misny
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Ilada Thongpan
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mahesh Kc
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jesse M Hall
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yash A Gupta
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - John P Evans
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | | | - Jacob S Yount
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Shan-Lu Liu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Ávila-Nieto C, Vergara-Alert J, Amengual-Rigo P, Ainsua-Enrich E, Brustolin M, Rodríguez de la Concepción ML, Pedreño-Lopez N, Rodon J, Urrea V, Pradenas E, Marfil S, Ballana E, Riveira-Muñoz E, Pérez M, Roca N, Tarrés-Freixas F, Cantero G, Pons-Grífols A, Rovirosa C, Aguilar-Gurrieri C, Ortiz R, Barajas A, Trinité B, Lepore R, Muñoz-Basagoiti J, Perez-Zsolt D, Izquierdo-Useros N, Valencia A, Blanco J, Guallar V, Clotet B, Segalés J, Carrillo J. Immunization with V987H-stabilized Spike glycoprotein protects K18-hACE2 mice and golden Syrian hamsters upon SARS-CoV-2 infection. Nat Commun 2024; 15:2349. [PMID: 38514609 PMCID: PMC10957958 DOI: 10.1038/s41467-024-46714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we describe the V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity is similar to S-2P in mice and golden Syrian hamsters (GSH), and superior to a monomeric RBD. S-V987H immunization confer full protection against severe disease in K18-hACE2 mice and GSH upon SARS-CoV-2 challenge (D614G or B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice show a faster tissue viral clearance than RBD- or S-2P-vaccinated animals challenged with D614G, B.1.351 or Omicron BQ1.1 variants. Thus, S-V987H protein might be considered for future SARS-CoV-2 vaccines development.
Collapse
Affiliation(s)
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Pep Amengual-Rigo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Marco Brustolin
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Jordi Rodon
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Silvia Marfil
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
| | | | - Mònica Pérez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Núria Roca
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Ferran Tarrés-Freixas
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Guillermo Cantero
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | | | - Carla Rovirosa
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | | | - Raquel Ortiz
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Ana Barajas
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Rosalba Lepore
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
| | - Alfonso Valencia
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic-Central University of Catalonia (UVic-UCC), Vic, Catalonia, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic-Central University of Catalonia (UVic-UCC), Vic, Catalonia, Spain
| | - Victor Guallar
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic-Central University of Catalonia (UVic-UCC), Vic, Catalonia, Spain
- Fundaciò Lluita contra les infeccions. Hospital Germans Trias i Pujol, Badalona, Catalonia, Spain
- Universitat Autonoma de Barcelona. Bellaterra, Cerdanyola del Vallès, Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain.
- Universitat Autonoma de Barcelona. Bellaterra, Cerdanyola del Vallès, Catalonia, Spain.
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain.
- CIBERINFEC. ISCIII, Madrid, Spain.
| |
Collapse
|
19
|
Prakash S, Dhanushkodi NR, Singer M, Quadiri A, Zayou L, Vahed H, Coulon PG, Ibraim IC, Tafoya C, Hitchcock L, Landucci G, Forthal DN, El Babsiri A, Tifrea DF, Figueroa CJ, Nesburn AB, Kuppermann BD, Gil D, Jones TM, Ulmer JB, BenMohamed L. A Broad-Spectrum Multi-Antigen mRNA/LNP-Based Pan-Coronavirus Vaccine Induced Potent Cross-Protective Immunity Against Infection and Disease Caused by Highly Pathogenic and Heavily Spike-Mutated SARS-CoV-2 Variants of Concern in the Syrian Hamster Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580225. [PMID: 38405942 PMCID: PMC10888826 DOI: 10.1101/2024.02.14.580225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8+ and CD4+ T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): (i) Induced high frequencies of lung-resident antigen-specific CXCR5+CD4+ T follicular helper (TFH) cells, GzmB+CD4+ and GzmB+CD8+ cytotoxic T cells (TCYT), and CD69+IFN-γ+TNFα+CD4+ and CD69+IFN-γ+TNFα+CD8+ effector T cells (TEFF); and (ii) Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Izabela Coimbra Ibraim
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Christine Tafoya
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Lauren Hitchcock
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Gary Landucci
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Donald N. Forthal
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Assia El Babsiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, Irvine, CA 92697
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns & Critical Care, School of Medicine, Irvine, CA 92697
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| |
Collapse
|
20
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, Peng KW, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. mBio 2024; 15:e0292823. [PMID: 38193729 PMCID: PMC10865805 DOI: 10.1128/mbio.02928-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain, and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated the potent induction of high titer nAbs in measles-immune mice and confirmed the significant contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin display of the SARS-CoV-2 spike glycoprotein. In animals primed and boosted with a measles virus (MeV) vaccine encoding the ancestral SARS-CoV-2 spike, high-titer nAb responses against ancestral virus strains were only weakly cross-reactive with the Omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the Omicron BA.1 spike, antibody titers to both ancestral and Omicron strains were robustly elevated, and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that by engineering the antigen, we can develop potent measles-based vaccine candidates against SARS-CoV-2.IMPORTANCEAlthough the live-attenuated measles virus (MeV) is one of the safest and most efficacious human vaccines, a measles-vectored COVID-19 vaccine candidate expressing the SARS-CoV-2 spike failed to elicit neutralizing antibody (nAb) responses in a phase-1 clinical trial, especially in measles-immune individuals. Here, we constructed a comprehensive panel of MeV-based COVID-19 vaccine candidates using a MeV with extensive modifications on the envelope glycoproteins (MeV-MR). We show that artificial trimerization of the spike is critical for the induction of nAbs and that their magnitude can be significantly augmented when the spike protein is synchronously fused to a dodecahedral scaffold. Furthermore, preexisting measles immunity did not abolish heterologous immunity elicited by our vector. Our results highlight the importance of antigen optimization in the development of spike-based COVID-19 vaccines and therapies.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Krammer F. The role of vaccines in the COVID-19 pandemic: what have we learned? Semin Immunopathol 2024; 45:451-468. [PMID: 37436465 PMCID: PMC11136744 DOI: 10.1007/s00281-023-00996-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged late in 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic that has so far claimed approximately 20 million lives. Vaccines were developed quickly, became available in the end of 2020, and had a tremendous impact on protection from SARS-CoV-2 mortality but with emerging variants the impact on morbidity was diminished. Here I review what we learned from COVID-19 from a vaccinologist's perspective.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Jiang X, Qin Q, Zhu H, Qian J, Huang Q. Structure-guided design of a trivalent nanobody cluster targeting SARS-CoV-2 spike protein. Int J Biol Macromol 2024; 256:128191. [PMID: 38000614 DOI: 10.1016/j.ijbiomac.2023.128191] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Nanobodies are natural anti-SARS-CoV-2 drug candidates. Engineering multivalent nanobodies is an effective way to improve the functional binding affinity of natural nanobodies by simultaneously targeting multiple sites on viral proteins. However, multivalent nanobodies have usually been engineered by trial and error, and rational designs are still lacking. Here, we describe a structure-guided design of a self-assembled trivalent nanobody cluster targeting the SARS-CoV-2 spike protein. Using the nanobody Nb6 as a monovalent binder, we first selected a human-derived trimerization scaffold evaluated by molecular dynamics simulations, then selected an optimal linker according to the minimum distance between Nb6 and the trimerization scaffold, and finally successfully engineered a trivalent nanobody cluster called Tribody. Compared with the low-affinity monovalent counterpart (Nb6), Tribody showed much higher target binding affinity (KD < 1 pM) and thus had a 900-fold increase in antiviral neutralization against SARS-CoV-2 pseudovirus. We determined the cryo-EM structure of the Tribody-spike complex and confirmed that all three Nb6 binders of Tribody collectively bind to the three receptor-binding domains (RBDs) of the spike and lock them in a 3-RBD-down conformation, fully consistent with our structure-guided design. This study demonstrates that synthetic nanobody clusters with human-derived self-assembled scaffolds are potential protein drugs against SARS-CoV-2 coronaviruses.
Collapse
Affiliation(s)
- Xinyi Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qin Qin
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Haixia Zhu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiaqiang Qian
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China; Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 201203, China.
| |
Collapse
|
23
|
Stuart DI, Oksanen HM, Abrescia NGA. Integrative Approaches to Study Virus Structures. Subcell Biochem 2024; 105:247-297. [PMID: 39738949 DOI: 10.1007/978-3-031-65187-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
A virus particle must work as a strongroom to protect its genome, but at the same time it must undergo dramatic conformational changes to infect the cell in order to replicate and assemble progeny. Thus, viruses are miniaturized wonders whose structural complexity requires investigation by a combination of different techniques that can tackle both static and dynamic processes. In this chapter, we will illustrate how major structural techniques such as X-ray crystallography and electron microscopy can be combined with other techniques to determine the structure of complex viruses. The power of these hybrid approaches is discussed through a number of examples.
Collapse
Affiliation(s)
- David I Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, UK
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE - Basque Research and Technology Alliance, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
24
|
Heo CK, Lim WH, Yang J, Son S, Kim SJ, Kim DJ, Poo H, Cho EW. Novel S2 subunit-specific antibody with broad neutralizing activity against SARS-CoV-2 variants of concern. Front Immunol 2023; 14:1307693. [PMID: 38143750 PMCID: PMC10749193 DOI: 10.3389/fimmu.2023.1307693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), had a major impact on both the global health and economy. Numerous virus-neutralizing antibodies were developed against the S1 subunit of SARS-CoV-2 spike (S) protein to block viral binding to host cells and were authorized for control of the COVID-19 pandemic. However, frequent mutations in the S1 subunit of SARS-CoV-2 enabled the emergence of immune evasive variants. To address these challenges, broadly neutralizing antibodies targeting the relatively conserved S2 subunit and its epitopes have been investigated as antibody therapeutics and universal vaccines. Methods We initiated this study by immunizing BALB/c mice with β-propiolactone-inactivated SARS-CoV-2 (IAV) to generate B-cell hybridomas. These hybridomas were subsequently screened using HEK293T cells expressing the S2-ECD domain. Hybridomas that produced anti-S2 antibodies were selected, and we conducted a comprehensive evaluation of the potential of these anti-S2 antibodies as antiviral agents and versatile tools for research and diagnostics. Results In this study, we present a novel S2-specific antibody, 4A5, isolated from BALB/c mice immunized with inactivated SARS-CoV-2. 4A5 exhibited specific affinity to SARS-CoV-2 S2 subunits compared with those of other β-CoVs. 4A5 bound to epitope segment F1109-V1133 between the heptad-repeat1 (HR1) and the stem-helix (SH) region. The 4A5 epitope is highly conserved in SARS-CoV-2 variants, with a significant conformational feature in both pre- and postfusion S proteins. Notably, 4A5 exhibited broad neutralizing activity against variants and triggered Fc-enhanced antibody-dependent cellular phagocytosis. Discussion These findings offer a promising avenue for novel antibody therapeutics and insights for next-generation vaccine design. The identification of 4A5, with its unique binding properties and broad neutralizing capacity, offers a potential solution to the challenge posed by SARS-CoV-2 variants and highlights the importance of targeting the conserved S2 subunit in combating the COVID-19.
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Won-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sumin Son
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Haryoung Poo
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
25
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
26
|
Ni T, Mendonça L, Zhu Y, Howe A, Radecke J, Shah PM, Sheng Y, Krebs AS, Duyvesteyn HM, Allen E, Lambe T, Bisset C, Spencer A, Morris S, Stuart DI, Gilbert S, Zhang P. ChAdOx1 COVID vaccines express RBD open prefusion SARS-CoV-2 spikes on the cell surface. iScience 2023; 26:107882. [PMID: 37766989 PMCID: PMC10520439 DOI: 10.1016/j.isci.2023.107882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been proven to be an effective means of decreasing COVID-19 mortality, hospitalization rates, and transmission. One of the vaccines deployed worldwide is ChAdOx1 nCoV-19, which uses an adenovirus vector to drive the expression of the original SARS-CoV-2 spike on the surface of transduced cells. Using cryo-electron tomography and subtomogram averaging, we determined the native structures of the vaccine product expressed on cell surfaces in situ. We show that ChAdOx1-vectored vaccines expressing the Beta SARS-CoV-2 variant produce abundant native prefusion spikes predominantly in one-RBD-up conformation. Furthermore, the ChAdOx1-vectored HexaPro-stabilized spike yields higher cell surface expression, enhanced RBD exposure, and reduced shedding of S1 compared to the wild type. We demonstrate in situ structure determination as a powerful means for studying antigen design options in future vaccine development against emerging novel SARS-CoV-2 variants and broadly against other infectious viruses.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Luiza Mendonça
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Yanan Zhu
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Andrew Howe
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Julika Radecke
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Pranav M. Shah
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Anna-Sophia Krebs
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Helen M.E. Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Elizabeth Allen
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 7BN, UK
| | - Cameron Bisset
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Alexandra Spencer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Susan Morris
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, OX3 7TY, UK
| | - David I. Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, OX3 7TY, UK
| | - Sarah Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 7BN, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, OX3 7TY, UK
| | - Peijun Zhang
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
27
|
Xu J, Zhang Y, Qu P, Shamseldin MM, Yoo SJ, Misny J, Thongpan I, KC M, Hall JM, Evans JP, Eltobgy M, Lu M, Ye C, Chamblee M, Liang X, Martinez-Sobrido L, Amer AO, Yount JS, Boyaka PN, Peeples ME, Liu SL, Dubey P, Li J. A next-generation intranasal trivalent MMS vaccine induces durable and broad protection against SARS-CoV-2 variants of concern. Proc Natl Acad Sci U S A 2023; 120:e2220403120. [PMID: 37796985 PMCID: PMC10576135 DOI: 10.1073/pnas.2220403120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/24/2023] [Indexed: 10/07/2023] Open
Abstract
As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.
Collapse
Affiliation(s)
- Jiayu Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Panke Qu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Mohamed M. Shamseldin
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Helwan11795, Egypt
| | - Sung J. Yoo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Jack Misny
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Ilada Thongpan
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Mahesh KC
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Jesse M. Hall
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - John P. Evans
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Chengjin Ye
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
| | - Luis Martinez-Sobrido
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Mark E. Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Shan-Lu Liu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH43210
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Infectious Disease Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
28
|
Feng S, Fan Z, Zhou K, Ma S, Liang M, Zhang H, Xie Y, Ha Z, Jin N, Lu H. Subunit vaccine raised against the SARS-CoV-2 spike of Delta and Omicron variants. J Med Virol 2023; 95:e29160. [PMID: 37822266 DOI: 10.1002/jmv.29160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Vaccination has proven effective against SARS-CoV-2 infection but vaccines were originally based on the wild type and emerging variants have led to a decrease in protective efficacy. There is an urgent need for broad-spectrum vaccine protection against emerging variants. A vaccine based on the Delta strain spike protein was created by optimization of vector, codon, and protein structure to produce a subunit immunogen (Delta-6P-S) containing six proline mutations, stable pre-fusion conformation, and with high expression in CHO-S cells. Immunogenicity and protective efficacy were evaluated in mice and golden hamsters using alum adjuvant. The Delta-6P-S recombinant protein induced strong immune responses in C57BL/6J mice and golden hamsters and sera had cross-neutralization activity and neutralized wild type and Beta, Delta, Omicron BA.1, BA.2, and BA.5 variant strains. Golden hamsters were immunized against Delta, Omicron BA.1, and BA.2 variants. Viral RNA detected from throat swabs, lungs and tracheas decreased significantly in vaccine-inoculated animals relative to alum-treated controls and no infectious viruses were detected in lungs and tracheas. Almost no pathological damage to lung tissue was found in vaccinated animals by contrast with those treated only with alum. The Delta-6P-S recombinant protein rapidly eliminated replicating virus in the upper and lower airways of golden hamsters and merits further investigation as a candidate anti-SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Sheng Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zechang Fan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keyue Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shanshan Ma
- Beijing Northland Biotechnology Co., Ltd, Beijing, China
| | | | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yubiao Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Ha
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
29
|
Ratswohl C, Vázquez García C, Ahmad AUW, Gonschior H, Lebedin M, Silvis CE, Spatt L, Gerhard C, Lehmann M, Sander LE, Kurth F, Olsson S, de la Rosa K. A design strategy to generate a SARS-CoV-2 RBD vaccine that abrogates ACE2 binding and improves neutralizing antibody responses. Eur J Immunol 2023; 53:e2350408. [PMID: 37435628 DOI: 10.1002/eji.202350408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
The structure-based design of antigens holds promise for developing vaccines with higher efficacy and improved safety profiles. We postulate that abrogation of host receptor interaction bears potential for the improvement of vaccines by preventing antigen-induced modification of receptor function as well as the displacement or masking of the immunogen. Antigen modifications may yet destroy epitopes crucial for antibody neutralization. Here, we present a methodology that integrates deep mutational scans to identify and score SARS-CoV-2 receptor binding domain variants that maintain immunogenicity, but lack interaction with the widely expressed host receptor. Single point mutations were scored in silico, validated in vitro, and applied in vivo. Our top-scoring variant receptor binding domain-G502E prevented spike-induced cell-to-cell fusion, receptor internalization, and improved neutralizing antibody responses by 3.3-fold in rabbit immunizations. We name our strategy BIBAX for body-inert, B-cell-activating vaccines, which in the future may be applied beyond SARS-CoV-2 for the improvement of vaccines by design.
Collapse
Affiliation(s)
- Christoph Ratswohl
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Clara Vázquez García
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Ata Ul Wakeel Ahmad
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Hannes Gonschior
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Casper Ewijn Silvis
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Lisa Spatt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Cathrin Gerhard
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Leif E Sander
- Charité - Universitätsmedizin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | | | - Simon Olsson
- Department of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Västra Götalands län, Sweden
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| |
Collapse
|
30
|
Liu C, Wang L, Merriam JS, Shi W, Yang ES, Zhang Y, Chen M, Kong WP, Cheng C, Tsybovsky Y, Stephens T, Verardi R, Leung K, Stein C, Olia AS, Harris DR, Choe M, Zhang B, Graham BS, Kwong PD, Koup RA, Pegu A, Mascola JR. Self-assembling SARS-CoV-2 spike-HBsAg nanoparticles elicit potent and durable neutralizing antibody responses via genetic delivery. NPJ Vaccines 2023; 8:111. [PMID: 37553406 PMCID: PMC10409857 DOI: 10.1038/s41541-023-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
While several COVID-19 vaccines have been in use, more effective and durable vaccines are needed to combat the ongoing COVID-19 pandemic. Here, we report highly immunogenic self-assembling SARS-CoV-2 spike-HBsAg nanoparticles displaying a six-proline-stabilized WA1 (wild type, WT) spike S6P on a HBsAg core. These S6P-HBsAgs bound diverse domain-specific SARS-CoV-2 monoclonal antibodies. In mice with and without a HBV pre-vaccination, DNA immunization with S6P-HBsAgs elicited significantly more potent and durable neutralizing antibody (nAb) responses against diverse SARS-CoV-2 strains than that of soluble S2P or S6P, or full-length S2P with its coding sequence matching mRNA-1273. The nAb responses elicited by S6P-HBsAgs persisted substantially longer than by soluble S2P or S6P and appeared to be enhanced by HBsAg pre-exposure. These data show that genetic delivery of SARS-CoV-2 S6P-HBsAg nanoparticles can elicit greater and more durable nAb responses than non-nanoparticle forms of stabilized spike. Our findings highlight the potential of S6P-HBsAgs as next generation genetic vaccine candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Jonah S Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Cody Stein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
31
|
Williams JA, Biancucci M, Lessen L, Tian S, Balsaraf A, Chen L, Chesterman C, Maruggi G, Vandepaer S, Huang Y, Mallett CP, Steff AM, Bottomley MJ, Malito E, Wahome N, Harshbarger WD. Structural and computational design of a SARS-CoV-2 spike antigen with improved expression and immunogenicity. SCIENCE ADVANCES 2023; 9:eadg0330. [PMID: 37285422 PMCID: PMC10246912 DOI: 10.1126/sciadv.adg0330] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern challenge the efficacy of approved vaccines, emphasizing the need for updated spike antigens. Here, we use an evolutionary-based design aimed at boosting protein expression levels of S-2P and improving immunogenic outcomes in mice. Thirty-six prototype antigens were generated in silico and 15 were produced for biochemical analysis. S2D14, which contains 20 computationally designed mutations within the S2 domain and a rationally engineered D614G mutation in the SD2 domain, has an ~11-fold increase in protein yield and retains RBD antigenicity. Cryo-electron microscopy structures reveal a mixture of populations in various RBD conformational states. Vaccination of mice with adjuvanted S2D14 elicited higher cross-neutralizing antibody titers than adjuvanted S-2P against the SARS-CoV-2 Wuhan strain and four variants of concern. S2D14 may be a useful scaffold or tool for the design of future coronavirus vaccines, and the approaches used for the design of S2D14 may be broadly applicable to streamline vaccine discovery.
Collapse
|
32
|
Halma MTJ, Plothe C, Marik P, Lawrie TA. Strategies for the Management of Spike Protein-Related Pathology. Microorganisms 2023; 11:1308. [PMID: 37317282 PMCID: PMC10222799 DOI: 10.3390/microorganisms11051308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
In the wake of the COVID-19 crisis, a need has arisen to prevent and treat two related conditions, COVID-19 vaccine injury and long COVID-19, both of which can trace at least part of their aetiology to the spike protein, which can cause harm through several mechanisms. One significant mechanism of harm is vascular, and it is mediated by the spike protein, a common element of the COVID-19 illness, and it is related to receiving a COVID-19 vaccine. Given the significant number of people experiencing these two related conditions, it is imperative to develop treatment protocols, as well as to consider the diversity of people experiencing long COVID-19 and vaccine injury. This review summarizes the known treatment options for long COVID-19 and vaccine injury, their mechanisms, and their evidentiary basis.
Collapse
Affiliation(s)
| | - Christof Plothe
- Center for Biophysical Osteopathy, Am Wegweiser 27, 55232 Alzey, Germany
| | - Paul Marik
- Front Line COVID-19 Critical Care Alliance (FLCCC), 2001 L St. NW Suite 500, Washington, DC 20036, USA;
| | | |
Collapse
|
33
|
Ma Y, Li P, Hu Y, Qiu T, Wang L, Lu H, Lv K, Xu M, Zhuang J, Liu X, He S, He B, Liu S, Liu L, Wang Y, Yue X, Zhai Y, Luo W, Mai H, Kuang Y, Chen S, Ye F, Zhou N, Zhao W, Chen J, Chen S, Xiong X, Shi M, Pan JA, Chen YQ. Spike substitution T813S increases Sarbecovirus fusogenicity by enhancing the usage of TMPRSS2. PLoS Pathog 2023; 19:e1011123. [PMID: 37196033 DOI: 10.1371/journal.ppat.1011123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/30/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to Serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.
Collapse
Affiliation(s)
- Yong Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Pengbin Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yunqi Hu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tianyi Qiu
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixiang Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongjie Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kexin Lv
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Mengxin Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Zhuang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xue Liu
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Suhua He
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bing He
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shuning Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lin Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinyu Yue
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanmei Zhai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wanyu Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haoting Mai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yu Kuang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shifeng Chen
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Feng Ye
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Na Zhou
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Wenjing Zhao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shoudeng Chen
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mang Shi
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Sun Yat-sen University, Guanzhou, China
| |
Collapse
|
34
|
Zhang Y, Lu M, Thongpan I, Xu J, Kc M, Dravid P, Trivedi S, Sharma H, Liang X, Kapoor A, Peeples ME, Li J. Recombinant measles virus expressing prefusion spike protein stabilized by six rather than two prolines is more efficacious against SARS-CoV-2 infection. J Med Virol 2023; 95:e28687. [PMID: 36941778 DOI: 10.1002/jmv.28687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Measles virus (MeV) has been an excellent vector platform for delivering vaccines against many pathogens because of its high safety and efficacy, and induction of long-lived immunity. Early in the COVID-19 pandemic, a recombinant MeV (rMeV) expressing the prefusion full-length spike protein stabilized by two prolines (TMV-083) was developed and tested in phase 1 and 1/2 clinical trials but was discontinued because of insufficient immunogenicity and a low seroconversion rate in adults. Here, we compared the immunogenicity of rMeV expressing a soluble prefusion spike (preS) protein stabilized by two prolines (rMeV-preS-2P) with a rMeV expressing a soluble preS protein stabilized by six prolines (rMeV-preS-6P). We found that rMeV-preS-6P expressed approximately five times more preS than rMeV-preS-2P in cell culture. Importantly, rMeV-preS-6P induced 30-60 and six times more serum immunoglobulin G and neutralizing antibody than rMeV-preS-2P, respectively, in IFNAR-/- mice. IFNAR-/- mice immunized with rMeV-preS-6P were completely protected from challenge with a mouse-adapted SARS-CoV-2, whereas those immunized with rMeV-preS-2P were partially protected. In addition, hamsters immunized with rMeV-preS-6P were completely protected from the challenge with a Delta variant of SARS-CoV-2. Our results demonstrate that rMeV-preS-6P is significantly more efficacious than rMeV-preS-2P, highlighting the value of using preS-6P as the antigen for developing vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Ilada Thongpan
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jiayu Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Mahesh Kc
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Piyush Dravid
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Himanshu Sharma
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
35
|
Zhang J, Xia Y, Liu X, Liu G. Advanced Vaccine Design Strategies against SARS-CoV-2 and Emerging Variants. Bioengineering (Basel) 2023; 10:148. [PMID: 36829642 PMCID: PMC9951973 DOI: 10.3390/bioengineering10020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the most cost-effective means in the fight against infectious diseases. Various kinds of vaccines have been developed since the outbreak of COVID-19, some of which have been approved for clinical application. Though vaccines available achieved partial success in protecting vaccinated subjects from infection or hospitalization, numerous efforts are still needed to end the global pandemic, especially in the case of emerging new variants. Safe and efficient vaccines are the key elements to stop the pandemic from attacking the world now; novel and evolving vaccine technologies are urged in the course of fighting (re)-emerging infectious diseases. Advances in biotechnology offered the progress of vaccinology in the past few years, and lots of innovative approaches have been applied to the vaccine design during the ongoing pandemic. In this review, we summarize the state-of-the-art vaccine strategies involved in controlling the transmission of SARS-CoV-2 and its variants. In addition, challenges and future directions for rational vaccine design are discussed.
Collapse
Affiliation(s)
- Jianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yutian Xia
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuan Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Innovation Center for Cell Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
36
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, fusion-stabilized SARS-CoV-2 spike glycoproteins bypass measles seropositivity, boosting neutralizing antibody responses to omicron and historical variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.16.520799. [PMID: 36561187 PMCID: PMC9774211 DOI: 10.1101/2022.12.16.520799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Serum titers of SARS-CoV-2 neutralizing antibodies (nAb) correlate well with protection from symptomatic COVID-19, but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are life-long after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We therefore sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated potent induction of high titer nAb in measles-immune mice and confirmed the significant incremental contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin-display of the SARS-CoV-2 spike glycoprotein, and vaccine resurfacing. In animals primed and boosted with a MeV vaccine encoding the ancestral SARS-CoV-2 spike, high titer nAb responses against ancestral virus strains were only weakly cross-reactive with the omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the omicron BA.1 spike, antibody titers to both ancestral and omicron strains were robustly elevated and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that antigen engineering can enable the development of potent measles-based SARS-CoV-2 vaccine candidates.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Imanis Life Sciences, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Burnap SA, Struwe WB. Mass photometry reveals SARS-CoV-2 spike stabilisation to impede ACE2 binding through altered conformational dynamics. Chem Commun (Camb) 2022; 58:12939-12942. [PMID: 36317551 PMCID: PMC9680610 DOI: 10.1039/d2cc04711j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2023]
Abstract
Here we show using mass photometry how proline substitutions, commonly used for SARS-CoV-2 spike stabilisation in vaccine design, directly affects ACE2 receptor interactions via dynamics of open and closed states. Conformational changes and ACE2 binding were influenced by spike variant and temperature, but independent of site-specific N-glycosylation.
Collapse
Affiliation(s)
- Sean A Burnap
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3TA, UK.
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, OX1 3QU, UK
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3TA, UK.
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, OX1 3QU, UK
| |
Collapse
|
38
|
Focosi D, Maggi F. Do We Really Need Omicron Spike-Based Updated COVID-19 Vaccines? Evidence and Pipeline. Viruses 2022; 14:2488. [PMID: 36366586 PMCID: PMC9692555 DOI: 10.3390/v14112488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The wild-type SARS-CoV-2 Spike-based vaccines authorized so far have reduced COVID-19 severity, but periodic boosts are required to counteract the decline in immunity. An accelerated rate of immune escape to vaccine-elicited immunity has been associated with Spike protein antigenic shifts, as seen in the Omicron variant of concern and its sublineages, demanding the development of Omicron Spike-based vaccines. Herein, we review the evidence in animal models and topline results from ongoing clinical trials with such updated vaccines, discussing the pros and cons for their deployment.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases “L. Spallanzani”, 00161 Rome, Italy
| |
Collapse
|