1
|
Mark JKK, Teh AH, Yap BK. Epstein-Barr virus-infected nasopharyngeal carcinoma therapeutics: oncoprotein targets and clinical implications. Med Oncol 2025; 42:59. [PMID: 39888474 DOI: 10.1007/s12032-025-02610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinctive epithelial cancer closely associated with Epstein-Barr Virus (EBV) infection, posing significant challenges in diagnosis and treatment due to its resistance to conventional therapies and high recurrence rates. Current therapies, including radiotherapy and chemotherapy, exhibit limited efficacy, particularly in recurrent or metastatic cases, highlighting the urgent need for novel therapeutic strategies. Targeting EBV oncoproteins, such as Epstein-Barr Virus encoded Nuclear Antigen 1 (EBNA1), Latent Membrane Protein 1 (LMP1), and Latent Membrane Protein 2 (LMP2), presents a promising therapeutic avenue in NPC treatment. This review discusses the latest advancements in drug discovery targeting EBV oncoproteins, emphasizing the identification of inhibitors for specific functional regions of oncoproteins EBNA1, LMP1, and LMP2. Particular attention is given to the molecular mechanisms of these inhibitors and their preclinical or clinical potential in treating EBV-positive NPC. These developments highlight a promising future for targeted therapies in improving outcomes for NPC patients.
Collapse
Affiliation(s)
- Jacqueline Kar Kei Mark
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
2
|
Huang J, Zhang X, Nie X, Zhang X, Wang Y, Huang L, Geng X, Li D, Zhang L, Gao G, Gao P. Assembly and activation of EBV latent membrane protein 1. Cell 2024; 187:4996-5009.e14. [PMID: 38996527 DOI: 10.1016/j.cell.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Latent membrane protein 1 (LMP1) is the primary oncoprotein of Epstein-Barr virus (EBV) and plays versatile roles in the EBV life cycle and pathogenesis. Despite decades of extensive research, the molecular basis for LMP1 folding, assembly, and activation remains unclear. Here, we report cryo-electron microscopy structures of LMP1 in two unexpected assemblies: a symmetric homodimer and a higher-order filamentous oligomer. LMP1 adopts a non-canonical and unpredicted fold that supports the formation of a stable homodimer through tight and antiparallel intermolecular packing. LMP1 dimers further assemble side-by-side into higher-order filamentous oligomers, thereby allowing the accumulation and specific organization of the flexible cytoplasmic tails for efficient recruitment of downstream factors. Super-resolution microscopy and cellular functional assays demonstrate that mutations at both dimeric and oligomeric interfaces disrupt LMP1 higher-order assembly and block multiple LMP1-mediated signaling pathways. Our research provides a framework for understanding the mechanism of LMP1 and for developing potential therapies targeting EBV-associated diseases.
Collapse
Affiliation(s)
- Jiafeng Huang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolin Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohua Nie
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuyuan Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Linlong Huang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohan Geng
- Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
3
|
Awasthi P, Dwivedi M, Kumar D, Hasan S. Insights into intricacies of the Latent Membrane Protein-1 (LMP-1) in EBV-associated cancers. Life Sci 2023; 313:121261. [PMID: 36493876 DOI: 10.1016/j.lfs.2022.121261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Numerous lymphomas, carcinomas, and other disorders have been associated with Epstein-Barr Virus (EBV) infection. EBV's carcinogenic potential can be correlated to latent membrane protein 1 (LMP1), which is essential for fibroblast and primary lymphocyte transformation. LMP1, a transmembrane protein with constitutive activity, belongs to the tumour necrosis factor receptor (TNFR) superfamily. LMP1 performs number of role in the life cycle of EBV and the pathogenesis by interfering with, reprogramming, and influencing a vast range of host cellular activities and functions that are getting well-known but still poorly understood. LMP1, pleiotropically perturbs, reprograms and balances a wide range of various processes of cell such as extracellular vesicles, epigenetics, ubiquitin machinery, metabolism, cell proliferation and survival, and also promotes oncogenic transformation, angiogenesis, anchorage-independent cell growth, metastasis and invasion, tumour microenvironment. By the help of various experiments, it is proven that EBV-encoded LMP1 activates multiple cell signalling pathways which affect antigen presentation, cell-cell interactions, chemokine and cytokine production. Therefore, it is assumed that LMP1 may perform majorly in EBV associated malignancies. For the development of novel techniques toward targeted therapeutic applications, it is essential to have a complete understanding of the LMP1 signalling landscape in order to identify potential targets. The focus of this review is on LMP1-interacting proteins and related signalling processes. We further discuss tactics for using the LMP1 protein as a potential therapeutic for cancers caused by the EBV.
Collapse
Affiliation(s)
- Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES University Dehradun, Uttarakhand, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| |
Collapse
|
4
|
Ranger-Rogez S. EBV Genome Mutations and Malignant Proliferations. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a DNA virus with a relatively stable genome. Indeed, genomic variability is reported to be around 0.002%. However, some regions are more variable such as those carrying latency genes and specially EBNA1, -2, -LP, and LMP1. Tegument genes, particularly BNRF1, BPLF1, and BKRF3, are also quite mutated. For a long time, it has been considered for this ubiquitous virus, which infects a very large part of the population, that particular strains could be the cause of certain diseases. However, the mutations found, in some cases, are more geographically restricted rather than associated with proliferation. In other cases, they appear to be involved in oncogenesis. The objective of this chapter is to provide an update on changes in viral genome sequences in malignancies associated with EBV. We focused on describing the structure and function of the proteins corresponding to the genes mentioned above in order to understand how certain mutations of these proteins could increase the tumorigenic character of this virus. Mutations described in the literature for these proteins were identified by reporting viral and/or cellular functional changes as they were described.
Collapse
|
5
|
Paradoxical effects of DNA tumor virus oncogenes on epithelium-derived tumor cell fate during tumor progression and chemotherapy response. Signal Transduct Target Ther 2021; 6:408. [PMID: 34836940 PMCID: PMC8626493 DOI: 10.1038/s41392-021-00787-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) and human papillomavirus (HPV) infection is the risk factors for nasopharyngeal carcinoma and cervical carcinoma, respectively. However, clinical analyses demonstrate that EBV or HPV is associated with improved response of patients, although underlying mechanism remains unclear. Here, we reported that the oncoproteins of DNA viruses, such as LMP1 of EBV and E7 of HPV, inhibit PERK activity in cancer cells via the interaction of the viral oncoproteins with PERK through a conserved motif. Inhibition of PERK led to increased level of reactive oxygen species (ROS) that promoted tumor and enhanced the efficacy of chemotherapy in vivo. Consistently, disruption of viral oncoprotein-PERK interactions attenuated tumor growth and chemotherapy in both cancer cells and tumor-bearing mouse models. Our findings uncovered a paradoxical effect of DNA tumor virus oncoproteins on tumors and highlighted that targeting PERK might be an attractive strategy for the treatment of NPC and cervical carcinoma.
Collapse
|
6
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|
7
|
Chau HF, Wu Y, Fok WY, Thor W, Cho WCS, Ma P, Lin J, Mak NK, Bünzli JCG, Jiang L, Long NJ, Lung HL, Wong KL. Lanthanide-Based Peptide-Directed Visible/Near-Infrared Imaging and Inhibition of LMP1. JACS AU 2021; 1:1034-1043. [PMID: 34467347 PMCID: PMC8395644 DOI: 10.1021/jacsau.1c00187] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 06/13/2023]
Abstract
A lanthanide-based peptide-directed bioprobe LnP19 (Ln = Eu or Yb) is designed as an impressive example of a small molecule-based dual-functional probe for the EBV oncoprotein LMP1. The peptide P19 (Pra-KAhx-K-LDLALK-FWLY-K-IVMSDKW-K-RrRK) is designed to selectively bind to LMP1 by mimicking its TM1 region during oligomerization in lipid rafts while signal transduction is significantly suppressed. Immunofluorescence imaging and Western blotting results reveal that P19 can effectively inactivate the oncogenic cellular pathway nuclear factor κB (NF-κB) and contribute to a selective cytotoxic effect on LMP1-positive cells. By conjugation with cyclen-based europium(III) and ytterbium(III) complexes, EuP19 and YbP19 were constructed to offer visible and near-infrared LMP1-targeted imaging and cancer monitoring. In addition to the ability to target and inhibit LMP1 and to selective inhibit LMP1-positive cells, selective growth inhibition toward the LMP1-positive tumor by LnP19 is also demonstrated.
Collapse
Affiliation(s)
- Ho-Fai Chau
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yue Wu
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Wan-Yiu Fok
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Waygen Thor
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - William Chi-Shing Cho
- Department
of Clinical Oncology, Queen Elizabeth Hospital,
Kowloon, Hong Kong SAR, China
| | - Ping’an Ma
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jun Lin
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Nai-Ki Mak
- Department
of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Jean-Claude G. Bünzli
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- ISIC, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Lijun Jiang
- Department
of Applied Biological and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| | - Hong Lok Lung
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Ka-Leung Wong
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
8
|
Wang Y, Zhang B, Lin C, Liu Y, Yang M, Peng Y, Wang X. Dissecting Role of Charged Residue from Transmembrane Domain 5 of Latent Membrane Protein 1 via In Silico Simulations and Wet-Lab Experiments. J Phys Chem B 2021; 125:2124-2133. [PMID: 33595309 DOI: 10.1021/acs.jpcb.0c10708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charged residues are frequently found in the transmembrane segments of membrane proteins, which reside in the hydrophobic bilayer environment. Charged residues are critical for the function of membrane protein. However, studies of their role in protein oligomerization are limited. By taking the fifth transmembrane domain (TMD5) of latent membrane protein 1 from the Epstein-Barr virus as a prototype model, in silico simulations and wet-lab experiments were performed to investigate how the charged states affect transmembrane domain oligomerization. Molecular dynamics (MD) simulations showed that the D150-protonated TMD5 trimer was stable, whereas unprotonated D150 created bends in the helices which distort the trimeric structure. D150 was mutated to asparagine to mimic the protonated D150 in TMD5, and the MD simulations of different D150N TMD5 trimers supported that the protonation state of D150 was critical for the trimerization of TMD5. In silico mutations found that D150N TMD5 preferred to interact with TMD5 to form the heterotrimer (1 D150N TMD5:2 protonated TMD5s) rather than the heterotrimer (2 D150N TMD5s:1 protonated TMD5). D150R TMD5 interacted with TMD5 to form the heterotrimer (1 D150R TMD5:2 protonated TMD5). These in silico results imply that D150N TMD5 and D150R TMD5 peptides may be probes for disrupting TMD5 trimerization, which was supported by the dominant-negative ToxR assay in bacterial membranes. In all, this study elucidates the role of charged residues at the membrane milieu in membrane protein oligomerization and provides insight into the development of oligomerization-regulating peptides for modulating transmembrane domain lateral interactions.
Collapse
Affiliation(s)
- Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022
| | - Bo Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui China, 230026
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022
| | - Ying Liu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China, 130112
| | - Min Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China, 130112
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China, 130112
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui China, 230026
| |
Collapse
|
9
|
Zha S, Chau H, Chau WY, Chan LS, Lin J, Lo KW, Cho WC, Yip YL, Tsao SW, Farrell PJ, Feng L, Di JM, Law G, Lung HL, Wong K. Dual-Targeting Peptide-Guided Approach for Precision Delivery and Cancer Monitoring by Using a Safe Upconversion Nanoplatform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002919. [PMID: 33717845 PMCID: PMC7927616 DOI: 10.1002/advs.202002919] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/12/2020] [Indexed: 05/04/2023]
Abstract
Using Epstein-Barr virus (EBV)-induced cancer cells and HeLa cells as a comparative study model, a novel and safe dual-EBV-oncoproteins-targeting pH-responsive peptide engineering, coating, and guiding approach to achieve precision targeting and treatment strategy against EBV-associated cancers is introduced. Individual functional peptide sequences that specifically bind to two overexpressed EBV-specific oncoproteins, EBNA1 (a latent cellular protein) and LMP1 (a transmembrane protein), are engineered in three different ways and incorporated with a pH-sensitive tumor microenvironment (TME)-cleavable linker onto the upconversion nanoparticles (UCNP) NaGdF4:Yb3+, Er3+@NaGdF4 (UCNP-P n , n = 5, 6, and 7). A synergistic combination of the transmembrane LMP1 targeting ability and the pH responsiveness of UCNP-P n is found to give specific cancer differentiation with higher cellular uptake and accumulation in EBV-infected cells, thus a lower dose is needed and the side effects and health risks from treatment would be greatly reduced. It also gives responsive UC signal enhancement upon targeted dual-protein binding and shows efficacious EBV cancer inhibition in vitro and in vivo. This is the first example of simultaneous imaging and inhibition of two EBV latent proteins, and serves as a blueprint for next-generation peptide-guided precision delivery nanosystem for the safe monitoring and treatment against one specific cancer.
Collapse
Affiliation(s)
- Shuai Zha
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Ho‐Fai Chau
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Wai Yin Chau
- Department of BiologyHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Lai Sheung Chan
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130000P. R. China
| | - Kwok Wai Lo
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational OncologyThe Chinese University of Hong KongKowloonHong Kong SAR000000P. R. China
| | - William Chi‐Shing Cho
- Department of Clinical OncologyQueen Elizabeth HospitalKowloonHong Kong SAR000000P. R. China
| | - Yim Ling Yip
- School of Biomedical SciencesThe University of Hong KongKowloonHong Kong SAR000000P. R. China
| | - Sai Wah Tsao
- School of Biomedical SciencesThe University of Hong KongKowloonHong Kong SAR000000P. R. China
| | - Paul J. Farrell
- Section of VirologyImperial College Faculty of MedicineNorfolk PlaceLondonW12 0BZUK
| | - Liang Feng
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR000000P. R. China
| | - Jin Ming Di
- Department of UrologyThe Third Affiliated Hospital of Sun Yat‐sen University600# Tianhe RoadGuangzhou510630P. R. China
| | - Ga‐Lai Law
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR000000P. R. China
| | - Hong Lok Lung
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Ka‐Leung Wong
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| |
Collapse
|
10
|
Cheerathodi MR, Meckes DG. The Epstein-Barr virus LMP1 interactome: biological implications and therapeutic targets. Future Virol 2018; 13:863-887. [PMID: 34079586 DOI: 10.2217/fvl-2018-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oncogenic potential of Epstein-Barr virus (EBV) is mostly attributed to latent membrane protein 1 (LMP1), which is essential and sufficient for transformation of fibroblast and primary lymphocytes. LMP1 expression results in the activation of multiple signaling cascades like NF-ΚB and MAP kinases that trigger cell survival and proliferative pathways. LMP1 specific signaling events are mediated through the recruitment of a number of interacting proteins to various signaling domains. Based on these properties, LMP1 is an attractive target to develop effective therapeutics to treat EBV-related malignancies. In this review, we focus on LMP1 interacting proteins, associated signaling events, and potential targets that could be exploited for therapeutic strategies.
Collapse
Affiliation(s)
- Mujeeb R Cheerathodi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| |
Collapse
|
11
|
Claridge B, Kastaniegaard K, Stensballe A, Greening DW. Post-translational and transcriptional dynamics - regulating extracellular vesicle biology. Expert Rev Proteomics 2018; 16:17-31. [PMID: 30457403 DOI: 10.1080/14789450.2019.1551135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Extracellular vesicles (EVs) are secreted into their extracellular environment, contain a specific repertoire of cellular cargo, and represent a novel vehicle for cell-cell communication. Protein post-translational modifications (PTMs) are emerging as major effectors of EV biology and function, and in turn, regulate cellular signaling. Areas covered: Discovery and investigation of PTMs such as methylation, glycosylation, acetylation, phosphorylation, sumoylation, and many others has established fundamental roles for PTMs within EVs and associated EV function. The application of enrichment strategies for modifications, high-resolution quantitative mass spectrometry-based proteomics, and improved technological approaches have provided key insights into identification and characterization of EV-based PTMs. Recently, an overwhelming appreciation for the diversity of modifications, including post-transcriptional modifications, dynamic roles of these modifications, and their emerging interplay, including protein-protein, protein-lipid, protein-RNA, and variable RNA modifications, is emerging. At a cellular level, such interplay is essential for gene expression/genome organization, protein function and localization, RNA metabolism, cell division, and cell signaling. Expert commentary: The understanding of these modifications and interactions will provide strategies toward how distinct cargo is localized, sorted, and delivered through EVs to mediate intercellular function, with further understanding of such modifications and intermolecular interactions will provide advances in EV-based therapeutic strategies.
Collapse
Affiliation(s)
- Bethany Claridge
- a Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - Kenneth Kastaniegaard
- b Department of Health Science and Technology , Laboratory for Medical Mass Spectrometry, Aalborg University , Aalborg Ø , Denmark
| | - Allan Stensballe
- b Department of Health Science and Technology , Laboratory for Medical Mass Spectrometry, Aalborg University , Aalborg Ø , Denmark
| | - David W Greening
- a Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|
12
|
Transmembrane Domains Mediate Intra- and Extracellular Trafficking of Epstein-Barr Virus Latent Membrane Protein 1. J Virol 2018; 92:JVI.00280-18. [PMID: 29950415 DOI: 10.1128/jvi.00280-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
EBV latent membrane protein 1 (LMP1) is released from latently infected tumor cells in small membrane-enclosed extracellular vesicles (EVs). Accumulating evidence suggests that LMP1 is a major driver of EV content and functions. LMP1-modified EVs have been shown to influence recipient cell growth, migration, differentiation, and regulation of immune cell function. Despite the significance of LMP1-modified exosomes, very little is known about how this viral protein enters or manipulates the host EV pathway. In this study, LMP1 deletion mutants were generated to assess protein regions required for EV trafficking. Following transfection of LMP1 or mutant plasmids, EVs were collected by differential centrifugation, and the levels of specific cargo were evaluated by immunoblot analysis. The results demonstrate that, together, the N terminus and transmembrane region 1 of LMP1 are sufficient for efficient sorting into EVs. Consistent with these findings, a mutant lacking the N terminus and transmembrane domains 1 through 4 (TM5-6) failed to be packaged into EVs, and exhibited higher colocalization with endoplasmic reticulum and early endosome markers than the wild-type protein. Surprisingly, TM5-6 maintained the ability to colocalize and form a complex with CD63, an abundant exosome protein that is important for the incorporation of LMP1 into EVs. Other mutations within LMP1 resulted in enhanced levels of secretion, pointing to potential positive and negative regulatory mechanisms for extracellular vesicle sorting of LMP1. These data suggest new functions of the N terminus and transmembrane domains in LMP1 intra- and extracellular trafficking that are likely downstream of an interaction with CD63.IMPORTANCE EBV infection contributes to the development of cancers, such as nasopharyngeal carcinoma, Burkitt lymphoma, Hodgkin's disease, and posttransplant lymphomas, in immunocompromised or genetically susceptible individuals. LMP1 is an important viral protein expressed by EBV in these cancers. LMP1 is secreted in extracellular vesicles (EVs), and the transfer of LMP1-modified EVs to uninfected cells can alter their physiology. Understanding the cellular machinery responsible for sorting LMP1 into EVs is limited, despite the importance of LMP1-modified EVs. Here, we illustrate the roles of different regions of LMP1 in EV packaging. Our results show that the N terminus and TM1 are sufficient to drive LMP1 EV trafficking. We further show the existence of potential positive and negative regulatory mechanisms for LMP1 vesicle sorting. These findings provide a better basis for future investigations to identify the mechanisms of LMP1 targeting to EVs, which could have broad implications in understanding EV cargo sorting.
Collapse
|
13
|
Shair KHY, Reddy A, Cooper VS. New Insights from Elucidating the Role of LMP1 in Nasopharyngeal Carcinoma. Cancers (Basel) 2018; 10:cancers10040086. [PMID: 29561768 PMCID: PMC5923341 DOI: 10.3390/cancers10040086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV) oncogenic protein that has no intrinsic enzymatic activity or sequence homology to cellular or viral proteins. The oncogenic potential of LMP1 has been ascribed to pleiotropic signaling properties initiated through protein-protein interactions in cytosolic membrane compartments, but the effects of LMP1 extend to nuclear and extracellular processes. Although LMP1 is one of the latent genes required for EBV-immortalization of B cells, the biology of LMP1 in the pathogenesis of the epithelial cancer nasopharyngeal carcinoma (NPC) is more complex. NPC is prevalent in specific regions of the world with high incidence in southeast China. The epidemiology and time interval from seroconversion to NPC onset in adults would suggest the involvement of multiple risk factors that complement the establishment of a latent and persistent EBV infection. The contribution of LMP1 to EBV pathogenesis in polarized epithelia has only recently begun to be elucidated. Furthermore, the LMP1 gene has emerged as one of the most divergent sequences in the EBV genome. This review will discuss the significance of recent advances in NPC research from elucidating LMP1 function in epithelial cells and lessons that could be learned from mining LMP1 sequence diversity.
Collapse
Affiliation(s)
- Kathy H Y Shair
- Cancer Virology Program, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Akhil Reddy
- Cancer Virology Program, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
14
|
The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology 2018; 516:55-70. [PMID: 29329079 DOI: 10.1016/j.virol.2017.12.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/04/2017] [Accepted: 12/28/2017] [Indexed: 12/27/2022]
Abstract
Epstein-Barr virus LMP1 is an oncoprotein required for immortalizing B lymphocytes and also plays important roles in transforming non-lymphoid tissue. The discovery of LMP1 protein interactions will likely generate targets to treat EBV-associated cancers. Here, we define the broader LMP1 interactome using the recently developed BioID method. Combined with mass spectrometry, we identified over 1000 proteins across seven independent experiments with direct or indirect relationships to LMP1. Pathway analysis suggests that a significant number of the proteins identified are involved in signal transduction and protein or vesicle trafficking. Interestingly, a large number of proteins thought to be important in the formation of exosomes and protein targeting were recognized as probable LMP1 interacting partners, including CD63, syntenin-1, ALIX, TSG101, HRS, CHMPs, and sorting nexins. Therefore, it is likely that LMP1 modifies protein trafficking and exosome biogenesis pathways. In support of this, knock-down of syntenin-1 and ALIX resulted in reduced exosomal LMP1.
Collapse
|
15
|
Signaling by the Epstein-Barr virus LMP1 protein induces potent cytotoxic CD4 + and CD8 + T cell responses. Proc Natl Acad Sci U S A 2018; 115:E686-E695. [PMID: 29311309 DOI: 10.1073/pnas.1713607115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The B-lymphotropic Epstein-Barr virus (EBV), pandemic in humans, is rapidly controlled on initial infection by T cell surveillance; thereafter, the virus establishes a lifelong latent infection in the host. If surveillance fails, fatal lymphoproliferation and lymphomagenesis ensue. The initial T cell response consists of predominantly CD8+ cytotoxic T cells and a smaller expansion of CD4+ cells. A major approach to treating EBV-associated lymphomas is adoptive transfer of autologous or allogeneic T cells that are stimulated/expanded on EBV-transformed B cells. Strikingly, the clinical response correlates with the frequency of CD4 cells in the infused T cells. Although in vitro studies suggested that EBV-specific CD4 cells develop cytotoxicity, they have not been comprehensively characterized and the molecular mechanism underlying their formation remains unknown. Our recent work, using a transgenic approach in mice, has revealed a central role for the EBV signaling molecule LMP1 in immune surveillance and transformation of EBV-infected B cells. The mouse model offers a unique tool for uncovering basic features of EBV immunity. Here, we show that LMP1 expression in B cells induces potent cytotoxic CD4 and CD8 T cell responses, by enhancing antigen presentation and costimulation by CD70, OX40 ligand, and 4-1BB ligand. Our data further suggest that cytotoxic CD4 cells hold superior therapeutic value for LMP1 (EBV)-driven lymphomas. These findings provide insights into EBV immunity, demonstrating that LMP1 signaling alone is sufficient to induce a prominent cytotoxic CD4 response, and suggest strategies for immunotherapy in EBV-related and other cancers.
Collapse
|
16
|
Gantuz M, Lorenzetti MA, Chabay PA, Preciado MV. A novel recombinant variant of latent membrane protein 1 from Epstein Barr virus in Argentina denotes phylogeographical association. PLoS One 2017; 12:e0174221. [PMID: 28328987 PMCID: PMC5362222 DOI: 10.1371/journal.pone.0174221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/05/2017] [Indexed: 12/15/2022] Open
Abstract
Epstein Barr virus (EBV) infection in Argentina occurs at an early age and occasionally develops infectious mononucleosis (IM). EBV is also related with lymphomas. LMP1, the viral oncoprotein is polymorphic and is used to define viral variants.
Collapse
Affiliation(s)
- Magdalena Gantuz
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mario Alejandro Lorenzetti
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paola Andrea Chabay
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Victoria Preciado
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
17
|
CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. J Virol 2017; 91:JVI.02251-16. [PMID: 27974566 DOI: 10.1128/jvi.02251-16] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV)-encoded oncoprotein that is packaged into small extracellular vesicles (EVs) called exosomes. Trafficking of LMP1 into multivesicular bodies (MVBs) alters the content and function of exosomes. LMP1-modified exosomes enhance the growth, migration, and invasion of malignant cells, demonstrating the capacity to manipulate the tumor microenvironment and enhance the progression of EBV-associated cancers. Despite the growing evidence surrounding the significance of LMP1-modified exosomes in cancer, very little is understood about the mechanisms that orchestrate LMP1 incorporation into these vesicles. Recently, LMP1 was shown to be copurified with CD63, a conserved tetraspanin protein enriched in late endosomal and lysosomal compartments. Here, we demonstrate the importance of CD63 presence for exosomal packaging of LMP1. Nanoparticle tracking analysis and gradient purification revealed an increase in extracellular vesicle secretion and exosomal proteins following LMP1 expression. Immunoisolation of CD63-positive exosomes exhibited accumulation of LMP1 in this vesicle population. Functionally, CRISPR/Cas9 knockout of CD63 resulted in a reduction of LMP1-induced particle secretion. Furthermore, LMP1 packaging was severely impaired in CD63 knockout cells, concomitant with a disruption in the perinuclear localization of LMP1. Importantly, LMP1 trafficking to lipid rafts and activation of NF-κB and PI3K/Akt pathways remained intact following CD63 knockout, while mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and noncanonical NF-κB activation were observed to be increased. These results suggest that CD63 is a critical player in LMP1 exosomal trafficking and LMP1-mediated enhancement of exosome production and may play further roles in limiting downstream LMP1 signaling.IMPORTANCE EBV is a ubiquitous gamma herpesvirus linked to malignancies such as nasopharyngeal carcinoma, Burkitt's lymphoma, and Hodgkin's lymphoma. In the context of cancer, EBV hijacks the exosomal pathway to modulate cell-to-cell signaling by secreting viral components such as an oncoprotein, LMP1, into host cell membrane-bound EVs. Trafficking of LMP1 into exosomes is associated with increased oncogenicity of these secreted vesicles. However, we have only a limited understanding of the mechanisms surrounding exosomal cargo packaging, including viral proteins. Here, we describe a role of LMP1 in EV production that requires CD63 and provide an extensive demonstration of CD63-mediated exosomal LMP1 release that is distinct from lipid raft trafficking. Finally, we present further evidence of the role of CD63 in limiting LMP1-induced noncanonical NF-κB and ERK activation. Our findings have implications for future investigations of physiological and pathological mechanisms of exosome biogenesis, protein trafficking, and signal transduction, especially in viral-associated tumorigenesis.
Collapse
|
18
|
Gupta S, Termini JM, Issac B, Guirado E, Stone GW. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors. PLoS One 2016; 11:e0148929. [PMID: 26849062 PMCID: PMC4743994 DOI: 10.1371/journal.pone.0148929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022] Open
Abstract
Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG), including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1). Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5) expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration.
Collapse
Affiliation(s)
- Sachin Gupta
- Department of Microbiology and Immunology, Miami Center for AIDS Research and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - James M. Termini
- Department of Microbiology and Immunology, Miami Center for AIDS Research and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Biju Issac
- Division of Bioinformatics, Biostatistics and Bioinformatics Core, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Elizabeth Guirado
- Department of Microbiology and Immunology, Miami Center for AIDS Research and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Geoffrey W. Stone
- Department of Microbiology and Immunology, Miami Center for AIDS Research and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
Almost exactly twenty years after the discovery of Epstein-Barr virus (EBV), the latent membrane protein 1 (LMP1) entered the EBV stage, and soon thereafter, it was recognized as the primary transforming gene product of the virus. LMP1 is expressed in most EBV-associated lymphoproliferative diseases and malignancies, and it critically contributes to pathogenesis and disease phenotypes. Thirty years of LMP1 research revealed its high potential as a deregulator of cellular signal transduction pathways leading to target cell proliferation and the simultaneous subversion of cell death programs. However, LMP1 has multiple roles beyond cell transformation and immortalization, ranging from cytokine and chemokine induction, immune modulation, the global alteration of gene and microRNA expression patterns to the regulation of tumor angiogenesis, cell-cell contact, cell migration, and invasive growth of tumor cells. By acting like a constitutively active receptor, LMP1 recruits cellular signaling molecules associated with tumor necrosis factor receptors such as tumor necrosis factor receptor-associated factor (TRAF) proteins and TRADD to mimic signals of the costimulatory CD40 receptor in the EBV-infected B lymphocyte. LMP1 activates NF-κB, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3-K), IRF7, and STAT pathways. Here, we review LMP1's molecular and biological functions, highlighting the interface between LMP1 and the cellular signal transduction network as an important factor of virus-host interaction and a potential therapeutic target.
Collapse
|
20
|
Novel roles and therapeutic targets of Epstein-Barr virus-encoded latent membrane protein 1-induced oncogenesis in nasopharyngeal carcinoma. Expert Rev Mol Med 2015; 17:e15. [PMID: 26282825 DOI: 10.1017/erm.2015.13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV) was first discovered 50 years ago as an oncogenic gamma-1 herpesvirus and infects more than 90% of the worldwide adult population. Nasopharyngeal carcinoma (NPC) poses a serious health problem in southern China and is one of the most common cancers among the Chinese. There is now strong evidence supporting a role for EBV in the pathogenesis of NPC. Latent membrane protein 1 (LMP1), a primary oncoprotein encoded by EBV, alters several functional and oncogenic properties, including transformation, cell death and survival in epithelial cells in NPC. LMP1 may increase protein modification, such as phosphorylation, and initiate aberrant signalling via derailed activation of host adaptor molecules and transcription factors. Here, we summarise the novel features of different domains of LMP1 and several new LMP1-mediated signalling pathways in NPC. When then focus on the potential roles of LMP1 in cancer stem cells, metabolism reprogramming, epigenetic modifications and therapy strategies in NPC.
Collapse
|
21
|
Greenfeld H, Takasaki K, Walsh MJ, Ersing I, Bernhardt K, Ma Y, Fu B, Ashbaugh CW, Cabo J, Mollo SB, Zhou H, Li S, Gewurz BE. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog 2015; 11:e1004890. [PMID: 25996949 PMCID: PMC4440769 DOI: 10.1371/journal.ppat.1004890] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/17/2015] [Indexed: 11/25/2022] Open
Abstract
The Epstein-Barr virus (EBV) encoded oncoprotein Latent Membrane Protein 1 (LMP1) signals through two C-terminal tail domains to drive cell growth, survival and transformation. The LMP1 membrane-proximal TES1/CTAR1 domain recruits TRAFs to activate MAP kinase, non-canonical and canonical NF-kB pathways, and is critical for EBV-mediated B-cell transformation. TRAF1 is amongst the most highly TES1-induced target genes and is abundantly expressed in EBV-associated lymphoproliferative disorders. We found that TRAF1 expression enhanced LMP1 TES1 domain-mediated activation of the p38, JNK, ERK and canonical NF-kB pathways, but not non-canonical NF-kB pathway activity. To gain insights into how TRAF1 amplifies LMP1 TES1 MAP kinase and canonical NF-kB pathways, we performed proteomic analysis of TRAF1 complexes immuno-purified from cells uninduced or induced for LMP1 TES1 signaling. Unexpectedly, we found that LMP1 TES1 domain signaling induced an association between TRAF1 and the linear ubiquitin chain assembly complex (LUBAC), and stimulated linear (M1)-linked polyubiquitin chain attachment to TRAF1 complexes. LMP1 or TRAF1 complexes isolated from EBV-transformed lymphoblastoid B cell lines (LCLs) were highly modified by M1-linked polyubiqutin chains. The M1-ubiquitin binding proteins IKK-gamma/NEMO, A20 and ABIN1 each associate with TRAF1 in cells that express LMP1. TRAF2, but not the cIAP1 or cIAP2 ubiquitin ligases, plays a key role in LUBAC recruitment and M1-chain attachment to TRAF1 complexes, implicating the TRAF1:TRAF2 heterotrimer in LMP1 TES1-dependent LUBAC activation. Depletion of either TRAF1, or the LUBAC ubiquitin E3 ligase subunit HOIP, markedly impaired LCL growth. Likewise, LMP1 or TRAF1 complexes purified from LCLs were decorated by lysine 63 (K63)-linked polyubiqutin chains. LMP1 TES1 signaling induced K63-polyubiquitin chain attachment to TRAF1 complexes, and TRAF2 was identified as K63-Ub chain target. Co-localization of M1- and K63-linked polyubiquitin chains on LMP1 complexes may facilitate downstream canonical NF-kB pathway activation. Our results highlight LUBAC as a novel potential therapeutic target in EBV-associated lymphoproliferative disorders. The linear ubiquitin assembly complex (LUBAC) plays crucial roles in immune receptor-mediated NF-kB and MAP kinase pathway activation. Comparatively little is known about the extent to which microbial pathogens use LUBAC to activate downstream pathways. We demonstrate that TRAF1 enhances EBV oncoprotein LMP1 TES1/CTAR1 domain mediated MAP kinase and canonical NF-kB activation. LMP1 TES1 signaling induces association between TRAF1 and LUBAC, and triggers M1-polyubiquitin chain attachment to TRAF1 complexes. TRAF1 and LMP1 complexes are decorated by M1-polyubiquitin chains in LCL extracts. TRAF2 plays a key role in LMP1-induced LUBAC recruitment and M1-chain attachment to TRAF1 complexes. TRAF1 and LMP1 complexes are modified by lysine 63-linked polyubiquitin chains in LCL extracts, and TRAF2 is a target of LMP1-induced K63-ubiquitin chain attachment. Thus, the TRAF1:TRAF2 heterotrimer may coordinate ubiquitin signaling downstream of TES1. Depletion of TRAF1 or the LUBAC subunit HOIP impairs LCL growth and survival. Thus, although TRAF1 is the only TRAF without a RING finger ubiquitin ligase domain, TRAF1 nonetheless has important roles in ubiqutin-mediated signal transduction downstream of LMP1. Our work suggests that LUBAC is important for EBV-driven B-cell proliferation, and suggests that LUBAC may be a novel therapeutic target in EBV-associated lymphoproliferative disorders.
Collapse
Affiliation(s)
- Hannah Greenfeld
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Kaoru Takasaki
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Michael J. Walsh
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Ina Ersing
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Katharina Bernhardt
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Yijie Ma
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Bishi Fu
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Camille W. Ashbaugh
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Jackson Cabo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Sarah B. Mollo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Hufeng Zhou
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Shitao Li
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Verweij FJ, de Heus C, Kroeze S, Cai H, Kieff E, Piersma SR, Jimenez CR, Middeldorp JM, Pegtel DM. Exosomal sorting of the viral oncoprotein LMP1 is restrained by TRAF2 association at signalling endosomes. J Extracell Vesicles 2015; 4:26334. [PMID: 25865256 PMCID: PMC4394166 DOI: 10.3402/jev.v4.26334] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/28/2015] [Accepted: 03/02/2015] [Indexed: 11/20/2022] Open
Abstract
The Epstein–Barr virus (EBV)-encoded oncoprotein latent membrane protein 1 (LMP1) constitutively activates nuclear factor κB (NFκB) from intracellular membranes to promote cell growth and survival. LMP1 associates with CD63 in intracellular membranes and is released via exosomes. Whether tumour necrosis factor (TNF) receptor-associated factors (TRAFs) mediate LMP1 NFκB signalling from endosomes and modulate exosomal sorting is unknown. In this article, we show that LMP1–TRAF2 signalling complexes accumulate at endosomes in a palmitoylation-dependent manner, thereby driving LMP1-dependent oncogenicity. Palmitoylation is a reversible post-translational modification and is considered to function as a membrane anchor for proteins. Mutagenesis studies showed that LMP1–TRAF2 trafficking to endosomes is dependent on one single cysteine residue (C78), a known palmitoylation site of LMP1. Notably, growth assays in soft agar revealed that oncogenic properties of the palmitoylation-deficient LMP1 mutant C78A were diminished compared to wild-type LMP1. Since LMP1 recruitment of TRAF2 and downstream NFκB signalling were not affected by a disturbance in palmitoylation, the specific localization of LMP1 at endosomal membranes appears crucial for its transforming potential. The importance of palmitoylation for trafficking to and signalling from endosomal membranes was not restricted to LMP1, as similar observations were made for the cellular oncoproteins Src and Fyn. Despite abundant LMP1–TRAF2 association at endosomal membranes TRAF2 could not be detected in exosomes by Western blotting or proteomics. Interestingly, point mutations that prevented TRAF binding strongly promoted the sorting and release of LMP1 via exosomes. These observations reveal that LMP1–TRAF2 complexes at endosomes support oncogenic NFκB activation and suggest that LMP1 dissociates from the activated signalling complexes upon sorting into intraluminal vesicles. We propose that “signalling endosomes” in EBV-infected tumour cells can fuse with the plasma membrane, explaining LMP1 release via exosomes.
Collapse
Affiliation(s)
- Frederik J Verweij
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Cecilia de Heus
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Stefanie Kroeze
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Houjian Cai
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Elliott Kieff
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaap M Middeldorp
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Dirk Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands;
| |
Collapse
|
23
|
Abstract
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.
Collapse
Affiliation(s)
- Myung-Soo Kang
- 1] Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea [2] Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital, Program in Virology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Wrobel CM, Geiger TR, Nix RN, Robitaille AM, Weigand S, Cervantes A, Gonzalez M, Martin JM. High molecular weight complex analysis of Epstein-Barr virus Latent Membrane Protein 1 (LMP-1): structural insights into LMP-1's homo-oligomerization and lipid raft association. Virus Res 2013; 178:314-27. [PMID: 24075898 DOI: 10.1016/j.virusres.2013.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/15/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
LMP-1 is a constitutively active Tumor Necrosis Factor Receptor analog encoded by Epstein-Barr virus. LMP-1 activation correlates with oligomerization and raft localization, but direct evidence of LMP-1 oligomers is limited. We report that LMP-1 forms multiple high molecular weight native LMP-1 complexes when analyzed by BN-PAGE, the largest of which are enriched in detergent resistant membranes. The largest of these high molecular weight complexes are not formed by purified LMP-1 or by loss of function LMP-1 mutants. Consistent with these results we find a dimeric form of LMP-1 that can be stabilized by disulfide crosslinking. We identify cysteine 238 in the C-terminus of LMP-1 as the crosslinked cysteine. Disulfide crosslinking occurs post-lysis but the dimer can be crosslinked in intact cells with membrane permeable crosslinkers. LMP-1/C238A retains wild type LMP-1 NF-κB activity. LMP-1's TRAF binding, raft association and oligomerization are associated with the dimeric form of LMP-1. Our results suggest the possibility that the observed dimeric species results from inter-oligomeric crosslinking of LMP-1 molecules in adjacent core LMP-1 oligomers.
Collapse
Affiliation(s)
- Christopher M Wrobel
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ersing I, Bernhardt K, Gewurz BE. NF-κB and IRF7 pathway activation by Epstein-Barr virus Latent Membrane Protein 1. Viruses 2013; 5:1587-606. [PMID: 23793113 PMCID: PMC3717723 DOI: 10.3390/v5061587] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/22/2022] Open
Abstract
The principal Epstein-Barr virus (EBV) oncoprotein, Latent Membrane Protein 1 (LMP1), is expressed in most EBV-associated human malignancies. LMP1 mimics CD40 receptor signaling to provide infected cells with constitutive NF-κB, MAP kinase, IRF7, and PI3 kinase pathway stimulation. EBV-transformed B-cells are particularly dependent on constitutive NF-κB activity, and rapidly undergo apoptosis upon NF-κB blockade. Here, we review LMP1 function, with special attention to current understanding of the molecular mechanisms of LMP1-mediated NF-κB and IRF7 pathway activation. Recent advances include the elucidation of transmembrane motifs important for LMP1 trafficking and ligand-independent signaling, analysis of genome-wide LMP1 gene targets, and the identification of novel cell proteins that mediate LMP1 NF-κB and IRF7 pathway activation.
Collapse
Affiliation(s)
| | | | - Benjamin E. Gewurz
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-011-617-525-4263; Fax: +1-011-615-525-4251
| |
Collapse
|
26
|
Epstein-Barr virus LMP1 modulates lipid raft microdomains and the vimentin cytoskeleton for signal transduction and transformation. J Virol 2012; 87:1301-11. [PMID: 23152522 DOI: 10.1128/jvi.02519-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) is an important human pathogen that is associated with multiple cancers. The major oncoprotein of the virus, latent membrane protein 1 (LMP1), is essential for EBV B-cell immortalization and is sufficient to transform rodent fibroblasts. This viral transmembrane protein activates multiple cellular signaling pathways by engaging critical effector molecules and thus acts as a ligand-independent growth factor receptor. LMP1 is thought to signal from internal lipid raft containing membranes; however, the mechanisms through which these events occur remain largely unknown. Lipid rafts are microdomains within membranes that are rich in cholesterol and sphingolipids. Lipid rafts act as organization centers for biological processes, including signal transduction, protein trafficking, and pathogen entry and egress. In this study, the recruitment of key signaling components to lipid raft microdomains by LMP1 was analyzed. LMP1 increased the localization of phosphatidylinositol 3-kinase (PI3K) and its activated downstream target, Akt, to lipid rafts. In addition, mass spectrometry analyses identified elevated vimentin in rafts isolated from LMP1 expressing NPC cells. Disruption of lipid rafts through cholesterol depletion inhibited PI3K localization to membranes and decreased both Akt and ERK activation. Reduction of vimentin levels or disruption of its organization also decreased LMP1-mediated Akt and ERK activation and inhibited transformation of rodent fibroblasts. These findings indicate that LMP1 reorganizes membrane and cytoskeleton microdomains to modulate signal transduction.
Collapse
|
27
|
Identification of transmembrane protein 134 as a novel LMP1-binding protein by using bimolecular fluorescence complementation and an enhanced retroviral mutagen. J Virol 2012; 86:11345-55. [PMID: 22855487 DOI: 10.1128/jvi.00523-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Latent membrane protein 1 (LMP1) of Epstein-Barr virus induces constitutive signaling in infected cells. LMP1 signaling requires oligomerization of LMP1 via its transmembrane domain, localization to lipid rafts in the membrane, and association of the LMP1 cytoplasmic domain to adaptor proteins, such as the tumor necrosis factor receptor-associated factors (TRAFs). Protein complementation is a novel technique to examine protein-protein interaction through the assembly of functional fluorescent proteins or enzymes from inactive fragments. A previous study in our lab demonstrated the use of bimolecular fluorescence complementation (BiFC) to study the assembly of the LMP1 signaling complexes within the plasma membrane of mammalian cells. In the present study, LMP1 was used as bait in a genome-wide BiFC screen with an enhanced retroviral mutagen to identify new LMP1-binding proteins. Our screen identified a novel LMP1-binding protein, transmembrane protein 134 (Tmem134). Tmem134 is a candidate oncogene that is amplified in breast cancer cell lines. Binding, colocalization, and cofractionation between LMP1 and Tmem134 were confirmed. Finally, Tmem134 affected LMP1-induced NF-κB induction. Together, these data suggest that BiFC is a unique and novel platform to identify proteins recruited to the LMP1-signaling complex.
Collapse
|
28
|
Liu HP, Chen CC, Wu CC, Huang YC, Liu SC, Liang Y, Chang KP, Chang YS. Epstein-Barr virus-encoded LMP1 interacts with FGD4 to activate Cdc42 and thereby promote migration of nasopharyngeal carcinoma cells. PLoS Pathog 2012; 8:e1002690. [PMID: 22589722 PMCID: PMC3349753 DOI: 10.1371/journal.ppat.1002690] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 03/26/2012] [Indexed: 01/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC), a human malignancy notorious for its highly metastatic nature. Among EBV-encoded genes, latent membrane protein 1 (LMP1) is expressed in most NPC tissues and exerts oncogenicity by engaging multiple signaling pathways in a ligand-independent manner. LMP1 expression also results in actin cytoskeleton reorganization, which modulates cell morphology and cell motility— cellular process regulated by RhoGTPases, such as Cdc42. Despite the prominent association of Cdc42 activation with tumorigenesis, the molecular basis of Cdc42 activation by LMP1 in NPC cells remains to be elucidated. Here using GST-CBD (active Cdc42-binding domain) as bait in GST pull-down assays to precipitate active Cdc42 from cell lysates, we demonstrated that LMP1 acts through its transmembrane domains to preferentially induce Cdc42 activation in various types of epithelial cells, including NPC cells. Using RNA interference combined with re-introduction experiments, we identified FGD4 (FYVE, RhoGEF and PH domain containing 4) as the GEF (guanine nucleotide exchange factor) responsible for the activation of Cdc42 by LMP1. Serial deletion experiments and co-immunoprecipitation assays further revealed that ectopically expressed FGD4 modulated LMP1-mediated Cdc42 activation by interacting with LMP1. Moreover, LMP1, through its transmembrane domains, directly bound FGD4 and enhanced FGD4 activity toward Cdc42, leading to actin cytoskeleton rearrangement and increased motility of NPC cells. Depletion of FGD4 or Cdc42 significantly reduced (∼50%) the LMP1-stimulated cell motility, an effect that was partially reversed by expression of a constitutively active mutant of Cdc42. Finally, quantitative RT-PCR and immunohistochemistry analyses showed that FGD4 and LMP1 were expressed in NPC tissues, supporting the potential physiologically relevance of this mechanism in NPC. Collectively, our results not only uncover a novel mechanism underlying LMP1-mediated Cdc42 activation, namely LMP1 interaction with FGD4, but also functionally link FGD4 to NPC tumorigenesis. Epstein-Barr virus (EBV) is closely associated with human malignancies, including nasopharyngeal carcinoma (NPC). Among EBV-expressed genes, latent membrane protein 1 (LMP1) has been detected in most NPC tissues and has the ability to transform cell growth and drive cell migration, both of which are highly associated with tumorigenesis and tumor progression. Previous reports have demonstrated that cell migration primarily involves cytoskeleton rearrangement, and the RhoGTPase Cdc42 is known to actively mediate such rearrangement processes. Using LMP1-expressing NPC cells, we discovered that LMP1 induces Cdc42 activation by directly binding to FGD4, a positive regulator of Cdc42, thereby promoting motility of NPC cells. The observed correlation between FGD4 and LMP1 expression in NPC tissues provides support of physiological relevance. Notably, FGD4 has recently been shown to be responsible for a type of inherited neural disease. Our findings not only provide a novel insight into EBV pathogenesis, but also suggest a role for FGD4 in tumorigenesis.
Collapse
Affiliation(s)
- Hao-Ping Liu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chia-Chun Chen
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Chih-Ching Wu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Yi-Chuan Huang
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Shu-Chen Liu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Ying Liang
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Kai-Ping Chang
- Departments of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Lin-Kou, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Talaty P, Emery A, Everly DN. Characterization of the latent membrane protein 1 signaling complex of Epstein-Barr virus in the membrane of mammalian cells with bimolecular fluorescence complementation. Virol J 2011; 8:414. [PMID: 21864338 PMCID: PMC3173395 DOI: 10.1186/1743-422x-8-414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/24/2011] [Indexed: 01/07/2023] Open
Abstract
Background Bimolecular fluorescence complementation (BiFC) is a novel technique to examine protein-protein interaction through the assembly of fluorescent proteins. In the present study, BiFC was used to study the assembly of the Epstein-Barr virus latent membrane protein 1 (LMP1) signaling complex within the membrane of mammalian cells. LMP1 signaling requires oligomerization, localization to lipid rafts, and association of the cytoplasmic domain to adaptor proteins, such as the tumor necrosis factor receptor associated factors (TRAFs). Methods LMP1-TRAF and LMP1-LMP1 interactions were assayed by BiFC using fluorescence microscopy and flow cytometry. Function of LMP1 BiFC contructs were confirmed by transformation assays and nuclear factor- κB (NF-κB) reporter assays. Results BiFC was observed between LMP1 and TRAF2 or TRAF3 and mutation of the LMP1 signaling domains reduced complementation. Fluorescence was observed in previously described LMP1 signaling locations. Oligomerization of LMP1 with itself induced complementation and BiFC. LMP1-BiFC constructs were fully functional in rodent fibroblast transformation assays and activation of NF-κB reporter activity. The BiFC domain partially suppressed some LMP1 mutant phenotypes. Conclusions Together these data suggest that BiFC is a unique and novel platform to identify and characterize proteins recruited to the LMP1-signaling complex.
Collapse
Affiliation(s)
- Pooja Talaty
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Illinois 60064, USA
| | | | | |
Collapse
|
30
|
Sammond DW, Joce C, Takeshita R, McQuate SE, Ghosh N, Martin JM, Yin H. Transmembrane peptides used to investigate the homo-oligomeric interface and binding hotspot of latent membrane protein 1. Biopolymers 2011; 95:772-84. [PMID: 21560118 DOI: 10.1002/bip.21672] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/15/2011] [Accepted: 04/29/2011] [Indexed: 12/30/2022]
Abstract
Epstein-Barr virus (EBV), a human γ-herpesvirus, establishes lifelong infection by targeting the adaptive immune system of the host through memory B cells. Although normally benign, EBV contributes to lymphoid malignancies and lymphoproliferative syndromes in immunocompromised individuals. The viral oncoprotein latent membrane protein 1 (LMP-1) is essential for B lymphocyte immortalization by EBV. The constitutive signaling activity of LMP-1 is dependent on homo-oligomerization of its six-spanning hydrophobic transmembrane domain (TMD). However, the mechanism driving LMP-1 intermolecular interaction is poorly understood. Here, we show that the fifth transmembrane helix (TM5) of LMP-1 strongly self-associates, forming a homotrimeric complex mediated by a polar residue embedded in the membrane, D150. Replacement of this aspartic acid residue with alanine disrupts TM5 self-association in detergent micelles and bacterial cell membranes. A full-length LMP-1 variant harboring the D150A substitution is deficient in NFκB activation, supporting the key role of the fifth transmembrane helix in constitutive activation of signaling by this oncoprotein.
Collapse
Affiliation(s)
- Deanne W Sammond
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Verweij FJ, van Eijndhoven MAJ, Hopmans ES, Vendrig T, Wurdinger T, Cahir-McFarland E, Kieff E, Geerts D, van der Kant R, Neefjes J, Middeldorp JM, Pegtel DM. LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-κB activation. EMBO J 2011; 30:2115-29. [PMID: 21527913 DOI: 10.1038/emboj.2011.123] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 03/25/2011] [Indexed: 02/01/2023] Open
Abstract
The ubiquitous Epstein Barr virus (EBV) exploits human B-cell development to establish a persistent infection in ∼90% of the world population. Constitutive activation of NF-κB by the viral oncogene latent membrane protein 1 (LMP1) has an important role in persistence, but is a risk factor for EBV-associated lymphomas. Here, we demonstrate that endogenous LMP1 escapes degradation upon accumulation within intraluminal vesicles of multivesicular endosomes and secretion via exosomes. LMP1 associates and traffics with the intracellular tetraspanin CD63 into vesicles that lack MHC II and sustain low cholesterol levels, even in 'cholesterol-trapping' conditions. The lipid-raft anchoring sequence FWLY, nor ubiquitylation of the N-terminus, controls LMP1 sorting into exosomes. Rather, C-terminal modifications that retain LMP1 in Golgi compartments preclude assembly within CD63-enriched domains and/or exosomal discharge leading to NF-κB overstimulation. Interference through shRNAs further proved the antagonizing role of CD63 in LMP1-mediated signalling. Thus, LMP1 exploits CD63-enriched microdomains to restrain downstream NF-κB activation by promoting trafficking in the endosomal-exosomal pathway. CD63 is thus a critical mediator of LMP1 function in- and outside-infected (tumour) cells.
Collapse
Affiliation(s)
- Frederik J Verweij
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is expressed in multiple human malignancies and has potent effects on cell growth. It has been detected in exosomes and shown to inhibit immune function. Exosomes are small secreted cellular vesicles that contain proteins, mRNAs, and microRNAs (miRNAs). When produced by malignant cells, they can promote angiogenesis, cell proliferation, tumor-cell invasion, and immune evasion. In this study, exosomes released from nasopharyngeal carcinoma (NPC) cells harboring latent EBV were shown to contain LMP1, signal transduction molecules, and virus-encoded miRNAs. Exposure to these NPC exosomes activated the ERK and AKT signaling pathways in the recipient cells. Interestingly, NPC exosomes also contained viral miRNAs, several of which were enriched in comparison with their intracellular levels. LMP1 induces expression of the EGF receptor in an EBV-negative epithelial cell line, and exosomes produced by these cells also contain high levels of EGF receptor in exosomes. These findings suggest that the effects of EBV and LMP1 on cellular expression also modulate exosome content and properties. The exosomes may manipulate the tumor microenvironment to influence the growth of neighboring cells through the intercellular transfer of LMP1, signaling molecules, and viral miRNAs.
Collapse
|
33
|
Yang N, Jiang J, Deng L, Waters MJ, Wang X, Frank SJ. Growth hormone receptor targeting to lipid rafts requires extracellular subdomain 2. Biochem Biophys Res Commun 2010; 391:414-418. [PMID: 19914217 DOI: 10.1016/j.bbrc.2009.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 11/10/2009] [Indexed: 11/21/2022]
Abstract
GH receptor (GHR) is a single membrane-spanning glycoprotein dimer that binds GH in its extracellular domain (ECD). GH activates the GHR intracellular domain (ICD)-associated tyrosine kinase, JAK2, which causes intracellular signaling. We previously found that plasma membrane (PM)-associated GHR was dramatically enriched in the lipid raft (LR) component of the membrane and that localization of GHR within PM regions may regulate GH signaling by influencing the profile of pathway activation. In this study, we examined determinants of LR localization of the GHR using a reconstitution system which lacks endogenous JAK2 and GHR. By non-detergent extraction and multistep fractionation, we found that GHR was highly enriched in the LR fraction independent of JAK2 expression. Various GHR mutants were examined in transfectants harboring JAK2. LR concentration was observed for a GHR in which the native transmembrane domain (TMD) is replaced by that of the unrelated LDL receptor and for a GHR that lacks its ICD. Thus, LR association requires neither the TMD nor the ICD. Similarly, a GHR that lacks the ECD, except for the membrane-proximal ECD stem region, was only minimally LR-concentrated. Mutants with internal stem deletions in the context of the full-length receptor were LR-concentrated similar to the wild-type. A GHR lacking ECD subdomain 1 reached the PM and was LR-concentrated, while one lacking ECD subdomain 2, also reached the PM, but was not LR-concentrated. These data suggest LR targeting resides in ECD subdomain 2, a region relatively uninvolved in GH binding.
Collapse
Affiliation(s)
- Ning Yang
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, AL 35294-0012, USA
| | | | | | | | | | | |
Collapse
|
34
|
Transcriptional downregulation of p27KIP1 through regulation of E2F function during LMP1-mediated transformation. J Virol 2009; 83:12671-9. [PMID: 19828622 DOI: 10.1128/jvi.01422-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LMP1 induces the phenotypic transformation of fibroblasts and affects regulators of the cell cycle during this process. LMP1 decreases expression of the cyclin-dependent kinase inhibitor p27 and increases the levels and phosphorylation of cyclin-dependent kinase 2 and the retinoblastoma protein. In the present study, the effects of LMP1 on cell cycle progression and the mechanism of p27 downregulation by LMP1 were determined. Although p27 is frequently regulated at the posttranscriptional level during cell cycle progression and in cancer, LMP1 did not decrease ectopically expressed p27. However, LMP1 did decrease p27 RNA levels and inhibited the activity of p27 promoter reporters. The LMP1-regulated promoter element was mapped to a region containing two E2F sites. Electrophoretic mobility shift assays determined that the regulated cis element bound an inhibitory E2F complex containing E2F4 and p130. These findings indicate that LMP1 decreases p27 transcription through effects on E2F family transcription factors. This property likely contributes to the ability of LMP1 to stimulate cell cycle progression.
Collapse
|
35
|
IRF7 activation by Epstein-Barr virus latent membrane protein 1 requires localization at activation sites and TRAF6, but not TRAF2 or TRAF3. Proc Natl Acad Sci U S A 2008; 105:18448-53. [PMID: 19017798 DOI: 10.1073/pnas.0809933105] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1), a constitutively aggregated and activated pseudoreceptor, activates IFN regulatory factor 7 (IRF7) through RIP1. We now report that the LMP1 cytoplasmic carboxyl terminal amino acids 379-386 bound IRF7 and activated IRF7. IRF7 activation required TRAF6 and RIP1, but not TRAF2 or TRAF3. LMP1 Y(384)YD(386), which are required for TRADD and RIP1 binding and for NF-kappaB activation, were not required for IRF7 binding, but were required for IRF7 activation, implicating signaling through TRADD and RIP1 in IRF7 activation. Association with active LMP1 signaling complexes was also critical for IRF7 activation because (i) a dominant-negative IRF7 bound to LMP1, blocked IRF7 association and activation, but did not inhibit LMP1 induced NF-kappaB or TBK1 or Sendai virus-mediated IFN stimulated response element activation; and (ii) two different LMP1 transmembrane domain mutants, which fail to aggregate, each bound IRF7 and prevented LMP1 from binding and activating IRF7 in the same cell, but did not prevent NF-kappaB activation. Thus, efficient IRF7 activation required association with LMP1 CTAR2 in proximity to LMP1 CTAR2 mediated kinase activation sites.
Collapse
|
36
|
Middeldorp JM, Pegtel DM. Multiple roles of LMP1 in Epstein-Barr virus induced immune escape. Semin Cancer Biol 2008; 18:388-96. [PMID: 19013244 DOI: 10.1016/j.semcancer.2008.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/16/2008] [Indexed: 12/21/2022]
Abstract
The life cycle of Epstein-Barr virus (EBV) is intriguing in that the virus resides within the immune system and utilizes distinct latency expression programs to establish a persistent infection yet escaping elimination. To achieve this EBV has hijacked cellular signaling pathways to its own benefit, but deregulated viral gene expression can turn into oncogenesis. EBV like many other persistent herpes viruses has evolved ingenious tricks to evade the immune system in part by mimicking host gene function(s). Latent membrane protein 1 (LMP1) mimics CD40 signaling as part of its "normal" biological function and when deregulated, functions as a viral oncogene. LMP1 also affects cell-cell contact, cytokine and chemokine production, Ag presentation and is secreted in the extracellular milieu via immunogenic exosomes. Thus, besides its well-known growth promoting properties LMP1 modulates immune responses. Herein we discuss current knowledge regarding the role of LMP1 in immune evasion of EBV and how this strategy for establishment of persistence contributes to immune escape of EBV+ tumors.
Collapse
Affiliation(s)
- J M Middeldorp
- VU University Medical Center, Department of Pathology and Cancer Center Amsterdam, The Netherlands.
| | | |
Collapse
|
37
|
The ID proteins contribute to the growth of rodent fibroblasts during LMP1-mediated transformation. Virology 2008; 376:258-69. [PMID: 18456300 DOI: 10.1016/j.virol.2007.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/14/2007] [Accepted: 12/03/2007] [Indexed: 12/17/2022]
Abstract
LMP1 induces the expression of two members of the family of Id proteins, Id1 and Id3, and affects cell cycle regulation by decreasing the expression of the cyclin dependent kinase inhibitor, p27, and increasing levels and phosphorylation of cdk2 and Rb. In the present study, the contribution of the Id proteins to LMP1-mediated transformation was determined. Although LMP1 effectively inhibited p27 expression, the Id proteins alone did not affect expression of p27, cdk2, and Rb. Neither Id1 nor Id3 was sufficient to transform Rat-1 cells and inhibition of Id1 expression did not affect LMP1-induced morphologic transformation of Rat-1 cells or reduction of p27. However, reduced Id expression resulted in smaller foci and impaired the growth rate of Rat-1 cells. These data indicate that overexpression of the Id proteins is not sufficient for the effects of LMP1 on the cell cycle but that inhibition of Id expression does affect the growth of LMP1-transformed and parental Rat1 cells.
Collapse
|
38
|
Soni V, Cahir-McFarland E, Kieff E. LMP1 TRAFficking Activates Growth and Survival pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:173-87. [PMID: 17633026 DOI: 10.1007/978-0-387-70630-6_14] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epstein-Barr Virus (EBV) Latent Infection Membrane Protein 1 (LMP1) is expressed in all the EBV related malignancies. LMP1 expression is critical for transformation of human B-cells by EBV. LMP1 expression in human B cells induces activation and adhesion molecule expression and cell dumping, which are characteristic of CD40 activated B lymphocytes. In immortalized fibroblasts, LMP1 mimics aspects of activated ras in enabling serum, contact, and anchorage independent growth. Reverse genetic analyses implicate six transmembrane domains (TM), TM1-6, and two C-terminal cytosolic domains, transformation effector sites 1 and 2 (TES1 and 2) or C-terminal activation regions 1 and 2 (CTAR1 and 2) as the essential domains for LMP1 effects. The 6 transmembrane domains cause intermolecular interaction, whereas the C-terminal domains signal through tumor necrosis factor receptor (TNFR) associated factors (TRAFs) or TNFR associated death domain proteins (TRADD) and activate NF-kappaB, JNK, and p38. LMP1 TES1/CTAR1 directly recruits TRAFs 1, 2, 3 and 5 whereas LMP1 TES2/CTAR2 indirectly recruits TRAF6 via BS69. LMP1 TES1/CTAR1 activates TRAF2, NIK, IKKalpha and p52 mediated noncanonical NF-KB pathway and LMP1 TES2/CTAR2 activates TRAF6, TAB1, TAK1, IKKalpha/ IKKbeta/ IKKgamma mediated canonical NF-KB pathway. Interestingly, TRAF3 is a negative regulator of noncanonical NF-kappaB activation, although a positive role in LMP1 signaling has also been described. LMP1 mediated JNK activation is predominantly TES2/CTAR2 dependent and requires TRAF6. LMP1 specifically increases TRAF3 partitioning into lipid rafts and interestingly does not induce degradation of any of the TRAFs upon NF-kappaB activation. Studies of the chemistry and biology of LMP1-TRAF interaction mediated activation of signaling pathways are important for controlling EBV infected cell survival and growth.
Collapse
Affiliation(s)
- Vishal Soni
- Channing Laboratory and Infectious Disease Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School and University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
39
|
Lee J, Sugden B. A membrane leucine heptad contributes to trafficking, signaling, and transformation by latent membrane protein 1. J Virol 2007; 81:9121-30. [PMID: 17581993 PMCID: PMC1951399 DOI: 10.1128/jvi.00136-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Latent membrane protein 1 (LMP1) of Epstein Barr virus (EBV) is important for maintaining proliferation of EBV-infected B cells. LMP1, unlike its cellular counterpart, CD40, signals without a ligand and is largely internal to the plasma membrane. In order to understand how LMP1 initiates its ligand-independent signaling, we focused on a leucine heptad in LMP1's first membrane-spanning domain that was shown to be necessary for LMP1's signaling through NF-kappaB. LZ1EBV, a recombinant EBV genetically altered to express LZ1, a derivative of LMP1 in which a leucine heptad was replaced with alanines, transformed B cells with 56% of wild-type (wt) EBV's efficiency, demonstrating the importance of this heptad. To elucidate the mechanism by which this domain contributes to the functions of LMP1, the properties of the wt and LZ1 were compared in transfected cells. LZ1 failed to home to lipid rafts as efficiently as did wt LMP1. The distribution of tagged derivatives of LZ1 also differed from that of wt LMP1 in transfected cells. LZ1's defect in homing to lipid rafts and altered trafficking likely underlie the defect in transformation of LZ1EBV. While the third and fourth membrane-spanning domains of LMP1 foster its trafficking to the Golgi, the leucine heptad within the first membrane-spanning domain contributes to its trafficking, particularly to internal rafts. B cells that are successfully transformed by LZ1EBV have the same average number of viral genomes and the same fraction of cells with capped LZ1 at the cell surface but express 50% more of the LZ1 allele than wt infected cells.
Collapse
Affiliation(s)
- Jisook Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
40
|
Kieser A. Signal transduction by the Epstein-Barr virus oncogene latent membrane protein 1 (LMP1). ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Rovedo M, Longnecker R. Epstein-barr virus latent membrane protein 2B (LMP2B) modulates LMP2A activity. J Virol 2007; 81:84-94. [PMID: 17035319 PMCID: PMC1797235 DOI: 10.1128/jvi.01302-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 09/28/2006] [Indexed: 12/14/2022] Open
Abstract
Latent membrane protein 2A (LMP2A) and LMP2B are viral proteins expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor (BCR) signal transduction by associating with the cellular tyrosine kinases Lyn and Syk via specific phosphotyrosine motifs found within the LMP2A N-terminal tail domain. LMP2A has been shown to alter normal BCR signal transduction in B cells by reducing levels of Lyn and by blocking tyrosine phosphorylation and calcium mobilization following BCR cross-linking. Although little is currently known about the function of LMP2B in B cells, the similarity in structure between LMP2A and LMP2B suggests that they may localize to the same cellular compartments. To investigate the function of LMP2B, B-cell lines expressing LMP2A, LMP2B, LMP2A/LMP2B, and the relevant vector controls were analyzed. As was previously shown, cells expressing LMP2A had a dramatic block in normal BCR signal transduction as measured by calcium mobilization and tyrosine phosphorylation. There was no effect on BCR signal transduction in cells expressing LMP2B. Interestingly, when LMP2B was expressed in conjunction with LMP2A, there was a restoration of normal BCR signal transduction upon BCR cross-linking. The expression of LMP2B did not alter the cellular localization of LMP2A but did bind to and prevent the phosphorylation of LMP2A. A restoration of Lyn levels, but not a change in LMP2A levels, was also observed in cells coexpressing LMP2B with LMP2A. From these results, we conclude that LMP2B modulates LMP2A activity.
Collapse
Affiliation(s)
- Mark Rovedo
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Ward 6-231, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
42
|
Ikeda M, Longnecker R. Cholesterol is critical for Epstein-Barr virus latent membrane protein 2A trafficking and protein stability. Virology 2006; 360:461-8. [PMID: 17150237 PMCID: PMC1868700 DOI: 10.1016/j.virol.2006.10.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/17/2006] [Accepted: 10/27/2006] [Indexed: 12/12/2022]
Abstract
Latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) plays a key role in regulating viral latency and EBV pathogenesis by functionally mimicking signals induced by the B cell receptor (BCR) altering normal B cell development. LMP2A specifically associates with Nedd4 family ubiquitin-protein ligases which downmodulate LMP2A activity by ubiquitinating LMP2A and LMP2A-associated protein tyrosine kinases (PTKs). Since specific ubiquitin tags provide an endocytic sorting signal for plasma membrane proteins which traffic to membrane vesicles, we examined LMP2A localization and trafficking. We found that LMP2A is secreted through exosomes, small endocytic membrane vesicles, as previously demonstrated for LMP1. Interestingly, the treatment of cells with methyl-beta-cyclodextrin (MCD), which depletes cholesterol from plasma membrane, dramatically increased LMP2A abundance and LMP2A exosome secretion. Cholesterol depletion also blocked LMP2A endocytosis resulting in the accumulation of LMP2A on plasma membrane. LMP2A phosphorylation and ubiquitination were blocked by cholesterol depletion. LMP2A in the exosomal fraction was ubiquitinated but not phosphorylated. These results indicate that cholesterol-dependent LMP2A trafficking determines the fate of LMP2A degradation.
Collapse
Affiliation(s)
| | - Richard Longnecker
- *Corresponding author, Phone: +1-312-503-0467, Fax: +1-312-503-1339, E-mail:
| |
Collapse
|
43
|
Abstract
Lipid rafts are liquid-ordered (lo) phase microdomains proposed to exist in biological membranes. Rafts have been widely studied by isolating lo-phase detergent-resistant membranes (DRMs) from cells. Recent findings have shown that DRMs are not the same as preexisting rafts, prompting a major revision of the raft model. Nevertheless, raft-targeting signals identified by DRM analysis are often required for protein function, implicating rafts in a variety of cell processes.
Collapse
Affiliation(s)
- Deborah A Brown
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
44
|
Hiscott J, Nguyen TLA, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 2006; 25:6844-67. [PMID: 17072332 PMCID: PMC7100320 DOI: 10.1038/sj.onc.1209941] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Viral and microbial constituents contain specific motifs or pathogen-associated molecular patterns (PAMPs) that are recognized by cell surface- and endosome-associated Toll-like receptors (TLRs). In addition, intracellular viral double-stranded RNA is detected by two recently characterized DExD/H box RNA helicases, RIG-I and Mda-5. Both TLR-dependent and -independent pathways engage the IkappaB kinase (IKK) complex and related kinases TBK-1 and IKKvarepsilon. Activation of the nuclear factor kappaB (NF-kappaB) and interferon regulatory factor (IRF) transcription factor pathways are essential immediate early steps of immune activation; as a result, both pathways represent prime candidates for viral interference. Many viruses have developed strategies to manipulate NF-kappaB signaling through the use of multifunctional viral proteins that target the host innate immune response pathways. This review discusses three rapidly evolving areas of research on viral pathogenesis: the recognition and signaling in response to virus infection through TLR-dependent and -independent mechanisms, the involvement of NF-kappaB in the host innate immune response and the multitude of strategies used by different viruses to short circuit the NF-kappaB pathway.
Collapse
Affiliation(s)
- J Hiscott
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
45
|
Liu HP, Wu CC, Chang YS. PRA1 promotes the intracellular trafficking and NF-kappaB signaling of EBV latent membrane protein 1. EMBO J 2006; 25:4120-30. [PMID: 16917502 PMCID: PMC1560356 DOI: 10.1038/sj.emboj.7601282] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 07/24/2006] [Indexed: 11/09/2022] Open
Abstract
Latent membrane protein 1 (LMP1), which is an Epstein-Barr virus (EBV)-encoded oncoprotein, induces nuclear factor-kappa B (NF-kappaB) signaling by mimicking the tumor necrosis factor receptor (TNFR). LMP1 signals primarily from intracellular compartments in a ligand-independent manner. Here, we identify a new LMP1-interacting molecule, prenylated Rab acceptor 1 (PRA1), which interacts with LMP1 for the first time through LMP1's transmembrane domain, and show that PRA1 is involved in intracellular LMP1 trafficking and LMP1-induced NF-kappaB activity. Immunofluorescence and biochemical analyses revealed that LMP1 physically interacted with PRA1 at the Golgi apparatus, and the colocalization of LMP1 and PRA1 to the Golgi was sensitive to nocodazole and brefeldin A. Coexpression of a PRA1 export mutant or knockdown of PRA1 led to redistribution of LMP1 and its associated signaling molecules to the endoplasmic reticulum and subsequent impairment of LMP1-induced NF-kappaB activation, but had no effect on CD40- and TNFR1-mediated signaling or the functional integrity of the Golgi apparatus. These novel findings provide important new insights into LMP1, and identify an unexpected new role for PRA1 in cellular signaling.
Collapse
Affiliation(s)
- Hao-Ping Liu
- Institute of Microbiology and Immunology, National Yang Ming University, Shih-Pai, Taipei, Taiwan, Republic of China
| | - Chih-Ching Wu
- Proteomics Core Laboratory of Chang Gung Molecular Medicine Research Center, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan, Republic of China
| | - Yu-Sun Chang
- Proteomics Core Laboratory of Chang Gung Molecular Medicine Research Center, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan, Republic of China
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan, Republic of China
| |
Collapse
|
46
|
Soni V, Yasui T, Cahir-McFarland E, Kieff E. LMP1 transmembrane domain 1 and 2 (TM1-2) FWLY mediates intermolecular interactions with TM3-6 to activate NF-kappaB. J Virol 2006; 80:10787-93. [PMID: 16928765 PMCID: PMC1641781 DOI: 10.1128/jvi.01214-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Epstein-Barr virus oncoprotein LMP1 has six transmembrane domains (TMs) that enable intermolecular aggregation and constitutive signaling through two C-terminal cytosolic domains. Expression of both TMs 1 and 2 without the C terminus (TM1-2DeltaC) and TMs 3 to 6 fused to the C terminus (TM3-6) results in partial association, which is substantially decreased by TM1 F38WLY41 mutation to A38ALA41. We now investigate whether TM1-2DeltaC can functionally interact with TM3-6. TM1-2DeltaC induced TM3-6 to mediate NF-kappaB activation at 59% of LMP1 levels, and the effect was dependent on TM1-2 F38WLY41. TM1-2DeltaC even induced TM3-4 C terminus-mediated NF-kappaB activation to 44% of LMP1 levels. Surprisingly, this effect was TM1 F38WLY41 independent, indicative of a role for TMs 5 and 6 in TM1 F38WLY41 effects. TM3 W98 was also important for TM1-2DeltaC induction of TM3-6-mediated NF-kappaB activation, for association, and for TM1 F38WLY41 dependence on C-terminal NF-kappaB activation. These data support models in which the TM1 F38WLY41 effects are at least partially dependent on TM3 W98 and a residue(s) in TMs 5 and 6.
Collapse
Affiliation(s)
- Vishal Soni
- Channing Laboratory and Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02130, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The ubiquitous herpesvirus Epstein-Barr virus (EBV) is linked to the development of several malignancies, including nasopharyngeal carcinoma. Latent membrane protein 1 (LMP1) is considered the EBV oncogene as it is necessary for EBV-induced transformation of B lymphocytes and is able to transform Rat-1 fibroblasts. LMP1 can activate a wide array of signaling pathways, including phosphatidylinositol 3-kinase (PI3K)-Akt and NF-kappaB. Six sequence variants of LMP1, termed Alaskan, China 1, China 2, Med+, Med-, and NC, have been identified, and individuals can be infected with multiple variants. The frequencies of detection of these variants differ for various EBV-associated malignancies from different geographic regions. In this study, the biological and signaling properties of the LMP1 variants have been characterized. All of the LMP1 variants transformed Rat-1 fibroblasts, induced increased motility of HFK cells, and induced increased homotypic adhesion of BJAB cells. While all the variants activated the PI3K-Akt signaling pathway to similar extents, the Alaskan, China 1, and Med+ variants had limited binding to the E3 ubiquitin ligase component homologue of Slimb and had slightly enhanced NF-kappaB signaling. These findings indicate that the signature amino acid changes of the LMP1 variants do not hinder or enhance their in vitro transforming potentials or affect their signaling properties.
Collapse
Affiliation(s)
- Bernardo A Mainou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
48
|
Brinkmann MM, Schulz TF. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 2006; 87:1047-1074. [PMID: 16603506 DOI: 10.1099/vir.0.81598-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human gamma(1)-herpesvirus Epstein-Barr virus (EBV) and the gamma(2)-herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS) and herpesvirus ateles (HVA) all contain genes located adjacent to the terminal-repeat region of their genomes, encoding membrane proteins involved in signal transduction. Designated 'terminal membrane proteins' (TMPs) because of their localization in the viral genome, they interact with a variety of cellular signalling molecules, such as non-receptor protein tyrosine kinases, tumour-necrosis factor receptor-associated factors, Ras and Janus kinase (JAK), thereby initiating further downstream signalling cascades, such as the MAPK, PI3K/Akt, NF-kappaB and JAK/STAT pathways. In the case of TMPs expressed during latent persistence of EBV and HVS (LMP1, LMP2A, Stp and Tip), their modulation of intracellular signalling pathways has been linked to the provision of survival signals to latently infected cells and, hence, a contribution to occasional cellular transformation. In contrast, activation of similar pathways by TMPs of KSHV (K1 and K15) and RRV (R1), expressed during lytic replication, may extend the lifespan of virus-producing cells, alter their migration and/or modulate antiviral immune responses. Whether R1 and K1 contribute to the oncogenic properties of KSHV and RRV has not been established satisfactorily, despite their transforming qualities in experimental settings.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
49
|
Narbonnet S, Mariamé B. The Epstein-Barr virus oncoprotein LMP1 inhibits the activity of viral or cellular promoters without inducing cytostasis. Virology 2006; 350:381-93. [PMID: 16533516 DOI: 10.1016/j.virol.2006.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 01/10/2006] [Accepted: 02/08/2006] [Indexed: 11/22/2022]
Abstract
The Latent Membrane Protein 1 of the Epstein-Barr virus is required for human B lymphocyte immortalization and functions as a constitutively activated member of the TNF-receptor family, through recruitment of TRAFs and TRADD molecules on its Carboxy-terminal domain, leading to the activation of NF-kappaB and AP1 transcription factors. The formation of the signaling complexes requires LMP1 oligomerization, a role assigned to the membrane-spanning domains of the molecule. There is, however, increasing evidence that these membrane-spanning domains are not only confined to oligomerization but play a direct role in downregulation of promoter activity and cytostasis. Here, we describe a new inhibitory activity which is effective on viral or cellular promoters (even the endogenous ones), requires only membrane-spanning domains 3-4 or 5-6 and is neither associated with cytostasis nor with apoptosis.
Collapse
Affiliation(s)
- Stéphane Narbonnet
- Centre de Physiopathologie Toulouse Purpan, U563 INSERM, CHU Purpan, BP 3028, 31024 Toulouse Cedex 3, France
| | | |
Collapse
|
50
|
Wan J, Zhang W, Wu L, Bai T, Zhang M, Lo KW, Chui YL, Cui Y, Tao Q, Yamamoto M, Akira S, Wu Z. BS69, a specific adaptor in the latent membrane protein 1-mediated c-Jun N-terminal kinase pathway. Mol Cell Biol 2006; 26:448-56. [PMID: 16382137 PMCID: PMC1346911 DOI: 10.1128/mcb.26.2.448-456.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) potently activates the cellular c-Jun N-terminal kinase (JNK) pathway by sequentially engaging an unknown adaptor, TRAF6, TAB1/TAK1, and JNKKs. We now show that BS69, a MYND domain-containing cellular protein, is the missing adaptor that bridges LMP1 and TRAF6, as the MYND domain and a separate region of BS69 bind to the carboxyl termini of LMP1 and TRAF6, respectively. While LMP1 promotes the interaction between BS69 and TRAF6, the complex formation between LMP1 and TRAF6 is BS69 dependent. A fraction of LMP1 and BS69 is constitutively colocalized in the membrane lipid rafts. Importantly, knockdown of BS69 by small interfering RNAs specifically inhibits JNK activation by LMP1 but not tumor necrosis factor alpha. Although overexpression of either BS69 or a mutant LMP1 without the cytoplasmic carboxyl tail is not sufficient to activate JNK, interestingly, when BS69 is covalently linked to the mutant LMP1, the chimeric protein restores the ability to activate JNK. This indicates that the recruitment and aggregation of BS69 is a prerequisite for JNK activation by LMP1.
Collapse
Affiliation(s)
- Jun Wan
- Department of Biochemistry, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|