1
|
Zhang C, Liu D. Transcription Factor Binding Site in Promoter Determines the Pattern of Plasmid-Based Transgene Expression In Vivo. Pharmaceutics 2024; 16:544. [PMID: 38675205 PMCID: PMC11055139 DOI: 10.3390/pharmaceutics16040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the regulation of transgene expression is critical for the success of plasmid-based gene therapy and vaccine development. In this study, we used two sets of plasmid vectors containing secreted embryonic alkaline phosphatase or the mouse IL-10 gene as a reporter and investigated the role of promoter elements in regulating transgene expression in vivo. We demonstrated in mice that hydrodynamic transfer of plasmids with the CMV promoter resulted in a high level of reporter gene expression that declined rapidly over time. In contrast, when plasmids with albumin promoters were used, a lower but sustained gene expression pattern was observed. We also found that plasmids containing a shorter CMV promoter sequence with fewer transcription factor binding sites showed a decrease in the peak level of gene expression without changing the overall pattern of reporter gene expression. The replacement of regulatory elements in the CMV promoter with a single regulatory element of the albumin promoter changed the pattern of transient gene expression seen in the CMV promoter to a pattern of sustained gene expression identical to that of a full albumin promoter. ChIP analyses demonstrated an elevated binding of acetylated histones and TATA box-binding protein to the promoter carrying regulatory elements of the albumin promoter. These results suggest that the strength of a promoter is determined by the number of appropriate transcription factor binding sites, while gene expression persistence is determined by the presence of regulatory elements capable of recruiting epigenetic modifying complexes that make the promoter accessible for transcription. This study provides important insights into the mechanisms underlying gene expression regulation in vivo, which can be used to improve plasmid-based gene therapy and vaccine development.
Collapse
Affiliation(s)
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, USA;
| |
Collapse
|
2
|
Grandgenett DP, Engelman AN. Brief Histories of Retroviral Integration Research and Associated International Conferences. Viruses 2024; 16:604. [PMID: 38675945 PMCID: PMC11054761 DOI: 10.3390/v16040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The field of retroviral integration research has a long history that started with the provirus hypothesis and subsequent discoveries of the retroviral reverse transcriptase and integrase enzymes. Because both enzymes are essential for retroviral replication, they became valued targets in the effort to discover effective compounds to inhibit HIV-1 replication. In 2007, the first integrase strand transfer inhibitor was licensed for clinical use, and subsequently approved second-generation integrase inhibitors are now commonly co-formulated with reverse transcriptase inhibitors to treat people living with HIV. International meetings specifically focused on integrase and retroviral integration research first convened in 1995, and this paper is part of the Viruses Special Issue on the 7th International Conference on Retroviral Integration, which was held in Boulder Colorado in the summer of 2023. Herein, we overview key historical developments in the field, especially as they pertain to the development of the strand transfer inhibitor drug class. Starting from the mid-1990s, research advancements are presented through the lens of the international conferences. Our overview highlights the impact that regularly scheduled, subject-specific international meetings can have on community-building and, as a result, on field-specific collaborations and scientific advancements.
Collapse
Affiliation(s)
- Duane P. Grandgenett
- Department of Molecular Microbiology and Immunology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Hoffmann W, Lipińska AD, Bieńkowska-Szewczyk K. Functional Analysis of a Frontal miRNA Cluster Located in the Large Latency Transcript of Pseudorabies Virus. Viruses 2022; 14:v14061147. [PMID: 35746619 PMCID: PMC9227234 DOI: 10.3390/v14061147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/28/2023] Open
Abstract
MicroRNAs (miRNAs) have been identified as a class of crucial regulators of virus-host crosstalk, modulating such processes as viral replication, antiviral immune response, viral latency, and pathogenesis. Pseudorabies virus (PRV), a model for the study of alphaherpesvirus biology, codes for 11 distinct miRNAs mapped to the ~4.6 kb intron of Large Latency Transcript (LLT). Recent studies have revealed the role of clusters consisting of nine and eleven miRNA genes in the replication and virulence of PRV. The function of separate miRNA species in regulating PRV biology has not been thoroughly investigated. To analyze the regulatory potential of three PRV miRNAs located in the frontal cluster of the LLT intron, we generated a research model based on the constitutive expression of viral miRNAs in swine testis cells (ST_LLT [1–3] cell line). Using a cell culture system providing a stable production of individual miRNAs at high levels, we demonstrated that the LLT [1–3] miRNA cluster significantly downregulated IE180, EP0, and gE at the early stages of PRV infection. It was further determined that LLT [1–3] miRNAs could regulate the infection process, leading to a slight distortion in transmission and proliferation ability. Collectively, our findings indicate the potential of LLT [1–3] miRNAs to retard the host responses by reducing viral antigenic load and suppressing the expansion of progeny viruses at the early stages of infection.
Collapse
|
4
|
Differences in the internalization of self-inactivating VSVG-pseudotyped murine leukemia virus-based vectors in human and murine cells. J Virol Methods 2018; 255:14-22. [PMID: 29425681 DOI: 10.1016/j.jviromet.2018.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 12/18/2022]
Abstract
Self-inactivating VSVG-pseudotyped murine leukemia virus (SIN-VSVG-MLV) has been widely used to generate stable cell lines and produce gene delivery vectors. Despite the broad cellular tropism of the VSVG-pseudotyped MLV, we observed differential viral transduction efficiency depending on the host cell type used. In order to determine the mechanism underlying these differences, we used a GFP-expressing SIN-VSVG-MLV and analyzed the major steps of viral transduction in different cell lines including human epithelial, T-lymphocytes, monocytes and murine fibroblast cells. We observed the better transduction efficiency in HeLa cells, which was 20-fold higher than THP-1 and NIH/3T3 cells. To quantify viral internalization, we determined genomic RNA content by quantifying the early reverse transcription product. Genomic RNA and transduction levels were correlated with HeLa cells showing the higher amount of early RT product followed by tsA201 cells, while NIH/3T3, Jurkat and THP-1 had the lowest amounts. Similar results were observed when the late reverse transcription product was analyzed. Reverse transcription efficiency was 66-85% in HeLa cells and about 30% in tsA201, NIH/3T3, Jurkat and THP-1 cells. Viral integration, determined by Alu-Nested-qPCR, was higher for HeLa and lowerst for Jurkat and THP-1 cells. Interestingly, we observed that viral entry was correlated with the cellular availability of clathrin-mediated endocytosis, which was higher in HeLa and tsA201 cells, potentially explaining the higher rates of SIN-VSVG-MLV transduction and early RT synthesis observed in these cell lines. In conclusion, the SIN-VSVG-MLV vector showed significantly different rates of infectivity depending on the host cell type, possibly due to differential rates of viral internalization.
Collapse
|
5
|
Grawenhoff J, Engelman AN. Retroviral integrase protein and intasome nucleoprotein complex structures. World J Biol Chem 2017; 8:32-44. [PMID: 28289517 PMCID: PMC5329712 DOI: 10.4331/wjbc.v8.i1.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/24/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
Retroviral replication proceeds through the integration of a DNA copy of the viral RNA genome into the host cellular genome, a process that is mediated by the viral integrase (IN) protein. IN catalyzes two distinct chemical reactions: 3’-processing, whereby the viral DNA is recessed by a di- or trinucleotide at its 3’-ends, and strand transfer, in which the processed viral DNA ends are inserted into host chromosomal DNA. Although IN has been studied as a recombinant protein since the 1980s, detailed structural understanding of its catalytic functions awaited high resolution structures of functional IN-DNA complexes or intasomes, initially obtained in 2010 for the spumavirus prototype foamy virus (PFV). Since then, two additional retroviral intasome structures, from the α-retrovirus Rous sarcoma virus (RSV) and β-retrovirus mouse mammary tumor virus (MMTV), have emerged. Here, we briefly review the history of IN structural biology prior to the intasome era, and then compare the intasome structures of PFV, MMTV and RSV in detail. Whereas the PFV intasome is characterized by a tetrameric assembly of IN around the viral DNA ends, the newer structures harbor octameric IN assemblies. Although the higher order architectures of MMTV and RSV intasomes differ from that of the PFV intasome, they possess remarkably similar intasomal core structures. Thus, retroviral integration machineries have adapted evolutionarily to utilize disparate IN elements to construct convergent intasome core structures for catalytic function.
Collapse
|
6
|
Hotspots of MLV integration in the hematopoietic tumor genome. Oncogene 2016; 36:1169-1175. [PMID: 27721401 PMCID: PMC5340798 DOI: 10.1038/onc.2016.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 01/16/2023]
Abstract
Extensive research has been performed regarding the integration sites of murine leukemia retrovirus (MLV) for the identification of proto-oncogenes. To date, the overlap of mutations within specific oligonucleotides across different tumor genomes has been regarded as a rare event; however, a recent study of MLV integration into the oncogene Zfp521 suggested the existence of a hotspot oligonucleotide for MLV integration. In the current review, we discuss the hotspots of MLV integration into several genes: c-Myc, Stat5a and N-myc, as well as ZFP521, as examined in tumor genomes. From this, MLV integration convergence within specific oligonucleotides is not necessarily a rare event. This short review aims to promote re-consideration of MLV integration within the tumor genome, which involves both well-known and potentially newly identified and novel mechanisms and specifications.
Collapse
|
7
|
Abstract
The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3'-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications.
Collapse
Affiliation(s)
- Paul Lesbats
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School , 450 Brookline Avenue, Boston, Massachusetts 02215 United States
| | - Peter Cherepanov
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K.,Imperial College London , St-Mary's Campus, Norfolk Place, London, W2 1PG, U.K
| |
Collapse
|
8
|
Abstract
The retroviral integrases are virally encoded, specialized recombinases that catalyze the insertion of viral DNA into the host cell's DNA, a process that is essential for virus propagation. We have learned a great deal since the existence of an integrated form of retroviral DNA (the provirus) was first proposed by Howard Temin in 1964. Initial studies focused on the genetics and biochemistry of avian and murine virus DNA integration, but the pace of discovery increased substantially with advances in technology, and an influx of investigators focused on the human immunodeficiency virus. We begin with a brief account of the scientific landscape in which some of the earliest discoveries were made, and summarize research that led to our current understanding of the biochemistry of integration. A more detailed account of recent analyses of integrase structure follows, as they have provided valuable insights into enzyme function and raised important new questions.
Collapse
Affiliation(s)
- Mark D Andrake
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111; ,
| | - Anna Marie Skalka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111; ,
| |
Collapse
|
9
|
Houzet L, Battini JL, Bernard E, Thibert V, Mougel M. A new retroelement constituted by a natural alternatively spliced RNA of murine replication-competent retroviruses. EMBO J 2003; 22:4866-75. [PMID: 12970198 PMCID: PMC212718 DOI: 10.1093/emboj/cdg450] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Replication of simple retroviruses depends on the recruitment of a single large primary transcript toward splicing, transport/packaging and translation regulations. In this respect, we studied the novel SD' 4.4 kb RNA of murine leukemia retroviruses (MLV) which results from alternative splicing of the primary transcript. We showed that SD' RNA was required for optimal replication since expression of a pre-spliced SD' RNA trans-complemented the impaired infectivity of a SD'-defective mutant. We monitored the fate of this novel transcript throughout early and late events of the viral life cycle. SD' RNA was specifically incorporated into virions demonstrating that the unspliced RNA was not the unique viral RNA present in virions. Furthermore, SD' RNA was reverse transcribed and its DNA copy integrated into the host genome, thus constituting a new splice donor-associated retroelement (SDARE) in infected cells. Finally, we showed that SD' mRNA encoded a 50 kDa polyprotein, and to a lower extent an additional 60 kDa polyprotein, which harbored Gag and integrase domains.
Collapse
Affiliation(s)
- Laurent Houzet
- Institut de Genetique Moleculaire, UMR5555 CNRS, Montpellier, 4 Boulevard Henri IV, CS89508, 34960 Montpellier, France
| | | | | | | | | |
Collapse
|
10
|
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma (OPA), a contagious lung cancer of sheep. Until recently, research on JSRV/OPA was hampered by the lack of a tissue culture system for the propagation of the virus. Historically, pathological samples (lung fluid) collected from sheep affected by OPA were the only source of infectious JSRV. Thus studies on the JSRV/OPA system were conducted only where field isolates of OPA cases were readily available. In the past 10 years, the deduction of the JSRV sequence (York et al. 1991; York 1992), the isolation of an infectious and oncogenic JSRV molecular clone (JSRV21) (Palmarini et al. 1999a) and the establishment of a rapid method to produce infectious virus in vitro (Palmarini et al. 1999a) sparked many studies at the molecular level that strengthened past observations and revealed new properties of this unique virus. Here, we will review the data accumulated so far on the molecular biology of JSRV using the infectious and oncogenic JSRV21 molecular clone as virus of reference.
Collapse
Affiliation(s)
- M Palmarini
- Department of Medical Microbiology and Parasitology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7386, USA.
| | | |
Collapse
|
11
|
Kandel ES, Nudler E. Template switching by RNA polymerase II in vivo. Evidence and implications from a retroviral system. Mol Cell 2002; 10:1495-502. [PMID: 12504023 DOI: 10.1016/s1097-2765(02)00777-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transfection of retrovirus packaging cells with linear DNA from a retroviral vector missing the 3' long terminal repeat (3' LTR) results in production of infectious virus. Analysis of the newly formed proviruses indicates that restoration of the 3' LTR sequences necessary for reverse transcription and integration occurred due to end-to-end template switching by mammalian RNA polymerase II (RNAP II) in the packaging cells. These observations argue that RNAP II can utilize double-strand breaks and gaps in DNA to generate "recombinant" transcripts in vivo and suggest a mechanism for mutation and recombination of retroviruses.
Collapse
Affiliation(s)
- Eugene S Kandel
- Department of Biochemistry, NYU Medical Center, New York, NY 10016, USA
| | | |
Collapse
|
12
|
Jin YF, Ishibashi T, Nomoto A, Masuda M. Isolation and analysis of retroviral integration targets by solo long terminal repeat inverse PCR. J Virol 2002; 76:5540-7. [PMID: 11991982 PMCID: PMC137013 DOI: 10.1128/jvi.76.11.5540-5547.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upon retroviral infection, the genomic RNA is reverse transcribed to make proviral DNA, which is then integrated into the host chromosome. Although the viral elements required for successful integration have been extensively characterized, little is known about the host DNA structure constituting preferred targets for proviral integration. In order to elucidate the mechanism for the target selection, comparison of host DNA sequences at proviral integration sites may be useful. To achieve simultaneous analysis of the upstream and downstream host DNA sequences flanking each proviral integration site, a Moloney murine leukemia virus-based retroviral vector was designed so that its integrated provirus could be removed by Cre-loxP homologous recombination, leaving a solo long terminal repeat (LTR). Taking advantage of the solo LTR, inverse PCR was carried out to amplify both the upstream and downstream cellular flanking DNA. The method called solo LTR inverse PCR, or SLIP, proved useful for simultaneously cloning the upstream and downstream flanking sequences of individual proviral integration sites from the polyclonal population of cells harboring provirus at different chromosomal sites. By the SLIP method, nucleotide sequences corresponding to 38 independent proviral integration targets were determined and, interestingly, atypical virus-host DNA junction structures were found in more than 20% of the cases. Characterization of retroviral integration sites using the SLIP method may provide useful insights into the mechanism for proviral integration and its target selection.
Collapse
Affiliation(s)
- Yi Feng Jin
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
13
|
Palmarini M, Sharp JM, de las Heras M, Fan H. Jaagsiekte sheep retrovirus is necessary and sufficient to induce a contagious lung cancer in sheep. J Virol 1999; 73:6964-72. [PMID: 10400795 PMCID: PMC112782 DOI: 10.1128/jvi.73.8.6964-6972.1999] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sheep pulmonary adenomatosis (SPA) is a contagious and experimentally transmissible lung cancer of sheep resembling human bronchiolo-alveolar carcinoma. A type D retrovirus, known as jaagsiekte sheep retrovirus (JSRV), has been associated with the etiology of SPA, but its exact role in the induction of the tumor has not been clear due to the lack of (i) a tissue culture system for the propagation of JSRV and (ii) an infectious JSRV molecular clone. To investigate the role of JSRV in the etiology of SPA, we isolated a full-length JSRV proviral clone, pJSRV21, from a tumor genomic DNA library derived from a natural case of SPA. pJSRV21 was completely sequenced and showed open reading frames in agreement with those deduced for the original South African strain of JSRV. In vivo transfection of three newborn lambs by intratracheal inoculation with pJSRV21 DNA complexed with cationic lipids showed that pJSRV21 is an infectious molecular clone. Viral DNA was detected in the peripheral blood mononuclear cells (PBMCs) of the transfected animals by a highly sensitive JSRV-U3 heminested PCR at various time points ranging from 2 weeks to 6 months posttransfection. In addition, proviral DNA was detected in the PBMCs, lungs, and mediastinal lymph nodes of two lambs sacrificed 9 months posttransfection, but no macroscopic or histological SPA lesion was induced. We prepared JSRV particles by transient transfection of 293T cells with a JSRV construct (pCMV2JS21) in which the upstream U3 was replaced with the cytomegalovirus early promoter. Four newborn lambs were inoculated with JSRV21 particles produced in this manner, and two of them showed the classical signs of SPA 4 months postinfection. The resulting tumors were positive for JSRV DNA and protein. Thus, JSRV21 is an infectious and pathogenic molecular clone and is necessary and sufficient to induce sheep pulmonary adenomatosis.
Collapse
Affiliation(s)
- M Palmarini
- Cancer Research Institute and Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
14
|
van der Houven van Oordt CW, Schouten TG, van der Eb AJ, Breuer ML. Differentially expressed transcripts in x-ray induced lymphomas identified by dioxygenin-labeled differential display. Mol Carcinog 1999. [DOI: 10.1002/(sici)1098-2744(199901)24:1<29::aid-mc5>3.0.co;2-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Viita H, Sen CK, Roy S, Siljamäki T, Nikkari T, Ylä-Herttuala S. High expression of human 15-lipoxygenase induces NF-kappaB-mediated expression of vascular cell adhesion molecule 1, intercellular adhesion molecule 1, and T-cell adhesion on human endothelial cells. Antioxid Redox Signal 1999; 1:83-96. [PMID: 11225735 DOI: 10.1089/ars.1999.1.1-83] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Expression of 15-lipoxygenase (15-LO) is induced over 100-fold in early fatty streak lesions. 15-LO activity leads to the production of specific lipid hydroperoxides, which can have major effects on the expression of proinflammatory genes involved in atherogenesis. We have used retrovirus-mediated gene transfer to achieve stable high expression of 15-LO in human endothelial ECV304 cells. These cells were used to study the effects of 15-LO on the expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), activation of nuclear factor kappa B (NF-kappaB), and T-cell adhesion on endothelial cells. NF-kappaB activation was greatly potentiated by increased 15-LO activity in the stably transduced cells, and both VCAM-1 and ICAM-1 were significantly induced in these cells in response to tumor necrosis factor-alpha (TNF-alpha) and phorbol 12-myristate 13-acetate (PMA) stimulation, as studied by flow cytometry. The induction of ICAM-1 was sensitive to antioxidants in a dose-dependent manner. The adherence of Jurkat T cells on the 15-LO-expressing endothelial cells was markedly induced after PMA stimulation. These results indicate that 15-LO activity may be involved in the early pathogenesis of atherosclerosis by inducing VCAM-1 and ICAM-1 expression and by increasing T-cell adhesion on the endothelium.
Collapse
Affiliation(s)
- H Viita
- A.I. Virtanen Institute, University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
16
|
Tzavaras T, Kalogera C, Eftaxia S, Saragosti S, Pagoulatos GN. Clone-specific high-frequency retrotransposition of a recombinant virus containing a VL30 promoter in SV40-transformed NIH3T3 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:186-98. [PMID: 9804952 DOI: 10.1016/s0167-4781(98)00164-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A recombinant virus, containing the promoter of a VL30 LTR and tagged with the neomycin gene as a selection and indicator marker, was constructed to investigate transposition events in NIH3T3 cells after SV40 transformation. This retroviral construct was transfected into psi/CRE packaging cells, and pseudovirions were used to infect NIH3T3 cells. Clones resistant to G418 bearing single-copy integrations of the recombinant virus were isolated and transformed by SV40 virus. Transpositions were detected through RFLPs with a neomycin probe and 'retrotransposition' was further confirmed by inverse PCR and DNA sequencing of transposed and parental copies. We found that: (1) retrotransposition of this recombinant virus occurred with a high frequency in a parental clone transformed with SV40 virus suggesting that the frequency of retrotransposition depended on the initial site of provirus integration; (2) the transposition frequency was independent of the transcription level of the recombinant construct; and (3) analysis of transposition-positive transformants showed that the high transposition frequency appeared to be associated with the induction of endogenous reverse transcriptases.
Collapse
Affiliation(s)
- T Tzavaras
- Laboratory of General Biology, Medical School, University of Ioannina, GR 45 110 Ioannina, Greece
| | | | | | | | | |
Collapse
|
17
|
List J, Haase AT. Integration of visna virus DNA occurs and may be necessary for productive infection. Virology 1997; 237:189-97. [PMID: 9356331 DOI: 10.1006/viro.1997.8785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Proviral integration is thought to be an obligate step of the retroviral replication cycle but the lentivirus visna has been reported to replicate in sheep choroid plexus (SCP) cultures in the absence of proviral integration. Because of new evidence that visna virus has a functional integrase, we reexamined visna virus infection of SCP cultures and found that proviral integration does indeed occur in this setting. While the majority of viral DNA remains unintegrated, integrated proviruses arise early in infection and accumulate over time. The sequences of the resulting host-virus DNA junctions show that, like other retroviruses, visna loses terminal nucleotides from its DNA upon integration. However, unlike other retroviruses, in over half the host-U3 junctions analyzed only a single nucleotide was lost such that the universally conserved CA dinucleotide, two nucleotides from the end of unintegrated viral DNA, did not directly abut host sequences in the provirus. We analyzed the role of integration in visna replication by introducing a series of five mutations into the integrase gene of molecularly cloned visna virus LV1-1KS1. Each mutation abolished viral replication, suggesting that integration may be an obligatory step in replication. We also documented productive infection of SCP cultures in which cell division had been blocked by g-irradiation. The ability of visna to integrate and to replicate in nondividing cells points to the possible utility of visna-based vectors for gene transfer into differentiated cells.
Collapse
Affiliation(s)
- J List
- Department of Microbiology, University of Minnesota, 420 Delaware Street S.E., Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
18
|
Carroll R, Lin JT, Dacquel EJ, Mosca JD, Burke DS, St Louis DC. A human immunodeficiency virus type 1 (HIV-1)-based retroviral vector system utilizing stable HIV-1 packaging cell lines. J Virol 1994; 68:6047-51. [PMID: 8057479 PMCID: PMC237010 DOI: 10.1128/jvi.68.9.6047-6051.1994] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have constructed stable human immunodeficiency virus (HIV) packaging cell lines that when transfected with an HIV-based retroviral vector produce packaged vectors capable of transducing susceptible CD4+ cells. This HIV-1-based retroviral vector system has the potential for providing targeted delivery and regulated expression of immunogens or antiviral agents in CD4+ cells.
Collapse
Affiliation(s)
- R Carroll
- Research Laboratory, Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | | | | | | | | | | |
Collapse
|
19
|
Bultman SJ, Klebig ML, Michaud EJ, Sweet HO, Davisson MT, Woychik RP. Molecular analysis of reverse mutations from nonagouti (a) to black-and-tan (a(t)) and white-bellied agouti (Aw) reveals alternative forms of agouti transcripts. Genes Dev 1994; 8:481-90. [PMID: 8125260 DOI: 10.1101/gad.8.4.481] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The agouti gene regulates the differential production of eumelanin (black or brown) and phaeomelanin (yellow) pigment granules by melanocytes in the hair follicles of mice. The original nonagouti (a) allele, which confers a predominantly black coat color, has been shown to revert to two other more dominant agouti alleles, black-and-tan (a(t)) and white-bellied agouti (Aw), with an exceptionally high frequency. The a(t) and Aw alleles confer phenotypes in which the pigmentation is not uniformly distributed over the dorsal and ventral surfaces of the animal; in both cases the ventral surface of the animal is markedly lighter than the dorsal surface due to an increase in phaeomelanin production. To understand the unusually high reversion rate of a to a(t) or Aw, and to decipher the molecular events associated with the different pigmentation patterns associated with these three agouti alleles, we have characterized a, a(t) and Aw at the molecular level. Here, we report that insertions of 11, 6, and 0.6 kb are present at precisely the same position in the first intron of the agouti gene in a, a(t), and Aw, respectively. The a insertion consists of a 5.5-kb VL30 element that has incorporated 5.5 kb of additional sequence internally; this internal sequence is flanked by 526-bp direct repeats. The a(t) allele contains only the VL30 element and a single, internal 526-bp repeat. The Aw allele has only a solo VL30 LTR. Based on the comparison of the structure of the a(t) and Aw insertions, we propose that reverse mutations occur by excision of inserted sequences in a through homologous recombination, utilizing either the 526-bp direct repeats to generate a(t) or the VL30 LTRs to generate Aw. Moreover, the analysis of these three alleles has allowed us to identify additional exons of the agouti gene that give rise to alternatively processed forms of agouti mRNA. We demonstrate that the distinct insertions in a, a(t) and Aw cause pigmentation differences by selectively inactivating the expression of different forms of agouti transcripts.
Collapse
Affiliation(s)
- S J Bultman
- Biology Division, Oak Ridge National Laboratory, Tennessee 37831-8077
| | | | | | | | | | | |
Collapse
|
20
|
Panganiban AT, Talbot KJ. Efficient insertion from an internal long terminal repeat (LTR)-LTR sequence on a reticuloendotheliosis virus vector is imprecise and cell specific. J Virol 1993; 67:1564-71. [PMID: 8382311 PMCID: PMC237527 DOI: 10.1128/jvi.67.3.1564-1571.1993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To examine the fidelity and efficiency of integration from a covalently closed long terminal repeat (LTR)-LTR sequence in vivo, we isolated individual spleen necrosis virus proviruses that arose following infection of chicken embryo fibroblasts (CEFs) and sequenced the provirus-cell DNA junctions. Some but not all CEF preparations allowed efficient insertion from the internal sequence. Moreover, in contrast to integration from the normal ends of the viral DNA, which occurs with precision with respect to the viral DNA, insertion from the internal sequence was not precise. In particular, there were short deletions of variable size from the viral DNA and these proviruses were not flanked by short direct repeats. Although this imprecise insertion can be efficient in CEFs, such integration is very inefficient in two other cell types (D17 and QT47) that support the replication of reticuloendotheliosis viruses. Thus, it is possible that there is a cell-specific factor(s) in CEFs required for efficient but imprecise insertion or, alternatively, D17 and QT47 cells contain a factor that abrogates integration from an internal LTR-LTR junction. Virus particles released from CEFs do not efficiently use the LTR-LTR junction following infection of D17 cells. Therefore, if there is a CEF-specific factor required for insertion, it does not appear to be transferred through particles.
Collapse
Affiliation(s)
- A T Panganiban
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706
| | | |
Collapse
|
21
|
Fredholm M, Policastro PF, Wilson MC. The dispersion of defective endogenous murine retroviral elements suggests retrotransposition-mediated amplification. DNA Cell Biol 1991; 10:713-22. [PMID: 1683774 DOI: 10.1089/dna.1991.10.713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The dispersion of four replication-defective endogenous proviruses, originally detected in 129 strain mice and shown to have extensive deletions of gag, pol, and env gene regions, was investigated in 13 inbred strains and substrains of mice. Using probes to sequences flanking the integration sites in 129 mice, unique genomic Eco RI fragments were assigned to each of the four endogenous proviral elements. Analyses revealed that certain of these proviral elements are present both in strains closely related to strain 129 (i.e., strains 101 and LP/J) and in more distantly related strains (i.e., strains BALB/cJ, A/J, and C3H/HeJ). In mouse strains lacking proviral integration at a particular locus, the size of the corresponding Eco RI genomic fragment and absence of a characteristic Kpn I site indicated the lack of a residual solitary long terminal repeat. Hybridization of oligonucleotide probes that distinguish the specific deletions present within these elements identified additional analogous proviral integrations at many different sites in all strains investigated. These data indicate that the diversification of these proviral elements found in inbred strains is generated by integration of new copies, rather than excision through homologous recombination. Moreover, the results are consistent with other endogenous retroviruses providing the trans-acting proteins necessary to package the defective viral RNA.
Collapse
Affiliation(s)
- M Fredholm
- Scripps Research Institute, Department of Molecular Biology and Neuropharmacology, La Jolla, CA 92037
| | | | | |
Collapse
|
22
|
Weber CA, Salazar EP, Stewart SA, Thompson LH. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J 1990; 9:1437-47. [PMID: 2184031 PMCID: PMC551832 DOI: 10.1002/j.1460-2075.1990.tb08260.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Human ERCC2 genomic clones give efficient, stable correction of the nucleotide excision repair defect in UV5 Chinese hamster ovary cells. One clone having a breakpoint just 5' of classical promoter elements corrects only transiently, implicating further flanking sequences in stable gene expression. The nucleotide sequences of a cDNA clone and genomic flanking regions were determined. The ERCC2 translated amino acid sequence has 52% identity (73% homology) with the yeast nucleotide excision repair protein RAD3. RAD3 is essential for cell viability and encodes a protein that is a single-stranded DNA dependent ATPase and an ATP dependent helicase. The similarity of ERCC2 and RAD3 suggests a role for ERCC2 in both cell viability and DNA repair and provides the first insight into the biochemical function of a mammalian nucleotide excision repair gene.
Collapse
Affiliation(s)
- C A Weber
- Biomedical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | | | | | | |
Collapse
|
23
|
De Groot RJ, Van Leen RW, Dalderup MJ, Vennema H, Horzinek MC, Spaan WJ. Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology 1989; 171:493-502. [PMID: 2548329 PMCID: PMC7131253 DOI: 10.1016/0042-6822(89)90619-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have established bovine papilloma virus (BPV)-transformed mouse C127 cell lines that synthesize the peplomer protein of the feline infectious peritonitis virus (FIPV) strain 79-1146. For this purpose, a new cassette expression vector pHSL, which carries the Drosophila HSp70 promotor and the polyadenylation signal of the Moloney murine leukemia virus long terminal repeat, was constructed. Cocultivation of the BPV-transformed cell lines with FIPV-permissive feline fcwf-D cells resulted in polykaryocyte formation. Since it depended on the presence of fcwf-D cells, binding of E2 to the cell receptor may be required for membrane fusion. E2 was synthesized as a core-glycosylated protein of 180K which was only slowly transported from the endoplasmic reticulum to the medial Golgi: of the E2-molecules labeled during a 1-hr pulse about half was still completely sensitive to endoglycosidase H after a 2-hr chase, while the remaining E2 had been chased into multiple, partially endoglycosidase H-resistant forms. Immunofluorescence studies also indicated that most E2 was retained intracellularly. Mice immunized with whole lysates of the transformed cells produced FIPV-neutralizing antibodies as shown by plaque reduction.
Collapse
Affiliation(s)
- R J De Groot
- Department of Infectious Diseases and Immunology, State University Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Mucenski ML, Bedigian HG, Shull MM, Copeland NG, Jenkins NA. Comparative molecular genetic analysis of lymphomas from six inbred mouse strains. J Virol 1988; 62:839-46. [PMID: 2828679 PMCID: PMC253640 DOI: 10.1128/jvi.62.3.839-846.1988] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Previous studies of 21 highly lymphomatous AKXD recombinant inbred mouse strains demonstrated correlations between lymphoma type, the somatic proviral DNA content of the lymphoma, and the frequency of virally induced rearrangements in eight common sites of viral integration (Myc, Pim-i, Pvt-1, Mlvi-1, Mlvi-2, Fis-1, Myb, and Evi-1). In this study we analyzed lymphomas from six inbred mouse strains, AKR/J, C58/J, HRS/J (hr/hr and hr/+), SJL/J, SEA/GnJ, and CWD/LeAgl, to determine whether these correlations are also evident in these strains. Mice of the AKR/J, C58/J, and HRS/J strains died exclusively of T-cell lymphomas. In contrast to earlier studies which showed a great disparity in the rate and incidence of lymphomas in HRS/J hr/hr and HRS/J hr/+ mice, we found a high incidence of T-cell lymphomas and the same mean age of onset of disease in both strains. SJL/J mice died primarily of pre-B-cell lymphomas, whereas CWD/LeAgl and SEA/GnJ mice died primarily of B-cell lymphomas. Somatically acquired mink cell focus-forming proviruses were detected only in T-cell lymphomas, whereas ecotropic proviruses were found in lymphomas from all hematopoietic cell lineages. No rearrangements were detected in the Fis-1, Mlvi-2, and Myb loci, whereas rearrangements were detected in the Mlvi-1, Myc, Pim-1, Pvt-1, and Evi-1 loci. Most rearrangements were found in T-cell lymphomas, and many were virally induced. These results are similar to those we obtained previously for lymphomas of 21 highly lymphomatous AKXD recombinant inbred mouse strains.
Collapse
Affiliation(s)
- M L Mucenski
- National Cancer Institute-Frederick Cancer Research Facility, Bionetics Research, Inc., Maryland 21701
| | | | | | | | | |
Collapse
|
25
|
Intracisternal A-particle genes in Mus musculus: a conserved family of retrovirus-like elements. Mol Cell Biol 1988. [PMID: 6821514 DOI: 10.1128/mcb.1.3.216] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structural organization of intracisternal A-particle genes has been studied, using isolates from a mouse gene library in lambda phage Charon 4A. The predominant gene form among the isolates was 7.3 kilobases (kb) in length. R-loops between the 7-kb (35S) A-particle genomic ribonucleic acid and several of these genes were colinear, with no visible evidence of intervening deoxyribonucleic acid sequences. One recombinant was found with an A-particle gene that contained a 1.7-kb deletion. Using the deletion as a reference, the deoxyribonucleic acid and ribonucleic acid homology regions were localized with respect to one another and to the restriction map: the 5' terminus of the ribonucleic acid was several hundred base pairs within the 5' end of the deoxyribonucleic acid homology region. Restriction endonuclease fragments encompassing the 5' and 3' regions of one 7.3-kb gene were separately subcloned into pBR322. Heteroduplexes between the two subclones revealed an approximately 300-base pair segment of terminally redundant sequences. The cloned 3' fragment hybridized with restriction fragments from the 5' end of several other A-particle genes, demonstrating the presence of common (though not necessarily identical) terminally repeated sequences. A-particle genes varied in the occurrence of specific restriction sites at characteristic internal loci. However, heteroduplexes between several variant 7.3-kb genes showed continuous homology regions even when spread under stringent hybridization conditions. The relative abundance of restriction site variants was highly conserved in 12 laboratory strains of Mus musculus, in embryonic and adult tissues of a single inbred strain, and in the SC-1 cell line of feral mouse origin, but appeared to differ in a feral Japanese substrain, Mus musculus molossinus. Some evidence suggests that subsets of A-particle genes may have similar flanking sequences. The results are discussed in terms of the evolution of this multigene family.
Collapse
|
26
|
Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 1988. [PMID: 2827004 DOI: 10.1128/mcb.8.1.301] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AKXD-23 recombinant inbred mice develop myeloid tumors at a high frequency, unlike other AKXD recombinant inbred strains which develop B-cell lymphomas, T-cell lymphomas, or both. AKXD-23 myeloid tumors are monoclonal, and their DNA contains somatically acquired proviruses, suggesting that they are retrovirally induced. We identified a common site of ecotropic proviral integration that is present in the DNA of all AKXD-23 myeloid tumors that were analyzed and in the DNA of all myeloid tumors that occur in AKXD strains other than AKXD-23. We designated this locus Evi-1 (ecotropic viral integration site 1). Rearrangements in the Evi-1 locus were also detected in the DNA of a number of myeloid tumors and myeloid cell lines isolated from strains other than AKXD. In contrast, few Evi-1 rearrangements were detected in the DNA of T- or B-cell tumors. Evi-1 may thus identify a new proto-oncogene locus that is involved in myeloid disease.
Collapse
|
27
|
Mucenski ML, Taylor BA, Ihle JN, Hartley JW, Morse HC, Jenkins NA, Copeland NG. Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 1988; 8:301-8. [PMID: 2827004 PMCID: PMC363121 DOI: 10.1128/mcb.8.1.301-308.1988] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AKXD-23 recombinant inbred mice develop myeloid tumors at a high frequency, unlike other AKXD recombinant inbred strains which develop B-cell lymphomas, T-cell lymphomas, or both. AKXD-23 myeloid tumors are monoclonal, and their DNA contains somatically acquired proviruses, suggesting that they are retrovirally induced. We identified a common site of ecotropic proviral integration that is present in the DNA of all AKXD-23 myeloid tumors that were analyzed and in the DNA of all myeloid tumors that occur in AKXD strains other than AKXD-23. We designated this locus Evi-1 (ecotropic viral integration site 1). Rearrangements in the Evi-1 locus were also detected in the DNA of a number of myeloid tumors and myeloid cell lines isolated from strains other than AKXD. In contrast, few Evi-1 rearrangements were detected in the DNA of T- or B-cell tumors. Evi-1 may thus identify a new proto-oncogene locus that is involved in myeloid disease.
Collapse
Affiliation(s)
- M L Mucenski
- Mammalian Genetics Laboratory, National Cancer Institute, Frederick, Maryland 21701
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Yee JK, Moores JC, Jolly DJ, Wolff JA, Respess JG, Friedmann T. Gene expression from transcriptionally disabled retroviral vectors. Proc Natl Acad Sci U S A 1987; 84:5197-201. [PMID: 3474647 PMCID: PMC298821 DOI: 10.1073/pnas.84.15.5197] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Retroviral vectors are used for the efficient transfer of foreign genes into mammalian cells. We report here the construction of murine retrovirus-based vectors carrying the full-length cDNA for human hypoxanthine phosphoribosyltransferase (HPRT; EC 2.4.2.8) and from which the enhancer sequences, the "CAAT box," and the "TATA box" in the long terminal repeats (LTRs) have been deleted. After infection of HPRT-deficient rat cells by the vectors, transcriptional activity from the 5' LTR was undetectable and expression of the HPRT cDNA was dependent on an internal promoter. Removal of the LTR regulatory elements increased HPRT gene expression from an internal promoter, indicating interference between the two sets of transcriptional signals. Such disabled vectors may reduce the likelihood of undesirable genetic changes through insertional mutagenesis in cells infected with retroviral vectors.
Collapse
|
30
|
Ishimoto A, Takimoto M, Adachi A, Kakuyama M, Kato S, Kakimi K, Fukuoka K, Ogiu T, Matsuyama M. Sequences responsible for erythroid and lymphoid leukemia in the long terminal repeats of Friend-mink cell focus-forming and Moloney murine leukemia viruses. J Virol 1987; 61:1861-6. [PMID: 3033317 PMCID: PMC254191 DOI: 10.1128/jvi.61.6.1861-1866.1987] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite the high degree of homology (91%) between the nucleotide sequences of the Friend-mink cell focus-forming (MCF) and the Moloney murine leukemia virus (MuLV) genomic long terminal repeats (LTRs), the pathogenicities determined by the LTR sequences of the two viruses are quite different. Friend-MCF MuLV is an erythroid leukemia virus, and Moloney MuLV is a lymphoid leukemia virus. To map the LTR sequences responsible for the different disease specificities, we constructed nine viruses with LTRs recombinant between the Friend-MCF and Moloney MuLVs. Analysis of the leukemia induced with the recombinant viruses showed that a 195-base-pair nucleotide sequence, including a 75-base-pair nucleotide Moloney enhancer, is responsible for the tissue-specific leukemogenicity of Moloney MuLV. However, not only the enhancer but also its downstream sequences appear to be necessary. The Moloney virus enhancer and its downstream sequence exerted a dominant effect over that of the Friend-MCF virus, but the enhancer sequence alone did not. The results that three of the nine recombinant viruses induced both erythroid and lymphoid leukemias supported the hypothesis that multiple viral genetic determinants control both the ability to cause leukemia and the type of leukemia induced.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Recombinant/physiology
- DNA, Viral/physiology
- Enhancer Elements, Genetic
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/pathogenicity
- Gene Expression Regulation
- Genes, Viral
- Leukemia Virus, Murine/genetics
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Experimental/genetics
- Leukemia, Lymphoid/genetics
- Mice
- Mink Cell Focus-Inducing Viruses/genetics
- Mink Cell Focus-Inducing Viruses/pathogenicity
- Moloney murine leukemia virus/genetics
- Moloney murine leukemia virus/pathogenicity
- Organ Specificity
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Sequence Homology, Nucleic Acid
Collapse
|
31
|
Viral Sequences. Viruses 1987. [DOI: 10.1016/b978-0-12-512516-1.50005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
32
|
|
33
|
Grzeschik KH. The role of somatic cell genetics in human gene mapping. EXPERIENTIA 1986; 42:1128-37. [PMID: 3533605 DOI: 10.1007/bf01941287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
34
|
Cuypers HT, Selten GC, Zijlstra M, de Goede RE, Melief CJ, Berns AJ. Tumor progression in murine leukemia virus-induced T-cell lymphomas: monitoring clonal selections with viral and cellular probes. J Virol 1986; 60:230-41. [PMID: 3091854 PMCID: PMC253921 DOI: 10.1128/jvi.60.1.230-241.1986] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Clonal selections occurring during the progression of Moloney murine leukemia virus (MuLV)-induced T-cell lymphomas in mice were examined in primary and transplanted tumors by monitoring various molecular markers: proviral integration patterns, MuLV insertions near c-myc and pim-1, and rearrangements of the immunoglobulin heavy chain and beta-chain T-cell receptor genes. The results were as follows. Moloney MuLV frequently induced oligoclonal tumors with proviral insertions near c-myc or pim-1 in the independent clones. Moloney MuLV acted as a highly efficient insertional mutagen, able to activate different (putative) oncogenes in one cell lineage. Clonal selections during tumor progression were frequently marked by the acquisition of new proviral integrations. Independent tumor cell clones exhibited a homing preference upon transplantation in syngeneic hosts and were differently affected by the route of transplantation.
Collapse
|
35
|
Abstract
Extrachromosomal linear copia elements were isolated and cloned from cultured Drosophila melanogaster cells. Four full length copia recombinants were characterised. Each contains a full sized copy of copia bounded by its direct repeats. The sequences of the ends of the copia inserts were determined. All of the termini are identical to those of genomic copias except for a single base deletion from one end of one clone. These results suggest that the priming for initiation of copia reverse transcription differs from normal retroviral models. Southern blot analysis of uncloned full length copia circles shows that approximately 50% correspond to the predicted circularisation product of such linears. We propose that this class of circles and the linear DNAs described here are precursors to integrated genomic copia elements.
Collapse
|
36
|
Abstract
Murine leukemia viruses (MuLVs) are retroviruses which induce a broad spectrum of hematopoietic malignancies. In contrast to the acutely transforming retroviruses, MuLVs do not contain transduced cellular genes, or oncogenes. Nonetheless, MuLVs can cause leukemias quickly (4 to 6 weeks) and efficiently (up to 100% incidence) in susceptible strains of mice. The molecular basis of MuLV-induced leukemia is not clear. However, the contribution of individual viral genes to leukemogenesis can be assayed by creating novel viruses in vitro using recombinant DNA techniques. These genetically engineered viruses are tested in vivo for their ability to cause leukemia. Leukemogenic MuLVs possess genetic sequences which are not found in nonleukemogenic viruses. These sequences control the histologic type, incidence, and latency of disease induced by individual MuL Vs.
Collapse
|
37
|
Selten G, Cuypers HT, Berns A. Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas. EMBO J 1985. [PMID: 2992942 PMCID: PMC554419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Proviral integration near the Pim-1 gene is frequently observed in murine leukemia virus induced T-cell lymphomas in mice. Integration in the Pim-1 domain is associated with the presence of enhanced levels of a Pim-1 mRNA, which is normally expressed as a predominant 2.8 kb species at low levels in lymphoid tissues. The majority of integrations occurred in the 3' region of the Pim-1 transcription unit. This resulted in transcripts ranging in size from 2.0 to 2.6 kb, which were terminated in the 5' proviral LTR. Dependent on the site of integration up to 1300 bases of Pim-1 specific sequences were missing from the modified Pim-1 mRNA in these lymphomas.
Collapse
|
38
|
Panganiban AT, Temin HM. The retrovirus pol gene encodes a product required for DNA integration: identification of a retrovirus int locus. Proc Natl Acad Sci U S A 1984; 81:7885-9. [PMID: 6083562 PMCID: PMC392257 DOI: 10.1073/pnas.81.24.7885] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We mutagenized cloned spleen necrosis virus DNA to identify a region of the retrovirus genome encoding a polypeptide required for integration of viral DNA. Five plasmids bearing different lesions in the 3' end of the pol gene were examined for the ability to integrate or replicate following transfection of chicken embryo fibroblasts. Transfection with one of these DNAs resulted in the generation of mutant virus incapable of integrating but able to replicate at low levels; this phenotype is identical to that of mutants bearing alterations in the cis-acting region, att. To determine whether the 3' end of the pol gene encodes a protein that interacts with att, we did a complementation experiment. Cells were first infected with an att- virus and then superinfected with the integration-deficient virus containing a lesion in the pol gene and a wild-type att site. The results showed that the att- virus provided a transacting function allowing integration of viral DNA derived from the mutant bearing a wild-type att site. Thus, the 3' end of the pol gene serves as an "int" locus and encodes a protein mediating integration of retrovirus DNA through interaction with att.
Collapse
|
39
|
Freund R, Meselson M. Long terminal repeat nucleotide sequence and specific insertion of the gypsy transposon. Proc Natl Acad Sci U S A 1984; 81:4462-4. [PMID: 6087324 PMCID: PMC345610 DOI: 10.1073/pnas.81.14.4462] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have determined the nucleotide sequences of the long terminal repeats of the transposable element gypsy from the cloned mutant alleles sc1, bx3, and bx34e. These mutations are suppressible by the suppressor of Hairy-wing, su(Hw). The long terminal repeats are 482 base pairs long and are highly conserved. In each case, gypsy is inserted into the sequence T-A-C-A-T-A and generates a duplication of the sequence T-A-C-A. This was verified by sequencing an empty site in the wild-type bx gene. Consideration of the sequence of the long terminal repeats and their surroundings limits the possible explanations for the mechanism of mutation by these gypsy insertions and for their suppression by su(Hw).
Collapse
|
40
|
Kollek R, Stocking C, Smadja-Joffe F, Ostertag W. Molecular cloning and characterization of a leukemia-inducing myeloproliferative sarcoma virus and two of its temperature-sensitive mutants. J Virol 1984; 50:717-24. [PMID: 6328001 PMCID: PMC255729 DOI: 10.1128/jvi.50.3.717-724.1984] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The myeloproliferative sarcoma virus (MPSV) induces extensive hematopoietic changes, including spleen foci in adult mice, and transforms fibroblasts in vitro. NRK nonproducer cell lines of MPSV and ts temperature-sensitive mutants were analyzed by restriction enzyme digestion and Southern blotting. EcoRI fragments containing the proviral DNAs of MPSV and two temperature-sensitive mutants and rat cellular sequences homologous to c-mos were molecularly cloned. By comparing restriction enzyme cleavage sites, it was shown that the MPSV genome consists only of sequences related either to Moloney murine leukemia virus or to the c-mos mouse oncogenic sequences. Two regions of fragment heterogeneity were observed: (i) in the defective pol gene, where MPSV and the two cloned temperature-sensitive mutants were different from Moloney murine sarcoma virus and from each other, although MPSV wild-type retained more of the pol gene than any of the Moloney murine sarcoma virus isolates; (ii) in the area 3' to the mos gene, which was identical in MPSV and its temperature-sensitive mutants but different from other Moloney murine sarcoma virus variants. Transfection of cloned MPSV DNA in RAT4 cells and virus rescue on infection with Friend murine leukemia virus yielded MPSV which transformed fibroblasts in vitro and also induced spleen foci in adult mice, thus proving that both properties are coded by the same viral genome.
Collapse
|
41
|
Lenz J, Celander D, Crowther RL, Patarca R, Perkins DW, Haseltine WA. Determination of the leukaemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature 1984; 308:467-70. [PMID: 6323995 DOI: 10.1038/308467a0] [Citation(s) in RCA: 294] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although the murine retrovirus SL3-3 is highly leukaemogenic, in both the structure of its genome and in its properties of replication in tissue culture it closely resembles the nonleukaemogenic retrovirus Akv (refs 3, 4). An earlier investigation of the properties of recombinant SL3-3-Akv viruses localized the major determinant of leukaemogenicity outside the env gene, in a region of the viral genome that includes the gag gene and the noncoding long terminal repeat (LTR). To localize the determinant of SL3-3's leukaemogenicity more precisely we have now construced a recombinant provirus containing the LTR of SL3-3 and the coding region of Akv. The leukaemogenicity of these recombinants demonstrates that the determinant of leukaemogenicity lies within the SL3-3 LTR. Nucleotide sequencing of the LTRs of SL3-3 and Akv shows that they differ by a set of changes in the region thought to contain a transcriptional enhancer element. We suggest that enhancer region sequences are the major determinants of leukaemogenicity in these viruses.
Collapse
|
42
|
Koch W, Zimmermann W, Oliff A, Friedrich R. Molecular analysis of the envelope gene and long terminal repeat of Friend mink cell focus-inducing virus: implications for the functions of these sequences. J Virol 1984; 49:828-40. [PMID: 6321768 PMCID: PMC255544 DOI: 10.1128/jvi.49.3.828-840.1984] [Citation(s) in RCA: 115] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We sequenced the envelope (env) gene and 3' long terminal repeat of a Friend mink cell focus-inducing virus (F-MCFV). We also sequenced the gp70 coding regions for two cDNA clones of another F-MCFV. The deduced amino acid sequence of the env gene products of both F-MCFVs were compared to the corresponding sequences of other MCFVs and of ecotropic viruses. The env polypeptides of the different viruses showed long stretches of homology in the carboxy-terminal half of gp70 and in p15env ("constant region"). The amino-terminal half of gp70 was very similar in all MCFVs, but showed extensive variations relative to the ecotropic viruses ("differential region"). This differential region in all MCFVs is of endogeneous origin. We show evidence that this region carries determinants for ecotropic or polytropic host range. No indication could be found that the env gene products determine the histological type of disease caused by particular MCFVs. When the long terminal repeats of F-MCFV and Friend murine leukemia virus were compared with those of other viruses causing either lymphatic leukemia or erythroleukemia, several nucleotides were localized which might determine the histological type of disease caused by these viruses.
Collapse
|
43
|
Chen HR, Barker WC. Nucleotide sequences of the retroviral long terminal repeats and their adjacent regions. Nucleic Acids Res 1984; 12:1767-78. [PMID: 6322120 PMCID: PMC318619 DOI: 10.1093/nar/12.4.1767] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nucleotide sequences of the LTRs and their adjacent regions from 19 type C and one type B retrovirus were compared. Salient features are: (a) The R regions in the genomes of most of the type C retroviruses begin with GC and end with CA. (b) The mammalian type C retroviruses have a polyadenylation signal "AATAAA" in the R region, and most have a "CAT" box and a "TATA" box in the U3 region. (c) The avian type C retroviruses have an AATAAA sequence, and some also have "CAT-like" and "TATA-like" boxes, in the U3 region. (d) As with many transposable elements, the IR regions of the proviruses begin with TG and end with CA, and the DR sequences in the host genomes flanking the proviruses are different from one another. Although SNV is an avian retrovirus, the nucleotide sequences in the R, U5, TBS, and PU region are more similar to the mammalian type C than to the avian type C retroviruses.
Collapse
|
44
|
Couez D, Deschamps J, Kettmann R, Stephens RM, Gilden RV, Burny A. Nucleotide sequence analysis of the long terminal repeat of integrated bovine leukemia provirus DNA and of adjacent viral and host sequences. J Virol 1984; 49:615-20. [PMID: 6319764 PMCID: PMC255509 DOI: 10.1128/jvi.49.2.615-620.1984] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nucleotide sequence of the 3' long terminal repeat and adjacent viral and host sequences was determined for a bovine leukemia provirus cloned from a bovine tumor. The long terminal repeat was found to comprise 535 nucleotides and to harbor at both ends an imperfect inverted repeat of 7 bases. Promoter-like sequences (Hogness box and CAT box), an mRNA capping site, and a core enhancer-related sequence were tentatively located. No kinship was detected between this bovine leukemia proviral fragment and other retroviral long terminal repeats, including that of human T-cell leukemia virus.
Collapse
|
45
|
Lasky RD, Troy FA. Possible DNA-RNA tumor virus interaction in human lymphomas: expression of retroviral proteins in Ramos lymphoma lines is enhanced after conversion with Epstein-Barr virus. Proc Natl Acad Sci U S A 1984; 81:33-7. [PMID: 6320170 PMCID: PMC344604 DOI: 10.1073/pnas.81.1.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Epstein-Barr virus (EBV)-genome-negative human lymphoma lines, Ramos and BJAB, can be converted by EBV in vitro into EBV-genome-positive virus nonproducer lines. These cell lines have been used to identify surface antigens unique to EBV, with the expectation that such determinants might be related to the antigenic target responsible for EBV-specific immunosurveillance. Antisera prepared in rabbits immunized with either whole cells or purified plasma membranes were used in immunoblot experiments to analyze antigenic differences resulting from expression of the resident EBV genome. Unexpectedly, an increase in polypeptides of 32 and 70 kilodaltons was consistently observed in the EBV-converted Ramos lines. In contrast, these antigens were not expressed in BJAB or in its EBV-converted lines. These data suggested that p32 and gp70 might be murine leukemia virus (MuLV)-coded antigens because Ramos, but not BJAB, had been passaged in athymic nude mice during establishment of this cell line. This conclusion was confirmed by using antisera specific for MuLV p30 and gp70. Retroviral antigens were expressed constitutively at low levels in Ramos. Quantitative immunoblotting showed that EBV conversion of Ramos amplified the expression of MuLV proteins 3- to 5-fold. The molecular mechanism responsible for the enhanced expression is unknown. The biological relevance of this phenomenon is also not clear, but the interaction between a DNA and a RNA tumor virus in a Burkitt lymphoma line that carries both viruses may have important biological consequences in relation to retrovirus latency and tumor induction. These results also show that caution must be used when ascribing "uniqueness" to EBV-determined antigens, particularly in the Ramos lines. This warning extends also to the use of Ramos cell lines as immunogens, because immunization of rabbits elicited antibodies that recognized proteins of the same size as the retroviral antigens.
Collapse
|
46
|
Panganiban AT, Temin HM. The terminal nucleotides of retrovirus DNA are required for integration but not virus production. Nature 1983; 306:155-60. [PMID: 6316141 DOI: 10.1038/306155a0] [Citation(s) in RCA: 150] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Deletion of specific nucleotides at either end of the long terminal repeat of the avian retrovirus, spleen necrosis virus, results in replication-competent but integration-defective virus. This result supports two conclusions: (1) the 5-base pair terminal inverted repeats and three to seven adjacent nucleotides are required for integration; (2) integration of retrovirus DNA is not required for retrovirus gene expression.
Collapse
|
47
|
Itin A, Keshet E. Nucleotide sequence analysis of the long terminal repeat of murine virus-like DNA (VL30) and its adjacent sequences: resemblance to retrovirus proviruses. J Virol 1983; 47:656-9. [PMID: 6620466 PMCID: PMC255309 DOI: 10.1128/jvi.47.3.656-659.1983] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
VL30 DNA represents a retrovirus-like multigene family of mice whose genetic origin is unknown. We have now determined the primary nucleotide sequences and the adjacent sequences of the long terminal direct repeats (LTRs) possessed by a randomly selected VL30 unit. The LTR of the VL30 unit comprised 435 nucleotide base pairs and had an inverted repeat of five bases at its 5' and 3' termini. At the joints with flanking mouse DNA was the VL30 sequence (5')TG . . . CA(3') and a tetranucleotide direct repeat of flanking sequences. At the inner boundary of the 5' LTR was an 18-base sequence that is complementary to tRNApro, and at the inner boundary of the 3' LTR was a purine-rich tract ending with AATG. These results suggested that VL30 DNA used the same integration strategy that is exercised by retrovirus proviruses and transposable elements and that the VL30 LTR is synthesized in a similar way that the LTR of retroviruses is synthesized. The data thus reinforce the retrovirus-like nature of VL30 genetic information.
Collapse
|
48
|
Ou CY, Boone LR, Yang WK. A novel sequence segment and other nucleotide structural features in the long terminal repeat of a BALB/c mouse genomic leukemia virus-related DNA clone. Nucleic Acids Res 1983; 11:5603-20. [PMID: 6310506 PMCID: PMC326300 DOI: 10.1093/nar/11.16.5603] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A recombinant DNA clone, named AL10, that contains murine leukemia virus (MuLV) related sequences was isolated from BALB/c mouse chromosomal DNA and examined in detail. Restriction endonuclease mapping revealed that the 10.5 kbp EcoRI insert consists of a 3.6 kbp left flanking cellular DNA region and a 6.9 kbp MuLV-related region that has a typical proviral LTR-gag-pol-env structure up to the EcoRI site in the env gene region. Comparison of the AL10 map with ecotropic and xenotropic virus isolates revealed many common restriction sites in the LTR and pol gene regions, but much fewer in the leader and gag regions. A stretch of 1,700 nucleotides containing the cellprovirus junctional region was sequenced and revealed transcriptional consensus signals and other structural features characteristic of MuLV LTRs, as well as two distinctive features: (a) a sequence of approximately 170 bp with direct and inverted terminal repeats not seen in infectious MuLV LTRs was identified in the U3 region between the "enhancer" region and the "CAT" box. This novel segment or its homologous sequences appear to be present in most of the endogenous MuLV-related LTRs and in other chromosomal locations of the mouse (b) The tRNA primer binding site is not complementary to proline tRNA, the primer for all known MuLVs, but is a 17/18 match with rat glutamine tRNA. The integration site of AL10 provirus was in a unique DNA region but contained an "Alu"-like short interdispersed repeat in the 5' adjacent cellular region. The AL10 proviral integration found in BALB/c was also apparent in RFM, AKR and SENCAR mouse cells but not in cells of NFS/N, C3H, HRS/J, SC-1, and a California Lake Casitas wild mouse.
Collapse
|
49
|
Miller AD, Jolly DJ, Friedmann T, Verma IM. A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): gene transfer into cells obtained from humans deficient in HPRT. Proc Natl Acad Sci U S A 1983; 80:4709-13. [PMID: 6308645 PMCID: PMC384113 DOI: 10.1073/pnas.80.15.4709] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A cDNA corresponding to the human gene for hypoxanthine phosphoribosyltransferase (HPRT; IMP:pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) has been ligated into murine retroviral vectors such that it is under the transcriptional control of viral long terminal repeats. Transfection of HPRT- cells followed by superinfection with various helper viruses has led to the rescue of chimeric virus capable of transmitting the HPRT+ phenotype to HPRT- rodent or human cells. These genetically transformed cells contain authentic human HPRT at levels similar to normal HPRT+ cells.
Collapse
|
50
|
Abstract
A 3,023-base nucleotide sequence of the M7 baboon endogenous virus genome, spanning the 5' noncoding region as well as the entire gag gene and part of the pol gene, is reported. Within the 562-base 5' noncoding region, a 21-base sequence complementary to the OH terminus of tRNApro is located immediately downstream from the long terminal repeat. Amino acid sequences were deduced from the 1,596 nucleotides comprising the gag gene, and the four structural gag polypeptides, p12, p15, p30, and p10, appeared to be coded contiguously. Only one termination codon interrupted the M7 gag and pol genes. The data suggest that 55 additional amino acids may be attached to the NH2 terminus of the gag precursor protein. However, such a sequence was not detected in virions or in virus-infected cells. With the exception of the p15 region, nucleotide and amino acid sequences of the gag and pol regions of M7 virus exhibited strong homologies to those of Moloney leukemia virus.
Collapse
|