1
|
Homer KA, Cross MR, Helms ER. Peak Week Carbohydrate Manipulation Practices in Physique Athletes: A Narrative Review. SPORTS MEDICINE - OPEN 2024; 10:8. [PMID: 38218750 PMCID: PMC10787737 DOI: 10.1186/s40798-024-00674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Physique athletes are ranked by a panel of judges against the judging criteria of the corresponding division. To enhance on-stage presentation and performance, competitors in certain categories (i.e. bodybuilding and classic physique) achieve extreme muscle size and definition aided by implementing acute "peaking protocols" in the days before competition. Such practices can involve manipulating nutrition and training variables to increase intramuscular glycogen and water while minimising the thickness of the subcutaneous layer. Carbohydrate manipulation is a prevalent strategy utilised to plausibly induce muscle glycogen supercompensation and subsequently increase muscle size. The relationship between carbohydrate intake and muscle glycogen saturation was first examined in endurance event performance and similar strategies have been adopted by physique athletes despite the distinct physiological dissimilarities and aims between the sports. OBJECTIVES The aim of this narrative review is to (1) critically examine and appraise the existing scientific literature relating to carbohydrate manipulation practices in physique athletes prior to competition; (2) identify research gaps and provide direction for future studies; and (3) provide broad practical applications based on the findings and physiological reasoning for coaches and competitors. FINDINGS The findings of this review indicate that carbohydrate manipulation practices are prevalent amongst physique athletes despite a paucity of experimental evidence demonstrating the efficacy of such strategies on physique performance. Competitors have also been observed to manipulate water and electrolytes in conjunction with carbohydrate predicated on speculative physiological mechanisms which may be detrimental for performance. CONCLUSIONS Further experimental evidence which closely replicates the nutritional and training practices of physique athletes during peak week is required to make conclusions on the efficacy of carbohydrate manipulation strategies. Quasi-experimental designs may be a feasible alternative to randomised controlled trials to examine such strategies due to the difficulty in recruiting the population of interest. Finally, we recommend that coaches and competitors manipulate as few variables as possible, and experiment with different magnitudes of carbohydrate loads in advance of competition if implementing a peaking strategy.
Collapse
Affiliation(s)
- Kai A Homer
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632, New Zealand.
| | - Matt R Cross
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632, New Zealand
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632, New Zealand
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
2
|
Kay JC, Elsey RM, Secor SM. Modest Regulation of Digestive Performance Is Maintained through Early Ontogeny for the American Alligator, Alligator mississippiensis. Physiol Biochem Zool 2020; 93:320-338. [PMID: 32492358 DOI: 10.1086/709443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The American alligator, Alligator mississippiensis, is an opportunistic carnivore that experiences an ontogenetic shift in food and feeding habits with an increase in body size. Alligators frequently feed on invertebrates and small fish as neonates and transition to feeding less frequently on larger vertebrates as they grow. We hypothesized that alligators experience an ontogenetic shift in the regulation of intestinal performance-modest regulation with frequent feeding early in life and wider regulation with less frequent feeding as they increase in body size. We tested this hypothesis by comparing postprandial responses in metabolic rate, organ masses, intestinal histology, digestive hydrolase activities, and intestinal nutrient uptake rates among neonate, juvenile, and subadult alligators. With feeding, alligators of all three age classes experienced a rapid increase in metabolic rate that peaked within 2 d and thereafter declined more slowly to prefeeding rates. Specific dynamic action increased with body mass and was equivalent to 32% of meal energy. For each age class, the majority of organs did not change in wet and dry mass with feeding. For subadult alligators, luminal gut pH varied regionally due to the acidic stomach, which continued to remain acidic with fasting. With feeding, epithelial enterocytes are remodeled from a pseudostratified to a stratified architecture and become infiltrated with lipid droplets. Feeding did not generate any significant change in the thickness of intestinal tissues, though it did induce an increase in enterocyte width and volume for subadults. For each age class, feeding generally did not result in significant changes in pancreatic trypsin, intestinal aminopeptidase, and intestinal nutrient uptake activities and capacities. Mass-specific nutrient uptake rates varied among age classes due to the higher rates exhibited by neonates. Among age classes, intestinal uptake capacities scaled allometrically (mass exponents <1) with body mass. Across these three age classes, the modest regulation of digestive performance with feeding and fasting for alligators appears to be ontogenetically conserved.
Collapse
|
3
|
Abstract
The gastrointestinal (GI) tract plays a critical role in delivering carbohydrate and fluid during prolonged exercise and can therefore be a major determinant of performance. The incidence of GI problems in athletes participating in endurance events is high, indicating that GI function is not always optimal in those conditions. A substantial body of evidence suggests that the GI system is highly adaptable. Gastric emptying as well as stomach comfort can be “trained” and perceptions of fullness decreased; some studies have suggested that nutrient-specific increases in gastric emptying may occur. Evidence also shows that diet has an impact on the capacity of the intestine to absorb nutrients. Again, the adaptations that occur appear to be nutrient specific. For example, a high-carbohydrate diet will increase the density of sodium-dependent glucose-1 (SGLT1) transporters in the intestine as well as the activity of the transporter, allowing greater carbohydrate absorption and oxidation during exercise. It is also likely that, when such adaptations occur, the chances of developing GI distress are smaller. Future studies should include more human studies and focus on a number of areas, including the most effective methods to induce gut adaptations and the timeline of adaptations. To develop effective strategies, a better understanding of the exact mechanisms underlying these adaptations is important. It is clear that “nutritional training” can improve gastric emptying and absorption and likely reduce the chances and/or severity of GI problems, thereby improving endurance performance as well as providing a better experience for the athlete. The gut is an important organ for endurance athletes and should be trained for the conditions in which it will be required to function.
Collapse
|
4
|
Abstract
The gastrointestinal (GI) tract plays a critical role in delivering carbohydrate and fluid during prolonged exercise and can therefore be a major determinant of performance. The incidence of GI problems in athletes participating in endurance events is high, indicating that GI function is not always optimal in those conditions. A substantial body of evidence suggests that the GI system is highly adaptable. Gastric emptying as well as stomach comfort can be "trained" and perceptions of fullness decreased; some studies have suggested that nutrient-specific increases in gastric emptying may occur. Evidence also shows that diet has an impact on the capacity of the intestine to absorb nutrients. Again, the adaptations that occur appear to be nutrient specific. For example, a high-carbohydrate diet will increase the density of sodium-dependent glucose-1 (SGLT1) transporters in the intestine as well as the activity of the transporter, allowing greater carbohydrate absorption and oxidation during exercise. It is also likely that, when such adaptations occur, the chances of developing GI distress are smaller. Future studies should include more human studies and focus on a number of areas, including the most effective methods to induce gut adaptations and the timeline of adaptations. To develop effective strategies, a better understanding of the exact mechanisms underlying these adaptations is important. It is clear that "nutritional training" can improve gastric emptying and absorption and likely reduce the chances and/or severity of GI problems, thereby improving endurance performance as well as providing a better experience for the athlete. The gut is an important organ for endurance athletes and should be trained for the conditions in which it will be required to function.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- School of Sport, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
5
|
Abstract
It is becoming increasingly clear that adaptations, initiated by exercise, can be amplified or reduced by nutrition. Various methods have been discussed to optimize training adaptations and some of these methods have been subject to extensive study. To date, most methods have focused on skeletal muscle, but it is important to note that training effects also include adaptations in other tissues (e.g., brain, vasculature), improvements in the absorptive capacity of the intestine, increases in tolerance to dehydration, and other effects that have received less attention in the literature. The purpose of this review is to define the concept of periodized nutrition (also referred to as nutritional training) and summarize the wide variety of methods available to athletes. The reader is referred to several other recent review articles that have discussed aspects of periodized nutrition in much more detail with primarily a focus on adaptations in the muscle. The purpose of this review is not to discuss the literature in great detail but to clearly define the concept and to give a complete overview of the methods available, with an emphasis on adaptations that are not in the muscle. Whilst there is good evidence for some methods, other proposed methods are mere theories that remain to be tested. 'Periodized nutrition' refers to the strategic combined use of exercise training and nutrition, or nutrition only, with the overall aim to obtain adaptations that support exercise performance. The term nutritional training is sometimes used to describe the same methods and these terms can be used interchangeably. In this review, an overview is given of some of the most common methods of periodized nutrition including 'training low' and 'training high', and training with low- and high-carbohydrate availability, respectively. 'Training low' in particular has received considerable attention and several variations of 'train low' have been proposed. 'Training-low' studies have generally shown beneficial effects in terms of signaling and transcription, but to date, few studies have been able to show any effects on performance. In addition to 'train low' and 'train high', methods have been developed to 'train the gut', train hypohydrated (to reduce the negative effects of dehydration), and train with various supplements that may increase the training adaptations longer term. Which of these methods should be used depends on the specific goals of the individual and there is no method (or diet) that will address all needs of an individual in all situations. Therefore, appropriate practical application lies in the optimal combination of different nutritional training methods. Some of these methods have already found their way into training practices of athletes, even though evidence for their efficacy is sometimes scarce at best. Many pragmatic questions remain unanswered and another goal of this review is to identify some of the remaining questions that may have great practical relevance and should be the focus of future research.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
6
|
Involvement of the Niacin Receptor GPR109a in the LocalControl of Glucose Uptake in Small Intestine of Type 2Diabetic Mice. Nutrients 2015; 7:7543-61. [PMID: 26371038 PMCID: PMC4586547 DOI: 10.3390/nu7095352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022] Open
Abstract
Niacin is a popular nutritional supplement known to reduce the risk of cardiovascular diseases by enhancing high-density lipoprotein levels. Despite such health benefits, niacin impairs fasting blood glucose. In type 2 diabetes (T2DM), an increase in jejunal glucose transport has been well documented; however, this is intriguingly decreased during niacin deficient state. In this regard, the role of the niacin receptor GPR109a in T2DM jejunal glucose transport remains unknown. Therefore, the effects of diabetes and high-glucose conditions on GPR109a expression were studied using jejunal enterocytes of 10-week-old m+/db and db/db mice, as well as Caco-2 cells cultured in 5.6 or 25.2 mM glucose concentrations. Expression of the target genes and proteins were quantified using real-time polymerase chain reaction (RT-PCR) and Western blotting. Glucose uptake in Caco-2 cells and everted mouse jejunum was measured using liquid scintillation counting. 10-week T2DM increased mRNA and protein expression levels of GPR109a in jejunum by 195.0% and 75.9%, respectively, as compared with the respective m+/db control; high-glucose concentrations increased mRNA and protein expression of GPR109a in Caco-2 cells by 130.2% and 69.0%, respectively, which was also confirmed by immunohistochemistry. In conclusion, the enhanced GPR109a expression in jejunal enterocytes of T2DM mice and high-glucose treated Caco-2 cells suggests that GPR109a is involved in elevating intestinal glucose transport observed in diabetes.
Collapse
|
7
|
Andrew AL, Card DC, Ruggiero RP, Schield DR, Adams RH, Pollock DD, Secor SM, Castoe TA. Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding. Physiol Genomics 2015; 47:147-57. [PMID: 25670730 DOI: 10.1152/physiolgenomics.00131.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/05/2015] [Indexed: 12/21/2022] Open
Abstract
Snakes provide a unique and valuable model system for studying the extremes of physiological remodeling because of the ability of some species to rapidly upregulate organ form and function upon feeding. The predominant model species used to study such extreme responses has been the Burmese python because of the extreme nature of postfeeding response in this species. We analyzed the Burmese python intestine across a time series, before, during, and after feeding to understand the patterns and timing of changes in gene expression and their relationship to changes in intestinal form and function upon feeding. Our results indicate that >2,000 genes show significant changes in expression in the small intestine following feeding, including genes involved in intestinal morphology and function (e.g., hydrolases, microvillus proteins, trafficking and transport proteins), as well as genes involved in cell division and apoptosis. Extensive changes in gene expression occur surprisingly rapidly, within the first 6 h of feeding, coincide with changes in intestinal morphology, and effectively return to prefeeding levels within 10 days. Collectively, our results provide an unprecedented portrait of parallel changes in gene expression and intestinal morphology and physiology on a scale that is extreme both in the magnitude of changes, as well as in the incredibly short time frame of these changes, with up- and downregulation of expression and function occurring in the span of 10 days. Our results also identify conserved vertebrate signaling pathways that modulate these responses, which may suggest pathways for therapeutic modulation of intestinal function in humans.
Collapse
Affiliation(s)
- Audra L Andrew
- Department of Biology, The University of Texas at Arlington, Arlington, Texas
| | - Daren C Card
- Department of Biology, The University of Texas at Arlington, Arlington, Texas
| | - Robert P Ruggiero
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Drew R Schield
- Department of Biology, The University of Texas at Arlington, Arlington, Texas
| | - Richard H Adams
- Department of Biology, The University of Texas at Arlington, Arlington, Texas
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama
| | - Todd A Castoe
- Department of Biology, The University of Texas at Arlington, Arlington, Texas;
| |
Collapse
|
8
|
Marks J, Lee GJ, Nadaraja SP, Debnam ES, Unwin RJ. Experimental and regional variations in Na+-dependent and Na+-independent phosphate transport along the rat small intestine and colon. Physiol Rep 2015; 3:3/1/e12281. [PMID: 25626876 PMCID: PMC4387749 DOI: 10.14814/phy2.12281] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the importance of extracellular phosphate in many essential biological processes, the mechanisms of phosphate transport across the epithelium of different intestinal segments remain unclear. We have used an in vitro method to investigate phosphate transport at the brush border membrane (BBM) of intact intestinal segments and an in vivo method to study transepithelial phosphate absorption. We have used micromolar phosphate concentrations known to favor NaPi‐IIb‐mediated transport, and millimolar concentrations that are representative of the levels we have measured in luminal contents, to compare the extent of Na+‐dependent and Na+‐independent phosphate transport along the rat duodenum, jejunum, ileum, and proximal and distal colon. Our findings confirm that overall the jejunum is the main site of phosphate absorption; however, at millimolar concentrations, absorption shows ~30% Na+‐dependency, suggesting that transport is unlikely to be mediated exclusively by the Na+‐dependent NaPi‐IIb co‐transporter. In the ileum, studies in vitro confirmed that relatively low levels of phosphate transport occur at the BBM of this segment, although significant Na+‐dependent transport was detected using millimolar levels of phosphate in vivo. Since NaPi‐IIb protein is not detectable at the rat ileal BBM, our data suggest the presence of an as yet unidentified Na+‐dependent uptake pathway in this intestinal segment in vivo. In addition, we have confirmed that the colon has a significant capacity for phosphate absorption. Overall, this study highlights the complexities of intestinal phosphate absorption that can be revealed using different phosphate concentrations and experimental techniques. We have used in vitro and in vivo methods to investigate phosphate absorption in different regions of the rat small and large intestine at micromolar and millimolar phosphate concentrations. Our findings confirm that overall the jejunum is the main site of phosphate absorption but at millimolar concentrations phosphate absorption also occurs in the ileum and colon. Overall, this study highlights the complexities of intestinal phosphate absorption that can be revealed using different phosphate concentrations and experimental techniques.
Collapse
Affiliation(s)
- Joanne Marks
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Grace J Lee
- UCL Centre for Nephrology, University College London, London, UK
| | - Sobiya P Nadaraja
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Edward S Debnam
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK UCL Centre for Nephrology, University College London, London, UK
| | - Robert J Unwin
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK UCL Centre for Nephrology, University College London, London, UK
| |
Collapse
|
9
|
Bhutta HY, Deelman TE, le Roux CW, Ashley SW, Rhoads DB, Tavakkoli A. Intestinal sweet-sensing pathways and metabolic changes after Roux-en-Y gastric bypass surgery. Am J Physiol Gastrointest Liver Physiol 2014; 307:G588-93. [PMID: 24994857 PMCID: PMC4154120 DOI: 10.1152/ajpgi.00405.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Studies suggest that improvements in type 2 diabetes (T2D) post- Roux-en-Y gastric bypass (RYGB) surgery are attributable to decreased intestinal glucose absorption capacity mediated by exclusion of sweet taste-sensing pathways in isolated proximal bowel. We probed these pathways in rat models that had undergone RYGB with catheter placement in the biliopancreatic (BP) limb to permit post-RYGB exposure of isolated bowel to sweet taste stimulants. Lean Sprague Dawley (n = 13) and obese Zucker diabetic fatty rats (n = 15) underwent RYGB with BP catheter placement. On postoperative day 11 (POD 11), rats received catheter infusions of saccharin [sweet taste receptor (T1R2/3) agonist] or saline (control). Jejunum was analyzed for changes in glucose transporter/sensor mRNA expression and functional sodium-glucose transporter 1 (SGLT1)-mediated glucose uptake. Saccharin infusion did not alter glucose uptake in the Roux limb of RYGB rats. Intestinal expression of the glucose sensor T1R2 and transporters (SGLT1, glucose transporter 2) was similar in saccharin- vs. saline-infused rats of both strains. However, the abundance of SGLT3b mRNA, a putative glucose sensor, was higher in the common limb vs. BP/Roux limb in both strains of bypassed rats and was significantly decreased in the Roux limb after saccharin infusion. We concluded that failure of BP limb exposure to saccharin to increase Roux limb glucose uptake suggests that isolation of T1R2/3 is unlikely to be involved in metabolic benefits of RYGB, as restimulation failed to reverse changes in intestinal glucose absorption capacity. The altered expression pattern of SGLT3 after RYGB warrants further investigation of its potential involvement in resolution of T2D after RYGB.
Collapse
Affiliation(s)
- Hina Y. Bhutta
- 1Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts; ,2Harvard Medical School, Boston, Massachusetts; ,3Department of Investigative Medicine, Imperial College London, United Kingdom;
| | - Tara E. Deelman
- 1Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts; ,2Harvard Medical School, Boston, Massachusetts;
| | - Carel W. le Roux
- 3Department of Investigative Medicine, Imperial College London, United Kingdom;
| | - Stanley W. Ashley
- 1Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts; ,2Harvard Medical School, Boston, Massachusetts;
| | - David B. Rhoads
- 2Harvard Medical School, Boston, Massachusetts; ,4Pediatric Endocrine Unit, Mass General Hospital for Children, Boston, Massachusetts
| | - Ali Tavakkoli
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
10
|
Bhutta HY, Deelman TE, Ashley SW, Rhoads DB, Tavakkoli A. Disrupted circadian rhythmicity of the intestinal glucose transporter SGLT1 in Zucker diabetic fatty rats. Dig Dis Sci 2013; 58:1537-45. [PMID: 23633155 PMCID: PMC3691300 DOI: 10.1007/s10620-013-2669-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 03/27/2013] [Indexed: 12/09/2022]
Abstract
BACKGROUND Intestinal absorptive capacity shows a circadian rhythm synchronized with eating patterns. Disrupting these coordinated rhythms, e.g., with shift work, may contribute to metabolic disease. Circadian expression of nutrient transporters has not been studied in metabolic disease. We studied the circadian rhythm of intestinal transporter sodium glucose co-transporter type 1 (SGLT1) in an obese diabetic rat. METHODS We compared obese Zucker diabetic fatty (ZDF) rats to lean ZDF littermates. Temporal feeding patterns were assessed, then rats were harvested at Zeitgeber (ZT, ZT0 = 7:00 a.m.) 3, 9, or 15 to measure insulin resistance, SGLT1 expression and intestinal glucose absorption capacity. Regulators of SGLT1 (sweet taste receptor T1R2/3; clock genes) were measured to elucidate underlying mechanisms. RESULTS Both groups exhibited altered circadian food intake. Obese ZDF rats lost circadian rhythmicity of SGLT1 mRNA expression and functional activity. Lean ZDF rats maintained rhythmicity of SGLT1 mRNA expression but that of functional glucose absorption was blunted. Circadian rhythms of intestinal clock genes were maintained in both groups. Neither group had discernible rhythms of intestinal GLUT2 (glucose transporter) or T1R2 (sweet taste receptor component) mRNA expression. In summary, lean and obese ZDF rats exhibited similar disruptions in circadian feeding. Glucose intolerance was evident in lean rats, but only obese rats further developed diabetes and exhibited disrupted circadian rhythmicity of both SGLT1 mRNA expression and function. CONCLUSIONS Our findings suggest that disrupted circadian feeding rhythms contribute to glucose intolerance, but additional factors (genetics, changes in nutrient sensing/transport) are needed to lead to full diabetes.
Collapse
Affiliation(s)
- Hina Y. Bhutta
- Department of Surgery, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115
- Department of Investigative Medicine, Imperial College, Exhibition Road, London, UK SW7 2AZ
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Tara E. Deelman
- Department of Surgery, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Stanley W. Ashley
- Department of Surgery, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - David B. Rhoads
- Pediatric Endocrine Unit, Mass General Hospital for Children, 55 Fruit Street, Boston, MA 02114
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| | - Ali Tavakkoli
- Department of Surgery, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115
| |
Collapse
|
11
|
|
12
|
Rapid upregulation of sodium-glucose transporter SGLT1 in response to intestinal sweet taste stimulation. Ann Surg 2010; 251:865-71. [PMID: 20395849 DOI: 10.1097/sla.0b013e3181d96e1f] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE We set out to examine the short-term regulation of the intestinal sodium/glucose cotransporter SGLT1 by its substrate glucose and sweet taste analogs. SUMMARY BACKGROUND DATA Intestinal SGLT1 is a putative target for antidiabetic therapy; however, its physiological regulation is incompletely understood, limiting its application as a pharmacological target. While it is clearly regulated by dietary composition over a period of days, its short-term regulation by nutrients is unknown. METHODS Sprague-Dawley rats were anesthetized, and the duodenum cannulated. D-glucose, D-fructose, saccharin, D-mannitol, and water were infused for 3 hours, before harvest of proximal jejunum for SGLT1 analysis with Western blotting and quantitative polymerase chain reaction. In further experiments, the receptor region was identified by D-glucose infusion of isolated regions. Lastly, the vagus was de-afferented with capsaicin, and 5HT3-receptor activation of vagal afferents inhibited using ondansetron, before repeating experiments using water or D-glucose infusion. RESULTS Infusion of D-glucose led to 2.9-fold up-regulation in SGLT1 compared with water or iso-osmotic D-mannitol; this effect was replicated by D-fructose or saccharin. This response was strongest following isolated infusions of duodenum and proximal jejunum, with a blunted effect distally; topography matched the expression profile of sweet taste receptor T1R2/T1R3. The reflex was abolished by capsaicin pretreatment, and blunted by ondansetron. CONCLUSIONS The agonist response implicates the luminal-based sweet-taste receptor T1R2/T1R3, with the reflex apparently involving vagal afferents. The proximal nature of the sensor coincides with the excluded biliopancreatic limb in Roux-en-Y gastric bypass, and this may provide a novel explanation for the antidiabetic effect of this procedure.
Collapse
|
13
|
Cox GR, Clark SA, Cox AJ, Halson SL, Hargreaves M, Hawley JA, Jeacocke N, Snow RJ, Yeo WK, Burke LM. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J Appl Physiol (1985) 2010; 109:126-34. [PMID: 20466803 DOI: 10.1152/japplphysiol.00950.2009] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We determined the effects of varying daily carbohydrate intake by providing or withholding carbohydrate during daily training on endurance performance, whole body rates of substrate oxidation, and selected mitochondrial enzymes. Sixteen endurance-trained cyclists or triathletes were pair matched and randomly allocated to either a high-carbohydrate group (High group; n = 8) or an energy-matched low-carbohydrate group (Low group; n = 8) for 28 days. Immediately before study commencement and during the final 5 days, subjects undertook a 5-day test block in which they completed an exercise trial consisting of a 100 min of steady-state cycling (100SS) followed by a 7-kJ/kg time trial on two occasions separated by 72 h. In a counterbalanced design, subjects consumed either water (water trial) or a 10% glucose solution (glucose trial) throughout the exercise trial. A muscle biopsy was taken from the vastus lateralis muscle on day 1 of the first test block, and rates of substrate oxidation were determined throughout 100SS. Training induced a marked increase in maximal citrate synthase activity after the intervention in the High group (27 vs. 34 micromol x g(-1) x min(-1), P < 0.001). Tracer-derived estimates of exogenous glucose oxidation during 100SS in the glucose trial increased from 54.6 to 63.6 g (P < 0.01) in the High group with no change in the Low group. Cycling performance improved by approximately 6% after training. We conclude that altering total daily carbohydrate intake by providing or withholding carbohydrate during daily training in trained athletes results in differences in selected metabolic adaptations to exercise, including the oxidation of exogenous carbohydrate. However, these metabolic changes do not alter the training-induced magnitude of increase in exercise performance.
Collapse
Affiliation(s)
- Gregory R Cox
- Sports Nutrition, Australian Institute of Sport, Queensland Academy of Sport, PO Box 956, Nathan, Queensland 4111, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Roche M, Neti PVSV, Kemp FW, Agrawal A, Attanasio A, Douard V, Muduli A, Azzam EI, Norkus E, Brimacombe M, Howell RW, Ferraris RP. Radiation-induced reductions in transporter mRNA levels parallel reductions in intestinal sugar transport. Am J Physiol Regul Integr Comp Physiol 2009; 298:R173-82. [PMID: 19907007 DOI: 10.1152/ajpregu.00612.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
More than a century ago, ionizing radiation was observed to damage the radiosensitive small intestine. Although a large number of studies has since shown that radiation reduces rates of intestinal digestion and absorption of nutrients, no study has determined whether radiation affects mRNA expression and dietary regulation of nutrient transporters. Since radiation generates free radicals and disrupts DNA replication, we tested the hypotheses that at doses known to reduce sugar absorption, radiation decreases the mRNA abundance of sugar transporters SGLT1 and GLUT5, prevents substrate regulation of sugar transporter expression, and causes reductions in sugar absorption that can be prevented by consumption of the antioxidant vitamin A, previously shown by us to radioprotect the testes. Mice were acutely irradiated with (137)Cs gamma rays at doses of 0, 7, 8.5, or 10 Gy over the whole body. Mice were fed with vitamin A-supplemented diet (100x the control diet) for 5 days prior to irradiation after which the diet was continued until death. Intestinal sugar transport was studied at days 2, 5, 8, and 14 postirradiation. By day 8, d-glucose uptake decreased by approximately 10-20% and d-fructose uptake by 25-85%. With increasing radiation dose, the quantity of heterogeneous nuclear RNA increased for both transporters, whereas mRNA levels decreased, paralleling reductions in transport. Enterocytes of mice fed the vitamin A supplement had > or = 6-fold retinol concentrations than those of mice fed control diets, confirming considerable intestinal vitamin A uptake. However, vitamin A supplementation had no effect on clinical or transport parameters and afforded no protection against radiation-induced changes in intestinal sugar transport. Radiation markedly reduced GLUT5 activity and mRNA abundance, but high-d-fructose diets enhanced GLUT5 activity and mRNA expression in both unirradiated and irradiated mice. In conclusion, the effect of radiation may be posttranscriptional, and radiation-damaged intestines can still respond to dietary stimuli.
Collapse
Affiliation(s)
- Marjolaine Roche
- Department of Pharmacology and Physiology, New Jersey Medical School, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dietary ratio of protein to carbohydrate induces plastic responses in the gastrointestinal tract of mice. J Comp Physiol B 2009; 180:259-66. [DOI: 10.1007/s00360-009-0402-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/07/2009] [Accepted: 08/16/2009] [Indexed: 10/20/2022]
|
16
|
Naya DE, Veloso C, Sabat P, Bozinovic F. Seasonal flexibility of organ mass and intestinal function for the Andean lizardLiolaemus nigroviridis. ACTA ACUST UNITED AC 2009; 311:270-7. [DOI: 10.1002/jez.525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Nolles JA, Peeters IGS, Bremer BI, Moorman R, Koopmanschap RE, Verstegen MWA, Schreurs VVAM. Dietary amino acids fed in free form or as protein do differently affect amino acid absorption in a rat everted sac model. J Anim Physiol Anim Nutr (Berl) 2008; 92:529-37. [DOI: 10.1111/j.1439-0396.2007.00743.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Cox CL, Secor SM. Matched regulation of gastrointestinal performance in the Burmese python, Python molurus. ACTA ACUST UNITED AC 2008; 211:1131-40. [PMID: 18344488 DOI: 10.1242/jeb.015313] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Burmese pythons fasting and feeding cause dramatic regulation of gastric acid production and intestinal nutrient uptake. Predictably, other components of their gastrointestinal tract are similarly regulated with each meal. We therefore assessed the matched regulation of gastrointestinal performance by comparing the postprandial activities and capacities of gastric (pepsin), pancreatic (amylase and trypsin) and intestinal (aminopeptidase-N and maltase) enzymes, and intestinal nutrient uptake. Tissue samples were collected from pythons fasted and at 0.25, 0.5, 1, 2, 3, 4, 6, 10 and 15 days following their consumption of rodent meals equaling 25% of snake body mass. With feeding, pythons experience no significant change in stomach mass, whereas both the pancreas and small intestine doubled in mass. Feeding also triggered a depletion of gastric mucosal pepsinogen, a respective 5.7- and 20-fold increase in the peak activities of pancreatic trypsin and amylase, and a respective 2.3- and 5.5-fold increase in the peak activities of intestinal maltase and aminopeptidase-N. Enzyme activities peaked between 2 and 4 days postfeeding and returned to fasting levels by day 10. Independent of digestive stage, python intestine exhibited a proximal to distal decline in enzyme activity. For both sugars and proteins, intestinal capacities for enzyme activity were significantly correlated with nutrient uptake capacities. The concomitant postprandial upregulation of tissue morphology, intestinal nutrient transport rates and enzyme activities illustrate, for the python, the matched regulation of their gastrointestinal performance with each meal.
Collapse
Affiliation(s)
- Christian L Cox
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487-0344, USA.
| | | |
Collapse
|
19
|
Liu QS, Wang DH. Effects of diet quality on phenotypic flexibility of organ size and digestive function in Mongolian gerbils (Meriones unguiculatus). J Comp Physiol B 2007; 177:509-18. [PMID: 17333208 DOI: 10.1007/s00360-007-0149-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/24/2007] [Accepted: 01/29/2007] [Indexed: 11/26/2022]
Abstract
In the context of evolution and ecology, there is a trade-off between the benefits of processing food through a digestive system with specific phenotypic attributes and the cost of maintaining and carrying the digestive system. In this study, we tested the hypothesis that digestive modulations at several levels can match each other to meet the energy and nutrient demands of Mongolian gerbils, a small granivorous rodent species, by acclimating them to a high-quality diet diluted with alfalfa powder. Mongolian gerbils on the diluted diet maintained metabolizable energy intake by an integrated processing response (IPR), which included increases in dry matter intake, gut capacity and rate of digesta passage after 2-weeks of acclimation. Down-regulation of hydrolytic enzyme activity in the intestinal brush-border membrane supported the adaptive modulation hypothesis. The absence of up-modulation of summed enzyme hydrolytic capacity on the diluted diet indicated that greater mass of small intestine on a high-fibre diet is not a direct indicator of digestive or absorptive capacity. Changes in mass of vital organs and carcass suggested that the amount of energy allocated to various organs and hence physiological functions was regulated in response to diet shift.
Collapse
Affiliation(s)
- Quan-Sheng Liu
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 25 Beisihuan Xilu, Zhongguancun, Haidian, Beijing 100080, China
| | | |
Collapse
|
20
|
Stelzner M. Achieving Balance in Academic Surgery1, 2. J Surg Res 2005. [DOI: 10.1016/j.jss.2005.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Naya DE, Bacigalupe LD, Bustamante DM, Bozinovic F. Dynamic digestive responses to increased energy demands in the leaf-eared mouse (Phyllotis darwini). J Comp Physiol B 2004; 175:31-6. [PMID: 15565308 DOI: 10.1007/s00360-004-0459-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2004] [Indexed: 11/25/2022]
Abstract
A major area of interest in comparative physiology has been to understand how animals cope with changing environmental demands in time and space. The digestive system has been identified as one of the more sensitive systems to changes in environmental conditions. However, most research on this topic has evaluated these effects during peak energetic demands, which do not allow for evaluation of the dynamics of the digestive response along a more natural continuous gradient of environmental conditions. We examined phenotypic flexibility in digestive responses of the leaf-eared mouse Phyllotis darwini to increments in total energy demands (via sequential exposure to 26, 12 and 0 degrees C). Additionally, we evaluated the effect of a moderate energy demand (12 degrees C) over three different time periods (7, 17 and 27 days) on digestive traits. Moderate increases in energy demand were associated with changes in the distribution of digesta in the gut, whereas higher increases in energy demand involved increases in the tissue mass of digestive organs. Time-course analysis showed that at 12 degrees C practically all digestive variables reached stable values within 7 days, which is in agreement with empirical data and theoretical deductions from cellular turnover rates. We conclude that although the input of energy and nutrients into the digestive tract is typically periodic, many aspects of digestive physiology are likely to be flexible in response to environmental variability over both short-term (daily) and long-term (seasonal) time scales.
Collapse
Affiliation(s)
- Daniel E Naya
- Center for Advanced Studies in Ecology and Biodiversity, and Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6513677 Santiago, Chile
| | | | | | | |
Collapse
|
22
|
Katz JP, Perreault N, Goldstein BG, Chao HH, Ferraris RP, Kaestner KH. Foxl1 null mice have abnormal intestinal epithelia, postnatal growth retardation, and defective intestinal glucose uptake. Am J Physiol Gastrointest Liver Physiol 2004; 287:G856-64. [PMID: 15155178 DOI: 10.1152/ajpgi.00136.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mice lacking the mesenchymal winged helix transcription factor Foxl1 exhibit markedly abnormal small intestinal epithelia and postnatal growth retardation. We investigated whether defects in intestinal nutrient uptake and specific transport processes exist in mice homozygous for a Foxl1 null allele (Foxl1-/-). Foxl1-/- mice and controls on a defined genetic background were weighed regularly and killed at 2, 4, and 12 wk of age. Intestinal uptake studies, quantitative real-time PCR, RNase protection assays, and Western blot analyses were performed. Foxl1-/- mice have dysmorphic small intestinal epithelia and postnatal growth retardation. Foxl1-/- mice demonstrate decreased small intestinal uptake of D-glucose in all age groups studied. Intestinal uptake of D-fructose and two amino acids, L-proline and L-leucine, is not altered. Consistent with these findings, Foxl1-/- mice show decreased levels of the intestinal D-glucose transporter SGLT1. Expression of sucrase-isomaltase, lactase, GLUT2, and Na+-K+ ATPase are not changed. Foxl1-/- mice demonstrate markedly abnormal intestinal epithelia, postnatal growth retardation, and decreased intestinal uptake of D-glucose. The specific effect of Foxl1 on intestinal d-glucose uptake is due to decreased production of SGLT1 protein in the small intestine. Thus we identified, for the first time, a link between a mesenchymal factor, Foxl1, and the regulation of a specific epithelial transport process.
Collapse
Affiliation(s)
- Jonathan P Katz
- Dept. of Genetics, Univ. of Pennsylvania School of Medicine, 415 Curie Blvd., Philadelphia, PA 19104-6145, USA
| | | | | | | | | | | |
Collapse
|
23
|
Stelzner M. Achieving balance in academic surgery. J Surg Res 2004; 116:350-4. [PMID: 15013375 DOI: 10.1016/j.jss.2003.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Indexed: 10/26/2022]
Affiliation(s)
- Matthias Stelzner
- Department of Surgery, University of Washington, and VA Puget Sound Health Care System, Seattle, Washington 98108, USA.
| |
Collapse
|
24
|
Brown D, Smith MW, Collins AJ. Modelling molecular mechanisms controlling sequential gene expression in differentiating mammalian enterocytes. Cell Prolif 2003; 32:171-84. [PMID: 10614707 PMCID: PMC6726330 DOI: 10.1046/j.1365-2184.1999.3240171.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gut epithelium represents a continuous developmental system in which cell proliferation in intestinal crypts is followed by the sequential expression of digestive and absorptive functions as enterocytes migrate out of crypts to the tips of intestinal villi. We have developed a mathematical model in the present work to mimic these sequential aspects of enterocyte differentiation. Using this model allows the characteristics of lactase expression to be ascribed to transcriptional control. In the case of a glucose transporter, however, it became necessary to assume an additional translational control that decreased exponentially as enterocytes migrated along villi. The suggestion that this type of modelling is useful in predicting which set of enterocytes is likely to use translation or transcription to control gene expression is also discussed.
Collapse
Affiliation(s)
- D Brown
- Laboratory of Computational Neuroscience, The Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
25
|
Morens C, Gaudichon C, Fromentin G, Marsset-Baglieri A, Bensaïd A, Larue-Achagiotis C, Luengo C, Tomé D. Daily delivery of dietary nitrogen to the periphery is stable in rats adapted to increased protein intake. Am J Physiol Endocrinol Metab 2001; 281:E826-36. [PMID: 11551861 DOI: 10.1152/ajpendo.2001.281.4.e826] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dietary nitrogen was traced in rats adapted to a 50% protein diet and given a meal containing 1.50 g (15)N-labeled protein (HP-50 group). This group was compared with rats usually consuming a 14% protein diet and fed a meal containing either 0.42 g (AP-14 group) or 1.50 g (AP-50 group) of (15)N-labeled protein. In the HP group, the muscle nonprotein nitrogen pool was doubled when compared with the AP group. The main adaptation was the enhancement of dietary nitrogen transferred to urea (2.2 +/- 0.5 vs. 1.3 +/- 0.1 mmol N/100 g body wt in the HP-50 and AP-50 groups, respectively). All amino acids reaching the periphery except arginine and the branched-chain amino acids were depressed. Consequently, dietary nitrogen incorporation into muscle protein was paradoxically reduced in the HP-50 group, whereas more dietary nitrogen was accumulated in the free nitrogen pool. These results underline the important role played by splanchnic catabolism in adaptation to a high-protein diet, in contrast to muscle tissue. Digestive kinetics and splanchnic anabolism participate to a lesser extent in the regulation processes.
Collapse
Affiliation(s)
- C Morens
- Institut National de la Recherche Agronomique, Unité de Physiologie de la Nutrition et du Comportement Alimentaire, Institut National Agronomique de Paris-Grignon, F-75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Stelzner M, Somasundaram S, Kearney D. A simple method for measuring of intestinal solute transport in mucosal biopsy specimens. Dig Dis Sci 2001; 46:451-6. [PMID: 11318514 DOI: 10.1023/a:1005681624873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Accurate in vitro measurements of intestinal mucosal solute uptake in humans are often difficult because only small amounts of tissue material are available. We describe a miniaturized everted sleeve method of measuring intestinal solute uptake in endoscopy biopsy samples that combines simplicity, good tissue viability and reproducibility. Biopsies were mounted on a dressmaker needle head stationed immediately over a stirring bar rotating at 1200 rpm. This approach was used to measure taurocholate uptake in sheep and human endoscopy biopsies. Comparison was made to conventional standardized everted sleeve preparations. Na+-dependent uptake rates correlated well among individual sheep (R2 = 0.88, P < 0.05). There was excellent correlation between conventional and biopsy preparations in humans (R2 = 0.98; P < 0.05). The biopsy method overestimated diffusional uptake rates in sheep and humans by two to three fold when compared to conventional everted sleeve preparations. We conclude that this method is valuable to measure Na+-dependent solute uptake rates in biopsy samples from human intestine.
Collapse
Affiliation(s)
- M Stelzner
- Department of Surgery, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle 98108, USA
| | | | | |
Collapse
|
27
|
Koletzko B, Aggett PJ, Bindels JG, Bung P, Ferré P, Gil A, Lentze MJ, Roberfroid M, Strobel S. Growth, development and differentiation: a functional food science approach. Br J Nutr 1998; 80 Suppl 1:S5-45. [PMID: 9849353 DOI: 10.1079/bjn19980104] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Few other aspects of food supply and metabolism are of greater biological importance than the feeding of mothers during pregnancy and lactation, and of their infants and young children. Nutritional factors during early development not only have short-term effects on growth, body composition and body functions but also exert long-term effects on health, disease and mortality risks in adulthood, as well as development of neural functions and behaviour, a phenomenon called 'metabolic programming'. The interaction of nutrients and gene expression may form the basis of many of these programming effects and needs to be investigated in more detail. The relation between availability of food ingredients and cell and tissue differentiation and its possible uses for promoting health and development requires further exploration. The course of pregnancy, childbirth and lactation as well as human milk composition and the short- and long-term outcome of the child are influenced by the intake of foods and particularly micronutrients, e.g. polyunsaturated fatty acids, Fe, Zn and I. Folic acid supplementation from before conception through the first weeks of pregnancy can markedly reduce the occurrence of severe embryonic malformations; other potential benefits of modulating nutrient supply on maternal and child health should be further evaluated. The evaluation of dietary effects on child growth requires epidemiological and field studies as well as evaluation of specific cell and tissue growth. Novel substrates, growth factors and conditionally essential nutrients (e.g. growth factors, amino acids, polyunsaturated fatty acids) may be potentially useful as ingredients in functional foods and need to be assessed carefully. Intestinal growth, maturation, and adaptation as well as long-term function may be influenced by food ingredients such as oligosaccharides, gangliosides, high-molecular-mass glycoproteins, bile salt-activated lipase, pre- and probiotics. There are indications for some beneficial effects of functional foods on the developing immune response, for example induced by antioxidant vitamins, trace elements, fatty acids, arginine, nucleotides, and altered antigen contents in infant foods. Peak bone mass at the end of adolescence can be increased by dietary means, which is expected to be of long-term importance for the prevention of osteoporosis at older ages. Future studies should be directed to the combined effects of Ca and other constituents of growing bone, such as P, Mg and Zn, as well as vitamins D and K, and the trace elements F and B. Pregnancy and the first postnatal months are critical time periods for the growth and development of the human nervous system, processes for which adequate substrate supplies are essential. Early diet seems to have long-term effects on sensory and cognitive abilities as well as behaviour. The potential beneficial effects of a balanced supply of nutrients such as I, Fe, Zn and polyunsaturated fatty acids should be further evaluated. Possible long-term effects of early exposure to tastes and flavours on later food choice preferences may have a major impact on public health and need to be further elucidated. The use of biotechnology and recombinant techniques may offer the opportunity to include various bioactive substances in special dietary products, such as human milk proteins, peptides, growth factors, which may have beneficial physiological effects, particularly in infancy and early childhood.
Collapse
Affiliation(s)
- B Koletzko
- Kinderpoliklinik, Klinikum Innenstadt der Ludwig-Maximilians-Universität, München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bates SL, Sharkey KA, Meddings JB. Vagal involvement in dietary regulation of nutrient transport. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G552-60. [PMID: 9530157 DOI: 10.1152/ajpgi.1998.274.3.g552] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In omnivores, gradual alterations in dietary nutrient composition are observed. To efficiently absorb dietary nutrients these animals alter intestinal nutrient transporter expression to match the pattern of nutrient intake. This often involves reprogramming the crypt cell to express greater numbers of the relevant transport system. The aim of this study was to determine whether vagal afferents are involved in this adaptive process. Guinea pigs were habituated to a low-carbohydrate diet and then switched to a high-carbohydrate diet. The resultant increase in glucose transporter expression was assessed by determining rates of glucose transport in jejunal brush-border membrane vesicles. Ablation of vagal afferents was accomplished by application of capsaicin to exposed cervical vagi and confirmed using Fast blue tracer studies. We found that animals in which vagal afferents were ablated with capsaicin were unable to alter rates of glucose transport in response to an increase in dietary carbohydrate. This suggests that vagal afferents are involved in this adaptive process. These findings support a role for the vagus nerve in regulating intestinal transport function, which may be important to consider in clinical disease that involves the vagus nerve.
Collapse
Affiliation(s)
- S L Bates
- Gastrointestinal Research Group, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
29
|
Nobigrot T, Chasalow FI, Lifshitz F. Carbohydrate absorption from one serving of fruit juice in young children: age and carbohydrate composition effects. J Am Coll Nutr 1997; 16:152-8. [PMID: 9100216 DOI: 10.1080/07315724.1997.10718666] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To test the hypotheses that: the efficiency of carbohydrate absorption in childhood increases with age, and decreased carbohydrate absorption occurs more frequently with juices containing more fructose than glucose and/or sorbitol than with juices which contain equal amounts of fructose and glucose and are sorbitol-free. METHODS One hundred and four healthy children were recruited from the Ambulatory Center at Maimonides Children's Center. They were assigned to one of three age groups: approximately 1, 3 and 5 years of age. Each child received one age-specific dose (by randomization) of one of four juices: a) pear juice which contains fructose in excess to glucose and a large amount of sorbitol; b) apple juice which is similar to pear juice in its fructose to glucose ratio but contains four times less sorbitol than pear juice; c) white grape juice or d) purple grape juice both of which contain equal amounts of fructose and glucose and are sorbitol-free. Breath hydrogen excretion (BH2) was utilized as the index of carbohydrate absorption. It was measured in fasting children and at 30-minute intervals for 3 hours after drinking the single serving of juice. Multiple breath hydrogen related parameters were quantified and results were expressed as: BH2 peak, area under the curve, and degree of carbohydrate malabsorption. After the test, parents completed a questionnaire and recorded signs and symptoms of intestinal malabsorption for 24 hours. RESULTS Pear juice related BH2 levels were significantly higher among children 1 and 3 years of age as compared to the levels achieved after the other juices. Apple juice related BH2 levels were significantly higher only among the youngest age group of children. There was no significant difference in carbohydrate absorption among the 5 year old children regardless of the juice consumed. Incomplete carbohydrate absorption (BH2 peak above 20 ppm) occurred more frequently after pear juice consumption (84%) than after apple juice (41%) or grape juice (white 20%, purple 24%) [p < 0.05]. Further outcome measures of BH2 excretion did not elicit differences beyond those detected by the above-mentioned parameters. Parents reported diarrhea in six children after pear juice, two after apple juice and two after purple grape juice and these children had the highest BH2 levels in their respective groups. No other symptoms were reported. CONCLUSIONS The data show that the efficiency of carbohydrate absorption of one age-specific serving of juice increases with advancing age of children. Decreased carbohydrate absorption occurs more often after ingestion of juices that contain more sorbitol, a nonabsorbable sugar and higher concentrations of fructose over glucose than after ingestion of juices which lack sorbitol and contain equal amounts of fructose and glucose.
Collapse
Affiliation(s)
- T Nobigrot
- Department of Pediatrics, Maimonides Medical Center, Brooklyn, New York, USA
| | | | | |
Collapse
|
30
|
Abstract
Why is it important to understand the mechanisms controlling intestinal adaptation? There are two major answers to this question. Firstly, in establishing the cellular and molecular events associated with intestinal adaptation, we will formulate a general framework that may be applied to the understanding of adaptation of other cell membranes. For example, alterations in the synthesis of glucose carriers and their subsequent insertion into membranes may alter sugar entry across the intestinal brush border membrane (BBM) using the sodium-dependent D-glucose transporter, SGLT1, or the BBM sodium-independent facultative fructose transporter, GLUT5, and may alter facilitated sugar exit across the basolateral membrane (BLM) using GLUT2. The precise role of transcriptional and translational processes in the up- or down-regulation of sugar transport requires further definition. Alterations in enterocyte microsomal lipid metabolic enzyme expression occurring during the course of intestinal adaptation will direct the synthesis of lipids destined for trafficking to the BBM and BLM domains of the enterocyte. This will subsequently alter the passive permeability properties of these membranes and ultimately influence lipid absorption. Therefore, establishing the physiological, cellular and molecular mechanisms of adaptation in the intestine will define principles that may be applied to other epithelia. Secondly, enterocyte membrane adaptation is subject to dietary modification, and these may be exploited as a means to enhance a beneficial or to reduce a detrimental aspect of the intestinal adaptive process in disease states. Alterations in membrane function occur in association with changes in dietary lipids, and these are observed in a variety of cells and tissues including lymphocytes, testes, liver, adipocytes, nerve tissue, nuclear envelope and mitochondria. Therefore, the elucidation of the mechanisms of intestinal adaptation and the manner whereby dietary manipulation modulates these processes affords the future possibility of dietary engineering aimed at using food as a therapeutic agent. It is hoped this approach will form the centerpiece for future investigation that would focus on disease prevention, as well as on the development of better therapeutic strategies to prevent the development or to treat the complications of conditions such as diabetes mellitus, obesity, hyperlipidemia and inflammatory bowel diseases. This review deals with the physiology of glucose transport with specific emphasis on transporters of the brush border membrane (BBM) and the basolateral membrane (BLM). On the BBM the sodium (Na)/glucose transporters (SGLT1 and SGLT2), the Na-independent transporter (GLUT5), and on the BLM the hexose transporter (GLUT2) are discussed. The molecular biology of these transporters is also reviewed.
Collapse
Affiliation(s)
- A B Thomson
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
31
|
Abstract
The first part of this review dealt with the physiology of glucose transport with specific emphasis on transporters of the brush border membrane (BBM) and the basolateral membrane (BLM). On the BBM, the sodium (Na)/glucose transporters (SGLT1 and SGLT2), the Na-independent transporter (GLUT5) and on the BLM the hexose transporter (GLUT2) are discussed. The molecular biology of these transporters is also reviewed. In the second part of the review, we discuss the manner in which intestinal adaptation may be modified by alterations in the diet, especially the lipid constituents, and two important examples of intestinal adaptation will be given: diabetes mellitus and inflammatory bowel disease.
Collapse
Affiliation(s)
- A B Thomson
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
32
|
Miyamoto K, Hase K, Takagi T, Fujii T, Taketani Y, Minami H, Oka T, Nakabou Y. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. Biochem J 1993; 295 ( Pt 1):211-5. [PMID: 8216218 PMCID: PMC1134840 DOI: 10.1042/bj2950211] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Dietary sugars are known to stimulate intestinal glucose transport activity, but the specific signals involved are unknown. The Na(+)-dependent glucose co-transporter (SGLT1), the liver-type facilitative glucose transporter (GLUT2) and the intestinal-type facilitative glucose transporter (GLUT5) are all expressed in rat jejunum [Miyamoto, Hase, Taketani, Minami, Oka, Nakabou and Hagihira (1991) Biochem. Biophys. Res. Commun. 181, 1110-1117]. In the present study we have investigated the effects of dietary sugars on these glucose transporter genes. A high-glucose diet stimulated glucose transport activity and increased the levels of SGLT1 and GLUT2 mRNAs in rat jejunum. 3-O-Methylglucose, D-galactose, D-fructose, D-mannose and D-xylose can mimic the regulatory effect of glucose on the SGLT1 mRNA level in rat jejunum. However, only D-galactose and D-fructose increased the levels of GLUT2 mRNA. The GLUT5 mRNA level was increased significantly only by D-fructose. Our results suggest that the increase in intestinal transport activity in rats caused by dietary glucose is due to an increase in the levels of SGLT1 and GLUT2 mRNAs, and that these increases in mRNA may be caused by an enhancement of the transcriptional rate. Furthermore, for expression of the SGLT1 gene, the signal need not be a metabolizable or transportable substrate whereas, for expression of the GLUT2 gene, metabolism of the substrate in the liver may be necessary for signalling. Only D-fructose is an effective signal for expression of the GLUT5 gene.
Collapse
Affiliation(s)
- K Miyamoto
- Department of Nutrition, School of Medicine, University of Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Croom WJ, Bird AR, Black BL, McBride BW. Manipulation of gastrointestinal nutrient delivery in livestock. J Dairy Sci 1993; 76:2112-24. [PMID: 8345134 DOI: 10.3168/jds.s0022-0302(93)77546-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Discussed herein are the constraints of nutrient delivery from the gastrointestinal tract that are placed on postabsorptive synthetic processes in highly selected strains of domestic livestock or livestock treated with growth promotants exogenously or via transgenic manipulation. Emphasis is placed on the discussion of recent advances in the knowledge of the regulation and manipulation of digestion and the absorption by the intestinal epithelium. Slaframine, a muscarinic exocrine secretagogue with a high affinity for the gastrointestinal tract, and epidermal growth factor may have practical potential for the manipulation of digestion and absorption, respectively. Special consideration is given to energetic considerations that must accompany any manipulation of gastrointestinal function. Down-regulation and up-regulation of mechanisms must be equally considered as this area is explored further.
Collapse
Affiliation(s)
- W J Croom
- Department of Animal Science and Department of Zoology, North Carolina State University, Raleigh 27695
| | | | | | | |
Collapse
|
34
|
Freeman TC, Collins AJ, Heavens RP, Tivey DR. Genetic regulation of enterocyte function: a quantitative in situ hybridisation study of lactase-phlorizin hydrolase and Na(+)-glucose cotransporter mRNAs in rabbit small intestine. Pflugers Arch 1993; 422:570-6. [PMID: 8469609 DOI: 10.1007/bf00374004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The enterocyte undergoes sequential changes in its structure and function as it migrates rapidly from the small intestinal crypts to the villus tip. The mechanisms by which these changes are regulated "in tune" with ontogenic and dietary changes in the luminal environment are currently under investigation. This study has employed oligonucleotide probes to follow the expression of the lactase-phlorizin hydrolase (LPH) and Na(+)-glucose cotransporter (SGLT1) genes in rabbit small intestine using quantitative in situ hybridisation histochemistry. The profiles of LPH mRNA and SGLT1 mRNA accumulation along the crypt-villus axis were found to be very similar. Although mRNA was undetectable in the crypt. LPH and SGLT1 mRNA levels rose rapidly at the crypt-villus junction, reaching a maximum between 210 microns and 330 microns above this point. Further up the villus the level of mRNAs declined. SGLT1 mRNA was present in all small intestinal segments (duodenum, jejunum and ileum), whereas LPH mRNA was absent from the ileum. LPH activity rose and fell in conjunction with mRNA, but SGLT1 activity was greatest at the villus tip where mRNA levels were considerably reduced. These data have been used to discuss the genetic regulation of enterocyte differentiation and function.
Collapse
Affiliation(s)
- T C Freeman
- Department of Biochemistry, University of Wales, Aberystwyth, Dyfed, UK
| | | | | | | |
Collapse
|
35
|
Cheeseman CI, Harley B. Adaptation of glucose transport across rat enterocyte basolateral membrane in response to altered dietary carbohydrate intake. J Physiol 1991; 437:563-75. [PMID: 1890649 PMCID: PMC1180063 DOI: 10.1113/jphysiol.1991.sp018611] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. The effect of changes in the carbohydrate content of the diet on D-glucose transport across the basolateral membrane of rat enterocytes has been compared with alterations in transport across the brush-border membrane. 2. Measurement of carrier-mediated D-glucose uptake across the jejunal brush border from animals fed a low- or high-carbohydrate diet showed a change in the maximal rate of transport by 7 days which was maintained for 14 days. The low-carbohydrate diet produced a progressive decline in uptake whereas the high-carbohydrate diet increased the transport. There was no alteration in the apparent affinity constant as a result of the dietary manipulations and no discernible trend for changes in the passive permeability to glucose. 3. Transport of D-glucose across the basolateral membrane was also affected by the dietary composition. After 7 days the maximal transport rate was greater in the animals fed the high-carbohydrate diet. However, while this increase was maintained for 14 days, uptake into vesicles prepared after 2 weeks on the low-carbohydrate diet showed a return to control levels. 4. A detailed analysis of the time course of these responses showed the effect on basolateral membrane transport to be inducible within 3 days of switching from the low- to the high-carbohydrate diet and could be reversed within a similar period. 5. Kinetic studies using purified basolateral membrane vesicles confirmed that the change in transport was the result of an increase in the maximal transport rate. Analysis of cytochalasin B binding to these membranes showed a parallel change in the number of glucose-inhibitable binding sites. 6. The component of the diet responsible for these changes was further investigated by replacing the glucose in the high-carbohydrate food with galactose, fructose, mannose or 3-O-methylglucose. Only glucose and fructose produced any significant change in the transport across the basolateral membrane. 7. It is concluded that in response to changes in the carbohydrate content of the diet there are alterations in the capacity for glucose transport across the basolateral membrane of the enterocyte as well as in the brush-border membrane. The change in transport across the basolateral membrane is best explained by an increase in the number of glucose carriers in this membrane.
Collapse
Affiliation(s)
- C I Cheeseman
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
36
|
Hara H, Kiriyama S. Absorptive behavior of oligo-L-methionine and dietary proteins in a casein or soybean protein diet: porto-venous differences in amino acid concentrations in unrestrained rats. J Nutr 1991; 121:638-45. [PMID: 2019873 DOI: 10.1093/jn/121.5.638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In a low casein methionine-deficient diet, supplementation with oligo-L-methionine (OM) has a similar improvement on rat growth to supplementation of free L-methionine. Rat growth is little improved, however, when OM is added to a low soybean protein isolate (SPI) diet. To evaluate the mechanisms of the different effects of OM supplementation, we observed intestinal absorption of OM added to either an 8 g/100 g casein diet or an 8 g/100 g SPI diet. Using portal and venous cannulated rats under unrestrained conditions, we evaluated OM absorption by subtracting methionine porto-venous differences after feeding the diets without OM from the values after feeding the diets with 3% added OM. OM absorption was faster after feeding the casein-based diet than after the SPI-based diet during the initial stages of the experiment only, but throughout the experiment there were greater increments of methionine concentrations in both portal and venous blood after the casein-based diet than after the SPI-based diet. We also discovered that amino acids from the dietary casein were absorbed faster than those from SPI, using the porto-venous difference of isoleucine as an indication. The larger increment of methionine concentrations in the blood after feeding of OM with a casein diet and the rapid absorption of amino acids from casein may result in much growth improvement in rats.
Collapse
Affiliation(s)
- H Hara
- Department of Agricultural Chemistry, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
37
|
Nutrient Transport Across Vertebrate Intestine. ADVANCES IN COMPARATIVE AND ENVIRONMENTAL PHYSIOLOGY 1988. [DOI: 10.1007/978-3-642-73375-8_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Abstract
Because most eukaryotic somatic cells are bathed in a constant internal milieu, most of their proteins are constitutive, unlike the adaptive enzymes of bacteria. However, intestinal mucosal cells, like bacteria, face a varying milieu. Hence, we tested for adaptive regulation of intestinal nutrient transporters, sought its functional significance, and compared it with regulation of bacterial proteins. All 12 transporters studied proved to be regulated by dietary substrate levels. Regulation in the intestine is slower than in bacteria and shows lower peak-to-basal activity levels. Regulatory patterns vary greatly among transporters: two sugars and two nonessential amino acids monotonically up-regulate their transporters, two vitamins and three minerals monotonically down-regulate their transporters, and two transporters of essential amino acids respond nonmonotonically to levels of their substrates. These varied patterns arise from trade-offs among four factors: transporter costs, calories yielded by metabolizable substrates, fixed daily requirements of essential nutrients, and toxicity of certain nutrients in large amounts. Based on these trade-offs, we predict the form of regulatory pattern for intestinal transporters not yet studied.
Collapse
|
39
|
Ferraris RP, Diamond JM. Use of phlorizin binding to demonstrate induction of intestinal glucose transporters. J Membr Biol 1986; 94:77-82. [PMID: 3806659 DOI: 10.1007/bf01901015] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We used specific binding of phlorizin to the intact intestinal mucosa in order to measure glucose transport site density in intestines of mice fed a high-carbohydrate or no-carbohydrate diet. Nonspecific binding varied with intestinal position but showed only modest dependence on diet. Specific binding to glucose transporters was 1.9 times greater in jejunum of high-carbohydrate mice than of no-carbohydrate mice; this ratio was the same as the ratio for Vmax values of active D-glucose uptake between the two diet groups. The gradient in specific binding of phlorizin along the intestine paralleled the gradient in Vmax of glucose transport. These results directly demonstrate that the increase in intestinal glucose transport caused by a high-carbohydrate diet is due to induction of glucose transporters. They also indicate that the normal positional gradient in glucose transport along the intestine arises from a gradient in transporters, induced by the normal gradient in luminal glucose concentration.
Collapse
|
40
|
Karasov WH, Petrossian E, Rosenberg L, Diamond JM. How do food passage rate and assimilation differ between herbivorous lizards and nonruminant mammals? J Comp Physiol B 1986; 156:599-609. [PMID: 3734193 DOI: 10.1007/bf00691047] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
What digestive adaptations permit herbivorous nonruminant mammals to sustain much higher metabolic rates than herbivorous lizards, despite gross similarity in digestive anatomy and physiology? We approached this question by comparing four herbivorous species eating the same diet of alfalfa pellets: two lizards (chuckwalla and desert iugana) and two mammals (desert woodrat and laboratory mouse). The mammals had longer small and large intestines, greater intestinal surface area, much higher (by an order of magnitude) food intake normalized to metabolic live mass, and much faster food passage times (a few hours instead of a few days). Among both reptiles and mammals, passage times increase with body size and are longer for herbivores than for carnivores. The herbivorous lizards, despite these much slower passage times, had slightly lower apparent digestive efficiencies than the mammals. At least for chuckwallas, this difference from mammals was not due to differences in body temperature regime. Comparisons of chuckwallas and woodrats in their assimilation of various dietary components showed that the woodrat's main advantage lay in greater assimilation of the dietary fiber fraction. Woodrats achieved greater fiber digestion despite shorter residence time, but possibly because of a larger fermentation chamber, coprophagy, and/or different conditions for microbial fermentation. We conclude with a comparative overview of digestive function in herbivorous lizards and mammals, and with a list of four major unsolved questions.
Collapse
|
41
|
Handler JS, Moran A. Regulation of expression of the sodium-coupled hexose transporter in cultured LLC-PK1 epithelia. Pflugers Arch 1985; 405 Suppl 1:S163-6. [PMID: 4088833 DOI: 10.1007/bf00581800] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A variety of techniques have been used to study the sodium-coupled hexose transporter in epithelia formed by LLC-PK1 cells. The expression of the transporter is affected by the density and age of the culture and by the concentration of glucose in the growth medium. Sodium-coupled hexose transport appears as the epithelium becomes confluent and increases further as the epithelium matures. The increased transport is associated with increased transport in apical plasma membrane vesicles. Epithelia grown in medium containing 5 mM glucose express more transporters than epithelia grown in medium containing 25 mM glucose. The increase in transport is not the result of an extracellular signal that is generated as a consequence of the concentration of glucose. The response to different hexoses that are or are not transported on the carrier indicates that it is the metabolism of glucose that acts as the signal for expression of more or fewer transporters. The results are compared to similar studies of the effects of substrate concentration on expression of transporters in cultured fibroblasts and the intestines in situ.
Collapse
|
42
|
|
43
|
Intestinal nutrient transport in coho salmon (Oncorhynchus kisutch) and the effects of development, starvation, and seawater adaptation. J Comp Physiol B 1985. [DOI: 10.1007/bf00695770] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
|
45
|
Biviano AB, Martínez del Rio C, Phillips DL. Ontogenesis of intestine morphology and intestinal disaccharidases in chickens (Gallus gallus) fed contrasting purified diets. J Comp Physiol B 1994; 163:508-18. [PMID: 8071466 DOI: 10.1007/bf00346936] [Citation(s) in RCA: 10] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two groups of growing posthatching Cornish x Rock cross chickens were fed with either a carbohydrate-containing (52.5%) or a carbohydrate-free diet. At 36 days after hatching some of the chicks in each group were shifted to the opposite diet. Chickens fed on a carbohydrate-containing diet grew faster and achieved higher asymptotic masses than chickens fed on a carbohydrate-free diet. Chickens fed on a carbohydrate-free diet had longer intestines and larger intestinal areas than chickens of the same mass fed on a carbohydrate-containing diet. In both groups sucrase and maltase activity (standardized by either intestinal area or mass) increased from day 1 to approximately day 17. After day 17, chickens fed on a carbohydrate-containing diet exhibited 1.8 and 1.9 times higher sucrase and maltase activities per unit intestinal area, respectively, than chickens fed on a carbohydrate-free diet. Analysis of covariance was used to estimate the contribution of sucrase and the sucrase-independent maltases to maltase activity, and to estimate the effect of diet on the sucrase-independent maltases. Sucrase contributed 80% and 75% of the maltase activity in carbohydrate and carbohydrate-free fed chickens, respectively. Chickens shifted from a carbohydrate-free to a carbohydrate diet converged in gross intestinal morphology and intestinal sucrase and maltase levels with carbohydrate-fed chickens within 8 days. Chickens shifted from carbohydrate to carbohydrate-free diets, in contrast, did not show appreciable changes in intestinal length and after 8 days had not reduced levels of sucrase and maltase to those of chickens fed on the carbohydrate-free diet. A comparison of integrated maltase intestinal activity with published data on glucose uptake showed that the ratio of maltose hydrolysis to glucose uptake seemed to be about 7 and to remain relatively invariant during ontogeny. Because so little is known about the interaction between hydrolysis and uptake in vivo, it is difficult to determine if this relatively high ratio represents excess hydrolytic capacity or if it is needed to provide high lumenal glucose concentrations that maximize uptake.
Collapse
Affiliation(s)
- A B Biviano
- Department of Ecology and Evolutionary Biology, Princeton University, NJ 08544-1003
| | | | | |
Collapse
|