1
|
Chen EC, Shimony S, Luskin MR, Stone RM. Biology and Management of Acute Myeloid Leukemia With Mutated NPM1. Am J Hematol 2025; 100:652-665. [PMID: 39901865 DOI: 10.1002/ajh.27600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 02/05/2025]
Abstract
Mutations in nucleophosmin 1 (NPM1) are diseased-defining genetic alterations encountered in approximately one-third of cases of acute myeloid leukemia (AML). A mutation in NPM1 confers a more favorable prognosis; however, clinical outcomes of NPM1-mutated AML (NPM1 mut AML) are diverse due to the heterogeneity of disease biology, patient characteristics, and treatment received. Research over the last two decades has dramatically expanded our understanding of the biology of NPM1 mut AML and led to the development of new therapeutic approaches and strategies for monitoring measurable residual disease (MRD). Here, we review NPM1 mut AML with a practical focus on the current treatment landscape, the role of MRD in guiding management, and emerging therapies, including menin inhibitors.
Collapse
Affiliation(s)
- Evan C Chen
- Adult Leukemia Program, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shai Shimony
- Adult Leukemia Program, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Marlise R Luskin
- Adult Leukemia Program, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Richard M Stone
- Adult Leukemia Program, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Özbey G, Tuncay G, Düz SA, Çiğremiş Y, Karaer A. The Effect of Endometrial Polyp and Myoma Uteri on Fertility-Related Genes in the Endometrium. Reprod Sci 2025; 32:728-737. [PMID: 39915377 PMCID: PMC11870916 DOI: 10.1007/s43032-025-01802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/22/2025] [Indexed: 03/03/2025]
Abstract
Endometrial polyps are hyperplastic overgrowths of the endometrium that contain both glands and stroma. Myoma uteri is the most common benign tumor of the female pelvis and uterus. HOXA10, which is involved during the organogenesis of the uterus in the embryonic period. The aim of this study was to compare the expression levels of infertility-related genes in endometrial tissue obtained from patients with endometrial polyp and myoma uteri and from healthy controls. A total of 36 patients, including 15 women with endometrial polyp and 21 women with myoma uteri, and 23 healthy controls were enrolled in the study. All patients were evaluated using transvaginal ultrasonography. Endometrial tissue samples were collected from the patient and control groups between the 19th and 21st days of the menstrual cycle. Expression levels of the receptivity markers PROK1, PROKR1, PROK2, PROKR2 and HOXA10 genes were determined by RT- PCR. When the patients diagnosed with endometrial polyp and the healthy controls were compared, it was observed statistically significantly that the expression of PROKR1 increased in endometrium tissue of patients with endometrial polyp (p < 0.05). In patients diagnosed with myoma uteri, gene expression levels of endometrial PROKR1 was statistically significant increased and gene expression levels of PROK1, PROKR2, HOXA10 were found to be statistically significantly decreased compared to the controls (p < 0.05). Changes in the endometrial expression of the HOXA10 and prokineticin gene family in patients with myoma uteri and endometrial polyps may explain certain aspects of infertility in these patients.
Collapse
Affiliation(s)
- Gürkan Özbey
- Department of Obstetrics and Gynecology, Faculty of Medicine, Adıyaman University, Adıyaman, Türkiye.
| | - Görkem Tuncay
- Department of Obstetrics and Gynecology, Faculty of Medicine, Inonu University, Malatya, Türkiye
| | - Senem Arda Düz
- Department of Obstetrics and Gynecology, Faculty of Medicine, Inonu University, Malatya, Türkiye
| | - Yılmaz Çiğremiş
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Malatya, Türkiye
| | - Abdullah Karaer
- Department of Obstetrics and Gynecology, Faculty of Medicine, Inonu University, Malatya, Türkiye
| |
Collapse
|
3
|
Paralogous HOX13 Genes in Human Cancers. Cancers (Basel) 2019; 11:cancers11050699. [PMID: 31137568 PMCID: PMC6562813 DOI: 10.3390/cancers11050699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hox genes (HOX in humans), an evolutionary preserved gene family, are key determinants of embryonic development and cell memory gene program. Hox genes are organized in four clusters on four chromosomal loci aligned in 13 paralogous groups based on sequence homology (Hox gene network). During development Hox genes are transcribed, according to the rule of “spatio-temporal collinearity”, with early regulators of anterior body regions located at the 3’ end of each Hox cluster and the later regulators of posterior body regions placed at the distal 5’ end. The onset of 3’ Hox gene activation is determined by Wingless-type MMTV integration site family (Wnt) signaling, whereas 5’ Hox activation is due to paralogous group 13 genes, which act as posterior-inhibitors of more anterior Hox proteins (posterior prevalence). Deregulation of HOX genes is associated with developmental abnormalities and different human diseases. Paralogous HOX13 genes (HOX A13, HOX B13, HOX C13 and HOX D13) also play a relevant role in tumor development and progression. In this review, we will discuss the role of paralogous HOX13 genes regarding their regulatory mechanisms during carcinogenesis and tumor progression and their use as biomarkers for cancer diagnosis and treatment.
Collapse
|
4
|
von Heyking K, Roth L, Ertl M, Schmidt O, Calzada-Wack J, Neff F, Lawlor ER, Burdach S, Richter GH. The posterior HOXD locus: Its contribution to phenotype and malignancy of Ewing sarcoma. Oncotarget 2018; 7:41767-41780. [PMID: 27363011 PMCID: PMC5173095 DOI: 10.18632/oncotarget.9702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/13/2016] [Indexed: 01/01/2023] Open
Abstract
Microarray analysis revealed genes of the posterior HOXD locus normally involved in bone formation to be over-expressed in primary Ewing sarcoma (ES). The expression of posterior HOXD genes was not influenced via ES pathognomonic EWS/ETS translocations. However, knock down of the dickkopf WNT signaling pathway inhibitor 2 (DKK2) resulted in a significant suppression of HOXD10, HOXD11 and HOXD13 while over-expression of DKK2 and stimulation with factors of the WNT signaling pathway such as WNT3a, WNT5a or WNT11 increased their expression. RNA interference demonstrated that individual HOXD genes promoted chondrogenic differentiation potential, and enhanced expression of the bone-associated gene RUNX2. Furthermore, HOXD genes increased the level of the osteoblast- and osteoclast-specific genes, osteocalcin (BGLAP) and platelet-derived growth factor beta polypeptide (PDGFB), and may further regulate endochondral bone development via induction of parathyroid hormone-like hormone (PTHLH). Additionally, HOXD11 and HOXD13 promoted contact independent growth of ES, while in vitro invasiveness of ES lines was enhanced by all 3 HOXD genes investigated and seemed mediated via matrix metallopeptidase 1 (MMP1). Consequently, knock down of HOXD11 or HOXD13 significantly suppressed lung metastasis in a xeno-transplant model in immune deficient mice, providing overall evidence that posterior HOXD genes promote clonogenicity and metastatic potential of ES.
Collapse
Affiliation(s)
- Kristina von Heyking
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Laura Roth
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Miriam Ertl
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Oxana Schmidt
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Julia Calzada-Wack
- Institute of Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Elizabeth R Lawlor
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stefan Burdach
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Guenther Hs Richter
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| |
Collapse
|
5
|
The lincRNA HOTAIRM1, located in the HOXA genomic region, is expressed in acute myeloid leukemia, impacts prognosis in patients in the intermediate-risk cytogenetic category, and is associated with a distinctive microRNA signature. Oncotarget 2016; 6:31613-27. [PMID: 26436590 PMCID: PMC4741628 DOI: 10.18632/oncotarget.5148] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/29/2015] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are deregulated in several tumors, although their role in acute myeloid leukemia (AML) is mostly unknown. We have examined the expression of the lncRNA HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) in 241 AML patients. We have correlated HOTAIRM1 expression with a miRNA expression profile. We have also analyzed the prognostic value of HOTAIRM1 expression in 215 intermediate-risk AML (IR-AML) patients. The lowest expression level was observed in acute promyelocytic leukemia (P < 0.001) and the highest in t(6;9) AML (P = 0.005). In 215 IR-AML patients, high HOTAIRM1 expression was independently associated with shorter overall survival (OR:2.04;P = 0.001), shorter leukemia-free survival (OR:2.56; P < 0.001) and a higher cumulative incidence of relapse (OR:1.67; P = 0.046). Moreover, HOTAIRM1 maintained its independent prognostic value within the favorable molecular subgroup (OR: 3.43; P = 0.009). Interestingly, HOTAIRM1 was overexpressed in NPM1-mutated AML (P < 0.001) and within this group retained its prognostic value (OR: 2.21; P = 0.01). Moreover, HOTAIRM1 expression was associated with a specific 33- microRNA signature that included miR-196b (P < 0.001). miR-196b is located in the HOX genomic region and has previously been reported to have an independent prognostic value in AML. miR-196b and HOTAIRM1 in combination as a prognostic factor can classify patients as high-, intermediate-, or low-risk (5-year OS: 24% vs 42% vs 70%; P = 0.004). Determination of HOTAIRM1 level at diagnosis provided relevant prognostic information in IR-AML and allowed refinement of risk stratification based on common molecular markers. The prognostic information provided by HOTAIRM1 was strengthened when combined with miR-196b expression. Furthermore, HOTAIRM1 correlated with a 33-miRNA signature.
Collapse
|
6
|
Abstracts. Toxicol Pathol 2016. [DOI: 10.1177/019262339202000415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Abstract
Despite extensive efforts to identify a clinically useful diagnostic biomarker in prostate cancer, no new test has been approved by regulatory authorities. As a result, this unmet need has shifted to biomarkers that additionally indicate presence or absence of "significant" disease. EN2 is a homeodomain-containing transcription factor secreted by prostate cancer into the urine and can be detected by enzyme-linked immunoassay. EN2 may be an ideal biomarker because normal prostate tissue and benign prostatic hypertrophic cells do not secrete EN2. This review discusses the enormous potential of EN2 to address this unmet need and provide the urologist with a simple, inexpensive, and reliable prostate cancer biomarker.
Collapse
Affiliation(s)
- Sophie E McGrath
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Agnieszka Michael
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Richard Morgan
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Hardev Pandha
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| |
Collapse
|
8
|
Carrera M, Bitu CC, de Oliveira CE, Cervigne NK, Graner E, Manninen A, Salo T, Coletta RD. HOXA10 controls proliferation, migration and invasion in oral squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3613-3623. [PMID: 26097543 PMCID: PMC4466930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Although HOX genes are best known for acting in the regulation of important events during embryogenesis, including proliferation, differentiation and migration, alterations in their expression patterns have been frequently described in cancers. In previous studies we analyzed the expression profile of the members of the HOX family of homeobox genes in oral samples of normal mucosa and squamous cell carcinoma (OSCC) and identified differently expressed genes such as HOXA10. The present study aimed to validate the increased expression of HOXA10 in OSCCs, and to investigate the effects arising from its knockdown in OSCC cells. The levels of HOXA10 mRNA were determined in human OSCC samples and cell lines by quantitative PCR, and HOXA10-mediated effects on proliferation, apoptosis, adhesion, epithelial-mesenchymal transition (EMT), migration and invasion were studied in HSC-3 tongue carcinoma cells by using retrovirus-mediated RNA interference. Higher expression of HOXA10 mRNA was observed in OSCC cell lines and in tumor tissues compared to normal controls. HOXA10 knockdown significantly reduced the proliferation of the tumor cells which was accompanied by increased levels of p21. HOXA10 silencing also significantly induced the expression of EMT markers and enhanced the adhesion, migration and invasion of HSC-3 cells. No effects on cell death were observed after HOXA10 knockdown. The results of the current study confirm the overexpression of HOXA10 in OSCCs, and further demonstrate that its expression is functionally associated with several important biological processes related to oral tumorigenesis, such as proliferation, migration and invasion.
Collapse
Affiliation(s)
- Manoela Carrera
- Department of Oral Diagnosis, School of Dentistry, University of CampinasPiracicaba, São Paulo, Brazil
- Department of Life Sciences, Bahia State UniversityBahia, Brazil
| | - Carolina C Bitu
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, and Medical Research Center, Oulu University HospitalOulu, Finland
| | | | - Nilva K Cervigne
- Department of Oral Diagnosis, School of Dentistry, University of CampinasPiracicaba, São Paulo, Brazil
- Department of Clinical, Faculty of Medicine of JundiaiJundiai, São Paulo, Brazil
| | - Edgard Graner
- Department of Oral Diagnosis, School of Dentistry, University of CampinasPiracicaba, São Paulo, Brazil
| | - Aki Manninen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of OuluFinland
| | - Tuula Salo
- Department of Oral Diagnosis, School of Dentistry, University of CampinasPiracicaba, São Paulo, Brazil
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, and Medical Research Center, Oulu University HospitalOulu, Finland
- Institute of Dentistry, University of HelsinkiFinland
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of CampinasPiracicaba, São Paulo, Brazil
| |
Collapse
|
9
|
Spencer DH, Young MA, Lamprecht TL, Helton NM, Fulton R, O'Laughlin M, Fronick C, Magrini V, Demeter RT, Miller CA, Klco JM, Wilson RK, Ley TJ. Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells. Leukemia 2015; 29:1279-89. [PMID: 25600023 DOI: 10.1038/leu.2015.6] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/19/2014] [Accepted: 12/16/2014] [Indexed: 01/05/2023]
Abstract
HOX genes are highly expressed in many acute myeloid leukemia (AML) samples, but the patterns of expression and associated regulatory mechanisms are not clearly understood. We analyzed RNA sequencing data from 179 primary AML samples and normal hematopoietic cells to understand the range of expression patterns in normal versus leukemic cells. HOX expression in AML was restricted to specific genes in the HOXA or HOXB loci, and was highly correlated with recurrent cytogenetic abnormalities. However, the majority of samples expressed a canonical set of HOXA and HOXB genes that was nearly identical to the expression signature of normal hematopoietic stem/progenitor cells. Transcriptional profiles at the HOX loci were similar between normal cells and AML samples, and involved bidirectional transcription at the center of each gene cluster. Epigenetic analysis of a subset of AML samples also identified common regions of chromatin accessibility in AML samples and normal CD34(+) cells that displayed differences in methylation depending on HOX expression patterns. These data provide an integrated epigenetic view of the HOX gene loci in primary AML samples, and suggest that HOX expression in most AML samples represents a normal stem cell program that is controlled by epigenetic mechanisms at specific regulatory elements.
Collapse
Affiliation(s)
- D H Spencer
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - M A Young
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - T L Lamprecht
- Department of Internal Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University School of Medicine, St Louis, MO, USA
| | - N M Helton
- Department of Internal Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University School of Medicine, St Louis, MO, USA
| | - R Fulton
- The Genome Institute, Washington University, St Louis, MO, USA
| | - M O'Laughlin
- The Genome Institute, Washington University, St Louis, MO, USA
| | - C Fronick
- The Genome Institute, Washington University, St Louis, MO, USA
| | - V Magrini
- The Genome Institute, Washington University, St Louis, MO, USA
| | - R T Demeter
- The Genome Institute, Washington University, St Louis, MO, USA
| | - C A Miller
- The Genome Institute, Washington University, St Louis, MO, USA
| | - J M Klco
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - R K Wilson
- The Genome Institute, Washington University, St Louis, MO, USA
| | - T J Ley
- 1] Department of Internal Medicine, Division of Oncology, Section of Stem Cell Biology, Washington University School of Medicine, St Louis, MO, USA [2] The Genome Institute, Washington University, St Louis, MO, USA
| |
Collapse
|
10
|
Syed DN, Lall RK, Mukhtar H. MicroRNAs and Photocarcinogenesis. Photochem Photobiol 2014; 91:173-87. [DOI: 10.1111/php.12346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Deeba N. Syed
- Department of Dermatology; University of Wisconsin; Madison WI
| | - Rahul K. Lall
- Department of Dermatology; University of Wisconsin; Madison WI
| | - Hasan Mukhtar
- Department of Dermatology; University of Wisconsin; Madison WI
| |
Collapse
|
11
|
Wen-jun L, qu-lian G, Hong-ying C, Yan Z, Mei-Xian H. Studies on HOXB4 expression during differentiation of human cytomegalovirus-infected hematopoietic stem cells into lymphocyte and erythrocyte progenitor cells. Cell Biochem Biophys 2012; 63:133-41. [PMID: 22402911 DOI: 10.1007/s12013-012-9349-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We investigated the role of homeobox B4 (HOXB4) mRNA/protein expression induced by human cytomegalovirus (HCMV) and/or all-trans retinoic acid (ATRA) in proliferation and committed differentiation of human cord blood hematopoietic stem cells (HSCs) into colony-forming-units of T-lymphocyte (CFU-TL) and erythroid (CFU-E) progenitors in vitro. Twelve cord blood samples were collected from the fetal placenta umbilical vein and cultured in vitro. The proliferation and differentiation of cord blood HSCs into CFU-TL and CFU-E were continuously disrupted with HCMV-AD169 and/or 6 × 10(-8) mol/l of ATRA. HOXB4 mRNA/protein expression in CFU-TL and CFU-E was detected in control, ATRA, HCMV and ATRA + HCMV groups on days 3, 7, and 12 of culture by fluorescent qRT-PCR/western blot. We found that HOXB4 mRNA/protein expression was detectable on day 3, increased on day 7 and was highest on day 12. HOXB4 mRNA/protein expression in HCMV group was downregulated compared with control group (P < 0.05). However, the levels were significantly upregulated in HCMV + ATRA group compared with HCMV group (P < 0.05). We concluded that the abnormal HOXB4 mRNA/protein expression induced by HCMV could play a role in hematopoietic damage. ATRA, at the concentration used, significantly up-regulated HOXB4 mRNA/protein expression in normal lymphocyte and erythrocyte progenitor cells as well as in HCMV-infected cells.
Collapse
Affiliation(s)
- Liu Wen-jun
- Department of Pediatrics, Affiliated Hospital of Luzhou Medical College, Luzhou 646000, Sichuan Province, China.
| | | | | | | | | |
Collapse
|
12
|
Park SW, Won KJ, Lee YS, Kim HS, Kim YK, Lee HW, Kim B, Lee BH, Kim JH, Kim DK. Increased HoxB4 Inhibits Apoptotic Cell Death in Pro-B Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:265-71. [PMID: 22915992 PMCID: PMC3419762 DOI: 10.4196/kjpp.2012.16.4.265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/04/2012] [Accepted: 07/19/2012] [Indexed: 02/07/2023]
Abstract
HoxB4, a homeodomain-containing transcription factor, is involved in the expansion of hematopoietic stem cells and progenitor cells in vivo and in vitro, and plays a key role in regulating the balance between hematopoietic stem cell renewal and cell differentiation. However, the biological activity of HoxB4 in other cells has not been reported. In this study, we investigated the effect of overexpressed HoxB4 on cell survival under various conditions that induce death, using the Ba/F3 cell line. Analysis of phenotypical characteristics showed that HoxB4 overexpression in Ba/F3 cells reduced cell size, death, and proliferation rate. Moreover, the progression from early to late apoptotic stages was inhibited in Ba/F3 cells subjected to HoxB4 overexpression under removal of interleukin-3-mediated signal, leading to the induction of cell cycle arrest at the G2/M phase and attenuated cell death by Fas protein stimulation in vitro. Furthermore, apoptotic cell death induced by doxorubicin-treated G2/M phase cell-cycle arrest also decreased with HoxB4 overexpression in Ba/F3 cells. From these data, we suggest that HoxB4 may play an important role in the regulation of pro-B cell survival under various apoptotic death environments.
Collapse
Affiliation(s)
- Sung-Won Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 463-712, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu XH, Lu KH, Wang KM, Sun M, Zhang EB, Yang JS, Yin DD, Liu ZL, Zhou J, Liu ZJ, De W, Wang ZX. MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5. BMC Cancer 2012; 12:348. [PMID: 22876840 PMCID: PMC3503718 DOI: 10.1186/1471-2407-12-348] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 07/03/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short, non-coding RNAs (~22 nt) that play important roles in the pathogenesis of human diseases by negatively regulating gene expression. Although miR-196a has been implicated in several other cancers, its role in non-small cell lung cancer (NSCLC) is unknown. The aim of the present study was to examine the expression pattern of miR-196a in NSCLC and its clinical significance, as well as its biological role in tumor progression. METHODS Expression of miR-196a was analyzed in 34 NSCLC tissues and five NSCLC cell lines by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The effect of DNA methylation on miR-196a expression was investigated by 5-aza-2-deoxy-cytidine treatment and bisulfite sequencing. The effect of miR-196a on proliferation was evaluated by MTT and colony formation assays, and cell migration and invasion were evaluated by transwell assays. Analysis of target protein expression was determined by western blotting. Luciferase reporter plasmids were constructed to confirm the action of miR-196a on downstream target genes, including HOXA5. Differences between the results were tested for significance using Student's t-test (two-tailed). RESULTS miR-196a was highly expressed both in NSCLC samples and cell lines compared with their corresponding normal counterparts, and the expression of miR-196a may be affected by DNA demethylation. Higher expression of miR-196a in NSCLC tissues was associated with a higher clinical stage, and also correlated with NSCLC lymph-node metastasis. In vitro functional assays demonstrated that modulation of miR-196a expression affected NSCLC cell proliferation, migration and invasion. Our analysis showed that miR-196a suppressed the expression of HOXA5 both at the mRNA and protein levels, and luciferase assays confirmed that miR-196a directly bound to the 3'untranslated region of HOXA5. Knockdown of HOXA5 expression in A549 cells using RNAi was shown to promote NSCLC cell proliferation, migration and invasion. Finally, we observed an inverse correlation between HOXA5 and miR-196a expression in NSCLC tissues. CONCLUSIONS Our findings indicate that miR-196a is significantly up-regulated in NSCLC tissues, and regulates NSCLC cell proliferation, migration and invasion, partially via the down-regulation of HOXA5. Thus, miR-196a may represent a potential therapeutic target for NSCLC intervention.
Collapse
Affiliation(s)
- Xiang-hua Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schiavo G, D'Antò V, Cantile M, Procino A, Di Giovanni S, Valletta R, Terracciano L, Baumhoer D, Jundt G, Cillo C. Deregulated HOX genes in ameloblastomas are located in physical contiguity to keratin genes. J Cell Biochem 2012; 112:3206-15. [PMID: 21732412 DOI: 10.1002/jcb.23248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The expression of the HOX gene network in mid-stage human tooth development mostly concerns the epithelial tooth germ compartment and involves the C and D HOX loci. To further dissect the HOX gene implication with tooth epithelium differentiation we compared the expression of the whole HOX network in human ameloblastomas, as paradigm of epithelial odontogenic tumors, with tooth germs. We identified two ameloblastoma molecular types with respectively low and high number of active HOX C genes. The highly expressing HOX C gene ameloblastomas were characterized by a strong keratinized phenotype. Locus C HOX genes are located on chromosome 12q13-15 in physical contiguity with one of the two keratin gene clusters included in the human genome. The most posterior HOX C gene, HOX C13, is capable to interact with hair keratin genes located on the other keratin gene cluster in physical contiguity with the HOX B locus on chromosome 17q21-22. Inside the HOX C locus, a 2.2 kb ncRNA (HOTAIR) able to repress transcription, in cis, along the entire HOX C locus and, in trans, at the posterior region of the HOX D locus has recently been identified. Interestingly both loci are deregulated in ameloblastomas. Our finding support an important role of the HOX network in characterizing the epithelial tooth compartment. Furthermore, the physical contiguity between locus C HOX and keratin genes in normal tooth epithelium and their deregulation in the neoplastic counterparts suggest they may act on the same mechanism potentially involved with epithelial tumorigenesis.
Collapse
Affiliation(s)
- Giulia Schiavo
- Institute of Pathology-Molecular Pathology Division, University of Basel, Schonbeinstrasse 40, 4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wan X, Hu B, Liu JX, Feng X, Xiao W. Zebrafish mll gene is essential for hematopoiesis. J Biol Chem 2011; 286:33345-57. [PMID: 21784840 PMCID: PMC3190926 DOI: 10.1074/jbc.m111.253252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/20/2011] [Indexed: 01/11/2023] Open
Abstract
Studies implicate an important role for the mixed lineage leukemia (Mll) gene in hematopoiesis, mainly through maintaining Hox gene expression. However, the mechanisms underlying Mll-mediated hematopoiesis during embryogenesis remain largely unclear. Here, we investigate the role of mll during zebrafish embryogenesis, particularly hematopoiesis. Mll depletion caused severe defects in hematopoiesis as indicated by a lack of blood flow and mature blood cells as well as a significant reduction in expression of hematopoietic progenitor and mature blood cell markers. Furthermore, mll depletion prevented the differentiation of hematopoietic progenitors. In addition, we identified the N-terminal mini-peptide of Mll that acted as a dominant negative form to disrupt normal function of mll during embryogenesis. As expected, mll knockdown altered the expression of a subset of Hox genes. However, overexpression of these down-regulated Hox genes only partially rescued the blood deficiency, suggesting that mll may target additional genes to regulate hematopoiesis. In the mll morphants, microarray analysis revealed a dramatic up-regulation of gadd45αa. Multiple assays indicate that mll inhibited gadd45αa expression and that overexpression of gadd45αa mRNA led to a phenotype similar to the one seen in the mll morphants. Taken together, these findings demonstrate that zebrafish mll plays essential roles in hematopoiesis and that gadd45αa may serve as a potential downstream target for mediating the function of mll in hematopoiesis.
Collapse
Affiliation(s)
- Xiaoyang Wan
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bo Hu
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jing-xia Liu
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xi Feng
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wuhan Xiao
- From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
16
|
Delval S, Taminiau A, Lamy J, Lallemand C, Gilles C, Noël A, Rezsohazy R. The Pbx interaction motif of Hoxa1 is essential for its oncogenic activity. PLoS One 2011; 6:e25247. [PMID: 21957483 PMCID: PMC3177904 DOI: 10.1371/journal.pone.0025247] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 08/30/2011] [Indexed: 01/21/2023] Open
Abstract
Hoxa1 belongs to the Hox family of homeodomain transcription factors involved in patterning embryonic territories and governing organogenetic processes. In addition to its developmental functions, Hoxa1 has been shown to be an oncogene and to be overexpressed in the mammary gland in response to a deregulation of the autocrine growth hormone. It has therefore been suggested that Hoxa1 plays a pivotal role in the process linking autocrine growth hormone misregulation and mammary carcinogenesis. Like most Hox proteins, Hoxa1 can interact with Pbx proteins. This interaction relies on a Hox hexapeptidic sequence centred on conserved Tryptophan and Methionine residues. To address the importance of the Hox-Pbx interaction for the oncogenic activity of Hoxa1, we characterized here the properties of a Hoxa1 variant with substituted residues in the hexapeptide and demonstrate that the Hoxa1 mutant lost its ability to stimulate cell proliferation, anchorage-independent cell growth, and loss of contact inhibition. Therefore, the hexapeptide motif of Hoxa1 is required to confer its oncogenic activity, supporting the view that this activity relies on the ability of Hoxa1 to interact with Pbx.
Collapse
Affiliation(s)
- Stéphanie Delval
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Juliette Lamy
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Cécile Lallemand
- Laboratory of Biology of Tumors and Development, GIGA-Cancer, University of Liège and Centre Hospitalier Universitaire, Liège, Belgium
| | - Christine Gilles
- Laboratory of Biology of Tumors and Development, GIGA-Cancer, University of Liège and Centre Hospitalier Universitaire, Liège, Belgium
| | - Agnès Noël
- Laboratory of Biology of Tumors and Development, GIGA-Cancer, University of Liège and Centre Hospitalier Universitaire, Liège, Belgium
| | - René Rezsohazy
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute (ISV), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
17
|
miRNAs and Melanoma: How Are They Connected? Dermatol Res Pract 2011; 2012:528345. [PMID: 21860617 PMCID: PMC3154488 DOI: 10.1155/2012/528345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/15/2011] [Indexed: 12/15/2022] Open
Abstract
miRNAs are non-coding RNAs that bind to mRNA targets and disturb their stability and/or translation, thus acting in gene posttranscriptional regulation. It is predicted that over 30% of mRNAs are regulated by miRNAs. Therefore these molecules are considered essential in the processing of many biological responses, such as cell proliferation, apoptosis, and stress responsiveness. As miRNAs participate of virtually all cellular pathways, their deregulation is critical to cancer development. Consequently, loss or gain of miRNAs function may contribute to tumor progression. Little is known about the regulation of miRNAs and understanding the events that lead to changes in their expression may provide new perspectives for cancer treatment. Among distinct types of cancer, melanoma has special implications. It is characterized as a complex disease, originated from a malignant transformation of melanocytes. Despite being rare, its metastatic form is usually incurable, which makes melanoma the major death cause of all skin cancers. Some molecular pathways are frequently disrupted in melanoma, and miRNAs probably have a decisive role on these alterations. Therefore, this review aims to discuss new findings about miRNAs in melanoma fields, underlying epigenetic processes, and also to argue possibilities of using miRNAs in melanoma diagnosis and therapy.
Collapse
|
18
|
Wang M, Doucette JR, Nazarali AJ. Conditional Tet-regulated over-expression of Hoxa2 in CG4 cells increases their proliferation and delays their differentiation into oligodendrocyte-like cells expressing myelin basic protein. Cell Mol Neurobiol 2011; 31:875-86. [PMID: 21479584 PMCID: PMC11498525 DOI: 10.1007/s10571-011-9685-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Hoxa2 gene was reported to be expressed by oligodendrocytes (OLs) and down-regulated at the terminal differentiation stage during oligodendrogenesis in mice (Nicolay et al. 2004b). To further investigate the role of Hoxa2 in oligodendroglial development, a tetracycline regulated controllable expression system was utilized to establish a stable cell line (CG4-SHoxa2 [sense Hoxa2]), where the expression level of Hoxa2 gene could be up-regulated. The impact of Hoxa2 over-expression on the proliferation and differentiation of CG4-SHoxa2 cells was investigated. Up-regulation of Hoxa2 increased the proliferation of CG4-SHoxa2 cells. The mRNA levels of PDGFαR (platelet-derived growth factor [PDGF] alpha receptor), which is expressed by OL progenitor cells, were not different in CG4-SHoxa2 cells compared to wild-type CG4 cells. Semi-quantitative RT-PCR revealed that the mRNA levels of myelin basic protein (MBP) was lower in CG4-SHoxa2 cells than in wild-type CG4 cells indicating the differentiation of CG4-SHoxa2 cells was delayed when the Hoxa2 gene was up-regulated.
Collapse
Affiliation(s)
- Monica Wang
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, SK S7N 5C9 Canada
| | - J. Ronald Doucette
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK Canada
| | - Adil J. Nazarali
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, SK S7N 5C9 Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK Canada
| |
Collapse
|
19
|
Mueller DW, Bosserhoff AK. MicroRNA miR-196a controls melanoma-associated genes by regulating HOX-C8 expression. Int J Cancer 2011; 129:1064-74. [PMID: 21077158 DOI: 10.1002/ijc.25768] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 10/21/2010] [Indexed: 12/18/2022]
Abstract
Resulting from a screening for microRNAs differentially regulated in melanocytes and melanoma cells, we found expression of miR-196a to be significantly down-regulated in malignant melanoma cell lines and tissue samples. As it was stated before that miR-196a might negatively regulate expression of the transcription factor HOX-C8, we analyzed HOX-C8 levels in NHEMs and melanoma cells and found a strong up-regulation of HOX-C8 expression in malignant melanoma cell lines and tissue samples compared with melanocytes. Several HOX-C8 target genes are known to be involved in processes such as oncogenesis, cell adhesion, proliferation and apoptosis. We, therefore, aimed to further investigate a potential "miR-196a → HOX-C8 → HOX-C8 target gene" relationship. Stable transfection with an miR-196a expression plasmid led to strong down-regulation of HOX-C8 expression in melanoma cells. Luciferase assays using reporter plasmids containing different fragments of the HOX-C8 3'UTR confirmed direct interactions of miR-196a with the HOX-C8 mRNA. Focusing on target genes of HOX-C8, which might play an important role in melanomagenesis, we identified three genes (cadherin-11, calponin-1 and osteopontin) that are up- or down-regulated, respectively, by altered HOX-C8 expression in miR-196a expressing cell clones and are thus indirectly regulated by this microRNA. As those target genes are closely related to important cellular mechanisms such as cell adhesion, cytoskeleton remodeling, tumor formation and invasive behavior of tumor cells, altered miR-196a expression exerts strong effects contributing to tumor cell transformation and formation and progression of malignant melanoma. This fact is underlined by a strongly reduced invasive behavior of melanoma cells re-expressing miR-196a in vitro.
Collapse
Affiliation(s)
- Daniel W Mueller
- Institute of Pathology, University of Regensburg Medical School, Regensburg, Germany
| | | |
Collapse
|
20
|
Quéré R, Andradottir S, Brun ACM, Zubarev RA, Karlsson G, Olsson K, Magnusson M, Cammenga J, Karlsson S. High levels of the adhesion molecule CD44 on leukemic cells generate acute myeloid leukemia relapse after withdrawal of the initial transforming event. Leukemia 2010; 25:515-26. [PMID: 21116281 PMCID: PMC3072510 DOI: 10.1038/leu.2010.281] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple genetic hits are detected in patients with acute myeloid leukemia (AML). To investigate this further, we developed a tetracycline-inducible mouse model of AML, in which the initial transforming event, overexpression of HOXA10, can be eliminated. Continuous overexpression of HOXA10 is required to generate AML in primary recipient mice, but is not essential for maintenance of the leukemia. Transplantation of AML to secondary recipients showed that in established leukemias, ∼80% of the leukemia-initiating cells (LICs) in bone marrow stopped proliferating upon withdrawal of HOXA10 overexpression. However, the population of LICs in primary recipients is heterogeneous, as ∼20% of the LICs induce leukemia in secondary recipients despite elimination of HOXA10-induced overexpression. Intrinsic genetic activation of several proto-oncogenes was observed in leukemic cells resistant to inactivation of the initial transformation event. Interestingly, high levels of the adhesion molecule CD44 on leukemic cells are essential to generate leukemia after removal of the primary event. This suggests that extrinsic niche-dependent factors are also involved in the host-dependent outgrowth of leukemias after withdrawal of HOXA10 overexpression event that initiates the leukemia.
Collapse
Affiliation(s)
- R Quéré
- Molecular Medicine and Gene Therapy, Division of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology and Cell Therapy, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
CD34+ cells from AML with mutated NPM1 harbor cytoplasmic mutated nucleophosmin and generate leukemia in immunocompromised mice. Blood 2010; 116:3907-22. [DOI: 10.1182/blood-2009-08-238899] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Acute myeloid leukemia (AML) with mutated NPM1 shows distinctive biologic and clinical features, including absent/low CD34 expression, the significance of which remains unclear. Therefore, we analyzed CD34+ cells from 41 NPM1-mutated AML. At flow cytometry, 31 of 41 samples contained less than 10% cells showing low intensity CD34 positivity and variable expression of CD38. Mutational analysis and/or Western blotting of purified CD34+ cells from 17 patients revealed NPM1-mutated gene and/or protein in all. Immunohistochemistry of trephine bone marrow biopsies and/or flow cytometry proved CD34+ leukemia cells from NPM1-mutated AML had aberrant nucleophosmin expression in cytoplasm. NPM1-mutated gene and/or protein was also confirmed in a CD34+ subfraction exhibiting the phenotype (CD34+/CD38−/CD123+/CD33+/CD90−) of leukemic stem cells. When transplanted into immunocompromised mice, CD34+ cells generated a leukemia recapitulating, both morphologically and immunohistochemically (aberrant cytoplasmic nucleophosmin, CD34 negativity), the original patient's disease. These results indicate that the CD34+ fraction in NPM1-mutated AML belongs to the leukemic clone and contains NPM1-mutated cells exhibiting properties typical of leukemia-initiating cells. CD34− cells from few cases (2/15) also showed significant leukemia-initiating cell potential in immunocompromised mice. This study provides further evidence that NPM1 mutation is a founder genetic lesion and has potential implications for the cell-of-origin and targeted therapy of NPM1-mutated AML.
Collapse
|
22
|
Lebert-Ghali CE, Fournier M, Dickson GJ, Thompson A, Sauvageau G, Bijl JJ. HoxA cluster is haploinsufficient for activity of hematopoietic stem and progenitor cells. Exp Hematol 2010; 38:1074-1086.e1-5. [DOI: 10.1016/j.exphem.2010.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/05/2010] [Accepted: 07/14/2010] [Indexed: 11/25/2022]
|
23
|
Proximal radio-ulnar synostosis with bone marrow failure syndrome in an infant without a HOXA11 mutation. J Pediatr Hematol Oncol 2010; 32:479-85. [PMID: 20562651 DOI: 10.1097/mph.0b013e3181e5129d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This report summarizes the clinical management of an infant with a proximal radio-ulnar synostosis and inherited bone marrow failure syndrome (PRUS/IBMFS). Molecular studies were negative for the characteristic HOXA11 mutation described earlier. He was successfully treated with a non-myeloablative hematopoietic stem cell transplantation from an human leukocyte antigen-identical sibling donor at the age of 3 months. We reviewed the literature on PRUS/IBMFS with an emphasis on the current understanding of the molecular mechanisms involved in the disease pathogenesis. Absence of the HOXA11 mutation in this case implies that molecular mechanisms beyond the HOXA11 gene, yet to be discovered, may contribute for the development of PRUS/IBMFS.
Collapse
|
24
|
Hong JH, Lee JK, Park JJ, Lee NW, Lee KW, Na JY. Expression pattern of the class I homeobox genes in ovarian carcinoma. J Gynecol Oncol 2010; 21:29-37. [PMID: 20379445 DOI: 10.3802/jgo.2010.21.1.29] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/29/2009] [Accepted: 12/15/2009] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Although some sporadic reports reveal the link between the homeobox (HOX) genes and ovarian carcinoma, there is no comprehensive analysis of the expression pattern of the class I homeobox genes in ovarian carcinoma that determines the candidate genes involved in ovarian carcinogenesis. METHODS The different patterns of expression of 36 HOX genes were analyzed, including 4 ovarian cancer cell lines and 4 normal ovarian tissues. Using a reverse transcription-polymerase chain reaction (RT-PCR) and quantification analysis, the specific gene that showed a significantly higher expression in ovarian cancer cell lines than in normal ovaries was selected, and western blot analysis was performed adding 7 ovarian cancer tissue specimens. Finally, immunohistochemical and immunocytochemical analyses were performed to compare the pattern of expression of the specific HOX gene between ovarian cancer tissue and normal ovaries. RESULTS Among 36 genes, 11 genes had a different level of mRNA expression between the cancer cell lines and the normal ovarian tissues. Of the 11 genes, only HOXB4 had a significantly higher level of expression in ovarian cancer cell lines than in normal ovaries (p=0.029). Based on western blot, immunohistochemical, and immunocytochemical analyses, HOXB4 was expressed exclusively in the ovarian cancer cell lines or cancer tissue specimens, but not in the normal ovaries. CONCLUSION We suggest HOXB4 may be a novel candidate gene involved in ovarian carcinogenesis.
Collapse
Affiliation(s)
- Jin Hwa Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Cantile M, Franco R, Tschan A, Baumhoer D, Zlobec I, Schiavo G, Forte I, Bihl M, Liguori G, Botti G, Tornillo L, Karamitopoulou-Diamantis E, Terracciano L, Cillo C. HOX D13 expression across 79 tumor tissue types. Int J Cancer 2009; 125:1532-41. [PMID: 19488988 DOI: 10.1002/ijc.24438] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
HOX genes control normal development, primary cellular processes and are characterized by a unique genomic network organization. Locus D HOX genes play an important role in limb generation and mesenchymal condensation. Dysregulated HOXD13 expression has been detected in breast cancer, melanoma, cervical cancer and astrocytomas. We have investigated the epidemiology of HOXD13 expression in human tissues and its potential deregulation in the carcinogenesis of specific tumors. HOXD13 homeoprotein expression has been detected using microarray technology comprising more than 4,000 normal and neoplastic tissue samples including 79 different tumor categories. Validation of HOXD13 expression has been performed, at mRNA level, for selected tumor types. Significant differences are detectable between specific normal tissues and corresponding tumor types with the majority of cancers showing an increase in HOXD13 expression (16.1% normal vs. 57.7% cancers). In contrast, pancreas and stomach tumor subtypes display the opposite trend. Interestingly, detection of the HOXD13 homeoprotein in pancreas-tissue microarrays shows that its negative expression has a significant and adverse effect on the prognosis of patients with pancreatic cancer independent of the T or N stage at the time of diagnosis. Our study provides, for the first time, an overview of a HOX protein expression in a large series of normal and neoplastic tissue types, identifies pancreatic cancer as one of the most affected by the HOXD13 hoemoprotein and underlines the way homeoproteins can be associated to human cancerogenesis.
Collapse
Affiliation(s)
- Monica Cantile
- Department of Clinical & Experimental Medicine, Federico II University Medical School, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Krejcí J, Uhlírová R, Galiová G, Kozubek S, Smigová J, Bártová E. Genome-wide reduction in H3K9 acetylation during human embryonic stem cell differentiation. J Cell Physiol 2009; 219:677-87. [PMID: 19202556 DOI: 10.1002/jcp.21714] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Epigenetic marks are important factors regulating the pluripotency and differentiation of human embryonic stem cells (hESCs). In this study, we analyzed H3K9 acetylation, an epigenetic mark associated with transcriptionally active chromatin, during endoderm-like differentiation of hESCs. ChIP-on-chip analysis revealed that differentiation results in a genome-wide decrease in promoter H3K9 acetylation. Among the 24,659 promoters analyzed, only 117 are likely to be involved in pluripotency, while 25 acetylated promoters are likely to be responsible for endoderm-like differentiation. In pluripotent hESCs, the chromosomes with the highest absolute levels of H3K9 acetylation are chromosomes 1, 6, 2, 17, 11, and 12 (listed in order of decreasing acetylation). Chromosomes 17, 19, 11, 20, 22, and 12 are the most prone to differentiation-related changes (both increased acetylation and deacetylation). When chromosome size (in Mb) was accounted for, the highest H3K9 acetylation levels were found on chromosome 19, 17, 6, 12, 11, and 1, and the greatest differentiation-associated decreases in H3K9 acetylation occurred on chromosomes 19, 17, 11, 12, 16, and 1. The gene density and size of individual chromosomes were strongly correlated with the levels of H3K9 acetylation. Our analyses point to chromosomes 11, 12, 17, and 19 as being critical for hESC pluripotency and endoderm-like differentiation. J. Cell. Physiol. 219: 677-687, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jana Krejcí
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
27
|
Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL, Chen J, Rowley JD, Zeleznik-Le NJ. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009; 113:3314-22. [PMID: 19188669 PMCID: PMC2665896 DOI: 10.1182/blood-2008-04-154310] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 01/08/2009] [Indexed: 02/07/2023] Open
Abstract
Chromosomal translocations involving the Mixed Lineage Leukemia (MLL) gene produce chimeric proteins that cause abnormal expression of a subset of HOX genes and leukemia development. Here, we show that MLL normally regulates expression of mir-196b, a hematopoietic microRNA located within the HoxA cluster, in a pattern similar to that of the surrounding 5' Hox genes, Hoxa9 and Hoxa10, during embryonic stem (ES) cell differentiation. Within the hematopoietic lineage, mir-196b is most abundant in short-term hematopoietic stem cells and is down-regulated in more differentiated hematopoietic cells. Leukemogenic MLL fusion proteins cause overexpression of mir-196b, while treatment of MLL-AF9 transformed bone marrow cells with mir-196-specific antagomir abrogates their replating potential in methylcellulose. This demonstrates that mir-196b function is necessary for MLL fusion-mediated immortalization. Furthermore, overexpression of mir-196b was found specifically in patients with MLL associated leukemias as determined from analysis of 55 primary leukemia samples. Overexpression of mir-196b in bone marrow progenitor cells leads to increased proliferative capacity and survival, as well as a partial block in differentiation. Our results suggest a mechanism whereby increased expression of mir-196b by MLL fusion proteins significantly contributes to leukemia development.
Collapse
Affiliation(s)
- Relja Popovic
- Molecular Biology Program, Loyola University Medical Center, Maywood, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ide K, Goto-Koshino Y, Momoi Y, Fujino Y, Ohno K, Tsujimoto H. Quantitative analysis of mRNA transcripts of Hox, SHH, PTCH, Wnt, and Fzd genes in canine hematopoietic progenitor cells and various in vitro colonies differentiated from the cells. J Vet Med Sci 2009; 71:69-77. [PMID: 19194078 DOI: 10.1292/jvms.71.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homeobox (Hox), Sonic hedgehog (SHH), and Wingless-type MMTV integration site family (Wnt) are known to modulate the self-renewal and expansion of hematopoietic progenitor/stem cells in humans and mice. Frizzled (Fzd) and Patched1 (PTCH1) represent the receptors of Wnt and SHH, respectively. In this study, the amounts of mRNA transcripts of the genes associated with the self-renewal of hematopoietic stem cells, HoxB3, HoxB4, HoxA10, Wnt5a, Wnt2b, Fzd1, Fzd6, SHH, and PTCH1, were measured in canine unfractionated bone marrow cells, CD34-enriched cells, and various colony-forming units in culture (CFU-C). Partial cDNA sequences of these 9 canine genes were determined in this study. Quantitative real-time polymerase chain reaction was employed to indicate their relative amounts of mRNA transcripts. Amounts of mRNA transcripts of HoxB3, HoxA10, PTCH1, and Wnt5a genes in canine CD34-enriched cell fraction were significantly larger than those in the CD34-depleted cell fraction. Amounts of mRNA transcripts of HoxB3, HoxA10, PTCH1, Wnt5a, and Wnt2b genes in various CFU-C cells were significantly smaller than those in the seeded CD34-enriched cell fraction. These results suggested important roles of the products of these genes in self-renewal, expansion, and survival of hematopoietic progenitor cells in dogs as shown in humans and rodents.
Collapse
Affiliation(s)
- Kaori Ide
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Hoxa6 potentiates short-term hemopoietic cell proliferation and extended self-renewal. Exp Hematol 2009; 37:322-33.e3. [DOI: 10.1016/j.exphem.2008.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/10/2008] [Accepted: 10/28/2008] [Indexed: 11/23/2022]
|
30
|
Cantile M, Schiavo G, Terracciano L, Cillo C. Homeobox genes in normal and abnormal vasculogenesis. Nutr Metab Cardiovasc Dis 2008; 18:651-658. [PMID: 19013779 DOI: 10.1016/j.numecd.2008.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 07/07/2008] [Accepted: 08/06/2008] [Indexed: 01/09/2023]
Abstract
Homeobox containing genes are a family of transcription factors regulating normal development and controlling primary cellular processes (cell identity, cell division and differentiation) recently enriched by the discovery of their interaction with miRNAs and ncRNAs. Class I human homeobox genes (HOX genes) are characterized by a unique genomic network organization: four compact chromosomal loci where 39 sequence corresponding genes can be aligned with each other in 13 antero-posterior paralogous groups. The cardiovascular system is the first mesoderm organ-system to be generated during embryonic development; subsequently it generates the blood and lymphatic vascular systems. Cardiovascular remodelling is involved through homeobox gene regulation and deregulation in adult physiology (menstrual cycle and wound healing) and pathology (atherosclerosis, arterial restenosis, tumour angiogenesis and lymphangiogenesis). Understanding the role played by homeobox genes in endothelial and smooth muscle cell phenotype determination will be crucial in identifying the molecular processes involved in vascular cell differentiation, as well as to support future therapeutic strategies. We report here on the current knowledge of the role played by homeobox genes in normal and abnormal vasculogenesis and postulate a common molecular mechanism accounting for the involvement of homeobox genes in the regulation of the nuclear export of specific transcripts potentially capable of generating endothelial phenotype modification involved in new vessel formation.
Collapse
Affiliation(s)
- M Cantile
- Department of Clinical and Experimental Medicine, Federico II University Medical School, Naples, Italy
| | | | | | | |
Collapse
|
31
|
RICH IVANN, RIEDEL WALTRAUD, BRACKMANN IRMGARD, SCHNAPPAUF URSULA, ZIMMERMANN FRANK, VOGT CHRISTINA, NOÉ GUDRUN. The Initiation of the Hemopoietic System. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.1994.tb55714.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Matis C, Oury F, Remacle S, Lampe X, Gofflot F, Picard JJ, Rijli FM, Rezsohazy R. Identification of Lmo1 as part of a Hox-dependent regulatory network for hindbrain patterning. Dev Dyn 2007; 236:2675-84. [PMID: 17676642 DOI: 10.1002/dvdy.21266] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The embryonic functions of Hox proteins have been extensively investigated in several animal phyla. These transcription factors act as selectors of developmental programmes, to govern the morphogenesis of multiple structures and organs. However, despite the variety of morphogenetic processes Hox proteins are involved in, only a limited set of their target genes has been identified so far. To find additional targets, we used a strategy based upon the simultaneous overexpression of Hoxa2 and its cofactors Pbx1 and Prep in a cellular model. Among genes whose expression was upregulated, we identified LMO1, which codes for an intertwining LIM-only factor involved in protein-DNA oligomeric complexes. By analysing its expression in Hox knockout mice, we show that Lmo1 is differentially regulated by Hoxa2 and Hoxb2, in specific columns of hindbrain neuronal progenitors. These results suggest that Lmo1 takes part in a Hox paralogue 2-dependent network regulating anteroposterior and dorsoventral hindbrain patterning.
Collapse
Affiliation(s)
- Christelle Matis
- Unit of Developmental Genetics, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yamada T, Shimizu T, Suzuki M, Kihara-Negishi F, Nanashima N, Sakurai T, Fan Y, Akita M, Oikawa T, Tsuchida S. Interaction between the homeodomain protein HOXC13 and ETS family transcription factor PU.1 and its implication in the differentiation of murine erythroleukemia cells. Exp Cell Res 2007; 314:847-58. [PMID: 18076876 DOI: 10.1016/j.yexcr.2007.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 11/05/2007] [Accepted: 11/08/2007] [Indexed: 01/25/2023]
Abstract
Some of homeodomain proteins and the ETS family of transcription factors are involved in hematopoiesis. RT-PCR analysis revealed that the HOXC13 and PU.1 genes were expressed in murine erythroleukemia (MEL) cells and their levels decreased during DMSO-induced differentiation into erythroid cells. HOXC13 bound to the ETS domain of PU.1 through a region encompassing the C-terminal part of the homeodomain and the most C-terminal region and enhanced the transcriptional activity of PU.1. Enforced expression of HOXC13 in MEL cells resulted in the suppression of beta-globin gene expression. In MEL cells overexpressing HOXC13 and PU.1, which also inhibits the differentiation of MEL cells, no synergistic effect on the suppression of beta-globin gene expression was observed. However, in the presence of DMSO, the expression levels of the beta-globin gene in the cells overexpressing HOXC13 and PU.1 were, unexpectedly, higher than those in the cells overexpressing PU.1 alone. The levels of PU.1 protein were markedly decreased despite that the levels of mRNA were preserved in the cells overexpressing PU.1 and HOXC13. It was, thus, suggested that although HOXC13 negatively regulates the differentiation of MEL cells into erythroid cells, it antagonizes PU.1 possibly by down-regulation of PU.1 protein in the presence of a differentiation stimulus.
Collapse
Affiliation(s)
- Toshiyuki Yamada
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Magnusson M, Brun ACM, Miyake N, Larsson J, Ehinger M, Bjornsson JM, Wutz A, Sigvardsson M, Karlsson S. HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. Blood 2007; 109:3687-96. [PMID: 17234739 DOI: 10.1182/blood-2006-10-054676] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AbstractThe Homeobox (Hox) transcription factors are important regulators of normal and malignant hematopoiesis because they control proliferation, differentiation, and self-renewal of hematopoietic cells at different levels of the hematopoietic hierarchy. In transgenic mice we show that the expression of HOXA10 is tightly regulated by doxycycline. Intermediate concentrations of HOXA10 induced a 15-fold increase in the repopulating capacity of hematopoietic stem cells (HSCs) after 13 days of in vitro culture. Notably, the proliferation induction of HSC by HOXA10 was dependent on the HOXA10 concentration, because high levels of HOXA10 had no effect on HSC proliferation. Furthermore, high levels of HOXA10 blocked erythroid and megakaryocyte development, demonstrating that tight regulation of HOXA10 is critical for normal development of the erythroid and megakaryocytic lineages. The HOXA10-mediated effects on hematopoietic cells were associated with altered expression of genes that govern stem-cell self-renewal and lineage commitment (eg, hepatic leukemia factor [HlF], Dickkopf-1 [Dkk-1], growth factor independent-1 [Gfi-1], and Gata-1). Interestingly, binding sites for HOXA10 were found in HLF, Dkk-1, and Gata-1, and Dkk-1 and Gfi-1 were transcriptionally activated by HOXA10. These findings reveal novel molecular pathways that act downstream of HOXA10 and identify HOXA10 as a master regulator of postnatal hematopoietic development.
Collapse
Affiliation(s)
- Mattias Magnusson
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine, Lund University Hospital, 221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Quere R, Baudet A, Cassinat B, Bertrand G, Marti J, Manchon L, Piquemal D, Chomienne C, Commes T. Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity. Blood 2007; 109:4450-60. [PMID: 17218384 DOI: 10.1182/blood-2006-10-051086] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disease relapse sometimes occurs after acute promyelocytic leukemia (APL) therapy with all-trans retinoic acid (ATRA). Among the diagnostic parameters predicting relapse, heterogeneity in the in vitro differentiation rate of blasts is an independent factor. To identify biologic networks involved in resistance, we conducted pharmacogenomic studies in APL blasts displaying distinct ATRA sensitivities. Although the expression profiles of genes invested in differentiation were similarly modulated in low- and high-sensitive blasts, low-sensitive cells showed higher levels of transcription of ATRA-target genes, transcriptional regulators, chromatin remodelers, and transcription factors. In opposition, only high-sensitive blasts expressed the CYP26A1 gene, encoding the p450 cytochrome which is known to be involved in retinoic acid catabolism. In NB4 cells, ATRA treatment activates a novel signaling pathway, whereby interleukin-8 stimulates the expression of the homeobox transcription factor HOXA10v2, an effective enhancer of CYP26A1 transcription. These data were corroborated in primary APL cells, as maturation levels correlated with CYP26A1 expression. Treatment with a retinoic acid metabolism blocking agent (RAMBA) results in high-nucleoplasmic concentrations of retinoid and growth of NB4-resistant subclones. Hence, for APL blasts associated with poor prognosis, the low CYP26A1 expression may explain high risk of resistance installation, by increased retinoid pressure. Pharmacogenomic profiles of genes involved in retinoid acid metabolism may help to optimize anticancer therapies, including retinoids.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Cytochrome P-450 Enzyme System/metabolism
- Disease Progression
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/drug effects
- Gene Library
- Homeobox A10 Proteins
- Homeodomain Proteins/genetics
- Humans
- Interleukin-8/metabolism
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Models, Biological
- Pharmacogenetics
- Retinoic Acid 4-Hydroxylase
- Transcription, Genetic/drug effects
- Tretinoin/metabolism
- Tretinoin/therapeutic use
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ronan Quere
- Groupe d'Etude des Transcriptomes, Institut de génétique humaine, Unité Propre de Recherche, Centre National de la Recherche Scientifique, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
D'Antò V, Cantile M, D'Armiento M, Schiavo G, Spagnuolo G, Terracciano L, Vecchione R, Cillo C. The HOX genes are expressed, in vivo, in human tooth germs: in vitro cAMP exposure of dental pulp cells results in parallel HOX network activation and neuronal differentiation. J Cell Biochem 2006; 97:836-48. [PMID: 16240374 DOI: 10.1002/jcb.20684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Homeobox-containing genes play a crucial role in odontogenesis. After the detection of Dlx and Msx genes in overlapping domains along maxillary and mandibular processes, a homeobox odontogenic code has been proposed to explain the interaction between different homeobox genes during dental lamina patterning. No role has so far been assigned to the Hox gene network in the homeobox odontogenic code due to studies on specific Hox genes and evolutionary considerations. Despite its involvement in early patterning during embryonal development, the HOX gene network, the most repeat-poor regions of the human genome, controls the phenotype identity of adult eukaryotic cells. Here, according to our results, the HOX gene network appears to be active in human tooth germs between 18 and 24 weeks of development. The immunohistochemical localization of specific HOX proteins mostly concerns the epithelial tooth germ compartment. Furthermore, only a few genes of the network are active in embryonal retromolar tissues, as well as in ectomesenchymal dental pulp cells (DPC) grown in vitro from adult human molar. Exposure of DPCs to cAMP induces the expression of from three to nine total HOX genes of the network in parallel with phenotype modifications with traits of neuronal differentiation. Our observations suggest that: (i) by combining its component genes, the HOX gene network determines the phenotype identity of epithelial and ectomesenchymal cells interacting in the generation of human tooth germ; (ii) cAMP treatment activates the HOX network and induces, in parallel, a neuronal-like phenotype in human primary ectomesenchymal dental pulp cells.
Collapse
Affiliation(s)
- Vincenzo D'Antò
- Department of Clinical and Experimental Medicine, Via S. Pansini 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abdel-Fattah R, Xiao A, Bomgardner D, Pease CS, Lopes MBS, Hussaini IM. Differential expression of HOX genes in neoplastic and non-neoplastic human astrocytes. J Pathol 2006; 209:15-24. [PMID: 16463268 DOI: 10.1002/path.1939] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HOX genes are a large family of regulatory genes implicated in the control of developmental processes. HOX genes are involved in malignant transformation and progression of different types of tumour. Despite intensive efforts to delineate the expression profiles of HOX genes in other cell types, nothing is known regarding the global expression profile of these genes in normal human astrocytes and astrocytomas. The present study has analysed the expression profile of the 39 class I HOX genes in normal human astrocytes (NHA and E6/E7), two well-established glioblastoma cell lines (U-87 MG and U-1242-MG), as well as neoplastic (WHO grades II/III and IV) and non-neoplastic temporal lobe specimens with hippocampal sclerosis and medically intractable epilepsy. RT-PCR, quantitative real-time PCR, immunocytochemistry, and western blot analyses revealed differential expression of nine HOX genes (A6, A7, A9, A13, B13, D4, D9, D10, and D13) in normal human astrocytic cell lines and non-neoplastic temporal lobe specimens. The data show that HOX genes are differentially expressed in neoplastic and non-neoplastic astrocytes and that multiple HOX genes are overexpressed in glioblastoma cell lines, astrocytomas (II/III), and glioblastoma multiforme. The differential expression of HOX genes in normal and neoplastic astrocytes suggests a role for these genes in brain tumourigenesis.
Collapse
Affiliation(s)
- R Abdel-Fattah
- Department of Pathology, UVA School of Medicine, Charlottesville, 22908, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Hox genes have a well-characterized role in embryonic development, where they determine identity along the anteroposterior body axis. Hox genes are expressed not only during embryogenesis but also in the adult, where they are necessary for functional differentiation. Despite the known function of these genes as transcription factors, few regulatory mechanisms that drive Hox expression are known. Recently, several hormones and their cognate receptors have been shown to regulate Hox gene expression and thereby mediate development in the embryo as well as functional differentiation in the adult organism. Estradiol, progesterone, testosterone, retinoic acid, and vitamin D have been shown to regulate Hox gene expression. In the embryo, the endocrine system directs axial Hox gene expression; aberrant Hox gene expression due to exposure to endocrine disruptors contributes to the teratogenicity of these compounds. In the adult, endocrine regulation of Hox genes is necessary to enable such diverse functions as hematopoiesis and reproduction; endocrinopathies can result in dysregulated HOX gene expression affecting physiology. By regulating HOX genes, hormonal signals utilize a conserved mechanism that allows generation of structural and functional diversity in both developing and adult tissues. This review discusses endocrine Hox regulation and its impact on physiology and human pathology.
Collapse
Affiliation(s)
- Gaurang S Daftary
- Division of Reproductive Endocrinology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208063, New Haven, Connecticut 06520-8063, USA
| | | |
Collapse
|
39
|
Ota T, Choi KB, Gilks CB, Leung PCK, Auersperg N. Cell type- and stage-specific changes in HOXA7 protein expression in human ovarian folliculogenesis: possible role of GDF-9. Differentiation 2006; 74:1-10. [PMID: 16466395 DOI: 10.1111/j.1432-0436.2006.00053.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Homeobox (HOX) genes are important transcriptional regulators in development and in adult tissues. A major obstacle to the understanding of their roles in humans has been the lack of well-defined anti-human HOX antibodies. We generated a thoroughly characterized polyclonal rabbit antibody against human HOXA7 and used it to study the distribution, role, and regulation of HOXA7 in human ovarian folliculogenesis and in granulosa cell tumors. Immunohistochemically, follicles were strongly HOXA7-positive compared with stroma. Oocytes expressed little HOXA7. Granulosa cells were predominantly negative in primordial follicles, had uniformly HOXA7-positive nuclei in primary follicles, and, as follicles matured, the subcellular localization of HOXA7 changed from nuclear to predominantly cytoplasmic. HOXA7 was mainly cytoplasmic in theca interna, but completely absent in theca externa. Granulosa cell tumors were mainly HOXA7 positive and, like in preovulatory follicles and theca interna, staining was predominantly cytoplasmic. The change in HOXA7 expression from negative primordial to positive primary follicles suggested a relationship with granulosa cell proliferation. To test this hypothesis, SV40 Tag-immortalized human granulosa cells (SVOG) were double stained with anti-HOXA7 antibody and with Ki-67 as proliferation marker. HOXA7 expression was highest in mitotic cells. In addition, growth differentiation factor-9 (GDF-9), known to be secreted by oocytes in primary human follicles, up-regulated HOXA7 protein, and stimulated proliferation of SVOG, while TGF-beta1 inhibited HOXA7 expression and proliferation. This is the first report on the expression of any HOX gene in human ovarian follicles and granulosa cell tumors. It shows that HOXA7 undergoes cell type- and stage-specific changes during ovarian folliculogenesis, likely regulates granulosa cell proliferation, and in subcellular location differs between proliferating and secretory cells. The increase in HOXA7 protein in response to GDF-9 represents the first demonstration of a possible regulatory role of oocytes in ovarian follicular HOX gene expression.
Collapse
Affiliation(s)
- Takayo Ota
- Department of Obstetrics and Gynecology, University of British Columbia (UBC), 2H30-4490 Oak St., B.C. Women's Hospital, Vancouver, BC, Canada V6H 3V5
| | | | | | | | | |
Collapse
|
40
|
Cantile M, Kisslinger A, Cindolo L, Schiavo G, D'Antò V, Franco R, Altieri V, Gallo A, Villacci A, Tramontano D, Cillo C. cAMP induced modifications of HOX D gene expression in prostate cells allow the identification of a chromosomal area involved in vivo with neuroendocrine differentiation of human advanced prostate cancers. J Cell Physiol 2005; 205:202-10. [PMID: 15895411 DOI: 10.1002/jcp.20384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The acquisition of epithelial-neuroendocrine differentiation (ND) is a peculiarity of human advanced, androgen-independent, prostate cancers. The HOX genes are a network of transcription factors controlling embryonal development and playing an important role in crucial adult eukaryotic cell functions. The molecular organization of this 39-gene network is unique in the genome and probably acts by regulating phenotype cell identity. The expression patterns of the HOX gene network in human prostate cell phenotypes, representing different stages of prostate physiology and prostate cancer progression, make it possible to discriminate between different human prostate cell lines and to identify loci and paralogous groups harboring the HOX genes mostly involved in prostate organogenesis and cancerogenesis. Exposure of prostate epithelial phenotypes to cAMP alters the expression of lumbo-sacral HOX D genes located on the chromosomal region 2q31-33 where the cAMP effector genes CREB1, CREB2, and cAMP-GEFII are present. Interestingly, this same chromosomal area harbors: (i) a global cis-regulatory DNA control region able to coordinate the expression of HOX D and contiguous phylogenetically unrelated genes; (ii) a prostate specific ncRNA gene associated with high-risk prostate cancer (PCGEM1); (iii) a series of neurogenic-related genes involved with epithelial-neuronal cell conversion. We report the expression of neurexin 1, Neuro D1, dlx1, and dlx2 in untreated and cAMP treated epithelial prostate cells. The in vivo expression of Neuro D1 in human advanced prostate cancers correlate with the state of tumor differentiation as measured by Gleason score. Thus, we suggest that the chromosomal area 2q 31-33 might be involved in the epithelial-ND characteristic of human advanced prostate cancers.
Collapse
Affiliation(s)
- M Cantile
- Department of Clinical and Experimental Medical, Federico II University Medical School, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang X, Emerald BS, Mukhina S, Mohankumar KM, Kraemer A, Yap AS, Gluckman PD, Lee KO, Lobie PE. HOXA1 is required for E-cadherin-dependent anchorage-independent survival of human mammary carcinoma cells. J Biol Chem 2005; 281:6471-81. [PMID: 16373333 DOI: 10.1074/jbc.m512666200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Forced expression of HOXA1 is sufficient to stimulate oncogenic transformation of immortalized human mammary epithelial cells and subsequent tumor formation. We report here that the expression and transcriptional activity of HOXA1 are increased in mammary carcinoma cells at full confluence. This confluence-dependent expression of HOXA1 was abrogated by incubation of cells with EGTA to produce loss of intercellular contact and rescued by extracellular addition of Ca2+. Increased HOXA1 expression at full confluence was prevented by an E-cadherin function-blocking antibody and attachment of non-confluent cells to a substrate by homophilic ligation of E-cadherin increased HOXA1 expression. E-cadherin-directed signaling increased HOXA1 expression through Rac1. Increased HOXA1 expression consequent to E-cadherin-activated signaling decreased apoptotic cell death and was required for E-cadherin-dependent anchorage-independent proliferation of human mammary carcinoma cells. HOXA1 is therefore a downstream effector of E-cadherin-directed signaling required for anchorage-independent proliferation of mammary carcinoma cells.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Medicine and Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Dr., Singapore 117609, Republic of Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Miyake N, Brun ACM, Magnusson M, Miyake K, Scadden DT, Karlsson S. HOXB4-induced self-renewal of hematopoietic stem cells is significantly enhanced by p21 deficiency. Stem Cells 2005; 24:653-61. [PMID: 16210402 DOI: 10.1634/stemcells.2005-0328] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Enforced expression of the HOXB4 transcription factor and downregulation of p21(Cip1/Waf) (p21) can each independently increase proliferation of murine hematopoietic stem cells (HSCs). We asked whether the increase in HSC self-renewal generated by overexpression of HOXB4 is enhanced in p21-deficient HSCs. HOXB4 was overexpressed in hematopoietic cells from wild-type (wt) and p21-/- mice. Bone marrow (BM) cells were transduced with a retroviral vector expressing HOXB4 together with GFP (MIGB4), or a control vector containing GFP alone (MIG) and maintained in liquid culture for up to 11 days. At day 11 of the expansion culture, the number of primary CFU-GM (colony-forming unit granulocyte-macrophage) colonies and the repopulating ability were significantly increased in MIGB4 p21-/- BM (p21B4) cells compared with MIGB4-transduced wt BM (wtB4) cells. To test proliferation of HSCs in vivo, we performed competitive repopulation experiments and obtained significantly higher long-term engraftment of expanded p21B4 cells compared with wtB4 cells. The 5-day expansion of p21B4 HSCs generated 100-fold higher numbers of competitive repopulating units compared with wtMIG and threefold higher numbers compared with wtB4. The findings demonstrate that increased expression of HOXB4, in combination with suppression of p21 expression, could be a useful strategy for effective and robust expansion of HSCs.
Collapse
Affiliation(s)
- Noriko Miyake
- Molecular Medicine and Gene Therapy, Lund University Hospital, BMC A12, 221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Djavani M, Topisirovic I, Zapata JC, Sadowska M, Yang Y, Rodas J, Lukashevich IS, Bogue CW, Pauza CD, Borden KLB, Salvato MS. The proline-rich homeodomain (PRH/HEX) protein is down-regulated in liver during infection with lymphocytic choriomeningitis virus. J Virol 2005; 79:2461-73. [PMID: 15681447 PMCID: PMC546565 DOI: 10.1128/jvi.79.4.2461-2473.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The proline-rich homeodomain protein, PRH/HEX, participates in the early development of the brain, thyroid, and liver and in the later regenerative processes of damaged liver, vascular endothelial, and hematopoietic cells. A virulent strain of lymphocytic choriomeningitis virus (LCMV-WE) that destroys hematopoietic, vascular, and liver functions also alters the transcription and subcellular localization of PRH. A related virus (LCMV-ARM) that does not cause disease in primates can infect cells without affecting PRH. Biochemical experiments demonstrated the occurrence of binding between the viral RING protein (Z) and PRH, and genetic experiments mapped the PRH-suppressing phenotype to the large (L) segment of the viral genome, which encodes the Z and polymerase genes. The Z protein is clearly involved with PRH, but other viral determinants are needed to relocate PRH and to promote disease. By down-regulating PRH, the arenavirus is able to eliminate the antiproliferative effects of PRH and to promote liver cell division. The interaction of an arenavirus with a homeodomain protein suggests a mechanism for viral teratogenic effects and for the tissue-specific manifestations of arenavirus disease.
Collapse
Affiliation(s)
- Mahmoud Djavani
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Alcalay M, Tiacci E, Bergomas R, Bigerna B, Venturini E, Minardi SP, Meani N, Diverio D, Bernard L, Tizzoni L, Volorio S, Luzi L, Colombo E, Lo Coco F, Mecucci C, Falini B, Pelicci PG. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood 2005; 106:899-902. [PMID: 15831697 DOI: 10.1182/blood-2005-02-0560] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractApproximately one third of acute myeloid leukemias (AMLs) are characterized by aberrant cytoplasmic localization of nucleophosmin (NPMc+ AML), consequent to mutations in the NPM putative nucleolar localization signal. These events are mutually exclusive with the major AML-associated chromosomal rearrangements, and are frequently associated with normal karyotype, FLT3 mutations, and multilineage involvement. We report the gene expression profiles of 78 de novo AMLs (72 with normal karyotype; 6 without major chromosomal abnormalities) that were characterized for the subcellular localization and mutation status of NPM. Unsupervised clustering clearly separated NPMc+ from NPMc– AMLs, regardless of the presence of FLT3 mutations or non–major chromosomal rearrangements, supporting the concept that NPMc+ AML represents a distinct entity. The molecular signature of NPMc+ AML includes up-regulation of several genes putatively involved in the maintenance of a stem-cell phenotype, suggesting that NPMc+ AML may derive from a multipotent hematopoietic progenitor.
Collapse
|
45
|
Guenther MG, Jenner RG, Chevalier B, Nakamura T, Croce CM, Canaani E, Young RA. Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci U S A 2005; 102:8603-8. [PMID: 15941828 PMCID: PMC1150839 DOI: 10.1073/pnas.0503072102] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mixed-lineage leukemia (MLL1/ALL-1/HRX) histone methyltransferase is involved in the epigenetic maintenance of transcriptional memory and the pathogenesis of human leukemias. To understand its role in cell type specification, we determined the human genomic binding sites of MLL1. We found that MLL1 functions as a human equivalent of yeast Set1. Like Set1, MLL1 localizes with RNA polymerase II (Pol II) to the 5' end of actively transcribed genes, where histone H3 lysine 4 trimethylation occurs. Consistent with this global role in transcription, MLL1 also localizes to microRNA (miRNA) loci that are involved in leukemia and hematopoiesis. In contrast to the 5' proximal binding behavior at most protein-coding genes, MLL1 occupies an extensive domain within a transcriptionally active region of the HoxA cluster. The ability of MLL1 to serve as a start site-specific global transcriptional regulator and to participate in larger chromatin domains at the Hox genes reveals dual roles for MLL1 in maintenance of cellular identity.
Collapse
Affiliation(s)
- Matthew G Guenther
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B, Van Roy N, Vandesompele J, Graux C, Uyttebroeck A, Boogaerts M, De Moerloose B, Benoit Y, Selleslag D, Billiet J, Robert A, Huguet F, Vandenberghe P, De Paepe A, Marynen P, Hagemeijer A. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005; 19:358-66. [PMID: 15674412 DOI: 10.1038/sj.leu.2403657] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromosomal translocations with breakpoints in T-cell receptor (TCR) genes are recurrent in T-cell malignancies. These translocations involve the TCRalphadelta gene (14q11), the TCRbeta gene (7q34) and to a lesser extent the TCRgamma gene at chromosomal band 7p14 and juxtapose T-cell oncogenes next to TCR regulatory sequences leading to deregulated expression of those oncogenes. Here, we describe a new recurrent chromosomal inversion of chromosome 7, inv(7)(p15q34), in a subset of patients with T-cell acute lymphoblastic leukemia characterized by CD2 negative and CD4 positive, CD8 negative blasts. This rearrangement juxtaposes the distal part of the HOXA gene cluster on 7p15 to the TCRbeta locus on 7q34. Real time quantitative PCR analysis for all HOXA genes revealed high levels of HOXA10 and HOXA11 expression in all inv(7) positive cases. This is the first report of a recurrent chromosome rearrangement targeting the HOXA gene cluster in T-cell malignancies resulting in deregulated HOXA gene expression (particularly HOXA10 and HOXA11) and is in keeping with a previous report suggesting HOXA deregulation in MLL-rearranged T- and B cell lymphoblastic leukemia as the key factor in leukaemic transformation. Finally, our observation also supports the previous suggested role of HOXA10 and HOXA11 in normal thymocyte development.
Collapse
Affiliation(s)
- F Speleman
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang J, Iwasaki H, Krivtsov A, Febbo PG, Thorner AR, Ernst P, Anastasiadou E, Kutok JL, Kogan SC, Zinkel SS, Fisher JK, Hess JL, Golub TR, Armstrong SA, Akashi K, Korsmeyer SJ. Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J 2005; 24:368-81. [PMID: 15635450 PMCID: PMC545811 DOI: 10.1038/sj.emboj.7600521] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 11/24/2004] [Indexed: 11/09/2022] Open
Abstract
Chromosomal translocations that fuse the mixed lineage leukemia (MLL) gene with multiple partners typify acute leukemias of infancy as well as therapy-related leukemias. We utilized a conditional knockin strategy to bypass the embryonic lethality caused by MLL-CBP expression and to assess the immediate effects of induced MLL-CBP expression on hematopoiesis. Within days of activating MLL-CBP, the fusion protein selectively expanded granulocyte/macrophage progenitors (GMP) and enhanced their self-renewal/proliferation. MLL-CBP altered the gene expression program of GMP, upregulating a subset of genes including Hox a9. Inhibition of Hox a9 expression by RNA interference demonstrated that MLL-CBP required Hox a9 for its enhanced cell expansion. Following exposure to sublethal gamma-irradiation or N-ethyl-N-nitrosourea (ENU), MLL-CBP mice developed myelomonocytic hyperplasia and progressed to fatal myeloproliferative disorders. These represented the spectrum of therapy-induced acute myelomonocytic leukemia/chronic myelomonocytic leukemia/myelodysplastic/myeloproliferative disorder similar to that seen in humans possessing the t(11;16). This model of MLL-CBP therapy-related myeloproliferative disease demonstrates the selectivity of this MLL fusion for GMP cells and its ability to initiate leukemogenesis in conjunction with cooperating mutations.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology and Medicine, Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiromi Iwasaki
- Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrei Krivtsov
- Division of Hematology/Oncology, Children's Hospital, Boston, MA, USA
| | - Phillip G Febbo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Aaron R Thorner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patricia Ernst
- Department of Pathology and Medicine, Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ema Anastasiadou
- Harvard Institutes of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jeffery L Kutok
- Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott C Kogan
- Comprehensive Cancer Center and Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Sandra S Zinkel
- Department of Pathology and Medicine, Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jill K Fisher
- Department of Pathology and Medicine, Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jay L Hess
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Todd R Golub
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott A Armstrong
- Division of Hematology/Oncology, Children's Hospital, Boston, MA, USA
| | - Koichi Akashi
- Department of Pathology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stanley J Korsmeyer
- Department of Pathology and Medicine, Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA. Tel.: +1 617 632 6402; Fax: +1 617 632 6401; E-mail:
| |
Collapse
|
48
|
Fischbach NA, Rozenfeld S, Shen W, Fong S, Chrobak D, Ginzinger D, Kogan SC, Radhakrishnan A, Le Beau MM, Largman C, Lawrence HJ. HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood 2004; 105:1456-66. [PMID: 15522959 DOI: 10.1182/blood-2004-04-1583] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HOX family of homeobox genes plays an important role in normal and malignant hematopoiesis. Dysregulated HOX gene expression profoundly effects the proliferation and differentiation of hematopoietic stem cells (HSCs) and committed progenitors, and aberrant activation of HOX genes is a common event in human myeloid leukemia. HOXB6 is frequently overexpressed in human acute myeloid leukemia (AML). To gain further insight into the role of HOXB6 in hematopoiesis, we overexpressed HOXB6 in murine bone marrow using retrovirus-mediated gene transfer. We also explored structure-function relationships using mutant HOXB6 proteins unable to bind to DNA or a key HOX-binding partner, pre-B-cell leukemia transcription factor-1 (PBX1). Additionally, we investigated the potential cooperative interaction with myeloid ecotropic viral integration site 1 homolog (MEIS1). In vivo, HOXB6 expanded HSCs and myeloid precursors while inhibiting erythropoiesis and lymphopoiesis. Overexpression of HOXB6 resulted in AML with a median latency of 223 days. Coexpression of MEIS1 dramatically shortened the onset of AML. Cytogenetic analysis of a subset of HOXB6-induced AMLs revealed recurrent deletions of chromosome bands 2D-E4, a region frequently deleted in HOXA9-induced AMLs. In vitro, HOXB6 immortalized a factor-dependent myelomonocytic precursor capable of granulocytic and monocytic differentiation. These biologic effects of HOXB6 were largely dependent on DNA binding but independent of direct interaction with PBX1.
Collapse
Affiliation(s)
- Neal A Fischbach
- Department of Medicine, Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vohl MC, Sladek R, Robitaille J, Gurd S, Marceau P, Richard D, Hudson TJ, Tchernof A. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. ACTA ACUST UNITED AC 2004; 12:1217-22. [PMID: 15340102 DOI: 10.1038/oby.2004.153] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adipose tissue located within the abdominal cavity has been suggested to be functionally and metabolically distinct from that of the subcutaneous compartment. These differences could play a role in obesity-related complications. The aim of this study was to compare gene expression profiles of subcutaneous and visceral adipose tissues of 10 nondiabetic, normolipidemic obese men. Affymetrix human U133A arrays (10 arrays for subcutaneous fat samples and 10 arrays for visceral fat samples) were used. Differential gene expression was confirmed by real-time polymerase chain reaction in a subset of genes. A total of 5894 transcripts were detected in both depots in all 10 subjects, and 409 transcripts representing 347 encoded genes were differentially expressed. Of these, 131 genes were expressed at higher levels in subcutaneous adipose tissue, and 216 were expressed more abundantly in visceral fat. Differentially expressed profiles included genes of the Wnt signaling pathway, as well as CEPBA and HOX genes. In addition, genes involved in lipolytic stimuli and cytokine secretion were differentially expressed. The identification of a consistent and rather uniform pattern of differentially expressed genes between the two fat depots using multiple array replicates (10 arrays per fat compartment) generated new perspectives for future research on regional differences in adipose tissue biology.
Collapse
Affiliation(s)
- Marie-Claude Vohl
- Lipid Research Center, 2705 Laurier Blvd. (TR-93), Quebec City, PQ, Canada G1V 4G2.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Shen W, Chrobak D, Krishnan K, Lawrence HJ, Largman C. HOXB6 protein is bound to CREB-binding protein and represses globin expression in a DNA binding-dependent, PBX interaction-independent process. J Biol Chem 2004; 279:39895-904. [PMID: 15269212 DOI: 10.1074/jbc.m404132200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although HOXB6 and other HOX genes have previously been associated with hematopoiesis and leukemias, the precise mechanism of action of their protein products remains unclear. Here we use a biological model in which HOXB6 represses alpha- and gamma-globin mRNA levels to perform a structure/function analysis for this homeodomain protein. HOXB6 protein represses globin transcript levels in stably transfected K562 cells in a DNA-binding dependent fashion. However, the capacity to form cooperative DNA-binding complexes with the PBX co-factor protein is not required for HOXB6 biological activity. Neither the conserved extreme N-terminal region, a polyglutamic acid region at the protein C terminus, nor the Ser(214) CKII phosphorylation site was required for DNA binding or activity in this model. We have previously reported that HOX proteins can inhibit CREB-binding protein (CBP)-histone acetyltransferase-mediated potentiation of reporter gene transcription. We now show that endogenous CBP is co-precipitated with exogenous HOXB6 from nuclear and cytoplasmic compartments of transfected K562 cells. Furthermore, endogenous CBP co-precipitates with endogenous HOXB6 in day 14.5 murine fetal liver cells during active globin gene expression in this tissue. The CBP interaction motif was localized to the homeodomain but does not require the highly conserved helix 3. Our data suggest that the homeodomain contains most or all of the important structures required for HOXB6 activity in blood cells.
Collapse
Affiliation(s)
- Weifang Shen
- Department of Medicine, University of California Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | | | |
Collapse
|