1
|
Sadri Nahand J, Khanaliha K, Khatami A, Aminjavaheri P, Abbasi-Kolli M, Mirzaei H, Motlaghzadeh S, Nahid-Samiei R, Bokharaei-Salim F. Expression pattern analysis of the long non-coding RNAs (TINCR, RP11-573D15.8, RP11-156E8.1), and their target genes (AKT1, FOXO1 and MAPK3) in patients with HIV infection, and elite controllers. Heliyon 2024; 10:e30900. [PMID: 38803943 PMCID: PMC11128862 DOI: 10.1016/j.heliyon.2024.e30900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Elite controllers (ECs) defined as a small subclass of subjects with HIV capable of controlling human immunodeficiency virus (HIV) replication in the lack of antiretroviral treatment. One class of RNA molecules that serve as vital components in the network of HIV-related transcriptional regulation, are long noncoding RNAs (lncRNAs). The critical part that they take is in transcriptional regulation of HIV through monitoring various cellular signaling pathways. Reportedly, AKT and MAPK signaling pathways serve a crucial role in modulation of HIV infection. In the current investigation, we utilized bioinformatics tools to predict the lncRNAs that have the ability to interact with MAPK3, AKT, and FOXO1. Then, PBMC expression levels of lncRNAs and their target genes (AKT, FOXO1 and MAPK3) measured in the ECs (n = 15), HIV-positive (n = 40) patients and healthy control subjects (n = 40). We found a significant increase and decrease in the level of AKT and FOXO1 expression within the ECs group, respectively than in the HIV + group (P-value <0.0001 and 0.04, respectively). In the ECs group, the level of TINCR and RP11-156E8.1 was overexpressed compared to the HIV + group (P-value: 0.004 and 0.001, respectively). While RP11-573D15.8 level in ECs exhibited a significant suppression in contrast to HIV + group (P-value: 0.02). According to the receiver-operating characteristic (ROC) curve results, AKT and TINCR could serve as useful biomarkers for screening ECs groups from HIV + patients and healthy control groups. Overall, different expression patterns of selected factors and ROC curve results showed these factors could critically contribute to HIV controlling and be considered as diagnostic markers for ECs from HIV + samples.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisasadat Aminjavaheri
- Department of Microbial Biotechnology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Mohammad Abbasi-Kolli
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rahil Nahid-Samiei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
De Rosa L, Latella MC, Secone Seconetti A, Cattelani C, Bauer JW, Bondanza S, De Luca M. Toward Combined Cell and Gene Therapy for Genodermatoses. Cold Spring Harb Perspect Biol 2020; 12:a035667. [PMID: 31653644 PMCID: PMC7197428 DOI: 10.1101/cshperspect.a035667] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 200 monogenic, often devastating, skin diseases have been described. Because of unmet medical needs, development of long-lasting and curative therapies has been consistently attempted, with the aim of correcting the underlying molecular defect. In this review, we will specifically address the few combined cell and gene therapy strategies that made it to the clinics. Based on these studies, what can be envisioned for the future is a patient-oriented strategy, built on the specific features of the individual in need. Most likely, a combination of different strategies, approaches, and advanced therapies will be required to reach the finish line at the end of the long and winding road hampering the achievement of definitive treatments for genodermatoses.
Collapse
Affiliation(s)
- Laura De Rosa
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Maria Carmela Latella
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Alessia Secone Seconetti
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Cecilia Cattelani
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johann W Bauer
- EB House Austria and Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sergio Bondanza
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
3
|
Miyakawa K, Matsunaga S, Yokoyama M, Nomaguchi M, Kimura Y, Nishi M, Kimura H, Sato H, Hirano H, Tamura T, Akari H, Miura T, Adachi A, Sawasaki T, Yamamoto N, Ryo A. PIM kinases facilitate lentiviral evasion from SAMHD1 restriction via Vpx phosphorylation. Nat Commun 2019; 10:1844. [PMID: 31015445 PMCID: PMC6479052 DOI: 10.1038/s41467-019-09867-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/04/2019] [Indexed: 12/22/2022] Open
Abstract
Lentiviruses have evolved to acquire an auxiliary protein Vpx to counteract the intrinsic host restriction factor SAMHD1. Although Vpx is phosphorylated, it remains unclear whether such phosphorylation indeed regulates its activity toward SAMHD1. Here we identify the PIM family of serine/threonine protein kinases as the factors responsible for the phosphorylation of Vpx and the promotion of Vpx-mediated SAMHD1 counteraction. Integrated proteomics and subsequent functional analysis reveal that PIM family kinases, PIM1 and PIM3, phosphorylate HIV-2 Vpx at Ser13 and stabilize the interaction of Vpx with SAMHD1 thereby promoting ubiquitin-mediated proteolysis of SAMHD1. Inhibition of the PIM kinases promotes the antiviral activity of SAMHD1, ultimately reducing viral replication. Our results highlight a new mode of virus–host cell interaction in which host PIM kinases facilitate promotion of viral infectivity by counteracting the host antiviral system, and suggest a novel therapeutic strategy involving restoration of SAMHD1-mediated antiviral response. The accessory lentiviral protein X (Vpx) of the SIVsmm/mac and HIV-2 lineage targets the host-restriction factor SAMHD1 for proteasomal degradation. Here, the authors show that host PIM kinase-mediated phosphorylation of Vpx stabilizes its interaction with SAMHD1, suggesting PIM as potential antiviral targets.
Collapse
Affiliation(s)
- Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama, Tokyo, 208-0011, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, 770-8503, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, 236-0004, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Gunma, 370-0006, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama, Tokyo, 208-0011, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Kanagawa, 236-0004, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Hirofumi Akari
- Laboratory of Infectious Disease Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Aichi, 484-8506, Japan
| | - Tomoyuki Miura
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Aichi, 484-8506, Japan
| | - Akio Adachi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, 770-8503, Japan.,Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | | | - Naoki Yamamoto
- National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan. .,Advanced Medical Research Center, Yokohama City University, Kanagawa, 236-0004, Japan.
| |
Collapse
|
4
|
Chen L, Keppler OT, Schölz C. Post-translational Modification-Based Regulation of HIV Replication. Front Microbiol 2018; 9:2131. [PMID: 30254620 PMCID: PMC6141784 DOI: 10.3389/fmicb.2018.02131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) relies heavily on the host cellular machinery for production of viral progeny. To exploit cellular proteins for replication and to overcome host factors with antiviral activity, HIV has evolved a set of regulatory and accessory proteins to shape an optimized environment for its replication and to facilitate evasion from the immune system. Several cellular pathways are hijacked by the virus to modulate critical steps during the viral life cycle. Thereby, post-translational modifications (PTMs) of viral and cellular proteins gain increasingly attention as modifying enzymes regulate virtually every step of the viral replication cycle. This review summarizes the current knowledge of HIV-host interactions influenced by PTMs with a special focus on acetylation, ubiquitination, and phosphorylation of proteins linked to cellular signaling and viral replication. Insights into these interactions are surmised to aid development of new intervention strategies.
Collapse
Affiliation(s)
- Lin Chen
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Schölz
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
5
|
Pommier Y, Pilon A, Bajaj K, Mazumder A, Neamati N. HIV-1 Integrase as a Target for Antiviral Drugs. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/095632029700800601] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Aa Pilon
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - K Bajaj
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - A Mazumder
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - N Neamati
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| |
Collapse
|
6
|
Dochi T, Nakano T, Inoue M, Takamune N, Shoji S, Sano K, Misumi S. Phosphorylation of human immunodeficiency virus type 1 capsid protein at serine 16, required for peptidyl-prolyl isomerase-dependent uncoating, is mediated by virion-incorporated extracellular signal-regulated kinase 2. J Gen Virol 2014; 95:1156-1166. [PMID: 24509437 DOI: 10.1099/vir.0.060053-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We reported previously that Pin1 facilitates human immunodeficiency virus type 1 (HIV-1) uncoating by interacting with the capsid core through the phosphorylated Ser(16)-Pro(17) motif. However, the specific kinase responsible for Ser(16) phosphorylation has remained unknown. Here, we showed that virion-associated extracellular signal-regulated kinase 2 (ERK2) phosphorylates Ser(16). The characterization of immature virions produced by exposing chronically HIV-1LAV-1-infected CEM/LAV-1 cells to 10 µM saquinavir indicated that Ser(16) is phosphorylated after the initiation of Pr55(Gag) processing. Furthermore, a mass spectrometry-based in vitro kinase assay demonstrated that ERK2 specifically phosphorylated the Ser(16) residue in the Ser(16)-Pro(17) motif-containing substrate. The treatment of CEM/LAV-1 cells with the ERK2 inhibitor sc-222229 decreased the Ser(16) phosphorylation level inside virions, and virus partially defective in Ser(16) phosphorylation showed impaired reverse transcription and attenuated replication owing to attenuated Pin1-dependent uncoating. Furthermore, the suppression of ERK2 expression by RNA interference in CEM/LAV-1 cells resulted in suppressed ERK2 packaging inside virions and decreased the Ser(16) phosphorylation level inside virions. Interestingly, the ERK2-packaging-defective virus showed impaired reverse transcription and attenuated HIV-1 replication. Taken together, these findings provide insights into the as-yet-obscure processes in Pin1-dependent HIV-1 uncoating.
Collapse
Affiliation(s)
- Takeo Dochi
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Osaka Medical College, Osaka 569-8686, Japan
| | - Mutsumi Inoue
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Nobutoki Takamune
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shozo Shoji
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Kouichi Sano
- Department of Microbiology and Infection Control, Osaka Medical College, Osaka 569-8686, Japan
| | - Shogo Misumi
- Department of Pharmaceutical Biochemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
7
|
Cornall A, Mak J, Greenway A, Tachedjian G. HIV-1 infection of T cells and macrophages are differentially modulated by virion-associated Hck: a Nef-dependent phenomenon. Viruses 2013; 5:2235-52. [PMID: 24051604 PMCID: PMC3798898 DOI: 10.3390/v5092235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/01/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022] Open
Abstract
The proline repeat motif (PxxP) of Nef is required for interaction with the SH3 domains of macrophage-specific Src kinase Hck. However, the implication of this interaction for viral replication and infectivity in macrophages and T lymphocytes remains unclear. Experiments in HIV-1 infected macrophages confirmed the presence of a Nef:Hck complex which was dependent on the Nef proline repeat motif. The proline repeat motif of Nef also enhanced both HIV-1 infection and replication in macrophages, and was required for incorporation of Hck into viral particles. Unexpectedly, wild-type Hck inhibited infection of macrophages, but Hck was shown to enhance infection of primary T lymphocytes. These results indicate that the interaction between Nef and Hck is important for Nef-dependent modulation of viral infectivity. Hck-dependent enhancement of HIV-1 infection of T cells suggests that Nef-Hck interaction may contribute to the spread of HIV-1 infection from macrophages to T cells by modulating events in the producer cell, virion and target cell.
Collapse
Affiliation(s)
- Alyssa Cornall
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne 3004, Victoria, Australia; E-Mails: (A.C.); (A.G.)
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville 3052, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville 3052, Victoria, Australia
| | - Johnson Mak
- School of Medicine, Faculty of Health, Deakin University, Geelong 3220, Victoria, Australia; E-Mail:
- Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, Australian Animal Health Laboratory, Geelong 3220, Victoria, Australia
| | - Alison Greenway
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne 3004, Victoria, Australia; E-Mails: (A.C.); (A.G.)
| | - Gilda Tachedjian
- Centre for Biomedical Research, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne 3004, Victoria, Australia; E-Mails: (A.C.); (A.G.)
- Department of Microbiology, Monash University, Clayton 3168, Victoria, Australia
- Department of Infectious Diseases, Monash University, Melbourne 3004, Victoria, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-3-9282-2256; Fax: +61-3-9282-2100
| |
Collapse
|
8
|
Brar SS, Petrovich RM, Williams JG, Mason JM. Phosphorylation at serines 216 and 221 is important for Drosophila HeT-A Gag protein stability. PLoS One 2013; 8:e75381. [PMID: 24058682 PMCID: PMC3776773 DOI: 10.1371/journal.pone.0075381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022] Open
Abstract
Telomeres from Drosophila appear to be very different from those of other organisms - in size and the mechanism of their maintenance. In the absence of the enzyme telomerase, Drosophila telomeres are maintained by retrotransposition of three elements, HeT-A, TART, and TAHRE, but details of their transposition mechanisms are not known. Here we characterized some biochemical characteristics of the HeT-A Gag protein encoded by the HeT-A element to understand this mechanism. The HeT-A Gag protein when overexpressed in S2 cells was localized to the nucleus but was resistant to high salt, detergents and nuclease extraction treatments. Analysis of the HeT-A Gag protein by tandem mass spectrophotometry revealed that serines 216 and 221 are phosphorylated. Substituting these serines with alanine or aspartic acid by site-directed mutagenesis did not result in any changes in HeT-A Gag translocation across the nucleus, suggesting that phosphorylation of these sites is not associated with HeT-A Gag translocation, but time course experiments showed that these phosphorylation sites are important for Gag-protein stability.
Collapse
Affiliation(s)
- Sukhdev S. Brar
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Robert M. Petrovich
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Jason G. Williams
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - James M. Mason
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
9
|
Miyakawa K, Sawasaki T, Matsunaga S, Tokarev A, Quinn G, Kimura H, Nomaguchi M, Adachi A, Yamamoto N, Guatelli J, Ryo A. Interferon-Induced SCYL2 Limits Release of HIV-1 by Triggering PP2A-Mediated Dephosphorylation of the Viral Protein Vpu. Sci Signal 2012; 5:ra73. [PMID: 23047923 DOI: 10.1126/scisignal.2003212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mansouri S, Kutky M, Hudak KA. Pokeweed antiviral protein increases HIV-1 particle infectivity by activating the cellular mitogen activated protein kinase pathway. PLoS One 2012; 7:e36369. [PMID: 22563495 PMCID: PMC3341375 DOI: 10.1371/journal.pone.0036369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/05/2012] [Indexed: 11/18/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a plant-derived N-glycosidase that exhibits antiviral activity against several viruses. The enzyme removes purine bases from the messenger RNAs of the retroviruses Human immunodeficiency virus-1 and Human T-cell leukemia virus-1. This depurination reduces viral protein synthesis by stalling elongating ribosomes at nucleotides with a missing base. Here, we transiently expressed PAP in cells with a proviral clone of HIV-1 to examine the effect of the protein on virus production and quality. PAP reduced virus production by approximately 450-fold, as measured by p24 ELISA of media containing virions, which correlated with a substantial decline in virus protein synthesis in cells. However, particles released from PAP-expressing cells were approximately 7-fold more infectious, as determined by single-cycle infection of 1G5 cells and productive infection of MT2 cells. This increase in infectivity was not likely due to changes in the processing of HIV-1 polyproteins, RNA packaging efficiency or maturation of virus. Rather, expression of PAP activated the ERK1/2 MAPK pathway to a limited extent, resulting in increased phosphorylation of viral p17 matrix protein. The increase in infectivity of HIV-1 particles produced from PAP-expressing cells was compensated by the reduction in virus number; that is, virus production decreased upon de novo infection of cells over time. However, our findings emphasize the importance of investigating the influence of heterologous protein expression upon host cells when assessing their potential for antiviral applications.
Collapse
Affiliation(s)
- Sheila Mansouri
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Meherzad Kutky
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Katalin A. Hudak
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
11
|
Jayappa KD, Ao Z, Yao X. The HIV-1 passage from cytoplasm to nucleus: the process involving a complex exchange between the components of HIV-1 and cellular machinery to access nucleus and successful integration. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 3:70-85. [PMID: 22509482 PMCID: PMC3325773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
The human immunodeficiency virus 1 (HIV-1) synthesizes its genomic DNA in cytoplasm as soon as it enters the cell. The newly synthesized DNA remains associated with viral/cellular proteins as a high molecular weight pre-integration complex (PIC), which precludes passive diffusion across intact nuclear membrane. However, HIV-1 successfully overcomes nuclear membrane barrier by actively delivering its DNA into nucleus with the help of host nuclear import machinery. Such ability allows HIV-1 to productively infect non-dividing cells as well as dividing cells at interphase. Further, HIV-1 nuclear import is also found important for the proper integration of viral DNA. Thus, nuclear import plays a crucial role in establishment of infection and disease progression. While several viral components, including matrix, viral protein R, integrase, capsid, and central DNA flap are implicated in HIV-1 nuclear import, their molecular mechanism remains poorly understood. In this review, we will elaborate the role of individual viral factors and some of current insights on their molecular mechanism(s) associated with HIV-1 nuclear import. In addition, we will discuss the importance of nuclear import for subsequent step of viral DNA integration. Hereby we aim to further our understanding on molecular mechanism of HIV-1 nuclear import and its potential usefulness for anti-HIV-1 strategies.
Collapse
Affiliation(s)
- Kallesh Danappa Jayappa
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| | | | | |
Collapse
|
12
|
|
13
|
Gupta P, Singhal PK, Rajendrakumar P, Padwad Y, Tendulkar AV, Kalyanaraman VS, Schmidt RE, Srinivasan A, Mahalingam S. Mechanism of host cell MAPK/ERK-2 incorporation into lentivirus particles: characterization of the interaction between MAPK/ERK-2 and proline-rich-domain containing capsid region of structural protein Gag. J Mol Biol 2011; 410:681-97. [PMID: 21762808 DOI: 10.1016/j.jmb.2011.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 01/11/2023]
Abstract
The characteristic event that follows infection of a cell by retroviruses Including human immunodeficiency virus (HIV)/ simian immunodeficiency virus (SIV) is the formation of a reverse transcription complex in which viral nucleic acids are synthesized. Nuclear transport of newly synthesized viral DNA requires phosphorylation of proteins in the reverse transcription complex by virion-associated cellular kinases. Recently, we demonstrated that disruption of cellular mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 2 (ERK-2) incorporation into SIV virions inhibits virus replication in nonproliferating target cells, indicating that MAPK/ERK-2 plays an important role in HIV /SIV replication. The mechanism of incorporation of MAPK/ERK-2 into virus particles is not defined. In this regard, we hypothesized that a likely interaction of MAPK/ERK-2 with Gag(p55) may enable its packaging into virus particles. In the present investigation, we provided evidence for the first time that MAPK/ERK-2 interacts with the structural Gag polyprotein p55 using a combination of mutagenesis and protein-protein interaction analysis. We further show that MAPK/ERK-2 interacts specifically with the poly-proline motif present in the capsid region of Gag(p55). Utilizing virus-like particles directed by Gag, we have shown that the exchange of conserved proline residues within capsid of Gag(p55) resulted in impaired incorporation of MAPK/ERK-2. In addition, the deletion of a domain comprising amino acids 201 to 255 within host cell MAPK/ERK-2 abrogates its interaction with Gag(p55). The relevance of the poly-proline motif is further evident by its conservation in diverse retroviruses, as noted from the sequence analysis and structural modeling studies of predicted amino acid sequences of the corresponding Gag proteins. Collectively, these data suggest that the interaction of MAPK/ERK-2 with Gag polyprotein results in its incorporation into virus particles and may be essential for retroviral replication.
Collapse
Affiliation(s)
- Pankaj Gupta
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, India
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Giroud C, Chazal N, Briant L. Cellular kinases incorporated into HIV-1 particles: passive or active passengers? Retrovirology 2011; 8:71. [PMID: 21888651 PMCID: PMC3182982 DOI: 10.1186/1742-4690-8-71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/02/2011] [Indexed: 11/10/2022] Open
Abstract
Phosphorylation is one of the major mechanisms by which the activities of protein factors can be regulated. Such regulation impacts multiple key-functions of mammalian cells, including signal transduction, nucleo-cytoplasmic shuttling, macromolecular complexes assembly, DNA binding and regulation of enzymatic activities to name a few. To ensure their capacities to replicate and propagate efficiently in their hosts, viruses may rely on the phosphorylation of viral proteins to assist diverse steps of their life cycle. It has been known for several decades that particles from diverse virus families contain some protein kinase activity. While large DNA viruses generally encode for viral kinases, RNA viruses and more precisely retroviruses have acquired the capacity to hijack the signaling machinery of the host cell and to embark cellular kinases when budding. Such property was demonstrated for HIV-1 more than a decade ago. This review summarizes the knowledge acquired in the field of HIV-1-associated kinases and discusses their possible function in the retroviral life cycle.
Collapse
Affiliation(s)
- Charline Giroud
- Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé, UMR5236 CNRS - Université Montpellier 1-Montpellier 2, Montpellier, France
| | | | | |
Collapse
|
15
|
Giagulli C, Marsico S, Magiera AK, Bruno R, Caccuri F, Barone I, Fiorentini S, Andò S, Caruso A. Opposite effects of HIV-1 p17 variants on PTEN activation and cell growth in B cells. PLoS One 2011; 6:e17831. [PMID: 21423810 PMCID: PMC3056727 DOI: 10.1371/journal.pone.0017831] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/15/2011] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 matrix protein p17 is a structural protein that can act in the extracellular environment to deregulate several functions of immune cells, through the interaction of its NH(2)-terminal region with a cellular surface receptor (p17R). The intracellular events triggered by p17/p17R interaction have been not completely characterized yet. In this study we analyze the signal transduction pathways induced by p17/p17R interaction and show that in Raji cells, a human B cell line stably expressing p17R on its surface, p17 induces a transient activation of the transcriptional factor AP-1. Moreover, it was found to upregulate pERK1/2 and downregulate pAkt, which are the major intracellular signalling components involved in AP-1 activation. These effects are mediated by the COOH-terminal region of p17, which displays the capability of keeping PTEN, a phosphatase that regulates the PI3K/Akt pathway, in an active state through the serine/threonine (Ser/Thr) kinase ROCK. Indeed, the COOH-terminal truncated form of p17 (p17Δ36) induced activation of the PI3K/Akt pathway by maintaining PTEN in an inactive phosphorylated form. Interestingly, we show that among different p17s, a variant derived from a Ugandan HIV-1 strain, named S75X, triggers an activation of PI3K/Akt signalling pathway, and leads to an increased B cell proliferation and malignant transformation. In summary, this study shows the role of the COOH-terminal region in modulating the p17 signalling pathways so highlighting the complexity of p17 binding to and signalling through its receptor(s). Moreover, it provides the first evidence on the presence of a p17 natural variant mimicking the p17Δ36-induced signalling in B cells and displaying the capacity of promoting B cell growth and tumorigenesis.
Collapse
Affiliation(s)
- Cinzia Giagulli
- Department of Experimental and Applied Medicine, University of Brescia, Brescia, Italy
| | - Stefania Marsico
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | | | - Rosalinda Bruno
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Francesca Caccuri
- Department of Experimental and Applied Medicine, University of Brescia, Brescia, Italy
| | - Ines Barone
- Department of Cell Biology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Simona Fiorentini
- Department of Experimental and Applied Medicine, University of Brescia, Brescia, Italy
| | - Sebastiano Andò
- Department of Cell Biology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Arnaldo Caruso
- Department of Experimental and Applied Medicine, University of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
16
|
Strategies to inhibit viral protein nuclear import: HIV-1 as a target. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1646-53. [PMID: 20719241 DOI: 10.1016/j.bbamcr.2010.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/16/2010] [Accepted: 07/29/2010] [Indexed: 12/22/2022]
Abstract
Nuclear import is a critical step in the life cycle of HIV-1. During the early (preintegration) stages of infection, HIV-1 has to transport its preintegration complex into the nucleus for integration into the host cell chromatin, while at the later (postintegration) stages viral regulatory proteins Tat and Rev need to get into the nucleus to stimulate transcription and regulate splicing and nuclear export of subgenomic and genomic RNAs. Given such important role of nuclear import in HIV-1 life cycle, this step presents an attractive target for antiviral therapeutic intervention. In this review, we describe the current state of our understanding of the interactions regulating nuclear import of the HIV-1 preintegration complex and describe current approaches to inhibit it. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
|
17
|
Evans P, Sacan A, Ungar L, Tozeren A. Sequence alignment reveals possible MAPK docking motifs on HIV proteins. PLoS One 2010; 5:e8942. [PMID: 20126615 PMCID: PMC2812490 DOI: 10.1371/journal.pone.0008942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 01/11/2010] [Indexed: 01/18/2023] Open
Abstract
Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs). MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.
Collapse
Affiliation(s)
- Perry Evans
- Genomics and Computational Biology and Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ahmet Sacan
- Center for Integrated Bioinformatics, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lyle Ungar
- Genomics and Computational Biology and Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Aydin Tozeren
- Center for Integrated Bioinformatics, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Rasheed S, Yan JS, Hussain A, Lai B. Proteomic characterization of HIV-modulated membrane receptors, kinases and signaling proteins involved in novel angiogenic pathways. J Transl Med 2009; 7:75. [PMID: 19712456 PMCID: PMC2754444 DOI: 10.1186/1479-5876-7-75] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 08/27/2009] [Indexed: 12/23/2022] Open
Abstract
Background Kaposi's sarcoma (KS), hemangioma, and other angioproliferative diseases are highly prevalent in HIV-infected individuals. While KS is etiologically linked to the human herpesvirus-8 (HHV8) infection, HIV-patients without HHV-8 and those infected with unrelated viruses also develop angiopathies. Further, HIV-Tat can activate protein-tyrosine-kinase (PTK-activity) of the vascular endothelial growth factor receptor involved in stimulating angiogenic processes. However, Tat by itself or HHV8-genes alone cannot induce angiogenesis in vivo unless specific proteins/enzymes are produced synchronously by different cell-types. We therefore tested a hypothesis that chronic HIV-replication in non-endothelial cells may produce novel factors that provoke angiogenic pathways. Methods Genome-wide proteins from HIV-infected and uninfected T-lymphocytes were tested by subtractive proteomics analyses at various stages of virus and cell growth in vitro over a period of two years. Several thousand differentially regulated proteins were identified by mass spectrometry (MS) and >200 proteins were confirmed in multiple gels. Each protein was scrutinized extensively by protein-interaction-pathways, bioinformatics, and statistical analyses. Results By functional categorization, 31 proteins were identified to be associated with various signaling events involved in angiogenesis. 88% proteins were located in the plasma membrane or extracellular matrix and >90% were found to be essential for regeneration, neovascularization and angiogenic processes during embryonic development. Conclusion Chronic HIV-infection of T-cells produces membrane receptor-PTKs, serine-threonine kinases, growth factors, adhesion molecules and many diffusible signaling proteins that have not been previously reported in HIV-infected cells. Each protein has been associated with endothelial cell-growth, morphogenesis, sprouting, microvessel-formation and other biological processes involved in angiogenesis (p = 10-4 to 10-12). Bioinformatics analyses suggest that overproduction of PTKs and other kinases in HIV-infected cells has suppressed VEGF/VEGFR-PTK expression and promoted VEGFR-independent pathways. This unique mechanism is similar to that observed in neovascularization and angiogenesis during embryogenesis. Validation of clinically relevant proteins by gene-silencing and translational studies in vivo would identify specific targets that can be used for early diagnosis of angiogenic disorders and future development of inhibitors of angiopathies. This is the first comprehensive study to demonstrate that HIV-infection alone, without any co-infection or treatment, can induce numerous "embryonic" proteins and kinases capable of generating novel VEGF-independent angiogenic pathways.
Collapse
Affiliation(s)
- Suraiya Rasheed
- Laboratory of Viral Oncology and Proteomics Research Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032-3626, USA.
| | | | | | | |
Collapse
|
19
|
Van Duyne R, Kehn-Hall K, Klase Z, Easley R, Heydarian M, Saifuddin M, Wu W, Kashanchi F. Retroviral proteomics and interactomes: intricate balances of cell survival and viral replication. Expert Rev Proteomics 2008; 5:507-28. [PMID: 18532916 DOI: 10.1586/14789450.5.3.507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overall changes in the host cellular proteome upon retroviral infection intensify from the initial entry of the virus to the incorporation of viral DNA into the host genome, and finally to the consistent latent state of infection. The host cell reacts to both the entry of viral elements and the manipulation of host cellular machinery, resulting in a cascade of signaling events and pathway activation. Cell type- and tissue-specific responses are also characteristic of infection and can be classified based on the differential expression of genes and proteins between normal and disease states. The characterization of differentially expressed proteins upon infection is also critical in identifying potential biomarkers within infected bodily fluids. Biomarkers can be used to monitor the progression of infection, track the effectiveness of specific treatments and characterize the mechanisms of disease pathogenesis. Standard proteomic approaches have been applied to monitor the changes in global protein expression and localization in infected cells, tissues and fluids. Here we report on recent investigations into the characterization of proteomes in response to retroviral infection.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University, Department of Microbiology, Immunology, & Tropical Medicine, 2300 I Street, NW, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nucleocapsid protein function in early infection processes. Virus Res 2008; 134:39-63. [PMID: 18279991 DOI: 10.1016/j.virusres.2007.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/15/2023]
Abstract
The role of nucleocapsid protein (NC) in the early steps of retroviral replication appears largely that of a facilitator for reverse transcription and integration. Using a wide variety of cell-free assay systems, the properties of mature NC proteins (e.g. HIV-1 p7(NC) or MLV p10(NC)) as nucleic acid chaperones have been extensively investigated. The effect of NC on tRNA annealing, reverse transcription initiation, minus-strand-transfer, processivity of reverse transcription, plus-strand-transfer, strand-displacement synthesis, 3' processing of viral DNA by integrase, and integrase-mediated strand-transfer has been determined by a large number of laboratories. Interestingly, these reactions can all be accomplished to varying degrees in the absence of NC; some are facilitated by both viral and non-viral proteins and peptides that may or may not be involved in vivo. What is one to conclude from the observation that NC is not strictly required for these necessary reactions to occur? NC likely enhances the efficiency of each of these steps, thereby vastly improving the productivity of infection. In other words, one of the major roles of NC is to enhance the effectiveness of early infection, thereby increasing the probability of productive replication and ultimately of retrovirus survival.
Collapse
|
21
|
Saad JS, Kim A, Ghanam RH, Dalton AK, Vogt VM, Wu Z, Lu W, Summers MF. Mutations that mimic phosphorylation of the HIV-1 matrix protein do not perturb the myristyl switch. Protein Sci 2007; 16:1793-7. [PMID: 17656588 PMCID: PMC2203364 DOI: 10.1110/ps.072987607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent studies indicate that the matrix domain (MA) of the HIV-1 Gag polyprotein directs Gag to the plasma membrane for virus assembly via a phosphatidylinositol-4,5-bisphosphate (PIP(2))-dependent myristyl switch mechanism. MA also has been reported to direct nuclear trafficking via nuclear import and export functions, and some studies suggest that nuclear targeting may be regulated by MA phosphorylation (although this proposal remains controversial). We have prepared and studied a series of HIV-1 MA mutants containing Ser-to-Asp substitutions designed to mimic phosphorylation, including substitutions in regions of the protein involved in protein-protein interactions and known to influence the myristyl switch (S6D, S9D, S67D, S72D, S6D/S9D, and S67D/S72D). We were particularly interested in substitutions at residue 6, since conservative mutations adjacent to this site strongly perturb the myristyl switch equilibrium, and this site had not been genetically tested due to its involvement in post-translational myristylation. Our studies reveal that none of these mutations, including S6D, influences the PIP(2)- or concentration-dependent myristyl switch equilibrium. In addition, all of the mutants bind liposomes with affinities that are only slightly reduced in comparison with the native protein. In contrast, the myristylated mutants bind liposomes with substantially greater affinity than that of the native, unmyristylated protein. These findings support the hypothesis that phosphorylation is unlikely to significantly influence membrane-mediated intracellular trafficking.
Collapse
Affiliation(s)
- Jamil S Saad
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zamborlini A, Lehmann-Che J, Clave E, Giron ML, Tobaly-Tapiero J, Roingeard P, Emiliani S, Toubert A, de Thé H, Saïb A. Centrosomal pre-integration latency of HIV-1 in quiescent cells. Retrovirology 2007; 4:63. [PMID: 17845727 PMCID: PMC2014762 DOI: 10.1186/1742-4690-4-63] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 09/10/2007] [Indexed: 11/25/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) efficiently replicates in dividing and non-dividing cells. However, HIV-1 infection is blocked at an early post-entry step in quiescent CD4+ T cells in vitro. The molecular basis of this restriction is still poorly understood. Here, we show that in quiescent cells, incoming HIV-1 sub-viral complexes concentrate and stably reside at the centrosome for several weeks. Upon cell activation, viral replication resumes leading to viral gene expression. Thus, HIV-1 can persist in quiescent cells as a stable, centrosome-associated, pre-integration intermediate.
Collapse
Affiliation(s)
| | | | - Emmanuel Clave
- INSERM U662, Laboratoire d'Immunologie et d'Histocompatibilité AP-HP, Paris, France
| | - Marie-Lou Giron
- CNRS UMR7151, Université Paris 7, Hôpital Saint-Louis, Paris, France
| | | | | | | | - Antoine Toubert
- INSERM U662, Laboratoire d'Immunologie et d'Histocompatibilité AP-HP, Paris, France
| | - Hugues de Thé
- CNRS UMR7151, Université Paris 7, Hôpital Saint-Louis, Paris, France
| | - Ali Saïb
- CNRS UMR7151, Université Paris 7, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
23
|
Abstract
The HIV-1 structural protein matrix (MA) is involved in a number of essential steps during infection and appears to possess multiple, seemingly conflicting targeting signals. Although MA has long been known to be crucial for virion assembly, details regarding this function, and the domains responsible for mediating it, are still emerging. MA has also been implicated in nuclear import of HIV cDNA and is purported to contain a nuclear targeting signal. Little is known about how these opposing plasma membrane and nuclear targeting signals are regulated and which signals predominate at various stages of infection. Additionally, MA has recently been implicated in a number of novel roles during infection including viral entry/uncoating, cytoskeletal-mediated transport, and targeting viral assembly to lipid rafts. Here we discuss our current understanding of MA's functions during infection and explore the recent advancements made in elucidating the mechanism of these processes. It appears that MA possesses a cache of targeting signals that are likely to be regulated throughout the infectious cycle by a combination of structural and biochemical modifications including phosphorylation, myristoylation, and multimerization. The ability of HIV to modify the properties of MA at specific stages of infection is central to the multifunctional behavior of MA and the efficiency of HIV infection. The recently reported success of drugs specifically designed to block MA function (Haffar O, Dubrovsky L, and Lowe R et al. J Virol 2005;79:13028-13036) confirms the importance of this protein for HIV infection and highlights a potentially new avenue in multivalent drug therapy.
Collapse
Affiliation(s)
- Anna C Hearps
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | |
Collapse
|
24
|
Bukrinskaya A. HIV-1 matrix protein: a mysterious regulator of the viral life cycle. Virus Res 2007; 124:1-11. [PMID: 17210199 DOI: 10.1016/j.virusres.2006.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/30/2006] [Accepted: 07/05/2006] [Indexed: 01/17/2023]
Abstract
Significant progress has been achieved in the last few years concerning the human immunodeficiency virus (HIV-1) life cycle, mostly in the fields of cellular receptors for the virus, virus assembly and budding of virus particles from the cell surface. Meanwhile, some aspects, such as postentry events, virus maturation and the regulatory role of individual viral proteins remain poorly defined. This review summarizes some recent findings concerning the role of Gag Pr55 and its proteolytic processing in the HIV-1 life cycle with particular emphasis on the functions of matrix protein p17 (MA), the protein which plays a key role in regulation of the early and late steps of viral morphogenesis. Based on our recent observations, the possibility is discussed that two subsets of MA exist, one cleaved from the Gag precursor in the host cell (cMA), and the other cleaved in the virions (vMA). It is suggested that two MA fractions possess diverse functions and are involved in different stages of virus morphogenesis as key regulators of the viral life cycle.
Collapse
Affiliation(s)
- Alissa Bukrinskaya
- D.I.Ivanovsky Institute of Virology, Russian Academy of Medical Sciences, Moscow 123098, RF, Russia.
| |
Collapse
|
25
|
Iordanskiy S, Bukrinsky M. Reverse transcription complex: the key player of the early phase of HIV replication. Future Virol 2007; 2:49-64. [PMID: 23658595 DOI: 10.2217/17460794.2.1.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sergey Iordanskiy
- The George Washington University, Washington, DC, USA ; The D.I. Ivanovsky Institute of Virology, Moscow, Russia
| | | |
Collapse
|
26
|
Fassati A. HIV infection of non-dividing cells: a divisive problem. Retrovirology 2006; 3:74. [PMID: 17067381 PMCID: PMC1635064 DOI: 10.1186/1742-4690-3-74] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 10/26/2006] [Indexed: 02/07/2023] Open
Abstract
Understanding how lentiviruses can infect terminally differentiated, non-dividing cells has proven a very complex and controversial problem. It is, however, a problem worth investigating, for it is central to HIV-1 transmission and AIDS pathogenesis. Here I shall attempt to summarise what is our current understanding for HIV-1 infection of non-dividing cells. In some cases I shall also attempt to make sense of controversies in the field and advance one or two modest proposals.
Collapse
Affiliation(s)
- Ariberto Fassati
- Wohl Virion Centre and MRC-UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK.
| |
Collapse
|
27
|
Stantchev TS, Markovic I, Telford WG, Clouse KA, Broder CC. The tyrosine kinase inhibitor genistein blocks HIV-1 infection in primary human macrophages. Virus Res 2006; 123:178-89. [PMID: 17030448 PMCID: PMC1847631 DOI: 10.1016/j.virusres.2006.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 11/27/2022]
Abstract
Binding of HIV-1 envelope glycoprotein (Env) to its cellular receptors elicits a variety of signaling events, including the activation of select tyrosine kinases. To evaluate the potential role of such signaling, we examined the effects of the tyrosine kinase inhibitor, genistein, on HIV-1 entry and infection of human macrophages using a variety of assays. Without altering cell viability, cell surface expression of CD4 and CCR5 or their abilities to interact with Env, genistein inhibited infection of macrophages by reporter gene-encoding, beta-lactamase containing, or wild type virions, as well as Env-mediated cell-fusion. The observation that genistein blocked virus infection if applied before, during or immediately after the infection period, but not 24h later; coupled with a more pronounced inhibition of infection in the reporter gene assays as compared to both beta-lactamase and p24 particle entry assays, imply that genistein exerts its inhibitory effects on both entry and early post-entry steps. These findings suggest that other exploitable targets, or steps, of the HIV-1 infection process may exist and could serve as additional opportunities for the development of new therapeutics.
Collapse
Affiliation(s)
- Tzanko S Stantchev
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University Bethesda, 4301 Jones Bridge Road, MD 20814, USA
| | | | | | | | | |
Collapse
|
28
|
Verhoeyen E, Wiznerowicz M, Olivier D, Izac B, Trono D, Dubart-Kupperschmitt A, Cosset FL. Novel lentiviral vectors displaying “early-acting cytokines” selectively promote survival and transduction of NOD/SCID repopulating human hematopoietic stem cells. Blood 2005; 106:3386-95. [PMID: 16076865 DOI: 10.1182/blood-2004-12-4736] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractA major limitation of current lentiviral vectors (LVs) is their inability to govern efficient gene transfer into quiescent cells, such as human CD34+ cells, that reside in the G0 phase of the cell cycle and that are highly enriched in hematopoietic stem cells. This hampers their application for gene therapy of hematopoietic cells. Here, we designed novel LVs that overcome this restriction by displaying “early-acting cytokines” on their surface. Display of thrombopoietin, stem cell factor, or both cytokines on the LV surface allowed efficient gene delivery into quiescent cord blood CD34+ cells. Moreover, these surface-engineered LVs preferentially transduced and promoted survival of resting CD34+ cells rather than cycling cells. Finally, and most importantly, these novel LVs allowed superior gene transfer in the most immature CD34+ cells as compared to conventional LVs, even when the latter vectors were used to transduce cells in the presence of recombinant cytokines. This was demonstrated by their capacity to promote selective transduction of CD34+ cell in in vitro derived long-term culture-initiating cell (LTC-IC) colonies and of long-term NOD/SCID repopulating cells (SRCs) in vivo.
Collapse
|
29
|
Yamashita M, Emerman M. The cell cycle independence of HIV infections is not determined by known karyophilic viral elements. PLoS Pathog 2005; 1:e18. [PMID: 16292356 PMCID: PMC1283251 DOI: 10.1371/journal.ppat.0010018] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 09/19/2005] [Indexed: 01/01/2023] Open
Abstract
Human immunodeficiency virus and other lentiviruses infect cells independent of cell cycle progression, but gammaretroviruses, such as the murine leukemia virus (MLV) require passage of cells through mitosis. This property is thought to be important for the ability of HIV to infect resting CD4+ T cells and terminally differentiated macrophages. Multiple and independent redundant nuclear localization signals encoded by HIV have been hypothesized to facilitate migration of viral genomes into the nucleus. The integrase (IN) protein of HIV is one of the HIV elements that targets to the nucleus; however, its role in nuclear entry of virus genomes has been difficult to describe because mutations in IN are pleiotropic. To investigate the importance of the HIV IN protein for infection of non-dividing cells, and to investigate whether or not IN was redundant with other viral signals for cell cycle-independent nuclear entry, we constructed an HIV-based chimeric virus in which the entire IN protein of HIV was replaced by that of MLV. This chimeric virus with a heterologous IN was infectious at a low level, and was able to integrate in an IN-dependent manner. Furthermore, this virus infected non-dividing cells as well as it infected dividing cells. Moreover, we used the chimeric HIV with MLV IN to further eliminate all of the other described nuclear localization signals from an HIV genome—matrix, IN, Viral Protein R, and the central polypurine tract—and show that no combination of the virally encoded NLS is essential for the ability of HIV to infect non-dividing cells. Human immunodeficiency virus can infect many cells irrespective of whether or not they are dividing, whereas some other retroviruses, such as the murine leukemia virus can only infect cells that are proliferating. This property is important for the ability of HIV to establish infections in critical cell types in infected people. Multiple and redundant signals encoded by HIV have been hypothesized to facilitate migration of viral genomes into the nucleus. However, here the authors eliminated all four described nuclear localizing signals from an HIV genome and show that no combination of these virally encoded signals is essential for the ability of HIV to infect non-dividing cells. They suggest that another step of the virus lifecycle, other than nuclear import, is the rate-limiting step that determines the cell cycle dependence/independence of retroviral infections.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Division of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Emerman
- Division of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Rue SM, Roos JW, Tarwater PM, Clements JE, Barber SA. Phosphorylation and proteolytic cleavage of gag proteins in budded simian immunodeficiency virus. J Virol 2005; 79:2484-92. [PMID: 15681449 PMCID: PMC546538 DOI: 10.1128/jvi.79.4.2484-2492.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lentiviral Gag polyprotein (Pr55(Gag)) is cleaved by the viral protease during the late stages of the virus life cycle. Proteolytic cleavage of Pr55(Gag) is necessary for virion maturation, a structural rearrangement required for infectivity that occurs in budded virions. In this study, we investigate the relationship between phosphorylation of capsid (CA) domains in Pr55(Gag) and its cleavage intermediates and their cleavage by the viral protease in simian immunodeficiency virus (SIV). First, we demonstrate that phosphorylated forms of Pr55(Gag), several CA-containing cleavage intermediates of Pr55(Gag), and the free CA protein are detectable in SIV virions but not in virus-producing cells, indicating that phosphorylation of these CA-containing Gag proteins may require an environment that is unique to the virion. Second, we show that the CA domain of Pr55(Gag) can be phosphorylated in budded virus and that this phosphorylation does not require the presence of an active viral protease. Further, we provide evidence that CA domains (i.e., incompletely cleaved CA) are phosphorylated to a greater extent than free (completely cleaved) CA and that CA-containing Gag proteins can be cleaved by the viral protease in SIV virions. Finally, we demonstrate that Pr55(Gag) and several of its intermediates, but not free CA, are actively phosphorylated in budded virus. Taken together, these data indicate that, in SIV virions, phosphorylation of CA domains in Pr55(Gag) and several of its cleavage intermediates likely precedes the cleavage of these domains by the viral protease.
Collapse
Affiliation(s)
- Sarah M Rue
- Department of Comparative Medicine, John Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
31
|
Llano M, Vanegas M, Fregoso O, Saenz D, Chung S, Peretz M, Poeschla EM. LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J Virol 2004; 78:9524-37. [PMID: 15308744 PMCID: PMC506940 DOI: 10.1128/jvi.78.17.9524-9537.2004] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1), feline immunodeficiency virus (FIV), and Moloney murine leukemia virus (MoMLV) integrases were stably expressed to determine their intracellular trafficking. Each lentiviral integrase localized to cell nuclei in close association with chromatin while the murine oncoretroviral integrase was cytoplasmic. Fusions of pyruvate kinase to the lentiviral integrases did not reveal transferable nuclear localization signals. The intracellular trafficking of each was determined instead by the transcriptional coactivator LEDGF/p75, which was required for nuclear localization. Stable small interfering RNA expression eliminated detectable LEDGF/p75 expression and caused dramatic, stable redistribution of each lentiviral integrase from nucleus to cytoplasm while the distribution of MoMLV integrase was unaffected. In addition, endogenous LEDGF/p75 coimmunoprecipitated specifically with each lentiviral integrase. In vitro integration assays with preintegration complexes (PICs) showed that endogenous LEDGF/p75 is a component of functional HIV-1 and FIV PICs. However, HIV-1 and FIV infection and replication in LEDGF/p75-deficient cells was equivalent to that in control cells, whether cells were dividing or growth arrested. Two-long terminal repeat circle accumulation in nondividing cell nuclei was also equivalent to that of LEDGF/p75 wild-type cells. Virions produced in LEDGF/p75-deficient cells had normal infectivity. We conclude that LEDGF/p75 fully accounts for cellular trafficking of diverse lentiviral, but not oncoretroviral, integrases and is the main lentiviral integrase-to-chromatin tethering factor. While lentiviral PIC nuclear import is unaffected by LEDGF/p75 knockdown, this protein is a component of functional lentiviral PICs. A role in HIV-1 integration site distribution merits investigation.
Collapse
Affiliation(s)
- Manuel Llano
- Molecular Medicine Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
A major difference between lentiviruses such as human immunodeficiency virus (HIV) and most other retroviruses is their ability to productively infect nondividing cells. We present here genetic evidence for involvement of the capsid protein (CA) in the infectious phenotype in nondividing cells. A chimeric HIV type 1 (HIV-1) in which the MA and CA of HIV-1 are replaced with the MA, p12, and CA encoding sequences from murine leukemia virus (MLV) loses the ability to efficiently infect nondividing cells. Analysis of the accumulation of two-long-terminal-repeat circles implies that the impairment of nuclear transport of preintegration complexes is responsible for the restricted infection of this chimeric virus in nondividing cells. Incorporation of MLV MA and MLV p12 into HIV virions alone does not exert any adverse effects on viral infection in interphase cells. These results suggest that CA is the dominant determinant for the difference between HIV and MLV in the ability to transduce nondividing cells.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Division of Human Biology, Mail Stop C2-023, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, P.O. Box 19024, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
33
|
Hemonnot B, Cartier C, Gay B, Rebuffat S, Bardy M, Devaux C, Boyer V, Briant L. The host cell MAP kinase ERK-2 regulates viral assembly and release by phosphorylating the p6gag protein of HIV-1. J Biol Chem 2004; 279:32426-34. [PMID: 15155723 DOI: 10.1074/jbc.m313137200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The host cell MAP kinase ERK-2 incorporated within human immunodeficiency virus type 1 particles plays a critical role in virus infectivity by phosphorylating viral proteins. Recently, a fraction of the virus incorporated late (L) domain-containing p6(gag) protein, which has an essential function in the release of viral particles from the cell surface, was reported to be phosphorylated by an unknown virus-associated cellular protein kinase (Muller, B., Patschinsky, T., and Krausslich, H. G. (2002) J. Virol. 76, 1015-1024). The present study demonstrates the contribution of the MAP kinase ERK-2 in p6(gag) phosphorylation. According to mutational analysis, a single ERK-2-phosphorylated threonine residue, belonging to a highly conserved phosphorylation MAP kinase consensus site, was identified at position 23 within p6(gag). Substitution by an alanine of the Thr(23) phosphorylable residue within the pNL4.3 molecular clone was found to decrease viral release from various cell types. As observed from electron microscopy experiments, most virions produced from this molecular clone remained incompletely separated from the host cell membrane with an immature morphology and displayed a reduced infectivity in single round infection experiments. Analysis of protein processing by Western blotting experiments revealed an incomplete Pr55(gag) maturation and a reduction in the virion-associated reverse transcriptase proteins was observed that was not related to differences in intracellular viral protein expression. Altogether, these data suggest that phosphorylation of p6(gag) protein by virus-associated ERK-2 is involved in the budding stage of HIV-1 life cycle.
Collapse
MESH Headings
- Alanine/chemistry
- Amino Acid Sequence
- Blotting, Western
- Cell Line
- DNA Mutational Analysis
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Gene Products, gag/chemistry
- Gene Products, gag/metabolism
- Glutathione Transferase/metabolism
- HIV-1/metabolism
- Humans
- Microscopy, Electron
- Mitogen-Activated Protein Kinase 1/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphorylation
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA, Small Interfering/metabolism
- Sequence Homology, Amino Acid
- Threonine/chemistry
- Transfection
- Virion/metabolism
- Viruses/metabolism
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Bénédicte Hemonnot
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, Centre National pour la Recherche Scientifique, UMR 5121-Université Montpellier 1, Institut de Biologie, 4 Boulevard Henri IV, CS89508, 34960 Montpellier cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kaushik R, Ratner L. Role of human immunodeficiency virus type 1 matrix phosphorylation in an early postentry step of virus replication. J Virol 2004; 78:2319-26. [PMID: 14963128 PMCID: PMC369234 DOI: 10.1128/jvi.78.5.2319-2326.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The matrix domain (MA) is important for targeting of human immunodeficiency virus type 1 Gag assembly to the plasma membrane, envelope incorporation into virions, preintegration complex import into the nucleus, and nuclear export of viral RNA. Myristylation and phosphorylation are key regulatory events for MA function. Previous studies have indicated that MA phosphorylation at serine (Ser) residues is important for viral replication. This study defines the molecular mechanisms of virus particle assembly and infectivity through a detailed study of the role of MA serine phosphorylation. We show that the combined mutation of Ser residues at positions 9, 67, 72, and 77 impairs viral infectivity in dividing and nondividing cells, although the assembly of these Ser mutant viruses is comparable to that of wild-type virus. This defect can be rescued by pseudotyping these mutant viruses with vesicular stomatitis virus G protein, suggesting that these serine residues are critical in an early postentry step of viral infection. The phosphorylation level of MA in defective mutant viruses was severely reduced compared to that of the wild type, suggesting that phosphorylation of Ser-9, -67, -72, and -77 is important for an early postentry step during virus infection.
Collapse
Affiliation(s)
- Rajnish Kaushik
- Department of Medicine, Pathology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
35
|
Dvorin JD, Malim MH. Intracellular trafficking of HIV-1 cores: journey to the center of the cell. Curr Top Microbiol Immunol 2003; 281:179-208. [PMID: 12932078 DOI: 10.1007/978-3-642-19012-4_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
After entry into the cytoplasm, many diverse viruses, including both RNA and DNA viruses, require import into the nucleus and access to the cellular nuclear machinery for productive replication to proceed. Because diffusion through the crowded cytoplasmic environment is greatly restricted, most (if not all) of these viruses must first be actively transported from the site of cytoplasmic entry to the nuclear periphery (Luby-Phelps 2000; Lukacs et al. 2000; Sodeik 2000). Having reached the nucleus, viruses have evolved assorted methods to overcome the formidable physical barrier that is presented by the nuclear envelope. This review examines how these issues relate to human immunodeficiency virus type-1 (HIV-1) infection. Specifically, HIV-1 uncoating, cytoplasmic transport, and nuclear entry are addressed.
Collapse
Affiliation(s)
- J D Dvorin
- Department of Microbiology and Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | |
Collapse
|
36
|
Cartier C, Hemonnot B, Gay B, Bardy M, Sanchiz C, Devaux C, Briant L. Active cAMP-dependent protein kinase incorporated within highly purified HIV-1 particles is required for viral infectivity and interacts with viral capsid protein. J Biol Chem 2003; 278:35211-9. [PMID: 12842892 DOI: 10.1074/jbc.m301257200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Host cell components, including protein kinases such as ERK-2/mitogen-activated protein kinase, incorporated within human immunodeficiency virus type 1 (HIV-1) virions play a pivotal role in the ability of HIV to infect and replicate in permissive cells. The present work provides evidence that the catalytic subunit of cAMP-dependent protein kinase (C-PKA) is packaged within HIV-1 virions as demonstrated using purified subtilisin-digested viral particles. Virus-associated C-PKA was shown to be enzymatically active and able to phosphorylate synthetic substrate in vitro. Suppression of virion-associated C-PKA activity by specific synthetic inhibitor had no apparent effect on viral precursor maturation and virus assembly. However, virus-associated C-PKA activity was demonstrated to regulate HIV-1 infectivity as assessed by single round infection assays performed by using viruses produced from cells expressing an inactive form of C-PKA. In addition, virus-associated C-PKA was found to co-precipitate with and to phosphorylate the CAp24gag protein. Altogether our results indicate that virus-associated C-PKA regulates HIV-1 infectivity, possibly by catalyzing phosphorylation of the viral CAp24gag protein.
Collapse
Affiliation(s)
- Christine Cartier
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, Centre National de la Recherche Scientifique, UMR 5121-UM1, Institut de Biologie, CS 89508, 34960 Montpellier Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Roscic-Mrkic B, Fischer M, Leemann C, Manrique A, Gordon CJ, Moore JP, Proudfoot AEI, Trkola A. RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood 2003; 102:1169-77. [PMID: 12714503 DOI: 10.1182/blood-2003-02-0488] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CC-chemokine RANTES (regulated on activation normal T-cell expressed and secreted; CCL5) transduces multiple intracellular signals. Like all chemokines, it stimulates G protein-coupled receptor (GPCR) activity through interaction with its cognate chemokine receptor(s), but in addition also activates a GPCR-independent signaling pathway. Here, we show that the latter pathway is mediated by an interaction between RANTES and glycosaminoglycan chains of CD44. We provide evidence that this association, at both low, physiologically relevant, and higher, probably supraphysiologic concentrations of RANTES, induces the formation of a signaling complex composed of CD44, src kinases, and adapter molecules. This triggers the activation of the p44/42 mitogen-activated protein kinase (MAPK) pathway. By specifically reducing CD44 expression using RNA interference we were able to demonstrate that the p44/p42 MAPK activation by RANTES requires a high level of CD44 expression. As well as potently inhibiting the entry of CCR5 using HIV-1 strains, RANTES can enhance HIV-1 infectivity under certain experimental conditions. This enhancement process depends in part on the activation of p44/p42 MAPK. Here we show that silencing of CD44 in HeLa-CD4 cells prevents the activation of p44/p42 MAPK and leads to a substantial reduction in HIV-1 infectivity enhancement by RANTES.
Collapse
Affiliation(s)
- Branka Roscic-Mrkic
- Division of Infectious Diseases, Department of Medicine, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
After entry of the human immunodeficiency virus type 1 (HIV-1) into T cells and the subsequent synthesis of viral products, viral proteins and RNA must somehow find each other in the host cells and assemble on the plasma membrane to form the budding viral particle. In this general review of HIV-1 assembly, we present a brief overview of the HIV life cycle and then discuss assembly of the HIV Gag polyprotein on RNA and membrane substrates from a biochemical perspective. The role of the domains of Gag in targeting to the plasma membrane and the role of the cellular host protein cyclophilin are also reviewed.
Collapse
Affiliation(s)
- Suzanne Scarlata
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY 11794-8661, USA.
| | | |
Collapse
|
39
|
Kobayashi T, Zhang G, Lee BJ, Baba S, Yamashita M, Kamitani W, Yanai H, Tomonaga K, Ikuta K. Modulation of Borna disease virus phosphoprotein nuclear localization by the viral protein X encoded in the overlapping open reading frame. J Virol 2003; 77:8099-107. [PMID: 12829848 PMCID: PMC161951 DOI: 10.1128/jvi.77.14.8099-8107.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that belongs to the Mononegavirales order. Unlike other animal viruses in this order, BDV replicates and transcribes in the nucleus of infected cells. Therefore, regulation of the intracellular movement of virus components must be critical for accomplishing the BDV life cycle in mammalian cells. Previous studies have demonstrated that BDV proteins are prone to accumulate in the nucleus of cells transiently transfected with each expression plasmid of the viral proteins. In BDV infection, however, cytoplasmic distribution of the viral proteins is frequently found in cultured cells and animal brains. In this study, to understand the modulation of subcellular localization of BDV proteins, we investigated the intracellular localization of the viral phosphoprotein (P). Transient-transfection analysis with a cDNA clone corresponding to a bicistronic transcript that expresses both viral X and P revealed that P efficiently localizes in the cytoplasm only when BDV X is expressed in the cells. Furthermore, our analysis revealed that the direct binding between X and P is necessary for the cytoplasmic localization of the P. Interestingly, we showed that X is not detectably expressed in the BDV-infected cells in which P is predominantly found in the nucleus, with little or no signal in the cytoplasm. These observations suggested that BDV P can modulate their subcellular localization through binding to X and that BDV may regulate the expression ratio of each viral product in infected cells to control the intracellular movement of the viral protein complexes. The results presented here provide a new insight into the regulation of the intracellular movement of viral proteins of a unique, nonsegmented, negative-strand RNA virus.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Smith GA, Enquist LW. Break ins and break outs: viral interactions with the cytoskeleton of Mammalian cells. Annu Rev Cell Dev Biol 2003; 18:135-61. [PMID: 12142276 DOI: 10.1146/annurev.cellbio.18.012502.105920] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The host cytoskeleton plays important roles in the entry, replication, and egress of viruses. An assortment of viruses hijack cellular motor proteins to move on microtubules toward the cell interior during the entry process; others reverse this transport during egress to move assembling virus particles toward the plasma membrane. Polymerization of actin filaments is sometimes used to propel viruses from cell to cell, while many viruses induce the destruction of select cytoskeletal filaments apparently to effect efficient egress. Indeed, the tactics used by any given virus to achieve its infectious life cycle are certain to involve multiple cytoskeletal interactions. Understanding these interactions, and their orchestration during viral infections, is providing unexpected insights into basic virology, viral pathogenesis, and the biology of the cytoskeleton.
Collapse
Affiliation(s)
- Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
41
|
Gaddis NC, Chertova E, Sheehy AM, Henderson LE, Malim MH. Comprehensive investigation of the molecular defect in vif-deficient human immunodeficiency virus type 1 virions. J Virol 2003; 77:5810-20. [PMID: 12719574 PMCID: PMC154025 DOI: 10.1128/jvi.77.10.5810-5820.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Replication of human immunodeficiency virus type 1 (HIV-1) in primary blood lymphocytes, certain T-cell lines (nonpermissive cells), and most likely in vivo is highly dependent on the virally encoded Vif protein. Evidence suggests that Vif acts late in the viral life cycle during assembly, budding, and/or maturation to counteract the antiviral activity of the CEM15 protein and possibly other antiviral factors. Because HIV-1 virions produced in the absence of Vif are severely restricted at a postentry, preintegration step of infection, it is presumed that such virions differ from wild-type virions in some way. In the present study, we established a protocol for producing large quantities of vif-deficient HIV-1 (HIV-1/Delta vif) from an acute infection of nonpermissive T cells and performed a thorough examination of the defect in these virions. Aside from the expected lack of Vif, we observed no apparent abnormalities in the packaging, modification, processing, or function of proteins in Delta vif virions. In addition, we found no consistent defect in the ability of Delta vif virions to perform intravirion reverse transcription under a variety of assay conditions, suggesting that the reverse transcription complexes in these particles can behave normally under cell-free conditions. Consistent with this finding, neither the placement of the primer tRNA3Lys nor its ability to promote reverse transcription in an in vitro assay was affected by a lack of Vif. Based on the inability of this comprehensive analysis to uncover molecular defects in Delta vif virions, we speculate that such defects are likely to be subtle and/or rare.
Collapse
Affiliation(s)
- Nathan C Gaddis
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
42
|
Lapointe JY, Gagnon MP, Gagnon DG, Bissonnette P. Controversy regarding the secondary active water transport hypothesis. Biochem Cell Biol 2003; 80:525-33. [PMID: 12440694 DOI: 10.1139/o02-150] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Historically, water transport across biological membranes has always been considered a passive process, i.e., the net water transport is proportional to the gradients of hydrostatic and osmotic pressure. More recently, this dogma was challenged by the suggestion that secondary active transporters such as the Na/glucose cotransporter (SGLT1) could perform secondary active water transport with a fixed stoichiometry. In the case of SGLT1, the stoichiometry would consist of one glucose molecule to two Na+ ions to 220-400 water molecules. In the present minireview, we summarize and criticize the evidence supporting and opposing this water cotransport hypothesis. Published and unpublished observations from our own laboratory are also presented in support of the idea that transport-dependent osmotic gradients begin to build up immediately after cotransport commences and are fully responsible for the cell swelling observed.
Collapse
|
43
|
Zielske SP, Gerson SL. Cytokines, including stem cell factor alone, enhance lentiviral transduction in nondividing human LTCIC and NOD/SCID repopulating cells. Mol Ther 2003; 7:325-33. [PMID: 12668128 DOI: 10.1016/s1525-0016(03)00005-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hematopoietic stem cells (HSC) require extensive cytokine-mediated stimulation and proliferation for efficient transduction by oncoretroviral vectors. Since lentiviral vectors can transduce nondividing cells, the need for cytokine stimulation has been questioned. We studied HIV-based lentiviral transduction of human early hematopoietic progenitors from umbilical cord blood in the presence or absence of IL-3, IL-6, stem cell factor (SCF), and Flt-3L (36SF) or SCF alone and characterized the effects of these conditions on the stem cell phenotype. Gene transfer was significantly higher in the presence of 36SF in mass culture cells, CFC, LTCIC, and NOD/SCID repopulating cells (SRC). Transduction of primitive progenitor/stem cells was poor without cytokines, with only 12% LTCIC and 23% SRC transduced, compared to 59% in LTCIC and 81% in SRC with 36SF. SCF alone matched transduction rates of multiple cytokines with 70% in CFC. Cytokines prevented apoptosis, expanded CD34(+) cell number, and maintained CFC and LTCIC frequencies. Cytokine stimulation increased transduction of nondividing Ara-C-resistant and aphidicolin-inhibited cells similar to dividing cells. These data suggest that cytokines enhance lentiviral transduction of HSC, without requiring cell division, and maintain the stem cell phenotype. SCF stimulation alone was sufficient for high level transduction.
Collapse
Affiliation(s)
- Steven P Zielske
- Molecular Virology Program, Division of Hematology/Oncology, and Comprehensive Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
44
|
Dvorin JD, Bell P, Maul GG, Yamashita M, Emerman M, Malim MH. Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import. J Virol 2002; 76:12087-96. [PMID: 12414950 PMCID: PMC136890 DOI: 10.1128/jvi.76.23.12087-12096.2002] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells productively because the nuclear import of viral nucleic acids occurs in the absence of cell division. A number of viral factors that are present in HIV-1 preintegration complexes (PICs) have been assigned functions in nuclear import, including an essential valine at position 165 in integrase (IN-V165) and the central polypurine tract (cPPT). In this article, we report a comparison of the replication and infection characteristics of viruses with disruptions in the cPPT and IN-V165. We found that viruses with cPPT mutations still replicated productively in both dividing and nondividing cells, while viruses with a mutation at IN-V165 did not. Direct observation of the subcellular localization of HIV-1 cDNAs by fluorescence in situ hybridization revealed that cDNAs synthesized by both mutant viruses were readily detected in the nucleus. Thus, neither the cPPT nor the valine residue at position 165 of integrase is essential for the nuclear import of HIV-1 PICs.
Collapse
Affiliation(s)
- Jeffrey D Dvorin
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | | | | | | | |
Collapse
|
45
|
Misumi S, Fuchigami T, Takamune N, Takahashi I, Takama M, Shoji S. Three isoforms of cyclophilin A associated with human immunodeficiency virus type 1 were found by proteomics by using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Virol 2002; 76:10000-8. [PMID: 12208976 PMCID: PMC136499 DOI: 10.1128/jvi.76.19.10000-10008.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) strain LAV-1 (HIV-1(LAV-1)) particles were collected by ultracentrifugation, treated with subtilisin, and then purified by Sepharose CL-4B column chromatography to remove microvesicles. The lysate of the purified HIV-1(LAV-1) particles was subjected to two-dimensional (2D) gel electrophoresis and stained. The 2D gel electrophoresis image suggested that 24 proteins can be identified inside the virion. Furthermore, the stained protein spots were excised and digested with trypsin. The resulting peptide fragments were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Peptide mass fingerprinting data suggested that two isoforms of cyclophilin A (CyPA), one with an isoelectric point (pI) of 6.40 and one with a pI of 6.53, are inside the viral membrane; that another isoform, with a pI of 6.88, is outside the viral membrane; and that the CyPA isoform with a pI of 6.53 is N acetylated. The mechanisms that permit the redistribution of CyPA on the viral surface have not yet been clarified, but it is surmised that the CyPA isoform with a pI of 6.88 may play a critical role in the attachment of virions to the surface of target cells and that both CyPA isoforms with pIs of 6.40 and 6.53 may regulate the conformation of the HIV-1 capsid protein.
Collapse
Affiliation(s)
- Shogo Misumi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Khiytani DK, Dimmock NJ. Characterization of a human immunodeficiency virus type 1 pre-integration complex in which the majority of the cDNA is resistant to DNase I digestion. J Gen Virol 2002; 83:2523-2532. [PMID: 12237436 DOI: 10.1099/0022-1317-83-10-2523] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) pre-integration complex (PIC) is a cytoplasmic nucleoprotein structure derived from the core of the virion and is responsible for reverse transcription of viral RNA to cDNA, transport to the nucleus and integration of the cDNA into the genome of the infected target cell. Others have shown by Mu phage-mediated PCR footprinting that only the LTRs of the cDNA of PICs isolated early in infection are protected by bound protein, while the rest of the genome is susceptible to nuclease attack. Here, using DNase I footprinting, we confirmed that the majority of the cDNA of PICs isolated at 8.5 h after infection with cell-free virus was sensitive to digestion with DNase I and that only part of the LTRs (approximately 6% of the total cDNA) was protected. However, PICs isolated 90 min later (at 10 h post-infection) were very different in that the majority (approximately 90%) of cDNA was protected from nuclease degradation. These late PICs were integration active in vitro. We conclude that HIV-1 has at least two types of PIC, an early PIC characterized by protein bound only at the LTRs, and a late, and possibly more mature form, in which protein is bound along the length of the cDNA.
Collapse
Affiliation(s)
- Dheeraj K Khiytani
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK1
| | - Nigel J Dimmock
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK1
| |
Collapse
|
47
|
Fuchigami T, Misumi S, Takamune N, Takahashi I, Takama M, Shoji S. Acid-labile formylation of amino terminal proline of human immunodeficiency virus type 1 p24(gag) was found by proteomics using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Biochem Biophys Res Commun 2002; 293:1107-13. [PMID: 12051774 DOI: 10.1016/s0006-291x(02)00329-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1(LAV-1) particles were collected by ultracentrifugation, treated with subtilisin, and then purified by Sepharose CL-4B column chromatography to remove microvesicles. The lysate of the purified human immunodeficiency virus type 1 (HIV-1) particles was subjected to two-dimensional (2D) gel electrophoresis and stained, and the stained spots were excised and digested with trypsin. The resulting peptide fragments were characterized by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Twenty-five proteins were identified as the proteins inside the virion and the acid-labile formyl group of an amino terminal proline residue of HIV-1(LAV-1) p24(gag) was determined by MALDI-TOF MS before and after weak-acid treatments (0.6 N hydrochloric acid) and confirmed by post-source decay (PSD) of the N-formylated N-terminal tryptic peptide (N-formylated Pro(1)-Arg(18)). The role of formylation has been unclear so far, but it is surmised that the acid-labile formylation of HIV-1(LAV-1) p24(gag) may play a critical role in the formation of the HIV-1 core for conferring HIV-1 infectivity.
Collapse
Affiliation(s)
- Takashi Fuchigami
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- M Stevenson
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
49
|
Müller B, Patschinsky T, Kräusslich HG. The late-domain-containing protein p6 is the predominant phosphoprotein of human immunodeficiency virus type 1 particles. J Virol 2002; 76:1015-24. [PMID: 11773377 PMCID: PMC135845 DOI: 10.1128/jvi.76.3.1015-1024.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Gag-derived protein p6 of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in the release of virions from the membranes of infected cells. It is presumed that p6 and functionally related proteins from other viruses act as adapters, recruiting cellular factors to the budding site. This interaction is mediated by so-called late domains within the viral proteins. Previous studies had suggested that virus release from the plasma membrane shares elements with the cellular endocytosis machinery. Since protein phosphorylation is known to be a regulatory mechanism in these processes, we have investigated the phosphorylation of HIV-1 structural proteins. Here we show that p6 is the major phosphoprotein of HIV-1 particles. After metabolic labeling of infected cells with [ortho-32P]phosphate, we found that phosphorylated p6 from infected cells and from virus particles consisted of several forms, suggesting differential phosphorylation at multiple sites. Apparently, phosphorylation occurred shortly before or after the release of p6 from Gag and involved only a minor fraction of the total virion-associated p6 molecules. Phosphoamino acid analysis indicated phosphorylation at Ser and Thr, as well as a trace of Tyr phosphorylation, supporting the conclusion that multiple phosphorylation events do occur. In vitro experiments using purified virus revealed that endogenous or exogenously added p6 was efficiently phosphorylated by virion-associated cellular kinase(s). Inhibition experiments suggested that a cyclin-dependent kinase or a related kinase, most likely ERK2, was involved in p6 phosphorylation by virion-associated enzymes.
Collapse
Affiliation(s)
- Barbara Müller
- Abteilung Virologie, Universitätsklinikum Heidelberg, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
50
|
Hatanaka H, Iourin O, Rao Z, Fry E, Kingsman A, Stuart DI. Structure of equine infectious anemia virus matrix protein. J Virol 2002; 76:1876-83. [PMID: 11799182 PMCID: PMC135893 DOI: 10.1128/jvi.76.4.1876-1883.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gag polyprotein is key to the budding of retroviruses from host cells and is cleaved upon virion maturation, the N-terminal membrane-binding domain forming the matrix protein (MA). The 2.8-A resolution crystal structure of MA of equine infectious anemia virus (EIAV), a lentivirus, reveals that, despite showing no sequence similarity, more than half of the molecule can be superimposed on the MAs of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV). However, unlike the structures formed by HIV-1 and SIV MAs, the oligomerization state observed is not trimeric. We discuss the potential of this molecule for membrane binding in the light of conformational differences between EIAV MA and HIV or SIV MA.
Collapse
Affiliation(s)
- Hideki Hatanaka
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | |
Collapse
|