1
|
Alghamdi SA, Alissa M, Alghamdi A, Alshehri MA, Albelasi A, Alzahrani KJ, Safhi AY. Interplays Between Matrix Metalloproteinases and Neurotropic Viruses: An Overview. Rev Med Virol 2024; 34:e2585. [PMID: 39349731 DOI: 10.1002/rmv.2585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 11/08/2024]
Abstract
Matrix metalloproteinases (MMPs) are a diverse group of proteases involved in various physiological and pathological processes through modulation of extracellular matrix (ECM) components, cytokines, and growth factors. In the central nervous system (CNS), MMPs play a major role in CNS development, plasticity, repair, and reorganisation contributing to learning, memory, and neuroimmune response to injury. MMPs are also linked to various neurological disorders such as Alzheimer's disease, Parkinson's disease, cerebral aneurysm, stroke, epilepsy, multiple sclerosis, and brain cancer suggesting these proteases as key regulatory factors in the nervous system. Moreover, MMPs have been involved in the pathogenesis of neurotropic viral infections via dysregulation of various cellular processes, which may highlight these factors as potential targets for the treatment and control of neurological complications associated with viral pathogens. This review provides an overview of the roles of MMPs in various physiological processes of the CNS and their interactions with neurotropic viral pathogens.
Collapse
Affiliation(s)
- Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah Albelasi
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Gresele P, Falcinelli E, Momi S, Petito E, Sebastiano M. Platelets and Matrix Metalloproteinases: A Bidirectional Interaction with Multiple Pathophysiologic Implications. Hamostaseologie 2021; 41:136-145. [PMID: 33860521 DOI: 10.1055/a-1393-8339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Platelets contain and release several matrix metalloproteinases (MMPs), a highly conserved protein family with multiple functions in organism defense and repair. Platelet-released MMPs as well as MMPs generated by other cells within the cardiovascular system modulate platelet function in health and disease. In particular, a normal hemostatic platelet response to vessel wall injury may be transformed into pathological thrombus formation by platelet-released and/or by locally generated MMPs. However, it is becoming increasingly clear that platelets play a role not only in hemostasis but also in immune response, inflammation and allergy, atherosclerosis, and cancer development, and MMPs seem to contribute importantly to this role. A deeper understanding of these mechanisms may open the way to novel therapeutic approaches to the inhibition of their pathogenic effects and lead to significant advances in the treatment of cardiovascular, inflammatory, and neoplastic disorders.
Collapse
Affiliation(s)
- P Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - E Falcinelli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - S Momi
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - E Petito
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - M Sebastiano
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Peripheral membrane associations of matrix metalloproteinases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1964-1973. [PMID: 28442379 DOI: 10.1016/j.bbamcr.2017.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Water soluble matrix metalloproteinases (MMPs) have been regarded as diffusing freely in the extracellular matrix. Yet multiple MMPs are also observed at cell surfaces. Their membrane-proximal activities include sheddase activities, collagenolysis, bacterial killing, and intracellular trafficking reaching as far as the nucleus. The catalytic domains of MMP-7 and MMP-12 bind bilayers peripherally, each in two different orientations, by presenting positive charges and a few hydrophobic groups to the surface. Related peripheral membrane associations are predicted for other soluble MMPs. The peripheral membrane associations may support pericellular proteolysis and endocytosis. The isolated soluble domains of MT1-MMP can also associate with membranes. NMR assays suggest transient association of the hemopexin-like domains of MT1-MMP and MMP-12 with lipid bilayers. Peripheral association of soluble MMP domains with bilayers or heparin sulfate proteoglycans probably concentrates them near the membrane. This could increase the probability of forming complexes with membrane-associated proteins, such as those targeted for proteolysis. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
|
4
|
Gresele P, Falcinelli E, Sebastiano M, Momi S. Matrix Metalloproteinases and Platelet Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:133-165. [PMID: 28413027 DOI: 10.1016/bs.pmbts.2017.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets contain and release several matrix metalloproteinases (MMPs) and their tissue inhibitors of matrix metalloproteinases (TIMPs), including MMP-1, -2, -3, -9, and -14 and TIMP-1, -2, and -4. Although devoid of a nucleus, platelets also synthesize TIMP-2 upon activation. Platelet-released MMPs/TIMPs, as well as MMPs generated by other cells within the cardiovascular system, modulate platelet function in health and disease. In particular, a normal hemostatic platelet response to vessel wall injury may be transformed into pathologic thrombus formation by the release from platelets and/or by the local generation of some MMPs. Moreover, platelets may localize the production of leukocyte-derived MMPs to sites of vascular damage, contributing to atherosclerosis development and complications and to arterial aneurysm formation. Finally, the interaction between platelets and tumor cells is strongly influenced by MMPs/TIMPs. All these mechanisms are emerging as important in atherothrombosis, inflammatory disease, and cancer growth and dissemination. Increasing knowledge of these mechanisms may open the way to novel therapeutic approaches.
Collapse
Affiliation(s)
- Paolo Gresele
- Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy.
| | - Emanuela Falcinelli
- Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Manuela Sebastiano
- Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Stefania Momi
- Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Matrix remodeling by MMPs during wound repair. Matrix Biol 2015; 44-46:113-21. [PMID: 25770908 DOI: 10.1016/j.matbio.2015.03.002] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/16/2022]
Abstract
Repair following injury involves a range of processes - such as re-epithelialization, scar formation, angiogenesis, inflammation, and more - that function, often together, to restore tissue architecture. MMPs carry out diverse roles in all of these activities. In this article, we discuss how specific MMPs act on ECM during two critical repair processes: re-epithelialization and resolution of scar tissue. For wound closure, we discuss how two MMPs - MMP1 in human epidermis and MMP7 in mucosal epithelia - facilitate re-epithelialization by cleaving different ECM or ECM-associated proteins to affect similar integrin:matrix adhesion. In scars and fibrotic tissues, we discuss that a variety of MMPs carry out a diverse range of activities that can either promote or limit ECM deposition. However, few of these MMP-driven activities have been demonstrated to be due a direct action on ECM.
Collapse
|
6
|
Yamamoto K, Murphy G, Troeberg L. Extracellular regulation of metalloproteinases. Matrix Biol 2015; 44-46:255-63. [PMID: 25701651 DOI: 10.1016/j.matbio.2015.02.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 12/15/2022]
Abstract
Matrix metalloproteinases (MMPs) and adamalysin-like metalloproteinase with thrombospondin motifs (ADAMTSs) belong to the metzincin superfamily of metalloproteinases and they play key roles in extracellular matrix catabolism, activation and inactivation of cytokines, chemokines, growth factors, and other proteinases at the cell surface and within the extracellular matrix. Their activities are tightly regulated in a number of ways, such as transcriptional regulation, proteolytic activation and interaction with tissue inhibitors of metalloproteinases (TIMPs). Here, we highlight recent studies that have illustrated novel mechanisms regulating the extracellular activity of these enzymes. These include allosteric activation of metalloproteinases by molecules that bind outside the active site, modulation of location and activity by interaction with cell surface and extracellular matrix molecules, and endocytic clearance from the extracellular milieu by low-density lipoprotein receptor-related protein 1 (LRP1).
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Gillian Murphy
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK.
| |
Collapse
|
7
|
Tocchi A, Parks WC. Functional interactions between matrix metalloproteinases and glycosaminoglycans. FEBS J 2013; 280:2332-41. [PMID: 23421805 DOI: 10.1111/febs.12198] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/03/2013] [Accepted: 02/15/2013] [Indexed: 01/10/2023]
Abstract
Similar to most proteinases, matrix metalloproteinases (MMP) do not recognize a consensus cleavage site. Thus, it is not surprising that, in a defined in vitro reaction, most MMPs can act on a wide range of proteins, including many extracellular matrix proteins. However, the findings obtained from in vivo studies with genetic models have demonstrated that individual MMPs act on just a few extracellular protein substrates, typically not matrix proteins. The limited, precise functions of an MMP imply that mechanisms have evolved to control the specificity of proteinase:substrate interactions. We discuss the possibility that interactions with the glycosaminoglycan chains of proteoglycans may function as allosteric regulators or accessory factors directing MMP catalysis to specific substrates. We propose that understanding how the activity of specific MMPs is confined to discreet compartments and targeted to defined substrates via interactions with other macromolecules may provide a means of blocking potentially deleterious MMP-mediated processes at the same time as sparing any beneficial functions.
Collapse
Affiliation(s)
- Autumn Tocchi
- Department of Medicine (Pulmonary and Critical Care Medicine), Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
8
|
Reduction of metastasis, cell invasion, and adhesion in mouse osteosarcoma by YM529/ONO-5920-induced blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathway. Toxicol Appl Pharmacol 2012; 259:402-10. [DOI: 10.1016/j.taap.2012.01.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/06/2012] [Accepted: 01/25/2012] [Indexed: 12/19/2022]
|
9
|
Ragin AB, Wu Y, Ochs R, Du H, Epstein LG, Conant K, McArthur JC. Marked relationship between matrix metalloproteinase 7 and brain atrophy in HIV infection. J Neurovirol 2011; 17:153-8. [PMID: 21302026 DOI: 10.1007/s13365-011-0018-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/07/2010] [Accepted: 12/22/2010] [Indexed: 11/30/2022]
Abstract
Circulating levels of matrix metalloproteinases (MMP-1 and 7) have been found to correlate with the severity of brain injury in HIV-infected subjects. This study used high-resolution neuroanatomic imaging and automated segmentation algorithms to clarify this relationship. Both metalloproteinases were significantly correlated with increased cerebrospinal fluid volume fraction. Comprehensive brain volumetric analysis revealed a more marked relationship with atrophy for MMP-7, which was significantly correlated with neural injury in multiple brain regions and nearly all ventricular measurements. MMP-7 was also correlated with measures of virologic and cognitive status.
Collapse
Affiliation(s)
- Ann B Ragin
- Department of Radiology, Northwestern University, 737 N. Michigan Avenue, Suite 1600, Chicago, IL 60611-2927, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Giricz O, Lauer JL, Fields GB. Comparison of metalloproteinase protein and activity profiling. Anal Biochem 2011; 409:37-45. [PMID: 20920458 PMCID: PMC3298814 DOI: 10.1016/j.ab.2010.09.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/02/2010] [Accepted: 09/25/2010] [Indexed: 12/23/2022]
Abstract
Proteolytic enzymes play fundamental roles in many biological processes. Members of the matrix metalloproteinase (MMP) family have been shown to take part in processes crucial in disease progression. The current study used the ExcelArray Human MMP/TIMP Array to quantify MMP and tissue inhibitor of metalloproteinase (TIMP) production in the lysates and media of 14 cancer cell lines and 1 normal cell line. The overall patterns were very similar in terms of which MMPs and TIMPs were secreted in the media versus associated with the cells in the individual samples. However, more MMP was found in the media (in both amount and variety). TIMP-1 was produced in all cell lines. MMP activity assays with three different fluorescence resonance energy transfer (FRET) substrates were then used to determine whether protein production correlated with function for the WM-266-4 and BJ cell lines. Metalloproteinase activity was observed for both cell lines with a general MMP substrate (Knight SSP), consistent with protein production data. However, although both cell lines promoted the hydrolysis of a more selective MMP substrate (NFF-3), metalloproteinase activity was confirmed only in the BJ cell line. The use of inhibitors to confirm metalloproteinase activities pointed to the strengths and weaknesses of in situ FRET substrate assays.
Collapse
Affiliation(s)
- Orsi Giricz
- Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Janelle L. Lauer
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, 2A2, Jupiter, FL 33458
| | - Gregg B. Fields
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229
| |
Collapse
|
11
|
Abstract
Matrix metalloproteinases (MMPs) are a group of structurally related proteolytic enzymes containing a zinc ion in the active site. They are secreted from cells or bound to the plasma membrane and hydrolyze extracellular matrix (ECM) and cell surface-bound molecules. They therefore play key roles in morphogenesis, wound healing, tissue repair and remodeling in diseases such as cancer and arthritis. Although the cell anchored membrane-type MMPs (MT-MMPs) function pericellularly, the secreted MMPs have been considered to act within the ECM, away from the cells from which they are synthesized. However, recent studies have shown that secreted MMPs bind to specific cell surface receptors, membrane-anchored proteins or cell-associated ECM molecules and function pericellularly at focussed locations. This minireview describes examples of cell surface and pericellular partners of MMPs, as well as how they alter enzyme function and cellular behaviour.
Collapse
Affiliation(s)
- Gillian Murphy
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | | |
Collapse
|
12
|
Ragin AB, Wu Y, Ochs R, Scheidegger R, Cohen BA, McArthur JC, Epstein LG, Conant K. Serum matrix metalloproteinase levels correlate with brain injury in human immunodeficiency virus infection. J Neurovirol 2010; 15:275-81. [PMID: 19444696 DOI: 10.1080/13550280902913271] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Circulating levels of specific matrix metalloproteinases (MMPs; 1 and 7) were evaluated as correlates of brain injury in eight individuals in advanced human immunodeficiency virus (HIV) infection. Neurological status was quantified in vivo with automated segmentation algorithms and with diffusion tensor imaging. Both metalloproteinases correlated with microstructural brain alterations and the degree of atrophy. MMPs may influence neurological outcome through involvement in neuroimmune response, blood-brain barrier permeability, leukocyte migration, and MMP-mediated neurotoxicity.
Collapse
Affiliation(s)
- Ann B Ragin
- Department of Radiology, Northwestern University, Chicago, Illinois 60611-2927, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kramarenko II, Bunni MA, Raymond JR, Garnovskaya MN. Bradykinin B2 receptor interacts with integrin alpha5beta1 to transactivate epidermal growth factor receptor in kidney cells. Mol Pharmacol 2010; 78:126-34. [PMID: 20385709 PMCID: PMC2912058 DOI: 10.1124/mol.110.064840] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/12/2010] [Indexed: 11/22/2022] Open
Abstract
We have shown previously that the vasoactive peptide bradykinin (BK) stimulates proliferation of a cultured murine cell model of the inner medullary collecting duct (mIMCD-3 cells) via transactivation of epidermal growth factor receptor (EGFR) by a mechanism that involves matrix metalloproteinases (collagenase-2 and -3). Because collagenases lack an integral membrane domain, we hypothesized that receptors for extracellular matrix proteins, integrins, may play a role in BK-induced signaling by targeting collagenases to the membrane, thus forming a functional signaling complex. BK-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) in mIMCD-3 cells was reduced by approximately 65% by synthetic peptides containing an Arg-Gly-Asp sequence, supporting roles for integrins in BK-induced signaling. Neutralizing antibody against alpha5beta1 integrin partially (approximately 60%) blocked BK-induced ERK activation but did not affect EGF-induced ERK activation. Silencing of alpha5 and beta1 expression by transfecting cells with small interfering RNAs (siRNA) significantly decreased BK-induced ERK activation (approximately 80%) and EGFR phosphorylation (approximately 50%). This effect was even more pronounced in cells that were cotransfected with siRNAs directed against both collagenases and alpha5beta1 integrin. On the basis of our results, we suggested that integrin alpha5beta1 is involved in BK-induced signaling in mIMCD-3 cells. Using immunoprecipitation/Western blotting, we demonstrated association of BK B(2) receptor with alpha5beta1 integrin upon BK treatment. Furthermore, BK induced association of alpha5beta1 integrin with EGFR. These data provide the first evidence that specific integrins are involved in BK B(2) receptor-induced signaling in kidney cells, and ultimately might lead to development of new strategies for treatment of renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Inga I Kramarenko
- Medical and Research Services, Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29425-6290, USA
| | | | | | | |
Collapse
|
14
|
Marjoram RJ, Voss B, Pan Y, Dickeson SK, Zutter MM, Hamm HE, Santoro SA. Suboptimal activation of protease-activated receptors enhances alpha2beta1 integrin-mediated platelet adhesion to collagen. J Biol Chem 2009; 284:34640-7. [PMID: 19815553 PMCID: PMC2787326 DOI: 10.1074/jbc.m109.020990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 09/30/2009] [Indexed: 01/25/2023] Open
Abstract
Thrombin and fibrillar collagen are potent activators of platelets at sites of vascular injury. Both agonists cause platelet shape change, granule secretion, and aggregation to form the primary hemostatic plug. Human platelets express two thrombin receptors, protease-activated receptors 1 and 4 (PAR1 and PAR4) and two collagen receptors, the alpha(2)beta(1) integrin (alpha(2)beta(1)) and the glycoprotein VI (GPVI)/FcRgamma chain complex. Although these receptors and their signaling mechanisms have been intensely studied, it is not known whether and how these receptors cooperate in the hemostatic function of platelets. This study examined cooperation between the thrombin and collagen receptors in platelet adhesion by utilizing a collagen-related peptide (alpha2-CRP) containing the alpha(2)beta(1)-specific binding motif, GFOGER, in conjunction with PAR-activating peptides. We demonstrate that platelet adhesion to alpha2-CRP is substantially enhanced by suboptimal PAR activation (agonist concentrations that do not stimulate platelet aggregation) using the PAR4 agonist peptide and thrombin. The enhanced adhesion induced by suboptimal PAR4 activation was alpha(2)beta(1)-dependent and GPVI/FcRgamma-independent as revealed in experiments with alpha(2)beta(1)- or FcRgamma-deficient mouse platelets. We further show that suboptimal activation of other platelet G(q)-linked G protein-coupled receptors (GPCRs) produces enhanced platelet adhesion to alpha2-CRP. The enhanced alpha(2)beta(1)-mediated platelet adhesion is controlled by phospholipase C (PLC), but is not dependent on granule secretion, activation of alpha(IIb)beta(3) integrin, or on phosphoinositol-3 kinase (PI3K) activity. In conclusion, we demonstrate a platelet priming mechanism initiated by suboptimal activation of PAR4 or other platelet G(q)-linked GPCRs through a PLC-dependent signaling cascade that promotes enhanced alpha(2)beta(1) binding to collagens containing GFOGER sites.
Collapse
Affiliation(s)
| | - Bryan Voss
- Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Yumei Pan
- From the Departments of Pathology and
| | | | | | - Heidi E. Hamm
- Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | |
Collapse
|
15
|
Ra HJ, Harju-Baker S, Zhang F, Linhardt RJ, Wilson CL, Parks WC. Control of promatrilysin (MMP7) activation and substrate-specific activity by sulfated glycosaminoglycans. J Biol Chem 2009; 284:27924-27932. [PMID: 19654318 DOI: 10.1074/jbc.m109.035147] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinases are maintained in an inactive state by a bond between the thiol of a conserved cysteine in the prodomain and a zinc atom in the catalytic domain. Once this bond is disrupted, MMPs become active proteinases and can act on a variety of extracellular protein substrates. In vivo, matrilysin (MMP7) activates pro-alpha-defensins (procryptdins), but in vitro, processing of these peptides is slow, with about 50% conversion in 8-12 h. Similarly, autolytic activation of promatrilysin in vitro can take up to 12-24 h for 50% conversion. These inefficient reactions suggest that natural cofactors enhance the activation and activity of matrilysin. We determined that highly sulfated glycosaminoglycans (GAG), such as heparin, chondroitin-4,6-sulfate (CS-E), and dermatan sulfate, markedly enhanced (>50-fold) the intermolecular autolytic activation of promatrilysin and the activity of fully active matrilysin to cleave specific physiologic substrates. In contrast, heparan sulfate and less sulfated forms of chondroitin sulfate did not augment matrilysin activation or activity. Chondroitin-2,6-sulfate (CS-D) also did not enhance matrilysin activity, suggesting that the presentation of sulfates is more important than the overall degree of sulfation. Surface plasmon resonance demonstrated that promatrilysin bound heparin (K(D), 400 nm) and CS-E (K(D), 630 nm). Active matrilysin bound heparin (K(D), 150 nm) but less so to CS-E (K(D), 60 microm). Neither form bound heparan sulfate. These observations demonstrate that sulfated GAGs regulate matrilysin activation and its activity against specific substrates.
Collapse
Affiliation(s)
- Hyun-Jeong Ra
- Center for Lung Biology, University of Washington, Seattle, Washington 98109
| | - Susanna Harju-Baker
- Center for Lung Biology, University of Washington, Seattle, Washington 98109
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Carole L Wilson
- Department of Pathology, University of Washington, Seattle, Washington 98109
| | - William C Parks
- Center for Lung Biology, University of Washington, Seattle, Washington 98109.
| |
Collapse
|
16
|
Sela-Passwell N, Rosenblum G, Shoham T, Sagi I. Structural and functional bases for allosteric control of MMP activities: can it pave the path for selective inhibition? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:29-38. [PMID: 19406173 DOI: 10.1016/j.bbamcr.2009.04.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 01/01/2023]
Abstract
The zinc-dependent matrix metalloproteinases (MMPs) belong to a large family of structurally homologous enzymes. These enzymes are involved in a wide variety of biological processes ranging from physiological cell proliferation and differentiation to pathological states associated with tumor metastasis, inflammation, tissue degeneration, and cell death. Controlling the enzymatic activity of specific individual MMPs by antagonist molecules is highly desirable, first, for studying their individual roles, and second as potential therapeutic agents. However, blocking the enzymatic activity with synthetic small inhibitors appears to be an extremely difficult task. Thus, this is an unmet need presumably due to the high structural homology between MMP catalytic domains. Recent reports have recognized a potential role for exosite or allosteric protein regions, distinct from the extended catalytic pocket, in mediating MMP activation and substrate hydrolysis. This raises the possibility that MMP enzymatic and non-enzymatic activities may be modified via antagonist molecules targeted to such allosteric sites or to alternative enzyme domains. In this review, we discuss the structural and functional bases for potential allosteric control of MMPs and highlight potential alternative enzyme domains as targets for designing highly selective MMP inhibitors.
Collapse
|
17
|
Illman SA, Lohi J, Keski-Oja J. Epilysin (MMP-28)--structure, expression and potential functions. Exp Dermatol 2008; 17:897-907. [PMID: 18803661 DOI: 10.1111/j.1600-0625.2008.00782.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epilysin (MMP-28) is the newest member of the matrix metalloproteinase (MMP) family of extracellular proteases. Together the MMPs can degrade almost all components of the extracellular matrix (ECM). MMPs also regulate cell behaviour by releasing growth factors and biologically active peptides from the ECM by modulating cell surface receptors and adhesion molecules and by regulating the activity of mediators of the inflammatory pathways. Epilysin differs from most other MMPs as it is expressed in a number of normal tissues, suggestive of functions in tissue homeostasis. The epilysin homologue in Xenopus laevis (XMMP-28) is expressed in neural tissues, where it cleaves the neural cell adhesion molecule. Enhanced expression of epilysin has been observed in basal keratinocytes during wound healing and in different forms of cancer. There are, however, also reports on the downregulation of epilysin in malignant cells. The roles of epilysin in cancer seem to vary based on tumor type and stage of the disease. Importantly, epilysin can induce stable epithelial to mesenchymal transition (EMT) when overexpressed in epithelial lung carcinoma cells. Transforming growth factor beta (TGF-beta) is a crucial mediator of this process, which was characterized by the loss of E-cadherin and increased cell migration and invasion. Current results suggest a plausible interaction between epilysin and TGF-beta also under physiological circumstances, where epilysin activity may not induce EMT but, instead, trigger less permanent changes in TGF-beta signalling and cell motility.
Collapse
Affiliation(s)
- Sara A Illman
- Department of Pathology, Haartman Institute and Biomedicum Helsinki, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | | | | |
Collapse
|
18
|
Abstract
Matrix metalloproteinases (MMPs) play crucial roles in a variety of normal (e.g., blood vessel formation, bone development) and pathophysiological (e.g., wound healing, cancer) processes. This is not only due to their ability to degrade the surrounding extracellular matrix (ECM), but also because MMPs function to reveal cryptic matrix binding sites, release matrix-bound growth factors inherent to these processes, and activate a variety of cell surface molecules. The process of blood vessel formation, in particular, is regulated by what is widely classified as the angiogenic switch: a mixture of both pro- and antiangiogenic factors that function to counteract each other unless the stimuli from one side exceeds the other to disrupt the quiescent state. Although it was initially thought that MMPs were strictly proangiogenic, new functions for this proteolytic family, such as mediating vascular regression and generating matrix fragments with antiangiogenic capacities, have been discovered in the last decade. These findings cast MMPs as multifaceted pro- and antiangiogenic effectors. The purpose of this review is to introduce the reader to the general structure and characterization of the MMP family and to discuss the temporal and spatial regulation of their gene expression and enzymatic activity in the following crucial steps associated with angiogenesis: degradation of the vascular basement membrane, proliferation and invasion of endothelial cells within the subjacent ECM, organization into immature tubules, maturation of these nascent vessels, and the pruning and regression of the vascular network.
Collapse
Affiliation(s)
- Cyrus M Ghajar
- Department of Biomedical Engineering, University of California, Irvine; Irvine, CA 92697
| | - Steven C George
- Department of Biomedical Engineering, University of California, Irvine; Irvine, CA 92697
- Department of Chemical Engineering and Materials Science, University of California, Irvine; Irvine, CA 92697
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of California, Irvine; Irvine, CA 92697
- Department of Chemical Engineering and Materials Science, University of California, Irvine; Irvine, CA 92697
- Chao Family Comprehensive Cancer Center, University of California, Irvine; Irvine, CA 92697
| |
Collapse
|
19
|
Woodall BP, Nyström A, Iozzo RA, Eble JA, Niland S, Krieg T, Eckes B, Pozzi A, Iozzo RV. Integrin alpha2beta1 is the required receptor for endorepellin angiostatic activity. J Biol Chem 2007; 283:2335-43. [PMID: 18024432 DOI: 10.1074/jbc.m708364200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endorepellin, the C-terminal module of perlecan, has angiostatic activity. Here we provide definitive genetic and biochemical evidence that the functional endorepellin receptor is the alpha2beta1 integrin. Notably, the specific endorepellin binding to the receptor was cation-independent and was mediated by the alpha2 I domain. We show that the anti-angiogenic effects of endorepellin cannot occur in the absence of alpha2beta1. Microvascular endothelial cells from alpha2beta1(-/-) mice, but not those isolated from either wild-type or alpha1beta1(-/-) mice, did not respond to endorepellin. Moreover, syngeneic Lewis lung carcinoma xenografts in alpha2beta1(-/-) mice failed to respond to systemic delivery of endorepellin. In contrast, endorepellin inhibited tumor growth and angiogenesis in the wild-type mice expressing integrin alpha2beta1. We conclude that the angiostatic effects of endorepellin in vivo are mediated by a specific interaction of endorepellin with the alpha2beta1 integrin receptor.
Collapse
Affiliation(s)
- Benjamin P Woodall
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol 2007; 26:587-96. [PMID: 17669641 PMCID: PMC2246078 DOI: 10.1016/j.matbio.2007.07.001] [Citation(s) in RCA: 442] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 02/08/2023]
Abstract
As their name implies, MMPs were first described as proteases that degrade extracellular matrix proteins, such as collagens, elastin, proteoglycans, and laminins. However, studies of MMP function in vivo have revealed that these proteinases act on a variety of extracellular protein substrates, often to activate latent forms of effector proteins, such as antimicrobial peptides and cytokines, or to alter protein function, such as shedding of cell-surface proteins. Because their substrates are diverse, MMPs are involved in variety of homeostatic functions, such as bone remodeling, wound healing, and several aspects of immunity. However, MMPs are also involved in a number of pathological processes, such as tumor progression, fibrosis, chronic inflammation, tissue destruction, and more. A key step in regulating MMP proteolysis is the conversion of the zymogen into an active proteinase. Several proMMPs are activated in the secretion pathway by furin proprotein convertases, but for most the activation mechanisms are largely not known. In this review, we discuss both authentic and potential mechanisms of proMMP activation.
Collapse
Affiliation(s)
- Hyun-Jeong Ra
- Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
21
|
Qiu P, Kurpakus-Wheater M, Sosne G. Matrix metalloproteinase activity is necessary for thymosin beta 4 promotion of epithelial cell migration. J Cell Physiol 2007; 212:165-73. [PMID: 17348036 DOI: 10.1002/jcp.21012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Studies from our laboratory provide substantial evidence that thymosin beta 4, (Tbeta(4)), an actin-sequestering protein, promotes corneal wound healing through its ability to stimulate epithelial cell migration. Matrix metalloproteinases (MMPs), which are expressed in a wide variety of tissues including the cornea, also play a key role in epithelial cell migration and wound healing. In this study we investigated the role of MMPs in Tbeta(4)-stimulated corneal epithelial cell migration. In Boyden chamber assays, XG076, an inhibitor of the conversion of pro- to active MMPs, had no effect on epithelial cell migration stimulated by exogenous activated MMP-1. However, in in vitro migration assays where the activation of pro-MMPs was blocked, XG076 significantly inhibited cell migration and wound healing in the presence or absence of Tbeta(4). GM6001, a broad-spectrum inhibitor of active MMPs and selective MMP inhibitors, also suppressed Tbeta(4)-stimulated cell migration. Tbeta(4) upregulated MMP-1 gene and protein expression in primary human corneal epithelial cells and in transformed human corneal epithelial cells following scrape wounding. From these results we conclude that MMP catalytic activity is necessary for Tbeta(4) promotion of epithelial cell migration. These novel findings are the first to demonstrate a functional link between the two.
Collapse
Affiliation(s)
- Ping Qiu
- Department of Ophthalmology, Kresge Eye Institute, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
22
|
Baronas-Lowell D, Lauer-Fields JL, Al-Ghoul M, Fields GB. Proteolytic profiling of the extracellular matrix degradome. Methods Mol Biol 2007; 386:167-202. [PMID: 18604946 DOI: 10.1007/978-1-59745-430-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The profiling of protein function is one of the most challenging scientific tasks in the postgenomic age. Traditional protein expression methodologies have focused only on the quantification of proteins under varying conditions or pathologies. Determining the functional differences between protein populations allows for a more accurate view of the outcomes in normal vs diseased proteomes. Because the presence or absence of a protein's function can affect its complex surroundings (consisting of multiple other proteins and substrates), the study of proteome functionality yields information on protein-protein interactions, amplification cascades, signaling pathways, and posttranslational modifications. Of significant interest are proteinases, as proteolysis is responsible for tight regulation of various cellular and tissue processes. Proteinase activities, or lack there of, alter the proteome makeup by regulating other proteins or by generating cleavage products. This chapter describes current proteolytic profiling technologies using activity or target-based formats. In particular, the analysis of collagenolytic matrix metalloproteinase activity using fluorogenic triple-helical substrates is discussed.
Collapse
Affiliation(s)
- Diane Baronas-Lowell
- Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The matrix metalloproteinases (MMPs), a family of 25 secreted and cell surface-bound neutral proteinases, process a large array of extracellular and cell surface proteins under normal and pathological conditions. MMPs play critical roles in lung organogenesis, but their expression, for the most part, is downregulated after generation of the alveoli. Our knowledge about the resurgence of the MMPs that occurs in most inflammatory diseases of the lung is rapidly expanding. Although not all members of the MMP family are found within the lung tissue, many are upregulated during the acute and chronic phases of these diseases. Furthermore, potential MMP targets in the lung include all structural proteins in the extracellular matrix (ECM), cell adhesion molecules, growth factors, cytokines, and chemokines. However, what is less known is the role of MMP proteolysis in modulating the function of these substrates in vivo. Because of their multiplicity and substantial substrate overlap, MMPs are thought to have redundant functions. However, as we explore in this review, such redundancy most likely evolved as a necessary compensatory mechanism given the critical regulatory importance of MMPs. While inhibition of MMPs has been proposed as a therapeutic option in a variety of inflammatory lung conditions, a complete understanding of the biology of these complex enzymes is needed before we can reasonably consider them as therapeutic targets.
Collapse
Affiliation(s)
- Kendra J Greenlee
- Departments of Medicine and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
24
|
Piccard H, Van den Steen PE, Opdenakker G. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J Leukoc Biol 2006; 81:870-92. [PMID: 17185359 DOI: 10.1189/jlb.1006629] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The heme-binding hemopexin consists of two, four-bladed propeller domains connected by a linker region. Hemopexin domains are found in different species on the phylogenetic tree and in the human species represented in hemopexin, matrix metalloproteinases (MMPs), vitronectin, and products of the proteoglycan 4 gene. Hemopexin and hemopexin domains of human proteins fulfill functions in activation of MMPs, inhibition of MMPs, dimerization, binding of substrates or ligands, cleavage of substrates, and endocytosis by low-density lipoprotein receptor-related protein-1 (LRP-1; CD91) and LRP-2 (megalin, GP330). Insights into the structures and functions of hemopexin (domains) form the basis for positive or negative interference with the formation of molecular complexes and hence, might be exploited therapeutically in inflammation, cancer, and wound healing.
Collapse
Affiliation(s)
- Helene Piccard
- Rega Institute for Medical Research, Laboratory of Immunobiology, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | |
Collapse
|
25
|
Stefanidakis M, Koivunen E. Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood 2006; 108:1441-50. [PMID: 16609063 DOI: 10.1182/blood-2006-02-005363] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Leukocyte motility is known to be dependent on both β2-integrins and matrix metalloproteinases MMP-2/-9 or gelatinases, which mediate leukocyte adhesion and the proteolysis needed for invasion, respectively. Gelatinases not only play an important role in cell migration, tissue remodeling, and angiogenesis during development, but are also involved in the progression and invasiveness of many cancers, including leukemias. The concept that MMPs associate with integrins, as well as their importance in some physiologic and pathologic conditions, has been advanced previously but has not been examined on leukocytes. This review will examine mainly the function of the MMP-integrin complexes in normal leukocyte migration and the effect of integrin and broad-spectrum MMP inhibitors in tumor progression.
Collapse
Affiliation(s)
- Michael Stefanidakis
- Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
26
|
Davis GE, Saunders WB. Molecular balance of capillary tube formation versus regression in wound repair: role of matrix metalloproteinases and their inhibitors. J Investig Dermatol Symp Proc 2006; 11:44-56. [PMID: 17069010 DOI: 10.1038/sj.jidsymp.5650008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this review, we discuss the identification of distinct matrix metalloproteinases (MMPs) and their inhibitors that differentially control the processes of capillary tube formation (morphogenesis) versus capillary tube regression in three-dimensional (3D) collagen matrices. This work directly relates to both granulation tissue formation and regression during wound repair. The membrane metalloproteinase, MT1-MMP (MMP-14), is required for endothelial cell (EC) tube formation using in vitro assays that mimic vasculogenesis or angiogenic sprouting in 3D collagen matrices. These events are markedly blocked by small interfering RNA (siRNA) suppression of MT1-MMP in ECs or by addition of tissue inhibitor of metalloproteinases (TIMPs)-2,-3, and -4 but not TIMP-1. In contrast, MMP-1 and MMP-10 are strongly induced during EC tube formation to regulate the process of tube regression (following activation by serine proteases) rather than formation. TIMP-1, which selectively inhibits soluble MMPs, blocks tube regression by inhibiting MMP-1 and MMP-10 while having no influence on EC tube formation. siRNA suppression of MMP-1 and MMP-10 markedly blocks tube regression without affecting tube formation. Furthermore, we discuss that pericyte-induced stabilization of EC tube networks in our model system appears to occur through EC-derived TIMP-2 and pericyte-derived TIMP-3 to block both the capillary tube formation and regression pathways.
Collapse
Affiliation(s)
- George E Davis
- Department of Pathology, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA.
| | | |
Collapse
|
27
|
Znoyko I, Trojanowska M, Reuben A. Collagen binding alpha2beta1 and alpha1beta1 integrins play contrasting roles in regulation of Ets-1 expression in human liver myofibroblasts. Mol Cell Biochem 2006; 282:89-99. [PMID: 16317516 DOI: 10.1007/s11010-006-1400-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 07/27/2005] [Indexed: 01/01/2023]
Abstract
Activation of hepatic stellate cells from quiescence to myofibroblast-like cells (MFBs) is a pivotal event in hepatic fibrogenesis. Plastic-cultured stellate cells (an established in vitro model of the activated phenotype) recultured on Matrigel revert to quiescence. In the present study we analyzed the molecular mechanism underlying this process, focusing on the effect of collagen receptors alpha(2)beta(1) and alpha(1)beta(1) integrin signaling on the expression of Ets-1 transcription factor and its target gene MMP1 in cultured human MFBs. Cells grown in 3-dimensional (3D) substrates (Matrigel) or collagen type I gel) markedly upregulated Ets-1 and MMP1 messages, in comparison to cells cultured on plastic. A similar effect but less intense was mimicked by stimulation of alpha(2)beta(1) or blocking of alpha(1)beta(1) integrin in cells grown on plastic. We observed increased expression of MMP1 transcripts with parallel changes in MMP1 promoter activity, and in mRNA and protein levels of upstream transcription factors Ets-1 and c-Jun. Interference with alpha(2)beta(1) and alpha(1)beta(1) integrin function in cells cultured in a 3D collagen substrate resulted in an even greater effect. Morphologically, stimulation of alpha(2)beta(1) integrin resulted in formation of multicellular networks, probably by facilitation of cell migration. Thus, we report the novel observation that in cultured human MFBs reverting to quiescence, the expression of transcription factor Ets-1 and its downstream target MMP1 can be modulated by changes in the microenvironment, which are mediated, at least in part, by the balance between collagen receptor integrin alpha(2)beta(1) and alpha(1)beta(1) activities.
Collapse
Affiliation(s)
- Iya Znoyko
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, 96, Jonathan Lucas St., Suite 210, Charleston, 29425, USA
| | | | | |
Collapse
|
28
|
Abstract
Matrix metalloproteinases (MMPs) are a family of enzymes that proteolytically degrade various components of the extracellular matrix (ECM). Angiogenesis is the process of forming new blood vessels from existing ones and requires degradation of the vascular basement membrane and remodeling of the ECM in order to allow endothelial cells to migrate and invade into the surrounding tissue. MMPs participate in this remodeling of basement membranes and ECM. However, it has become clear that MMPs contribute more to angiogenesis than just degrading ECM components. Specific MMPs have been shown to enhance angiogenesis by helping to detach pericytes from vessels undergoing angiogenesis, by releasing ECM-bound angiogenic growth factors, by exposing cryptic proangiogenic integrin binding sites in the ECM, by generating promigratory ECM component fragments, and by cleaving endothelial cell-cell adhesions. MMPs can also contribute negatively to angiogenesis through the generation of endogenous angiogenesis inhibitors by proteolytic cleavage of certain collagen chains and plasminogen and by modulating cell receptor signaling by cleaving off their ligand-binding domains. A number of inhibitors of MMPs that show antiangiogenic activity are already in early stages of clinical trials, primarily to treat cancer and cancer-associated angiogenesis. However, because of the multiple effects of MMPs on angiogenesis, careful testing of these MMP inhibitors is necessary to show that these compounds do not actually enhance angiogenesis.
Collapse
Affiliation(s)
- Joyce E Rundhaug
- Department of Carcinogenesis, Science Park--Research Division, The University of Texas M. D. Anderson Cancer Center, Smithville, TX, 78957, USA.
| |
Collapse
|
29
|
Maskos K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie 2005; 87:249-63. [PMID: 15781312 DOI: 10.1016/j.biochi.2004.11.019] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 11/26/2004] [Indexed: 11/21/2022]
Abstract
Matrix Metalloproteinases (MMPs) are a family of multidomain zinc endopeptidases that function in the extracellular space or attached to the cell membrane. Their proteolytic activity is controlled by the presence of endogenous inhibitors, the tissue inhibitors of matrix metalloproteinases (TIMPs), alpha-macroglobulin and others. Disruption of the proteinase-inhibitor balance is observed in serious diseases such as arthritis, tumor growth and metastasis, rendering the MMPs attractive targets for drug intervention by pharmacological inhibitors. The determination of MMP structures is of critical importance in order to understand their substrate preferences, dimerization events, and their association with matrix components and inhibitors. Thus, MMP structures may contribute significantly to the development of specific MMP inhibitors, which should allow precise control of individual members of the MMP family without affecting all members or the closely related metalloproteinases such as ADAMs and ADAMTSs.
Collapse
Affiliation(s)
- Klaus Maskos
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, Martinsried-bei-munchen 82152, Germany.
| |
Collapse
|
30
|
Choi ET, Collins ET, Marine LA, Uberti MG, Uchida H, Leidenfrost JE, Khan MF, Boc KP, Abendschein DR, Parks WC. Matrix Metalloproteinase-9 Modulation by Resident Arterial Cells Is Responsible for Injury-Induced Accelerated Atherosclerotic Plaque Development in Apolipoprotein E–Deficient Mice. Arterioscler Thromb Vasc Biol 2005; 25:1020-5. [PMID: 15746435 DOI: 10.1161/01.atv.0000161275.82687.f6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Although matrix metalloproteinase-9 (MMP-9) has been implicated in atherosclerotic plaque instability, the exact role it plays in the plaque development and progression remains largely unknown. We generated apolipoprotein E (apoE)-deficient (apoE-/-) MMP-9-deficient (MMP-9-/-) mice to determine the mechanisms and the main cell source of MMP-9 responsible for the plaque composition during accelerated atherosclerotic plaque formation. METHODS AND RESULTS Three weeks after temporary carotid artery ligation revealed that while on a Western-type diet, apoE-/- MMP-9-/- mice had a significant reduction in intimal plaque length and volume compared with apoE-/- MMP-9+/+ mice. The reduction in plaque volume correlated with a significantly lower number of intraplaque cells of resident cells and bone marrow-derived cells. To determine the cellular origin of MMP-9 in plaque development, bone marrow transplantation after total-body irradiation was performed with apoE-/- MMP-9+/+ and apoE-/- MMP-9-/- mice, which showed that only MMP-9 derived from resident arterial cells is required for plaque development. CONCLUSIONS MMP-9 is derived from resident arterial cells and is required for early atherosclerotic plaque development and cellular accumulation in apoE-/- mice.
Collapse
Affiliation(s)
- Eric T Choi
- Department of Surgery, Washington University School of Medicine, St. Louis, Mo, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Björklund M, Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta Rev Cancer 2005; 1755:37-69. [PMID: 15907591 DOI: 10.1016/j.bbcan.2005.03.001] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 01/13/2023]
Abstract
The matrix metalloproteinases(MMP)-2 and -9, also known as the gelatinases have been long recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. In the recent years, a plethora of non-matrix proteins have also been identified as gelatinase substrates thus significantly broadening our understanding of these enzymes as proteolytic executors and regulators in various physiological and pathological states including embryonic growth and development, angiogenesis and tumor progression, inflammation, infective diseases, degenerative diseases of the brain and vascular diseases. Although the effect of broad-spectrum inhibitors of MMPs in the treatment of cancer has been disappointing in clinical trials, novel mechanisms of gelatinase inhibition have been now identified. Inhibition of the association of the gelatinases with cell-surface integrins appears to offer highly specific means to target these enzymes without inhibiting their catalytic activity in multiple cell types including endothelial cells, tumor cells and leukocytes. Here, we review the multiple functions of the gelatinases in cancer, and especially their role in the tumor cell migration and invasion.
Collapse
Affiliation(s)
- Mikael Björklund
- Department of Biological and Environmental Sciences, P.O. B 56 (Viikinkaari 5D), University of Helsinki, Finland
| | | |
Collapse
|
32
|
Mannello F, Luchetti F, Falcieri E, Papa S. Multiple roles of matrix metalloproteinases during apoptosis. Apoptosis 2005; 10:19-24. [PMID: 15711919 DOI: 10.1007/s10495-005-6058-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Structural, molecular and biochemical approaches have contributed to piecing together the puzzle of how matrix metalloproteinases (MMPs) work and contribute to various disease processes. However, MMPs have many unexpected substrates other than components of the extracellular matrix which profoundly influence cell behaviour, survival and death. With the current understanding of diverse/novel roles of matrix metalloproteinases--particularly their direct or indirect relevance for the early steps during programmed cell death--some seemingly contrasting results seem less surprising. To better target MMPs an appreciation of their many extracellular, intracellular and intranuclear functions, often acting in opposing directions with paradoxical roles in cell death, is carefully required.
Collapse
Affiliation(s)
- F Mannello
- Istituto di Istologia ed Analisi di Laboratorio, ITOI-CNR, Istituti Ortopedici Rizzoli, Bologna, Italy.
| | | | | | | |
Collapse
|
33
|
Chung AWY, Radomski A, Alonso-Escolano D, Jurasz P, Stewart MW, Malinski T, Radomski MW. Platelet-leukocyte aggregation induced by PAR agonists: regulation by nitric oxide and matrix metalloproteinases. Br J Pharmacol 2004; 143:845-55. [PMID: 15533889 PMCID: PMC1575938 DOI: 10.1038/sj.bjp.0705997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Platelet-leukocyte aggregation (PLA) links haemostasis to inflammation. The role of nitric oxide (NO) and matrix metalloproteinases (MMP-1, -2, -3, -9) in PLA regulation was studied. Homologous human platelet-leukocyte suspensions were stimulated with thrombin (0.1-3 nM) and other proteinase activated receptor-activating peptides (PAR-AP), including PAR1AP (0.5-10 microM), PAR4AP (10-70 microM), and thrombin receptor-activating peptide (1-35 microM). PLA was studied using light aggregometry with simultaneous measurement of oxygen-derived free radicals, dual colour flow cytometry, and phase-contrast microscopy. The release of NO was measured using a porphyrinic nanosensor, while MMPs were investigated by Western blot, substrate degradation assays, immunofluorescence microscopy, and flow cytometry. The levels of P-selectin and microparticles (MP) in PLA were measured by flow cytometry. PLA was also characterized using pharmacological agents: S-nitroso-glutathione (GSNO, 0.01-10 microM), 1H-Oxadiazole quinoxalin-1-one (ODQ, 1 microM), N(G)-L-nitro-L-arginine methyl ester (L-NAME, 100 microM) and compounds that modulate the actions of MMPs such as phenanthroline (100 microM), monoclonal anti-MMP antibodies, and purified MMPs. PAR agonists concentration-dependently induced PLA, an effect associated with the release of microparticles (MP) and the translocation of P-selectin to the platelet surface. NO and radicals were also released during PLA. Inhibition of NO bioactivity by the concomitant release of free radicals or by the treatment with L-NAME or ODQ stimulated PLA, while pharmacological administration of GSNO decreased PLA. PAR agonist-induced PLA resulted in the liberation of MMP-1, -2, -3, and -9. During PLA, MMPs were present on the cell surface, as shown by flow cytometry and immunofluorescence. PLA led to the activation of latent MMPs to active MMPs, as shown by Western blot and substrate degradation assays. Inhibition of MMPs actions by phenanthroline and by the antibodies attenuated PLA. In contrast, purified active, but not latent, MMPs amplified thrombin-induced PLA. It is concluded that NO and MMP-1, -2, -3, and -9 play an important role in regulation of PAR agonist-induced PLA.
Collapse
Affiliation(s)
- Ada W Y Chung
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Anna Radomski
- Department of Integrative Biology and Pharmacology, University of Texas-Houston, U.S.A
- Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas-Houston, U.S.A
| | - David Alonso-Escolano
- Department of Integrative Biology and Pharmacology, University of Texas-Houston, U.S.A
- Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas-Houston, U.S.A
| | - Paul Jurasz
- Department of Integrative Biology and Pharmacology, University of Texas-Houston, U.S.A
- Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas-Houston, U.S.A
| | | | - Tadeusz Malinski
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, U.S.A
| | - Marek W Radomski
- Department of Pharmacology, University of Alberta, Edmonton, Canada
- Department of Integrative Biology and Pharmacology, University of Texas-Houston, U.S.A
- Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas-Houston, U.S.A
- Author for correspondence:
| |
Collapse
|
34
|
Parks WC, Wilson CL, López-Boado YS. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004; 4:617-29. [PMID: 15286728 DOI: 10.1038/nri1418] [Citation(s) in RCA: 1407] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- William C Parks
- University of Washington, Harborview Medical Center, Department of Medicine, Box 359640, 325 9th Avenue, Seattle, Washington 98104, USA.
| | | | | |
Collapse
|
35
|
Baronas-Lowell D, Lauer-Fields JL, Borgia JA, Sferrazza GF, Al-Ghoul M, Minond D, Fields GB. Differential modulation of human melanoma cell metalloproteinase expression by alpha2beta1 integrin and CD44 triple-helical ligands derived from type IV collagen. J Biol Chem 2004; 279:43503-13. [PMID: 15292257 DOI: 10.1074/jbc.m405979200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor cell binding to components of the basement membrane is well known to trigger intracellular signaling pathways. Signaling ultimately results in the modulation of gene expression, facilitating metastasis. Type IV collagen is the major structural component of the basement membrane and is known to be a polyvalent ligand, possessing sequences bound by the alpha1beta1, alpha2beta1, and alpha3beta1 integrins, as well as cell surface proteoglycan receptors, such as CD44/chondroitin sulfate proteoglycan (CSPG). The role of alpha2beta1 integrin and CD44/CSPG receptor binding on human melanoma cell activation has been evaluated herein using triple-helical peptide ligands incorporating the alpha1(IV)382-393 and alpha1(IV)1263-1277 sequences, respectively. Gene expression and protein production of matrix metalloproteinases-1 (MMP-1), -2, -3, -13, and -14 were modulated with the alpha2beta1-specific sequence, whereas the CD44-specific sequence yielded significant stimulation of MMP-8 and lower levels of modulation of MMP-1, -2, -13, and -14. Analysis of enzyme activity confirmed different melanoma cell proteolytic potentials based on engagement of either the alpha2beta1 integrin or CD44/CSPG. These results are indicative of specific activation events that tumor cells undergo upon binding to select regions of basement membrane collagen. Based on the present study, triple-helical peptide ligands provide a general approach for monitoring the regulation of proteolysis in cellular systems.
Collapse
Affiliation(s)
- Diane Baronas-Lowell
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton 33431-0991, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Björklund M, Heikkilä P, Koivunen E. Peptide Inhibition of Catalytic and Noncatalytic Activities of Matrix Metalloproteinase-9 Blocks Tumor Cell Migration and Invasion. J Biol Chem 2004; 279:29589-97. [PMID: 15123665 DOI: 10.1074/jbc.m401601200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Migration of invasive cells appears to be dependent on matrix metalloproteinases (MMPs) anchored on the cell surface through integrins. We have previously demonstrated an interaction between the integrin alpha-subunit I domain and the catalytic domain of MMP-9. We now show that there is also an interaction between the integrin beta subunit and MMP-9. Using phage display, we have developed MMP-9 inhibitors that bind either to the MMP-9 catalytic domain, the collagen binding domain, or the C-terminal hemopexin-like domain. The C-terminal domain-binding peptide mimics an activation epitope in the stalk of the integrin beta chain and inhibits the association of MMP-9 C-terminal domain with alpha(V)beta(5) integrin. Unlike other MMP-9 binding peptides, it does not directly inhibit catalytic activity of MMP-9, but still prevents proenzyme activation and cell migration in vitro and tumor xenograft growth in vivo. We also find an association between MMP-9 and urokinase-plasminogen activator receptor and find that urokinase-plasminogen activator receptor is cleaved by MMP-9. Collectively, we have defined molecular details for several interactions mediated by the different MMP-9 domains.
Collapse
Affiliation(s)
- Mikael Björklund
- Department of Biological and Environmental Sciences, Viikinkaari 5D, Viikki Biocenter
| | | | | |
Collapse
|
37
|
Di Girolamo N, Chui J, Coroneo MT, Wakefield D. Pathogenesis of pterygia: role of cytokines, growth factors, and matrix metalloproteinases. Prog Retin Eye Res 2004; 23:195-228. [PMID: 15094131 DOI: 10.1016/j.preteyeres.2004.02.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pterygium is a common ocular surface disease apparently only observed in humans. Chronic UV exposure is a widely accepted aetiological factor in the pathogenesis of this disease and this concept is supported by epidemiological data, ray tracing models and histopathological changes that share common features with UV damaged skin. The mechanism(s) of pterygium formation is incompletely understood. Recent data have provided evidence implicating a genetic component, anti-apoptotic mechanisms, cytokines, growth factors, extracellular matrix remodelling (through the actions of matrix metalloproteinases), immunological mechanisms and viral infections in the pathogenesis of this disease. In this review, the current knowledge on pterygium pathogenesis is summarised, highlighting recent developments. In addition, we provide novel data further demonstrating the complexity of this intriguing disease.
Collapse
Affiliation(s)
- Nick Di Girolamo
- Department of Pathology, Inflammatory Diseases Research Unit, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia.
| | | | | | | |
Collapse
|
38
|
Conant K, St Hillaire C, Nagase H, Visse R, Gary D, Haughey N, Anderson C, Turchan J, Nath A. Matrix metalloproteinase 1 interacts with neuronal integrins and stimulates dephosphorylation of Akt. J Biol Chem 2003; 279:8056-62. [PMID: 14679206 DOI: 10.1074/jbc.m307051200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies have demonstrated that matrix metalloproteinases (MMPs) are cytotoxic. The responsible mechanisms, however, are not well understood. MMPs may promote cytotoxicity through their ability to disrupt or degrade matrix proteins that support cell survival, and MMPs may also cleave substrates to generate molecules that stimulate cell death. In addition, MMPs may themselves act on cell surface receptors that affect cell survival. Among such receptors is the alpha(2)beta(1) integrin, a complex that has previously been linked to leukocyte death. In the present study we show that human neurons express alpha(2)beta(1) and that pro-MMP-1 interacts with this integrin complex. We also show that stimulation of neuronal cultures with MMP-1 is associated with a rapid reduction in the phosphorylation of Akt, a kinase that can influence caspase activity and cell survival. Moreover, MMP-1-associated dephosphorylation of Akt is inhibited by a blocking antibody to the alpha(2) integrin, but not by batimastat, an inhibitor of MMP-1 enzymatic activity. Such dephosphorylation is also stimulated by a catalytic mutant of pro-MMP-1. Additional studies show that MMP-1 causes neuronal death, which is significantly diminished by both a general caspase inhibitor and anti-alpha(2) but not by batimastat. Together, these results suggest that MMP-1 can stimulate dephosphorylation of Akt and neuronal death through a non-proteolytic mechanism that involves changes in integrin signaling.
Collapse
Affiliation(s)
- Katherine Conant
- Departments of Neurology and Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Rafael Fridman
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
40
|
Stefanidakis M, Bjorklund M, Ihanus E, Gahmberg CG, Koivunen E. Identification of a negatively charged peptide motif within the catalytic domain of progelatinases that mediates binding to leukocyte beta 2 integrins. J Biol Chem 2003; 278:34674-84. [PMID: 12824186 DOI: 10.1074/jbc.m302288200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The alpha M beta 2 integrin of leukocytes can bind a variety of ligands. We screened phage display libraries to isolate peptides that bind to the alpha M I domain, the principal ligand binding site of the integrin. Only one peptide motif, (D/E)(D/E)(G/L)W, was obtained with this approach despite the known ligand binding promiscuity of the I domain. Interestingly, such negatively charged sequences are present in many known beta 2 integrin ligands and also in the catalytic domain of matrix metalloproteinases (MMPs). We show that purified beta 2 integrins bind to pro-MMP-2 and pro-MMP-9 gelatinases and that that the negatively charged sequence of the MMP catalytic domain is an active beta 2 integrin-binding site. Furthermore, a synthetic DDGW-containing phage display peptide inhibited the ability of beta 2 integrin to bind progelatinases but did not inhibit the binding of cell adhesion-mediating substrates such as intercellular adhesion molecule-1, fibrinogen, or an LLG-containing peptide. Immunoprecipitation and cell surface labeling demonstrated complexes of pro-MMP-9 with both the alpha M beta 2 and alpha L beta 2 integrins in leukocytes, and pro-MMP-9 colocalized with alpha M beta 2 in cell surface protrusions. The DDGW peptide and the gelatinase-specific inhibitor peptide CTTHWGFTLC blocked beta 2 integrin-dependent leukocyte migration in a transwell assay. These results suggest that leukocytes may move in a progelatinase-beta 2 integrin complex-dependent manner.
Collapse
Affiliation(s)
- Michael Stefanidakis
- Department of Biosciences, Division of Biochemistry, Viikinkaari 5, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
41
|
Wang Z, Leisner TM, Parise LV. Platelet alpha2beta1 integrin activation: contribution of ligand internalization and the alpha2-cytoplasmic domain. Blood 2003; 102:1307-15. [PMID: 12738679 DOI: 10.1182/blood-2002-09-2753] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alpha2beta1 integrin is a major collagen receptor on platelets. Although it has been proposed that alpha2beta1, like alphaIIbbeta3, undergoes agonist-induced activation, neither the potential contributions of alpha2beta1 receptor/ligand internalization to the increase in ligand binding nor the roles of the alpha2 and beta1 cytoplasmic domains in activation of this integrin have been previously explored. Activation of alpha2beta1 was assessed with fluorescein isothiocyanate-labeled soluble type I collagen binding to platelets by flow cytometry. Although collagen internalization in response to agonist activation of platelets was significant, agonist-induced collagen binding still occurred under conditions that block internalization, with minimal changes in cell surface alpha2beta1 expression. Introduction of cell-permeable peptides containing the alpha2 cytoplasmic tail, and especially the membrane proximal KLGFFKR domain, induced alpha2beta1 activation in resting platelets, whereas a cell-permeable peptide containing the beta1 cytoplasmic tail was without effect. Thus, collagen binding to stimulated platelets is increased due to alpha2beta1 activation, in addition to internalization, and the GFFKR motif appears to play an important role in the activation process.
Collapse
Affiliation(s)
- Zhengyan Wang
- Department of Pharmacology, Center for Thrombosis and Hemostasis, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599, USA
| | | | | |
Collapse
|
42
|
Wang XQ, Sun P, Paller AS. Ganglioside GM3 inhibits matrix metalloproteinase-9 activation and disrupts its association with integrin. J Biol Chem 2003; 278:25591-9. [PMID: 12724312 DOI: 10.1074/jbc.m302211200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gangliosides GM3 and GT1b both inhibit epithelial cell adhesion and migration on fibronectin. GT1b binds to integrin alpha5beta1 and blocks the integrin-fibronectin interaction; GM3 does not interact with integrin, and its effect is poorly understood. We evaluated the effects of endogenous modulation of GM3 expression on epithelial cell motility on several matrices and the mechanism of these effects. Endogenous accumulation of GM3 decreased cell migration on fibronectin, types I, IV, and VII collagen matrices; depletion of GM3 dramatically increased cell migration, regardless of matrix. GM3 overexpression and depletion in vitro correlated inversely with the expression and activity of matrix metalloproteinase-9; consistently, the cell migration stimulated by GM3 depletion is reversed by inhibition of matrix metalloproteinase-9 activity. Accumulation and depletion of GM3 in epithelial cells grown on fibronectin also correlated inversely with epidermal growth factor receptor and mitogen activated protein kinase phosphorylation and with Jun expression. Ganglioside depletion facilitated the co-immunoprecipitation of matrix metal-loproteinase-9 and integrin alpha5beta1, while endogenous accumulation of GM3, but not GT1b, blocked the co-immunoprecipitation. These data suggest modulation of epidermal growth factor receptor signaling and dissociation of integrin/matrix metalloproteinase-9 as mechanisms for the GM3-induced effects on matrix metalloproteinase-9 function.
Collapse
Affiliation(s)
- Xiao-Qi Wang
- Department of Pediatrics, Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
43
|
Gabison EE, Hoang-Xuan T, Mauviel A, Menashi S. [Metalloproteinases and angiogenesis]. PATHOLOGIE-BIOLOGIE 2003; 51:161-6. [PMID: 12781798 DOI: 10.1016/s0369-8114(03)00018-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metalloproteinases (MMPs) are essential regulators during various phases of the angiogenic process. These include the degradation of the basement membrane and the extracellular matrix, the mobilisation and activation of growth factors and the production of fragments with pro- or anti-angiogenic activity. In addition to their role in migration and invasion, MMPs can influence endothelial cell proliferation and survival by modifying the balance between angiogenic and anti-angiogenic molecules.
Collapse
Affiliation(s)
- E E Gabison
- Unité 532 Inserm, Institut de recherche sur la peau, hôpital Saint-Louis, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | | | | | | |
Collapse
|
44
|
Suzuki K, Kobayashi N, Doi T, Hijikata T, Machida I, Namiki H. Inhibition of Mg2+-dependent Adhesion of Polymorphonuclear Leukocytes by Serum Hemopexin: Differences in Divalent-Cation Dependency of Cell Adhesion in the Presence and Absence of Serum. Cell Struct Funct 2003; 28:243-53. [PMID: 14586134 DOI: 10.1247/csf.28.243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Circulating and nonadherent polymorphonuclear leukocytes (PMNs) become activated to attain adhesive state in an integrin-dependent manner by various stimuli, and perform a variety of microbicidal functions such as phagocytosis and superoxide production. We found that, in the absence of serum, a physiological concentration of hemopexin has a strong inhibitory action on Mg(2+)-dependent adhesion of PMA-activated PMNs to fibrinogen- and serum-coated surfaces. Under these conditions, Ca(2+) had no effect on Mg(2+)-dependent adhesion or the adhesion-inhibitory activity of hemopexin. In contrast, PMNs suspended in serum containing sufficient amounts of hemopexin to inhibit adhesion showed marked adherence, which was inhibited by EGTA. Next, we prepared a small-molecule fraction of serum by ultrafiltration followed by boiling. PMA-activated PMNs was found to adhere in the presence of both hemopexin and the small-molecule fraction, and the adhesion was enhanced by exogenous Ca(2+). EGTA abolished the effect of the small molecule fraction. The data suggest that serum contains adhesion-promoting factor(s) which allows PMNs to adhere despite the presence of hemopexin and that Ca(2+) is required for adhesion-promoting activity. Further study of hemopexin may provide clues for new therapeutic strategies aimed at interfering with PMN adhesion to control inflammation and tissue injury.
Collapse
Affiliation(s)
- Kingo Suzuki
- Department of Biology, School of Education, Waseda University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Eble JA, Niland S, Dennes A, Schmidt-Hederich A, Bruckner P, Brunner G. Rhodocetin antagonizes stromal tumor invasion in vitro and other alpha2beta1 integrin-mediated cell functions. Matrix Biol 2002; 21:547-58. [PMID: 12475639 DOI: 10.1016/s0945-053x(02)00068-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The pleiotropic effects of Calloselasma rhodostoma venom is caused by various toxins, among them kistrin and ancrod, which block platelet activation triggered by RGD-dependent integrins and the blood clotting cascade, respectively. Here, we demonstrate that rhodocetin, another component of this venom, acts as alpha2beta1 integrin inhibiting disintegrin and antagonizes important cellular responses to type I collagen. Cell adhesion, migration, and collagen lattice contraction in vitro were specifically inhibited by rhodocetin, whereas expression of collagen-degrading matrix metalloproteases was differently modulated. Moreover, cell invasion of HT1080 fibrosarcoma cells into a type I collagen matrix, but not into a fibrin gel or a basement membrane-extracted matrigel was efficiently blocked by rhodocetin. Unlike its natural ligand collagen, rhodocetin failed to cluster alpha2beta1 integrin, despite similar binding affinities. Hence, in the absence of focal adhesions cells do not attach firmly to rhodocetin and do not respond with any of alpha2beta1-triggered cell reactions, except for MMP-1 production. Therefore, this disintegrin may be a valuable tool to specifically target stromal tumor invasion and to manipulate other alpha2beta1 integrin-mediated functions, such as excessive scar contraction and fibrosis. Rhodocetin might be therapeutically useful because of its lack of interference with RGD-dependent integrins, low molecular mass, high solubility, and biochemical stability.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149, Münster, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Zigrino P, Kamiguti AS, Eble J, Drescher C, Nischt R, Fox JW, Mauch C. The reprolysin jararhagin, a snake venom metalloproteinase, functions as a fibrillar collagen agonist involved in fibroblast cell adhesion and signaling. J Biol Chem 2002; 277:40528-35. [PMID: 12186858 DOI: 10.1074/jbc.m202049200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The integrins alpha(2)beta(1) and alpha(1)beta(1) have been shown to modulate cellular activities of fibroblasts on contact with fibrillar collagen. Previously it has been shown that collagen binding to alpha(2)beta(1) regulates matrix metalloproteinase MMP-1 and membrane-type MT1-MMP expression. Jararhagin is a snake venom metalloproteinase of the Reprolysin family of zinc metalloproteinases, containing a metalloproteinase domain followed by disintegrin-like and cysteine-rich domains. Jararhagin blocks type I collagen-induced platelet aggregation by binding to the alpha(2)beta(1) integrin and inhibiting collagen-mediated intracellular signaling events. Here we present evidence that, in contrast to the observations in platelets, jararhagin binding to the integrin receptor alpha(2)beta(1) in fibroblasts produces collagen-like cell signaling events such as up-regulation of MMP-1 and MT1-MMP. Inactivation of the metalloproteinase domain had no effect on these properties of jararhagin. Thus, in fibroblasts the snake venom metalloproteinase jararhagin functions as a collagen-mimetic substrate that binds to and activates integrins. Given the homology between the metalloproteinase, disintegrin-like and cysteine-rich domains of jararhagin and those of the members of the ADAMs (a disintegrin-like and metalloproteinase) family of proteins, this work demonstrates the potential of the disintegrin-like/cysteine-rich domains in the ADAMs as cellular signaling agents to elicit responses relevant to the biological function of these proteins.
Collapse
Affiliation(s)
- Paola Zigrino
- Department of Dermatology, University of Cologne, Cologne 50924, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Matrix metalloproteinases are important for the turnover of extracellular matrix in tissue. Recent studies have expanded their roles well beyond extracellular matrix degradation - they also cleave many growth factors, cytokines and cell adhesion molecules in the extracellular milieu, modulating their functions irreversibly. In particular, some matrix metalloproteinases that associate with the cell surface have arisen as intriguing regulators of cellular functions, including migration.
Collapse
Affiliation(s)
- Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medial Science, University of Tokyo, Japan.
| |
Collapse
|
48
|
Abstract
A diverse group of plasma membrane proteins have been found associated with integrins in supramolecular complexes. These associated plasma membrane molecules can modulate virtually all integrin functions by altering signal transduction arising from integrin ligation. In the past two years, new examples of signaling through heterotrimeric G proteins and regulation by membrane rafts have emphasized their importance in the function of integrin-containing supramolecular complexes.
Collapse
Affiliation(s)
- Eric J Brown
- Program in Host--Pathogen Interactions, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
49
|
Conant K, Haughey N, Nath A, St Hillaire C, Gary DS, Pardo CA, Wahl LM, Bilak M, Milward E, Mattson MP. Matrix metalloproteinase-1 activates a pertussis toxin-sensitive signaling pathway that stimulates the release of matrix metalloproteinase-9. J Neurochem 2002; 82:885-93. [PMID: 12358794 DOI: 10.1046/j.1471-4159.2002.01038.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The matrix metalloproteinases (MMPs) are a family of structurally related metalloendopeptidases so named due to their propensity to target extracellular matrix (ECM) proteins. Accumulating evidence, however, suggests that these proteases cleave numerous non-ECM substrates including enzymes and cell surface receptors. MMPs may also bind to cell surface receptors, though such binding has typically been thought to mediate internalization and degradation of the bound protease. More recently, it has been shown that MMP-1 coimmunoprecipitates with the alpha2beta1 integrin, a receptor for collagen. This association may serve to localize the enzymatic activity of MMP-1 so that collagen is cleaved and cell migration is facilitated. In other studies, however, it has been shown that integrin engagement may be linked to the activation of signaling cascades including those mediated by Gialpha containing heterotrimers. As an example, alpha2beta1 can form a complex with CD47 that may associate with Gialpha. In the present study we have therefore investigated the possibility that MMP-1 may affect intracellular changes that are linked to the activation of a Gi protein-coupled receptor. We show that treatment of neural cells with MMP-1 is followed by a rapid reduction in cytosolic levels of cAMP. Moreover, MMP-1 potentiates proteinase activated receptor-1 (PAR-1) agonist-linked increases in intracellular calcium, an effect which is often observed when an agonist of a Gi protein-coupled receptor is administered in association with an agonist of a Gq coupled receptor. In addition, MMP-1 stimulates pertussis toxin sensitive release ofMMP-9 both from cultured neural cells and monocyte/macrophages. Together, these results suggest that MMP-1 signals through a pertussis toxin-sensitive G protein-coupled receptor.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hornebeck W, Emonard H, Monboisse JC, Bellon G. Matrix-directed regulation of pericellular proteolysis and tumor progression. Semin Cancer Biol 2002; 12:231-41. [PMID: 12083853 DOI: 10.1016/s1044-579x(02)00026-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The microenvironment of cancer cells, composed of extracellular matrix (ECM) macromolecules, plays a pivotal function in tumor progression. ECM preexisting modules or cryptic sites revealed by partial enzymatic hydrolysis positively or negatively regulate matrix metalloproteinase (MMP) expression and activation, further influencing matrix invasion by cancer cells. Pericellular activation of gelatinase A (MMP-2) proceeds via the formation of a complex involving its inhibitor, TIMP-2, its activator(s), MT-MMPs and alphavbeta3 integrin forming a docking system. This proteinase has been invariably linked to cancer cell invasive potential and is often predictive of a poor survival. MMP-2 degrades most ECM macromolecules and appears to act as a main 'decryptase'. ECM modulation of MMP-2 activation pathway thus influences angiogenesis and tumor growth. For instance the noncollagenous domain of alpha3 chain of type IV collagen, through alphavbeta3 integrin binding, inhibits both MT1-MMP and alphavbeta3 integrin expression from melanoma cells and empedes cell migration and proliferation. At the opposite, a particular module in elastin (VGVAPG) with type VIII beta turn conformation stimulates MT1-MMP and proMMP-2 activation through binding to S-gal elastin receptor, and increases the matrix invasive capacity of several cancer cell lines and endothelial cells. Endocytosis emerges as a main mechanism controlling MMP-2, and also other MMPs; it proceeds via the formation of a MMP-thrombospondin(s) complex further recognized by the LRP scavenger receptor. ECM undergoes conspicuous variations with aging linked to alterations of tissue organization and post-translational modifications of matrix constituents that modify cell-matrix interactions and MMP-2 activation pathway.
Collapse
Affiliation(s)
- William Hornebeck
- Institut Fédératif de Recherche Biomolécules (IFR 53), Centre National de la Recherche Scientifique (CNRS, FRE 2534), Faculté de Médecine, Université de Reims-Champagne Ardenne, France.
| | | | | | | |
Collapse
|