1
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Onaga T, Sakai A, Yasui Y. Intravenous administration of xenin-25 accelerates cyclic ruminal contractions in healthy conscious sheep. Neuropeptides 2022; 96:102293. [PMID: 36182703 DOI: 10.1016/j.npep.2022.102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022]
Abstract
The present study aimed to determine the effect and mode of action of the intravenous injection of xenin-25 on cyclic contractions of the rumen in healthy conscious sheep and mode of its action. Clinically healthy male sheep were equipped with a rumen cannula by surgery under anesthesia, and ruminal contractions were recorded with manometry in conscious animals after the recovery period. Intravenous xenin-25 injection induced a cluster of premature ruminal phasic contractions in a dose-dependent manner between 0.03 and 1 nmol/kg, and the change at the highest dose was statistically significant. In contrast, intravenous neurotensin injection inhibited the amplitude of cyclic rumen contractions. The xenin-25 effect was not significantly altered by prior injection of the neurotensin receptor subtype-1 antagonist SR 48692 at 30 and 100 nmol/kg. After euthanasia the ruminal muscles were excised for in vitro experiments. A single xenin-25 application (0.3-10 μM) to the longitudinal and circular muscle strips of the rumen did not induce any change in tension or electric field stimulation-induced phasic contractions of the muscle strips. These results demonstrated that circulating xenin-25 stimulates rumen contractions by acting on sites except the intramural intrinsic nerve plexus or smooth muscles of the rumen, implying that xenin-25 acts on the gastric center and/or cholinergic efferent nerve innervated to the ovine rumen.
Collapse
Affiliation(s)
- Takenori Onaga
- Laboratory of Veterinary Physiology, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Japan.
| | - Ami Sakai
- Laboratory of Veterinary Physiology, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Japan
| | - Yumiko Yasui
- Laboratory of Veterinary Physiology, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Japan
| |
Collapse
|
3
|
Onaga T, Yasui Y, Hayashi H. Neurotensin and xenin stimulates pancreatic exocrine secretion through the peripheral cholinergic nerves in conscious sheep. Gen Comp Endocrinol 2022; 326:114073. [PMID: 35697316 DOI: 10.1016/j.ygcen.2022.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
The present study aimed to clarify the effects of neurotensin and xenin on pancreatic exocrine secretion in conscious sheep and their mechanism of actions. The animals were equipped with two silastic cannulae in the common bile duct to separately collect pancreatic fluid and bile, and a silastic cannula in the proximal duodenum to continuously return the mixed fluids. NT and xenin were intravenously injected at range of 0.01-3.0 nmol/kg during the phase I of duodenal migrating motor complex. A single intravenous NT injection significantly and dose-dependently increased pancreatic fluid, protein, and bicarbonate outputs. The effect of NT at 1 nmol/kg was completely inhibited by a background intravenous infusion of atropine methyl nitrate at a dose of 10 nmol/kg/min, however, the effect was not altered by a prior injection of the neurotensin receptor subtype (NTR)-1 antagonist SR 48692 at 60 nmol/kg. Moreover, a single intravenous xenin-25 injection significantly and dose-dependently increased pancreatic fluid and protein output, whereas the effect of xenin-25 did not clearly show dose-dependence. The prior SR 48692 injection at 30 nmol/kg did not significantly alter the effects of xenin-25 at 0.3 nmol/kg, while the atropine infusion significantly inhibited the increase in fluid secretion. Under the atropine infusion, xenin-25 at 0.3 nmol/kg did not increase protein and bicarbonate outputs, whereas the inhibitory effect of the atropine was not significant compared to that of the single injection of xenin-25. A single intravenous injection of NTR-2 agonist levocabastine at 0.1-3 nmol/kg did not alter pancreatic exocrine secretion. These results suggest that both NT and xenin-25 effectively stimulates pancreatic exocrine secretion through the peripheral cholinergic system in sheep and that NTR-2 is not involved in the regulation of pancreatic exocrine secretion, however, we did not precisely determine the role of NTR-1 in the actions of both the peptides on pancreatic exocrine secretion.
Collapse
Affiliation(s)
- Takenori Onaga
- Veterinary Physiology, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Address: 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan.
| | - Yumiko Yasui
- Veterinary Physiology, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Address: 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Hideaki Hayashi
- Animal Life Science, Department of Veterinary Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Address: 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
4
|
Khan D, Moffett RC, Flatt PR, Tarasov AI. Classical and non-classical islet peptides in the control of β-cell function. Peptides 2022; 150:170715. [PMID: 34958851 DOI: 10.1016/j.peptides.2021.170715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022]
Abstract
The dual role of the pancreas as both an endocrine and exocrine gland is vital for food digestion and control of nutrient metabolism. The exocrine pancreas secretes enzymes into the small intestine aiding digestion of sugars and fats, whereas the endocrine pancreas secretes a cocktail of hormones into the blood, which is responsible for blood glucose control and regulation of carbohydrate, protein and fat metabolism. Classical islet hormones, insulin, glucagon, pancreatic polypeptide and somatostatin, interact in an autocrine and paracrine manner, to fine-tube the islet function and insulin secretion to the needs of the body. Recently pancreatic islets have been reported to express a number of non-classical peptide hormones involved in metabolic signalling, whose major production site was believed to reside outside pancreas, e.g. in the small intestine. We highlight the key non-classical islet peptides, and consider their involvement, together with established islet hormones, in regulation of stimulus-secretion coupling as well as proliferation, survival and transdifferentiation of β-cells. We furthermore focus on the paracrine interaction between classical and non-classical islet hormones in the maintenance of β-cell function. Understanding the functional relationships between these islet peptides might help to develop novel, more efficient treatments for diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| | - R Charlotte Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Andrei I Tarasov
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
5
|
Review of Novel Potential Insulin Resistance Biomarkers in PCOS Patients—The Debate Is Still Open. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042099. [PMID: 35206286 PMCID: PMC8871992 DOI: 10.3390/ijerph19042099] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Research on proteins and peptides that play roles in metabolic regulation, which may be considered potential insulin resistance markers in some medical conditions, such as diabetes mellitus, obesity and polycystic ovarian syndrome (PCOS), has recently gained in interest. PCOS is a common endocrine disorder associated with hyperandrogenemia and failure of ovulation, which is often accompanied by metabolic abnormalities, including obesity, dyslipidemia, hyperinsulinemia, and insulin resistance. In this review, we focus on less commonly known peptides/proteins and investigate their role as potential biomarkers for insulin resistance in females affected by PCOS. We summarize studies comparing the serum fasting concentration of particular agents in PCOS individuals and healthy controls. Based on our analysis, we propose that, in the majority of studies, the levels of nesfastin-1, myonectin, omentin, neudesin were decreased in PCOS patients, while the levels of the other considered agents (e.g., preptin, gremlin-1, neuregulin-4, xenopsin-related peptide, xenin-25, and galectin-3) were increased. However, there also exist studies presenting contrary results; in particular, most data existing for lipocalin-2 are inconsistent. Therefore, further research is required to confirm those hypotheses, as well as to elucidate the involvement of these factors in PCOS-related metabolic complications.
Collapse
|
6
|
Kuwahara Y, Takahashi K, Akai M, Kato I, Kozakai T, Asano S, Inui T, Marunaka Y, Kuwahara A. Minimum biological domain of xenin-25 required to induce anion secretion in the rat ileum. Peptides 2022; 147:170680. [PMID: 34757144 DOI: 10.1016/j.peptides.2021.170680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/28/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Xenin-25 has a variety of physiological functions in the gastrointestinal tract, including ion transport and motility. Xenin-25 and neurotensin show sequence homology, especially near their C-terminal regions. The sequence similarity between xenin-25 and neurotensin indicates that the effects of xenin-25 is mediated by the neurotensin receptor but some biological actions of xenin-25 are independent. We have previously reported that xenin-25 modulates intestinal ion transport and colonic smooth muscle activity. However, minimal biological domain of xenin-25 to induce ion transport was not clear. To improve the mechanistic understanding of xenin-25 and to gain additional insights into the functions of xenin-25, the present study was designed to determine the minimal biological domain of xenin-25 required for ion transport in the rat ileum using various truncated xenin fragments and analogues in an Ussing chamber system. The present results demonstrate that the minimum biological domain of xenin-25 to induce Cl-/HCO3- secretion in the ileum contains the C-terminal pentapeptide. Furthermore, Arg at position 21 is important to retain the biological activity of xenin-25 and induces Cl-/HCO3- secretion in the rat ileum.
Collapse
Affiliation(s)
- Yuko Kuwahara
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kohei Takahashi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Miho Akai
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Ikuo Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Takaharu Kozakai
- Faculty of Education, Art, and Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshio Inui
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan; Saisei Mirai Clinics, Moriguchi, 570-0012, Japan
| | - Yoshinori Marunaka
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan; Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Atsukazu Kuwahara
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan.
| |
Collapse
|
7
|
Craig SL, Irwin N, Gault VA. Xenin and Related Peptides: Potential Therapeutic Role in Diabetes and Related Metabolic Disorders. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2021; 14:11795514211043868. [PMID: 34588834 PMCID: PMC8474313 DOI: 10.1177/11795514211043868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
Xenin bioactivity and its role in normal physiology has been investigated by several research groups since its discovery in 1992. The 25 amino acid peptide hormone is secreted from the same enteroendocrine K-cells as the incretin hormone glucose-dependent insulinotropic polypeptide (GIP), with early studies highlighting the biological significance of xenin in the gastrointestinal tract, along with effects on satiety. Recently there has been more focus directed towards the role of xenin in insulin secretion and potential for diabetes therapies, especially through its ability to potentiate the insulinotropic actions of GIP as well as utilisation in dual/triple acting gut hormone therapeutic approaches. Currently, there is a lack of clinically approved therapies aimed at restoring GIP bioactivity in type 2 diabetes mellitus, thus xenin could hold real promise as a diabetes therapy. The biological actions of xenin, including its ability to augment insulin secretion, induce satiety effects, as well as restoring GIP sensitivity, earmark this peptide as an attractive antidiabetic candidate. This minireview will focus on the multiple biological actions of xenin, together with its proposed mechanism of action and potential benefits for the treatment of metabolic diseases such as diabetes.
Collapse
Affiliation(s)
- Sarah L Craig
- Faculty of Life and Health Sciences, School of Biomedical Sciences, Ulster University, UK
| | - Nigel Irwin
- Faculty of Life and Health Sciences, School of Biomedical Sciences, Ulster University, UK
| | - Victor A Gault
- Faculty of Life and Health Sciences, School of Biomedical Sciences, Ulster University, UK
| |
Collapse
|
8
|
Onaga T, Hayashi H, Yasui Y. Effects of xenin-25 on insulin and glucagon secretions in healthy conscious sheep. Domest Anim Endocrinol 2021; 77:106635. [PMID: 34111624 DOI: 10.1016/j.domaniend.2021.106635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
The aim of present study was to determine effect of an intravenous injection of xenin-25 on insulin and glucagon secretion in healthy conscious sheep. After feeding once at 17:00, the experiment was started from 9:00 on the next day. Xenin-25 was intravenously (i.v.) injected at a dose of 100 to 1000 pmol/kg with and without the simultaneous injection of glucose at a dose of 200 μmol/kg, and blood was withdrawn before and after the injections. A single xenin-25 injection at 100 and 300 pmol/kg significantly increased the plasma insulin concentration, whereas the 1000 pmol/kg dose did not elicit significantly enhanced insulin response. Plasma glucose and glucagon concentrations did not significantly change after a single xenin-25 injection. Xenin-25 injection significantly and dose-dependently augmented the glucose-induced insulin secretion. However, the changes in the plasma glucose and glucagon level after the glucose injection were not altered by xenin injection. A prior intravenous injection of the neurotensin receptor subtype-1 (NTR-1) antagonist SR 48692 at 100 nmol/kg did not modify the glucose-induced change in plasma insulin caused by xenin-25 at 300 pmol/kg, and intravenous injection of the NTR-2 agonist levocabastine at 1000 pmol/kg did not augment the insulin response to the glucose injection. On the other hand, no xenin-25 immunopositive cells were detected in the ovine pancreas. The mRNAs of the three NTR subtypes were highly expressed in the ovine pancreas in comparison with the expression in the abomasum. These results suggest that xenin-25 released from the upper gastrointestinal tract plays a role of an insulinotropic factor in sheep, possibly through NTRs in the pancreatic islets, but not via NTR-2.
Collapse
Affiliation(s)
- Takenori Onaga
- Veterinary Physiology, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan.
| | - Hideaki Hayashi
- Veterinary Physiology, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Yumiko Yasui
- Veterinary Physiology, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
9
|
Perry RA, Craig SL, Gault VA, Flatt PR, Irwin N. A novel neurotensin/xenin fusion peptide enhances β-cell function and exhibits antidiabetic efficacy in high-fat fed mice. Biosci Rep 2021; 41:BSR20211275. [PMID: 34370015 PMCID: PMC8390788 DOI: 10.1042/bsr20211275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Neurotensin and xenin possess antidiabetic potential, mediated in part through augmentation of incretin hormone, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), action. In the present study, fragment peptides of neurotensin and xenin, acetyl-neurotensin and xenin-8-Gln, were fused together to create Ac-NT/XN-8-Gln. Following assessment of enzymatic stability, effects of Ac-NT/XN-8-Gln on in vitro β-cell function were studied. Subchronic antidiabetic efficacy of Ac-NT/XN-8-Gln alone, and in combination with the clinically approved GLP-1 receptor agonist exendin-4, was assessed in high-fat fed (HFF) mice. Ac-NT/XN-8-Gln was highly resistant to plasma enzyme degradation and induced dose-dependent insulin-releasing actions (P<0.05 to P<0.01) in BRIN-BD11 β-cells and isolated mouse islets. Ac-NT/XN-8-Gln augmented (P<0.001) the insulinotropic actions of GIP, while possessing independent β-cell proliferative (P<0.001) and anti-apoptotic (P<0.01) actions. Twice daily treatment of HFF mice with Ac-NT/XN-8-Gln for 32 days improved glycaemic control and circulating insulin, with benefits significantly enhanced by combined exendin-4 treatment. This was reflected by reduced body fat mass (P<0.001), improved circulating lipid profile (P<0.01) and reduced HbA1c concentrations (P<0.01) in the combined treatment group. Following an oral glucose challenge, glucose levels were markedly decreased (P<0.05) only in combination treatment group and superior to exendin-4 alone, with similar observations made in response to glucose plus GIP injection. The combined treatment group also presented with improved insulin sensitivity, decreased pancreatic insulin content as well as increased islet and β-cell areas. These data reveal that Ac-NT/XN-8-Gln is a biologically active neurotensin/xenin fusion peptide that displays prominent antidiabetic efficacy when administered together with exendin-4.
Collapse
Affiliation(s)
- Rachele A. Perry
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Diabetes Research Group, Coleraine, Northern Ireland, U.K
| | - Sarah. L. Craig
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Diabetes Research Group, Coleraine, Northern Ireland, U.K
| | - Victor A. Gault
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Diabetes Research Group, Coleraine, Northern Ireland, U.K
| | - Peter R. Flatt
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Diabetes Research Group, Coleraine, Northern Ireland, U.K
| | - Nigel Irwin
- Ulster University, School of Pharmacy and Pharmaceutical Sciences, Diabetes Research Group, Coleraine, Northern Ireland, U.K
| |
Collapse
|
10
|
Craig SL, Gault VA, Shiels CE, Hamscher G, Irwin N. Comparison of independent and combined effects of the neurotensin receptor agonist, JMV-449, and incretin mimetics on pancreatic islet function, glucose homeostasis and appetite control. Biochim Biophys Acta Gen Subj 2021; 1865:129917. [PMID: 33964357 DOI: 10.1016/j.bbagen.2021.129917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Neurotensin receptor activation augments the biosctivity of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). JMV-449, a C-terminal neurotensin-like fragment with a reduced peptide bond, represents a neurotensin receptor agonist. METHODS The present study assessed the actions of JMV-449 on pancreatic beta-cells alone, and in combination with GIP and GLP-1. Further studies examined the impact of JMV-449 and incretin mimetics on glucose homeostasis and appetite control in mice. RESULTS JMV-449 was resistant to plasma enzyme degradation and induced noticeable dose-dependent insulin-releasing actions in BRIN-BD11 beta-cells. In combination with either GIP or GLP-1, JMV-449 augmented (P < 0.05) the insulinotropic actions of both hormones, as well as enhancing (P < 0.001) insulin secretory activity of both incretin peptides. JMV-449 also increased beta-cell proliferation and induced significant benefits on beta-cell survival in response to cytokine-induced apoptosis. JMV-449 (25 nmol/kg) inhibited (P < 0.05-P < 0.001) food intake in overnight fasted lean mice, and enhanced (P < 0.01) the appetite supressing effects of an enzymatically stable GLP-1 mimetic. When injected co-jointly with glucose, JMV-449 evoked glucose lowering actions, but more interestingly significantly augmented (P < 0.05) the glucose lowering effects of established long-acting GIP and GLP-1 receptor mimetics. In terms of glucose-induced insulin secretion, only GIP receptor signalling was associated with increases in insulin concentrations, and this was not enhanced by JMV-449. CONCLUSION JMV-449 is a neurotensin receptor agonist that positively augments key aspects of the biological action profile of GIP and GLP-1. GENERAL SIGNIFICANCE These observations emphasise the, yet untapped, therapeutic potential of combined neurotensin and incretin receptor signalling for diabetes.
Collapse
Affiliation(s)
- S L Craig
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - V A Gault
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - C E Shiels
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - G Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University, Giessen, Germany
| | - N Irwin
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
11
|
Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021; 13:nu13030883. [PMID: 33803183 PMCID: PMC8000029 DOI: 10.3390/nu13030883] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.
Collapse
|
12
|
Tanday N, Moffett RC, Gault VA, Flatt PR, Irwin N. Enzymatically stable analogue of the gut-derived peptide xenin on beta-cell transdifferentiation in high fat fed and insulin-deficient Ins1 Cre/+ ;Rosa26-eYFP mice. Diabetes Metab Res Rev 2021; 37:e3384. [PMID: 32662136 DOI: 10.1002/dmrr.3384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The antidiabetic effects of the gut hormone xenin include augmenting insulin secretion and positively affecting pancreatic islet architecture. METHODS The current study has further probed pancreatic effects through sub-chronic administration of the long-acting xenin analogue, xenin-25[Lys13 PAL], in both high fat fed (HFF) and streptozotocin (STZ)-induced insulin-deficient Ins1Cre/+ ;Rosa26-eYFP transgenic mice. Parallel effects on metabolic control and pancreatic islet morphology, including islet beta-cell lineage tracing were also assessed. RESULTS Xenin-25[Lys13 PAL] treatment reversed body weight loss induced by STZ, increased plasma insulin and decreased blood glucose levels. There were less obvious effects on these parameters in HFF mice, but all xenin-25[Lys13 PAL] treated mice exhibited decreased pancreatic alpha-cell areas and circulating glucagon. Xenin-25[Lys13 PAL] treatment fully, or partially, returned overall islet and beta-cell areas in STZ- and HFF mice to those of lean control animals, respectively, and was consistently associated with decreased beta-cell apoptosis. Interestingly, xenin-25[Lys13 PAL] also increased beta-cell proliferation and decreased alpha-cell apoptosis in STZ mice, with reduced alpha-cell growth noted in HFF mice. Lineage tracing studies revealed that xenin-25[Lys13 PAL] reduced the number of insulin positive pancreatic islet cells that lost their beta-cell identity, in keeping with a decreased transition of insulin positive to glucagon positive cells. These beneficial effects on islet cell differentiation were linked to maintained expression of Pdx1 within beta-cells. Xenin-25[Lys13 PAL] treatment was also associated with increased numbers of smaller sized islets in both models. CONCLUSIONS Benefits of xenin-25[Lys13 PAL] on diabetes includes positive modulation of islet cell differentiation, in addition to promoting beta-cell growth and survival.
Collapse
Affiliation(s)
- Neil Tanday
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
13
|
Wölk E, Stengel A, Schaper SJ, Rose M, Hofmann T. Neurotensin and Xenin Show Positive Correlations With Perceived Stress, Anxiety, Depressiveness and Eating Disorder Symptoms in Female Obese Patients. Front Behav Neurosci 2021; 15:629729. [PMID: 33664656 PMCID: PMC7921165 DOI: 10.3389/fnbeh.2021.629729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Neurotensin and xenin are two closely related anorexigenic neuropeptides synthesized in the small intestine that exert diverse peripheral and central functions. Both act via the neurotensin-1-receptor. In animal models of obesity reduced central concentrations of these peptides have been found. Dysregulations of the acute and chronic stress response are associated with development and maintenance of obesity. Until now, associations of both peptides with stress, anxiety, depressiveness, and eating disorder symptoms have not been investigated. The aim of the present study was to examine associations of neurotensin and xenin with these psychological characteristics under conditions of obesity. Materials and Methods From 2010 to 2016 we consecutively enrolled 160 inpatients (63 men and 97 women), admitted due to obesity and its mental and somatic comorbidities. Blood withdrawal und psychometric tests (PSQ-20, GAD-7, PHQ-9, and EDI-2) occurred within one week after admission. We measured levels of neurotensin and xenin in plasma by ELISA. Results Mean body mass index was 47.2 ± 9.5 kg/m2. Concentrations of neurotensin and xenin positively correlated with each other (women: r = 0.788, p < 0.001; men: r = 0.731, p < 0.001) and did not significantly differ between sexes (p > 0.05). Women generally displayed higher psychometric values than men (PSQ-20: 58.2 ± 21.7 vs. 47.0 ± 20.8, p = 0.002; GAD-7: 9.7 ± 5.8 vs. 7.1 ± 5.3, p = 0.004; PHQ-9: 11.6 ± 6.6 vs. 8.8 ± 5.9, p = 0.008; EDI-2: 50.5 ± 12.8 vs. 39.7 ± 11.9, p < 0.001). Only women showed positive correlations of both neuropeptides with stress (neurotensin: r = 0.231, p = 0.023; xenin: r = 0.254, p = 0.013), anxiety (neurotensin: r = 0.265, p = 0.009; xenin: r = 0.257, p = 0.012), depressiveness (neurotensin: r = 0.281, p = 0.006; xenin: r = 0.241, p = 0.019) and eating disorder symptoms (neurotensin: r = 0.276, p = 0.007; xenin: r = 0.26, p = 0.011), whereas, men did not (p > 0.05). Conclusion Neurotensin and xenin plasma levels of female obese patients are positively correlated with perceived stress, anxiety, depressiveness, and eating disorder symptoms. These associations could be influenced by higher prevalence of mental disorders in women and by sex hormones. In men, no correlations were observed, which points toward a sex-dependent regulation.
Collapse
Affiliation(s)
- Ellen Wölk
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Selina Johanna Schaper
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Rose
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Hofmann
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Onaga T, Sakai A, Kajita M, Fukuda H, Yasui Y, Hayashi H. Messenger RNA expression and localization of xenin in the gastrointestinal tract in sheep. Domest Anim Endocrinol 2021; 74:106523. [PMID: 32795864 DOI: 10.1016/j.domaniend.2020.106523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/27/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
The present study aimed to determine the primary sequence of ovine xenin and clarify the mRNA expression and peptide localization of xenin in the gastrointestinal tract in sheep. The colocalization of xenin and glucose-dependent insulinotropic polypeptide was also compared in the antrum and duodenum. Analysis of the nucleotide sequence of ovine xenin revealed a high degree (97.9%) of sequence homology of the sequence between sheep and cattle, and the amino acids sequence determined for ovine xenin coincided (100%) with that of other mammalian species. Real-time quantitative PCR for ovine xenin did not show regional difference in the mRNA expression ratio of xenin. In contrast to the real-time quantitative PCR results, anti-xenin positive cells were abundantly localized in the abomasal antrum (P < 0.01) and at a lesser amount in the duodenum, but no antixenin positive cells were observed in the other regions. Anti-xenin single-positive cells were in a majority in the abomasal antrum, whereas anti-xenin single-positive cells, and anti-GIP single-positive cells, and double-positive cells were even colocalized in the duodenum. These results suggest that abomasal antrum is a major source of xenin in the ovine gastrointestinal tract.
Collapse
Affiliation(s)
- T Onaga
- Laboratory of Veterinary Physiology and Nutrition, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan.
| | - A Sakai
- Laboratory of Veterinary Physiology and Nutrition, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - M Kajita
- Laboratory of Veterinary Physiology and Nutrition, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - H Fukuda
- Laboratory of Veterinary Physiology and Nutrition, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Y Yasui
- Laboratory of Veterinary Physiology and Nutrition, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - H Hayashi
- Laboratory of Veterinary Physiology, Division of Biosciences, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| |
Collapse
|
15
|
The methionine aminopeptidase 2 inhibitor, TNP-470, enhances the antidiabetic properties of sitagliptin in mice by upregulating xenin. Biochem Pharmacol 2020; 183:114355. [PMID: 33279496 DOI: 10.1016/j.bcp.2020.114355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022]
Abstract
The therapeutic mechanism of action of methionine aminopeptidase 2 (MetAP2) inhibitors for obesity-diabetes has not yet been fully defined. Xenin, a K-cell derived peptide hormone, possesses an N-terminal Met amino acid residue. Thus, elevated xenin levels could represent a potential pharmacological mechanism of MetAP2 inhibitors, since long-acting xenin analogues have been shown to improve obesity-diabetes. The present study has assessed the ability of the MetAP2 inhibitor, TNP-470, to augment the antidiabetic utility of the incretin-enhancer drug, sitagliptin, in high fat fed (HFF) mice. TNP-470 (1 mg/kg) and sitagliptin (25 mg/kg) were administered once-daily alone, or in combination, to diabetic HFF mice (n = 10) for 18 days. Individual therapy with TNP-470 or sitagliptin resulted in numerous metabolic benefits including reduced blood glucose, increased circulating and pancreatic insulin and improved glucose tolerance, insulin sensitivity, pyruvate tolerance and overall pancreatic islet architecture. Further assessment of metabolic rate revealed that all treatments reduced respiratory exchange ratio and increased locomotor activity. All sitagliptin treated mice also exhibited increased energy expenditure. In addition, treatment with TNP-470 alone, or in combination with sitagliptin, reduced food intake and body weight, as well as elevating plasma and intestinal xenin. Importantly, combined sitagliptin and TNP-470 therapy was associated with further significant benefits beyond that observed by either treatment alone. This included more rapid restoration of normoglycaemia, superior glucose tolerance, increased circulating GIP concentrations and an enhanced pancreatic beta:alpha cell ratio. In conclusion, these data demonstrate that TNP-470 increases plasma and intestinal xenin levels, and augments the antidiabetic advantages of sitagliptin.
Collapse
|
16
|
English A, Craig SL, Flatt PR, Irwin N. Individual and combined effects of GIP and xenin on differentiation, glucose uptake and lipolysis in 3T3-L1 adipocytes. Biol Chem 2020; 401:1293-1303. [PMID: 32769216 DOI: 10.1515/hsz-2020-0195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
The incretin hormone glucose-dependent insulinotropic polypeptide (GIP), released postprandially from K-cells, has established actions on adipocytes and lipid metabolism. In addition, xenin, a related peptide hormone also secreted from K-cells after a meal, has postulated effects on energy regulation and lipid turnover. The current study has probed direct individual and combined effects of GIP and xenin on adipocyte function in 3T3-L1 adipocytes, using enzyme-resistant peptide analogues, (d-Ala2)GIP and xenin-25-Gln, and knockdown (KD) of receptors for both peptides. (d-Ala2)GIP stimulated adipocyte differentiation and lipid accumulation in 3T3-L1 adipocytes over 96 h, with xenin-25-Gln evoking similar effects. Combined treatment significantly countered these individual adipogenic effects. Individual receptor KD impaired lipid accumulation and adipocyte differentiation, with combined receptor KD preventing differentiation. (d-Ala2)GIP and xenin-25-Gln increased glycerol release from 3T3-L1 adipocytes, but this lipolytic effect was significantly less apparent with combined treatment. Key adipogenic and lipolytic genes were upregulated by (d-Ala2)GIP or xenin-25-Gln, but not by dual peptide culture. Similarly, both (d-Ala2)GIP and xenin-25-Gln stimulated insulin-induced glucose uptake in 3T3-L1 adipocytes, but this effect was annulled by dual treatment. In conclusion, GIP and xenin possess direct, comparable, lipogenic and lipolytic actions in 3T3-L1 adipocytes. However, effects on lipid metabolism are significantly diminished by combined administration.
Collapse
Affiliation(s)
- Andrew English
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Sarah L Craig
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
17
|
Gobron B, Bouvard B, Vyavahare S, Blom LV, Pedersen KK, Windeløv JA, Boer GA, Harada N, Zhang S, Shimazu-Kuwahara S, Wice B, Inagaki N, Legrand E, Flatt PR, Chappard D, Hartmann B, Holst JJ, Rosenkilde MM, Irwin N, Mabilleau G. Enteroendocrine K Cells Exert Complementary Effects to Control Bone Quality and Mass in Mice. J Bone Miner Res 2020; 35:1363-1374. [PMID: 32155286 DOI: 10.1002/jbmr.4004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
The involvement of a gut-bone axis in controlling bone physiology has been long suspected, although the exact mechanisms are unclear. We explored whether glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine K cells were involved in this process. The bone phenotype of transgenic mouse models lacking GIP secretion (GIP-GFP-KI) or enteroendocrine K cells (GIP-DT) was investigated. Mice deficient in GIP secretion exhibited lower bone strength, trabecular bone mass, trabecular number, and cortical thickness, notably due to higher bone resorption. Alterations of microstructure, modifications of bone compositional parameters, represented by lower collagen cross-linking, were also apparent. None of these alterations were observed in GIP-DT mice lacking enteroendocrine K cells, suggesting that another K-cell secretory product acts to counteract GIP action. To assess this, stable analogues of the known K-cell peptide hormones, xenin and GIP, were administered to mature NIH Swiss male mice. Both were capable of modulating bone strength mostly by altering bone microstructure, bone gene expression, and bone compositional parameters. However, the two molecules exhibited opposite actions on bone physiology, with evidence that xenin effects are mediated indirectly, possibly via neural networks. Our data highlight a previously unknown interaction between GIP and xenin, which both moderate gut-bone connectivity. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Benoît Gobron
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service de Rhumatologie, CHU d'Angers, Angers, France
| | - Béatrice Bouvard
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service de Rhumatologie, CHU d'Angers, Angers, France
| | - Sagar Vyavahare
- School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | - Liv Vv Blom
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian K Pedersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne A Windeløv
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Geke A Boer
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Norio Harada
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sheng Zhang
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Satoko Shimazu-Kuwahara
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Burton Wice
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Erick Legrand
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service de Rhumatologie, CHU d'Angers, Angers, France
| | - Peter R Flatt
- School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | - Daniel Chappard
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service Commun D'imageries et d'Analyses Microscopiques, SCIAM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Bone Pathology Unit, CHU d'Angers, Angers, France
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | - Guillaume Mabilleau
- Groupe Études Remodelage Osseux et Biomatériaux, GEROM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Service Commun D'imageries et d'Analyses Microscopiques, SCIAM, SFR 42-08, Université d'Angers, Institut de Biologie en Santé, CHU d'Angers, Angers, France.,Bone Pathology Unit, CHU d'Angers, Angers, France
| |
Collapse
|
18
|
Hasib A. Multiagonist Unimolecular Peptides for Obesity and Type 2 Diabetes: Current Advances and Future Directions. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2020; 13:1179551420905844. [PMID: 32110131 PMCID: PMC7025423 DOI: 10.1177/1179551420905844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
The ever-increasing prevalence of obesity and Type 2 diabetes has necessitated the development of newer and more effective approaches for achieving efficient glycemic control and weight loss. Conventional treatment methods often result in weight gain, further deteriorating the already impaired metabolic control in people with obesity/Type 2 diabetes. Alleviation of obesity and diabetes achieved after bariatric surgeries highlight the therapeutic importance of gut-brain axis and entails development of more patient-friendly approaches replicating the positive metabolic effects of bariatric surgery. Given the potential involvement of several gut hormones in the success of bariatric surgery, the therapeutic importance of synergistic interaction between these hormones for improved metabolism cannot be ignored. Many unimolecular multiagonist peptides are in preclinical and clinical trials as they maximize the combinatorial metabolic efficacy by concurrent activation of multiple gut hormone receptors. This review summarizes the ongoing developments of multiagonist peptides as novel therapeutic approaches against obesity-diabetes.
Collapse
Affiliation(s)
- Annie Hasib
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
19
|
Craig S, Perry R, Vyavahare S, Ng M, Gault V, Flatt P, Irwin N. A GIP/xenin hybrid in combination with exendin-4 improves metabolic status in db/db diabetic mice and promotes enduring antidiabetic benefits in high fat fed mice. Biochem Pharmacol 2020; 171:113723. [DOI: 10.1016/j.bcp.2019.113723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
|
20
|
English A, Irwin N. Nonclassical Islet Peptides: Pancreatic and Extrapancreatic Actions. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419888871. [PMID: 32425629 PMCID: PMC7216561 DOI: 10.1177/1179551419888871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
The pancreas has physiologically important endocrine and exocrine functions; secreting enzymes into the small intestine to aid digestion and releasing multiple peptide hormones via the islets of Langerhans to regulate glucose metabolism, respectively. Insulin and glucagon, in combination with ghrelin, pancreatic polypeptide and somatostatin, are the main classical islet peptides critical for the maintenance of blood glucose. However, pancreatic islets also synthesis numerous ‘nonclassical’ peptides that have recently been demonstrated to exert fundamental effects on overall islet function and metabolism. As such, insights into the physiological relevance of these nonclassical peptides have shown impact on glucose metabolism, insulin action, cell survival, weight loss, and energy expenditure. This review will focus on the role of individual nonclassical islet peptides to stimulate pancreatic islet secretions as well as regulate metabolism. In addition, the more recognised actions of these peptides on satiety and energy regulation will also be considered. Furthermore, recent advances in the field of peptide therapeutics and obesity-diabetes have focused on the benefits of simultaneously targeting several hormone receptor signalling cascades. The potential for nonclassical islet hormones within such combinational approaches will also be discussed.
Collapse
Affiliation(s)
- Andrew English
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
21
|
Craig SL, Gault VA, McClean S, Hamscher G, Irwin N. Effects of an enzymatically stable C-terminal hexapseudopeptide fragment peptide of xenin-25, ψ-xenin-6, on pancreatic islet function and metabolism. Mol Cell Endocrinol 2019; 496:110523. [PMID: 31352038 DOI: 10.1016/j.mce.2019.110523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
Abstract
Xenin-25 undergoes rapid enzyme metabolism following secretion. Early studies demonstrated bioactivity of a C-terminal hexapeptide fragment of xenin-25, namely xenin-6, which were enhanced through introduction of a reduced N-terminal peptide bond, to yield Ψ-xenin-6. The present study was undertaken to define the biological actions and potential antidiabetic properties of Ψ-xenin-6. In vitro enzymatic stability, insulin and glucagon secretory activity, as well as effects on beta-cell survival were determined. Studies in mice were used to assess the impact of Ψ-xenin-6 on glucose homeostasis and satiety. Ψ-xenin-6 was resistant to murine plasma degradation. In BRIN-BD11 cells and isolated murine islets, Ψ-xenin-6 significantly stimulated insulin secretion, and prominently enhanced the insulinotropic actions of GIP. Xenin-6 and Ψ-xenin-6 had no impact on glucagon secretion, although xenin-6 partially reversed the glucagonotropic action of GIP. Further in vitro investigations revealed that, similar to GLP-1, Ψ-xenin-6 significantly augmented proliferation of human and rodent clonal beta-cells, whilst also fully protecting against cytokine-induced beta-cell cytotoxicity, with greater potency than xenin-25 and xenin-6. When administered to mice in combination with glucose, Ψ-xenin-6 significantly reduced glucose levels and enhanced glucose-induced insulin release, with a duration of biological action beyond 8 h. Ψ-xenin-6 also significantly enhanced the glucose-lowering action of GIP in vivo. In overnight fasted mice, Ψ-xenin-6 exhibited satiety actions at both 25 and 250 nmol/kg. These data demonstrates that Ψ-xenin-6 is a metabolically stable C-terminal fragment analogue of xenin-25, with a metabolic action profile that merits further study as a potential antidiabetic compound.
Collapse
Affiliation(s)
- S L Craig
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - V A Gault
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - S McClean
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - G Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Germany
| | - N Irwin
- SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
22
|
Hasib A, Ng MT, Khan D, Gault VA, Flatt PR, Irwin N. Characterisation and antidiabetic utility of a novel hybrid peptide, exendin-4/gastrin/xenin-8-Gln. Eur J Pharmacol 2018; 834:126-135. [DOI: 10.1016/j.ejphar.2018.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
|
23
|
Craig SL, Gault VA, Irwin N. Emerging therapeutic potential for xenin and related peptides in obesity and diabetes. Diabetes Metab Res Rev 2018; 34:e3006. [PMID: 29633491 DOI: 10.1002/dmrr.3006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 12/16/2022]
Abstract
Xenin-25 is a 25-amino acid peptide hormone co-secreted from the same enteroendocrine K-cell as the incretin peptide glucose-dependent insulinotropic polypeptide. There is no known specific receptor for xenin-25, but studies suggest that at least some biological actions may be mediated through interaction with the neurotensin receptor. Original investigation into the physiological significance of xenin-25 focussed on effects related to gastrointestinal transit and satiety. However, xenin-25 has been demonstrated in pancreatic islets and recently shown to possess actions in relation to the regulation of insulin and glucagon secretion, as well as promoting beta-cell survival. Accordingly, the beneficial impact of xenin-25, and related analogues, has been assessed in animal models of diabetes-obesity. In addition, studies have demonstrated that metabolically active fragment peptides of xenin-25, particularly xenin-8, possess independent therapeutic promise for diabetes, as well as serving as bioactive components for the generation of multi-acting hybrid peptides with antidiabetic potential. This review focuses on continuing developments with xenin compounds in relation to new therapeutic approaches for diabetes-obesity.
Collapse
Affiliation(s)
- Sarah L Craig
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
24
|
Kerbel B, Badal K, Sundarrajan L, Blanco A, Unniappan S. Xenin is a novel anorexigen in goldfish (Carassius auratus). PLoS One 2018; 13:e0197817. [PMID: 29791497 PMCID: PMC5965858 DOI: 10.1371/journal.pone.0197817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Xenin, a highly conserved 25 amino acid peptide cleaved from the N-terminus of the coatomer protein alpha (COPA), is emerging as a food intake regulator in mammals and birds. To date, no research has been conducted on xenin biology in fish. This study aims to identify the copa mRNA encoding xenin in goldfish (Carassius auratus) as a model, to elucidate its regulation by feeding, and to describe the role of xenin on appetite. First, a partial sequence of copa cDNA, a region encoding xenin, was identified from goldfish brain. This sequence is highly conserved among both vertebrates and invertebrates. RT-qPCR revealed that copa mRNAs are widely distributed in goldfish tissues, with the highest levels detected in the brain, gill, pituitary and J-loop. Immunohistochemistry confirmed also the presence of COPA peptide in the hypothalamus and enteroendocrine cells on the J-loop mucosa. In line with its anorexigenic effects, we found important periprandial fluctuations in copa mRNA expression in the hypothalamus, which were mainly characterized by a gradually decrease in copa mRNA levels as the feeding time was approached, and a gradual increase after feeding. Additionally, fasting differently modulated the expression of copa mRNA in a tissue-dependent manner. Peripheral and central injections of xenin reduce food intake in goldfish. This research provides the first report of xenin in fish, and shows that this peptide is a novel anorexigen in goldfish.
Collapse
Affiliation(s)
- Brent Kerbel
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Kimberly Badal
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ayelen Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
25
|
Cholinergic signaling mediates the effects of xenin-25 on secretion of pancreatic polypeptide but not insulin or glucagon in humans with impaired glucose tolerance. PLoS One 2018; 13:e0192441. [PMID: 29466430 PMCID: PMC5821323 DOI: 10.1371/journal.pone.0192441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023] Open
Abstract
We previously demonstrated that infusion of an intestinal peptide called xenin-25 (Xen) amplifies the effects of glucose-dependent insulinotropic polypeptide (GIP) on insulin secretion rates (ISRs) and plasma glucagon levels in humans. However, these effects of Xen, but not GIP, were blunted in humans with type 2 diabetes. Thus, Xen rather than GIP signaling to islets fails early during development of type 2 diabetes. The current crossover study determines if cholinergic signaling relays the effects of Xen on insulin and glucagon release in humans as in mice. Fasted subjects with impaired glucose tolerance were studied. On eight separate occasions, each person underwent a single graded glucose infusion- two each with infusion of albumin, Xen, GIP, and GIP plus Xen. Each infusate was administered ± atropine. Heart rate and plasma glucose, insulin, C-peptide, glucagon, and pancreatic polypeptide (PP) levels were measured. ISRs were calculated from C-peptide levels. All peptides profoundly increased PP responses. From 0 to 40 min, peptide(s) infusions had little effect on plasma glucose concentrations. However, GIP, but not Xen, rapidly and transiently increased ISRs and glucagon levels. Both responses were further amplified when Xen was co-administered with GIP. From 40 to 240 min, glucose levels and ISRs continually increased while glucagon concentrations declined, regardless of infusate. Atropine increased resting heart rate and blocked all PP responses but did not affect ISRs or plasma glucagon levels during any of the peptide infusions. Thus, cholinergic signaling mediates the effects of Xen on insulin and glucagon release in mice but not humans.
Collapse
|
26
|
Hasib A, Ng MT, Khan D, Gault VA, Flatt PR, Irwin N. A novel GLP-1/xenin hybrid peptide improves glucose homeostasis, circulating lipids and restores GIP sensitivity in high fat fed mice. Peptides 2018; 100:202-211. [PMID: 29412820 DOI: 10.1016/j.peptides.2017.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 02/08/2023]
Abstract
Combined modulation of peptide hormone receptors including, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and xenin, have established benefits for the treatment of diabetes. The present study has assessed the biological actions and therapeutic efficacy of a novel exendin-4/xenin-8-Gln hybrid peptide, both alone and in combination with the GIP receptor agonist (DAla2)GIP. Exendin-4/xenin-8-Gln was enzymatically stable and exhibited enhanced insulin secretory actions when compared to its parent peptides. Exendin-4/xenin-8-Gln also possessed ability to potentiate the in vitro actions of GIP. Acute administration of exendin-4/xenin-8-Gln in mice induced appetite suppressive effects, as well as significant and protracted glucose-lowering and insulin secretory actions. Twice daily administration of exendin-4/xenin-8-Gln, alone or in combination with (DAla2)GIP, for 21-days significantly reduced non-fasting glucose and increased circulating insulin levels in high fat fed mice. In addition, all exendin-4/xenin-8-Gln treated mice displayed improved glucose tolerance, insulin sensitivity and metabolic responses to GIP. Combination therapy with (DAla2)GIP did not result in any obvious further benefits. Metabolic improvements in all treatment groups were accompanied by reduced pancreatic beta-cell area and insulin content, suggesting reduced insulin demand. Interestingly, body weight, food intake, circulating glucagon, metabolic rate and amylase activity were unaltered by the treatment regimens. However, all treatment groups, barring (DAla2)GIP alone, exhibited marked reductions in total- and LDL-cholesterol. Furthermore, exendin-4 therapy also reduced circulating triacylglycerol. This study highlights the positive antidiabetic effects of exendin-4/xenin-8-Gln, and suggests that combined modulation of GLP-1 and xenin related signalling pathways represents an exciting treatment option for type 2 diabetes.
Collapse
Affiliation(s)
- Annie Hasib
- From the SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Ming T Ng
- From the SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Dawood Khan
- From the SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- From the SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- From the SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- From the SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK.
| |
Collapse
|
27
|
Khan D, Vasu S, Moffett RC, Gault VA, Flatt PR, Irwin N. Locally produced xenin and the neurotensinergic system in pancreatic islet function and β-cell survival. Biol Chem 2017; 399:79-92. [DOI: 10.1515/hsz-2017-0136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
AbstractModulation of neuropeptide receptors is important for pancreatic β-cell function. Here, islet distribution and effects of the neurotensin (NT) receptor modulators, xenin and NT, was examined. Xenin, but not NT, significantly improved glucose disposal and insulin secretion, in mice. However, both peptides stimulated insulin secretion from rodent β-cells at 5.6 mmglucose, with xenin having similar insulinotropic actions at 16.7 mmglucose. In contrast, NT inhibited glucose-induced insulin secretion. Similar observations were made in human 1.1B4 β-cells and isolated mouse islets. Interestingly, similar xenin levels were recorded in pancreatic and small intestinal tissue. Arginine and glucose stimulated xenin release from islets. Streptozotocin treatment decreased and hydrocortisone treatment increased β-cell mass in mice. Xenin co-localisation with glucagon was increased by streptozotocin, but unaltered in hydrocortisone mice. This corresponded to elevated plasma xenin levels in streptozotocin mice. In addition, co-localisation of xenin with insulin was increased by hydrocortisone, and decreased by streptozotocin. Furtherin vitroinvestigations revealed that xenin and NT protected β-cells against streptozotocin-induced cytotoxicity. Xenin augmented rodent and human β-cell proliferation, whereas NT displayed proliferative actions only in human β-cells. These data highlight the involvement of NT signalling pathways for the possible modulation of β-cell function.
Collapse
|
28
|
Marya, Khan H, Nabavi SM, Habtemariam S. Anti-diabetic potential of peptides: Future prospects as therapeutic agents. Life Sci 2017; 193:153-158. [PMID: 29055800 DOI: 10.1016/j.lfs.2017.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic disorder in which the glucose level in blood exceeds beyond the normal level. Persistent hyperglycemia leads to diabetes late complication and obviously account for a large number of morbidity and mortality worldwide. Numerous therapeutic options are available for the treatment of diabetes including insulin for type I and oral tablets for type II, but its effective management is still a dream. To date, several options are under investigation in various research laboratories for efficacious and safer agents. Of them, peptides are currently amongst the most widely investigated potential therapeutic agents whose design and optimal uses are under development. A number of natural and synthetic peptides have so far been found with outstanding antidiabetic effect mediated through diverse mechanisms. The applications of new emerging techniques and drug delivery systems further offer opportunities to achieve the desired target outcomes. Some outstanding peptides in preclinical and clinical studies with better efficacy and safety profile have already been identified. Further detail studies on these peptides may therefore lead to significant clinically useful antidiabetic agents.
Collapse
Affiliation(s)
- Marya
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Charham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
29
|
Hosoda Y, Okahara F, Mori T, Deguchi J, Ota N, Osaki N, Shimotoyodome A. Dietary steamed wheat bran increases postprandial fat oxidation in association with a reduced blood glucose-dependent insulinotropic polypeptide response in mice. Food Nutr Res 2017; 61:1361778. [PMID: 28970776 PMCID: PMC5614337 DOI: 10.1080/16546628.2017.1361778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/19/2017] [Indexed: 10/25/2022] Open
Abstract
Obesity is a global epidemic associated with a higher risk of cardiovascular disease and metabolic disorders, such as type 2 diabetes. Previous studies demonstrated that chronic feeding of steamed wheat bran (WB) decreases obesity. To clarify the underlying mechanism and the responsible component for the anti-obesity effects of steamed WB, we investigated the effects of dietary steamed WB and arabinoxylan on postprandial energy metabolism and blood variables. Overnight-fasted male C57BL/6J mice were fed an isocaloric diet with or without steamed WB (30%). Energy metabolism was evaluated using an indirect calorimeter, and plasma glucose, insulin, and glucose-dependent insulinotropic polypeptide (GIP) levels were measured for 120 min after feeding. We similarly investigated the effect of arabinoxylan, a major component of steamed WB. Mice fed the WB diet had higher postprandial fat oxidation and a lower blood GIP response compared with mice fed the control diet. Mice fed the arabinoxylan diet exhibited a dose-dependent postprandial blood GIP response; increasing the arabinoxylan content in the diet led to a lower postprandial blood GIP response. The arabinoxylan-fed mice also had higher fat oxidation and energy expenditure compared with the control mice. In conclusion, the findings of the present study revealed that dietary steamed WB increases fat oxidation in mice. Increased fat oxidation may have a significant role in the anti-obesity effects of steamed WB. The postprandial effects of steamed WB are due to arabinoxylan, a major component of WB. The reduction of the postprandial blood GIP response may be responsible for the increase in postprandial fat utilization after feeding on a diet containing steamed WB and arabinoxylan.
Collapse
Affiliation(s)
- Yayoi Hosoda
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Fumiaki Okahara
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Takuya Mori
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Jun Deguchi
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Noriyasu Ota
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Noriko Osaki
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | | |
Collapse
|
30
|
Bhavya S, Lew PS, Mizuno TM. Central action of xenin affects the expression of lipid metabolism-related genes and proteins in mouse white adipose tissue. Neuropeptides 2017; 63:67-73. [PMID: 28190525 DOI: 10.1016/j.npep.2017.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/17/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022]
Abstract
Xenin is a gastrointestinal hormone that reduces food intake when administered centrally and it has been hypothesized that central action of xenin participates in the regulation of whole-body metabolism. The present study was performed to address this hypothesis by investigating the central effect of xenin on the expression of genes and proteins that are involved in the regulation of lipid metabolism in white adipose tissue (WAT). Male obese ob/ob mice received intracerebroventricular (i.c.v.) injections of xenin (5μg) twice 12h apart. Food intake and body weight change during a 24-h period after the first injection were measured. Epididymal WAT was collected at the end of the 24-h treatment period and levels of lipid metabolism-related genes and proteins were measured. Xenin treatment caused significant reductions in food intake and body weight compared to control vehicle treatment. Levels of fatty acid synthase (FASN) protein were significantly reduced by xenin treatment, while levels of adipose triglyceride lipase (Atgl) and beta-3 adrenergic receptor (Adrb3) mRNA and phosphorylated hormone sensitive lipase (Ser660-pHSL and Ser563-pHSL) were significantly increased by xenin treatment. These findings suggest that central action of xenin causes alterations in lipid metabolism in adipose tissue toward reduced lipogenesis and increased lipolysis, possibly contributing to xenin-induced body weight reduction. Thus, enhancing central action of xenin and its downstream targets may be possible targets for the treatment of obesity by reducing the amount of stored fat in adipose tissue.
Collapse
Affiliation(s)
- Sharma Bhavya
- Division of Endocrinology and Metabolic Disease, Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Pei San Lew
- Division of Endocrinology and Metabolic Disease, Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Tooru M Mizuno
- Division of Endocrinology and Metabolic Disease, Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.
| |
Collapse
|
31
|
Kaji I, Akiba Y, Kato I, Maruta K, Kuwahara A, Kaunitz JD. Xenin Augments Duodenal Anion Secretion via Activation of Afferent Neural Pathways. J Pharmacol Exp Ther 2017; 361:151-161. [PMID: 28115552 PMCID: PMC5363776 DOI: 10.1124/jpet.116.238485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/18/2017] [Indexed: 12/19/2022] Open
Abstract
Xenin-25, a neurotensin (NT)-related anorexigenic gut hormone generated mostly in the duodenal mucosa, is believed to increase the rate of duodenal ion secretion, because xenin-induced diarrhea is not present after Roux-en-Y gastric bypass surgery. Because the local effects of xenin on duodenal ion secretion have remained uninvestigated, we thus examined the neural pathways underlying xenin-induced duodenal anion secretion. Intravenous infusion of xenin-8, a bioactive C-terminal fragment of xenin-25, dose dependently increased the rate of duodenal HCO3- secretion in perfused duodenal loops of anesthetized rats. Xenin was immunolocalized to a subset of enteroendocrine cells in the rat duodenum. The mRNA of the xenin/NT receptor 1 (NTS1) was predominantly expressed in the enteric plexus, nodose and dorsal root ganglia, and in the lamina propria rather than in the epithelium. The serosal application of xenin-8 or xenin-25 rapidly and transiently increased short-circuit current in Ussing-chambered mucosa-submucosa preparations in a concentration-dependent manner in the duodenum and jejunum, but less so in the ileum and colon. The selective antagonist for NTS1, substance P (SP) receptor (NK1), or 5-hydroxytryptamine (5-HT)3, but not NTS2, inhibited the responses to xenin. Xenin-evoked Cl- secretion was reduced by tetrodotoxin (TTX) or capsaicin-pretreatment, and abolished by the inhibitor of TTX-resistant sodium channel Nav1.8 in combination with TTX, suggesting that peripheral xenin augments duodenal HCO3- and Cl- secretion through NTS1 activation on intrinsic and extrinsic afferent nerves, followed by release of SP and 5-HT. Afferent nerve activation by postprandial, peripherally released xenin may account for its secretory effects in the duodenum.
Collapse
Affiliation(s)
- Izumi Kaji
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Ikuo Kato
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Koji Maruta
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Atsukazu Kuwahara
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System Los Angeles, California (I.K., Y.A., J.D.K.); Departments of Medicine (I.K., Y.A., K.M., J.D.K.) and Surgery (J.D.K.), David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Kobe, Japan (I.K.); and Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Japan (A.K.)
| |
Collapse
|
32
|
Hasib A, Ng MT, Gault VA, Khan D, Parthsarathy V, Flatt PR, Irwin N. An enzymatically stable GIP/xenin hybrid peptide restores GIP sensitivity, enhances beta cell function and improves glucose homeostasis in high-fat-fed mice. Diabetologia 2017; 60:541-552. [PMID: 28004148 PMCID: PMC6518372 DOI: 10.1007/s00125-016-4186-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Glucose-dependent insulinotropic polypeptide (GIP) and xenin, regulatory gut hormones secreted from enteroendocrine K cells, exert important effects on metabolism. In addition, xenin potentiates the biological actions of GIP. The present study assessed the actions and therapeutic utility of a (DAla2)GIP/xenin-8-Gln hybrid peptide, in comparison with the parent peptides (DAla2)GIP and xenin-8-Gln. METHODS Following confirmation of enzymatic stability, insulin secretory activity of (DAla2)GIP/xenin-8-Gln was assessed in BRIN-BD11 beta cells. Acute and persistent glucose-lowering and insulin-releasing effects were then examined in vivo. Finally, the metabolic benefits of twice daily injection of (DAla2)GIP/xenin-8-Gln was determined in high-fat-fed mice. RESULTS All peptides significantly (p < 0.05 to p < 0.001) enhanced in vitro insulin secretion from pancreatic clonal BRIN-BD11 cells, with xenin (and particularly GIP)-related signalling pathways, being important for this action. Administration of (DAla2)GIP or (DAla2)GIP/xenin-8-Gln in combination with glucose significantly (p < 0.05) lowered blood glucose and increased plasma insulin in mice, with a protracted response of up to 4 h. All treatments elicited appetite-suppressive effects (p < 0.05), particularly (DAla2)GIP/xenin-8-Gln and xenin-8-Gln at elevated doses of 250 nmol/kg. Twice-daily administration of (DAla2)GIP/xenin-8-Gln or (DAla2)GIP for 21 days to high-fat-fed mice returned circulating blood glucose to lean control levels. In addition, (DAla2)GIP/xenin-8-Gln treatment significantly (p < 0.05) reduced glycaemic levels during a 24 h glucose profile assessment. Neither of the treatment regimens had an effect on body weight, energy intake or circulating insulin concentrations. However, insulin sensitivity was significantly (p < 0.001) improved by both treatments. Interestingly, GIP-mediated glucose-lowering (p < 0.05) and insulin-releasing (p < 0.05 to p < 0.01) effects were substantially improved by (DAla2)GIP and (DAla2)GIP/xenin-8-Gln treatment. Pancreatic islet and beta cell area (p < 0.001), as well as pancreatic insulin content (p < 0.05), were augmented in (DAla2)GIP/xenin-8-Gln-treated mice, related to enhanced proliferation and decreased apoptosis of beta cells, whereas (DAla2)GIP evoked increases (p < 0.05 to p < 0.01) in islet number. CONCLUSIONS/INTERPRETATION These studies highlight the clear potential of GIP/xenin hybrids for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Annie Hasib
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Ming T Ng
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Dawood Khan
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Vadivel Parthsarathy
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK.
| |
Collapse
|
33
|
Sterl K, Wang S, Oestricker L, Wallendorf MJ, Patterson BW, Reeds DN, Wice BM. Metabolic responses to xenin-25 are altered in humans with Roux-en-Y gastric bypass surgery. Peptides 2016; 82:76-84. [PMID: 27288245 PMCID: PMC4958565 DOI: 10.1016/j.peptides.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/25/2022]
Abstract
Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of enteroendocrine cells located in the proximal small intestine. Many effects of Xen are mediated by neurotensin receptor-1 on neurons. In healthy humans with normal glucose tolerance (NGT), Xen administration causes diarrhea and inhibits postprandial glucagon-like peptide-1 (GLP-1) release but not insulin secretion. This study determines (i) if Xen has similar effects in humans with Roux-en-Y gastric bypass (RYGB) and (ii) whether neural pathways potentially mediate effects of Xen on glucose homeostasis. Eight females with RYGB and no history of type 2 diabetes received infusions with 0, 4 or 12pmol Xen/kg/min with liquid meals on separate occasions. Plasma glucose and gastrointestinal hormone levels were measured and insulin secretion rates calculated. Pancreatic polypeptide and neuropeptide Y levels were surrogate markers for parasympathetic input to islets and sympathetic tone, respectively. Responses were compared to those in well-matched non-surgical participants with NGT from our earlier study. Xen similarly increased pancreatic polypeptide and neuropeptide Y responses in patients with and without RYGB. In contrast, the ability of Xen to inhibit GLP-1 release and cause diarrhea was severely blunted in patients with RYGB. With RYGB, Xen had no statistically significant effect on glucose, insulin secretory, GLP-1, glucose-dependent insulinotropic peptide, and glucagon responses. However, insulin and glucose-dependent insulinotropic peptide secretion preceded GLP-1 release suggesting circulating GLP-1 does not mediate exaggerated insulin release after RYGB. Thus, Xen has unmasked neural circuits to the distal gut that inhibit GLP-1 secretion, cause diarrhea, and are altered by RYGB.
Collapse
Affiliation(s)
- Karin Sterl
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110
| | - Songyan Wang
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110
| | - Lauren Oestricker
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael J Wallendorf
- Department of Internal Medicine, Divsion of Biostatistics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Bruce W Patterson
- Department of Internal Medicine, Division of Nutritional Science, Washington University School of Medicine, Saint Louis, MO 63110
| | - Dominic N Reeds
- Department of Internal Medicine, Division of Nutritional Science, Washington University School of Medicine, Saint Louis, MO 63110
| | - Burton M Wice
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
34
|
c-Fos induction by gut hormones and extracellular ATP in osteoblastic-like cell lines. Purinergic Signal 2016; 12:647-651. [PMID: 27439698 DOI: 10.1007/s11302-016-9526-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/10/2016] [Indexed: 12/21/2022] Open
Abstract
It is widely accepted that the c-Fos gene has a role in proliferation and differentiation of bone cells. ATP-induced c-Fos activation is relevant to bone homeostasis, because nucleotides that are present in the environment of bone cells can contribute to autocrine/paracrine signalling. Gut hormones have previously been shown to have an effect on bone metabolism. In this study, we used the osteoblastic Saos-2 cell line transfected with a c-Fos-driven reporter stimulated with five gut hormones: glucose inhibitory peptide (GIP), glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), ghrelin and obestatin, in the presence or absence of ATP. In addition, TE-85 cells were used to determine the time course of c-Fos transcript induction following stimulation with GLP-1, and GLP-2 with or without ATP, using reverse transcription qPCR. The significant results from the experiments are as follows: higher level of c-Fos induction in presence of GIP, obestatin (p = 0.019 and p = 0.011 respectively), and GIP combined with ATP (p < 0.001) using the luciferase assay; GLP-1 and GLP-2 combined with ATP (p = 0.034 and p = 0.002, respectively) and GLP-2 alone (p < 0.001) using qPCR. In conclusion, three of the gut peptides induced c-Fos, providing a potential mechanism underlying the actions of these hormones in bone which can be directed or enhanced by the presence of ATP.
Collapse
|
35
|
Kim ER, Lew PS, Spirkina A, Mizuno TM. Xenin-induced feeding suppression is not mediated through the activation of central extracellular signal-regulated kinase signaling in mice. Behav Brain Res 2016; 312:118-26. [PMID: 27316340 DOI: 10.1016/j.bbr.2016.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Xenin is a gut hormone that reduces food intake by partly acting through the hypothalamus via neurotensin receptor 1 (Ntsr1). However, specific signaling pathways that mediate xenin-induced feeding suppression are not fully understood. Activation of Ntsr1 leads to the activation of the extracellular signal-regulated kinase (ERK). Hypothalamic ERK participates in the regulation of food intake by mediating the effect of hormonal signals. Therefore, we hypothesized that the anorectic effect of xenin is mediated by hypothalamic ERK signaling. To address this hypothesis, we compared levels of phosphorylation of ERK1/2 (pERK1/2) in the hypothalamus of both control and xenin-treated mice. The effect of xenin on ERK1/2 phosphorylation was also examined in mouse hypothalamic neuronal cell lines with or without Ntsr1. We also examined the effect of the blockade of central ERK signaling on xenin-induced feeding suppression in mice. The intraperitoneal (i.p.) injection of xenin caused a significant increase in the number of pERK1/2-immunoreactive cells in the hypothalamic arcuate nucleus. The majority of pERK1/2-positive cells expressed neuronal nuclei (NeuN), a marker for neurons. Xenin treatment increased pERK1/2 levels in one cell line expressing Ntsr1 but not another line without Ntsr1 expression. Both i.p. and intracerebroventricular (i.c.v.) injections of xenin reduced food intake in mice. The i.c.v. pre-treatment with U0126, a selective inhibitor of ERK1/2 upstream kinases, did not affect xenin-induced reduction in food intake. These findings suggest that although xenin activates ERK signaling in subpopulations of hypothalamic neurons, xenin does not require the activation of hypothalamic ERK signaling pathway to elicit feeding suppression.
Collapse
Affiliation(s)
- Eun Ran Kim
- Division of Endocrinology & Metabolic Disease, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Pei San Lew
- Division of Endocrinology & Metabolic Disease, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Alexandra Spirkina
- Division of Endocrinology & Metabolic Disease, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Tooru M Mizuno
- Division of Endocrinology & Metabolic Disease, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
36
|
Chowdhury S, Wang S, Dunai J, Kilpatrick R, Oestricker LZ, Wallendorf MJ, Patterson BW, Reeds DN, Wice BM. Hormonal Responses to Cholinergic Input Are Different in Humans with and without Type 2 Diabetes Mellitus. PLoS One 2016; 11:e0156852. [PMID: 27304975 PMCID: PMC4909255 DOI: 10.1371/journal.pone.0156852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022] Open
Abstract
Peripheral muscarinic acetylcholine receptors regulate insulin and glucagon release in rodents but their importance for similar roles in humans is unclear. Bethanechol, an acetylcholine analogue that does not cross the blood-brain barrier, was used to examine the role of peripheral muscarinic signaling on glucose homeostasis in humans with normal glucose tolerance (NGT; n = 10), impaired glucose tolerance (IGT; n = 11), and type 2 diabetes mellitus (T2DM; n = 9). Subjects received four liquid meal tolerance tests, each with a different dose of oral bethanechol (0, 50, 100, or 150 mg) given 60 min before a meal containing acetaminophen. Plasma pancreatic polypeptide (PP), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), glucose, glucagon, C-peptide, and acetaminophen concentrations were measured. Insulin secretion rates (ISRs) were calculated from C-peptide levels. Acetaminophen and PP concentrations were surrogate markers for gastric emptying and cholinergic input to islets. The 150 mg dose of bethanechol increased the PP response 2-fold only in the IGT group, amplified GLP-1 release in the IGT and T2DM groups, and augmented the GIP response only in the NGT group. However, bethanechol did not alter ISRs or plasma glucose, glucagon, or acetaminophen concentrations in any group. Prior studies showed infusion of xenin-25, an intestinal peptide, delays gastric emptying and reduces GLP-1 release but not ISRs when normalized to plasma glucose levels. Analysis of archived plasma samples from this study showed xenin-25 amplified postprandial PP responses ~4-fold in subjects with NGT, IGT, and T2DM. Thus, increasing postprandial cholinergic input to islets augments insulin secretion in mice but not humans. Trial Registration: ClinicalTrials.gov NCT01434901
Collapse
Affiliation(s)
- Sara Chowdhury
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Songyan Wang
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Judit Dunai
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Rachel Kilpatrick
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Lauren Z. Oestricker
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Michael J. Wallendorf
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Bruce W. Patterson
- Department of Internal Medicine, Division of Nutritional Science, Metabolism and Lipid Research Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Dominic N. Reeds
- Department of Internal Medicine, Division of Nutritional Science, Metabolism and Lipid Research Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Burton M. Wice
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research Washington University School of Medicine, Saint Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
37
|
Parthsarathy V, Irwin N, Hasib A, Martin CM, McClean S, Bhat VK, Ng MT, Flatt PR, Gault VA. A novel chemically modified analogue of xenin-25 exhibits improved glucose-lowering and insulin-releasing properties. Biochim Biophys Acta Gen Subj 2016; 1860:757-64. [DOI: 10.1016/j.bbagen.2016.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/16/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
38
|
Hussain MA, Akalestou E, Song WJ. Inter-organ communication and regulation of beta cell function. Diabetologia 2016; 59:659-67. [PMID: 26791990 PMCID: PMC4801104 DOI: 10.1007/s00125-015-3862-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 01/18/2023]
Abstract
The physiologically predominant signal for pancreatic beta cells to secrete insulin is glucose. While circulating glucose levels and beta cell glucose metabolism regulate the amount of released insulin, additional signals emanating from other tissues and from neighbouring islet endocrine cells modulate beta cell function. To this end, each individual beta cell can be viewed as a sensor of a multitude of stimuli that are integrated to determine the extent of glucose-dependent insulin release. This review discusses recent advances in our understanding of inter-organ communications that regulate beta cell insulin release in response to elevated glucose levels.
Collapse
Affiliation(s)
- Mehboob A Hussain
- Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA.
- Department of Pediatrics, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA.
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| | - Elina Akalestou
- Department of Pediatrics, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA
| | - Woo-Jin Song
- Department of Pediatrics, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA
| |
Collapse
|
39
|
Martin CM, Parthsarathy V, Hasib A, Ng MT, McClean S, Flatt PR, Gault VA, Irwin N. Biological Activity and Antidiabetic Potential of C-Terminal Octapeptide Fragments of the Gut-Derived Hormone Xenin. PLoS One 2016; 11:e0152818. [PMID: 27032106 PMCID: PMC4816510 DOI: 10.1371/journal.pone.0152818] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Xenin is a peptide that is co-secreted with the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), from intestinal K-cells in response to feeding. Studies demonstrate that xenin has appetite suppressive effects and modulates glucose-induced insulin secretion. The present study was undertaken to determine the bioactivity and antidiabetic properties of two C-terminal fragment xenin peptides, namely xenin 18-25 and xenin 18-25 Gln. In BRIN-BD11 cells, both xenin fragment peptides concentration-dependently stimulated insulin secretion, with similar efficacy as the parent peptide. Neither fragment peptide had any effect on acute feeding behaviour at elevated doses of 500 nmol/kg bw. When administered together with glucose to normal mice at 25 nmol/kg bw, the overall insulin secretory effect was significantly enhanced in both xenin 18-25 and xenin 18-25 Gln treated mice, with better moderation of blood glucose levels. Twice daily administration of xenin 18-25 or xenin 18-25 Gln for 21 days in high fat fed mice did not affect energy intake, body weight, circulating blood glucose or body fat stores. However, circulating plasma insulin concentrations had a tendency to be elevated, particularly in xenin 18-25 Gln mice. Both treatment regimens significantly improved insulin sensitivity by the end of the treatment period. In addition, sustained treatment with xenin 18-25 Gln significantly reduced the overall glycaemic excursion and augmented the insulinotropic response to an exogenous glucose challenge on day 21. In harmony with this, GIP-mediated glucose-lowering and insulin-releasing effects were substantially improved by twice daily xenin 18-25 Gln treatment. Overall, these data provide evidence that C-terminal octapeptide fragments of xenin, such as xenin 18-25 Gln, have potential therapeutic utility for type 2 diabetes.
Collapse
Affiliation(s)
- Christine M. Martin
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Vadivel Parthsarathy
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Annie Hasib
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Ming T. Ng
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Stephen McClean
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Peter R. Flatt
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Victor A. Gault
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Irwin N, Flatt PR. New perspectives on exploitation of incretin peptides for the treatment of diabetes and related disorders. World J Diabetes 2015; 6:1285-1295. [PMID: 26557956 PMCID: PMC4635139 DOI: 10.4239/wjd.v6.i15.1285] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
The applicability of stable gut hormones for the treatment of obesity-related diabetes is now undisputable. This is based predominantly on prominent and sustained glucose-lowering actions, plus evidence that these peptides can augment insulin secretion and pancreatic islet function over time. This review highlights the therapeutic potential of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), oxyntomodulin (OXM) and cholecystokinin (CCK) for obesity-related diabetes. Stable GLP-1 mimetics have already been successfully adopted into the diabetic clinic, whereas GIP, CCK and OXM molecules offer promise as potential new classes of antidiabetic drugs. Moreover, recent studies have shown improved therapeutic effects following simultaneous modulation of multiple receptor signalling pathways by combination therapy or use of dual/triple agonist peptides. However, timing and composition of injections may be important to permit interludes of beta-cell rest. The review also addresses the possible perils of incretin based drugs for treatment of prediabetes. Finally, the unanticipated utility of stable gut peptides as effective treatments for complications of diabetes, bone disorders, cognitive impairment and cardiovascular dysfunction is considered.
Collapse
|
41
|
Gault VA, Martin CMA, Flatt PR, Parthsarathy V, Irwin N. Xenin-25[Lys13PAL]: a novel long-acting acylated analogue of xenin-25 with promising antidiabetic potential. Acta Diabetol 2015; 52:461-71. [PMID: 25374384 DOI: 10.1007/s00592-014-0681-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
Abstract
AIMS Xenin-25 is co-secreted with glucose-dependent insulinotropic polypeptide (GIP) from intestinal K-cells following a meal. Xenin-25 is believed to play a key role in glucose homoeostasis and potentiate the insulinotropic effect of GIP. METHODS This study investigated the effects of sub-chronic administration of the stable and longer-acting xenin-25 analogue, xenin-25[Lys(13)PAL] (25 nmol/kg), in diabetic mice fed with a high-fat diet. RESULTS Initial studies confirmed the significant persistent glucose-lowering (p < 0.05) and insulin-releasing (p < 0.05) actions of xenin-25[Lys(13)PAL] compared with native xenin-25. Interestingly, xenin-25 retained significant glucose-lowering activity in GIP receptor knockout mice. Twice-daily intraperitoneal (i.p.) injection of xenin-25[Lys(13)PAL] for 14 days had no significant effect on food intake or body weight in high-fat-fed mice. Non-fasting glucose and insulin levels were also unchanged, but overall glucose levels during an i.p. glucose tolerance and oral nutrient challenge were significantly (p < 0.05) lowered by xenin-25[Lys(13)PAL] treatment. These changes were accompanied by significant improvements in i.p. (p < 0.05) and oral (p < 0.001) nutrient-stimulated insulin concentrations. No appreciable changes in insulin sensitivity were observed between xenin-25[Lys(13)PAL] and saline-treated high-fat mice. However, xenin-25[Lys(13)PAL] treatment restored notable sensitivity to the biological actions of exogenous GIP injection. Consumption of O2, production of CO2, respiratory exchange ratio and energy expenditure were not altered by 14-day twice-daily treatment with xenin-25[Lys(13)PAL]. In contrast, ambulatory activity was significantly (p < 0.05 to p < 0.001) increased during the dark phase in xenin-25[Lys(13)PAL] mice compared with high-fat controls. CONCLUSIONS These data indicate that sustained administration of a stable analogue of xenin-25 exerts a spectrum of beneficial metabolic effects in high-fat-fed mice.
Collapse
Affiliation(s)
- V A Gault
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, UK
| | | | | | | | | |
Collapse
|
42
|
Zhang S, Wang S, Puhl MD, Jiang X, Hyrc KL, Laciny E, Wallendorf MJ, Pappan KL, Coyle JT, Wice BM. Global biochemical profiling identifies β-hydroxypyruvate as a potential mediator of type 2 diabetes in mice and humans. Diabetes 2015; 64:1383-94. [PMID: 25368100 PMCID: PMC4375086 DOI: 10.2337/db14-1188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 are incretins secreted by respective K and L enteroendocrine cells after eating and amplify glucose-stimulated insulin secretion (GSIS). This amplification has been termed the "incretin response." To determine the role(s) of K cells for the incretin response and type 2 diabetes mellitus (T2DM), diphtheria toxin-expressing (DT) mice that specifically lack GIP-producing cells were backcrossed five to eight times onto the diabetogenic NONcNZO10/Ltj background. As in humans with T2DM, DT mice lacked an incretin response, although GLP-1 release was maintained. With high-fat (HF) feeding, DT mice remained lean but developed T2DM, whereas wild-type mice developed obesity but not diabetes. Metabolomics identified biochemicals reflecting impaired glucose handling, insulin resistance, and diabetes complications in prediabetic DT/HF mice. β-Hydroxypyruvate and benzoate levels were increased and decreased, respectively, suggesting β-hydroxypyruvate production from d-serine. In vitro, β-hydroxypyruvate altered excitatory properties of myenteric neurons and reduced islet insulin content but not GSIS. β-Hydroxypyruvate-to-d-serine ratios were lower in humans with impaired glucose tolerance compared with normal glucose tolerance and T2DM. Earlier human studies unmasked a neural relay that amplifies GIP-mediated insulin secretion in a pattern reciprocal to β-hydroxypyruvate-to-d-serine ratios in all groups. Thus, K cells may maintain long-term function of neurons and β-cells by regulating β-hydroxypyruvate levels.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO
| | - Songyan Wang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO
| | - Matthew D Puhl
- Laboratory for Psychiatric and Molecular Neuroscience, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA
| | - Xuntian Jiang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO
| | - Krzysztof L Hyrc
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | - Erin Laciny
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO
| | - Michael J Wallendorf
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO
| | | | - Joseph T Coyle
- Laboratory for Psychiatric and Molecular Neuroscience, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA
| | - Burton M Wice
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
43
|
Affiliation(s)
- Tooru M Mizuno
- Division of Endocrinology and Metabolic Diseases, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
44
|
Arslan N, Sayin O, Tokgoz Y. Evaluation of serum xenin and ghrelin levels and their relationship with nonalcoholic fatty liver disease and insulin resistance in obese adolescents. J Endocrinol Invest 2014; 37:1091-1097. [PMID: 25200997 DOI: 10.1007/s40618-014-0160-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/10/2014] [Indexed: 01/06/2023]
Abstract
AIM Xenin is a peptide of the neurotensin/xenopsin/xenin family secreted from gastric cells and other tissues. The first aim of this study was to investigate the serum xenin and ghrelin levels in obese children and compare the patients with healthy controls. The second aim was to compare the xenin levels in patients with nonalcoholic fatty liver disease (NAFLD) and also with insulin resistance with the patients without these complications. METHODS 62 obese adolescents (27 with NAFLD) and 32 healthy controls were enrolled in the study. Obesity was defined as a body mass index exceeding the 95th percentile for the patients' age and sex. NAFLD was diagnosed via ultrasonographic examination. The insulin resistance was calculated by a homeostasis model assessment (HOMA-IR) index. Serum xenin and ghrelin levels were assessed by enzyme-linked immunosorbent assay. RESULTS The mean serum xenin concentration was significantly higher in obese adolescents than the healthy peers (68.15 ± 0.63 vs 16.54 ± 0.07 pg/mL, p = 0.000). Serum xenin levels were not different between the patients with and without NAFLD and also between the patients with and without IR (p > 0.05). There was a positive correlation between xenin levels and relative weight (r = 0.663, p < 0.001) and HOMA-IR (r = 0.612, p < 0.001). Ghrelin was negatively correlated with relative weight (r = -0.283, p < 0.05). CONCLUSION In this study, serum xenin levels of both groups of obese patients were found higher than controls. On the other hand, xenin levels were not different in patients with and without NAFLD. High levels of xenin may be in relation with obesity.
Collapse
Affiliation(s)
- N Arslan
- Division of Pediatric Gastroenterology, Nutrition and Metabolism, Department of Pediatrics, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey,
| | | | | |
Collapse
|
45
|
Martin CMA, Parthsarathy V, Pathak V, Gault VA, Flatt PR, Irwin N. Characterisation of the biological activity of xenin-25 degradation fragment peptides. J Endocrinol 2014; 221:193-200. [PMID: 24520141 DOI: 10.1530/joe-13-0617] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Xenin-25, a peptide co-secreted with the incretin hormone glucose-dependent insulinotropic polypeptide (GIP), possesses promising therapeutic actions for obesity-diabetes. However, native xenin-25 is rapidly degraded by serum enzymes to yield the truncated metabolites: xenin 9-25, xenin 11-25, xenin 14-25 and xenin 18-25. This study has examined the biological activities of these fragment peptides. In vitro studies using BRIN-BD11 cells demonstrated that native xenin-25 and xenin 18-25 possessed significant (P<0.05 to P<0.001) insulin-releasing actions at 5.6 and 16.7 mM glucose, respectively, but not at 1.1 mM glucose. In addition, xenin 18-25 significantly (P<0.05) potentiated the insulin-releasing action of the stable GIP mimetic (D-Ala²)GIP. In contrast, xenin 9-25, xenin 11-25 and xenin 14-25 displayed neither insulinotropic nor GIP-potentiating actions. Moreover, xenin 9-25, xenin 11-25 and xenin 14-25 significantly (P<0.05 to P<0.001) inhibited xenin-25 (10⁻⁶ M)-induced insulin release in vitro. I.p. administration of xenin-based peptides in combination with glucose to high fat-fed mice did not significantly affect the glycaemic excursion or glucose-induced insulin release compared with controls. However, when combined with (D-Ala²)GIP, all xenin peptides significantly (P<0.01 to P<0.001) reduced the overall glycaemic excursion, albeit to a similar extent as (D-Ala²)GIP alone. Xenin-25 and xenin 18-25 also imparted a potential synergistic effect on (D-Ala²)GIP-induced insulin release in high fat-fed mice. All xenin-based peptides lacked significant satiety effects in normal mice. These data demonstrate that the C-terminally derived fragment peptide of xenin-25, xenin 18-25, exhibits significant biological actions that could have therapeutic utility for obesity-diabetes.
Collapse
Affiliation(s)
- Christine M A Martin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | | | | | | | | | | |
Collapse
|
46
|
Impaired suppression of feeding by the gut hormone xenin in type I interleukin-1 receptor-deficient mice. Behav Brain Res 2014; 261:60-4. [DOI: 10.1016/j.bbr.2013.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/10/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022]
|
47
|
Chowdhury S, Reeds DN, Crimmins DL, Patterson BW, Laciny E, Wang S, Tran HD, Griest TA, Rometo DA, Dunai J, Wallendorf MJ, Ladenson JH, Polonsky KS, Wice BM. Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 2014; 306:G301-9. [PMID: 24356886 PMCID: PMC3920124 DOI: 10.1152/ajpgi.00383.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine cells. In animals, Xen regulates gastrointestinal function and glucose homeostasis, typically by initiating neural relays. However, little is known about Xen action in humans. This study determines whether exogenously administered Xen modulates gastric emptying and/or insulin secretion rates (ISRs) following meal ingestion. Fasted subjects with normal (NGT) or impaired (IGT) glucose tolerance and Type 2 diabetes mellitus (T2DM; n = 10-14 per group) ingested a liquid mixed meal plus acetaminophen (ACM; to assess gastric emptying) at time zero. On separate occasions, a primed-constant intravenous infusion of vehicle or Xen at 4 (Lo-Xen) or 12 (Hi-Xen) pmol · kg(-1) · min(-1) was administered from zero until 300 min. Some subjects with NGT received 30- and 90-min Hi-Xen infusions. Plasma ACM, glucose, insulin, C-peptide, glucagon, Xen, GIP, and glucagon-like peptide-1 (GLP-1) levels were measured and ISRs calculated. Areas under the curves were compared for treatment effects. Infusion with Hi-Xen, but not Lo-Xen, similarly delayed gastric emptying and reduced postprandial glucose levels in all groups. Infusions for 90 or 300 min, but not 30 min, were equally effective. Hi-Xen reduced plasma GLP-1, but not GIP, levels without altering the insulin secretory response to glucose. Intense staining for Xen receptors was detected on PGP9.5-positive nerve fibers in the longitudinal muscle of the human stomach. Thus Xen reduces gastric emptying in humans with and without T2DM, probably via a neural relay. Moreover, endogenous GLP-1 may not be a major enhancer of insulin secretion in healthy humans under physiological conditions.
Collapse
Affiliation(s)
- Sara Chowdhury
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Dominic N. Reeds
- 2Division of Nutritional Science, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Dan L. Crimmins
- 3Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri;
| | - Bruce W. Patterson
- 2Division of Nutritional Science, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Erin Laciny
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Songyan Wang
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Hung D. Tran
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Terry A. Griest
- 3Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri;
| | - David A. Rometo
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Judit Dunai
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| | - Michael J. Wallendorf
- 4Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri; and
| | - Jack H. Ladenson
- 3Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri;
| | - Kenneth S. Polonsky
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; ,5Division of the Biological Sciences and Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - Burton M. Wice
- 1Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri;
| |
Collapse
|
48
|
Irwin N, Flatt PR. Enteroendocrine hormone mimetics for the treatment of obesity and diabetes. Curr Opin Pharmacol 2013; 13:989-95. [DOI: 10.1016/j.coph.2013.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 12/13/2022]
|
49
|
Chowdhury S, Wang S, Patterson BW, Reeds DN, Wice BM. The combination of GIP plus xenin-25 indirectly increases pancreatic polypeptide release in humans with and without type 2 diabetes mellitus. ACTA ACUST UNITED AC 2013; 187:42-50. [PMID: 24183983 DOI: 10.1016/j.regpep.2013.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/07/2013] [Accepted: 10/23/2013] [Indexed: 12/25/2022]
Abstract
Xenin-25 (Xen) is a 25-amino acid neurotensin-related peptide that activates neurotensin receptor-1 (NTSR1). We previously showed that Xen increases the effect of glucose-dependent insulinotropic polypeptide (GIP) on insulin release 1) in hyperglycemic mice via a cholinergic relay in the periphery independent from the central nervous system and 2) in humans with normal or impaired glucose tolerance, but not type 2 diabetes mellitus (T2DM). Since this blunted response to Xen defines a novel defect in T2DM, it is important to understand how Xen regulates islet physiology. On separate visits, subjects received intravenous graded glucose infusions with vehicle, GIP, Xen, or GIP plus Xen. The pancreatic polypeptide response was used as an indirect measure of cholinergic input to islets. The graded glucose infusion itself had little effect on the pancreatic polypeptide response whereas administration of Xen equally increased the pancreatic polypeptide response in humans with normal glucose tolerance, impaired glucose tolerance, and T2DM. The pancreatic polypeptide response to Xen was similarly amplified by GIP in all 3 groups. Antibody staining of human pancreas showed that NTSR1 is not detectable on islet endocrine cells, sympathetic neurons, blood vessels, or endothelial cells but is expressed at high levels on PGP9.5-positive axons in the exocrine tissue and at low levels on ductal epithelial cells. PGP9.5 positive nerve fibers contacting beta cells in the islet periphery were also observed. Thus, a neural relay, potentially involving muscarinic acetylcholine receptors, indirectly increases the effects of Xen on pancreatic polypeptide release in humans.
Collapse
Affiliation(s)
- Sara Chowdhury
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Saint Louis, MO, United States
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Nigel Irwin
- School of Pharmacy and Pharmaceutical Sciences, The SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, U.K
| | - Victor Alan Gault
- School of Biomedical Sciences, The SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, U.K
- Corresponding author: Victor Alan Gault,
| |
Collapse
|