1
|
Busnadiego I, Lork M, Fernbach S, Schiefer S, Tsolakos N, Hale BG. An atlas of protein phosphorylation dynamics during interferon signaling. Proc Natl Acad Sci U S A 2025; 122:e2412990122. [PMID: 40138345 PMCID: PMC12002234 DOI: 10.1073/pnas.2412990122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Interferons (IFNs, types I-III) have pleiotropic functions in promoting antiviral and antitumor responses, as well as in modulating inflammation. Dissecting the signaling mechanisms elicited by different IFNs is therefore critical to understand their phenotypes. Here, we use mass spectrometry to investigate the early temporal dynamics of cellular protein phosphorylation in a human lung epithelial cell-line as it responds to stimulation with IFNα2, IFNβ, IFNω, IFNγ, or IFNλ1, representing all IFN types. We report an atlas of over 700 common or unique phosphorylation events reprogrammed by these different IFNs, revealing both previously known and uncharacterized modifications. While the proteins differentially phosphorylated following IFN stimulation have diverse roles, there is an enrichment of factors involved in chromatin remodeling, transcription, and RNA splicing. Functional screening and mechanistic studies identify that several proteins modified in response to IFNs contribute to host antiviral responses, either directly or by supporting IFN-stimulated gene or protein production. Among these, phosphorylation of PLEKHG3 at serine-1081 creates a phospho-regulated binding motif for the docking of 14-3-3 proteins, and together these factors contribute to coordinating efficient IFN-stimulated gene expression independent of early Janus kinase/signal transducer and activator of transcription signaling. Our findings map the global phosphorylation landscapes regulated by IFN types I, II, and III, and provide a key resource to explore their functional consequences.
Collapse
Affiliation(s)
- Idoia Busnadiego
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Marie Lork
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Sonja Fernbach
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Samira Schiefer
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Nikos Tsolakos
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| |
Collapse
|
2
|
Wang X, Liu Z, Xu X, Wang X, Ming Z, Liu C, Gao H, Li T, Liang Q. KSHV hijacks the antiviral kinase IKKε to initiate lytic replication. PLoS Pathog 2025; 21:e1012856. [PMID: 39823515 PMCID: PMC11781660 DOI: 10.1371/journal.ppat.1012856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/30/2025] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
IKKε is a traditional antiviral kinase known for positively regulating the production of type I interferon (IFN) and the expression of IFN-stimulated genes (ISGs) during various virus infections. However, through an inhibitor screen targeting cellular kinases, we found that IKKε plays a crucial role in the lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, during KSHV lytic replication, IKKε undergoes significant SUMOylation at both Lys321 and Lys549 by the viral SUMO E3 ligase ORF45. This SUMOylation event leads to the association of IKKε with PML, resulting in the disruption of PML nuclear bodies (PML NBs) and subsequent increase in lytic replication of KSHV. Notably, IKKε does not affect the total expression level of PML but facilitates the translocation of PML from the nucleus to the cytoplasm during KSHV lytic replication. Further experiments utilizing mutations on the SUMOylation sites of IKKε or inhibiting IKKε using BAY-985 showed that these actions no longer impact PML NBs and completely suppress the lytic replication of KSHV. These findings not only emphasize the essential role of IKKε in the life cycle of KSHV but also illustrate how KSHV exploits IKKε through SUMOylation modification to enhance its own replication process.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Joint Ph.D. Degree Program between SJTU-SM and HUJI-MED, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenshan Liu
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Xu
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Wang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zizhen Ming
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengrong Liu
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Gao
- Department of Bone and Joint Surgery, Orthopaedic Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tingting Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiming Liang
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhou P, Liu A, Chen D, Wu W, Zhang Q, Chen H, Zhou H, Luo R. Molecular cloning and functional characterization of pigeon IKKε. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105103. [PMID: 38000488 DOI: 10.1016/j.dci.2023.105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Inhibitor of nuclear factor kappa-B kinase ε (IKKε), a member of the non-canonical IκB kinase family, plays a critical role in connecting various signaling pathways associated with the initiation of type I interferon (IFN) production. Although the importance of IKKε in innate immunity has been well established in mammals and fish, its characterization and function in pigeons have remained largely unexplored. In this study, we successfully cloned pigeon IKKε (piIKKε) from pigeon embryo fibroblasts (PEFs) for the first time. This gene encodes 722 amino acids and shares high amino acid similarity with its duck and goose counterparts. piIKKε showed a diffuse cytoplasmic distribution and broad expression in all tissues examined. Overexpression of piIKKε in PEFs significantly activated the IFN-β promoter, with both the kinase and CC domains of piIKKε playing key roles in initiating IFN-β expression. Knockdown of piIKKε using small interfering RNA significantly reduced the levels of IFN-β induced by NDV, AIV, poly (I:C), or SeV. Furthermore, the presence of piIKKε resulted in a remarkable reduction in the replication of both avian influenza virus (AIV) H9N2 and Newcastle disease virus (NDV) in PEFs. Our results demonstrate that piIKKε plays a critical role in mediating antiviral innate immunity in pigeons.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Aixin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Dong Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Wanrong Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Qingxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510640, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510640, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
| |
Collapse
|
4
|
Kusuda M, Nakasone H, Yoshimura K, Okada Y, Tamaki M, Matsuoka A, Ishikawa T, Meno T, Nakamura Y, Kawamura M, Takeshita J, Kawamura S, Yoshino N, Misaki Y, Gomyo A, Tanihara A, Kimura SI, Kako S, Kanda Y. Gene expression and TCR amino acid sequences selected by HLA-A02:01-restricted CTLs specific to HTLV-1 in ATL patients. Br J Haematol 2023; 202:578-588. [PMID: 37317804 DOI: 10.1111/bjh.18918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Adult T-cell leukaemia/lymphoma (ATL) is an aggressive malignancy of peripheral T cells caused by human T-cell lymphotropic virus type-1 (HTLV-1). Tax is the most important regulatory protein for HTLV-1. We aimed to reveal a unique amino acid sequence (AA) of complementarity-determining region 3 (CDR3) of the T-cell receptor (TCR)β and TCRα chains of HLA-A*02:01-restricted Tax11-19 -specific cytotoxic T cells (Tax-CTLs). The gene expression profiles (GEP) of Tax-CTLs were assessed by the next-generation sequence (NGS) method with SMARTer technology. Tax-CTLs seemed to be oligoclonal, and their gene compositions were skewed. The unique motifs of 'DSWGK' in TCRα and 'LAG' in TCRβ at CDR3 were observed in almost all patients. Tax-CTL clones harbouring the 'LAG' motif with BV28 had a higher binding score than those without either of them, besides a higher binding score associated with longer survival. Tax-CTLs established from a single cell showed killing activities against Tax-peptide-pulsed HLA-A2+ T2 cell lines. GEP of Tax-CTLs revealed that genes associated with immune response activity were well preserved in long-term survivors with stable status. These methods and results can help us better understand immunity against ATL, and should contribute to future studies on the clinical application of adoptive T-cell therapies.
Collapse
Affiliation(s)
- Machiko Kusuda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medicial University, Shimotsuke, Japan
| | - Kazuki Yoshimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yosuke Okada
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masaharu Tamaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Akari Matsuoka
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Takuto Ishikawa
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Tomohiro Meno
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yuhei Nakamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Masakatsu Kawamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Junko Takeshita
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shunto Kawamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Nozomu Yoshino
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yukiko Misaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Ayumi Gomyo
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Aki Tanihara
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shun-Ichi Kimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Shinichi Kako
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
5
|
Kang SM, Park JY, Han HJ, Song BM, Tark D, Choi BS, Hwang SB. Hepatitis C Virus Nonstructural Protein 5A Interacts with Immunomodulatory Kinase IKKε to Negatively Regulate Innate Antiviral Immunity. Mol Cells 2022; 45:702-717. [PMID: 35993162 PMCID: PMC9589372 DOI: 10.14348/molcells.2022.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatitis C virus (HCV) infection can lead to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV employs diverse strategies to evade host antiviral innate immune responses to mediate a persistent infection. In the present study, we show that nonstructural protein 5A (NS5A) interacts with an NF-κB inhibitor immunomodulatory kinase, IKKε, and subsequently downregulats beta interferon (IFN-β) promoter activity. We further demonstrate that NS5A inhibits DDX3-mediated IKKε and interferon regulatory factor 3 (IRF3) phosphorylation. We also note that hyperphosphorylation of NS5A mediats protein interplay between NS5A and IKKε, thereby contributing to NS5A-mediated modulation of IFN-β signaling. Lastly, NS5A inhibits IKKε-dependent p65 phosphorylation and NF-κB activation. Based on these findings, we propose NS5A as a novel regulator of IFN signaling events, specifically by inhibiting IKKε downstream signaling cascades through its interaction with IKKε. Taken together, these data suggest an additional mechanistic means by which HCV modulates host antiviral innate immune responses to promote persistent viral infection.
Collapse
Affiliation(s)
- Sang-Min Kang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
- Division of Chronic Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Ji-Young Park
- Division of Chronic Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Hee-Jeong Han
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Byeong-Min Song
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Byeong-Sun Choi
- Division of Chronic Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Soon B. Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| |
Collapse
|
6
|
Hayashi M, Schultz EP, Lanchy JM, Lodmell JS. Time-Resolved Analysis of N-RNA Interactions during RVFV Infection Shows Qualitative and Quantitative Shifts in RNA Encapsidation and Packaging. Viruses 2021; 13:2417. [PMID: 34960686 PMCID: PMC8704896 DOI: 10.3390/v13122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a negative-sense, tripartite RNA virus that is endemic to Africa and the Arabian Peninsula. It can cause severe disease and mortality in humans and domestic livestock and is a concern for its potential to spread more globally. RVFV's nucleocapsid protein (N) is an RNA-binding protein that is necessary for viral transcription, replication, and the production of nascent viral particles. We have conducted crosslinking, immunoprecipitation, and sequencing (CLIP-seq) to characterize N interactions with host and viral RNAs during infection. In parallel, to precisely measure intracellular N levels, we employed multiple reaction monitoring mass spectrometry (MRM-MS). Our results show that N binds mostly to host RNAs at early stages of infection, yielding nascent virus particles of reduced infectivity. The expression of N plateaus 10 h post-infection, whereas the intracellular viral RNA concentration continues to increase. Moreover, the virions produced later in infection have higher infectivity. Taken together, the detailed examination of these N-RNA interactions provides insight into how the regulated expression of N and viral RNA produces both infectious and incomplete, noninfectious particles.
Collapse
Affiliation(s)
- Miyuki Hayashi
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA;
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
| | - Eric P. Schultz
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| | - J. Stephen Lodmell
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| |
Collapse
|
7
|
McFadden MJ, McIntyre ABR, Mourelatos H, Abell NS, Gokhale NS, Ipas H, Xhemalçe B, Mason CE, Horner SM. Post-transcriptional regulation of antiviral gene expression by N6-methyladenosine. Cell Rep 2021; 34:108798. [PMID: 33657363 PMCID: PMC7981787 DOI: 10.1016/j.celrep.2021.108798] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Type I interferons (IFNs) induce hundreds of IFN-stimulated genes (ISGs) in response to viral infection. Induction of these ISGs must be regulated for an efficient and controlled antiviral response, but post-transcriptional controls of these genes have not been well defined. Here, we identify a role for the RNA base modification N6-methyladenosine (m6A) in the regulation of ISGs. Using ribosome profiling and quantitative mass spectrometry, coupled with m6A-immunoprecipitation and sequencing, we identify a subset of ISGs, including IFITM1, whose translation is enhanced by m6A and the m6A methyltransferase proteins METTL3 and METTL14. We further determine that the m6A reader YTHDF1 increases the expression of IFITM1 in an m6A-binding-dependent manner. Importantly, we find that the m6A methyltransferase complex promotes the antiviral activity of type I IFN. Thus, these studies identify m6A as having a role in post-transcriptional control of ISG translation during the type I IFN response for antiviral restriction.
Collapse
Affiliation(s)
- Michael J McFadden
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexa B R McIntyre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; Tri-Institutional Program in Computational Biology and Medicine, New York, NY 10021, USA
| | - Haralambos Mourelatos
- Weill Cornell/Rockefeller/Memorial Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Nathan S Abell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hélène Ipas
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Blerta Xhemalçe
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; Tri-Institutional Program in Computational Biology and Medicine, New York, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Lei K, Zhang L, He Y, Sun H, Tong W, Xu Y, Jin L. Immune-associated biomarkers for early diagnosis of Parkinson's disease based on hematological lncRNA-mRNA co-expression. Biosci Rep 2020; 40:BSR20202921. [PMID: 33245101 PMCID: PMC7753636 DOI: 10.1042/bsr20202921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Early stage diagnosis of Parkinson's disease (PD) is challenging without significant motor symptoms. The identification of effective molecular biomarkers as a hematological indication of PD may help improve the diagnostic timeliness and accuracy. In this paper, we analyzed and compared the blood samples of PD and control (CTR) patients to identify the disease-related changes and determine the putative biomarkers for PD diagnosis. Based on the RNA sequencing analysis, differentially expressed genes (DEGs) were identified, and the co-expression network of DEGs was constructed using the weighted correlation network analysis (WGCNA). The analysis leads to the identification of 87 genes that were exclusively regulated in the PD group, whereas 66 genes were significantly increased and 21 genes were significantly decreased in contrast to the control group. The results indicate that the core lncRNA-mRNA co-expression network greatly changes the immune response in PD patients. Specifically, the results showed that PWAR6, LINC00861, AC83843.1, IRF family, IFIT family and CaMK4 may play important roles in the immune system of PD. Based on the findings from this the present study, future research aims at identify novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Kecheng Lei
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta 30322, GA, U.S.A
| | - Liwen Zhang
- National Engineering Research Center for Biochip, ShanghaiBiochip Limited Corporation, Shanghai 201203, P.R. China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Yijing He
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Hui Sun
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Weifang Tong
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yichun Xu
- National Engineering Research Center for Biochip, ShanghaiBiochip Limited Corporation, Shanghai 201203, P.R. China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
9
|
Martin MF, Nisole S. West Nile Virus Restriction in Mosquito and Human Cells: A Virus under Confinement. Vaccines (Basel) 2020; 8:E256. [PMID: 32485916 PMCID: PMC7350012 DOI: 10.3390/vaccines8020256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic flavivirus that naturally circulates between mosquitoes and birds. However, WNV has a broad host range and can be transmitted from mosquitoes to several mammalian species, including humans, through infected saliva during a blood meal. Although WNV infections are mostly asymptomatic, 20% to 30% of cases are symptomatic and can occasionally lead to severe symptoms, including fatal meningitis or encephalitis. Over the past decades, WNV-carrying mosquitoes have become increasingly widespread across new regions, including North America and Europe, which constitutes a public health concern. Nevertheless, mosquito and human innate immune defenses can detect WNV infection and induce the expression of antiviral effectors, so-called viral restriction factors, to control viral propagation. Conversely, WNV has developed countermeasures to escape these host defenses, thus establishing a constant arms race between the virus and its hosts. Our review intends to cover most of the current knowledge on viral restriction factors as well as WNV evasion strategies in mosquito and human cells in order to bring an updated overview on WNV-host interactions.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling Team, Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34090 Montpellier, France;
| |
Collapse
|
10
|
Zhang L, Cao L, Yang F, Han X, Wang Y, Cao N, Yang L. Relative abundance of interferon-stimulated genes STAT1, OAS1, CXCL10 and MX1 in ovine lymph nodes during early pregnancy. Anim Reprod Sci 2020; 214:106285. [DOI: 10.1016/j.anireprosci.2020.106285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
|
11
|
van Tol S, Atkins C, Bharaj P, Johnson KN, Hage A, Freiberg AN, Rajsbaum R. VAMP8 Contributes to the TRIM6-Mediated Type I Interferon Antiviral Response during West Nile Virus Infection. J Virol 2020; 94:e01454-19. [PMID: 31694946 PMCID: PMC6955268 DOI: 10.1128/jvi.01454-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Several members of the tripartite motif (TRIM) family of E3 ubiquitin ligases regulate immune pathways, including the antiviral type I interferon (IFN-I) system. Previously, we demonstrated that TRIM6 is involved in IFN-I induction and signaling. In the absence of TRIM6, optimal IFN-I signaling is reduced, allowing increased replication of interferon-sensitive viruses. Despite having evolved numerous mechanisms to restrict the vertebrate host's IFN-I response, West Nile virus (WNV) replication is sensitive to pretreatment with IFN-I. However, the regulators and products of the IFN-I pathway that are important in regulating WNV replication are incompletely defined. Consistent with WNV's sensitivity to IFN-I, we found that in TRIM6 knockout (TRIM6-KO) A549 cells, WNV replication is significantly increased and IFN-I induction and signaling are impaired compared to wild-type (wt) cells. IFN-β pretreatment was more effective in protecting against subsequent WNV infection in wt cells than TRIM6-KO, indicating that TRIM6 contributes to the establishment of an IFN-induced antiviral response against WNV. Using next-generation sequencing, we identified VAMP8 as a potential factor involved in this TRIM6-mediated antiviral response. VAMP8 knockdown resulted in reduced JAK1 and STAT1 phosphorylation and impaired induction of several interferon-stimulated genes (ISGs) following WNV infection or IFN-β treatment. Furthermore, VAMP8-mediated STAT1 phosphorylation required the presence of TRIM6. Therefore, the VAMP8 protein is a novel regulator of IFN-I signaling, and its expression and function are dependent on TRIM6 activity. Overall, these results provide evidence that TRIM6 contributes to the antiviral response against WNV and identify VAMP8 as a novel regulator of the IFN-I system.IMPORTANCE WNV is a mosquito-borne flavivirus that poses a threat to human health across large discontinuous areas throughout the world. Infection with WNV results in febrile illness, which can progress to severe neurological disease. Currently, there are no approved treatment options to control WNV infection. Understanding the cellular immune responses that regulate viral replication is important in diversifying the resources available to control WNV. Here, we show that the elimination of TRIM6 in human cells results in an increase in WNV replication and alters the expression and function of other components of the IFN-I pathway through VAMP8. Dissecting the interactions between WNV and host defenses both informs basic molecular virology and promotes the development of host- and virus-targeted antiviral strategies.
Collapse
Affiliation(s)
- Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Preeti Bharaj
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kendra N Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
12
|
Kim JJ, Kim KS, Eom J, Lee JB, Seo JY. Viperin Differentially Induces Interferon-Stimulated Genes in Distinct Cell Types. Immune Netw 2019; 19:e33. [PMID: 31720044 PMCID: PMC6829070 DOI: 10.4110/in.2019.19.e33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Viperin is an IFN-stimulated gene (ISG)-encoded protein that was identified in human primary macrophages treated with IFN-γ and in human primary fibroblasts infected with cytomegalovirus (CMV). This protein plays multiple roles in various cell types. It inhibits viral replication, mediates signaling pathways, and regulates cellular metabolism. Recent studies have shown that viperin inhibits IFN expression in macrophages, while it enhances TLR7 and TLR9-mediated IFN production in plasmacytoid dendritic cells, suggesting that viperin can play different roles in activation of the same pathway in different cell types. Viperin also controls induction of ISGs in macrophages. However, the effect of viperin on induction of ISGs in cell types other than macrophages is unknown. Here, we show that viperin differentially induces ISGs in 2 distinct cell types, macrophages and fibroblasts isolated from wild type and viperin knockout mice. Unlike in bone marrow-derived macrophages (BMDMs), viperin downregulates the expression levels of ISGs such as bone marrow stromal cell antigen-2, Isg15, Isg54, myxovirus resistance dynamin like GTPase 2, and guanylate binding protein 2 in murine embryonic fibroblasts (MEFs) treated with type I or II IFN. However, viperin upregulates expression of these ISGs in both BMDMs and MEFs stimulated with polyinosinic-polycytidylic acid or CpG DNA and infected with murine CMV. The efficiency of viral entry is inversely proportional to the expression levels of ISGs in both cell types. The data indicate that viperin differentially regulates induction of ISGs in a cell type-dependent manner, which might provide different innate immune responses in distinct cell types against infections.
Collapse
Affiliation(s)
- Jeong Jin Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ku Sul Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - John Eom
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Bong Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
13
|
Wu H, Zhang Y, Lu X, Xiao J, Feng P, Feng H. STAT1a and STAT1b of black carp play important roles in the innate immune defense against GCRV. FISH & SHELLFISH IMMUNOLOGY 2019; 87:386-394. [PMID: 30703549 DOI: 10.1016/j.fsi.2019.01.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) plays an important role in the Janus kinase (JAK)-STAT signaling of human and mammals; however, the mechanism of STAT1 in innate immune activation of teleost fishes remains largely unknown. In this study, two STAT1 homologues (bcSTAT1a and bcSTAT1b) of black carp (Mylopharyngodon piceus) have been cloned and characterized. Both bcSTAT1a and bcSTAT1b transcription in host cells was obviously increased in response to the stimulation of poly (I:C), lipopolysaccharide (LPS), grass carp reovirus (GCRV) and interferon (IFN); however, the increase rate of bcSTAT1b transcription post stimulation was obviously higher than that of bcSTAT1a. bcSTAT1a and bcSTAT1b were distributed in both cytoplasm and nucleus in the immunofluorescence staining assay. Self-association of bcSTAT1a and bcSTAT1b, and the interaction between bcSTAT1a and bcSTAT1b have been detected through co-immunoprecipitation (co-IP) assay; and the data of native polyacrylamide gel electrophoresis (PAGE) implied that bcSTAT1a and bcSTAT1b might form homodimer and heterodimer in vivo like their mammalian counterparts. Both bcSTAT1a and bcSTAT1b presented IFN-inducing ability in report assay, and both bcSTAT1a and bcSTAT1b showed antiviral activities against GCRV in EPC cells. Our data support the conclusion that both bcSTAT1a and bcSTAT1b play important roles in host antiviral innate immune activation initiated by GCRV.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yinyin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xingyu Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Pinghui Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
14
|
Li Y, Zhao C, Liu J, Lu Z, Lu M, Gu J, Liu R. CD1d highly expressed on DCs reduces lung tumor burden by enhancing antitumor immunity. Oncol Rep 2019; 41:2679-2688. [PMID: 30864713 PMCID: PMC6448128 DOI: 10.3892/or.2019.7037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs), as professional antigen-presenting cells are essential for the initial activation of adaptive antitumor immunity. CD1d is considered to present phospholipid and glycosphingolipid antigens to NKT cells. However, it is currently unknown whether CD1d expression on DCs is capable of enhancing antitumor immunity, particularly T-cell related immunity. We observed that CD1d was predominantly expressed on DCs in 3LL tumor-bearing mice, whilst a deficiency of CD1d promoted tumor growth. Notably, CD1d expression on DCs was not only required for presenting antigen to NKT cells, but also markedly promoted CD4+T and CD8+T cell activation, particularly cytotoxic T cells. All the T cells (NKT, CD4+T and CD8+T cells) upregulated CD69, CD107a and IFN-γ after the adoptive transfer of CD1d-positive DCs (CD1d+DCs) and tumor growth was suppressed. With regard to the mechanism, we revealed that CD1d+DCs were concomitant with a higher expression of costimulatory molecules (CD40, CD80 and CD86) and MHCI/II, which are essential for DCs to present antigens to T cells. Consistently, CD1d+DCs displayed stronger activation-associated-ERK1/2 and NF-κB signals; whereas JAK2-STAT3/6 signaling was required for maintaining a high level of CD1d on DCs. In lung cancer patients, the antitumor activities of all the T cells were enhanced with the increase of CD1d+DCs. Analysis of TCGA data revealed that high levels of CD1d indicated better outcomes for patients. Collectively, CD1d enhanced DC-based antitumor immunity, not only by targeting NKT, but also by activating CD4+T and CD8+T cells. CD1d+DCs may be superior to the bulk population of DCs in cancer immunotherapy.
Collapse
Affiliation(s)
- Yifan Li
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Chujun Zhao
- Northfield Mount Hermon School, Northfield, MA 01354, USA
| | - Jiajing Liu
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Zhou Lu
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Mingfang Lu
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Jie Gu
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
15
|
Mears HV, Sweeney TR. Better together: the role of IFIT protein-protein interactions in the antiviral response. J Gen Virol 2018; 99:1463-1477. [PMID: 30234477 DOI: 10.1099/jgv.0.001149] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interferon-induced proteins with tetratricopeptide repeats (IFITs) are a family of antiviral proteins conserved throughout all vertebrates. IFIT1 binds tightly to non-self RNA, particularly capped transcripts lacking methylation on the first cap-proximal nucleotide, and inhibits their translation by out-competing the cellular translation initiation apparatus. This exerts immense selection pressure on cytoplasmic RNA viruses to maintain mechanisms that protect their messenger RNA from IFIT1 recognition. However, it is becoming increasingly clear that protein-protein interactions are necessary for optimal IFIT function. Recently, IFIT1, IFIT2 and IFIT3 have been shown to form a functional complex in which IFIT3 serves as a central scaffold to regulate and/or enhance the antiviral functions of the other two components. Moreover, IFITs interact with other cellular proteins to expand their contribution to regulation of the host antiviral response by modulating innate immune signalling and apoptosis. Here, we summarize recent advances in our understanding of the IFIT complex and review how this impacts on the greater role of IFIT proteins in the innate antiviral response.
Collapse
Affiliation(s)
- Harriet V Mears
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Trevor R Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| |
Collapse
|
16
|
Li J, Tian Y, Liu J, Wang C, Feng C, Wu H, Feng H. Lysine 39 of IKKε of black carp is crucial for its regulation on IRF7-mediated antiviral signaling. FISH & SHELLFISH IMMUNOLOGY 2018; 77:410-418. [PMID: 29635067 DOI: 10.1016/j.fsi.2018.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Interferon regulatory factor 7 (IRF7) plays a crucial role in the interferon (IFN) signaling in mammals, in which it is activated by the TBK1/IKKε complex during host antiviral innate immune response. There are few reports about the relation between IRF7 and IKKε in teleost fishes. In this study, the IRF7 homologue (bcIRF7) of black carp (Mylopharyngodon Piceus) has been cloned and characterized. The transcription of bcIRF7 gene increased in host cells in response to the stimulation of LPS, poly (I:C) and viral infection. bcIRF7 migrated around 56 KDa in immunoblot assay and was identified as a predominantly cytosolic protein by immunofluorescent staining. bcIRF7 showed IFN-inducing ability in reporter assay and EPC cells expressing bcIRF7 showed enhanced antiviral ability against both grass carp reovirus (GCRV) and spring viremia of carp virus (SVCV). IKKε of black carp (bcIKKε) was found to be recruited into host innate immune response initiated by SVCV and GCRV in the previous work; in this paper, the kinase dead mutant of bcIKKε, bcIKKε-K39A was constructed and showed no IFN-inducing activity. The data of reporter assay and plaque assay demonstrated that bcIKKε but not bcIKKε-K39A obviously enhanced bcIRF7-mediated IFN production and antiviral activity. Our data support the conclusion that bcIKKε upregulates bcIRF7-mediated antiviral signaling, which most likely depends on its kinase activity.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yu Tian
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Chanyuan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Chaoliang Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
17
|
Matsumura T, Hida S, Kitazawa M, Fujii C, Kobayashi A, Takeoka M, Taniguchi SI, Miyagawa SI. Fascin1 suppresses RIG-I-like receptor signaling and interferon-β production by associating with IκB kinase ϵ (IKKϵ) in colon cancer. J Biol Chem 2018; 293:6326-6336. [PMID: 29496994 PMCID: PMC5925820 DOI: 10.1074/jbc.m117.819201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 02/26/2018] [Indexed: 11/06/2022] Open
Abstract
Fascin1 is an actin-bundling protein involved in cancer cell migration and has recently been shown also to have roles in virus-mediated immune cell responses. Because viral infection has been shown to activate immune cells and to induce interferon-β expression in human cancer cells, we evaluated the effects of fascin1 on virus-dependent signaling via the membrane- and actin-associated protein RIG-I (retinoic acid-inducible gene I) in colon cancer cells. We knocked down fascin1 expression with shRNA retrovirally transduced into a DLD-1 colon cancer and L929 fibroblast-like cell lines and used luciferase reporter assays and co-immunoprecipitation to identify fascin1 targets. We found that intracellular poly(I·C) transfection to mimic viral infection enhances the RIG-I/MDA5 (melanoma differentiation-associated gene 5)-mediated dimerization of interferon regulatory factor 3 (IRF-3). The transfection also significantly increased the expression levels of IRF-7, interferon-β, and interferon-inducible cytokine IP-10 in fascin1-deleted cells compared with controls while significantly suppressing cell growth, migration, and invasion. We also found that fascin1 constitutively interacts with IκB kinase ϵ (IKKϵ) in the RIG-I signaling pathway. In summary, we have identified fascin1 as a suppressor of the RIG-I signaling pathway associating with IκB kinase ϵ in DLD-1 colon cancer cells to suppress immune responses to viral infection.
Collapse
Affiliation(s)
- Tomio Matsumura
- From the Departments of Molecular Oncology and
- Aging Biology, Shinshu University Graduate School of Medicine
- the Department of Surgery, Shinshu University School of Medicine, and
| | - Shigeaki Hida
- the Department of Molecular and Cellular Health Science, Nagoya University Graduate School of Pharmaceutical Sciences, Nagoya 467-8603, Japan
| | - Masato Kitazawa
- the Department of Surgery, Shinshu University School of Medicine, and
| | - Chifumi Fujii
- From the Departments of Molecular Oncology and
- the Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan and
| | - Akira Kobayashi
- the Department of Surgery, Shinshu University School of Medicine, and
| | - Michiko Takeoka
- the Department of Surgery, Shinshu University School of Medicine, and
| | | | | |
Collapse
|
18
|
Aarreberg LD, Wilkins C, Ramos HJ, Green R, Davis MA, Chow K, Gale M. Interleukin-1β Signaling in Dendritic Cells Induces Antiviral Interferon Responses. mBio 2018; 9:e00342-18. [PMID: 29559569 PMCID: PMC5874908 DOI: 10.1128/mbio.00342-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 01/01/2023] Open
Abstract
Induction of interferon beta (IFN-β), IFN-stimulated genes (ISGs), and inflammatory responses is critical for control of viral infection. We recently identified an essential linkage of stimulation of the inflammatory cytokine interleukin-1β (IL-1β) and induction of ISGs that function as host restriction pathways against the emerging flavivirus West Nile virus (WNV) in vivo Here we utilized ex vivo global transcriptome analysis of primary dendritic cells, known targets of WNV replication, to define gene signatures required for this IL-1β-driven antiviral response. Dendritic cells that were deficient in IL-1 receptor signaling showed dysregulation of cell-intrinsic defense genes and loss of viral control during WNV infection. Surprisingly, we found that in wild-type cells, IL-1β treatment, in the absence of infection, drove the transcription of IFN-β and ISGs at late times following treatment. Expression of these antiviral innate immune genes was dependent on the transcription factor IFN regulatory factor 3 (IRF3) and appears to reflect a general shift in IL-1β signaling from an early inflammatory response to a late IFN-mediated response. These data demonstrate that inflammatory and antiviral signals integrate to control viral infection in myeloid cells through a process of IL-1β-to-IRF3 signaling crosstalk. Strategies to exploit these cytokines in the activation of host defense programs should be investigated as novel therapeutic approaches against individual pathogens.IMPORTANCE West Nile virus is an emerging mosquito-borne flavivirus that can result in serious illness, neuropathology, and death in infected individuals. Currently, there are no vaccines or therapies for human use against West Nile virus. Immune control of West Nile virus infection requires inflammatory and antiviral responses, though the effect that each arm of this response has on the other is unclear. The significance of our research is in defining how virus-induced inflammatory responses regulate critical antiviral immune programs for effective control of West Nile virus infection. These data identify essential mechanisms of immune control that can inform therapeutic efforts against West Nile virus, with potential efficacy against other neuroinvasive viruses.
Collapse
Affiliation(s)
- Lauren D Aarreberg
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Courtney Wilkins
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hilario J Ramos
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Richard Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael A Davis
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kwan Chow
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
19
|
Abstract
Innate immunity is traditionally thought of as the first line of defense against pathogens that enter the body. It is typically characterized as a rather weak defense mechanism, designed to restrict pathogen replication until the adaptive immune response generates a tailored response and eliminates the infectious agent. However, intensive research in recent years has resulted in better understanding of innate immunity as well as the discovery of many effector proteins, revealing its numerous powerful mechanisms to defend the host. Furthermore, this research has demonstrated that it is simplistic to strictly separate adaptive and innate immune functions since these two systems often work synergistically rather than sequentially. Here, we provide a broad overview of innate pattern recognition receptors in antiviral defense, with a focus on the TRIM family, and discuss their signaling pathways and mechanisms of action with special emphasis on the intracellular antibody receptor TRIM21.
Collapse
Affiliation(s)
| | - Leo C James
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| |
Collapse
|
20
|
Liu R, Lu Z, Gu J, Liu J, Huang E, Liu X, Wang L, Yang J, Deng Y, Qian J, Luo F, Wang Z, Zhang H, Jiang X, Zhang D, Qian J, Liu G, Zhu H, Qian Y, Liu Z, Chu Y. MicroRNAs 15A and 16-1 Activate Signaling Pathways That Mediate Chemotaxis of Immune Regulatory B cells to Colorectal Tumors. Gastroenterology 2018; 154:637-651.e7. [PMID: 29031499 DOI: 10.1053/j.gastro.2017.09.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/11/2017] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS B cells infiltrate tumors, but little is known about how they affect tumor growth and progression. microRNA15A (MIR15A or miRNA15A) and microRNA16-1 (MIR16-1 or miRNA16-1) regulate cell proliferation, apoptosis, and drug resistance. We investigated their involvement in B-cell-mediated immune suppression by colorectal tumors. METHODS Mice with disruptions of the gene cluster that encodes MIR15A and MIR16-1 (knockout mice), and control (C57BL/B6) mice were given azoxymethane with dextran sodium sulfate (AD) to induce formation of colorectal tumors. Mice were given anti-CD20 to delete B cells, or injections of agomir to increase MIR15A and MIR16-1. Proliferation of CD8+T cells was measured by carboxyfluorescein-succinimidyl-ester analysis. Colon tissues were collected from mice and analyzed by flow cytometry, microRNA (miRNA) sequencing, and for cytokine production. Intestinal epithelial cells (IECs) were isolated and transfected with miRNA mimics, to identify their targets. We analyzed miRNA expression patterns and quantified B cells in colorectal cancer tissue microarrays derived from 90 patients who underwent surgical resection, from July 2006 through April 2008, in Shanghai, China; expression data were compared with clinical outcomes. RESULTS Tumors that developed in knockout mice following administration of AD were larger and contained greater numbers of B cells than tumors that grew in control mice. Most of the B cells in the tumors were positive for immunoglobulin A (IgA+). IgA+ B cells expressed high levels of immune regulatory molecules (programmed death ligand 1, interleukin 10, and transforming growth factor beta), and repressed the proliferation and activation of CD8+ T cells. Levels of MIR15A and MIR16-1 were reduced in colon tumors from mice, compared with nontumor colon tissue. Incubation of IECs with IL17A reduced expression of MIR15A and MIR16-1. Transgenic expression of MIR15A and MIR16-1 in IECs decreased activation of NF-κB and STAT1 by reducing expression of I-kappaB kinases; this resulted in reduced production of chemokine (C-X-C motif) ligands 9 and 10 and decreased chemotaxis of IgA+ B cells. Tumors in mice injected with AD and agomir grew more slowly than tumors in mice not given in agomir and contained fewer IgA+ B cells. We found a negative correlation between levels of MIR15A and MIR16-1 and numbers of IgA+B cells in human colorectal tumor tissues; high levels of MIR15A and MIR16-1 and low numbers of IgA+B cells were associated with longer survival times of patients. CONCLUSIONS We found increased levels of MIR15A and MIR16-1 to reduce numbers of IgA+ B cells in colorectal tumor tissues and correlate with increased survival time of patients. In mice that lack MIR15A and MIR16-1, colon tumors grow more rapidly and contain increased numbers of IgA+ B cells. MIR15A and MIR16-1 appear to activate signaling pathways required for B-cell-mediated immune suppression.
Collapse
Affiliation(s)
- Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Zhou Lu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Jie Gu
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai, P.R. China
| | - Jiajing Liu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Enyu Huang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Xiaoming Liu
- Department of Dermatology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, P.R. China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Jiao Yang
- Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Yuting Deng
- Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Jiawen Qian
- Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, P.R. China
| | - Zhiming Wang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Hushan Zhang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Xuechao Jiang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Dan Zhang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Jing Qian
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Guangwei Liu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Hongguang Zhu
- Division of Surgical Pathology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Youcun Qian
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Shanghai, P.R. China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, P.R. China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China; Biotherapy Research Center, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
21
|
Sprokholt JK, Kaptein TM, van Hamme JL, Overmars RJ, Gringhuis SI, Geijtenbeek TBH. RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production. PLoS Pathog 2017; 13:e1006738. [PMID: 29186193 PMCID: PMC5724900 DOI: 10.1371/journal.ppat.1006738] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 12/11/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022] Open
Abstract
Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA5 with type I Interferon (IFN) signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/β receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategies.
Collapse
Affiliation(s)
- Joris K. Sprokholt
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Tanja M. Kaptein
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - John L. van Hamme
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Ronald J. Overmars
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Sonja I. Gringhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Boldescu V, Behnam MAM, Vasilakis N, Klein CD. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov 2017; 16:565-586. [PMID: 28473729 PMCID: PMC5925760 DOI: 10.1038/nrd.2017.33] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infections with flaviviruses, such as dengue, West Nile virus and the recently re-emerging Zika virus, are an increasing and probably lasting global risk. This Review summarizes and comments on the opportunities for broad-spectrum agents that are active against multiple flaviviruses. Broad-spectrum activity is particularly desirable to prepare for the next flaviviral epidemic, which could emerge from as-yet unknown or neglected viruses. Potential molecular targets for broad-spectrum antiflaviviral compounds include viral proteins, such as the viral protease or polymerase, and host targets that are exploited by these viruses during entry and replication, including α-glucosidase and proteins involved in nucleoside biosynthesis. Numerous compounds with broad-spectrum antiviral activity have already been identified by target-specific or phenotypic assays. For other compounds, broad-spectrum activity can be anticipated because of their mode of action and molecular targets.
Collapse
Affiliation(s)
- Veaceslav Boldescu
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry of the Academy of Sciences of Moldova, Academiei 3, 2028 Chisinau, Moldova
| | - Mira A. M. Behnam
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Nikos Vasilakis
- Dept. of Pathology and Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases and Institute for Human Infections and Immunity, 2.138D Keiller Bldg, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555–0609, USA
| | - Christian D. Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Gao F, Xu F, Wu D, Cheng J, Xia P. Identification of novel genes associated with fracture healing in osteoporosis induced by Krm2 overexpression or Lrp5 deficiency. Mol Med Rep 2017; 15:3969-3976. [PMID: 28487939 PMCID: PMC5436207 DOI: 10.3892/mmr.2017.6544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/30/2017] [Indexed: 11/27/2022] Open
Abstract
The aim of the present study was to screen potential key genes associated with osteoporotic fracture healing. The microarray data from the Gene Expression Omnibus database accession number GSE51686, were downloaded and used to identify differentially expressed genes (DEGs) in fracture callus tissue samples obtained from the femora of type I collagen (Col1a1)-kringle containing transmembrane protein 2 (Krm2) mice and low density lipoprotein receptor-related protein 5−/− (Lrp5−/−) transgenic mice of osteoporosis compared with those in wild-type (WT) mice. Enrichment analysis was performed to reveal the DEG function. In addition, protein-protein interactions (PPIs) of DEGs were analyzed using the Search Tool for the Retrieval of Interacting Genes database. The coexpression associations between hub genes in the PPI network were investigated, and a coexpression network was constructed. A total of 841 DEGs (335 upregulated and 506 downregulated) were identified in the Col1a1-Krm2 vs. the WT group, and 50 DEGs (16 upregulated and 34 downregulated) were identified in the Lrp5−/− vs. the WT group. The DEGs in Col1a1-Krm2 mice were primarily associated with immunity and cell adhesion (GO: 0007155) functions. By contrast, the DEGs in Lrp5−/− mice were significantly associated with muscle system process (GO: 0003012) and regulation of transcription (GO: 0006355). In addition, a series of DEGs demonstrated a higher score in the PPI network, and were observed to be coexpressed in the coexpression network, and included thrombospondin 2 (Thbs2), syndecan 2 (Sdc2), FK506 binding protein 10 (Fkbp10), 2–5-oligoadneylate synthase-like protein 2 (Oasl2), interferon induced protein with tetratricopeptide repeats (Ifit) 1 and Ifit2. Thbs2 and Sdc2 were significantly correlated with extracellular matrix-receptor interactions. The results suggest that Thbs2, Sdc2, Fkbp10, Oasl2, Ifit1 and Ifit2 may serve important roles during the fracture healing process in osteoporosis. In addition, this is the first study to demonstrate that Sdc2, Fkbp10, Oasl2, Ifit1 and Ifit2 may be associated with osteoporotic fracture healing.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Feng Xu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dankai Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jieping Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Peng Xia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
24
|
Wang W, Yin Y, Xu L, Su J, Huang F, Wang Y, Boor PPC, Chen K, Wang W, Cao W, Zhou X, Liu P, van der Laan LJW, Kwekkeboom J, Peppelenbosch MP, Pan Q. Unphosphorylated ISGF3 drives constitutive expression of interferon-stimulated genes to protect against viral infections. Sci Signal 2017; 10:10/476/eaah4248. [PMID: 28442624 DOI: 10.1126/scisignal.aah4248] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interferon (IFN)-stimulated genes (ISGs) are antiviral effectors that are induced by IFNs through the formation of a tripartite transcription factor ISGF3, which is composed of IRF9 and phosphorylated forms of STAT1 and STAT2. However, we found that IFN-independent ISG expression was detectable in immortalized cell lines, primary intestinal and liver organoids, and liver tissues. The constitutive expression of ISGs was mediated by the unphosphorylated ISGF3 (U-ISGF3) complex, consisting of IRF9 together with unphosphorylated STAT1 and STAT2. Under homeostatic conditions, STAT1, STAT2, and IRF9 were found in the nucleus. Analysis of a chromatin immunoprecipitation sequencing data set revealed that STAT1 specifically bound to the promoters of ISGs even in the absence of IFNs. Knockdown of STAT1, STAT2, or IRF9 by RNA interference led to the decreased expression of various ISGs in Huh7.5 human liver cells, which was confirmed in mouse embryonic fibroblasts (MEFs) from STAT1-/-, STAT2-/-, or IRF9-/- mice. Furthermore, decreased ISG expression was accompanied by increased replication of hepatitis C virus and hepatitis E virus. Conversely, simultaneous overexpression of all ISGF3 components, but not any single factor, induced the expression of ISGs and inhibited viral replication; however, no phosphorylated STAT1 and STAT2 were detected. A phosphorylation-deficient STAT1 mutant was comparable to the wild-type protein in mediating the IFN-independent expression of ISGs and antiviral activity, suggesting that ISGF3 works in a phosphorylation-independent manner. These data suggest that the U-ISGF3 complex is both necessary and sufficient for constitutive ISG expression and antiviral immunity under homeostatic conditions.
Collapse
Affiliation(s)
- Wenshi Wang
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Yuebang Yin
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Junhong Su
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Yijin Wang
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Kan Chen
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Wenhui Wang
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Wanlu Cao
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Xinying Zhou
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Pengyu Liu
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Postgraduate School Molecular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
25
|
Partial dysfunction of STAT1 profoundly reduces host resistance to flaviviral infection. Virology 2017; 506:1-6. [PMID: 28282567 DOI: 10.1016/j.virol.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/22/2022]
Abstract
The genetic basis for a dramatically increased virus susceptibility phenotype of MHC-II knockout mice acquired during routine maintenance of the mouse strain was determined. Segregation of the susceptibility allele from the defective MHC-II locus combined with sequence capture and sequencing showed that a Y37L substitution in STAT1 accounted for high flavivirus susceptibility of a newly derived mouse strain, designated Tuara. Interestingly, the mutation in STAT1 gene gave only partial inactivation of the type I interferon antiviral pathway. Accordingly, merely a relatively small impairment of interferon α/β signalling is sufficient to overcome the ability of the host to control the infection.
Collapse
|
26
|
Zhang J, Tian M, Xia Z, Feng P. Roles of IκB kinase ε in the innate immune defense and beyond. Virol Sin 2016; 31:457-465. [PMID: 28063014 DOI: 10.1007/s12250-016-3898-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022] Open
Abstract
IκB kinase ε (IKKε) is a non-canonical IκB kinase that is extensively studied in the context of innate immune response. Recently, significant progress has been made in understanding the role of IKKε in interferon (IFN) signaling. In addition to its roles in innate immunity, recent studies also demonstrate that IKKε is a key regulator of the adaptive immune response. Specifically, IKKε functions as a negative feedback kinase to curtail CD8 T cell response, implying that it can be a potential therapeutic target to boost antiviral and antitumor T cell immunity. In this review, we highlight the roles of IKKε in regulating IFN signaling and T cell immunity, and discuss a few imminent questions that remain to be answered.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, 90033, USA.
| | - Mao Tian
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, 90033, USA
| | - Zanxian Xia
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, 410008, China
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, 90033, USA
| |
Collapse
|
27
|
Wang J, Lei CQ, Ji Y, Zhou H, Ren Y, Peng Q, Zeng Y, Jia Y, Ge J, Zhong B, Li Y, Wei J, Shu HB, Zhu Q. Duck Tembusu Virus Nonstructural Protein 1 Antagonizes IFN-β Signaling Pathways by Targeting VISA. THE JOURNAL OF IMMUNOLOGY 2016; 197:4704-4713. [PMID: 27821666 DOI: 10.4049/jimmunol.1502317] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 10/06/2016] [Indexed: 11/19/2022]
Abstract
Duck Tembusu virus (DTMUV) is an emergent infectious pathogen that has caused severe disease in ducks and huge economic losses to the poultry industry in China since 2009. Previously, we showed that DTMUV inhibits IFN-β induction early in infection; however, the mechanisms of the inhibition of innate immune responses remain poorly understood. In this study, we screened DTMUV-encoded structural and nonstructural proteins using reporter assays and found that DTMUV NS1 markedly suppressed virus-triggered IFN-β expression by inhibiting retinoic acid-inducible gene I-like receptor signaling. Moreover, we found that DTMUV NS1 specifically interacted with the C-terminal domain of virus-induced signaling adaptor and impaired the association of retinoic acid-inducible gene I or melanoma differentiation-associated gene 5 and virus-induced signaling adaptor, thereby downregulating the retinoic acid-inducible gene I-like receptor-mediated signal transduction and cellular antiviral responses, leading to evasion of the innate immune response. Together, our findings reveal a novel mechanism manipulated by DTMUV to circumvent the host antiviral immune response.
Collapse
Affiliation(s)
- Junyong Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China
| | - Cao-Qi Lei
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, People's Republic of China;
| | - Yanhong Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China
| | - Hongbo Zhou
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yujie Ren
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qianqian Peng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China
| | - Yan Zeng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China; and
| | - Bo Zhong
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Jianzhong Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Hong-Bing Shu
- College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China;
| |
Collapse
|
28
|
Uddin MJ, Suen WW, Bosco-Lauth A, Hartwig AE, Hall RA, Bowen RA, Bielefeldt-Ohmann H. Kinetics of the West Nile virus induced transcripts of selected cytokines and Toll-like receptors in equine peripheral blood mononuclear cells. Vet Res 2016; 47:61. [PMID: 27267361 PMCID: PMC4895877 DOI: 10.1186/s13567-016-0347-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
West Nile virus (WNV) is one of the most common causes of epidemic viral encephalitis in horses worldwide. Peripheral blood mononuclear cells (PBMCs) are amongst the first to encounter the virus following a mosquito bite. This study aimed to elucidate the transcription kinetics of cytokine, Toll-like receptor (TLRs) and TLRs-associated genes following WNV challenge of equine PBMCs. PBMCs were challenged with an Australian strain of WNV (WNVNSW2011) and transcriptomes were quantified at 2, 6, 12 and 24 h post-infection (pi) using qRT-PCR. Type I and II interferons (IFNα, β and γ) mRNA transcription increased following WNV exposure, as did the transcripts for IL1α, IL1β, IL6, IL8, and IL22, but with slightly varying kinetics. TLR1, 3, 5, 7-9 transcripts were also upregulated in equine PBMCsin response to WNV challenge, as were those for MyD88, NF-κB, TRAF3, STAT1 and 2, IRF3 and 7, ISG15, as well as SOCS1 and 3 compared to the control cells. Expression of selected genes in the draining lymph node, spleen and brain (medulla oblongata) of experimentally infected horses was also assessed and transcription of most of these genes was also upregulated here. Although qRT-PCR detected higher viral RNA at 24 h pi compared to 6 h pi, the virus did not replicate productively in equine PBMCs. The up-regulation of gene-transcription for selected cytokines, IFNs, TLRs and TLRs-associated molecules suggests their involvement in virus recognition and control of WNV infection in the horse.
Collapse
Affiliation(s)
- Muhammad Jasim Uddin
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Willy W Suen
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, USA
| | - Airn-Elizabeth Hartwig
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, USA
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Richard A Bowen
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, USA
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
29
|
Zhang X, Yu H, Zhao J, Li X, Li J, He J, Xia Z, Zhao J. IKKϵ negatively regulates RIG-I via direct phosphorylation. J Med Virol 2016; 88:712-8. [PMID: 26354181 DOI: 10.1002/jmv.24376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2015] [Indexed: 02/01/2023]
Abstract
Inhibitor of nuclear factor kappa-B kinase Epsilon (IKKϵ) is an IKK-related kinase. Despite it was originally discovered as a kinase functionally related to TBK-1, studies entailing gene knockout mouse demonstrated that IKKϵ is dispensable for interferon induction by viral infection. In this study, we report that IKKϵ directly phosphorylates a key serine residue within the RNA-binding domain of RIG-I (retinoic acid-inducible gene 1) to inhibit RIG-I-mediate innate immune signaling. Using IKKϵ-deficient MEFs, we found that loss of IKKϵ resulted in increased cytokine production in response to the activation of cytosolic sensors. Biochemical analyses indicated that IKKϵ physically associated with and phosphorylated RIG-I. Mass spectrometry analysis identified that IKKϵ phosphorylated the serine 855 of the RNA-binding pocket of RIG-I carboxyl terminal domain, a residues known to impinge on RNA-binding via phosphorylation. Our findings collectively support the conclusion that IKKϵ modulates innate immune signaling cascades via phosphorylating the RIG-I cytosolic sensor, providing a feedback regulatory mechanism.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Haiyang Yu
- Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Jun Zhao
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Xiuqing Li
- Department of Medicine, University of Southern California, Los Angeles, California
| | - Jiada Li
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, P. R. China
| | - Jiantai He
- Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Zanxian Xia
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, P. R. China
| | - Jinfeng Zhao
- Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
30
|
Network-assisted analysis of primary Sjögren's syndrome GWAS data in Han Chinese. Sci Rep 2015; 5:18855. [PMID: 26686423 PMCID: PMC4685393 DOI: 10.1038/srep18855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/05/2015] [Indexed: 12/23/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a complex autoimmune disorder. So far, genetic research in pSS has lagged far behind and the underlying biological mechanism is unclear. Further exploring existing genome-wide association study (GWAS) data is urgently expected to uncover disease-related gene combination patterns. Herein, we conducted a network-based analysis by integrating pSS GWAS in Han Chinese with a protein-protein interactions network to identify pSS candidate genes. After module detection and evaluation, 8 dense modules covering 40 genes were obtained for further functional annotation. Additional 31 MHC genes with significant gene-level P-values (sigMHC-gene) were also remained. The combined module genes and sigMHC-genes, a total of 71 genes, were denoted as pSS candidate genes. Of these pSS candidates, 14 genes had been reported to be associated with any of pSS, RA, and SLE, including STAT4, GTF2I, HLA-DPB1, HLA-DRB1, PTTG1, HLA-DQB1, MBL2, TAP2, CFLAR, NFKBIE, HLA-DRA, APOM, HLA-DQA2 and NOTCH4. This is the first report of the network-assisted analysis for pSS GWAS data to explore combined gene patterns associated with pSS. Our study suggests that network-assisted analysis is a useful approach to gaining further insights into the biology of associated genes and providing important clues for future research into pSS etiology.
Collapse
|
31
|
Uddin MJ, Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. West Nile Virus Challenge Alters the Transcription Profiles of Innate Immune Genes in Rabbit Peripheral Blood Mononuclear Cells. Front Vet Sci 2015; 2:76. [PMID: 26697438 PMCID: PMC4677099 DOI: 10.3389/fvets.2015.00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
The peripheral innate immune response to West Nile virus (WNV) is crucial for control of virus spread to the central nervous system. Therefore, transcriptomes encoding the innate immune response proteins against WNV were investigated in peripheral blood mononuclear cells (PBMCs) of New Zealand White rabbits, a recently established novel rabbit model for WNV pathogenesis studies. PBMCs were challenged with an Australian WNV strain, WNVNSW2011, in vitro, and mRNA expression of selected immune response genes were quantified at 2-, 6-, 12-, and 24-h post-infection (pi) using qRT-PCR. Compared to mock-inoculated PBMCs, WNV-stimulated PBMCs expressed high levels of interferon (IFN) alpha (IFNA), gamma (IFNG), IL6, IL12, IL22, CXCL10, and pentraxin 3 (PTX3) mRNA. Likewise, TLR1, 2, 3, 4, 6, and 10 mRNA became up-regulated with the highest expression seen for TLR3, 4, and 6. TLRs-signaling downstream genes (MyD88, STAT1, TRAF3, IRF7, and IRF9) subsequently became up-regulated. The high expression of IFNs, TLR3, TLR4, TRAF3, STAT1, IRF7, and IRF9 are in accordance with antiviral activities, while expression of TNFA, HO1, iNOS, caspase 3, and caspase 9 transcripts suggests the involvement of oxidative stress and apoptosis in WNV-stimulated rabbit PBMCs, respectively. The level of WNVNSW2011 RNA increased at 24-h pi in PBMCs challenged with virus in vitro compared to input virus. The expression dynamics of selected genes were validated in PBMCs from rabbits experimentally infected with WNV in vivo. Higher expression of IFNA, IFN beta (IFNB), IFNG, TNFA, IL6, IL22, PTX3, TLR3 and TLR4, IRF7, IRF9, STST1, TRAF3, caspase 3, and caspase 9 were seen in PBMCs from WNV-infected rabbits on day 3 post-intradermal virus inoculation compared to PBMCs from uninfected control rabbits. This study highlights the array of cytokines and TLRs involved in the host innate immune response to WNV in the rabbit leukocytes and suggests that these cells may be a useful in vitro model for WNV infection study.
Collapse
Affiliation(s)
- Muhammad J Uddin
- School of Veterinary Science, University of Queensland , Gatton, QLD , Australia
| | - Willy W Suen
- School of Veterinary Science, University of Queensland , Gatton, QLD , Australia
| | - Natalie A Prow
- QIMR Berghofer Medical Research Institute , Brisbane, QLD , Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, University of Queensland , St Lucia, QLD , Australia ; School of Chemistry and Molecular Biosciences, University of Queensland , St Lucia, QLD , Australia
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland , Gatton, QLD , Australia ; Australian Infectious Diseases Research Centre, University of Queensland , St Lucia, QLD , Australia ; School of Chemistry and Molecular Biosciences, University of Queensland , St Lucia, QLD , Australia
| |
Collapse
|
32
|
Zhang H, Sun J, Ye J, Ashraf U, Chen Z, Zhu B, He W, Xu Q, Wei Y, Chen H, Fu ZF, Liu R, Cao S. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response. J Proteome Res 2015; 14:5157-68. [DOI: 10.1021/acs.jproteome.5b00424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhen F. Fu
- Department
of Pathology, University of Georgia, Athens, Georgia 30602, United States
| | | | | |
Collapse
|
33
|
Cacciotti G, Caputo B, Selvaggi C, la Sala A, Vitiello L, Diallo D, Ceianu C, Antonelli G, Nowotny N, Scagnolari C. Variation in interferon sensitivity and induction between Usutu and West Nile (lineages 1 and 2) viruses. Virology 2015; 485:189-98. [PMID: 26280469 DOI: 10.1016/j.virol.2015.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/02/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023]
Abstract
Given the pivotal role of monocyte-derived dendritic cells (DCs) in determining the magnitude of the antiviral innate immune response, we sought to determine whether Usutu virus (USUV) and West Nile virus (WNV) lineages (L)1 and L2 can infect DCs and affect the rate of type I interferon (IFN) activation. The sensitivity of these viruses to types I and III IFNs was also compared. We found that USUV can infect DCs, induce higher antiviral activities, IFN alpha subtypes and the IFN stimulated gene (ISG)15 pathway, and is more sensitive to types I and III IFNs than WNVs. In contrast, we confirmed that IFN alpha/beta subtypes were more effective against WNV L2 than WNV L1. However, the replication kinetics, induction of IFN alpha subtypes and ISGs in DCs and the sensitivity to IFN lambda 1-3 did not differ between WNV L1 and L2.
Collapse
Affiliation(s)
- Giulia Cacciotti
- Department of Molecular Medicine, Laboratory of Virology, 'Sapienza' University of Rome, Viale di Porta Tiburtina 28, 00185 Rome, Italy
| | - Beniamino Caputo
- Parasitology Unit, Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carla Selvaggi
- Department of Molecular Medicine, Laboratory of Virology, 'Sapienza' University of Rome, Viale di Porta Tiburtina 28, 00185 Rome, Italy
| | - Andrea la Sala
- Laboratory of Molecular and Cellular Immunology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vitiello
- Laboratory of Molecular and Cellular Immunology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Diawo Diallo
- Unité d'entomologie médicale, Institut Pasteur de Dakar, Senegal
| | - Cornelia Ceianu
- Vector-Borne Infections and Medical Entomology Laboratory, "Cantacuzino" National Institute of Research-Development for Microbiology and Immunology, 103 Splaiul Independenţei, 050096 Bucharest, Romania
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology, 'Sapienza' University of Rome, Viale di Porta Tiburtina 28, 00185 Rome, Italy
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria; Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al-Khoud, Muscat 123, Oman
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, 'Sapienza' University of Rome, Viale di Porta Tiburtina 28, 00185 Rome, Italy.
| |
Collapse
|
34
|
Kleiman E, Salyakina D, De Heusch M, Hoek KL, Llanes JM, Castro I, Wright JA, Clark ES, Dykxhoorn DM, Capobianco E, Takeda A, Renauld JC, Khan WN. Distinct Transcriptomic Features are Associated with Transitional and Mature B-Cell Populations in the Mouse Spleen. Front Immunol 2015; 6:30. [PMID: 25717326 PMCID: PMC4324157 DOI: 10.3389/fimmu.2015.00030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/15/2015] [Indexed: 11/30/2022] Open
Abstract
Splenic transitional B-cells (T1 and T2) are selected to avoid self-reactivity and to safeguard against autoimmunity, then differentiate into mature follicular (FO-I and FO-II) and marginal zone (MZ) subsets. Transcriptomic analysis by RNA-seq of the five B-cell subsets revealed T1 cell signature genes included RAG suggesting a potential for receptor revision. T1 to T2 B-cell differentiation was marked by a switch from Myb to Myc, increased expression of the PI3K adapter DAP10 and MHC class II. FO-II may be an intermediate in FO-I differentiation and may also become MZ B-cells as suggested by principle component analysis. MZ B-cells possessed the most distinct transcriptome including down-regulation of CD45 phosphatase-associated protein (CD45-AP/PTPRC-AP), as well as upregulation of IL-9R and innate molecules TLR3, TLR7, and bactericidal Perforin-2 (MPEG1). Among the endosomal TLRs, stimulation via TLR3 further enhanced Perforin-2 expression exclusively in MZ B-cells. Using gene-deleted and overexpressing transgenic mice we show that IL-9/IL-9R interaction resulted in rapid activation of STAT1, 3, and 5, primarily in MZ B-cells. Importantly, CD45-AP mutant mice had reduced transitional and increased mature MZ and FO B-cells, suggesting that it prevents premature entry of transitional B-cells to the mature B-cell pool or their survival and proliferation. Together, these findings suggest, developmental plasticity among splenic B-cell subsets, potential for receptor revision in peripheral tolerance whereas enhanced metabolism coincides with T2 to mature B-cell differentiation. Further, unique core transcriptional signatures in MZ B-cells may control their innate features.
Collapse
Affiliation(s)
- Eden Kleiman
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| | - Daria Salyakina
- Center for Computational Science, University of Miami , Miami, FL , USA
| | - Magali De Heusch
- Ludwig Institute for Cancer Research, Brussels Branch , Brussels , Belgium ; de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Kristen L Hoek
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Joan M Llanes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Iris Castro
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| | - Jacqueline A Wright
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| | - Emily S Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| | - Derek M Dykxhoorn
- Hussman Institute for Human Genomics, University of Miami , Miami, FL , USA
| | - Enrico Capobianco
- Center for Computational Science, University of Miami , Miami, FL , USA
| | - Akiko Takeda
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis , St. Louis, MO , USA
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch , Brussels , Belgium ; de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Wasif N Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| |
Collapse
|
35
|
Fucose-based PAMPs prime dendritic cells for follicular T helper cell polarization via DC-SIGN-dependent IL-27 production. Nat Commun 2014; 5:5074. [PMID: 25278262 DOI: 10.1038/ncomms6074] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/25/2014] [Indexed: 11/08/2022] Open
Abstract
Dendritic cells (DCs) orchestrate antibody-mediated responses to combat extracellular pathogens including parasites by initiating T helper cell differentiation. Here we demonstrate that carbohydrate-specific signalling by DC-SIGN drives follicular T helper cell (TFH) differentiation via IL-27 expression. Fucose, but not mannose, engagement of DC-SIGN results in activation of IKKε, which collaborates with type I IFNR signalling to induce formation and activation of transcription factor ISGF3. Notably, ISGF3 induces expression of IL-27 subunit p28, and subsequent IL-27 secreted by DC-SIGN-primed DCs is pivotal for the induction of Bcl-6(+)CXCR5(+)PD-1(hi)Foxp1(lo) TFH cells, IL-21 secretion by TFH cells and T-cell-dependent IgG production by B cells. Thus, we have identified an essential role for DC-SIGN-induced ISGF3 by fucose-based PAMPs in driving IL-27 and subsequent TFH polarization, which might be harnessed for vaccination design.
Collapse
|
36
|
Rajsbaum R, Versteeg GA, Schmid S, Maestre AM, Belicha-Villanueva A, Martínez-Romero C, Patel JR, Morrison J, Pisanelli G, Miorin L, Laurent-Rolle M, Moulton HM, Stein DA, Fernandez-Sesma A, tenOever BR, García-Sastre A. Unanchored K48-linked polyubiquitin synthesized by the E3-ubiquitin ligase TRIM6 stimulates the interferon-IKKε kinase-mediated antiviral response. Immunity 2014; 40:880-95. [PMID: 24882218 DOI: 10.1016/j.immuni.2014.04.018] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022]
Abstract
Type I interferons (IFN-I) are essential antiviral cytokines produced upon microbial infection. IFN-I elicits this activity through the upregulation of hundreds of IFN-I-stimulated genes (ISGs). The full breadth of ISG induction demands activation of a number of cellular factors including the IκB kinase epsilon (IKKε). However, the mechanism of IKKε activation upon IFN receptor signaling has remained elusive. Here we show that TRIM6, a member of the E3-ubiquitin ligase tripartite motif (TRIM) family of proteins, interacted with IKKε and promoted induction of IKKε-dependent ISGs. TRIM6 and the E2-ubiquitin conjugase UbE2K cooperated in the synthesis of unanchored K48-linked polyubiquitin chains, which activated IKKε for subsequent STAT1 phosphorylation. Our work attributes a previously unrecognized activating role of K48-linked unanchored polyubiquitin chains in kinase activation and identifies the UbE2K-TRIM6-ubiquitin axis as critical for IFN signaling and antiviral response.
Collapse
Affiliation(s)
- Ricardo Rajsbaum
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Gijs A Versteeg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Sonja Schmid
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Alan Belicha-Villanueva
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jenish R Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Juliet Morrison
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Giuseppe Pisanelli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Maudry Laurent-Rolle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hong M Moulton
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - David A Stein
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
37
|
Durbin RK, Kotenko SV, Durbin JE. Interferon induction and function at the mucosal surface. Immunol Rev 2014; 255:25-39. [PMID: 23947345 DOI: 10.1111/imr.12101] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interferons (IFNs) are produced in response to virus infection and induce an antiviral state in virtually all cell types. In addition to upregulating the transcription of genes that inhibit virus replication, type I (or -α/β) IFNs also act to orchestrate the adaptive immune response to virus infection. Recently a new family of antiviral cytokines, the type III (or -λ) IFNs, has been identified that activate the same antiviral pathways via a distinct receptor. Although the identical transcription factor, IFN-stimulated gene factor 3 is activated by either IFN-α/β or IFN-λ signaling, differences in the induction and action of these two cytokine families are beginning to be appreciated. In this article, we review this emerging body of literature on the differing roles these cytokines play in host defense of the mucosal surface. Although many viruses enter the body through the respiratory and gastrointestinal tracts, we have focused the discussion on influenza A virus, respiratory syncytial virus, and rotavirus, three ubiquitous human pathogens that target the epithelial lining and are associated with a major disease burden.
Collapse
Affiliation(s)
- Russell K Durbin
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
38
|
Fink K, Grandvaux N. STAT2 and IRF9: Beyond ISGF3. JAKSTAT 2013; 2:e27521. [PMID: 24498542 DOI: 10.4161/jkst.27521] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 01/02/2023] Open
Abstract
Cytokine signaling is mediated by the combinatorial usage of seven STAT proteins that form homo- or heterodimers involved in the regulation of specific transcriptional programs. Among STATs, STAT2 is classically known to dimerize with STAT1 and together with IRF9 forms the ISGF3 transcription factor complex that has long been considered a hallmark of activation by type I and type III interferons. However, accumulating evidence reveal distinct facets of STAT2 and IRF9 activity mediated by the segregation in alternative STAT1-independent complexes/pathways that are thought to trigger different transcriptional programs. The goal of this review is to summarize our current knowledge of the stimuli, regulatory mechanisms, and function of these alternative pathways.
Collapse
Affiliation(s)
- Karin Fink
- CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Montréal, QC Canada ; Department of Biochemistry; Faculty of Medicine; Université de Montréal; Montréal, QC Canada
| | - Nathalie Grandvaux
- CRCHUM-Centre de Recherche du Centre Hospitalier de l'Université de Montréal; Montréal, QC Canada ; Department of Biochemistry; Faculty of Medicine; Université de Montréal; Montréal, QC Canada
| |
Collapse
|
39
|
Quicke KM, Suthar MS. The innate immune playbook for restricting West Nile virus infection. Viruses 2013; 5:2643-58. [PMID: 24178712 PMCID: PMC3856407 DOI: 10.3390/v5112643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 01/07/2023] Open
Abstract
West Nile virus (WNV) is an emerging mosquito-borne flavivirus that causes annual epidemics of encephalitic disease throughout the world. Despite the ongoing risk to public health, no approved vaccines or therapies exist for use in humans to prevent or combat WNV infection. The innate immune response is critical for controlling WNV replication, limiting virus-induced pathology, and programming protective humoral and cell-mediated immunity to WNV infection. The RIG-I like receptors, Toll-like receptors, and Nod-like receptors detect and respond to WNV by inducing a potent antiviral defense program, characterized by production of type I IFN, IL-1β and expression of antiviral effector genes. Recent research efforts have focused on uncovering the mechanisms of innate immune sensing, antiviral effector genes that inhibit WNV, and countermeasures employed by WNV to antagonize innate immune cellular defenses. In this review, we highlight the major research findings pertaining to innate immune regulation of WNV infection.
Collapse
Affiliation(s)
- Kendra M Quicke
- Department of Pediatrics and Children's Healthcare of Atlanta and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA.
| | | |
Collapse
|
40
|
Abstract
The cellular responses to infection are many, and include programmed cell death to inhibit microbial dissemination and the production and secretion of interferons (IFNs), which confer resistance to uninfected cells. In addition to the antimicrobial effects of IFNs, these cytokines have been used clinically for the treatment of various neoplasias to inhibit proliferation and stimulate apoptosis. However, the precise mechanisms of action of IFNs remain to be completely understood. One of the primary response genes induced after an infection or treatment with type I or III IFN is known as IFN-stimulated gene 54 (ISG54) or IFN-induced gene with tetratricopeptide repeats 2 (IFIT2). ISG54/IFIT2 is a member of a family of IFN-induced genes related in the sequence and structure. Expression of this protein has been found to promote cellular apoptosis by a mitochondrial pathway dependent on the action of Bcl2 proteins. ISG54/IFIT2 does not function as a monomer, and it forms complexes with itself and with the related ISG56/IFIT1 and ISG60/IFIT3 proteins to elicit complex cellular responses. The apoptotic response to ISG54/IFIT2 may contribute to other functions that have been reported, including translational regulation, inhibition of tumor colonization, and protection against a lethal viral infection.
Collapse
Affiliation(s)
- Nancy C Reich
- Department of Molecular Genetics and Microbiology, Stony Brook University , Stony Brook, NY 11794, USA.
| |
Collapse
|
41
|
IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J 2013; 32:2751-63. [PMID: 24065129 PMCID: PMC3801437 DOI: 10.1038/emboj.2013.203] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/13/2013] [Indexed: 12/18/2022] Open
Abstract
A single high dose of interferon-β (IFNβ) activates powerful cellular responses, in which many anti-viral, pro-apoptotic, and anti-proliferative proteins are highly expressed. Since some of these proteins are deleterious, cells downregulate this initial response rapidly. However, the expression of many anti-viral proteins that do no harm is sustained, prolonging a substantial part of the initial anti-viral response for days and also providing resistance to DNA damage. While the transcription factor ISGF3 (IRF9 and tyrosine-phosphorylated STATs 1 and 2) drives the first rapid response phase, the related factor un-phosphorylated ISGF3 (U-ISGF3), formed by IFNβ-induced high levels of IRF9 and STATs 1 and 2 without tyrosine phosphorylation, drives the second prolonged response. The U-ISGF3-induced anti-viral genes that show prolonged expression are driven by distinct IFN stimulated response elements (ISREs). Continuous exposure of cells to a low level of IFNβ, often seen in cancers, leads to steady-state increased expression of only the U-ISGF3-dependent proteins, with no sustained increase in other IFNβ-induced proteins, and to constitutive resistance to DNA damage. IFNβ induces the formation of a novel transcriptional complex, U-ISGF3, which contains un-phosphorylated STATs. U-ISGF3 regulates the expression of a subset of IFNβ-stimulated genes to promote resistance to virus infection and DNA damage.
Collapse
|
42
|
The essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus infection. J Virol 2013; 87:11416-25. [PMID: 23966395 DOI: 10.1128/jvi.01488-13] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Virus recognition and response by the innate immune system are critical components of host defense against infection. Activation of cell-intrinsic immunity and optimal priming of adaptive immunity against West Nile virus (WNV), an emerging vector-borne virus, depend on recognition by RIG-I and MDA5, two cytosolic pattern recognition receptors (PRRs) of the RIG-I-like receptor (RLR) protein family that recognize viral RNA and activate defense programs that suppress infection. We evaluated the individual functions of RIG-I and MDA5 both in vitro and in vivo in pathogen recognition and control of WNV. Lack of RIG-I or MDA5 alone results in decreased innate immune signaling and virus control in primary cells in vitro and increased mortality in mice. We also generated RIG-I(-/-) × MDA5(-/-) double-knockout mice and found that a lack of both RLRs results in a complete absence of innate immune gene induction in target cells of WNV infection and a severe pathogenesis during infection in vivo, similar to findings for animals lacking MAVS, the central adaptor molecule for RLR signaling. We also found that RNA products from WNV-infected cells but not incoming virion RNA display at least two distinct pathogen-associated molecular patterns (PAMPs) containing 5' triphosphate and double-stranded RNA that are temporally distributed and sensed by RIG-I and MDA5 during infection. Thus, RIG-I and MDA5 are essential PRRs that recognize distinct PAMPs that accumulate during WNV replication. Collectively, these experiments highlight the necessity and function of multiple related, cytoplasmic host sensors in orchestrating an effective immune response against an acute viral infection.
Collapse
|
43
|
Abstract
Previous studies have demonstrated that type I interferon (IFN-I) restricts West Nile virus (WNV) replication and pathogenesis in peripheral and central nervous system (CNS) tissues. However, the in vivo role of specific antiviral genes that are induced by IFN-I against WNV infection remains less well characterized. Here, using Ifit2(-/-) mice, we defined the antiviral function of the interferon-stimulated gene (ISG) Ifit2 in limiting infection and disease in vivo by a virulent North American strain of WNV. Compared to congenic wild-type controls, Ifit2(-/-) mice showed enhanced WNV infection in a tissue-restricted manner, with preferential replication in the CNS of animals lacking Ifit2. Virological analysis of cultured macrophages, dendritic cells, fibroblasts, cerebellar granule cell neurons, and cortical neurons revealed cell type-specific antiviral functions of Ifit2 against WNV. In comparison, small effects of Ifit2 were observed on the induction or magnitude of innate or adaptive immune responses. Our results suggest that Ifit2 restricts WNV infection and pathogenesis in different tissues in a cell type-specific manner.
Collapse
|
44
|
Cho H, Proll SC, Szretter KJ, Katze MG, Gale M, Diamond MS. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nat Med 2013; 19:458-64. [PMID: 23455712 PMCID: PMC3618596 DOI: 10.1038/nm.3108] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/28/2013] [Indexed: 12/30/2022]
Abstract
Different types of neurons are differentially susceptible to West Nile virus (WNV) infection. Michael Diamond and colleagues now show that cerebellar granule cell neurons (GCN) have a higher basal level of expression of type I interferon–inducible genes than cortical neurons, making GCN more resistant to infection by a variety of positive-stranded RNA viruses, including WNV. Although susceptibility of neurons in the brain to microbial infection is a major determinant of clinical outcome, little is known about the molecular factors governing this vulnerability. Here we show that two types of neurons from distinct brain regions showed differential permissivity to replication of several positive-stranded RNA viruses. Granule cell neurons of the cerebellum and cortical neurons from the cerebral cortex have unique innate immune programs that confer differential susceptibility to viral infection ex vivo and in vivo. By transducing cortical neurons with genes that were expressed more highly in granule cell neurons, we identified three interferon-stimulated genes (ISGs; Ifi27, Irg1 and Rsad2 (also known as Viperin)) that mediated the antiviral effects against different neurotropic viruses. Moreover, we found that the epigenetic state and microRNA (miRNA)-mediated regulation of ISGs correlates with enhanced antiviral response in granule cell neurons. Thus, neurons from evolutionarily distinct brain regions have unique innate immune signatures, which probably contribute to their relative permissiveness to infection.
Collapse
Affiliation(s)
- Hyelim Cho
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
45
|
Suthar MS, Brassil MM, Blahnik G, McMillan A, Ramos HJ, Proll SC, Belisle SE, Katze MG, Gale M. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes. PLoS Pathog 2013; 9:e1003168. [PMID: 23544010 PMCID: PMC3567171 DOI: 10.1371/journal.ppat.1003168] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022] Open
Abstract
The actions of the RIG-I like receptor (RLR) and type I interferon (IFN) signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV). In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen) and nonpermissive (liver) tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs−/−×Ifnar−/− mice revealed the loss of expression of several key components within the natural killer (NK) cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs−/−×Ifnar−/− infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue-specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection. West Nile virus (WNV), a mosquito-transmitted RNA flavivirus, is an NIAID Category B infectious agent that has emerged in the Western hemisphere as a serious public health threat. The innate immune effectors that impart restriction of WNV infection are not well defined. WNV infection is sensed by the host RIG-I like receptors (RLR), a class of pattern recognition receptors, to trigger type I interferon (IFN) and related innate immune defense programs. Using a systems biology approach, we evaluated the contribution of the RLR and type I IFN signaling pathways in controlling tissue tropism. WNV infection triggers tissue-specific innate immune responses, specifically antiviral effector genes and natural killer (NK) cell signaling related genes, which are directly regulated by the combined actions of the RLR and type I IFN signaling pathways. Cocultures of dendritic and NK cells revealed that RLR and type I IFN signaling pathways are essential in promoting NK cell activation during WNV infection. Our observations indicate that combined RLR- and type I IFN-dependent signaling programs drive specific antiviral effector gene expression and programs NK cell responses that, together, serve to restrict WNV tissue tropism.
Collapse
Affiliation(s)
- Mehul S. Suthar
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Margaret M. Brassil
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Gabriele Blahnik
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Aimee McMillan
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Hilario J. Ramos
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Sean C. Proll
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Sarah E. Belisle
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michael G. Katze
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
46
|
Suthar MS, Diamond MS, Gale Jr M. West Nile virus infection and immunity. Nat Rev Microbiol 2013; 11:115-28. [DOI: 10.1038/nrmicro2950] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Berard AR, Cortens JP, Krokhin O, Wilkins JA, Severini A, Coombs KM. Quantification of the host response proteome after mammalian reovirus T1L infection. PLoS One 2012; 7:e51939. [PMID: 23240068 PMCID: PMC3519901 DOI: 10.1371/journal.pone.0051939] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/13/2012] [Indexed: 12/24/2022] Open
Abstract
All viruses are dependent upon host cells for replication. Infection can induce profound changes within cells, including apoptosis, morphological changes, and activation of signaling pathways. Many of these alterations have been analyzed by gene arrays to measure the cellular "transcriptome." We used SILAC (stable isotope labeling by amino acids in cell culture), combined with high-throughput 2-D HPLC/mass spectrometry, to determine relative quantitative differences in host proteins at 6 and 24 hours after infecting HEK293 cells with reovirus serotype 1 Lang (T1L). 3,076 host proteins were detected at 6 hpi, of which 132 and 68 proteins were significantly up or down regulated, respectively. 2,992 cellular proteins, of which 104 and 49 were up or down regulated, respectively, were identified at 24 hpi. IPA and DAVID analyses indicated proteins involved in cell death, cell growth factors, oxygen transport, cell structure organization and inflammatory defense response to virus were up-regulated, whereas proteins involved in apoptosis, isomerase activity, and metabolism were down-regulated. These proteins and pathways may be suitable targets for intervention to either attenuate virus infection or enhance oncolytic potential.
Collapse
Affiliation(s)
- Alicia R. Berard
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - John P. Cortens
- Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oleg Krokhin
- Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - John A. Wilkins
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alberto Severini
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Kevin M. Coombs
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
48
|
IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog 2012; 8:e1003039. [PMID: 23209411 PMCID: PMC3510243 DOI: 10.1371/journal.ppat.1003039] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022] Open
Abstract
West Nile virus (WNV) is an emerging flavivirus capable of infecting the central nervous system (CNS) and mediating neuronal cell death and tissue destruction. The processes that promote inflammation and encephalitis within the CNS are important for control of WNV disease but, how inflammatory signaling pathways operate to control CNS infection is not defined. Here, we identify IL-1β signaling and the NLRP3 inflammasome as key host restriction factors involved in viral control and CNS disease associated with WNV infection. Individuals presenting with acute WNV infection displayed elevated levels of IL-1β in their plasma over the course of infection, suggesting a role for IL-1β in WNV immunity. Indeed, we found that in a mouse model of infection, WNV induced the acute production of IL-1β in vivo, and that animals lacking the IL-1 receptor or components involved in inflammasome signaling complex exhibited increased susceptibility to WNV pathogenesis. This outcome associated with increased accumulation of virus within the CNS but not peripheral tissues and was further associated with altered kinetics and magnitude of inflammation, reduced quality of the effector CD8+ T cell response and reduced anti-viral activity within the CNS. Importantly, we found that WNV infection triggers production of IL-1β from cortical neurons. Furthermore, we found that IL-1β signaling synergizes with type I IFN to suppress WNV replication in neurons, thus implicating antiviral activity of IL-1β within neurons and control of virus replication within the CNS. Our studies thus define the NLRP3 inflammasome pathway and IL-1β signaling as key features controlling WNV infection and immunity in the CNS, and reveal a novel role for IL-1β in antiviral action that restricts virus replication in neurons. Since its introduction into North America in 1999, West Nile virus (WNV) has emerged as a leading cause of viral encephalitic disease in the United States. While low level inflammation is important for clearance of WNV, high levels of inflammation are associated with increased disease. The goal of this study was to identify host signaling pathways that control the balance of inflammation and protective immunity to WNV. Using a mouse model of infection, we identified a central nervous system (CNS)-intrinsic requirement for the NLRP3 inflammasome and IL-1β signaling in limiting WNV associated disease within the CNS. First, IL-1β signaling was essential for regulating the magnitude and kinetics of inflammation within CNS. Secondly, the absence of IL-1β signaling disrupted the quality of the effector T lymphocyte response against the virus. Finally, these dysregulated immune responses were linked to a direct ability for IL-1β signaling to synergize with type I IFN signaling and limit virus replication within cortical neurons, key target cells of WNV infection within the CNS. Together this study identifies the NLRP3 inflammasome and IL-1β signaling as key restriction factors that act to regulate viral load and the quality of inflammatory responses within the CNS to impart protective immunity against WNV infection.
Collapse
|
49
|
Flipse J, Wilschut J, Smit JM. Molecular mechanisms involved in antibody-dependent enhancement of dengue virus infection in humans. Traffic 2012; 14:25-35. [PMID: 22998156 DOI: 10.1111/tra.12012] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 12/19/2022]
Abstract
Dengue is the most common arthropod-borne viral infection in humans with ∼50 million cases annually worldwide. In recent decades, a steady increase in the number of severe dengue cases has been seen. Severe dengue disease is most often observed in individuals that have pre-existing immunity against heterotypic dengue subtypes and in infants with low levels of maternal dengue antibodies. The generally accepted hypothesis explaining the immunopathogenesis of severe dengue is called antibody-dependent enhancement of dengue infection. Here, circulating antibodies bind to the newly infecting virus but do not neutralize infection. Rather, these antibodies increase the infected cell mass and virus production. Additionally, antiviral responses are diminished allowing massive virus particle production early in infection. The large infected cell mass and the high viral load are prelude for severe disease development. In this review, we discuss what is known about the trafficking of dengue virus in its human host cells, and the signalling pathways activated after virus detection, both in the absence and presence of antibodies against the virus. This review summarizes work that aims to better understand the complex immunopathogenesis of severe dengue disease.
Collapse
Affiliation(s)
- Jacky Flipse
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
50
|
Christian SL, Zu D, Licursi M, Komatsu Y, Pongnopparat T, Codner DA, Hirasawa K. Suppression of IFN-induced transcription underlies IFN defects generated by activated Ras/MEK in human cancer cells. PLoS One 2012; 7:e44267. [PMID: 22970192 PMCID: PMC3436881 DOI: 10.1371/journal.pone.0044267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/31/2012] [Indexed: 12/24/2022] Open
Abstract
Certain oncolytic viruses exploit activated Ras signaling in order to replicate in cancer cells. Constitutive activation of the Ras/MEK pathway is known to suppress the effectiveness of the interferon (IFN) antiviral response, which may contribute to Ras-dependent viral oncolysis. Here, we identified 10 human cancer cell lines (out of 16) with increased sensitivity to the anti-viral effects of IFN-α after treatment with the MEK inhibitor U0126, suggesting that the Ras/MEK pathway underlies their reduced sensitivity to IFN. To determine how Ras/MEK suppresses the IFN response in these cells, we used DNA microarrays to compare IFN-induced transcription in IFN-sensitive SKOV3 cells, moderately resistant HT1080 cells, and HT1080 cells treated with U0126. We found that 267 genes were induced by IFN in SKOV3 cells, while only 98 genes were induced in HT1080 cells at the same time point. Furthermore, the expression of a distinct subset of IFN inducible genes, that included RIGI, GBP2, IFIT2, BTN3A3, MAP2, MMP7 and STAT2, was restored or increased in HT1080 cells when the cells were co-treated with U0126 and IFN. Bioinformatic analysis of the biological processes represented by these genes revealed increased representation of genes involved in the anti-viral response, regulation of apoptosis, cell differentiation and metabolism. Furthermore, introduction of constitutively active Ras into IFN sensitive SKOV3 cells reduced their IFN sensitivity and ability to activate IFN-induced transcription. This work demonstrates for the first time that activated Ras/MEK in human cancer cells induces downregulation of a specific subset of IFN-inducible genes.
Collapse
Affiliation(s)
- Sherri L. Christian
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
- * E-mail: (SLC); (KH)
| | - Dong Zu
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Maria Licursi
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Yumiko Komatsu
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Theerawat Pongnopparat
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Dianne A. Codner
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kensuke Hirasawa
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
- * E-mail: (SLC); (KH)
| |
Collapse
|