1
|
Colon-Caraballo M, Russell SR, Myers KM, Mahendroo M. Collagen turnover during cervical remodeling involves both intracellular and extracellular collagen degradation pathways†. Biol Reprod 2025; 112:709-727. [PMID: 39823285 PMCID: PMC11996760 DOI: 10.1093/biolre/ioaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025] Open
Abstract
Reproductive success requires accurately timed remodeling of the cervix to orchestrate the maintenance of pregnancy, the process of labor, and birth. Prior work in mice established that a combination of continuous turnover of fibrillar collagen and reduced formation of collagen cross-links allows for the gradual increase in tissue compliance and delivery of the fetus during labor. However, the mechanism for continuous collagen degradation to ensure turnover during cervical remodeling is still unknown. This study demonstrates the functional role of extracellular and intracellular collagen degradative pathways in two different settings of cervical remodeling: physiological term remodeling and inflammation-mediated premature remodeling. Extracellular collagen degradation is achieved by the activity of fibroblast-derived matrix metalloproteases MMP14, MMP2, and fibroblast activation protein (FAP). In parallel, we demonstrate the function of an intracellular collagen degradative pathway in fibroblast cells mediated by the collagen endocytic mannose receptor type-2 (MRC2). These pathways appear to be functionally redundant as loss of MRC2 does not obstruct collagen turnover or cervical function in pregnancy. While both extracellular and intracellular pathways are also utilized in inflammation-mediated premature cervical remodeling, the extracellular collagen degradation pathway uniquely employs fibroblast and immune-cell-derived proteases. In sum, these findings identify the dual utilization of two distinct degradative pathways as a failsafe mechanism to achieve continuous collagen turnover in the cervix, thereby allowing dynamic shifts in cervical tissue mechanics and function.
Collapse
Affiliation(s)
- Mariano Colon-Caraballo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Serena R Russell
- Department of Mechanical Engineering, Columbia University, New York, New York City, United States of America
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York, New York City, United States of America
| | - Mala Mahendroo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
2
|
Xiao Z, Puré E. The fibroinflammatory response in cancer. Nat Rev Cancer 2025:10.1038/s41568-025-00798-8. [PMID: 40097577 DOI: 10.1038/s41568-025-00798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Fibroinflammation refers to the highly integrated fibrogenic and inflammatory responses mediated by the concerted function of fibroblasts and innate immune cells in response to tissue perturbation. This process underlies the desmoplastic remodelling of the tumour microenvironment and thus plays an important role in tumour initiation, growth and metastasis. More specifically, fibroinflammation alters the biochemical and biomechanical signalling in malignant cells to promote their proliferation and survival and further supports an immunosuppressive microenvironment by polarizing the immune status of tumours. Additionally, the presence of fibroinflammation is often associated with therapeutic resistance. As such, there is increasing interest in targeting this process to normalize the tumour microenvironment and thus enhance the treatment of solid tumours. Herein, we review advances made in unravelling the complexity of cancer-associated fibroinflammation that can inform the rational design of therapies targeting this.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Yoshida S, Hayashi H, Kawahara T, Katsuki S, Kimura M, Hino R, Sun J, Nakamaru R, Tenma A, Toyoura M, Baba S, Shimamura M, Katsuya T, Morishita R, Rakugi H, Matoba T, Nakagami H. A Vaccine Against Fibroblast Activation Protein Improves Murine Cardiac Fibrosis by Preventing the Accumulation of Myofibroblasts. Circ Res 2025; 136:26-40. [PMID: 39629565 DOI: 10.1161/circresaha.124.325017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Myofibroblasts are primary cells involved in chronic response-induced cardiac fibrosis. Fibroblast activation protein (FAP) is a relatively specific marker of activated myofibroblasts and a potential target molecule. This study aimed to clarify whether a vaccine targeting FAP could eliminate myofibroblasts in chronic cardiac stress model mice and reduce cardiac fibrosis. METHODS We coadministered a FAP peptide vaccine with a cytosine-phosphate-guanine (CpG) K3 oligonucleotide adjuvant to male C57/BL6J mice and confirmed an elevation in the anti-FAP antibody titer. After continuous angiotensin II and phenylephrine administration for 28 days, we evaluated the degree of cardiac fibrosis and the number of myofibroblasts in cardiac tissues. RESULTS We found that cardiac fibrosis was significantly decreased in the FAP-vaccinated mice compared with the angiotensin II and phenylephrine control mice (3.45±1.11% versus 8.62±4.79%; P=4.59×10-3) and that the accumulation of FAP-positive cells was also significantly decreased, as indicated by FAP immunohistochemical staining (4077±1746 versus 7327±1741 cells/mm2; FAP vaccine versus angiotensin II and phenylephrine control; P=6.67×10-3). No systemic or organ-specific inflammation due to antibody-dependent cell cytotoxicity induced by the FAP vaccine was observed. Although the transient activation of myofibroblasts has an important role in maintaining the structural robustness in the process of tissue repair, the FAP vaccine showed no adverse effects in myocardial infarction and skin injury models. CONCLUSIONS Our study demonstrates the FAP vaccine can be a therapeutic tool for cardiac fibrosis.
Collapse
Affiliation(s)
- Shota Yoshida
- Department of Geriatric and General Medicine (S.Y., S.B., H.R.), Osaka University Graduate School of Medicine, Japan
- Department of Health Development and Medicine (S.Y., H.H., J.S., S.B., H.N.), Osaka University Graduate School of Medicine, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine (S.Y., H.H., J.S., S.B., H.N.), Osaka University Graduate School of Medicine, Japan
| | - Takuro Kawahara
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (T. Kawahara, S.K., M.K., R.H., T.M.)
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, Research Institute of Angiocardiology, Kyushu University, Fukuoka, Japan (T. Kawahara)
| | - Shunsuke Katsuki
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (T. Kawahara, S.K., M.K., R.H., T.M.)
| | - Mitsukuni Kimura
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (T. Kawahara, S.K., M.K., R.H., T.M.)
| | - Rissei Hino
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (T. Kawahara, S.K., M.K., R.H., T.M.)
| | - Jiao Sun
- Department of Health Development and Medicine (S.Y., H.H., J.S., S.B., H.N.), Osaka University Graduate School of Medicine, Japan
| | - Ryo Nakamaru
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Healthcare Quality Assessment, the University of Tokyo, Japan (R.N.)
| | | | | | - Satoshi Baba
- Department of Geriatric and General Medicine (S.Y., S.B., H.R.), Osaka University Graduate School of Medicine, Japan
- Department of Health Development and Medicine (S.Y., H.H., J.S., S.B., H.N.), Osaka University Graduate School of Medicine, Japan
| | - Munehisa Shimamura
- Department of Gene and Stem Cell Regenerative Therapy (M.S.), Osaka University Graduate School of Medicine, Japan
- Department of Neurology (M.S.), Osaka University Graduate School of Medicine, Japan
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy (T. Katsuya, R.M.), Osaka University Graduate School of Medicine, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy (T. Katsuya, R.M.), Osaka University Graduate School of Medicine, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine (S.Y., S.B., H.R.), Osaka University Graduate School of Medicine, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan (T. Kawahara, S.K., M.K., R.H., T.M.)
| | - Hironori Nakagami
- Department of Health Development and Medicine (S.Y., H.H., J.S., S.B., H.N.), Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
4
|
Basalova NA, Vigovskiy MA, Popov VS, Lagereva EA, Grigorieva OA, Efimenko AY. The Role of Activated Stromal Cells in Fibrotic Foci Formation and Reversion. Cells 2024; 13:2064. [PMID: 39768155 PMCID: PMC11674712 DOI: 10.3390/cells13242064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
Fibrotic focus is a pivotal morphofunctional unit in developing fibrosis in various tissues. For most fibrotic diseases, including progressive forms, the foci are considered unable to remodel and contribute to the worsening of prognosis. Unfortunately, the dynamics of the fibrotic focus formation and resolution remains understudied. A number of data suggest that the key cell type for focus formation are activated stromal cells marked by fibroblast activated protein alpha (FAPα) due to their high capacity for extracellular matrix (ECM) remodeling. We evaluated the dynamics of fibrotic focus formation and the contribution of the main cell types, including FAPα+ cells, in this process using a murine model of bleomycin-induced lung fibrosis. We revealed the very early appearance of FAPα+ cells in lungs after injury and assumed their important involvement to the myofibroblast pool formation. During the first month after bleomycin administration, FAPα+ cells colocalize with CD206+ M2 macrophages. Interestingly, during the reversion stage, we unexpectedly observed the specific structured foci formed by CD90+FAPα+ cells, which we suggested calling "remodeling foci". Our findings highlight the crucial role of activated stromal cells in fibrosis initiation, progression, and reversion and provide emerging issues regarding the novel targets for antifibrotic therapy.
Collapse
Affiliation(s)
- Nataliya Andreevna Basalova
- Centre for Regenerative Medicine, Medical Research and Educational Institute, Lomonosov Moscow State University, 119192 Moscow, Russia; (M.A.V.); (V.S.P.); (E.A.L.); (O.A.G.); (A.Y.E.)
| | | | | | | | | | | |
Collapse
|
5
|
Pashaei M, Farhadi E, Kavosi H, Madreseh E, Enayati S, Mahmoudi M, Amirzargar A. Talabostat, fibroblast activation protein inhibitor, attenuates inflammation and fibrosis in systemic sclerosis. Inflammopharmacology 2024; 32:3181-3193. [PMID: 39167314 DOI: 10.1007/s10787-024-01536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective tissue disorder characterized by excessive fibrosis, where activated fibroblasts play a pivotal role in disease progression. This study aimed to investigate the potential of Talabostat, a small molecule inhibitor of dipeptidyl peptidases, in alleviating fibrosis and inflammation associated with SSc pathogenesis. METHODS Dermal fibroblasts were obtained from skin biopsies of ten diffuse cutaneous SSc patients and healthy controls. These fibroblasts were subjected to treatment with either TGF-β alone or in combination with Talabostat. Immunofluorescence staining was conducted to evaluate FAPα and α-SMA protein levels. The expression of activated fibroblast markers (FAPα and ACAT2), pro-fibrotic (COL1A1 and COL1A2), anti-fibrotic (MMP1, MMP2, and MMP9), and inflammatory (IL-6 and TGFβ1) related genes was measured by quantitative real-time PCR. Talabostat-treated fibroblasts were assessed for their migratory capacity using a scratch assay and for their viability through MTT assay and Annexin V staining. RESULTS The basal expression of COL1A1 and TGFβ1 was notably higher in healthy subjects, while MMP1 expression showed a significant increase in SSc patients. Furthermore, TGF-β stimulation led to upregulation of activated fibroblast markers, pro-fibrotic, and inflammatory-related genes in SSc-derived fibroblasts, which were attenuated upon Talabostat treatment. Interestingly, Talabostat treatment resulted in an upregulation of MMP9 expression. Moreover, Talabostat exhibited a concentration-dependent inhibition of activated fibroblast viability in both healthy and SSc fibroblasts, and suppressed fibroblast migration specifically in SSc patients. CONCLUSION In summary, Talabostat modulates fibrotic genes in SSc, thereby inhibiting myofibroblast differentiation, activation, and migration. These findings suggest promising therapeutic avenues for targeting fibrosis in SSc.
Collapse
Affiliation(s)
- Mehrnoosh Pashaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Madreseh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Enayati
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, P.O. BOX: 1411713137, Tehran, Iran.
- Research Center for Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Lavis P, Garabet A, Cardozo AK, Bondue B. The fibroblast activation protein alpha as a biomarker of pulmonary fibrosis. Front Med (Lausanne) 2024; 11:1393778. [PMID: 39364020 PMCID: PMC11446883 DOI: 10.3389/fmed.2024.1393778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare, chronic, and progressive interstitial lung disease with an average survival of approximately 3 years. The evolution of IPF is unpredictable, with some patients presenting a relatively stable condition with limited progression over time, whereas others deteriorate rapidly. In addition to IPF, other interstitial lung diseases can lead to pulmonary fibrosis, and up to a third have a progressive phenotype with the same prognosis as IPF. Clinical, biological, and radiological risk factors of progression were identified, but no specific biomarkers of fibrogenesis are currently available. A recent interest in the fibroblast activation protein alpha (FAPα) has emerged. FAPα is a transmembrane serine protease with extracellular activity. It can also be found in a soluble form, also named anti-plasmin cleaving enzyme (APCE). FAPα is specifically expressed by activated fibroblasts, and quinoline-based specific inhibitors (FAPI) were developed, allowing us to visualize its distribution in vivo by imaging techniques. In this review, we discuss the use of FAPα as a useful biomarker for the progression of lung fibrosis, by both its assessment in human fluids and/or its detection by imaging techniques and immunohistochemistry.
Collapse
Affiliation(s)
- Philomène Lavis
- Department of Pathology, Hôpital universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
- IRIBHM, Université libre de Bruxelles, Brussels, Belgium
| | - Ani Garabet
- Inflammation and Cell Death Signalling Group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Alessandra Kupper Cardozo
- Inflammation and Cell Death Signalling Group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- IRIBHM, Université libre de Bruxelles, Brussels, Belgium
- Department of Pneumology, Hôpital universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
- European Reference Network for Rare Pulmonary Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
7
|
Oguri N, Gi T, Nakamura E, Furukoji E, Goto H, Maekawa K, Tsuji AB, Nishii R, Aman M, Moriguchi-Goto S, Sakae T, Azuma M, Yamashita A. Expression of fibroblast activation protein-α in human deep vein thrombosis. Thromb Res 2024; 241:109075. [PMID: 38955058 DOI: 10.1016/j.thromres.2024.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is associated with wound healing, cancer-associated fibroblasts, and chronic fibrosing diseases. However, its expression in deep vein thrombosis (DVT) remains unclear. Therefore, this study investigated FAP expression and localization in DVT. METHODS We performed pathological analyses of the aspirated thrombi of patients with DVT (n = 14), classifying thrombotic areas in terms of fresh, cellular lysis, and organizing reaction components. The organizing reaction included endothelialization and fibroblastic reaction. We immunohistochemically examined FAP-expressed areas and cells, and finally analyzed FAP expression in cultured dermal fibroblasts. RESULTS All the aspirated thrombi showed a heterogeneous mixture of at least two of the three thrombotic areas. Specifically, 83 % of aspirated thrombi showed fresh and organizing reaction components. Immunohistochemical expression of FAP was restricted to the organizing area. Double immunofluorescence staining showed that FAP in the thrombi was mainly expressed in vimentin-positive or α-smooth muscle actin-positive fibroblasts. Some CD163-positive macrophages expressed FAP. FAP mRNA and protein levels were higher in fibroblasts with low-proliferative activity cultured under 0.1 % fetal bovine serum (FBS) than that under 10 % FBS. Fibroblasts cultured in 10 % FBS showed a significant decrease in FAP mRNA levels following supplementation with hemin, but not with thrombin. CONCLUSIONS The heterogeneous composition of venous thrombi suggests a multistep thrombus formation process in human DVT. Further, fibroblasts or myofibroblasts may express FAP during the organizing process. FAP expression may be higher in fibroblasts with low proliferative activity.
Collapse
Affiliation(s)
- Nobuyuki Oguri
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshihiro Gi
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Eriko Nakamura
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Eiji Furukoji
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroki Goto
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazunari Maekawa
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan; Medical Imaging Engineering, Biomedical Imaging Sciences, Division of Advanced Information Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Murasaki Aman
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sayaka Moriguchi-Goto
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tatefumi Sakae
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Minako Azuma
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
8
|
Zhang Y, Wang J, Sun H, Xun Z, He Z, Zhao Y, Qi J, Sun S, Yang Q, Gu Y, Zhang L, Zhou C, Ye Y, Wu N, Zou D, Su B. TWIST1+FAP+ fibroblasts in the pathogenesis of intestinal fibrosis in Crohn's disease. J Clin Invest 2024; 134:e179472. [PMID: 39024569 PMCID: PMC11405050 DOI: 10.1172/jci179472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
Intestinal fibrosis, a severe complication of Crohn's disease (CD), is characterized by excessive extracellular matrix (ECM) deposition and induces intestinal strictures, but there are no effective antifibrosis drugs available for clinical application. We performed single-cell RNA sequencing (scRNA-Seq) of fibrotic and nonfibrotic ileal tissues from patients with CD with intestinal obstruction. Analysis revealed mesenchymal stromal cells (MSCs) as the major producers of ECM and the increased infiltration of its subset FAP+ fibroblasts in fibrotic sites, which was confirmed by immunofluorescence and flow cytometry. Single-cell transcriptomic profiling of chronic dextran sulfate sodium salt murine colitis model revealed that CD81+Pi16- fibroblasts exhibited transcriptomic and functional similarities to human FAP+ fibroblasts. Consistently, FAP+ fibroblasts were identified as the key subtype with the highest level of ECM production in fibrotic intestines. Furthermore, specific knockout or pharmacological inhibition of TWIST1, which was highly expressed by FAP+ fibroblasts, could significantly ameliorate fibrosis in mice. In addition, TWIST1 expression was induced by CXCL9+ macrophages enriched in fibrotic tissues via IL-1β and TGF-β signal. These findings suggest the inhibition of TWIST1 as a promising strategy for CD fibrosis treatment.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Jiaxin Wang
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Hongxiang Sun
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Zhenzhen Xun
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Zirui He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhou Zhao
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Jingjing Qi
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Sishen Sun
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Qidi Yang
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Yubei Gu
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Ling Zhang
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Chunhua Zhou
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Youqiong Ye
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Ningbo Wu
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| | - Duowu Zou
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
| | - Bing Su
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Ministry of Education Key Laboratory of Cell Death and Differentiation, and
| |
Collapse
|
9
|
Ji H, Song X, Lv X, Shao F, Long Y, Song Y, Song W, Qiao P, Gai Y, Jiang D, Lan X. [ 68Ga]FAPI PET for Imaging and Treatment Monitoring in a Preclinical Model of Pulmonary Fibrosis: Comparison to [ 18F]FDG PET and CT. Pharmaceuticals (Basel) 2024; 17:726. [PMID: 38931393 PMCID: PMC11206307 DOI: 10.3390/ph17060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE This study aimed to evaluate the feasibility of using [68Ga]-fibroblast-activating protein inhibitor (FAPI) positron emission tomography (PET) imaging for diagnosing pulmonary fibrosis in a mouse model. We also examined its value in monitoring treatment response and compared it with traditional [18F]-fluorodeoxyglucose (FDG) PET and computed tomography (CT) imaging. METHODS A model of idiopathic pulmonary fibrosis was established using intratracheal injection of bleomycin (BLM, 2 mg/kg) into C57BL/6 male mice. For the treatment of IPF, a daily oral dose of 400 mg/kg/day of pirfenidone was administered from 9 to 28 days after the establishment of the model. Disease progression and treatment efficacy were assessed at different stages of the disease every week for four weeks using CT, [18F]FDG PET, and [68Ga]FAPI PET (baseline imaging performed at week 0). Mice were sacrificed and lung tissues were harvested for hematoxylin-eosin staining, picrosirius red staining, and immunohistochemical staining for glucose transporter 1 (GLUT1) and FAP. Expression levels of GLUT1 and FAP in pathological sections were quantified. Correlations between imaging parameters and pathological quantitative values were analyzed. RESULTS CT, [18F]FDG PET and [68Ga]FAPI PET revealed anatomical and functional changes in the lung that reflected progression of pulmonary fibrosis. In untreated mice with pulmonary fibrosis, lung uptake of [18F]FDG peaked on day 14, while [68Ga]FAPI uptake and mean lung density peaked on day 21. In mice treated with pirfenidone, mean lung density and lung uptake of both PET tracers decreased. Mean lung density, [18F]FDG uptake, and [68Ga]FAPI uptake correlated well with quantitative values of picrosirius red staining, GLUT1 expression, and FAP expression, respectively. Conclusions: Although traditional CT and [18F]FDG PET reflect anatomical and metabolic status in fibrotic lung, [68Ga]FAPI PET provides a means of evaluating fibrosis progression and monitoring treatment response.
Collapse
Affiliation(s)
- Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoying Lv
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Pengxin Qiao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.J.); (X.S.); (X.L.); (F.S.); (Y.L.); (Y.S.); (W.S.); (P.Q.); (Y.G.)
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| |
Collapse
|
10
|
Deng X, Cheng Z, Li Y, Duan M, Qi J, Hao C, Yao W. FAP expression dynamics and role in silicosis: Insights from epidemiological and experimental models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124311. [PMID: 38838811 DOI: 10.1016/j.envpol.2024.124311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Prolonged exposure to free silica leads to the development of silicosis, wherein activated fibroblasts play a pivotal role in its pathogenesis and progression. Fibroblast Activation Protein (FAP), as a biomarker for activated fibroblasts, its expression pattern and role in key aspects of silicosis pathogenesis remain unclear. This study elucidated the expression pattern and function of FAP through population-based epidemiological investigations, establishment of mouse models of silicosis, and in vitro cellular models. Results indicated a significant elevation of FAP in plasma from silicosis patients and lung tissues from mouse models of silicosis. In the cellular model, we observed a sharp increase in FAP expression early in the differentiation process, which remained high expression. Inhibition of FAP suppressed fibroblast differentiation, while overexpression of FAP produced the opposite effect. Moreover, fibroblast-derived FAP can alter the phenotype and function of neighboring macrophages. In summary, we revealed a high expression pattern of FAP in silicosis and its potential mechanistic role in fibrosis, suggesting FAP as a potential therapeutic target for silicosis.
Collapse
Affiliation(s)
- Xuedan Deng
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiwei Cheng
- Department of Case Management, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yiping Li
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China; Library, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Meixiu Duan
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jingyi Qi
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Changfu Hao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wu Yao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
11
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
12
|
Kimura T, Akazawa T, Mizote Y, Nakamura H, Sakaue M, Maniwa T, Shintani Y, Honma K, Tahara H, Okami J. Progressive changes in the protein expression profile of alveolar septa in early-stage lung adenocarcinoma. Int J Clin Oncol 2024; 29:771-779. [PMID: 38600426 DOI: 10.1007/s10147-024-02507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Adenocarcinomas show a stepwise progression from atypical adenomatous hyperplasia (AAH) through adenocarcinoma in situ (AIS) to invasive adenocarcinoma (IA). Immunoglobulin superfamily containing leucine-rich repeat (ISLR) is a marker of tumor-restraining cancer-associated fibroblasts (CAFs), which are distinct from conventional, strongly α-smooth muscle actin (αSMA)-positive CAFs. Fibroblast activation protein (FAP) has been focused on as a potential therapeutic and diagnostic target of CAFs. METHODS We investigated the changes in protein expression during adenocarcinoma progression in the pre-existing alveolar septa by assessing ISLR, αSMA, and FAP expression in normal lung, AAH, AIS, and IA. Fourteen AAH, seventeen AIS, and twenty IA lesions were identified and randomly sampled. Immunohistochemical analysis was performed to evaluate cancer-associated changes and FAP expression in the pre-existing alveolar structures. RESULTS Normal alveolar septa expressed ISLR. The ISLR level in the alveolar septa decreased in AAH and AIS tissues when compared with that in normal lung tissue. The αSMA-positive area gradually increased from the adjacent lung tissue (13.3% ± 15%) to AIS (87.7% ± 14%), through AAH (70.2% ± 21%). Moreover, the FAP-positive area gradually increased from AAH (1.69% ± 1.4%) to IA (11.8% ± 7.1%), through AIS (6.11% ± 5.3%). Protein expression changes are a feature of CAFs in the pre-existing alveolar septa that begin in AAH. These changes gradually progressed from AAH to IA through AIS. CONCLUSIONS FAP-positive fibroblasts may contribute to tumor stroma formation in early-stage lung adenocarcinoma, and this could influence the development of therapeutic strategies targeting FAP-positive CAFs for disrupting extracellular matrix formation.
Collapse
Affiliation(s)
- Toru Kimura
- Department of General Thoracic Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan.
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, , Suita, 565-0871, Japan.
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| | - Yu Mizote
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| | - Harumi Nakamura
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| | - Miki Sakaue
- Department of General Thoracic Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| | - Tomohiro Maniwa
- Department of General Thoracic Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2-L5, Yamadaoka, , Suita, 565-0871, Japan
| | - Keiichiro Honma
- Department of Pathology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
- Project Division of Cancer Biomolecular Therapy, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Jiro Okami
- Department of General Thoracic Surgery, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-Ku, Osaka, 541-8567, Japan
| |
Collapse
|
13
|
Subramaniam MD, Bae JS, Son J, Anggradita LD, Kim MK, Lee MY, Jang S, Choi K, Lee JC, Nam SM, Hwang Y. Floating electrode-dielectric barrier discharge-based plasma promotes skin regeneration in a full-thickness skin defect mouse model. Biomed Eng Lett 2024; 14:605-616. [PMID: 38645591 PMCID: PMC11026333 DOI: 10.1007/s13534-024-00356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 04/23/2024] Open
Abstract
Wound healing involves a complex and dynamic interplay among various cell types, cytokines, and growth factors. Macrophages and transforming growth factor-β1 (TGF-β1) play an essential role in different phases of wound healing. Cold atmospheric plasma has a wide range of applications in the treatment of chronic wounds. Hence, we aimed to investigate the safety and efficacy of a custom-made plasma device in a full-thickness skin defect mouse model. Here, we investigated the wound tissue on days 6 and 12 using histology, qPCR, and western blotting. During the inflammation phase of wound repair, macrophages play an important role in the onset and resolution of inflammation, showing decreased F4/80 on day 6 of plasma treatment and increased TGF-β1 levels. The plasma-treated group showed better epidermal epithelialization, dermal fibrosis, collagen maturation, and reduced inflammation than the control group. Our findings revealed that floating electrode-dielectric barrier discharge (FE-DBD)-based atmospheric-pressure plasma promoted significantly faster wound healing in the plasma-treated group than that in the control group with untreated wounds. Hence, plasma treatment accelerated wound healing processes without noticeable side effects and suppressed pro-inflammatory genes, suggesting that FE-DBD-based plasma could be a potential therapeutic option for treating various wounds.
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon-si, Gyeonggi-do 14584 Republic of Korea
| | - Joon Suk Bae
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon-si, Gyeonggi-do 14584 Republic of Korea
| | - Jiwon Son
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
| | - Laurensia Danis Anggradita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungnam-do 31538 Republic of Korea
| | - Min-Kyu Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
| | - Min Yong Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungnam-do 31538 Republic of Korea
| | - Seokyoon Jang
- HK-MnS Co. Ltd., Osan-si, Gyeonggi-do 18111 Republic of Korea
| | - Kwangok Choi
- HK-MnS Co. Ltd., Osan-si, Gyeonggi-do 18111 Republic of Korea
| | - Justine C. Lee
- The Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095 USA
| | - Seung Min Nam
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon-si, Gyeonggi-do 14584 Republic of Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungnam-do 31151 Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungnam-do 31538 Republic of Korea
| |
Collapse
|
14
|
Li M, Deng Z, Xie C, Chen J, Yuan Z, Rahhal O, Tang Z. Fibroblast activating protein promotes the proliferation, migration, and activation of fibroblasts in oral submucous fibrosis. Oral Dis 2024; 30:1252-1263. [PMID: 37357365 DOI: 10.1111/odi.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVES Fibroblast activating protein (FAP) is associated with various organ fibrosis. However, the expression and molecular function of FAP in oral submucous fibrosis (OSF) is still unclear. MATERIALS AND METHODS The high-performance liquid chromatography was used to detect the presence of alkaloids in areca nut extract (ANE). Real-time qPCR, Western blot, and Immunohistochemistry assay were used to analyze the expression of FAP mRNA or protein in OSF and normal oral tissue. A chi-squared test analyzed the relationship between FAP protein expression and clinicopathological data of OSF patients. CCK-8, Wound-healing, and Transwell migration assay were employed to assess the effect of the proliferation and migration ability of hOMF cells with FAP overexpression or knockdown. The expression level of a-SMA, FSP1, and P13K-Akt signaling pathways-related protein in hOMF cells transfected with FAP overexpression or knockdown plasmid was verified by western blot assay. RESULTS The four specific areca alkaloids (Arecoline, Guvacine, Arecaidine, and Guvacoline) were successfully detected in the ANE. The viability of hOMF cells was significantly improved in the 50 μg/mL ANE group and was inhibited in the 5 and 50 mg/mL ANE groups. The expression of FAP was upregulated in OSF tissues, and hOMF cells treated with 50 μg/mL ANE and was related to pathology grade, clinical stage, and history of chewing betel nut. Additionally, FAP may promote the proliferation, migration, and activation of hOMF cells through the P13K-Akt signaling pathway. CONCLUSIONS This study found that ANE had a bidirectional effect on the viability of hOMF cells, and the FAP gene was a potential therapeutic target in OSF.
Collapse
Affiliation(s)
- Ming Li
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhiyuan Deng
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Changqin Xie
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Juan Chen
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | | | - Omar Rahhal
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
15
|
Podolsky MJ, Kheyfets B, Pandey M, Beigh AH, Yang CD, Lizama CO, Datta R, Lin LL, Wang Z, Wolters PJ, McManus MT, Qi L, Atabai K. Genome-wide screens identify SEL1L as an intracellular rheostat controlling collagen turnover. Nat Commun 2024; 15:1531. [PMID: 38378719 PMCID: PMC10879544 DOI: 10.1038/s41467-024-45817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Accumulating evidence has implicated impaired extracellular matrix (ECM) clearance as a key factor in fibrotic disease. Despite decades of research elucidating the effectors of ECM clearance, relatively little is understood regarding the upstream regulation of this process. Collagen is the most abundant constituent of normal and fibrotic ECM in mammalian tissues. Its catabolism occurs through extracellular proteolysis and cell-mediated uptake of collagen fragments for intracellular degradation. Given the paucity of information regarding the regulation of this latter process, here we execute unbiased genome-wide screens to understand the molecular underpinnings of cell-mediated collagen clearance. Using this approach, we discover a mechanism through which collagen biosynthesis is sensed by cells internally and directly regulates clearance of extracellular collagen. The sensing mechanism appears to be dependent on endoplasmic reticulum-resident protein SEL1L and occurs via a noncanonical function of this protein. This pathway functions as a homeostatic negative feedback loop that limits collagen accumulation in tissues. In human fibrotic lung disease, the induction of this collagen clearance pathway by collagen synthesis is impaired, thereby contributing to the pathological accumulation of collagen in lung tissue. Thus, we describe cell-autonomous, rheostatic collagen clearance as an important pathway of tissue homeostasis.
Collapse
Affiliation(s)
- Michael J Podolsky
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Benjamin Kheyfets
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Monika Pandey
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Afaq H Beigh
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Christopher D Yang
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Ritwik Datta
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Liangguang L Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zhihong Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Michael T McManus
- Department of Microbiology and Immunology and UCSF Diabetes Center, University of California, San Francisco, CA, USA
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kamran Atabai
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, CA, USA.
- Lung Biology Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
16
|
Tsoyi K, Rosas IO. Fibroblast heterogeneity in pulmonary fibrosis: a new target for therapeutics development? Eur Respir J 2024; 63:2302188. [PMID: 38331439 DOI: 10.1183/13993003.02188-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024]
Affiliation(s)
- Konstantin Tsoyi
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
He J, Fang B, Shan S, Li Q. Mechanical stiffness promotes skin fibrosis through FAPα-AKT signaling pathway. J Dermatol Sci 2024; 113:51-61. [PMID: 38155020 DOI: 10.1016/j.jdermsci.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Myofibroblasts contribute to the excessive production, remodeling and cross-linking of the extracellular matrix that characterizes the progression of skin fibrosis. An important insight into the pathogenesis of tissue fibrosis has been the discovery that increased matrix stiffness during fibrosis progression is involved in myofibroblast activation. However, mechanistic basis for this phenomenon remains elusive. OBJECTIVE To explore the role of fibroblast activation protein-α (FAPα) in mechanical stiffness-induced skin fibrosis progression. METHODS RNA-seq was performed to compare differential genes of mouse dermal fibroblasts (MDFs) grown on low or high stiffness plates. This process identified FAPα, which is a membrane protein usually overexpressed in activated fibroblasts, as a suitable candidate. In vitro assay, we investigate the role of FAPα in mechanical stiffness-induced MDFs activation and downstream pathway. By establishing mouse skin fibrosis model and intradermally administrating FAPα adeno-associated virus (AAV) or a selective Fap inhibitor FAPi, we explore the role of FAPα in skin fibrosis in vivo. RESULTS We show that FAPα, a membrane protein highly expressed in myofibroblasts of skin fibrotic tissues, is regulated by increased matrix stiffness. Genetic deletion or pharmacological inhibition of FAPα significantly inhibits mechanical stiffness-induced activation of myofibroblasts in vitro. Mechanistically, FAPα promotes myofibroblast activation by stimulating the PI3K-Akt pathway. Furthermore, we showed that administration of the inhibitor FAPi or FAPα targeted knockdown ameliorated the progression of skin fibrosis. CONCLUSION Taken together, we identify FAPα as an important driver of mechanical stiffness-induced skin fibrosis and a potential therapeutic target for the treatment of skin fibrosis.
Collapse
Affiliation(s)
- Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Chua ZM, Tajebe F, Abuwarwar M, Fletcher AL. Differential induction of T-cell tolerance by tumour fibroblast subsets. Curr Opin Immunol 2024; 86:102410. [PMID: 38237251 DOI: 10.1016/j.coi.2023.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 04/22/2024]
Abstract
T-cell immunotherapy is now a first-line cancer treatment for metastatic melanoma and some lung cancer subtypes, which is a welcome clinical success. However, the response rates observed in these diseases are not yet replicated across other prominent solid tumour types, particularly stromal-rich subtypes with a complex microenvironment that suppresses infiltrating T cells. Cancer-associated fibroblasts (CAFs) are one of the most abundant and pro-pathogenic players in the tumour microenvironment, promoting tumour neogenesis, persistence and metastasis. Accumulating evidence is clear that CAFs subdue anti-tumour T-cell immunity and interfere with immunotherapy. CAFs can be grouped into different subtypes that operate synergistically to suppress T-cell function, including myofibroblastic CAFs, inflammatory CAFs and antigen-presenting CAFs, among other nomenclatures. Here, we review the mechanisms used by CAFs to induce T- cell tolerance and how these functions are likely to affect immunotherapy outcomes.
Collapse
Affiliation(s)
- Zoe Mx Chua
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Fitsumbhran Tajebe
- Department of Immunology and Molecular Biology, University of Gondar, Gondar 0000, Ethiopia
| | - Mohammed Abuwarwar
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
19
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
20
|
Zhang XL, Xiao W, Qian JP, Yang WJ, Xu H, Xu XD, Zhang GW. The Role and Application of Fibroblast Activating Protein. Curr Mol Med 2024; 24:1097-1110. [PMID: 37259211 DOI: 10.2174/1566524023666230530095305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/02/2023]
Abstract
Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is rarely expressed in normal tissues but highly abundant in pathological diseases, including fibrosis, arthritis, and cancer. Ever since its discovery, we have deciphered its structure and biological properties and continue to investigate its roles in various diseases while attempting to utilize it for targeted therapy. To date, no significant breakthroughs have been made in terms of efficacy. However, in recent years, several practical applications in the realm of imaging diagnosis have been discovered. Given its unique expression in a diverse array of pathological tissues, the fundamental biological characteristics of FAP render it a crucial target for disease diagnosis and immunotherapy. To obtain a more comprehensive understanding of the research progress of FAP, its biological characteristics, involvement in diseases, and recent targeted application research have been reviewed. Moreover, we explored its development trend in the direction of clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Xiao-Lou Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-da Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Saxena N, Chakraborty S, Dutta S, Bhardwaj G, Karnik N, Shetty O, Jadhav S, Zafar H, Sen S. Stiffness-dependent MSC homing and differentiation into CAFs - implications for breast cancer invasion. J Cell Sci 2024; 137:jcs261145. [PMID: 38108421 DOI: 10.1242/jcs.261145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023] Open
Abstract
Cellular heterogeneity and extracellular matrix (ECM) stiffening have been shown to be drivers of breast cancer invasiveness. Here, we examine how stiffness-dependent crosstalk between cancer cells and mesenchymal stem cells (MSCs) within an evolving tumor microenvironment regulates cancer invasion. By analyzing previously published single-cell RNA sequencing datasets, we establish the existence of a subpopulation of cells in primary tumors, secondary sites and circulatory tumor cell clusters of highly aggressive triple-negative breast cancer (TNBC) that co-express MSC and cancer-associated fibroblast (CAF) markers. By using hydrogels with stiffnesses of 0.5, 2 and 5 kPa to mimic different stages of ECM stiffening, we show that conditioned medium from MDA-MB-231 TNBC cells cultured on 2 kPa gels, which mimic the pre-metastatic stroma, drives efficient MSC chemotaxis and induces stable differentiation of MSC-derived CAFs in a TGFβ (TGFB1)- and contractility-dependent manner. In addition to enhancing cancer cell proliferation, MSC-derived CAFs on 2 kPa gels maximally boost local invasion and confer resistance to flow-induced shear stresses. Collectively, our results suggest that homing of MSCs at the pre-metastatic stage and their differentiation into CAFs actively drives breast cancer invasion and metastasis in TNBC.
Collapse
Affiliation(s)
- Neha Saxena
- Department of Chemical Engineering, IIT Bombay,Mumbai 400076, India
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Soura Chakraborty
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur 208016, India
| | - Sarbajeet Dutta
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Garvit Bhardwaj
- Department of Electrical Engineering, IIT Kanpur, Kanpur 208016, India
| | - Nupur Karnik
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, India
| | - Omshree Shetty
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai 400012, India
| | - Sameer Jadhav
- Department of Chemical Engineering, IIT Bombay,Mumbai 400076, India
| | - Hamim Zafar
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur 208016, India
- Department of Computer Science and Engineering, IIT Kanpur, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine , IIT Kanpur, Kanpur 208016, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
22
|
Glazieva VS, Alexandrushkina NA, Nimiritsky PP, Kulebyakina MA, Eremichev RY, Makarevich PI. Extracellular Matrix Deposition Defines the Duration of Cell Sheet Assembly from Human Adipose-Derived MSC. Int J Mol Sci 2023; 24:17050. [PMID: 38069373 PMCID: PMC10707034 DOI: 10.3390/ijms242317050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Cell sheet (CS) engineering using mesenchymal stromal cells (MSC) draws significant interest for regenerative medicine and this approach translates to clinical use for numerous indications. However, little is known of factors that define the timing of CS assembly from primary cultures. This aspect is important for planning CS delivery in autologous and allogeneic modes of use. We used a comparative in vitro approach with primary donors' (n = 14) adipose-derived MSCs and evaluated the impact of healthy subject's sex, MSC culture features (population doubling time and lag-phase), and extracellular matrix (ECM) composition along with factors related to connective tissue formations (α-SMA and FAP-α) on CS assembly duration. Using qualitative and quantitative analysis methods, we found that, in seeded MSCs, high contents of collagen I and collagen IV had a direct correlation with longer CS assembly duration. We found that short lag-phase cultures faster turned to a ready-to-use CS, while age, sex, fibronectin, laminin, α-SMA, and FAP-α failed to provide a significant correlation with the timing of assembly. In detachable CSs, FAP-α was negatively correlated with the duration of assembly, suggesting that its concentration rose over time and contributed to MSC activation, transitioning to α-SMA-positive myofibroblasts and ECM turnover. Preliminary data on cell density and collagen I deposition suggested that the TGF-β1 signaling axis is of pivotal importance for ECM composition and construct maturation.
Collapse
Affiliation(s)
- Valentina S Glazieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovskiy av., Moscow 119192, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovskiy av., Moscow 119192, Russia
| | - Natalya A Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovskiy av., Moscow 119192, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovskiy av., Moscow 119192, Russia
| | - Peter P Nimiritsky
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovskiy av., Moscow 119192, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovskiy av., Moscow 119192, Russia
| | - Maria A Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovskiy av., Moscow 119192, Russia
| | - Roman Yu Eremichev
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovskiy av., Moscow 119192, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovskiy av., Moscow 119192, Russia
| | - Pavel I Makarevich
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovskiy av., Moscow 119192, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovskiy av., Moscow 119192, Russia
| |
Collapse
|
23
|
Basalova N, Alexandrushkina N, Grigorieva O, Kulebyakina M, Efimenko A. Fibroblast Activation Protein Alpha (FAPα) in Fibrosis: Beyond a Perspective Marker for Activated Stromal Cells? Biomolecules 2023; 13:1718. [PMID: 38136590 PMCID: PMC10742035 DOI: 10.3390/biom13121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The development of tissue fibrosis is a complex process involving the interaction of multiple cell types, which makes the search for antifibrotic agents rather challenging. So far, myofibroblasts have been considered the key cell type that mediated the development of fibrosis and thus was the main target for therapy. However, current strategies aimed at inhibiting myofibroblast function or eliminating them fail to demonstrate sufficient effectiveness in clinical practice. Therefore, today, there is an unmet need to search for more reliable cellular targets to contribute to fibrosis resolution or the inhibition of its progression. Activated stromal cells, capable of active proliferation and invasive growth into healthy tissue, appear to be such a target population due to their more accessible localization in the tissue and their high susceptibility to various regulatory signals. This subpopulation is marked by fibroblast activation protein alpha (FAPα). For a long time, FAPα was considered exclusively a marker of cancer-associated fibroblasts. However, accumulating data are emerging on the diverse functions of FAPα, which suggests that this protein is not only a marker but also plays an important role in fibrosis development and progression. This review aims to summarize the current data on the expression, regulation, and function of FAPα regarding fibrosis development and identify promising advances in the area.
Collapse
Affiliation(s)
- Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Natalya Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia (O.G.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia;
| |
Collapse
|
24
|
Lowe KO, Tanase CE, Maghami S, Fisher LE, Ghaemmaghami AM. Inflammatory Network of Liver Fibrosis and How It Can Be Targeted Therapeutically. IMMUNO 2023; 3:375-408. [DOI: 10.3390/immuno3040023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a complex, dynamic process associated with a broad spectrum of chronic liver diseases and acute liver failure, characterised by the dysregulated intrahepatic production of extracellular matrix proteins replacing functional liver cells with scar tissue. Fibrosis progresses due to an interrelated cycle of hepatocellular injury, triggering a persistent wound-healing response. The accumulation of scar tissue and chronic inflammation can eventually lead to cirrhosis and hepatocellular carcinoma. Currently, no therapies exist to directly treat or reverse liver fibrosis; hence, it remains a substantial global disease burden. A better understanding of the intricate inflammatory network that drives the initiation and maintenance of liver fibrosis to enable the rationale design of new intervention strategies is required. This review clarifies the most current understanding of the hepatic fibrosis cellular network with a focus on the role of regulatory T cells, and a possible trajectory for T cell immunotherapy in fibrosis treatment. Despite good progress in elucidating the role of the immune system in liver fibrosis, future work to better define the function of different immune cells and their mediators at different fibrotic stages is needed, which will enhance the development of new therapies.
Collapse
Affiliation(s)
- Kirstin O. Lowe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK
| | - Leanne E. Fisher
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
25
|
Eriksson O, Velikyan I. Radiotracers for Imaging of Fibrosis: Advances during the Last Two Decades and Future Directions. Pharmaceuticals (Basel) 2023; 16:1540. [PMID: 38004406 PMCID: PMC10674214 DOI: 10.3390/ph16111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Fibrosis accompanies various pathologies, and there is thus an unmet medical need for non-invasive, sensitive, and quantitative methods for the assessment of fibrotic processes. Currently, needle biopsy with subsequent histological analysis is routinely used for the diagnosis along with morphological imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). However, none of these imaging techniques are sufficiently sensitive and accurate to detect minor changes in fibrosis. More importantly, they do not provide information on fibrotic activity on the molecular level, which is critical for fundamental understanding of the underlying biology and disease course. Molecular imaging technology using positron emission tomography (PET) offers the possibility of imaging not only physiological real-time activity, but also high-sensitivity and accurate quantification. This diagnostic tool is well established in oncology and has exhibited exponential development during the last two decades. However, PET diagnostics has only recently been widely applied in the area of fibrosis. This review presents the progress of development of radiopharmaceuticals for non-invasive detection of fibrotic processes, including the fibrotic scar itself, the deposition of new fibrotic components (fibrogenesis), or the degradation of existing fibrosis (fibrolysis).
Collapse
Affiliation(s)
- Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden;
- Antaros Tracer AB, Dragarbrunnsgatan 46, 2 tr, 753 20 Uppsala, Sweden
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden;
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 752 85 Uppsala, Sweden
| |
Collapse
|
26
|
Santamaria P, Sari A, Nibali L. Molecular profiling of gingival crevicular fluid fails to distinguish between infrabony and suprabony periodontal defects. J Clin Periodontol 2023; 50:1315-1325. [PMID: 37438680 DOI: 10.1111/jcpe.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/08/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
AIM To assess the differential molecular profiling of gingival crevicular fluid (GCF) from infrabony and suprabony periodontal defects compared with healthy sites. MATERIALS AND METHODS Seventy-five samples from 25 patients with untreated periodontitis stage III-IV were included. Clinical and radiological parameters as well as GCF samples were collected from an infrabony defect, a suprabony defect and a periodontally healthy site per patient. A multiplex bead immunoassay was performed to assess the level of 18 biomarkers associated with inflammation, connective tissue degradation and regeneration/repair. RESULTS GCF volume was higher in periodontal sites compared with healthy sites, with no significant difference between infrabony and suprabony defects. Fourteen biomarkers were elevated in infrabony and suprabony sites compared with healthy sites (p < .05). Only interleukin-1α levels were increased in infrabony compared with suprabony sites, whereas there was no difference in probing pocket depth. CONCLUSIONS Although the GCF molecular profile clearly differentiates periodontally affected sites from healthy sites, the different architecture between infrabony and suprabony defects is not reflected in GCF biomarker changes.
Collapse
Affiliation(s)
- Pasquale Santamaria
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Aysegul Sari
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
27
|
Nataliya B, Mikhail A, Vladimir P, Olga G, Maksim V, Ivan Z, Ekaterina N, Georgy S, Natalia D, Pavel M, Andrey C, Maria S, Maxim K, Anastasiya T, Uliana D, Zhanna A, Vsevolod T, Natalia K, Anastasiya E. Mesenchymal stromal cells facilitate resolution of pulmonary fibrosis by miR-29c and miR-129 intercellular transfer. Exp Mol Med 2023; 55:1399-1412. [PMID: 37394579 PMCID: PMC10393964 DOI: 10.1038/s12276-023-01017-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 07/04/2023] Open
Abstract
To date, pulmonary fibrosis remains an unmet medical need. In this study, we evaluated the potency of mesenchymal stromal cell (MSC) secretome components to prevent pulmonary fibrosis development and facilitate fibrosis resolution. Surprisingly, the intratracheal application of extracellular vesicles (MSC-EVs) or the vesicle-depleted secretome fraction (MSC-SF) was not able to prevent lung fibrosis when applied immediately after the injury caused by bleomycin instillation in mice. However, MSC-EV administration induced the resolution of established pulmonary fibrosis, whereas the vesicle-depleted fraction did not. The application of MSC-EVs caused a decrease in the numbers of myofibroblasts and FAPa+ progenitors without affecting their apoptosis. Such a decrease likely occurred due to their dedifferentiation caused by microRNA (miR) transfer by MSC-EVs. Using a murine model of bleomycin-induced pulmonary fibrosis, we confirmed the contribution of specific miRs (miR-29c and miR-129) to the antifibrotic effect of MSC-EVs. Our study provides novel insights into possible antifibrotic therapy based on the use of the vesicle-enriched fraction of the MSC secretome.
Collapse
Affiliation(s)
- Basalova Nataliya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Arbatskiy Mikhail
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Popov Vladimir
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Grigorieva Olga
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vigovskiy Maksim
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Zaytsev Ivan
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Novoseletskaya Ekaterina
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sagaradze Georgy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Danilova Natalia
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Clinical Pathology, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Malkov Pavel
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
- Department of Clinical Pathology, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Cherniaev Andrey
- Division of Fundamental Medicine of Federal State Budgetary Institution "Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation", Moscow, Russian Federation
- Research Institute of Human Morphology, Moscow, Russian Federation
| | - Samsonova Maria
- Division of Fundamental Medicine of Federal State Budgetary Institution "Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation", Moscow, Russian Federation
- Research Institute of Human Morphology, Moscow, Russian Federation
| | - Karagyaur Maxim
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tolstoluzhinskaya Anastasiya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Dyachkova Uliana
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Akopyan Zhanna
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tkachuk Vsevolod
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Kalinina Natalia
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Efimenko Anastasiya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
28
|
Jian HR, Niu WH, Xu ZS, Zhu JX, Pan X, Zhang YR, Lei P, Huang FQ, He Y. Establishment of FAP-overexpressing Cells for FAP-targeted Theranostics. Curr Med Sci 2023:10.1007/s11596-023-2740-7. [PMID: 37222958 DOI: 10.1007/s11596-023-2740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/29/2022] [Indexed: 05/25/2023]
Abstract
OBJECTIVE Fibroblast activation protein (FAP) has been widely studied and exploited for its clinical applications. One of the difficulties in interpreting reports of FAP-targeted theranostics is due to the lack of accurate controls, making the results less specific and less confirmative. This study aimed to establish a pair of cell lines, in which one highly expresses FAP (HT1080-hFAP) and the other has no detectable FAP (HT1080-vec) as control, to accurately evaluate the specificity of the FAP-targeted theranostics in vitro and in vivo. METHODS The cell lines of the experimental group (HT1080-hFAP) and no-load group (HT1080-vec) were obtained by molecular construction of the recombinant plasmid pIRES-hFAP. The expression of hFAP in HT1080 cells was detected by PCR, Western blotting and flow cytometry. CCK-8, Matrigel transwell invasion assay, scratch test, flow cytometry and immunofluorescence were used to verify the physiological function of FAP. The activities of human dipeptidyl peptidase (DPP) and human endopeptidase (EP) were detected by ELISA in HT1080-hFAP cells. PET imaging was performed in bilateral tumor-bearing nude mice models to evaluate the specificity of FAP. RESULTS RT-PCR and Western blotting demonstrated the mRNA and protein expression of hFAP in HT1080-hFAP cells but not in HT1080-vec cells. Flow cytometry confirmed that nearly 95% of the HT1080-hFAP cells were FAP positive. The engineered hFAP on HT1080 cells had its ability to retain enzymatic activities and a variety of biological functions, including internalization, proliferation-, migration-, and invasion-promoting activities. The HT1080-hFAP xenografted tumors in nude mice bound and took up 68GA-FAPI-04 with superior selectivity. High image contrast and tumor-organ ratio were obtained by PET imaging. The HT1080-hFAP tumor retained the radiotracer for at least 60 min. CONCLUSION This pair of HT1080 cell lines was successfully established, making it feasible for accurate evaluation and visualization of therapeutic and diagnostic agents targeting the hFAP.
Collapse
Affiliation(s)
- Hui-Ru Jian
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430062, China
- The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, China
| | - Wen-Hao Niu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuo-Shuo Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Xu Zhu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430062, China
| | - Xin Pan
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430062, China
| | - Yi-Rui Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fa-Qing Huang
- The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, China.
| | - Yong He
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430062, China.
| |
Collapse
|
29
|
Swahn H, Li K, Duffy T, Olmer M, D'Lima DD, Mondala TS, Natarajan P, Head SR, Lotz MK. Senescent cell population with ZEB1 transcription factor as its main regulator promotes osteoarthritis in cartilage and meniscus. Ann Rheum Dis 2023; 82:403-415. [PMID: 36564153 PMCID: PMC10076001 DOI: 10.1136/ard-2022-223227] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/08/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Single-cell level analysis of articular cartilage and meniscus tissues from human healthy and osteoarthritis (OA) knees. METHODS Single-cell RNA sequencing (scRNA-seq) analyses were performed on articular cartilage and meniscus tissues from healthy (n=6, n=7) and OA (n=6, n=6) knees. Expression of genes of interest was validated using immunohistochemistry and RNA-seq and function was analysed by gene overexpression and depletion. RESULTS scRNA-seq analyses of human knee articular cartilage (70 972 cells) and meniscus (78 017 cells) identified a pathogenic subset that is shared between both tissues. This cell population is expanded in OA and has strong OA and senescence gene signatures. Further, this subset has critical roles in extracellular matrix (ECM) and tenascin signalling and is the dominant sender of signals to all other cartilage and meniscus clusters and a receiver of TGFβ signalling. Fibroblast activating protein (FAP) is also a dysregulated gene in this cluster and promotes ECM degradation. Regulons that are controlled by transcription factor ZEB1 are shared between the pathogenic subset in articular cartilage and meniscus. In meniscus and cartilage cells, FAP and ZEB1 promote expression of genes that contribute to OA pathogenesis, including senescence. CONCLUSIONS These single-cell studies identified a senescent pathogenic cell cluster that is present in cartilage and meniscus and has FAP and ZEB1 as main regulators which are novel and promising therapeutic targets for OA-associated pathways in both tissues.
Collapse
Affiliation(s)
- Hannah Swahn
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Kun Li
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Tomas Duffy
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Darryl D D'Lima
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, Scripps Health, La Jolla, California, USA
| | - Tony S Mondala
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jola, California, USA
| | - Padmaja Natarajan
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jola, California, USA
| | - Steven R Head
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jola, California, USA
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
30
|
Montesi SB, Horowitz JC. Fibroblast Activating Protein: Skimming the Surface of Molecular Imaging to Assess Fibrotic Disease Activity. Am J Respir Crit Care Med 2023; 207:122-124. [PMID: 36075072 PMCID: PMC9893323 DOI: 10.1164/rccm.202208-1638ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine Massachusetts General Hospital Boston, Massachusetts
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine The Ohio State University Columbus, Ohio
| |
Collapse
|
31
|
Yang P, Luo Q, Wang X, Fang Q, Fu Z, Li J, Lai Y, Chen X, Xu X, Peng X, Hu K, Nie X, Liu S, Zhang J, Li J, Shen C, Gu Y, Liu J, Chen J, Zhong N, Su J. Comprehensive Analysis of Fibroblast Activation Protein Expression in Interstitial Lung Diseases. Am J Respir Crit Care Med 2023; 207:160-172. [PMID: 35984444 PMCID: PMC9893314 DOI: 10.1164/rccm.202110-2414oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rationale: Sustained activation of lung fibroblasts and the resulting oversynthesis of the extracellular matrix are detrimental events for patients with interstitial lung diseases (ILDs). Lung biopsy is a primary evaluation technique for the fibrotic status of ILDs, and is also a major risk factor for triggering acute deterioration. Fibroblast activation protein (FAP) is a long-known surface biomarker of activated fibroblasts, but its expression pattern and diagnostic implications in ILDs are poorly defined. Objectives: The present study aims to comprehensively investigate whether the expression intensity of FAP could be used as a potential readout to estimate or measure the amounts of activated fibroblasts in ILD lungs quantitatively. Methods: FAP expression in human primary lung fibroblasts as well as in clinical lung specimens was first tested using multiple experimental methods, including real-time quantitative PCR (qPCR), Western blot, immunofluorescence staining, deep learning measurement of whole slide immunohistochemistry, as well as single-cell sequencing. In addition, FAP-targeted positron emission tomography/computed tomography imaging PET/CT was applied to various types of patients with ILD, and the correlation between the uptake of FAP tracer and pulmonary function parameters was analyzed. Measurements and Main Results: Here, it was revealed, for the first time, FAP expression was upregulated significantly in the early phase of lung fibroblast activation event in response to a low dose of profibrotic cytokine. Single-cell sequencing data further indicate that nearly all FAP-positive cells in ILD lungs were collagen-producing fibroblasts. Immunohistochemical analysis validated that FAP expression level was closely correlated with the abundance of fibroblastic foci on human lung biopsy sections from patients with ILDs. We found that the total standard uptake value (SUV) of FAP inhibitor (FAPI) PET (SUVtotal) was significantly related to lung function decline in patients with ILD. Conclusions: Our results strongly support that in vitro and in vivo detection of FAP can assess the profibrotic activity of ILDs, which may aid in early diagnosis and the selection of an appropriate therapeutic window.
Collapse
Affiliation(s)
- Penghui Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
| | - Qun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
| | | | - Qi Fang
- Department of Nuclear Medicine, and
| | - Zhenli Fu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
| | - Jia Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
| | - Yunxin Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
| | - Xiaobo Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
| | - Xin Xu
- Department of Thoracic Surgery/Oncology, State Key Laboratory, and National Clinical Research Center for Respiratory Disease
| | - Xiaomin Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaowei Nie
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, China
| | | | - Jinhe Zhang
- Department of Nuclear Medicine, General Hospital of Southern Theatre Command of People’s Liberation Army of China, Guangzhou, China; and
| | - Junqi Li
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong, China
| | - Chenyou Shen
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, China
| | - Yingying Gu
- Respiratory Pathology Center, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianping Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
| | - Jingyu Chen
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health
| | - Jin Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health,,Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong, China
| |
Collapse
|
32
|
Fan A, Wu G, Wang J, Lu L, Wang J, Wei H, Sun Y, Xu Y, Mo C, Zhang X, Pang Z, Pan Z, Wang Y, Lu L, Fu G, Ma M, Zhu Q, Cao D, Qin J, Yin F, Yue R. Inhibition of fibroblast activation protein ameliorates cartilage matrix degradation and osteoarthritis progression. Bone Res 2023; 11:3. [PMID: 36588124 PMCID: PMC9806108 DOI: 10.1038/s41413-022-00243-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 01/03/2023] Open
Abstract
Fibroblast activation protein (Fap) is a serine protease that degrades denatured type I collagen, α2-antiplasmin and FGF21. Fap is highly expressed in bone marrow stromal cells and functions as an osteogenic suppressor and can be inhibited by the bone growth factor Osteolectin (Oln). Fap is also expressed in synovial fibroblasts and positively correlated with the severity of rheumatoid arthritis (RA). However, whether Fap plays a critical role in osteoarthritis (OA) remains poorly understood. Here, we found that Fap is significantly elevated in osteoarthritic synovium, while the genetic deletion or pharmacological inhibition of Fap significantly ameliorated posttraumatic OA in mice. Mechanistically, we found that Fap degrades denatured type II collagen (Col II) and Mmp13-cleaved native Col II. Intra-articular injection of rFap significantly accelerated Col II degradation and OA progression. In contrast, Oln is expressed in the superficial layer of articular cartilage and is significantly downregulated in OA. Genetic deletion of Oln significantly exacerbated OA progression, which was partially rescued by Fap deletion or inhibition. Intra-articular injection of rOln significantly ameliorated OA progression. Taken together, these findings identify Fap as a critical pathogenic factor in OA that could be targeted by both synthetic and endogenous inhibitors to ameliorate articular cartilage degradation.
Collapse
Affiliation(s)
- Aoyuan Fan
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Genbin Wu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240 China
| | - Jianfang Wang
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Laiya Lu
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Jingyi Wang
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Hanjing Wei
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Yuxi Sun
- grid.24516.340000000123704535Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yanhua Xu
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China ,grid.24516.340000000123704535Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Chunyang Mo
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Xiaoying Zhang
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Zhiying Pang
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Zhangyi Pan
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Yiming Wang
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Liangyu Lu
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China
| | - Guojian Fu
- grid.16821.3c0000 0004 0368 8293Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240 China
| | - Mengqiu Ma
- grid.24516.340000000123704535Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Qiaoling Zhu
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Dandan Cao
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Jiachen Qin
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Feng Yin
- grid.24516.340000000123704535Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China ,grid.452344.0Shanghai Clinical Research Center for Aging and Medicine, Shanghai, 200040 China
| | - Rui Yue
- grid.24516.340000000123704535Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China ,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120 China
| |
Collapse
|
33
|
Kopchick JJ, Basu R, Berryman DE, Jorgensen JOL, Johannsson G, Puri V. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol 2022; 18:558-573. [PMID: 35750929 PMCID: PMC9703363 DOI: 10.1038/s41574-022-00702-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/20/2022]
Abstract
Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University, Athens, OH, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
| | - Reetobrata Basu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
34
|
Rosenkrans ZT, Massey CF, Bernau K, Ferreira CA, Jeffery JJ, Schulte JJ, Moore M, Valla F, Batterton JM, Drake CR, McMillan AB, Sandbo N, Pirasteh A, Hernandez R. [ 68 Ga]Ga-FAPI-46 PET for non-invasive detection of pulmonary fibrosis disease activity. Eur J Nucl Med Mol Imaging 2022; 49:3705-3716. [PMID: 35556159 PMCID: PMC9553066 DOI: 10.1007/s00259-022-05814-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/23/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE The lack of effective molecular biomarkers to monitor idiopathic pulmonary fibrosis (IPF) activity or treatment response remains an unmet clinical need. Herein, we determined the utility of fibroblast activation protein inhibitor for positron emission tomography (FAPI PET) imaging in a mouse model of pulmonary fibrosis. METHODS Pulmonary fibrosis was induced by intratracheal administration of bleomycin (1 U/kg) while intratracheal saline was administered to control mice. Subgroups from each cohort (n = 3-5) underwent dynamic 1 h PET/CT after intravenously injecting FAPI-46 radiolabeled with gallium-68 ([68 Ga]Ga-FAPI-46) at 7 days and 14 days following disease induction. Animals were sacrificed following imaging for ex vivo gamma counting and histologic correlation. [68 Ga]Ga-FAPI-46 uptake was quantified and reported as percent injected activity per cc (%IA/cc) or percent injected activity (%IA). Lung CT density in Hounsfield units (HU) was also correlated with histologic examinations of lung fibrosis. RESULTS CT only detected differences in the fibrotic response at 14 days post-bleomycin administration. [68 Ga]Ga-FAPI-46 lung uptake was significantly higher in the bleomycin group than in control subjects at 7 days and 14 days. Significantly (P = 0.0012) increased [68 Ga]Ga-FAPI-46 lung uptake in the bleomycin groups at 14 days (1.01 ± 0.12%IA/cc) vs. 7 days (0.33 ± 0.09%IA/cc) at 60 min post-injection of the tracer was observed. These findings were consistent with an increase in both fibrinogenesis and FAP expression as seen in histology. CONCLUSION CT was unable to assess disease activity in a murine model of IPF. Conversely, FAPI PET detected both the presence and activity of lung fibrogenesis, making it a promising tool for assessing early disease activity and evaluating the efficacy of therapeutic interventions in lung fibrosis patients.
Collapse
Affiliation(s)
- Zachary T Rosenkrans
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | - Christopher F Massey
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | - Ksenija Bernau
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Carolina A Ferreira
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | - Justin J Jeffery
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jefree J Schulte
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Jeanine M Batterton
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | | | - Alan B McMillan
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | - Nathan Sandbo
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ali Pirasteh
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA.
- Department of Radiology, University of Wisconsin-Madison, 1111 Highland Ave., Room 2423, WI, 53705, Madison, USA.
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Radiology, University of Wisconsin-Madison, 1111 Highland Ave., Room 2423, WI, 53705, Madison, USA.
| |
Collapse
|
35
|
Piceatannol-mediated JAK2/STAT3 signaling pathway inhibition contributes to the alleviation of oxidative injury and collagen synthesis during pulmonary fibrosis. Int Immunopharmacol 2022; 111:109107. [PMID: 35932616 DOI: 10.1016/j.intimp.2022.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
Pulmonary fibrosis (PF) is characterized by oxidative injury and excessive collagen synthesis in lung fibroblasts, causing impaired pulmonary function and chronic lung injury. Piceatannol, a dietary polyphenol, possesses vital pharmacological effects in metabolic disorders, cancers, cardiovascular disease and infectious disease; however, its role in PF is still not completely elucidated. Mice (8 to 10 weeks old) were administered bleomycin (BLM) intratracheally (2 U/kg) to establish an in vivo PF model. Murine primary lung fibroblasts were isolated and stimulated with TGF-β (10 ng/mL) for 48 h to induce its activation. Meanwhile, mice or primary lung fibroblasts were treated with different doses of piceatannol to observe its protective roles. Pulmonary function and arterial blood gas were detected to assess pulmonary physiological status. Collagen deposition and the mRNA levels of profibrotic genes were determined by H&E staining and RT-PCR. Meanwhile, the protein and mRNA markers, as well as end-product of oxidative stress were detected in vivo and in vitro. The results showed that pulmonary function was significantly impaired in BLM-induced mice, accompanied by elevated oxidative stress and excessive collagen synthesis. Piceatannol significantly improved pulmonary function and decreased oxidative injury as well as collagen synthesis in mice with PF. Mechanically, piceatannol treatment significantly inhibited the activation of JAK2/STAT3 signaling pathway in BLM-induced mice and TGF-β-induced lung fibroblasts. Additional findings also demonstrated that coumermycin A1 (C-A1), an agonist of JAK2, could abolish the effects of piceatannol on TGF-β-induced lung fibroblasts and reactivated the phosphorylation STAT3. Taken together, our study demonstrated that piceatannol could protect against oxidative injury and collagen synthesis during PF in a JAK2/STAT3 signaling pathway-dependent manner.
Collapse
|
36
|
Fang Q, Liu S, Cui J, Zhao R, Han Q, Hou P, Li Y, Lv J, Zhang X, Luo Q, Wang X. Mesoporous Polydopamine Loaded Pirfenidone Target to Fibroblast Activation Protein for Pulmonary Fibrosis Therapy. Front Bioeng Biotechnol 2022; 10:920766. [PMID: 35957641 PMCID: PMC9363109 DOI: 10.3389/fbioe.2022.920766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Recently, fibroblast activation protein (FAP), an overexpressed transmembrane protein of activated fibroblast in pulmonary fibrosis, has been considered as the new target for diagnosing and treating pulmonary fibrosis. In this work, mesoporous polydopamine (MPDA), which is facile prepared and easily modified, is developed as a carrier to load antifibrosis drug pirfenidone (PFD) and linking FAP inhibitor (FAPI) to realize lesion-targeted drug delivery for pulmonary fibrosis therapy. We have found that PFD@MPDA-FAPI is well biocompatible and with good properties of antifibrosis, when ICG labels MPDA-FAPI, the accumulation of the nanodrug at the fibrosis lung in vivo can be observed by NIR imaging, and the antifibrosis properties of PFD@MPDA-FAPI in vivo were also better than those of pure PFD and PFD@MPDA; therefore, the easily produced and biocompatible nanodrug PFD@MPDA-FAPI developed in this study is promising for further clinical translations in pulmonary fibrosis antifibrosis therapy.
Collapse
Affiliation(s)
- Qi Fang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiangyu Cui
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Han
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Hou
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Youcai Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Lv
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyao Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qun Luo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
37
|
Thorseth ML, Carretta M, Jensen C, Mølgaard K, Jürgensen HJ, Engelholm LH, Behrendt N, Willumsen N, Madsen DH. Uncovering Mediators of Collagen Degradation in the Tumor Microenvironment. Matrix Biol Plus 2022; 13:100101. [PMID: 35198964 PMCID: PMC8841889 DOI: 10.1016/j.mbplus.2022.100101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 11/26/2022] Open
Abstract
Collagen cleavage in tumors is primarily mediated by FAP+ cancer-associated fibroblasts. Collagen fibers are cleaved in an MMP-dependent manner. Released collagen fragments are internalized by M2-like tumor-associated macrophages and cancer-associated fibroblasts. The mannose receptor is central in collagen internalization by tumor-associated macrophages.
Increased remodeling of the extracellular matrix in malignant tumors has been shown to correlate with tumor aggressiveness and a poor prognosis. This remodeling involves degradation of the original extracellular matrix (ECM) and deposition of a new tumor-supporting ECM. The main constituent of the ECM is collagen and collagen turnover mainly occurs in a sequential manner, where initial proteolytic cleavage of the insoluble fibers is followed by cellular internalization of large well-defined collagen fragments for lysosomal degradation. However, despite extensive research in the field, a lack of consensus on which cell types within the tumor microenvironment express the involved proteases still exists. Furthermore, the relative contribution of different cell types to collagen internalization is not well-established. Here, we developed quantitative ex vivo collagen degradation assays and show that the proteases responsible for the initial collagen cleavage in two murine syngeneic tumor models are matrix metalloproteinases produced by cancer-associated fibroblasts and that collagen degradation fragments are endocytosed primarily by tumor-associated macrophages and cancer-associated fibroblasts from the tumor stroma. Using tumors from mannose receptor-deficient mice, we show that this receptor is essential for collagen-internalization by tumor-associated macrophages. Together, these findings identify the cell types responsible for the entire collagen degradation pathway, from initial cleavage to endocytosis of fragments for intracellular degradation.
Collapse
|
38
|
Rømer AMA, Thorseth ML, Madsen DH. Immune Modulatory Properties of Collagen in Cancer. Front Immunol 2021; 12:791453. [PMID: 34956223 PMCID: PMC8692250 DOI: 10.3389/fimmu.2021.791453] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
During tumor growth the extracellular matrix (ECM) undergoes dramatic remodeling. The normal ECM is degraded and substituted with a tumor-specific ECM, which is often of higher collagen density and increased stiffness. The structure and collagen density of the tumor-specific ECM has been associated with poor prognosis in several types of cancer. However, the reason for this association is still largely unknown. Collagen can promote cancer cell growth and migration, but recent studies have shown that collagens can also affect the function and phenotype of various types of tumor-infiltrating immune cells such as tumor-associated macrophages (TAMs) and T cells. This suggests that tumor-associated collagen could have important immune modulatory functions within the tumor microenvironment, affecting cancer progression as well as the efficacy of cancer immunotherapy. The effects of tumor-associated collagen on immune cells could help explain why a high collagen density in tumors is often correlated with a poor prognosis. Knowledge about immune modulatory functions of collagen could potentially identify targets for improving current cancer therapies or for development of new treatments. In this review, the current knowledge about the ability of collagen to influence T cell activity will be summarized. This includes direct interactions with T cells as well as induction of immune suppressive activity in other immune cells such as macrophages. Additionally, the potential effects of collagen on the efficacy of cancer immunotherapy will be discussed.
Collapse
Affiliation(s)
- Anne Mette Askehøj Rømer
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Marie-Louise Thorseth
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Hu K, Wang L, Wu H, Huang S, Tian Y, Wang Q, Xiao C, Han Y, Tang G. [ 18F]FAPI-42 PET imaging in cancer patients: optimal acquisition time, biodistribution, and comparison with [ 68Ga]Ga-FAPI-04. Eur J Nucl Med Mol Imaging 2021; 49:2833-2843. [PMID: 34893920 DOI: 10.1007/s00259-021-05646-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE [18F]FAPI-42 is a new fibroblast activation protein (FAP)-specific tracer used for cancer imaging. Here, we describe the optimal acquisition time and in vivo evaluation of [18F]FAPI-42 and compared intra-individual biodistribution, tumor uptake, and detection ability to [68Ga]Ga-FAPI-04. METHODS A total of 22 patients with various types of cancer received [18F]FAPI-42 whole-body positron emission tomography/computed tomography (PET/CT). Among them, 4 patients underwent PET/CT scans, including an early dynamic 20-min, static 1-h, and static 2-h scans. The in vivo biodistribution in normal organs and tumor uptake were semiquantitatively evaluated using the standardized uptake value (SUV) and tumor-to-background ratio (TBR). Furthermore, both [18F]FAPI-42 and [68Ga]Ga-FAPI-04 PET/CT were performed in 12 patients to compare biodistribution, tumor uptake, and tumor detection ability. RESULTS [18F]FAPI-42 uptake in the tumors was rapid and reached a high level with an average SUVmax of 15.8 at 18 min, which stayed at a similarly high level to 2 h. The optimal image acquisition time for [18F]FAPI-42 was determined to be 1 h postinjection. For tumor detection, [18F]FAPI-42 had a high uptake and could be clearly visualized in the lesions. Compared to [68Ga]Ga-FAPI-04, [18F]FAPI-42 had the same detectability for 144 positive lesions. In addition, [18F]FAPI-42 showed a higher SUVmax in liver and bone lesions (P < 0.05) and higher TBRs in liver, bone, lymph node, pleura, and peritoneal lesions (all P < 0.05). CONCLUSION The present study demonstrates that the optimal image acquisition time of [18F]FAPI-42 is 1 h postinjection and that [18F]FAPI-42 exhibits comparable lesion detectability to [68Ga]Ga-FAPI-04. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR2100045757).
Collapse
Affiliation(s)
- Kongzhen Hu
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Lijuan Wang
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Hubing Wu
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Shun Huang
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Ying Tian
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Qiaoyu Wang
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Caixia Xiao
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yanjiang Han
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Ganghua Tang
- Department of Nuclear Medicine, The First School of Clinical Medicine, Guangdong Province, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
40
|
Imlimthan S, Moon ES, Rathke H, Afshar-Oromieh A, Rösch F, Rominger A, Gourni E. New Frontiers in Cancer Imaging and Therapy Based on Radiolabeled Fibroblast Activation Protein Inhibitors: A Rational Review and Current Progress. Pharmaceuticals (Basel) 2021; 14:1023. [PMID: 34681246 PMCID: PMC8540221 DOI: 10.3390/ph14101023] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, the tumor microenvironment (TME) has become a new paradigm of cancer diagnosis and therapy due to its unique biological features, mainly the interconnection between cancer and stromal cells. Within the TME, cancer-associated fibroblasts (CAFs) demonstrate as one of the most critical stromal cells that regulate tumor cell growth, progression, immunosuppression, and metastasis. CAFs are identified by various biomarkers that are expressed on their surfaces, such as fibroblast activation protein (FAP), which could be utilized as a useful target for diagnostic imaging and treatment. One of the advantages of targeting FAP-expressing CAFs is the absence of FAP expression in quiescent fibroblasts, leading to a controlled targetability of diagnostic and therapeutic compounds to the malignant tumor stromal area using radiolabeled FAP-based ligands. FAP-based radiopharmaceuticals have been investigated strenuously for the visualization of malignancies and delivery of theranostic radiopharmaceuticals to the TME. This review provides an overview of the state of the art in TME compositions, particularly CAFs and FAP, and their roles in cancer biology. Moreover, relevant reports on radiolabeled FAP inhibitors until the year 2021 are highlighted-as well as the current limitations, challenges, and requirements for those radiolabeled FAP inhibitors in clinical translation.
Collapse
Affiliation(s)
- Surachet Imlimthan
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Euy Sung Moon
- Department of Chemistry—TRIGA Site, Johannes Gutenberg—University Mainz, 55128 Mainz, Germany; (E.S.M.); (F.R.)
| | - Hendrik Rathke
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Frank Rösch
- Department of Chemistry—TRIGA Site, Johannes Gutenberg—University Mainz, 55128 Mainz, Germany; (E.S.M.); (F.R.)
| | - Axel Rominger
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Eleni Gourni
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| |
Collapse
|
41
|
Malchiodi ZX, Cao H, Gay MD, Safronenka A, Bansal S, Tucker RD, Weinberg BA, Cheema A, Shivapurkar N, Smith JP. Cholecystokinin Receptor Antagonist Improves Efficacy of Chemotherapy in Murine Models of Pancreatic Cancer by Altering the Tumor Microenvironment. Cancers (Basel) 2021; 13:4949. [PMID: 34638432 PMCID: PMC8508339 DOI: 10.3390/cancers13194949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is resistant to chemotherapy in part due to the dense desmoplastic fibrosis surrounding the tumor, the immunosuppressive cells in the tumor microenvironment (TME), and the early rate of metastases. In this study, we examined the effects of a CCK receptor antagonist, proglumide, alone and in combination with gemcitabine in murine models of pancreatic cancer. Tumor growth rate, metastases, and survival were assessed in mice bearing syngeneic murine or human pancreatic tumors treated with PBS (control), gemcitabine, proglumide, or the combination of gemcitabine and proglumide. Excised tumors were evaluated histologically for fibrosis, immune cells, molecular markers, and uptake of chemotherapy by mass spectroscopy. Peripheral blood was analyzed with a microRNAs biomarker panel associated with fibrosis and oncogenesis. Differentially expressed genes between tumors of mice treated with gemcitabine monotherapy and combination therapy were compared by RNAseq. When given in combination the two compounds exhibited inhibitory effects by decreasing tumor growth rate by 70%, metastases, and prolonging survival. Proglumide monotherapy altered the TME by decreasing fibrosis, increasing intratumoral CD8+ T-cells, and decreasing arginase-positive cells, thus rendering the tumor sensitive to chemotherapy. Proglumide altered the expression of genes involved in fibrosis, epithelial-mesenchymal transition, and invasion. CCK-receptor antagonism with proglumide renders pancreatic cancer susceptible to chemotherapy.
Collapse
Affiliation(s)
- Zoe X. Malchiodi
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Hong Cao
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Martha D. Gay
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Anita Safronenka
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Sunil Bansal
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Robin D. Tucker
- Department of Pathology, Georgetown University, Washington, DC 20057, USA;
| | - Benjamin A. Weinberg
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Amrita Cheema
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Jill P. Smith
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| |
Collapse
|
42
|
Kuklik J, Michelfelder S, Schiele F, Kreuz S, Lamla T, Müller P, Park JE. Development of a Bispecific Antibody-Based Platform for Retargeting of Capsid Modified AAV Vectors. Int J Mol Sci 2021; 22:ijms22158355. [PMID: 34361120 PMCID: PMC8347852 DOI: 10.3390/ijms22158355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
A major limiting factor for systemically delivered gene therapies is the lack of novel tissue specific AAV (Adeno-associated virus) derived vectors. Bispecific antibodies can be used to redirect AAVs to specific target receptors. Here, we demonstrate that the insertion of a short linear epitope “2E3” derived from human proprotein-convertase subtilisin/kexin type 9 (PCSK9) into different surface loops of the VP capsid proteins can be used for AAV de-targeting from its natural receptor(s), combined with a bispecific antibody-mediated retargeting. We chose to target a set of distinct disease relevant membrane proteins—fibroblast activation protein (FAP), which is upregulated on activated fibroblasts within the tumor stroma and in fibrotic tissues, as well as programmed death-ligand 1 (PD-L1), which is strongly upregulated in many cancers. Upon incubation with a bispecific antibody recognizing the 2E3 epitope and FAP or PD-L1, the bispecific antibody/rAAV complex was able to selectively transduce receptor positive cells. In summary, we developed a novel, rationally designed vector retargeting platform that can target AAVs to a new set of cellular receptors in a modular fashion. This versatile platform may serve as a valuable tool to investigate the role of disease relevant cell types and basis for novel gene therapy approaches.
Collapse
Affiliation(s)
- Juliane Kuklik
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
| | - Stefan Michelfelder
- Division of Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany; (S.M.); (S.K.)
| | - Felix Schiele
- Division of Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
| | - Sebastian Kreuz
- Division of Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany; (S.M.); (S.K.)
- Boehringer Ingelheim Venture Fund GmbH, 55216 Ingelheim am Rhein, Germany;
| | - Thorsten Lamla
- Division of Drug Discovery Sciences Biberach, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
| | - Philipp Müller
- Boehringer Ingelheim Venture Fund GmbH, 55216 Ingelheim am Rhein, Germany;
| | - John E. Park
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
- Correspondence:
| |
Collapse
|
43
|
Ansardamavandi A, Tafazzoli-Shadpour M. The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119103. [PMID: 34293346 DOI: 10.1016/j.bbamcr.2021.119103] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The function of biological tissues in health and disease is regulated at cellular level and is highly influenced by the physical microenvironment, through the interaction of forces between cells and ECM, which are perceived through mechanosensing pathways. In cancer, both chemical and physical signaling cascades and their interactions are involved during cell-cell and cell-ECM communications to meet requirements of tumor growth. Among stroma cells, cancer associated fibroblasts (CAFs) play key role in tumor growth and pave the way for cancer cells to initiate metastasis and invasion to other tissues, and without recruitment of CAFs, the process of cancer invasion is dysfunctional. This is through an intense chemical and physical cross talks with tumor cells, and interactive remodeling of ECM. During such interaction CAFs apply traction forces and depending on the mechanical properties, deform ECM and in return receive physical signals from the micromechanical environment. Such interaction leads to ECM remodeling by manipulating ECM structure and its mechanical properties. The results are in form of deposition of extra fibers, stiffening, rearrangement and reorganization of fibrous structure, and degradation which are due to a complex secretion and expression of different markers triggered by mechanosensing of tumor cells, specially CAFs. Such events define cancer progress and invasion of cancer cells. A systemic knowledge of chemical and physical factors provides a holistic view of how cancer process and enhances the current treatment methods to provide more diversity among targets that involves tumor cells and ECM structure.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
44
|
Oncogenesis, Microenvironment Modulation and Clinical Potentiality of FAP in Glioblastoma: Lessons Learned from Other Solid Tumors. Cells 2021; 10:cells10051142. [PMID: 34068501 PMCID: PMC8151573 DOI: 10.3390/cells10051142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, glioblastoma (GBM) is the most common malignant tumor of the central nervous system in adults. Fibroblast activation protein (FAP) is a member of the dipeptidyl peptidase family, which has catalytic activity and is engaged in protein recruitment and scaffolds. Recent studies have found that FAP expression in different types of cells within the GBM microenvironment is typically upregulated compared with that in lower grade glioma and is most pronounced in the mesenchymal subtype of GBM. As a marker of cancer-associated fibroblasts (CAFs) with tumorigenic activity, FAP has been proven to promote tumor growth and invasion via hydrolysis of molecules such as brevican in the extracellular matrix and targeting of downstream pathways and substrates, such as fibroblast growth factor 21 (FGF21). In addition, based on its ability to suppress antitumor immunity in GBM and induce temozolomide resistance, FAP may be a potential target for immunotherapy and reversing temozolomide resistance; however, current studies on therapies targeting FAP are still limited. In this review, we summarized recent progress in FAP expression profiling and the understanding of the biological function of FAP in GBM and raised the possibility of FAP as an imaging biomarker and therapeutic target.
Collapse
|
45
|
Jung HJ, Nam EH, Park JY, Ghosh P, Kim IS. Identification of BR102910 as a selective fibroblast activation protein (FAP) inhibitor. Bioorg Med Chem Lett 2021; 37:127846. [PMID: 33571650 DOI: 10.1016/j.bmcl.2021.127846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/23/2021] [Accepted: 01/30/2021] [Indexed: 01/10/2023]
Abstract
Fibroblast activation protein (FAP) belongs to the family of prolyl-specific serine proteases and displays both exopeptidase and endopeptidase activities. FAP expression is undetectable in most normal adult tissues, but is greatly upregulated in sites of tissue remodeling, which include fibrosis, inflammation and cancer. Due to its restricted expression pattern and dual enzymatic activities, FAP inhibition is investigated as a therapeutic option for several diseases. In the present study, we described the structure-activity relationship of several synthesized compounds against DPPIV and prolyl oligopeptidase (PREP). In particular, BR102910 (compound 24) showed nanomolar potency and high selectivity. Moreover, the in vivo FAP inhibition study of BR102910 (compound 24) using C57BL/6J mice demonstrated exceptional profiles and satisfactory FAP inhibition efficacy. Based on excellent in vitro and in vivo profiles, the potential of BR102910 (compound 24) as a lead candidate for the treatment of type 2 diabetes is considered.
Collapse
Affiliation(s)
- Hui Jin Jung
- Research Center, Boryung Pharmaceuticals Co. Ltd., Ansan 15425, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Eun Hye Nam
- Research Center, Boryung Pharmaceuticals Co. Ltd., Ansan 15425, Republic of Korea
| | - Jin Young Park
- Research Center, Boryung Pharmaceuticals Co. Ltd., Ansan 15425, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
46
|
Abstract
Fibroblast activation protein-α (FAP) is a type-II transmembrane serine protease expressed almost exclusively to pathological conditions including fibrosis, arthritis, and cancer. Across most cancer types, elevated FAP is associated with worse clinical outcomes. Despite the clear association between FAP and disease severity, the biological reasons underlying these clinical observations remain unclear. Here we review basic FAP biology and FAP's role in non-oncologic and oncologic disease. We further explore how FAP may worsen clinical outcomes via its effects on extracellular matrix remodeling, intracellular signaling regulation, angiogenesis, epithelial-to-mesenchymal transition, and immunosuppression. Lastly, we discuss the potential to exploit FAP biology to improve clinical outcomes.
Collapse
Affiliation(s)
- Allison A Fitzgerald
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3870 Reservoir Road NW, Washington, DC, 20057, USA
| | - Louis M Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3870 Reservoir Road NW, Washington, DC, 20057, USA.
| |
Collapse
|
47
|
Atabai K, Yang CD, Podolsky MJ. You Say You Want a Resolution (of Fibrosis). Am J Respir Cell Mol Biol 2020; 63:424-435. [PMID: 32640171 DOI: 10.1165/rcmb.2020-0182tr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In pathological fibrosis, aberrant tissue remodeling with excess extracellular matrix leads to organ dysfunction and eventual morbidity. Diseases of fibrosis create significant global health and economic burdens and are often deadly. Although fibrosis has traditionally been thought of as an irreversible process, a growing body of evidence demonstrates that organ fibrosis can reverse in certain circumstances, especially if an underlying cause of injury can be removed. This body of evidence has uncovered more and more contributors to persistent and nonresolving tissue fibrosis. Here, we review the present knowledge on resolution of organ fibrosis and restoration of near-normal tissue architecture. We emphasize three critical areas of tissue homeostasis that are necessary for fibrosis resolution, namely, the elimination of matrix-producing cells, the clearance of excess matrix, and the regeneration of normal tissue constituents. In so doing, we also highlight how profibrotic pathways interact with one another and where there may be therapeutic opportunities to intervene and remediate pathological persistent fibrosis.
Collapse
Affiliation(s)
- Kamran Atabai
- Cardiovascular Research Institute.,Lung Biology Center, and.,Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Michael J Podolsky
- Cardiovascular Research Institute.,Lung Biology Center, and.,Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
48
|
Human Autopsy-Derived Scalp Fibroblast Biobanking for Age-Related Neurodegenerative Disease Research. Cells 2020; 9:cells9112383. [PMID: 33143239 PMCID: PMC7692621 DOI: 10.3390/cells9112383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022] Open
Abstract
The Arizona Study of Aging and Neurodegenerative Disorders/Brain and Body Donation Program at Banner Sun Health Research Institute (BSHRI) is a longitudinal clinicopathological study with a current enrollment of more than 900 living subjects for aging and neurodegenerative disease research. Annual clinical assessments are done by cognitive and movement neurologists and neuropsychologists. Brain and body tissues are collected at a median postmortem interval of 3.0 h for neuropathological diagnosis and banking. Since 2018, the program has undertaken banking of scalp fibroblasts derived from neuropathologically characterized donors with Alzheimer’s disease, Parkinson’s disease, and other neurodegenerative diseases. Here, we describe the procedure development and cell characteristics from 14 male and 15 female donors (mean ± SD of age: 83.6 ± 12.2). Fibroblasts from explant cultures were banked at passage 3. The results of mRNA analysis showed positive expression of fibroblast activation protein, vimentin, fibronectin, and THY1 cell surface antigen. We also demonstrated that the banked fibroblasts from a postmortem elderly donor were successfully reprogramed to human-induced pluripotent stem cells (hiPSCs). Taken together, we have demonstrated the successful establishment of a human autopsy-derived fibroblast banking program. The cryogenically preserved cells are available for request at the program website of the BSHRI.
Collapse
|
49
|
Ogawa Y, Masugi Y, Abe T, Yamazaki K, Ueno A, Fujii-Nishimura Y, Hori S, Yagi H, Abe Y, Kitago M, Sakamoto M. Three Distinct Stroma Types in Human Pancreatic Cancer Identified by Image Analysis of Fibroblast Subpopulations and Collagen. Clin Cancer Res 2020; 27:107-119. [PMID: 33046515 DOI: 10.1158/1078-0432.ccr-20-2298] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer-associated fibroblasts have emerged to be highly heterogenous and can play multifaceted roles in dictating pancreatic ductal adenocarcinoma (PDAC) progression, immunosuppression, and therapeutic response, highlighting the need for a deeper understanding of stromal heterogeneity between patients and even within a single tumor. We hypothesized that image analysis of fibroblast subpopulations and collagen in PDAC tissues might guide stroma-based patient stratification to predict clinical outcomes and tumor characteristics. EXPERIMENTAL DESIGN A novel multiplex IHC-based image analysis system was established to digitally differentiate fibroblast subpopulations. Using whole-tissue slides from 215 treatment-naïve PDACs, we performed concurrent quantification of principal fibroblast subpopulations and collagen and defined three stroma types: collagen-rich stroma, fibroblast activation protein α (FAP)-dominant fibroblast-rich stroma, and α smooth muscle actin (ACTA2)-dominant fibroblast-rich stroma. These stroma types were assessed for the associations with cancer-specific survival by multivariable Cox regression analyses and with clinicopathologic factors, including CD8+ cell density. RESULTS FAP-dominant fibroblasts and ACTA2-dominant fibroblasts represented the principal distinct fibroblast subpopulations in tumor stroma. Stroma types were associated with patient survival, SMAD4 status, and transcriptome signatures. Compared with FAP-dominant fibroblast-rich stroma, collagen-rich stroma correlated with prolonged survival [HR, 0.57; 95% confidence interval (CI), 0.33-0.99], while ACTA2-dominant fibroblast-rich stroma exhibited poorer prognosis (HR, 1.65; 95% CI, 1.06-2.58). FAP-dominant fibroblast-rich stroma was additionally characterized by restricted CD8+ cell infiltrates and intense neutrophil infiltration. CONCLUSIONS This study identified three distinct stroma types differentially associated with survival, immunity, and molecular features, thereby underscoring the importance of stromal heterogeneity in subtyping pancreatic cancers and supporting the development of antistromal therapies.
Collapse
Affiliation(s)
- Yurina Ogawa
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Division of Diagnostic Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tokiya Abe
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihisa Ueno
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoko Fujii-Nishimura
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Pathology, International University of Health and Welfare School of Medicine, Narita, Chiba, Japan
| | - Shutaro Hori
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
50
|
Dunaevsky YE, Tereshchenkova VF, Oppert B, Belozersky MA, Filippova IY, Elpidina EN. Human proline specific peptidases: A comprehensive analysis. Biochim Biophys Acta Gen Subj 2020; 1864:129636. [DOI: 10.1016/j.bbagen.2020.129636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
|