1
|
Miao S, Wang X, Guo J, You C. U-shaped Relationship between high-density lipoprotein cholesterol levels and intracranial aneurysm rupture: a retrospective cross-sectional study in the Chinese population. BMC Neurol 2025; 25:131. [PMID: 40155832 PMCID: PMC11951653 DOI: 10.1186/s12883-025-04099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/20/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Previous results on the association between HDL (high-density lipoprotein cholesterol) levels and intracranial aneurysm (IA) rupture were controversial. We aimed to investigate the association between HDL levels and the risk of IA rupture. METHODS Medical records of patients with solitary IA diagnosed at West China Hospital of Sichuan University were reviewed and analyzed between December 2008 and March 2023. Univariable and multivariable logistic regression analyses were performed to determine the effects of HDL levels on IA rupture risk. A three-piece-wise logistic regression model with smoothing was used to analyze different association thresholds between HDL and the risk of IA rupture after adjusting for confounding factors. RESULTS Univariable and multivariable logistic regression analysis showed the independent association between HDL and IA rupture. After being adjusted for confounders, different U-shaped relationships were found between HDL levels and the risk of IA in males, females, and all patients. Compared to HDL in the range of 0.9 ~ 1.3 mmol/L, patients had 79% [OR (95%CI):1.79(1.16 ~ 2.78), p = 0.009] increase of rupture when lower than 0.9 mmol/L, 60% [OR (95%CI):1.6(1.19 ~ 2.17), p = 0.002] increase when higher than 1.3 mmol/L before or after adjusted confounders. We found gender differences in the HDL range of IA rupture; the lowest range of HDL was 1.1 ~ 1.4 mmol/L in females and 0.8 ~ 1.1 mmol/L in males. CONCLUSIONS There was a U-shaped relationship between HDL levels and the risk of IA rupture. People with HDL levels between 0.9 and 1.3 mmol/L are least likely to experience IA rupture in the Chinese population.
Collapse
Affiliation(s)
- Shuchuan Miao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, Chengdu Seventh People's Hospital, Chengdu, China
| | - Xiaoyan Wang
- Department of Clinical Nutrition, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiulin Guo
- Department of Information Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Chen Q, Zhang X, Tie Y, Zhang J, Huang P, Xie Y, Zhang L, Tang X, Zeng Z, Li L, Chen M, Chen R, Zhang S. Serum amyloid A for predicting prognosis in patients with newly diagnosed Crohn's disease. BMJ Open Gastroenterol 2024; 11:e001497. [PMID: 39266020 PMCID: PMC11404264 DOI: 10.1136/bmjgast-2024-001497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
OBJECTIVE Serum amyloid A (SAA) was found to be positively correlated with the activity of Crohn's disease (CD); however, its prognostic value remains uncertain. Here, we examined its predictive ability in newly diagnosed CD and explored genetic association. METHODS This retrospective cohort study included patients newly diagnosed as CD at the First Affiliated Hospital of Sun Yat-sen University between June 2010 and March 2022. We employed receiver operating characteristic curve, Cox proportional hazard regression models and restricted cubic splines to investigate the prognostic performance of SAA for surgery and disease progression. To assess possible causality, a two-sample Mendelian randomisation (MR) of published genome-wide association study data was conducted. RESULTS During 2187.6 person-years (median age, 28 years, 72.4% male), 87 surgery and 153 disease progression events were documented. A 100-unit increment in SAA level generated 14% higher risk for surgery (adjusted HR (95% CI): 1.14 (1.05-1.23), p=0.001) and 12% for disease progression (1.12 (1.05-1.19), p<0.001). Baseline SAA level ≥89.2 mg/L led to significantly elevated risks for surgery (2.08 (1.31-3.28), p=0.002) and disease progression (1.72 (1.22-2.41), p=0.002). Such associations were assessed as linear. Adding SAA into a scheduled model significantly improved its predictive performances for surgery and disease progression (p for net reclassification indexes and integrated discrimination indexes <0.001). Unfortunately, no genetic causality between SAA and CD was observed in MR analysis. Sensitivity analyses showed robust results. CONCLUSION Although causality was not found, baseline SAA level was an independent predictor of surgery and disease progression in newly diagnosed CD, and had additive benefit to existing prediction models.
Collapse
Affiliation(s)
- Qia Chen
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xi Zhang
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizhe Tie
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianwu Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Pinwei Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuxuan Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liqian Zhang
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xueer Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhirong Zeng
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Li
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rirong Chen
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shenghong Zhang
- Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, People's Republic of China
| |
Collapse
|
3
|
Nady A, Reichheld SE, Sharpe S. Structural studies of a serum amyloid A octamer that is primed to scaffold lipid nanodiscs. Protein Sci 2024; 33:e4983. [PMID: 38659173 PMCID: PMC11043621 DOI: 10.1002/pro.4983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Serum amyloid A (SAA) is a highly conserved acute-phase protein that plays roles in activating multiple pro-inflammatory pathways during the acute inflammatory response and is commonly used as a biomarker of inflammation. It has been linked to beneficial roles in tissue repair through improved clearance of lipids and cholesterol from sites of damage. In patients with chronic inflammatory diseases, elevated levels of SAA may contribute to increased severity of the underlying condition. The majority of circulating SAA is bound to lipoproteins, primarily high-density lipoprotein (HDL). Interaction with HDL not only stabilizes SAA but also alters its functional properties, likely through altered accessibility of protein-protein interaction sites on SAA. While high-resolution structures for lipid-free, or apo-, forms of SAA have been reported, their relationship with the HDL-bound form of the protein, and with other possible mechanisms of SAA binding to lipids, has not been established. Here, we have used multiple biophysical techniques, including SAXS, TEM, SEC-MALS, native gel electrophoresis, glutaraldehyde crosslinking, and trypsin digestion to characterize the lipid-free and lipid-bound forms of SAA. The SAXS and TEM data show the presence of soluble octamers of SAA with structural similarity to the ring-like structures reported for lipid-free ApoA-I. These SAA octamers represent a previously uncharacterized structure for lipid-free SAA and are capable of scaffolding lipid nanodiscs with similar morphology to those formed by ApoA-I. The SAA-lipid nanodiscs contain four SAA molecules and have similar exterior dimensions as the lipid-free SAA octamer, suggesting that relatively few conformational rearrangements may be required to allow SAA interactions with lipid-containing particles such as HDL. This study suggests a new model for SAA-lipid interactions and provides new insight into how SAA might stabilize protein-lipid nanodiscs or even replace ApoA-I as a scaffold for HDL particles during inflammation.
Collapse
Affiliation(s)
- Asal Nady
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Sean E. Reichheld
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoCanada
| | - Simon Sharpe
- Molecular Medicine ProgramThe Hospital for Sick ChildrenTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| |
Collapse
|
4
|
den Hartigh LJ, May KS, Zhang XS, Chait A, Blaser MJ. Serum amyloid A and metabolic disease: evidence for a critical role in chronic inflammatory conditions. Front Cardiovasc Med 2023; 10:1197432. [PMID: 37396595 PMCID: PMC10311072 DOI: 10.3389/fcvm.2023.1197432] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Serum amyloid A (SAA) subtypes 1-3 are well-described acute phase reactants that are elevated in acute inflammatory conditions such as infection, tissue injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also have been implicated as playing roles in chronic metabolic diseases including obesity, diabetes, and cardiovascular disease, and possibly in autoimmune diseases such as systemic lupus erythematosis, rheumatoid arthritis, and inflammatory bowel disease. Distinctions between the expression kinetics of SAA in acute inflammatory responses and chronic disease states suggest the potential for differentiating SAA functions. Although circulating SAA levels can rise up to 1,000-fold during an acute inflammatory event, elevations are more modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives from the liver, while in chronic inflammatory conditions SAA also derives from adipose tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic metabolic disease states are contrasted to current knowledge about acute phase SAA. Investigations show distinct differences between SAA expression and function in human and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype responses.
Collapse
Affiliation(s)
- Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Karolline S. May
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
5
|
Chen R, Chen Q, Zheng J, Zeng Z, Chen M, Li L, Zhang S. Serum amyloid protein A in inflammatory bowel disease: from bench to bedside. Cell Death Discov 2023; 9:154. [PMID: 37164984 PMCID: PMC10172326 DOI: 10.1038/s41420-023-01455-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD) is featured by gastrointestinal inflammation and a disease course with alternating recurrence and remission. The global burden caused by IBD has significantly boosted in recent years, necessitating treatment optimization. Serum amyloid A (SAA) is a class of 104 amino acid conservative acute-phase proteins, which is essential in immune-mediated inflammatory processes, like IBD. The SAA monomeric structure is composed of four α-helical regions and a C-terminal amorphous tail. Its disordered structure enables multiple bindings to different ligands and permits multiple functions. It has been proven that SAA has dual roles in the inflammatory process. SAA stimulates the pro-inflammatory cytokine expression and promotes the pathogenic differentiation of TH17 cells. In addition, SAA can remove toxic lipids produced during inflammatory responses and membrane debris from dead cells, redirect HDL, and recycle cholesterol for tissue repair. In IBD, SAA acts on gut epithelium barriers, induces T-cell differentiation, and promotes phagocytosis of Gram-negative bacteria. Owing to the tight connection between SAA and IBD, several clinical studies have taken SAA for a biomarker for diagnosis, assessing disease activity, and predicting prognosis in IBD. Furthermore, 5-MER peptide, a drug specifically targeting SAA, has shown anti-inflammatory effects in some SAA-dependent animal models, providing novel insights into the therapeutic targets of IBD.
Collapse
Affiliation(s)
- Rirong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qia Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jieqi Zheng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Effects of Antirheumatic Treatment on Cell Cholesterol Efflux and Loading Capacity of Serum Lipoproteins in Spondylarthropathies. J Clin Med 2022; 11:jcm11247330. [PMID: 36555946 PMCID: PMC9780876 DOI: 10.3390/jcm11247330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Spondyloarthropathies (SpA) are associated with increased cardiovascular risk. Among possible mechanisms is the dysfunction of serum lipoproteins in regulating cell cholesterol homeostasis. Cholesterol efflux capacity (CEC)-the atheroprotective ability of HDL (high density lipoproteins) to accept cholesterol from macrophages-might predict cardiovascular disease independently of HDL-cholesterol levels. We aimed at evaluating modifications of CEC and of the atherogenic cholesterol loading capacity (CLC) of serum lipoproteins in psoriatic arthritis (PsA) and ankylosing spondylitis (AS) following anti-rheumatic treatment. A total of 62 SpA patients (37 PsA and 25 AS) were evaluated before and after treatment with tumor necrosis factor inhibitor and/or methotrexate. CEC and CLC were measured by radioisotopic and fluorometric techniques, respectively. Endothelial function was assessed by finger plethysmography (Endopat). In the whole SpA group, total and HDL-cholesterol increased after treatment, while lipoprotein(a) decreased and CLC was unchanged. Treatment was associated with increased Scavenger Receptor class B type I (SR-BI)-mediated CEC in the AS group. SR-BI- and ABCG1-mediated CEC were negatively associated with inflammatory parameters and positively related to coffee consumption. SR-BI CEC and CLC were positively and negatively associated with endothelial function, respectively. Our pilot study suggests that anti-rheumatic treatment is associated with favorable modulation of lipoprotein quality and function in SpA, particularly in AS, in spite of the induced increase in total cholesterol levels. If confirmed in a larger population, this might represent an atheroprotective benefit beyond what is reflected by conventional serum lipid profile.
Collapse
|
7
|
Ong KL, Cochran BBiotech BJ, Manandhar B, Thomas S, Rye KA. HDL maturation and remodelling. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159119. [PMID: 35121104 DOI: 10.1016/j.bbalip.2022.159119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
Cholesterol in the circulation is mostly transported in an esterified form as a component of lipoproteins. The majority of these cholesteryl esters are produced in nascent, discoidal high density lipoproteins (HDLs) by the enzyme, lecithin:cholesterol acyltransferase (LCAT). Discoidal HDLs are discrete populations of particles that consist of a phospholipid bilayer, the hydrophobic acyl chains of which are shielded from the aqueous environment by apolipoproteins that also confer water solubility on the particles. The progressive LCAT-mediated accumulation of cholesteryl esters in discoidal HDLs generates the spherical HDLs that predominate in normal human plasma. Spherical HDLs contain a core of water insoluble, neutral lipids (cholesteryl esters and triglycerides) that is surrounded by a surface monolayer of phospholipids with which apolipoproteins associate. Although spherical HDLs all have the same basic structure, they are extremely diverse in size, composition, and function. This review is concerned with how the biogenesis of discoidal and spherical HDLs is regulated and the mechanistic basis of their size and compositional heterogeneity. Current understanding of the impact of this heterogeneity on the therapeutic potential of HDLs of varying size and composition is also addressed in the context of several disease states.
Collapse
Affiliation(s)
- Kwok-Leung Ong
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Blake J Cochran BBiotech
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Bikash Manandhar
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Shane Thomas
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Shridas P, Patrick AC, Tannock LR. Role of Serum Amyloid A in Abdominal Aortic Aneurysm and Related Cardiovascular Diseases. Biomolecules 2021; 11:biom11121883. [PMID: 34944527 PMCID: PMC8699432 DOI: 10.3390/biom11121883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Epidemiological data positively correlate plasma serum amyloid A (SAA) levels with cardiovascular disease severity and mortality. Studies by several investigators have indicated a causal role for SAA in the development of atherosclerosis in animal models. Suppression of SAA attenuates the development of angiotensin II (AngII)-induced abdominal aortic aneurysm (AAA) formation in mice. Thus, SAA is not just a marker for cardiovascular disease (CVD) development, but it is a key player. However, to consider SAA as a therapeutic target for these diseases, the pathway leading to its involvement needs to be understood. This review provides a brief description of the pathobiological significance of this enigmatic molecule. The purpose of this review is to summarize the data relevant to its role in the development of CVD, the pitfalls in SAA research, and unanswered questions in the field.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40536, USA
| | - Avery C Patrick
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Lisa R Tannock
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40536, USA
- Veterans Affairs Lexington, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
9
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
10
|
Nagala M, Crocker PR. Towards understanding the cell surface phenotype, metabolic properties and immune functions of resident macrophages of the peritoneal cavity and splenic red pulp using high resolution quantitative proteomics. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.16061.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:Resident macrophages (Mϕs) are distributed throughout the body and are important for maintaining tissue homeostasis and for defence against infections. Tissue Mϕs are highly adapted to their microenvironment and thought to mediate tissue-specific functions involving metabolism and immune defence that are not fully elucidated. Methods:We have used high resolution quantitative proteomics to gain insights into the functions of two types of resident tissue Mϕs: peritoneal cavity Mϕs and splenic red pulp Mϕs. The cellular expression levels of many proteins were validated by flow cytometry and were consistently in agreement with the proteomics data.Results:Peritoneal and splenic red pulp macrophages displayed major differences in cell surface phenotype reflecting their adaptation to different tissue microenvironments and tissue-specific functions. Peritoneal Mϕs were shown to be enriched in a number of key enzymes and metabolic pathways normally associated with the liver, such as metabolism of fructose, detoxification, nitrogen homeostasis and the urea cycle. Supporting these observations, we show that peritoneal Mϕs are able to utilise glutamine and glutamate which are rich in peritoneum for urea generation. In comparison, splenic red pulp Mϕs were enriched in proteins important for adaptive immunity such as antigen presenting MHC molecules, in addition to proteins required for erythrocyte homeostasis and iron turnover. We also show that these tissue Mϕs may utilise carbon and nitrogen substrates for different metabolic fates to support distinct tissue-specific roles.Conclusions:This study provides new insights into the functions of tissue Mϕs in immunity and homeostasis. The comprehensive proteomics data sets are a valuable resource for biologists and immunologists.
Collapse
|
11
|
Andersen CJ, Dupree L, Murray K, Ragonesi N, McMullen K, Cintrón-Rivera L, Doerr A. Low-Density Lipoproteins, High-Density Lipoproteins (HDL), and HDL-Associated Proteins Differentially Modulate Chronic Myelogenous Leukemia Cell Viability. Lipids 2020; 55:615-626. [PMID: 32558932 DOI: 10.1002/lipd.12254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Abstract
Cellular lipid metabolism, lipoprotein interactions, and liver X receptor (LXR) activation have been implicated in the pathophysiology and treatment of cancer, although findings vary across cancer models and by lipoprotein profiles. In this study, we investigated the effects of human-derived low-density lipoproteins (LDL), high-density lipoproteins (HDL), and HDL-associated proteins apolipoprotein A1 (apoA1) and serum amyloid A (SAA) on markers of viability, cholesterol flux, and differentiation in K562 cells-a bone marrow-derived, stem-like erythroleukemia cell model of chronic myelogenous leukemia (CML). We further evaluated whether lipoprotein-mediated effects were altered by concomitant LXR activation. We observed that LDL promoted higher K562 cell viability in a dose- and time-dependent manner and increased cellular cholesterol concentrations, while LXR activation by the agonist TO901317 ablated these effects. LXR activation in the presence of HDL, apoA1 and SAA-rich HDL suppressed K562 cell viability, while robustly inducing mRNA expression of ATP-binding cassette transporter A1 (ABCA1). HDL and its associated proteins additionally suppressed mRNA expression of anti-apoptotic B-cell lymphoma-extra large (BCL-xL), and the erythroid lineage marker 5'-aminolevulinate synthase 2 (ALAS2), while SAA-rich HDL induced mRNA expression of the megakaryocytic lineage marker integrin subunit alpha 2b (ITGA2B). Together, these findings suggest that lipoproteins and LXR may impact the viability and characteristics of CML cells.
Collapse
Affiliation(s)
| | - Lydia Dupree
- Department of Biology, Fairfield University, Fairfield, CT, 06824, USA
| | - Kristina Murray
- Department of Biology, Fairfield University, Fairfield, CT, 06824, USA
| | - Nicholas Ragonesi
- Department of Biology, Fairfield University, Fairfield, CT, 06824, USA
| | - Kaley McMullen
- Department of Biology, Fairfield University, Fairfield, CT, 06824, USA
| | | | - Adam Doerr
- Department of Biology, Fairfield University, Fairfield, CT, 06824, USA
| |
Collapse
|
12
|
Cheng J, Cheng A, Clifford BL, Wu X, Hedin U, Maegdefessel L, Pamir N, Sallam T, Tarling EJ, de Aguiar Vallim TQ. MicroRNA-144 Silencing Protects Against Atherosclerosis in Male, but Not Female Mice. Arterioscler Thromb Vasc Biol 2020; 40:412-425. [PMID: 31852219 PMCID: PMC7018399 DOI: 10.1161/atvbaha.119.313633] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Atherosclerosis is a leading cause of death in developed countries. MicroRNAs act as fine-tuners of gene expression and have been shown to have important roles in the pathophysiology and progression of atherosclerosis. We, and others, previously demonstrated that microRNA-144 (miR-144) functions to post-transcriptionally regulate ABCA1 (ATP binding cassette transporter A1) and plasma HDL (high-density lipoprotein) cholesterol levels. Here, we explore how miR-144 inhibition may protect against atherosclerosis. Approach and Results: We demonstrate that miR-144 silencing reduced atherosclerosis in male, but not female low-density lipoprotein receptor null (Ldlr-/-) mice. MiR-144 antagonism increased circulating HDL cholesterol levels, remodeled the HDL particle, and enhanced reverse cholesterol transport. Notably, the effects on HDL and reverse cholesterol transport were more pronounced in male mice suggesting sex-specific differences may contribute to the effects of silencing miR-144 on atherosclerosis. As a molecular mechanism, we identify the oxysterol metabolizing enzyme CYP7B1 (cytochrome P450 enzyme 7B1) as a miR-144 regulated gene in male, but not female mice. Consistent with miR-144-dependent changes in CYP7B1 activity, we show decreased levels of 27-hydroxycholesterol, a known proatherogenic sterol and the endogenous substrate for CYP7B1 in male, but not female mice. CONCLUSIONS Our data demonstrate silencing miR-144 has sex-specific effects and that treatment with antisense oligonucleotides to target miR-144 might result in enhancements in reverse cholesterol transport and oxysterol metabolism in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Joan Cheng
- Department of Biological Chemistry, University of California Los Angeles, California, 90095, USA
| | - Angela Cheng
- Department of Biological Chemistry, University of California Los Angeles, California, 90095, USA
| | - Bethan L. Clifford
- Department of Medicine, University of California Los Angeles, California, 90095, USA
| | - Xiaohui Wu
- Department of Medicine, University of California Los Angeles, California, 90095, USA
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar – Technical University Munich, Munich, Germany
| | - Nathalie Pamir
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Tamer Sallam
- Department of Medicine, University of California Los Angeles, California, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, California, 90095, USA
| | - Elizabeth J. Tarling
- Department of Medicine, University of California Los Angeles, California, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, California, 90095, USA
- Johnsson Comprehensive Cancer Center, University of California Los Angeles, California, 90095, USA
| | - Thomas Q. de Aguiar Vallim
- Department of Biological Chemistry, University of California Los Angeles, California, 90095, USA
- Department of Medicine, University of California Los Angeles, California, 90095, USA
- Molecular Biology Institute, University of California Los Angeles, California, 90095, USA
- Johnsson Comprehensive Cancer Center, University of California Los Angeles, California, 90095, USA
| |
Collapse
|
13
|
Ji A, Wang X, Noffsinger VP, Jennings D, de Beer MC, de Beer FC, Tannock LR, Webb NR. Serum amyloid A is not incorporated into HDL during HDL biogenesis. J Lipid Res 2020; 61:328-337. [PMID: 31915139 DOI: 10.1194/jlr.ra119000329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/06/2020] [Indexed: 11/20/2022] Open
Abstract
Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA's lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis.
Collapse
Affiliation(s)
- Ailing Ji
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Xuebing Wang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | | | - Drew Jennings
- Departments of Agricultural and Medical Biotechnology, University of Kentucky, Lexington, KY
| | - Maria C de Beer
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY.,Physiology, University of Kentucky, Lexington, KY
| | - Frederick C de Beer
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY.,Internal Medicine, University of Kentucky, Lexington, KY
| | - Lisa R Tannock
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY.,Internal Medicine, University of Kentucky, Lexington, KY
| | - Nancy R Webb
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY .,Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
14
|
Choi S, Park YE, Cheon EJ, Kim KY, Kim M, Ann SJ, Noh HM, Lee J, Lee CJ, Lee ST, Lee C, Lee JE, Lee SH. Novel Associations between Related Proteins and Cellular Effects of High-Density Lipoprotein. Korean Circ J 2019; 50:236-247. [PMID: 31845554 PMCID: PMC7043958 DOI: 10.4070/kcj.2019.0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/05/2019] [Accepted: 10/02/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Recent studies have examined the structure-function relationship of high-density lipoprotein (HDL). This study aimed to identify and rank HDL-associated proteins involved in several biological function of HDL. METHODS HDLs isolated from 48 participants were analyzed. Cholesterol efflux capacity, effect of HDL on nitric oxide production, and vascular cell adhesion molecule-1 expression were assessed. The relative abundance of identified proteins in the highest vs. lowest quartile was expressed using the normalized spectral abundance factor ratio. RESULTS After adjustment by multiple testing, six proteins, thyroxine-binding globulin, alpha-1B-glycoprotein, plasma serine protease inhibitor, vitronectin, angiotensinogen, and serum amyloid A-4, were more abundant (relative abundance ratio ≥2) in HDLs with the highest cholesterol efflux capacity. In contrast, three proteins, complement C4-A, alpha-2-macroglobulin, and immunoglobulin mu chain C region, were less abundant (relative abundance ratio <0.5). In terms of nitric oxide production and vascular cell adhesion molecule-1 expression, no proteins showed abundance ratios ≥2 or <0.5 after adjustment. Proteins correlated with the functional parameters of HDL belonged to diverse biological categories. CONCLUSIONS In summary, this study ranked proteins showing higher or lower abundance in HDLs with high functional capacities and newly identified multiple proteins linked to cholesterol efflux capacity.
Collapse
Affiliation(s)
- Seungbum Choi
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yae Eun Park
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eun Jeong Cheon
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyeong Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, Korea.,Department of Chemistry, Sookmyung Women's University, Seoul, Korea.,Proteometech Inc., Seoul, Korea
| | - Miso Kim
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jin Ann
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Min Noh
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeho Lee
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Joo Lee
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, Korea.
| | - Sang Hak Lee
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Abouelasrar Salama S, Lavie M, De Buck M, Van Damme J, Struyf S. Cytokines and serum amyloid A in the pathogenesis of hepatitis C virus infection. Cytokine Growth Factor Rev 2019; 50:29-42. [PMID: 31718982 DOI: 10.1016/j.cytogfr.2019.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Expression of the acute phase protein serum amyloid A (SAA) is dependent on the release of the pro-inflammatory cytokines IL-1, IL-6 and TNF-α during infection and inflammation. Hepatitis C virus (HCV) upregulates SAA-inducing cytokines. In line with this, a segment of chronically infected individuals display increased circulating levels of SAA. SAA has even been proposed to be a potential biomarker to evaluate treatment efficiency and the course of disease. SAA possesses antiviral activity against HCV via direct interaction with the viral particle, but might also divert infectivity through its function as an apolipoprotein. On the other hand, SAA shares inflammatory and angiogenic activity with chemotactic cytokines by activating the G protein-coupled receptor, formyl peptide receptor 2. These latter properties might promote chronic inflammation and hepatic injury. Indeed, up to 80 % of infected individuals develop chronic disease because they cannot completely clear the infection, due to diversion of the immune response. In this review, we summarize the interconnection between SAA and cytokines in the context of HCV infection and highlight the dual role SAA could play in this disease. Nevertheless, more research is needed to establish whether the balance between those opposing activities can be tilted in favor of the host defense.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium
| | - Muriel Lavie
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
16
|
Sposito AC, de Lima-Junior JC, Moura FA, Barreto J, Bonilha I, Santana M, Virginio VW, Sun L, Carvalho LSF, Soares AA, Nadruz W, Feinstein SB, Nofer JR, Zanotti I, Kontush A, Remaley AT. Reciprocal Multifaceted Interaction Between HDL (High-Density Lipoprotein) and Myocardial Infarction. Arterioscler Thromb Vasc Biol 2019; 39:1550-1564. [DOI: 10.1161/atvbaha.119.312880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite decades of therapeutic advances, myocardial infarction remains a leading cause of death worldwide. Recent studies have identified HDLs (high-density lipoproteins) as a potential candidate for mitigating coronary ischemia/reperfusion injury via a broad spectrum of signaling pathways. HDL ligands, such as S1P (sphingosine-1-phosphate), Apo (apolipoprotein) A-I, clusterin, and miRNA, may influence the opening of the mitochondrial channel, insulin sensitivity, and production of vascular autacoids, such as NO, prostacyclin, and endothelin-1. In parallel, antioxidant activity and sequestration of oxidized molecules provided by HDL can attenuate the oxidative stress that triggers ischemia/reperfusion. Nevertheless, during myocardial infarction, oxidation and the capture of oxidized and proinflammatory molecules generate large phenotypic and functional changes in HDL, potentially limiting its beneficial properties. In this review, new findings from cellular and animal models, as well as from clinical studies, will be discussed to describe the cardioprotective benefits of HDL on myocardial infarction. Furthermore, mechanisms by which HDL modulates cardiac function and potential strategies to mitigate postmyocardial infarction risk damage by HDL will be detailed throughout the review.
Collapse
Affiliation(s)
- Andrei C. Sposito
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - José Carlos de Lima-Junior
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Filipe A. Moura
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
- Department of Medicine, Weill-Cornell Medical College, New York, NY (F.A.M.)
| | - Joaquim Barreto
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Isabella Bonilha
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Michele Santana
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Vitor W. Virginio
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Lufan Sun
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (L.S., A.T.R.)
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China (L.S.)
| | - Luiz Sergio F. Carvalho
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Alexandre A.S. Soares
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Wilson Nadruz
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Steve B. Feinstein
- Division of Cardiology, Rush University Medical Center, Chicago, IL (S.B.F.)
| | - Jerzy-Roch Nofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (J.-R.N.)
| | - Ilaria Zanotti
- Department of Food and Drugs, University of Parma, Italy (I.Z.)
| | - Anatol Kontush
- UMR-ICAN 1166, National Institute for Health and Medical Research (INSERM), Sorbonne University, Paris, France (A.K.)
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (L.S., A.T.R.)
| |
Collapse
|
17
|
Jiang C, Qi Z, He W, Li Z, Tang Y, Wang Y, Huang Y, Zang H, Yang H, Liu J. Dynamically enhancing plaque targeting via a positive feedback loop using multifunctional biomimetic nanoparticles for plaque regression. J Control Release 2019; 308:71-85. [PMID: 31295543 DOI: 10.1016/j.jconrel.2019.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
A paradigm shift from preventive therapy to aggressive plaque regression and eventual eradication is much needed to address increasing atherosclerotic burden and risks. Herein, we report a biologically inspired dual-targeting multifunctional recombinant high-density lipoprotein (rHDL)-mimicking core-shell nanoplatform. It is composed of an ATP-responsive ternary polyplexes core for SR-A siRNA and catalase complexation, and a phosphatidylserine-modified rHDL-based outer shell for SR-BI and CD36 targeting, in which pitavastatin is packaged. We demonstrated that dual-targeting biomimetic core-shell nanoparticles dynamically enhanced macrophage CD36 targeting in the plaques by establishing a positive feedback loop via the reciprocal regulation of SR-A and CD36. Positive feedback-enabled accumulation of the nanoparticles in the atherosclerotic plaques increased by 3.3-fold following 4-week repeated administration. A 3-month dosage regimen of the dual-targeting rHDL-mimicking nanoparticles reduced plaque areas by 65.8%, and decreased macrophages by 57.3%. Collectively, this work shows that dynamically enhancing plaque targeting via a positive feedback loop and dual action of cholesterol deposition inhibition and efflux enhancement accomplished with our novel multifunctional biomimetic nanoparticles provides a new way to regress plaques and alleviate the atherosclerotic burden.
Collapse
Affiliation(s)
- Cuiping Jiang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Zitong Qi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Wanhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Zhuoting Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Yuqi Tang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Yunbo Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Yilei Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Haojing Zang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
18
|
Usefulness of apolipoprotein B-depleted serum in cholesterol efflux capacity assays using immobilized liposome-bound gel beads. Biosci Rep 2019; 39:BSR20190213. [PMID: 30867253 PMCID: PMC6443949 DOI: 10.1042/bsr20190213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Cholesterol efflux capacity (CEC) in atherosclerotic lesions is the main anti-atherosclerotic function of high-density lipoprotein (HDL). In recent studies, apolipoprotein (apo) B-depleted serum (BDS) obtained with the polyethylene glycol (PEG) precipitation method is used as a cholesterol acceptor (CA) substitution for HDL isolated by ultracentrifugation. However, the suitability of BDS as a CA is controversial. In the present study, CEC obtained from BDS (BDS-CEC) was evaluated based on a parameter, defined as whole-CEC, which was calculated by multiplying CEC obtained using fixed amounts of HDL by cholesterol concentration to HDL-cholesterol (HDL-C) levels in the serum. Significant correlation (r = 0.633) was observed between both CECs. To eliminate systematic errors from possible contamination with serum proteins and low-density lipoprotein (LDL) or very-LDL (VLDL) in BDS-CEC, the deviation of each CEC-BDS from the regression equation was compared with serum protein, LDL, and triglyceride (TG) levels. No correlation was observed between the deviation and the levels of each of these serum components, indicating that the deviations do not derive from systematic error. Further, to evaluate the effects of serum protein on the results, we measured BDS-CEC of reconstituted serum samples prepared using combinations of five levels of serum proteins with five levels of HDL-C. No significant change in BDS-CEC was observed in any combination. These results indicate that BDS-CEC reflects not only the function of HDL but also its concentration in serum.
Collapse
|
19
|
Abstract
High-density lipoprotein cholesterol (HDL-c) has long been referred to as 'good cholesterol' due to its apparent inverse relationship with future CVD risk. More recent research has questioned a causal role for HDL-c in this relationship, however, as both genetic studies and numerous large-scale randomised controlled trials have found no evidence of a cardiovascular protective effect when HDL-c levels are raised. Instead, focus has switched to the functional properties of the HDL particle. Evidence suggests that both the composition and function of HDL may be significantly altered in the context of an inflammatory milieu, transforming the particle from a vasoprotective anti-atherogenic particle to a noxious pro-atherogenic equivalent. This review will summarise evidence relating HDL to CVD risk, explore recent evidence characterising changes in the composition and function of HDL that may occur in chronic inflammatory diseases, and discuss the potential for future HDL-modifying therapeutic interventions.
Collapse
Affiliation(s)
- Scott T Chiesa
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, 1 St. Martin's Le Grand, London, EC1A 4NP, UK.
| | - Marietta Charakida
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, 1 St. Martin's Le Grand, London, EC1A 4NP, UK
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
20
|
Abstract
Serum amyloid A (SAA) proteins were isolated and named over 50 years ago. They are small (104 amino acids) and have a striking relationship to the acute phase response with serum levels rising as much as 1000-fold in 24 hours. SAA proteins are encoded in a family of closely-related genes and have been remarkably conserved throughout vertebrate evolution. Amino-terminal fragments of SAA can form highly organized, insoluble fibrils that accumulate in “secondary” amyloid disease. Despite their evolutionary preservation and dynamic synthesis pattern SAA proteins have lacked well-defined physiologic roles. However, considering an array of many, often unrelated, reports now permits a more coordinated perspective. Protein studies have elucidated basic SAA structure and fibril formation. Appreciating SAA’s lipophilicity helps relate it to lipid transport and metabolism as well as atherosclerosis. SAA’s function as a cytokine-like protein has become recognized in cell-cell communication as well as feedback in inflammatory, immunologic, neoplastic and protective pathways. SAA likely has a critical role in control and possibly propagation of the primordial acute phase response. Appreciating the many cellular and molecular interactions for SAA suggests possibilities for improved understanding of pathophysiology as well as treatment and disease prevention.
Collapse
Affiliation(s)
- George H Sack
- Departments of Biological Chemistry and Medicine, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Physiology 615, Baltimore, MD, 21205, USA.
| |
Collapse
|
21
|
Shen WJ, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J Lipid Res 2018; 59:1114-1131. [PMID: 29720388 DOI: 10.1194/jlr.r083121] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cholesterol is required for maintenance of plasma membrane fluidity and integrity and for many cellular functions. Cellular cholesterol can be obtained from lipoproteins in a selective pathway of HDL-cholesteryl ester (CE) uptake without parallel apolipoprotein uptake. Scavenger receptor B type 1 (SR-B1) is a cell surface HDL receptor that mediates HDL-CE uptake. It is most abundantly expressed in liver, where it provides cholesterol for bile acid synthesis, and in steroidogenic tissues, where it delivers cholesterol needed for storage or steroidogenesis in rodents. SR-B1 transcription is regulated by trophic hormones in the adrenal gland, ovary, and testis; in the liver and elsewhere, SR-B1 is subject to posttranscriptional and posttranslational regulation. SR-B1 operates in several metabolic processes and contributes to pathogenesis of atherosclerosis, inflammation, hepatitis C virus infection, and other conditions. Here, we summarize characteristics of the selective uptake pathway and involvement of microvillar channels as facilitators of selective HDL-CE uptake. We also present the potential mechanisms of SR-B1-mediated selective cholesterol transport; the transcriptional, posttranscriptional, and posttranslational regulation of SR-B1; and the impact of gene variants on expression and function of human SR-B1. A better understanding of this unique pathway and SR-B1's role may yield improved therapies for a wide variety of conditions.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Shailendra Asthana
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Fredric B Kraemer
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
22
|
Kuret T, Lakota K, Mali P, Čučnik S, Praprotnik S, Tomšič M, Sodin-Semrl S. Naturally occurring antibodies against serum amyloid A reduce IL-6 release from peripheral blood mononuclear cells. PLoS One 2018; 13:e0195346. [PMID: 29617422 PMCID: PMC5884545 DOI: 10.1371/journal.pone.0195346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Serum amyloid A (SAA) is a sensitive inflammatory marker rapidly increased in response to infection, injury or trauma during the acute phase. Resolution of the acute phase and SAA reduction are well documented, however the exact mechanism remains elusive. Two inducible SAA proteins, SAA1 and SAA2, with their variants could contribute to systemic inflammation. While unconjugated human variant SAA1α is already commercially available, the variants of SAA2 are not. Antibodies against SAA have been identified in apparently healthy blood donors (HBDs) in smaller, preliminary studies. So, our objective was to detect anti-SAA and anti-SAA1α autoantibodies in the sera of 300 HBDs using ELISA, characterize their specificity and avidity. Additionally, we aimed to determine the presence of anti-SAA and anti-SAA1α autoantibodies in intravenous immunoglobulin (IVIg) preparations and examine their effects on released IL-6 from SAA/SAA1α-treated peripheral blood mononuclear cells (PBMCs). Autoantibodies against SAA and SAA1α had a median (IQR) absorbance OD (A450) of 0.655 (0.262–1.293) and 0.493 (0.284–0.713), respectively. Both anti-SAA and anti-SAA1α exhibited heterogeneous to high avidity and reached peak levels between 41–50 years, then diminished with age in the oldest group (51–67 years). Women consistently exhibited significantly higher levels than men. Good positive correlation was observed between anti-SAA and anti-SAA1α. Both anti-SAA and anti-SAA1α were detected in IVIg, their fractions subsequently isolated, and shown to decrease IL-6 protein levels released from SAA/SAA1α-treated PBMCs. In conclusion, naturally occurring antibodies against SAA and anti-SAA1α could play a physiological role in down-regulating their antigen and proinflammatory cytokines leading to the resolution of the acute phase and could be an important therapeutic option in patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Tadeja Kuret
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
| | - Polonca Mali
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Praprotnik
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Snezna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Science and Information Technologies, University of Primorska, Koper, Slovenia
- * E-mail:
| |
Collapse
|
23
|
HDL acceptor capacities for cholesterol efflux from macrophages and lipid transfer are both acutely reduced after myocardial infarction. Clin Chim Acta 2018; 478:51-56. [DOI: 10.1016/j.cca.2017.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 01/16/2023]
|
24
|
Frame NM, Jayaraman S, Gantz DL, Gursky O. Serum amyloid A self-assembles with phospholipids to form stable protein-rich nanoparticles with a distinct structure: A hypothetical function of SAA as a "molecular mop" in immune response. J Struct Biol 2017. [PMID: 28645735 DOI: 10.1016/j.jsb.2017.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Serum amyloid A (SAA) is an acute-phase protein whose action in innate immunity and lipid homeostasis is unclear. Most circulating SAA binds plasma high-density lipoproteins (HDL) and reroutes lipid transport. In vivo SAA binds existing lipoproteins or generates them de novo upon lipid uptake from cells. We explored the products of SAA-lipid interactions and lipoprotein remodeling in vitro. SAA complexes with palmitoyl-oleoyl phosphocholine (POPC) were analyzed for structure and stability using circular dichroism and fluorescence spectroscopy, electron microscopy, gel electrophoresis and gel filtration. The results revealed the formation of 8-11nm lipoproteins that were∼50% α-helical and stable at near-physiological conditions but were irreversibly remodeled at Tm∼52°C. Similar HDL-size nanoparticles formed spontaneously at ambient conditions or upon thermal remodeling of parent lipoproteins containing various amounts of proteins and lipids, including POPC and cholesterol. Therefore, such HDL-size particles formed stable kinetically accessible structures in a wide range of conditions. Based on their size and stoichiometry, each particle contained about 12 SAA and 72 POPC molecules, with a protein:lipid weight ratio circa 2.5:1, suggesting a structure distinct from HDL. High stability of these nanoparticles and their HDL-like size suggest that similar lipoproteins may form in vivo during inflammation or injury when SAA concentration is high and membranes from dead cells require rapid removal. We speculate that solubilization of membranes by SAA to generate lipoproteins in a spontaneous energy-independent process constitutes the primordial function of this ancient protein, providing the first line of defense in clearing cell debris from the injured sites.
Collapse
Affiliation(s)
- Nicholas M Frame
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118, USA.
| | - Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118, USA.
| | - Donald L Gantz
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118, USA.
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118, USA.
| |
Collapse
|
25
|
Asztalos BF, Horvath KV, Mehan M, Yokota Y, Schaefer EJ. Influence of HDL particles on cell-cholesterol efflux under various pathological conditions. J Lipid Res 2017; 58:1238-1246. [PMID: 28420704 PMCID: PMC5454514 DOI: 10.1194/jlr.m075648] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/02/2017] [Indexed: 12/30/2022] Open
Abstract
It has been reported that low cell-cholesterol efflux capacity (CEC) of HDL is an independent risk factor for CVD. To better understand CEC regulation, we measured ABCA1- and scavenger receptor class B type I (SR-BI)-dependent cell-cholesterol efflux, HDL anti-oxidative capacity, HDL particles, lipids, and inflammatory- and oxidative-stress markers in 122 subjects with elevated plasma levels of triglyceride (TG), serum amyloid A (SAA), fibrinogen, myeloperoxidase (MPO), or β-sitosterol and in 146 controls. In controls, there were strong positive correlations between ABCA1-dependent cholesterol efflux and small preβ-1 concentrations (R2 = 0.317) and SR-BI-dependent cholesterol efflux and large (α-1 + α-2) HDL particle concentrations (R2 = 0.774). In high-TG patients, both the concentration and the functionality (preβ-1 concentration-normalized ABCA1 efflux) of preβ-1 particles were significantly elevated compared with controls; however, though the concentration of large particles was significantly decreased, their functionality (large HDL concentration-normalized SR-BI efflux) was significantly elevated. High levels of SAA or MPO were not associated with decreased functionality of either the small (preβ-1) or the large (α-1 + α-2) HDL particles. HDL anti-oxidative capacity was negatively influenced by high plasma β-sitosterol levels, but not by the concentrations of HDL particles, TG, SAA, fibrinogen, or MPO. Our data demonstrate that under certain conditions CEC is influenced not only by quantitative (concentration), but also by qualitative (functional) properties of HDL particles.
Collapse
Affiliation(s)
- Bela F Asztalos
- Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- Boston Heart Diagnostics, Framingham, MA
| | - Katalin V Horvath
- Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- Boston Heart Diagnostics, Framingham, MA
| | | | - Yuya Yokota
- Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Ernst J Schaefer
- Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- Boston Heart Diagnostics, Framingham, MA
| |
Collapse
|
26
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Opdenakker G, Struyf S, Van Damme J. Structure and Expression of Different Serum Amyloid A (SAA) Variants and their Concentration-Dependent Functions During Host Insults. Curr Med Chem 2017; 23:1725-55. [PMID: 27087246 PMCID: PMC5405626 DOI: 10.2174/0929867323666160418114600] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022]
Abstract
Serum amyloid A (SAA) is, like C-reactive protein (CRP), an acute phase protein and can be used as a diagnostic, prognostic or therapy follow-up marker for many diseases. Increases in serum levels of SAA are triggered by physical insults to the host, including infection, trauma, inflammatory reactions and cancer. The order of magnitude of increase in SAA levels varies considerably, from a 10- to 100-fold during limited inflammatory events to a 1000-fold increase during severe bacterial infections and acute exacerbations of chronic inflammatory diseases. This broad response range is reflected by SAA gene duplications resulting in a cluster encoding several SAA variants and by multiple biological functions of SAA. SAA variants are single-domain proteins with simple structures and few post-translational modifications. SAA1 and SAA2 are inducible by inflammatory cytokines, whereas SAA4 is constitutively produced. We review here the regulated expression of SAA in normal and transformed cells and compare its serum levels in various disease states. At low concentrations (10-100 ng/ml), early in an inflammatory response, SAA induces chemokines or matrix degrading enzymes via Toll-like receptors and functions as an activator and chemoattractant through a G protein-coupled receptor. When an infectious or inflammatory stimulus persists, the liver continues to produce more SAA (> 1000 ng/ml) to become an antimicrobial agent by functioning as a direct opsonin of bacteria or by interference with virus infection of host cells. Thus, SAA regulates innate and adaptive immunity and this information may help to design better drugs to treat specific diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jo Van Damme
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
27
|
Hu J, Gao Z, Wang X, Gu M, Liang Y, Liu X, Hu S, Liu H, Liu W, Chen S, Peng D, Liu X. iTRAQ-based quantitative proteomics reveals important host factors involved in the high pathogenicity of the H5N1 avian influenza virus in mice. Med Microbiol Immunol 2016; 206:125-147. [PMID: 28000052 DOI: 10.1007/s00430-016-0489-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023]
Abstract
We previously reported a pair of H5N1 avian influenza viruses which are genetically similar but differ greatly in their virulence in mice. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly lethal to mice, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is avirulent. In this study, to investigate the host factors that account for their virulence discrepancy, we compared the pathology and host proteome of the CK10- or GS10-infected mouse lung. Moderate lung injury was observed from CK10-infected animals as early as the first day of infection, and the pathology steadily progressed at later time point. However, only mild lesions were observed in GS10-infected mouse lung at the late infection stage. Using the quantitative iTRAQ coupled LC-MS/MS method, we first found that more significantly differentially expressed (DE) proteins were stimulated by GS10 compared with CK10. However, bio-function analysis of the DE proteins suggested that CK10 induced much stronger inflammatory response-related functions than GS10. Canonical pathway analysis also demonstrated that CK10 highly activated the "Acute Phase Response Signaling," which results in a wide range of biological activities in response to viral infection, including many inflammatory processes. Further in-depth analysis showed that CK10 exacerbated acute lung injury-associated responses, including inflammatory response, cell death, reactive oxygen species production and complement response. In addition, some of these identified proteins that associated with the lung injury were further confirmed to be regulated in vitro. Therefore, our findings suggest that the early increased lung injury-associated host response induced by CK10 may contribute to the lung pathology and the high virulence of this virus in mice.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Yanyan Liang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Wenbo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China. .,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is a chronic inflammation associated with increased expression of the acute phase isoforms of serum amyloid A (SAA) and in humans is a plasma biomarker for future cardiovascular events. However, whether SAA is only a biomarker or participates in the development of cardiovascular disease is not well characterized. The purpose of this review is to summarize putative functions of SAA relevant to atherogenesis and in-vivo murine studies that directly examine the effect of SAA on atherosclerosis. RECENT FINDINGS Modulation of the expression of SAA1 and/or SAA2 in murine models of atherosclerosis suggests that SAA promotes early atherogenesis. SAA secreted from bone-marrow-derived cells contributes to this antiatherogenic phenotype. SAA also promotes angiotensin-induced abdominal aneurysm in atherogenic mouse models. The reduction in atherosclerosis may be due, at least in part, to remodeling of the acute phase HDL to reduce its capacity to promote cholesterol efflux and reduce its anti-inflammatory ability. SUMMARY SAA is more than a marker of cardiovascular disease and is a participant in the early atherogenic process.
Collapse
Affiliation(s)
- Godfrey S Getz
- aDepartment of Pathology bDepartment of Medicine cBen May Institute for Cancer Biology, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
29
|
Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res 2016; 173:30-57. [PMID: 26972566 DOI: 10.1016/j.trsl.2016.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Low plasma levels of high-density lipoprotein (HDL) cholesterol are associated with increased risks of coronary heart disease. HDL mediates cholesterol efflux from macrophages for reverse transport to the liver and elicits many anti-inflammatory and anti-oxidative activities which are potentially anti-atherogenic. Nevertheless, HDL has not been successfully targeted by drugs for prevention or treatment of cardiovascular diseases. One potential reason is the targeting of HDL cholesterol which does not capture the structural and functional complexity of HDL particles. Hundreds of lipid species and dozens of proteins as well as several microRNAs have been identified in HDL. This physiological heterogeneity is further increased in pathologic conditions due to additional quantitative and qualitative molecular changes of HDL components which have been associated with both loss of physiological function and gain of pathologic dysfunction. This structural and functional complexity of HDL has prevented clear assignments of molecules to the functions of normal HDL and dysfunctions of pathologic HDL. Systematic analyses of structure-function relationships of HDL-associated molecules and their modifications are needed to test the different components and functions of HDL for their relative contribution in the pathogenesis of atherosclerosis. The derived biomarkers and targets may eventually help to exploit HDL for treatment and diagnostics of cardiovascular diseases.
Collapse
Affiliation(s)
- Wijtske Annema
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
30
|
Kim MH, de Beer MC, Wroblewski JM, Charnigo RJ, Ji A, Webb NR, de Beer FC, van der Westhuyzen DR. Impact of individual acute phase serum amyloid A isoforms on HDL metabolism in mice. J Lipid Res 2016; 57:969-79. [PMID: 27018443 DOI: 10.1194/jlr.m062174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/12/2023] Open
Abstract
The acute phase (AP) reactant serum amyloid A (SAA), an HDL apolipoprotein, exhibits pro-inflammatory activities, but its physiological function(s) are poorly understood. Functional differences between SAA1.1 and SAA2.1, the two major SAA isoforms, are unclear. Mice deficient in either isoform were used to investigate plasma isoform effects on HDL structure, composition, and apolipoprotein catabolism. Lack of either isoform did not affect the size of HDL, normally enlarged in the AP, and did not significantly change HDL composition. Plasma clearance rates of HDL apolipoproteins were determined using native HDL particles. The fractional clearance rates (FCRs) of apoA-I, apoA-II, and SAA were distinct, indicating that HDL is not cleared as intact particles. The FCRs of SAA1.1 and SAA2.1 in AP mice were similar, suggesting that the selective deposition of SAA1.1 in amyloid plaques is not associated with a difference in the rates of plasma clearance of the isoforms. Although the clearance rate of SAA was reduced in the absence of the HDL receptor, scavenger receptor class B type I (SR-BI), it remained significantly faster compared with that of apoA-I and apoA-II, indicating a relatively minor role of SR-BI in SAA's rapid clearance. These studies enhance our understanding of SAA metabolism and SAA's effects on AP-HDL composition and catabolism.
Collapse
Affiliation(s)
- Myung-Hee Kim
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536
| | - Maria C de Beer
- Physiology, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Joanne M Wroblewski
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Richard J Charnigo
- Departments of Statistics and Biostatistics, University of Kentucky, Lexington, KY 40506
| | - Ailing Ji
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Nancy R Webb
- Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536 Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, KY 40536
| | - Frederick C de Beer
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Deneys R van der Westhuyzen
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536 Molecular and Cellular Biochemistry, University of Kentucky Medical Center, Lexington, KY 40536
| |
Collapse
|
31
|
Frame NM, Gursky O. Structure of serum amyloid A suggests a mechanism for selective lipoprotein binding and functions: SAA as a hub in macromolecular interaction networks. FEBS Lett 2016; 590:866-79. [PMID: 26918388 DOI: 10.1002/1873-3468.12116] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/19/2023]
Abstract
Serum amyloid A is a major acute-phase plasma protein that modulates innate immunity and cholesterol homeostasis. We combine sequence analysis with x-ray crystal structures to postulate that SAA acts as an intrinsically disordered hub mediating interactions among proteins, lipids and proteoglycans. A structural model of lipoprotein-bound SAA monomer is proposed wherein two α-helices from the N-domain form a concave hydrophobic surface that binds lipoproteins. A C-domain, connected to the N-domain via a flexible linker, binds polar/charged ligands including cell receptors, bridging them with lipoproteins and rerouting cholesterol transport. Our model is supported by the SAA cleavage in the interdomain linker to generate the 1-76 fragment deposited in reactive amyloidosis. This model sheds new light on functions of this enigmatic protein.
Collapse
Affiliation(s)
- Nicholas M Frame
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
32
|
Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells. PLoS One 2016; 11:e0150893. [PMID: 26937641 PMCID: PMC4777566 DOI: 10.1371/journal.pone.0150893] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/19/2016] [Indexed: 02/06/2023] Open
Abstract
Serum amyloid A (SAA) is an evolutionary highly conserved acute phase protein that is predominantly secreted by hepatocytes. However, its role in liver injury and fibrogenesis has not been elucidated so far. In this study, we determined the effects of SAA on hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Serum amyloid A potently activated IκB kinase, c-Jun N-terminal kinase (JNK), Erk and Akt and enhanced NF-κB-dependent luciferase activity in primary human and rat HSCs. Serum amyloid A induced the transcription of MCP-1, RANTES and MMP9 in an NF-κB- and JNK-dependent manner. Blockade of NF-κB revealed cytotoxic effects of SAA in primary HSCs with signs of apoptosis such as caspase 3 and PARP cleavage and Annexin V staining. Serum amyloid A induced HSC proliferation, which depended on JNK, Erk and Akt activity. In primary hepatocytes, SAA also activated MAP kinases, but did not induce relevant cell death after NF-κB inhibition. In two models of hepatic fibrogenesis, CCl4 treatment and bile duct ligation, hepatic mRNA levels of SAA1 and SAA3 were strongly increased. In conclusion, SAA may modulate fibrogenic responses in the liver in a positive and negative fashion by inducing inflammation, proliferation and cell death in HSCs.
Collapse
|
33
|
Sun L, Ye RD. Serum amyloid A1: Structure, function and gene polymorphism. Gene 2016; 583:48-57. [PMID: 26945629 DOI: 10.1016/j.gene.2016.02.044] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023]
Abstract
Inducible expression of serum amyloid A (SAA) is a hallmark of the acute-phase response, which is a conserved reaction of vertebrates to environmental challenges such as tissue injury, infection and surgery. Human SAA1 is encoded by one of the four SAA genes and is the best-characterized SAA protein. Initially known as a major precursor of amyloid A (AA), SAA1 has been found to play an important role in lipid metabolism and contributes to bacterial clearance, the regulation of inflammation and tumor pathogenesis. SAA1 has five polymorphic coding alleles (SAA1.1-SAA1.5) that encode distinct proteins with minor amino acid substitutions. Single nucleotide polymorphism (SNP) has been identified in both the coding and non-coding regions of human SAA1. Despite high levels of sequence homology among these variants, SAA1 polymorphisms have been reported as risk factors of cardiovascular diseases and several types of cancer. A recently solved crystal structure of SAA1.1 reveals a hexameric bundle with each of the SAA1 subunits assuming a 4-helix structure stabilized by the C-terminal tail. Analysis of the native SAA1.1 structure has led to the identification of a competing site for high-density lipoprotein (HDL) and heparin, thus providing the structural basis for a role of heparin and heparan sulfate in the conversion of SAA1 to AA. In this brief review, we compares human SAA1 with other forms of human and mouse SAAs, and discuss how structural and genetic studies of SAA1 have advanced our understanding of the physiological functions of the SAA proteins.
Collapse
Affiliation(s)
- Lei Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, SAR, China.
| |
Collapse
|
34
|
Ibeagha-Awemu EM, Li R, Ammah AA, Dudemaine PL, Bissonnette N, Benchaar C, Zhao X. Transcriptome adaptation of the bovine mammary gland to diets rich in unsaturated fatty acids shows greater impact of linseed oil over safflower oil on gene expression and metabolic pathways. BMC Genomics 2016; 17:104. [PMID: 26861594 PMCID: PMC4748538 DOI: 10.1186/s12864-016-2423-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Nutritional strategies can decrease saturated fatty acids (SFAs) and increase health beneficial fatty acids (FAs) in bovine milk. The pathways/genes involved in these processes are not properly defined. Next-generation RNA-sequencing was used to investigate the bovine mammary gland transcriptome following supplemental feeding with 5% linseed oil (LSO) or 5% safflower oil (SFO). Holstein cows in mid-lactation were fed a control diet for 28 days (control period) followed by supplementation with 5% LSO (12 cows) or 5% SFO (12 cows) for 28 days (treatment period). Milk and mammary gland biopsies were sampled on days-14 (control period), +7 and +28 (treatment period). Milk was used to measure fat(FP)/protein(PP) percentages and individual FAs while RNA was subjected to sequencing. RESULTS Milk FP was decreased by 30.38% (LSO) or 32.42% (SFO) while PP was unaffected (LSO) or increased (SFO). Several beneficial FAs were increased by LSO (C18:1n11t, CLA:10t12c, CLA:9c11t, C20:3n3, C20:5n3, C22:5n3) and SFO (C18:1n11t, CLA:10t12c, C20:1c11, C20:2, C20:3n3) while several SFAs (C4:0, C6:0, C8:0, C14:0, C16:0, C17:0, C24:0) were decreased by both treatments (P < 0.05). 1006 (460 up- and 546 down-regulated) and 199 (127 up- and 72 down-regulated) genes were significantly differentially regulated (DE) by LSO and SFO, respectively. Top regulated genes (≥ 2 fold change) by both treatments (FBP2, UCP2, TIEG2, ANGPTL4, ALDH1L2) are potential candidate genes for milk fat traits. Involvement of SCP2, PDK4, NQO1, F2RL1, DBI, CPT1A, CNTFR, CALB1, ACADVL, SPTLC3, PIK3CG, PIGZ, ADORA2B, TRIB3, HPGD, IGFBP2 and TXN in FA/lipid metabolism in dairy cows is being reported for the first time. Functional analysis indicated similar and different top enriched functions for DE genes. DE genes were predicted to significantly decrease synthesis of FA/lipid by both treatments and FA metabolism by LSO. Top canonical pathways associated with DE genes of both treatments might be involved in lipid/cholesterol metabolism. CONCLUSION This study shows that rich α-linolenic acid LSO has a greater impact on mammary gland transcriptome by affecting more genes, pathways and processes as compared to SFO, rich in linoleic acid. Our study suggest that decrease in milk SFAs was due to down-regulation of genes in the FA/lipid synthesis and lipid metabolism pathways while increase in PUFAs was due to increased availability of ruminal biohydrogenation metabolites that were up taken and incorporated into milk or used as substrate for the synthesis of PUFAs.
Collapse
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Ran Li
- Agriculture and Agri-Food Canada, Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Adolf A Ammah
- Agriculture and Agri-Food Canada, Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Pier-Luc Dudemaine
- Agriculture and Agri-Food Canada, Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Chaouki Benchaar
- Agriculture and Agri-Food Canada, Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3 V9, Canada.
| |
Collapse
|
35
|
Han CY, Tang C, Guevara ME, Wei H, Wietecha T, Shao B, Subramanian S, Omer M, Wang S, O'Brien KD, Marcovina SM, Wight TN, Vaisar T, de Beer MC, de Beer FC, Osborne WR, Elkon KB, Chait A. Serum amyloid A impairs the antiinflammatory properties of HDL. J Clin Invest 2015; 126:266-81. [PMID: 26642365 DOI: 10.1172/jci83475] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/29/2015] [Indexed: 01/25/2023] Open
Abstract
HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface-associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane.
Collapse
|
36
|
Liu C, Zhang Y, Ding D, Li X, Yang Y, Li Q, Zheng Y, Wang D, Ling W. Cholesterol efflux capacity is an independent predictor of all-cause and cardiovascular mortality in patients with coronary artery disease: A prospective cohort study. Atherosclerosis 2015; 249:116-24. [PMID: 27088866 DOI: 10.1016/j.atherosclerosis.2015.10.111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/13/2015] [Accepted: 10/31/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although diminished cholesterol efflux capacity is positively related with prevalent coronary artery disease, its prognostic value for incident cardiovascular events remains a topic of debate. This work aims to investigate the association between cholesterol efflux capacity and all-cause and cardiovascular mortality in patients with coronary artery disease. METHODS AND RESULTS We measured cholesterol efflux capacity at baseline in 1737 patients with coronary artery disease from the Guangdong Coronary Artery Disease Cohort. During 6645 person-years of follow-up, 166 deaths were registered, 122 of which were caused by cardiovascular diseases. After multivariate adjustment for factors related to cardiovascular diseases, the hazard ratios of cholesterol efflux capacity in the fourth quartile compared with those in the bottom quartile were 0.24 (95% confidence intervals 0.13-0.44) for all-cause mortality (P < 0.001), and 0.17 (95% confidence intervals 0.08-0.39) for cardiovascular mortality (P < 0.001). Adding cholesterol efflux capacity to a model containing traditional cardiovascular risk factors significantly increases its discriminatory power and predictive ability for all-cause (area under receiver operating characteristic curve 0.79 versus 0.76, P = 0.001; net reclassification improvement 14.5%, P = 0.001; integrated discrimination improvement 0.016, P < 0.001) and cardiovascular (area under receiver operating characteristic curve 0.81 versus 0.78, P = 0.001; net reclassification improvement 18.4%, P < 0.001; integrated discrimination improvement 0.015, P < 0.001) death, respectively. CONCLUSIONS Cholesterol efflux capacity may serve as an independent measure for predicting all-cause and cardiovascular mortality in patients with coronary artery disease.
Collapse
Affiliation(s)
- Chaoqun Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuan Zhang
- Department of Cardiology, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangdong, China
| | - Ding Ding
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinrui Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yunou Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qing Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanzhu Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongliang Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wenhua Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
De Buck M, Berghmans N, Pörtner N, Vanbrabant L, Cockx M, Struyf S, Opdenakker G, Proost P, Van Damme J, Gouwy M. Serum amyloid A1α induces paracrine IL-8/CXCL8 via TLR2 and directly synergizes with this chemokine via CXCR2 and formyl peptide receptor 2 to recruit neutrophils. J Leukoc Biol 2015; 98:1049-60. [PMID: 26297794 DOI: 10.1189/jlb.3a0315-085r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/23/2015] [Indexed: 11/24/2022] Open
Abstract
Cell migration depends on the ability of leukocytes to sense an external gradient of chemotactic proteins produced during inflammation. These proteins include chemokines, complement factors, and some acute phase proteins, such as serum amyloid A. Serum amyloid A chemoattracts neutrophils, monocytes, and T lymphocytes via its G protein-coupled receptor formyl peptide receptor 2. We demonstrate that serum amyloid A1α more potently chemoattracts neutrophils in vivo than in vitro. In contrast to CD14(+) monocytes, no rapid (within 2 h) induction of interleukin-8/CXC chemokine ligand 8 or macrophage-inflammatory protein-1α/CC chemokine ligand 3 was observed in purified human neutrophils after stimulation of the cells with serum amyloid A1α or lipopolysaccharide. Moreover, interleukin-8/CXC chemokine ligand 8 induction in monocytes by serum amyloid A1α was mediated by toll-like receptor 2 and was inhibited by association of serum amyloid A1α with high density lipoprotein. This indicates that the potent chemotactic response of neutrophils toward intraperitoneally injected serum amyloid A1α is indirectly enhanced by rapid induction of chemokines in peritoneal cells, synergizing in a paracrine manner with serum amyloid A1α. We observed direct synergy between IL-8/CXC chemokine ligand 8 and serum amyloid A1α, but not lipopolysaccharide, in chemotaxis and shape change assays with neutrophils. Furthermore, the selective CXC chemokine receptor 2 and formyl peptide receptor 2 antagonists, SB225002 and WRW4, respectively, blocked the synergy between IL-8/CXC chemokine ligand 8 and serum amyloid A1α in neutrophil chemotaxis in vitro, indicating that for synergy their corresponding G protein-coupled receptors are required. Additionally, SB225002 significantly inhibited serum amyloid A1α-mediated peritoneal neutrophil influx. Taken together, endogenous (e.g., IL-1β) and exogenous (e.g., lipopolysaccharide) inflammatory mediators induce primary chemoattractants such as serum amyloid A that synergize in an autocrine (monocyte) or a paracrine (neutrophil) fashion with secondary chemokines induced in stromal cells.
Collapse
Affiliation(s)
- Mieke De Buck
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Maaike Cockx
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Paul Proost
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Thomas MJ, Sorci-Thomas MG. SAA: a link between cholesterol efflux capacity and inflammation? J Lipid Res 2015; 56:1383-5. [PMID: 26078331 DOI: 10.1194/jlr.c061366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Michael J Thomas
- Departments of Pharmacology and Toxicology Medical College of Wisconsin, Milwaukee, WI
| | - Mary G Sorci-Thomas
- Medicine, Division of Endocrinology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
39
|
Jayaraman S, Haupt C, Gursky O. Thermal transitions in serum amyloid A in solution and on the lipid: implications for structure and stability of acute-phase HDL. J Lipid Res 2015; 56:1531-42. [PMID: 26022803 DOI: 10.1194/jlr.m059162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase protein that circulates mainly on plasma HDL. SAA interactions with its functional ligands and its pathogenic deposition in reactive amyloidosis depend, in part, on the structural disorder of this protein and its propensity to oligomerize. In vivo, SAA can displace a substantial fraction of the major HDL protein, apoA-I, and thereby influence the structural remodeling and functions of acute-phase HDL in ways that are incompletely understood. We use murine SAA1.1 to report the first structural stability study of human plasma HDL that has been enriched with SAA. Calorimetric and spectroscopic analyses of these and other SAA-lipid systems reveal two surprising findings. First, progressive displacement of the exchangeable fraction of apoA-I by SAA has little effect on the structural stability of HDL and its fusion and release of core lipids. Consequently, the major determinant for HDL stability is the nonexchangeable apoA-I. A structural model explaining this observation is proposed, which is consistent with functional studies in acute-phase HDL. Second, we report an α-helix folding/unfolding transition in SAA in the presence of lipid at near-physiological temperatures. This new transition may have potentially important implications for normal functions of SAA and its pathogenic misfolding.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston MA 02118
| | - Christian Haupt
- Institute for Pharmaceutical Biotechnology, University of Ulm, 89081, Ulm, Germany
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston MA 02118
| |
Collapse
|
40
|
Kon V, Yang H, Fazio S. Residual Cardiovascular Risk in Chronic Kidney Disease: Role of High-density Lipoprotein. Arch Med Res 2015; 46:379-91. [PMID: 26009251 DOI: 10.1016/j.arcmed.2015.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
Although reducing low-density lipoprotein-cholesterol (LDL-C) levels with lipid-lowering agents (statins) decreases cardiovascular disease (CVD) risk, a substantial residual risk (up to 70% of baseline) remains after treatment in most patient populations. High-density lipoprotein (HDL) is a potential contributor to residual risk, and low HDL-cholesterol (HDL-C) is an established risk factor for CVD. However, in contrast to conventional lipid-lowering therapies, recent studies show that pharmacologic increases in HDL-C levels do not bring about clinical benefits. These observations have given rise to the concept of dysfunctional HDL where increases in serum HDL-C may not be beneficial because HDL loss of function is not corrected by or even intensified by the therapy. Chronic kidney disease (CKD) increases CVD risk, and patients whose CKD progresses to end-stage renal disease (ESRD) requiring dialysis are at the highest CVD risk of any patient type studied. The ESRD population is also unique in its lack of significant benefit from standard lipid-lowering interventions. Recent studies indicate that HDL-C levels do not predict CVD in the CKD population. Moreover, CKD profoundly alters metabolism and composition of HDL particles and impairs their protective effects on functions such as cellular cholesterol efflux, endothelial protection, and control of inflammation and oxidation. Thus, CKD-induced perturbations in HDL may contribute to the excess CVD in CKD patients. Understanding the mechanisms of vascular protection in renal disease can present new therapeutic targets for intervention in this population.
Collapse
Affiliation(s)
- Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Haichun Yang
- Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergio Fazio
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
41
|
Hong C, Shen C, Ding H, Huang S, Mu Y, Su H, Wei W, Ma J, Zheng F. An involvement of SR-B1 mediated p38 MAPK signaling pathway in serum amyloid A-induced angiogenesis in rheumatoid arthritis. Mol Immunol 2015; 66:340-5. [PMID: 25932604 DOI: 10.1016/j.molimm.2015.03.254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Abstract
Serum amyloid A (SAA) has been reported high expression in autoimmune diseases, such as rheumatoid arthritis (RA). However, detailed molecular mechanisms induced by SAA in the pathogenesis of RA are still unclear. Herein, we focused on the role of SAA-SR-B1 mediated p38 MAPK signaling pathway in the process of RA angiogenesis. Our results showed that both SAA and SR-B1 predominantly localized to vascular endothelial cells, lining and sublining layers in RA synovium. In a series of in vitro experiments with human umbilical vein endothelial cells (HUVECs), SAA induced the endothelial cells (ECs) proliferation, migration and tube formation. However, blockage of SR-B1 and p38 MAPK inhibited SAA-induced cells proliferation, migration and tube formation. In conclusion, our data showed a possible molecular mechanism for SAA-SR-B1 induced angiogenesis events via p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Chengcheng Hong
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China
| | - Chen Shen
- Departmemt of Medical Laboratory, Jining No.1 People's Hospital, 272011 Shandong Province, China
| | - Hongmei Ding
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China
| | - Shanshan Huang
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China
| | - Yun Mu
- Department of Medical Laboratory, Tianjin Children's Hospital, 300074 Tianjin, China
| | - Huihui Su
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China
| | - Wei Wei
- Department of Rheumatology, General Hospital, Tianjin Medical University, 300052 Tianjin, China
| | - Jun Ma
- Department of Health Statistics, College of Public Health, Tianjin Medical University, 300203, Tianjin, China.
| | - Fang Zheng
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, 300203 Tianjin, China.
| |
Collapse
|
42
|
High-density lipoprotein: structural and functional changes under uremic conditions and the therapeutic consequences. Handb Exp Pharmacol 2014. [PMID: 25522997 DOI: 10.1007/978-3-319-09665-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
High-density lipoprotein (HDL) has attracted interest as a therapeutic target in cardiovascular diseases in recent years. Although many functional mechanisms of the vascular protective effects of HDL have been identified, increasing the HDL plasma level has not been successful in all patient cohorts with increased cardiovascular risk. The composition of the HDL particle is very complex and includes diverse lipids and proteins that can be modified in disease conditions. In patients with chronic kidney disease (CKD), the accumulation of uremic toxins, high oxidative stress, and chronic micro-inflammatory conditions contribute to changes in the HDL composition and may also account for protein/lipid modifications. These conditions are associated with a decreased protective function of HDL. Therefore, the HDL quantity and the functional quality of the particle must be considered. This review summarizes the current knowledge of dyslipidemia in CKD patients, the effects of lipid-modulating therapy, and the structural modifications of HDL that are associated with dysfunction.
Collapse
|
43
|
Gouwy M, De Buck M, Pörtner N, Opdenakker G, Proost P, Struyf S, Van Damme J. Serum amyloid A chemoattracts immature dendritic cells and indirectly provokes monocyte chemotaxis by induction of cooperating CC and CXC chemokines. Eur J Immunol 2014; 45:101-12. [PMID: 25345597 DOI: 10.1002/eji.201444818] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/11/2014] [Accepted: 10/21/2014] [Indexed: 12/21/2022]
Abstract
Serum amyloid A (SAA) is an acute phase protein that is upregulated in inflammatory diseases and chemoattracts monocytes, lymphocytes, and granulocytes via its G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPRL1/FPR2). Here, we demonstrated that the SAA1α isoform also chemoattracts monocyte-derived immature dendritic cells (DCs) in the Boyden and μ-slide chemotaxis assay and that its chemotactic activity for monocytes and DCs was indirectly mediated via rapid chemokine induction. Indeed, SAA1 induced significant amounts (≥5 ng/mL) of macrophage inflammatory protein-1α/CC chemokine ligand 3 (MIP-1α/CCL3) and interleukin-8/CXC chemokine ligand 8 (IL-8/CXCL8) in monocytes and DCs in a dose-dependent manner within 3 h. However, SAA1 also directly activated monocytes and DCs for signaling and chemotaxis without chemokine interference. SAA1-induced monocyte migration was nevertheless significantly prevented (60-80% inhibition) in the constant presence of desensitizing exogenous MIP-1α/CCL3, neutralizing anti-MIP-1α/CCL3 antibody, or a combination of CC chemokine receptor 1 (CCR1) and CCR5 antagonists, indicating that this endogenously produced CC chemokine was indirectly contributing to SAA1-mediated chemotaxis. Further, anti-IL-8/CXCL8 antibody neutralized SAA1-induced monocyte migration, suggesting that endogenous IL-8/CXCL8 acted in concert with MIP-1α/CCL3. This explained why SAA1 failed to synergize with exogenously added MIP-1α/CCL3 or stromal cell-derived factor-1α (SDF-1α)/CXCL12 in monocyte and DC chemotaxis. In addition to direct leukocyte activation, SAA1 induces a chemotactic cascade mediated by expression of cooperating chemokines to prolong leukocyte recruitment to the inflammatory site.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Derebe MG, Zlatkov CM, Gattu S, Ruhn KA, Vaishnava S, Diehl GE, MacMillan JB, Williams NS, Hooper LV. Serum amyloid A is a retinol binding protein that transports retinol during bacterial infection. eLife 2014; 3:e03206. [PMID: 25073702 PMCID: PMC4129439 DOI: 10.7554/elife.03206] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Retinol plays a vital role in the immune response to infection, yet proteins that mediate retinol transport during infection have not been identified. Serum amyloid A (SAA) proteins are strongly induced in the liver by systemic infection and in the intestine by bacterial colonization, but their exact functions remain unclear. Here we show that mouse and human SAAs are retinol binding proteins. Mouse and human SAAs bound retinol with nanomolar affinity, were associated with retinol in vivo, and limited the bacterial burden in tissues after acute infection. We determined the crystal structure of mouse SAA3 at a resolution of 2 Å, finding that it forms a tetramer with a hydrophobic binding pocket that can accommodate retinol. Our results thus identify SAAs as a family of microbe-inducible retinol binding proteins, reveal a unique protein architecture involved in retinol binding, and suggest how retinol is circulated during infection. DOI:http://dx.doi.org/10.7554/eLife.03206.001 Vitamins are nutrients that organisms require in order to survive and grow. If an organism is unable to synthesize a vitamin in sufficient quantities, it is essential that it obtain the vitamin through its diet instead. Vitamin A is found in foods such as eggs, animal liver and carrots, and a diet that is lacking in this vitamin can cause blindness and an increased risk of microbial infections. Vitamin A is not a single compound, but rather a collection of compounds with similar molecular structures. One of these is retinol, which plays a vital role in the body's response to microbial infection. Retinol must bind to specific proteins to be able to move through the bloodstream and be transported around the body. Serum retinol binding protein transports ingested retinol from the intestine to the liver and other tissues. However, during microbial infection—when retinol transport is particularly important—the amount of this protein dramatically decreases; as such it is unclear how retinol is transported when the body is under attack from pathogens. It had been suggested that Serum Amyloid A (SAA) proteins, a family of proteins made by some liver and intestinal cells, could be involved in the response to infection, because these proteins' levels increase during infection. However, their exact functions were unknown. Derebe, Zlatkov et al. found that mice fed a diet poor in vitamin A produced fewer SAA proteins in their liver and intestinal cells. However, treating the cells with retinol or the molecule it is broken down into—called retinoic acid—caused more SAAs to be made. Derebe, Zlatkov et al. also discovered that SAAs are associated with retinol in blood samples taken from mice infected with salmonella; and that both mouse and human SAAs bind tightly to retinol. Combined, this evidence suggests that SAAs are the retinol binding proteins that transport retinol during infections. Derebe, Zlatkov et al. went on to solve the crystal structure of a mouse SAA protein, and showed that four SAA molecules bind together to form a ‘pocket’ that can hold a retinol molecule. Future work will focus on understanding exactly how the transport of retinol by SAAs affects the development of immunity to infections. DOI:http://dx.doi.org/10.7554/eLife.03206.002
Collapse
Affiliation(s)
- Mehabaw G Derebe
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Clare M Zlatkov
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sureka Gattu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kelly A Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shipra Vaishnava
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gretchen E Diehl
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, United States
| | - John B MacMillan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
45
|
Ahlin S, Olsson M, Wilhelmson AS, Skålén K, Borén J, Carlsson LMS, Svensson PA, Sjöholm K. Adipose tissue-derived human serum amyloid a does not affect atherosclerotic lesion area in hSAA1+/-/ApoE-/- mice. PLoS One 2014; 9:e95468. [PMID: 24751653 PMCID: PMC3994058 DOI: 10.1371/journal.pone.0095468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/27/2014] [Indexed: 11/18/2022] Open
Abstract
Chronically elevated serum levels of serum amyloid A (SAA) are linked to increased risk of cardiovascular disease. However, whether SAA is directly involved in atherosclerosis development is still not known. The aim of this study was to investigate the effects of adipose tissue-derived human SAA on atherosclerosis in mice. hSAA1+/- transgenic mice (hSAA1 mice) with a specific expression of human SAA1 in adipose tissue were bred with ApoE-deficient mice. The hSAA1 mice and their wild type (wt) littermates were fed normal chow for 35 weeks. At the end of the experiment, the mice were euthanized and blood, gonadal adipose tissue and aortas were collected. Plasma levels of SAA, cholesterol and triglycerides were measured. Atherosclerotic lesion areas were analyzed in the aortic arch, the thoracic aorta and the abdominal aorta in en face preparations of aorta stained with Sudan IV. The human SAA protein was present in plasma from hSAA1 mice but undetectable in wt mice. Similar plasma levels of cholesterol and triglycerides were observed in hSAA1 mice and their wt controls. There were no differences in atherosclerotic lesion areas in any sections of the aorta in hSAA1 mice compared to wt mice. In conclusion, our data suggest that adipose tissue-derived human SAA does not influence atherosclerosis development in mice.
Collapse
Affiliation(s)
- Sofie Ahlin
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maja Olsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna S. Wilhelmson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kristina Skålén
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lena M. S. Carlsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kajsa Sjöholm
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
Cui X, Hou Y, Yang S, Xie Y, Zhang S, Zhang Y, Zhang Q, Lu X, Liu GE, Sun D. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing. BMC Genomics 2014; 15:226. [PMID: 24655368 PMCID: PMC3998192 DOI: 10.1186/1471-2164-15-226] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/18/2014] [Indexed: 11/15/2022] Open
Abstract
Background Recently, RNA sequencing (RNA-seq) has rapidly emerged as a major transcriptome profiling system. Elucidation of the bovine mammary gland transcriptome by RNA-seq is essential for identifying candidate genes that contribute to milk composition traits in dairy cattle. Results We used massive, parallel, high-throughput, RNA-seq to generate the bovine transcriptome from the mammary glands of four lactating Holstein cows with extremely high and low phenotypic values of milk protein and fat percentage. In total, we obtained 48,967,376–75,572,578 uniquely mapped reads that covered 82.25% of the current annotated transcripts, which represented 15549 mRNA transcripts, across all the four mammary gland samples. Among them, 31 differentially expressed genes (p < 0.05, false discovery rate q < 0.05) between the high and low groups of cows were revealed. Gene ontology and pathway analysis demonstrated that the 31 differently expressed genes were enriched in specific biological processes with regard to protein metabolism, fat metabolism, and mammary gland development (p < 0.05). Integrated analysis of differential gene expression, previously reported quantitative trait loci, and genome-wide association studies indicated that TRIB3, SAA (SAA1, SAA3, and M-SAA3.2), VEGFA, PTHLH, and RPL23A were the most promising candidate genes affecting milk protein and fat percentage. Conclusions This study investigated the complexity of the mammary gland transcriptome in dairy cattle using RNA-seq. Integrated analysis of differential gene expression and the reported quantitative trait loci and genome-wide association study data permitted the identification of candidate key genes for milk composition traits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
47
|
Hafiane A, Jabor B, Ruel I, Ling J, Genest J. High-density lipoprotein mediated cellular cholesterol efflux in acute coronary syndromes. Am J Cardiol 2014; 113:249-55. [PMID: 24210679 DOI: 10.1016/j.amjcard.2013.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023]
Abstract
Systemic inflammation at the development of an acute coronary syndrome (ACS) might alter the high-density lipoprotein (HDL) components and function. One of the major functions of HDL particles is their ability to remove cellular cholesterol from macrophages. The aim of the present study was to characterize the HDL efflux capacity in patients with ACS. We analyzed the cholesterol efflux in those ACS (within 72 hours of symptoms [ACS1]) and, again, 3 months later (ACS2). As controls, we used normal subjects without coronary artery disease (CAD) and patients with chronic, stable CAD. The 4 groups were matched for age and HDL cholesterol levels. We used a cell-based efflux system in (3)[H]-cholesterol-labeled J774 macrophages to measure cholesterol efflux from apolipoprotein B-depleted plasma. The present study included 20 patients with ACS. Their mean age was 58 ± 9 years, and the mean HDL cholesterol level was 1.06 ± 0.22 mmol/L (41 ± 9 mg/dl). The ACS1 group showed a marked increase in high-sensitivity C-reactive protein and serum amyloid A, reflecting systemic inflammation. The HDL cholesterol efflux capacity was reduced in ACS1 subjects and remained reduced 12 weeks later and in those with stable CAD. These results suggest that the acute presence of serum amyloid A does not account for the impairment of HDL-mediated cholesterol efflux capacity in the ACS1 group. Little correlation was found between HDL cholesterol and HDL efflux capacity (r = 0.233; p = 0.049), suggesting that HDL cholesterol is a poor marker of HDL function in inflammatory states and CAD. In conclusion, our data support the concept that atherogenic HDL dysfunction and impaired efflux occur in ACS, independent of changes in plasma HDL cholesterol and apolipoprotein A-I levels.
Collapse
Affiliation(s)
- Anouar Hafiane
- Cardiovascular Research Laboratories, Division of Cardiology, McGill University Faculty of Medicine, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Bashar Jabor
- Cardiovascular Research Laboratories, Division of Cardiology, McGill University Faculty of Medicine, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Isabelle Ruel
- Cardiovascular Research Laboratories, Division of Cardiology, McGill University Faculty of Medicine, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Jennifer Ling
- Cardiovascular Research Laboratories, Division of Cardiology, McGill University Faculty of Medicine, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Jacques Genest
- Cardiovascular Research Laboratories, Division of Cardiology, McGill University Faculty of Medicine, Royal Victoria Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
48
|
Proteomic analysis of plasma-purified VLDL, LDL, and HDL fractions from atherosclerotic patients undergoing carotid endarterectomy: identification of serum amyloid A as a potential marker. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:385214. [PMID: 24454983 PMCID: PMC3886437 DOI: 10.1155/2013/385214] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/17/2022]
Abstract
Apolipoproteins are very heterogeneous protein family, implicated in plasma lipoprotein structural stabilization, lipid metabolism, inflammation, or immunity. Obtaining detailed information on apolipoprotein composition and structure may contribute to elucidating lipoprotein roles in atherogenesis and to developing new therapeutic strategies for the treatment of lipoprotein-associated disorders. This study aimed at developing a comprehensive method for characterizing the apolipoprotein component of plasma VLDL, LDL, and HDL fractions from patients undergoing carotid endarterectomy, by means of two-dimensional electrophoresis (2-DE) coupled with Mass Spectrometry analysis, useful for identifying potential markers of plaque presence and vulnerability. The adopted method allowed obtaining reproducible 2-DE maps of exchangeable apolipoproteins from VLDL, LDL, and HDL. Twenty-three protein isoforms were identified by peptide mass fingerprinting analysis. Differential proteomic analysis allowed for identifying increased levels of acute-phase serum amyloid A protein (AP SAA) in all lipoprotein fractions, especially in LDL from atherosclerotic patients. Results have been confirmed by western blotting analysis on each lipoprotein fraction using apo AI levels for data normalization. The higher levels of AP SAA found in patients suggest a role of LDL as AP SAA carrier into the subendothelial space of artery wall, where AP SAA accumulates and may exert noxious effects.
Collapse
|
49
|
de Seny D, Cobraiville G, Charlier E, Neuville S, Esser N, Malaise D, Malaise O, Calvo FQ, Relic B, Malaise MG. Acute-phase serum amyloid a in osteoarthritis: regulatory mechanism and proinflammatory properties. PLoS One 2013; 8:e66769. [PMID: 23776697 PMCID: PMC3680431 DOI: 10.1371/journal.pone.0066769] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/11/2013] [Indexed: 01/01/2023] Open
Abstract
Objective To determine if serum amyloid A (A-SAA) could be detected in human osteoarthritic (OA) joints and further clarify if high A-SAA level in joints result from a local production or from a diffusion process from abnormally elevated plasma concentration. Regulatory mechanism of A-SAA expression and its pro-inflammatory properties were also investigated. Methods A-SAA levels in serum and synovial fluid of OA (n = 29) and rheumatoid arthritis (RA) (n = 27) patients were measured and compared to matched-healthy volunteers (HV) (n = 35). In vitro cell cultures were performed on primary joint cells provided from osteoarthritis patients. Regulatory mechanisms were studied using Western-blotting, ELISA and lentiviral transfections. Results A-SAA was statistically increased in OA plasma patients compared to HV. Moreover, A-SAA level in OA plasma and synovial fluid increased with the Kellgren & Lauwrence grade. For all OA and RA patients, A-SAA plasma level was higher and highly correlated with its corresponding level in the synovial fluid, therefore supporting that A-SAA was mainly due to the passive diffusion process from blood into the joint cavity. However, A-SAA expression was also observed in vitro under corticosteroid treatment and/or under IL-1beta stimuli. A-SAA expression was down-regulated by PPAR-γ agonists (genistein and rosiglitazone) and up-regulated by TGF-β1 through Alk1 (Smad1/5) pathway. RhSAA induced proinflammatory cytokines (IL-6, IL-8, GRO-α and MCP-1) and metalloproteinases (MMP-1, MMP-3 and MMP-13) expression in FLS and chondrocytes, which expression was downregulated by TAK242, a specific TLR4 inhibitor. Conclusion Systemic or local A-SAA expression inside OA joint cavity may play a key role in inflammatory process seen in osteoarthritis, which could be counteracted by TLR4 inhibition.
Collapse
Affiliation(s)
- Dominique de Seny
- Laboratory of Rheumatology, GIGA Research, University of Liège, CHU Liège, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during Inflammation Does Not Depend on Serum Amyloid A. J Lipids 2013; 2013:283486. [PMID: 23431457 PMCID: PMC3572687 DOI: 10.1155/2013/283486] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/19/2023] Open
Abstract
Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO) were injected intraperitoneally with 3H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. 3H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of 3H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36% (P < 0.05) and 80% (P < 0.001), respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived 3H-cholesterol in bile, and fecal excretion was reduced by only 45% (P < 0.05). Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment.
Collapse
|