1
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
2
|
Kim D, Nam HJ, Baek SH. Ubiquitination of transcription factors in cancer: unveiling therapeutic potential. Mol Oncol 2025. [PMID: 40227962 DOI: 10.1002/1878-0261.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025] Open
Abstract
Transcription factors, pivotal in gene expression regulation, are essential in cancer progression. Their function is meticulously regulated by post-translational modifications, including ubiquitination. This process, which marks proteins for degradation, can either enhance or inhibit the function of transcription factors, contingent on the context. In cancers, dysregulated ubiquitination of transcription factors contributes to the hallmark of uncontrolled growth and survival of tumors. For example, tumor suppressors such as p53 might be degraded prematurely due to abnormal ubiquitination, causing genomic instability. On the other hand, oncogenic transcription factors may gain stability via ubiquitination, thus facilitating tumorigenesis. Targeting the ubiquitin-proteasome system (UPS) therefore could be a viable therapeutic approach in cancer. Emerging treatments aim to block the ubiquitination of oncogenic transcription factors or to stabilize tumor suppressors. This review underscores the critical impact of transcription factor-altered ubiquitination on cancer progression. Additionally, it outlines innovative therapeutic approaches that involve inhibitors or drugs directed at specific ubiquitin E3 ligases and deubiquitinases (DUBs) that regulate transcription factor activity.
Collapse
Affiliation(s)
- Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Jin Nam
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Korea
| |
Collapse
|
3
|
Upadhyay V, Singh AK, Sharma S, Sethi A, Srivastava S, Chowdhury S, Siddiqui S, Chattopadhyay N, Trivedi AK. RING finger E3 ligase, RNF138 inhibits osteoblast differentiation by negatively regulating Runx2 protein turnover. J Cell Physiol 2024; 239:e31217. [PMID: 38327035 DOI: 10.1002/jcp.31217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
A few ubiquitin ligases have been shown to target Runx2, the key osteogenic transcription factor and thereby regulate bone formation. The regulation of Runx2 expression and function are controlled both at the transcriptional and posttranslational levels. Really interesting new gene (RING) finger ubiquitin ligases of which RNF138 is a member are important players in the ubiquitin-proteasome system, contributing to the regulation of protein turnover and cellular processes. Here, we demonstrated that RNF138 negatively correlated with Runx2 protein levels in osteopenic ovariectomized rats which implied its role in bone loss. Accordingly, RNF138 overexpression potently inhibited osteoblast differentiation of mesenchyme-like C3H10T1/2 as well primary rat calvarial osteoblast (RCO) cells in vitro, whereas overexpression of catalytically inactive mutant RNF138Δ18-58 (lacks RING finger domain) had mild to no effect. Contrarily, RNF138 depletion copiously enhanced endogenous Runx2 levels and augmented osteogenic differentiation of C3H10T1/2 as well as RCOs. Mechanistically, RNF138 physically associates within multiple regions of Runx2 and ubiquitinates it leading to its reduced protein stability in a proteasome-dependent manner. Moreover, catalytically active RNF138 destabilized Runx2 which resulted in inhibition of its transactivation potential and physiological function of promoting osteoblast differentiation leading to bone loss. These findings underscore the functional involvement of RNF138 in bone formation which is primarily achieved through its modulation of Runx2 by stimulating ubiquitin-mediated proteasomal degradation. Thus, our findings indicate that RNF138 could be a promising novel target for therapeutic intervention in postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
| | - Arppita Sethi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
| | - Sangita Chowdhury
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Utter Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Tsukiyama T. New insights in ubiquitin-dependent Wnt receptor regulation in tumorigenesis. In Vitro Cell Dev Biol Anim 2024; 60:449-465. [PMID: 38383910 PMCID: PMC11126518 DOI: 10.1007/s11626-024-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Wnt signaling plays a crucial role in embryonic development and homeostasis maintenance. Delicate and sensitive fine-tuning of Wnt signaling based on the proper timings and positions is required to balance cell proliferation and differentiation and maintain individual health. Therefore, homeostasis is broken by tissue hypoplasia or tumor formation once Wnt signal dysregulation disturbs the balance of cell proliferation. The well-known regulatory mechanism of Wnt signaling is the molecular reaction associated with the cytoplasmic accumulation of effector β-catenin. In addition to β-catenin, most Wnt effector proteins are also regulated by ubiquitin-dependent modification, both qualitatively and quantitatively. This review will explain the regulation of the whole Wnt signal in four regulatory phases, as well as the different ubiquitin ligases and the function of deubiquitinating enzymes in each phase. Along with the recent results, the mechanism by which RNF43 negatively regulates the surface expression of Wnt receptors, which has recently been well understood, will be detailed. Many RNF43 mutations have been identified in pancreatic and gastrointestinal cancers and examined for their functional alteration in Wnt signaling. Several mutations facilitate or activate the Wnt signal, reversing the RNF43 tumor suppressor function into an oncogene. RNF43 may simultaneously play different roles in classical multistep tumorigenesis, as both wild-type and mutant RNF43 suppress the p53 pathway. We hope that the knowledge obtained from further research in RNF43 will be applied to cancer treatment in the future despite the fully unclear function of RNF43.
Collapse
Affiliation(s)
- Tadasuke Tsukiyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, 15NW7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
5
|
Locke AJ, Abou Farraj R, Tran C, Zeinali E, Mashayekhi F, Ali JYH, Glover JNM, Ismail IH. The role of RNF138 in DNA end resection is regulated by ubiquitylation and CDK phosphorylation. J Biol Chem 2024; 300:105709. [PMID: 38309501 PMCID: PMC10910129 DOI: 10.1016/j.jbc.2024.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024] Open
Abstract
Double-strand breaks (DSBs) are DNA lesions that pose a significant threat to genomic stability. The repair of DSBs by the homologous recombination (HR) pathway is preceded by DNA end resection, the 5' to 3' nucleolytic degradation of DNA away from the DSB. We and others previously identified a role for RNF138, a really interesting new gene finger E3 ubiquitin ligase, in stimulating DNA end resection and HR. Yet, little is known about how RNF138's function is regulated in the context of DSB repair. Here, we show that RNF138 is phosphorylated at residue T27 by cyclin-dependent kinase (CDK) activity during the S and G2 phases of the cell cycle. We also observe that RNF138 is ubiquitylated constitutively, with ubiquitylation occurring in part on residue K158 and rising during the S/G2 phases. Interestingly, RNF138 ubiquitylation decreases upon genotoxic stress. By mutating RNF138 at residues T27, K158, and the previously identified S124 ataxia telangiectasia mutated phosphorylation site (Han et al., 2016, ref. 22), we find that post-translational modifications at all three positions mediate DSB repair. Cells expressing the T27A, K158R, and S124A variants of RNF138 are impaired in DNA end resection, HR activity, and are more sensitive to ionizing radiation compared to those expressing wildtype RNF138. Our findings shed more light on how RNF138 activity is controlled by the cell during HR.
Collapse
Affiliation(s)
- Andrew J Locke
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rabih Abou Farraj
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Tran
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Elham Zeinali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jana Yasser Hafez Ali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
6
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Šopin T, Liška F, Kučera T, Cmarko D, Vacík T. Lysine Demethylase KDM2A Promotes Proteasomal Degradation of TCF/LEF Transcription Factors in a Neddylation-Dependent Manner. Cells 2023; 12:2620. [PMID: 37998355 PMCID: PMC10670284 DOI: 10.3390/cells12222620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Canonical Wnt signaling is essential for a plethora of biological processes ranging from early embryogenesis to aging. Malfunctions of this crucial signaling pathway are associated with various developmental defects and diseases, including cancer. Although TCF/LEF transcription factors (TCF/LEFs) are known to be essential for this pathway, the regulation of their intracellular levels is not completely understood. Here, we show that the lysine demethylase KDM2A promotes the proteasomal destabilization of TCF/LEFs independently of its demethylase domain. We found that the KDM2A-mediated destabilization of TCF/LEFs is dependent on the KDM2A zinc finger CXXC domain. Furthermore, we identified the C-terminal region of TCF7L2 and the CXXC domain of KDM2A as the domains responsible for the interaction between the two proteins. Our study is also the first to show that endogenous TCF/LEF proteins undergo KDM2A-mediated proteasomal degradation in a neddylation-dependent manner. Here, we reveal a completely new mechanism that affects canonical Wnt signaling by regulating the levels of TCF/LEF transcription factors through their KDM2A-promoted proteasomal degradation.
Collapse
Affiliation(s)
- Tijana Šopin
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 01 Prague, Czech Republic; (F.L.); (T.Š.); (D.C.)
| | - František Liška
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 01 Prague, Czech Republic; (F.L.); (T.Š.); (D.C.)
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 01 Prague, Czech Republic;
| | - Dušan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 01 Prague, Czech Republic; (F.L.); (T.Š.); (D.C.)
| | - Tomáš Vacík
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 01 Prague, Czech Republic; (F.L.); (T.Š.); (D.C.)
| |
Collapse
|
8
|
Lukic B, Curik I, Drzaic I, Galić V, Shihabi M, Vostry L, Cubric-Curik V. Genomic signatures of selection, local adaptation and production type characterisation of East Adriatic sheep breeds. J Anim Sci Biotechnol 2023; 14:142. [PMID: 37932811 PMCID: PMC10626677 DOI: 10.1186/s40104-023-00936-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/04/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The importance of sheep breeding in the Mediterranean part of the eastern Adriatic has a long tradition since its arrival during the Neolithic migrations. Sheep production system is extensive and generally carried out in traditional systems without intensive systematic breeding programmes for high uniform trait production (carcass, wool and milk yield). Therefore, eight indigenous Croatian sheep breeds from eastern Adriatic treated here as metapopulation (EAS), are generally considered as multipurpose breeds (milk, meat and wool), not specialised for a particular type of production, but known for their robustness and resistance to certain environmental conditions. Our objective was to identify genomic regions and genes that exhibit patterns of positive selection signatures, decipher their biological and productive functionality, and provide a "genomic" characterization of EAS adaptation and determine its production type. RESULTS We identified positive selection signatures in EAS using several methods based on reduced local variation, linkage disequilibrium and site frequency spectrum (eROHi, iHS, nSL and CLR). Our analyses identified numerous genomic regions and genes (e.g., desmosomal cadherin and desmoglein gene families) associated with environmental adaptation and economically important traits. Most candidate genes were related to meat/production and health/immune response traits, while some of the candidate genes discovered were important for domestication and evolutionary processes (e.g., HOXa gene family and FSIP2). These results were also confirmed by GO and QTL enrichment analysis. CONCLUSIONS Our results contribute to a better understanding of the unique adaptive genetic architecture of EAS and define its productive type, ultimately providing a new opportunity for future breeding programmes. At the same time, the numerous genes identified will improve our understanding of ruminant (sheep) robustness and resistance in the harsh and specific Mediterranean environment.
Collapse
Affiliation(s)
- Boris Lukic
- Faculty of Agrobiotechnical Sciences Osijek, J.J, Strossmayer University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia.
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia.
| | - Ivana Drzaic
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Vlatko Galić
- Department of Maize Breeding and Genetics, Agricultural Institute Osijek, Južno predgrađe 17, 31000, Osijek, Croatia
| | - Mario Shihabi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| | - Luboš Vostry
- Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praque, Czech Republic
| | - Vlatka Cubric-Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000, Zagreb, Croatia
| |
Collapse
|
9
|
Hamilton DJ, Hein AE, Wuttke DS, Batey RT. The DNA binding high mobility group box protein family functionally binds RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1778. [PMID: 36646476 PMCID: PMC10349909 DOI: 10.1002/wrna.1778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
Nucleic acid binding proteins regulate transcription, splicing, RNA stability, RNA localization, and translation, together tailoring gene expression in response to stimuli. Upon discovery, these proteins are typically classified as either DNA or RNA binding as defined by their in vivo functions; however, recent evidence suggests dual DNA and RNA binding by many of these proteins. High mobility group box (HMGB) proteins have a DNA binding HMGB domain, act as transcription factors and chromatin remodeling proteins, and are increasingly understood to interact with RNA as means to regulate gene expression. Herein, multiple layers of evidence that the HMGB family are dual DNA and RNA binding proteins is comprehensively reviewed. For example, HMGB proteins directly interact with RNA in vitro and in vivo, are localized to RNP granules involved in RNA processing, and their protein interactors are enriched in RNA binding proteins involved in RNA metabolism. Importantly, in cell-based systems, HMGB-RNA interactions facilitate protein-protein interactions, impact splicing outcomes, and modify HMGB protein genomic or cellular localization. Misregulation of these HMGB-RNA interactions are also likely involved in human disease. This review brings to light that as a family, HMGB proteins are likely to bind RNA which is essential to HMGB protein biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
|
10
|
Lee Y, Piao HL, Kim J. OTUD7B Activates Wnt Signaling Pathway through the Interaction with LEF1. Biomolecules 2023; 13:1001. [PMID: 37371581 DOI: 10.3390/biom13061001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The Wnt signaling pathway plays a critical role in regulating normal cellular processes, including proliferation, differentiation, and apoptosis. Dysregulation of Wnt signaling has been implicated in various human diseases, including cancer. β-catenin and LEF1 are key mediators of Wnt signaling, and their dysregulation is a hallmark of many cancer types. In this study, we aimed to identify the deubiquitinases (DUBs) that regulate the Wnt signaling pathway through the essential component LEF1. Screening candidate DUBs from the human DUB library, we discovered that OTUD7B interacts with LEF1 and activates Wnt signaling. OTUD7B and LEF1 interact with each other through the UBA and HMG domains, respectively. Furthermore, OTUD7B promotes the nuclear localization of LEF1, leading to an increased interaction with β-catenin in the nucleus while not noticeably affecting ubiquitination on LEF1. Using qPCR array analysis, we found that OTUD7B overexpression leads to an upregulation of 75% of the tested Wnt target genes compared to the control. These findings suggest that OTUD7B may serve as a potential therapeutic target in human diseases, including cancers where Wnt signaling is frequently dysregulated.
Collapse
Affiliation(s)
- Yuri Lee
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jongchan Kim
- Department of Life Sciences, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
11
|
Jaroušek R, Mikulová A, Daďová P, Tauš P, Kurucová T, Plevová K, Tichý B, Kubala L. Single-cell RNA sequencing analysis of T helper cell differentiation and heterogeneity. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119321. [PMID: 35779629 DOI: 10.1016/j.bbamcr.2022.119321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Single-cell transcriptomics has emerged as a powerful tool to investigate cells' biological landscape and focus on the expression profile of individual cells. Major advantage of this approach is an analysis of highly complex and heterogeneous cell populations, such as a specific subpopulation of T helper cells that are known to differentiate into distinct subpopulations. The need for distinguishing the specific expression profile is even more important considering the T cell plasticity. However, importantly, the universal pipelines for single-cell analysis are usually not sufficient for every cell type. Here, the aims are to analyze the diversity of T cell phenotypes employing classical in vitro cytokine-mediated differentiation of human T cells isolated from human peripheral blood by single-cell transcriptomic approach with support of labelled antibodies and a comprehensive bioinformatics analysis using combination of Seurat, Nebulosa, GGplot and others. The results showed high expression similarities between Th1 and Th17 phenotype and very distinct Th2 expression profile. In a case of Th2 highly specific marker genes SPINT2, TRIB3 and CST7 were expressed. Overall, our results demonstrate how donor difference, Th plasticity and cell cycle influence the expression profiles of distinct T cell populations. The results could help to better understand the importance of each step of the analysis when working with T cell single-cell data and observe the results in a more practical way by using our analyzed datasets.
Collapse
Affiliation(s)
- Radim Jaroušek
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Antónia Mikulová
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Daďová
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Tauš
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Terézia Kurucová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karla Plevová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Boris Tichý
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
12
|
García-Corzo L, Calatayud-Baselga I, Casares-Crespo L, Mora-Martínez C, Julián Escribano-Saiz J, Hortigüela R, Asenjo-Martínez A, Jordán-Pla A, Ercoli S, Flames N, López-Alonso V, Vilar M, Mira H. The transcription factor LEF1 interacts with NFIX and switches isoforms during adult hippocampal neural stem cell quiescence. Front Cell Dev Biol 2022; 10:912319. [PMID: 35938168 PMCID: PMC9355129 DOI: 10.3389/fcell.2022.912319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Stem cells in adult mammalian tissues are held in a reversible resting state, known as quiescence, for prolonged periods of time. Recent studies have greatly increased our understanding of the epigenetic and transcriptional landscapes that underlie stem cell quiescence. However, the transcription factor code that actively maintains the quiescence program remains poorly defined. Similarly, alternative splicing events affecting transcription factors in stem cell quiescence have been overlooked. Here we show that the transcription factor T-cell factor/lymphoid enhancer factor LEF1, a central player in canonical β-catenin-dependent Wnt signalling, undergoes alternative splicing and switches isoforms in quiescent neural stem cells. We found that active β-catenin and its partner LEF1 accumulated in quiescent hippocampal neural stem and progenitor cell (Q-NSPC) cultures. Accordingly, Q-NSPCs showed enhanced TCF/LEF1-driven transcription and a basal Wnt activity that conferred a functional advantage to the cultured cells in a Wnt-dependent assay. At a mechanistic level, we found a fine regulation of Lef1 gene expression. The coordinate upregulation of Lef1 transcription and retention of alternative spliced exon 6 (E6) led to the accumulation of a full-length protein isoform (LEF1-FL) that displayed increased stability in the quiescent state. Prospectively isolated GLAST + cells from the postnatal hippocampus also underwent E6 retention at the time quiescence is established in vivo. Interestingly, LEF1 motif was enriched in quiescence-associated enhancers of genes upregulated in Q-NSPCs and quiescence-related NFIX transcription factor motifs flanked the LEF1 binding sites. We further show that LEF1 interacts with NFIX and identify putative LEF1/NFIX targets. Together, our results uncover an unexpected role for LEF1 in gene regulation in quiescent NSPCs, and highlight alternative splicing as a post-transcriptional regulatory mechanism in the transition from stem cell activation to quiescence.
Collapse
Affiliation(s)
- Laura García-Corzo
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Isabel Calatayud-Baselga
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Lucía Casares-Crespo
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Carlos Mora-Martínez
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
- Evo-devo Helsinki Community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Juan Julián Escribano-Saiz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | | | | | - Antonio Jordán-Pla
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Stefano Ercoli
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Nuria Flames
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | | | - Marçal Vilar
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
| | - Helena Mira
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), València, Spain
- *Correspondence: Helena Mira,
| |
Collapse
|
13
|
Wen JJ, Mobli K, Radhakrishnan GL, Radhakrishnan RS. Regulation of Key Immune-Related Genes in the Heart Following Burn Injury. J Pers Med 2022; 12:jpm12061007. [PMID: 35743792 PMCID: PMC9224557 DOI: 10.3390/jpm12061007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Immune cascade is one of major factors leading to cardiac dysfunction after burn injury. TLRs are a class of pattern-recognition receptors (PRRs) that initiate the innate immune response by sensing conserved molecular patterns for early immune recognition of a pathogen. The Rat Toll-Like Receptor (TLR) Signaling Pathway RT² Profiler PCR Array profiles the expression of 84 genes central to TLR-mediated signal transduction and innate immunity, and is a validated tool for identifying differentially expressed genes (DEGs). We employed the PCR array to identify burn-induced cardiac TLR-signaling-related DEGs. A total of 38 up-regulated DEGs and 19 down-regulated DEGs were identified. Network analysis determined that all DEGS had 10 clusters, while up-regulated DEGs had 6 clusters and down-regulated DEGs had 5 clusters. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were involved in TLR signaling, the RIG-I-Like receptor signaling pathway, the IL-17 signaling pathway, and the NFkB signaling pathway. Function analysis indicated that DEGs were associated with Toll-like receptor 2 binding, Lipopeptide binding, Toll-like receptor binding, and NAD(P)+ nucleosidase activity. The validation of 18 up-regulated DEGs (≥10-fold change) and 6 down-regulated DEGs (≤5-fold change) demonstrated that the PCR array is a trusted method for identifying DEGs. The analysis of validated DEG-derived protein–protein interaction networks will guide our future investigations. In summary, this study not only identified the TLR-signaling-pathway-related DEGs after burn injury, but also confirmed that the burn-induced cardiac cytokine cascade plays an important role in burn-induced heart dysfunction. The results will provide the novel therapeutic targets to protect the heart after burn injury.
Collapse
Affiliation(s)
- Jake J. Wen
- Department of Surgery University of Texas Medical Branch, Galveston, TX 77550, USA;
- Correspondence: (J.J.W.); (R.S.R.); Tel.: +1-832-722-0348
| | - Keyan Mobli
- Department of Surgery University of Texas Medical Branch, Galveston, TX 77550, USA;
| | | | - Ravi S. Radhakrishnan
- Department of Surgery University of Texas Medical Branch, Galveston, TX 77550, USA;
- Correspondence: (J.J.W.); (R.S.R.); Tel.: +1-832-722-0348
| |
Collapse
|
14
|
Nakasone MA, Majorek KA, Gabrielsen M, Sibbet GJ, Smith BO, Huang DT. Structure of UBE2K-Ub/E3/polyUb reveals mechanisms of K48-linked Ub chain extension. Nat Chem Biol 2022; 18:422-431. [PMID: 35027744 PMCID: PMC8964413 DOI: 10.1038/s41589-021-00952-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Ubiquitin (Ub) chain types govern distinct biological processes. K48-linked polyUb chains target substrates for proteasomal degradation, but the mechanism of Ub chain synthesis remains elusive due to the transient nature of Ub handover. Here, we present the structure of a chemically trapped complex of the E2 UBE2K covalently linked to donor Ub and acceptor K48-linked di-Ub, primed for K48-linked Ub chain synthesis by a RING E3. The structure reveals the basis for acceptor Ub recognition by UBE2K active site residues and the C-terminal Ub-associated (UBA) domain, to impart K48-linked Ub specificity and catalysis. Furthermore, the structure unveils multiple Ub-binding surfaces on the UBA domain that allow distinct binding modes for K48- and K63-linked Ub chains. This multivalent Ub-binding feature serves to recruit UBE2K to ubiquitinated substrates to overcome weak acceptor Ub affinity and thereby promote chain elongation. These findings elucidate the mechanism of processive K48-linked polyUb chain formation by UBE2K.
Collapse
Affiliation(s)
| | | | - Mads Gabrielsen
- Cancer Research UK Beatson Institute, Glasgow, UK
- MVLS Structural Biology and Biophysical Characterisation Facility, University of Glasgow, Glasgow, UK
| | | | - Brian O Smith
- Institute of Molecular Cell and System Biology, University of Glasgow, Glasgow, UK
| | - Danny T Huang
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
15
|
The miR-23a/27a/24-2 cluster promotes postoperative progression of early-stage non-small cell lung cancer. Mol Ther Oncolytics 2022; 24:205-217. [PMID: 35071744 PMCID: PMC8760463 DOI: 10.1016/j.omto.2021.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Even with optimal surgery, many early-stage non-small cell lung cancer (NSCLC) patients die of recurrence. Unfortunately, there are no precise predictors for postoperative recurrence in early-stage NSCLC, and the recurrence mechanism is still unclear. In this study, we found that simultaneous overexpression of all miRNAs in the miR-23a/27a/24-2 cluster was closely associated with postoperative recurrence, β-catenin upregulation and promoter methylation of p16 and CDH13 in early-stage NSCLC patients. In addition, in vitro and in vivo experiments show that overexpression or inhibition of all miRNAs in the miR-23a/27a/24-2 cluster significantly stimulated or inhibited NSCLC cell stemness, tumorigenicity and metastasis. Furthermore, we demonstrated that the miR-23a/27a/24-2 cluster miRNAs activated Wnt/β-catenin signaling by targeting their suppressors and stimulated promoter methylation-induced silencing of p16 and CDH13 by affecting DNA methylation-related genes expression. Our findings suggest that simultaneous high expression of all miRNAs in the miR-23a/27a/24-2 cluster represents a new biomarker for predicting postoperative recurrence in early-stage NSCLC. The miR-23a/27a/24-2 cluster miRNAs stimulate early-stage NSCLC progression through simultaneously stimulating Wnt/β-catenin signaling, and promoter methylation-induced tumor suppressor genes silencing. In addition, simultaneous inhibition of all miRNAs in the miR-23a/27a/24-2 cluster may be a useful strategy for treatment of early-stage NSCLC recurrence.
Collapse
|
16
|
Chen Z, Cao Y, Huang J, Tan Y, Wei J, Xiao J, Zou J, Feng H. NLK suppresses MAVS-mediated signaling in black carp antiviral innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104105. [PMID: 33872658 DOI: 10.1016/j.dci.2021.104105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Mammalian Nemo-like kinase (NLK) plays important roles in multiple biological processes including immune response; however, the roles of teleost NLK remain largely unknown. In the present study, the NLK homolog (bcNLK) of black carp (Mylopharyngodon piceus) has been cloned and characterized. The coding region of bcNLK consists of 1427 nucleotides and encodes 476 amino acid, including two low complexity region (LCR) domains at the N-terminus and a serine/threonine protein kinase catalytic (S-TKc) domain in the middle region. The transcription of bcNLK are promoted after spring viremia of carp virus (SVCV) infection and poly (I:C) stimulation in host cells, but not post LPS treatment. bcNLK exhibits weak impact on the transcription of interferon (IFN) promoter in the reporter assay, however, black carp MAVS (bcMAVS)-mediated IFN promoter transcription is remarkably dampened by bcNLK. The interaction between bcNLK and bcMAVS is detected through the co-immunoprecipitation assay. Accordingly, the plaque assay results show that bcMAVS-mediated antiviral ability is impaired by bcNLK. Moreover, knockdown of bcNLK in host cells leads to the enhanced antiviral ability against SVCV. All these data support the conclusion that black carp NLK associates with MAVS and inhibited MAVS-mediated antiviral signaling.
Collapse
Affiliation(s)
- Zhaoyuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yingyi Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jiayi Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jing Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
17
|
Wang C, Ruan L, Shi H, Lin W, Liu L, Li S. Phosphorylation of Shrimp Tcf by a Viral Protein Kinase WSV083 Suppresses Its Antiviral Effect. Front Immunol 2021; 12:698697. [PMID: 34408747 PMCID: PMC8365339 DOI: 10.3389/fimmu.2021.698697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Nuclear DNA-binding TCF proteins, which act as the main downstream effectors of Wnt signaling, are essential for the regulation of cell fate and innate immunity. However, their role during viral infection in shrimp remains unknown. Herein, we demonstrated that Litopenaeus vannamei TCF (LvTcf) acts independently of Lvβ-catenin to promote interferon-like protein LvVago1 production, thus mounting the response to WSSV infection. Further, we observed that WSV083, a WSSV serine/threonine protein kinase, bound to LvTcf and phosphorylated it. Phosphorylated LvTcf was then recognized and degraded via the ubiquitin-proteasome pathway. Moreover, mass spectrometry analyses indicated that the T39 and T104 residues of LvTcf were target sites phosphorylated by WSV083. Point mutation analyses suggested that additional sites of LvTcf may undergo phosphorylation via WSV083. Taken together, the current work provides valuable insights into host immunity and viral pathogenesis. LvTcf is not only a modulator of shrimp innate immunity but is also an important target for WSSV immune evasion. Thus, the current findings will help improve disease control in shrimps.
Collapse
Affiliation(s)
- Chuanqi Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,School of Life Science, Xiamen University, Xiamen, China
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Wenyang Lin
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China.,School of Life Science, Xiamen University, Xiamen, China
| | - Linmin Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Sujie Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| |
Collapse
|
18
|
Li B, Zhu L, Li L, Ma R. lncRNA OXCT1-AS1 Promotes Metastasis in Non-Small-Cell Lung Cancer by Stabilizing LEF1, In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4959381. [PMID: 34337014 PMCID: PMC8318766 DOI: 10.1155/2021/4959381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/04/2021] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) play nonnegligible roles in the metastasis of non-small-cell lung cancer (NSCLC). This study is aimed at investigating the biological role of lncRNA OXCT1-AS1 in NSCLC metastasis and the underlying regulatory mechanisms. The expression profiles of lncRNA OXCT1-AS1 in different NSCLC cell lines were examined. Then, the biological function of lncRNA OXCT1-AS1 in NSCLC metastasis was explored by loss-of-function assays in vitro and in vivo. Further, the protective effect of lncRNA OXCT1-AS1 on lymphoid enhancer factor 1 (LEF1) was examined using RNA pull-down and RNA immunoprecipitation assays. Additionally, the role of LEF1 in NSCLC metastasis was investigated. Results indicated that lncRNA OXCT1-AS1 expression was significantly increased in NSCLC cell lines. Functional analysis revealed that knockdown of lncRNA OXCT1-AS1 impaired invasion and migration in vitro. Additionally, the ability of lncRNA OXCT1-AS1 to promote NSCLC metastasis was also confirmed in vivo. Mechanistically, through direct interaction, lncRNA OXCT1-AS1 maintained LEF1 stability by blocking NARF-mediated ubiquitination. Furthermore, LEF1 knockdown impaired invasion and migration of NSCLC in vitro and in vivo. Collectively, these data highlight the ability of lncRNA OXCT1-AS1 to promote NSCLC metastasis by stabilizing LEF1 and suggest that lncRNA OXCT1-AS1 represents a novel therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Binru Li
- Department of Thoracic Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Libo Zhu
- Department of Thoracic Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Linlin Li
- Department of Thoracic Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Rui Ma
- Department of Thoracic Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| |
Collapse
|
19
|
Yu X, Li W, Deng Q, Liu H, Wang X, Hu H, Cao Y, Xu-Monette ZY, Li L, Zhang M, Lu Z, Young KH, Li Y. MYD88 L265P elicits mutation-specific ubiquitination to drive NF-κB activation and lymphomagenesis. Blood 2021; 137:1615-1627. [PMID: 33025009 PMCID: PMC7995293 DOI: 10.1182/blood.2020004918] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023] Open
Abstract
Myeloid differentiation primary response protein 88 (MYD88) is a critical universal adapter that transduces signaling from Toll-like and interleukin receptors to downstream nuclear factor-κB (NF-κB). MYD88L265P (leucine changed to proline at position 265) is a gain-of-function mutation that occurs frequently in B-cell malignancies such as Waldenstrom macroglobulinemia. In this study, E3 ligase RING finger protein family 138 (RNF138) catalyzed K63-linked nonproteolytic polyubiquitination of MYD88L265P, resulting in enhanced recruitment of interleukin-1 receptor-associated kinases and elevated NF-κB activation. However, RNF138 had little effect on wild-type MYD88 (MYD88WT). With either RNF138 knockdown or mutation on MYD88 ubiquitination sites, MYD88L265P did not constitutively activate NF-κB. A20, a negative regulator of NF-κB signaling, mediated K48-linked polyubiquitination of RNF138 for proteasomal degradation. Depletion of A20 further augmented MYD88L265P-mediated NF-κB activation and lymphoma growth. Furthermore, A20 expression correlated negatively with RNF138 expression and NF-κB activation in lymphomas with MYD88L265P and in those without. Strikingly, RNF138 expression correlated positively with NF-κB activation in lymphomas with MYD88L265P, but not in those without it. Our study revealed a novel mutation-specific biochemical reaction that drives B-cell oncogenesis, providing a therapeutic opportunity for targeting oncogenic MYD88L265P, while sparing MYD88WT, which is critical to innate immunity.
Collapse
Affiliation(s)
- Xinfang Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Wei Li
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qipan Deng
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xu Wang
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Hui Hu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Medical Laboratory, Central Hospital of Wuhan, Wuhan, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC
| | - Ling Li
- Department of Oncology, the First Affiliated Hospital, Zhengzhou University, Zhenzhou, China; and
- Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, the First Affiliated Hospital, Zhengzhou University, Zhenzhou, China; and
- Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Zhongxin Lu
- Department of Medical Laboratory, Central Hospital of Wuhan, Wuhan, China
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
20
|
Daams R, Massoumi R. Nemo-Like Kinase in Development and Diseases: Insights from Mouse Studies. Int J Mol Sci 2020; 21:ijms21239203. [PMID: 33276680 PMCID: PMC7731171 DOI: 10.3390/ijms21239203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
The Wnt signalling pathway is a central communication cascade between cells to orchestrate polarity and fate during development and adult tissue homeostasis in various organisms. This pathway can be regulated by different signalling molecules in several steps. One of the coordinators in this pathway is Nemo-like kinase (NLK), which is an atypical proline-directed serine/threonine mitogen-activated protein (MAP) kinase. Very recently, NLK was established as an essential regulator in different cellular processes and abnormal NLK expression was highlighted to affect the development and progression of various diseases. In this review, we focused on the recent discoveries by using NLK-deficient mice, which show a phenotype in the development and function of organs such as the lung, heart and skeleton. Furthermore, NLK could conduct the function and differentiation of cells from the immune system, in addition to regulating neurodegenerative diseases, such as Huntington's disease and spinocerebellar ataxias. Overall, generations of NLK-deficient mice have taught us valuable lessons about the role of this kinase in certain diseases and development.
Collapse
|
21
|
Zhang H, Rong X, Wang C, Liu Y, Lu L, Li Y, Zhao C, Zhou J. VBP1 modulates Wnt/β-catenin signaling by mediating the stability of the transcription factors TCF/LEFs. J Biol Chem 2020; 295:16826-16839. [PMID: 32989053 PMCID: PMC7864075 DOI: 10.1074/jbc.ra120.015282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/23/2020] [Indexed: 12/29/2022] Open
Abstract
The Wnt/β-catenin pathway is one of the major pathways that regulates embryonic development, adult homeostasis, and stem cell self-renewal. In this pathway, transcription factors T-cell factor and lymphoid enhancer factor (TCF/LEF) serve as a key switch to repress or activate Wnt target gene transcription by recruiting repressor molecules or interacting with the β-catenin effector, respectively. It has become evident that the protein stability of the TCF/LEF family members may play a critical role in controlling the activity of the Wnt/β-catenin signaling pathway. However, factors that regulate the stability of TCF/LEFs remain largely unknown. Here, we report that pVHL binding protein 1 (VBP1) regulates the Wnt/β-catenin signaling pathway by controlling the stability of TCF/LEFs. Surprisingly, we found that either overexpression or knockdown of VBP1 decreased Wnt/β-catenin signaling activity in both cultured cells and zebrafish embryos. Mechanistically, VBP1 directly binds to all four TCF/LEF family members and von Hippel-Lindau tumor-suppressor protein (pVHL). Either overexpression or knockdown of VBP1 increases the association between TCF/LEFs and pVHL and then decreases the protein levels of TCF/LEFs via proteasomal degradation. Together, our results provide mechanistic insights into the roles of VBP1 in controlling TCF/LEFs protein stability and regulating Wnt/β-catenin signaling pathway activity.
Collapse
Affiliation(s)
- Haifeng Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Caixia Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ling Lu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yun Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chengtian Zhao
- Institute of Evolution and Marine Biodiversity and College of Marine Biology, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
22
|
Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int J Mol Sci 2020; 21:ijms21113904. [PMID: 32486158 PMCID: PMC7311976 DOI: 10.3390/ijms21113904] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway plays important roles in embryonic development, homeostatic processes, cell differentiation, cell polarity, cell proliferation, and cell migration via the β-catenin binding of Wnt target genes. Dysregulation of Wnt signaling is associated with various diseases such as cancer, aging, Alzheimer’s disease, metabolic disease, and pigmentation disorders. Numerous studies entailing the Wnt signaling pathway have been conducted for various cancers. Diverse signaling factors mediate the up- or down-regulation of Wnt signaling through post-translational modifications (PTMs), and aberrant regulation is associated with several different malignancies in humans. Of the numerous PTMs involved, most Wnt signaling factors are regulated by ubiquitination and deubiquitination. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and usually induces proteasomal degradation of Wnt signaling factors such as β-catenin, Axin, GSK3, and Dvl. Conversely, deubiquitination induced by the deubiquitinating enzymes (DUBs) detaches the ubiquitins and modulates the stability of signaling factors. In this review, we discuss the effects of ubiquitination and deubiquitination on the Wnt signaling pathway, and the inhibitors of DUBs that can be applied for cancer therapeutic strategies.
Collapse
|
23
|
The ubiquitin-conjugating enzyme UBE2K determines neurogenic potential through histone H3 in human embryonic stem cells. Commun Biol 2020; 3:262. [PMID: 32451438 PMCID: PMC7248108 DOI: 10.1038/s42003-020-0984-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/01/2020] [Indexed: 01/05/2023] Open
Abstract
Histones modulate gene expression by chromatin compaction, regulating numerous processes such as differentiation. However, the mechanisms underlying histone degradation remain elusive. Human embryonic stem cells (hESCs) have a unique chromatin architecture characterized by low levels of trimethylated histone H3 at lysine 9 (H3K9me3), a heterochromatin-associated modification. Here we assess the link between the intrinsic epigenetic landscape and ubiquitin-proteasome system of hESCs. We find that hESCs exhibit high expression of the ubiquitin-conjugating enzyme UBE2K. Loss of UBE2K upregulates the trimethyltransferase SETDB1, resulting in H3K9 trimethylation and repression of neurogenic genes during differentiation. Besides H3K9 trimethylation, UBE2K binds histone H3 to induce its polyubiquitination and degradation by the proteasome. Notably, ubc-20, the worm orthologue of UBE2K, also regulates histone H3 levels and H3K9 trimethylation in Caenorhabditis elegans germ cells. Thus, our results indicate that UBE2K crosses evolutionary boundaries to promote histone H3 degradation and reduce H3K9me3 repressive marks in immortal cells. Azra Fatima et al. show that ubiquitin-conjugating enzyme UBE2K regulates neurogenic potential through its target histone H3 in human embryonic stem cells. This study suggests that UBE2K promotes histone H3 degradation, reducing the H3K9me3 repressive marks in immortal cells of both worms and humans.
Collapse
|
24
|
Contreras O, Soliman H, Theret M, Rossi FMV, Brandan E. TGF-β-driven downregulation of the Wnt/β-Catenin transcription factor TCF7L2/TCF4 in PDGFRα+ fibroblasts. J Cell Sci 2020; 133:jcs.242297. [DOI: 10.1242/jcs.242297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent progenitors essential for organogenesis, tissue homeostasis, regeneration, and scar formation. Tissue injury upregulates TGF-β signaling, which modulates myofibroblast fate, extracellular matrix remodeling, and fibrosis. However, the molecular determinants of MSCs differentiation and survival remain poorly understood. The canonical Wnt Tcf/Lef transcription factors regulate development and stemness, but the mechanisms by which injury-induced cues modulate their expression remain underexplored. Here, we studied the cell-specific gene expression of Tcf/Lef and, more specifically, we investigated whether damage-induced TGF-β impairs the expression and function of TCF7L2, using several models of MSCs, including skeletal muscle fibro-adipogenic progenitors. We show that Tcf/Lefs are differentially expressed and that TGF-β reduces the expression of TCF7L2 in MSCs but not in myoblasts. We also found that the ubiquitin-proteasome system regulates TCF7L2 proteostasis and participates in TGF-β-mediated TCF7L2 protein downregulation. Finally, we show that TGF-β requires HDACs activity to repress the expression of TCF7L2. Thus, our work found a novel interplay between TGF-β and Wnt canonical signaling cascades in PDGFRα+ fibroblasts and suggests that this mechanism could be targeted in tissue repair and regeneration.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
- Present address: Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Hesham Soliman
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
- Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Marine Theret
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
- Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
25
|
Li X, Dong Y, Tu K, Wang W. Proteomics analysis reveals the interleukin-35-dependent regulatory mechanisms affecting CD8 + T-cell functions. Cell Immunol 2019; 348:104022. [PMID: 31879030 DOI: 10.1016/j.cellimm.2019.104022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 01/11/2023]
Abstract
Interleukin (IL)-35 strongly suppresses the immune effects of CD8+ T cells. However, the mechanisms mediating these effects are not clear. Here, we investigated the potential inhibitory mechanisms of IL-35 using proteomics technology. The changes of differentially expressed proteins (DEPs) were evaluated using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. IL-35 negatively regulated the expression of proteins in the biological processes category. GO analysis identified cellular immunosuppression regulation and external stimulation of regulatory proteins as pathways that were most affected by IL-35. Among the proteins regulated in these pathways, cell-matrix adhesion junction and anchoring junction proteins were more abundant. KEGG pathway analysis showed that cytochrome c and IL-12A were significantly altered. DEPs were related to cell signaling, migration, inhibition, apoptosis, and enrichment of arachidonic acid metabolism. These findings improved our understanding of the roles of IL-35 in inhibition of CD8+ T cells.
Collapse
Affiliation(s)
- Xuefen Li
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Yuejiao Dong
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Kexin Tu
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Weilin Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China; Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
26
|
Shan J, Shen J, Wu M, Zhou H, Feng J, Yao C, Yang Z, Ma Q, Luo Y, Wang Y, Qian C. Tcf7l1 Acts as a Suppressor for the Self-Renewal of Liver Cancer Stem Cells and Is Regulated by IGF/MEK/ERK Signaling Independent of β-Catenin. Stem Cells 2019; 37:1389-1400. [PMID: 31322782 DOI: 10.1002/stem.3063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
Abstract
Tcf7l1, which is a key effector molecule of the Wnt/β-catenin signaling pathway, is highly expressed in various cancers, and it promotes tumor growth. In this study, we demonstrated that unlike its tumor-promoting effects in several other types of cancers, Tcf7l1 expression is downregulated in hepatocarcinoma compared with their adjacent nontumor counterparts. Underexpression of Tcf7l1 is correlated with poorer survival. In liver cancer stem cell (CSC) populations, Tcf7l1 expression is downregulated. Ectopic expression of Tcf7l1 attenuates the self-renewal abilities of liver CSCs. Mechanistically, Tcf7l1 regulates the self-renewal abilities of liver CSCs through transcriptional repression of the Nanog gene, and the effect is independent of β-catenin. Moreover, we found that Tcf7l1 expression is controlled by extracellular insulin-like growth factor (IGF) signaling, and we demonstrated for the first time that IGF signaling stimulates Tcf7l1 phosphorylation and degradation through the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. Overall, our results provide some new insights into how extracellular signals modulate the self-renewal of liver CSCs and highlight the inhibitory roles of Tcf7l1 in cancer. Stem Cells 2019;37:1389-1400.
Collapse
Affiliation(s)
- Juanjuan Shan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Junjie Shen
- Center of Biological Therapy, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Min Wu
- Center of Biological Therapy, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Haijun Zhou
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Juan Feng
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Chao Yao
- Center of Biological Therapy, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhi Yang
- Center of Biological Therapy, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qinghua Ma
- Center of Biological Therapy, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Cheng Qian
- Center of Biological Therapy, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.,Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| |
Collapse
|
27
|
Zhao HM, Liu Y, Huang XY, Liu XK, Chen F, Zhang XY, Liu FC, Lu XY, Wang Y, Liu DY. Pharmacological mechanism of Sishen Wan ® attenuated experimental chronic colitis by inhibiting wnt/β-catenin pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111936. [PMID: 31078692 DOI: 10.1016/j.jep.2019.111936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/05/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sishen Wan (SSW) is a commercial and frequently used Chinese patent medicine listed in the Chinese Pharmacopeia, which is usually used to treat chronic colitis. AIM OF THE STUDY We explored the pharmacological mechanism of Sishen Wan attenuated experimental chronic colitis by inhibiting Wnt/β-catenin pathway. MATERIALS AND METHODS Experimental chronic colitis was induced by trinitrobenzene sulfonic acid (TNBS). The therapeutic effect of SSW were analyzed by index of colonic weight, colonic length, pathological score. Cytokines expression were analyzed by ELISA, while the apoptosis level was checked by TUNEL staining. These proteins of Wnt/β-catenin signaling pathway was analyzed by Western blot assay. RESULTS Rats with TNBS-induced chronic colitis were treated by SSW for 10 days. The efficacy of SSW was demonstrated by improved macroscopic and microscopic colonic damage. SSW increased the level of ATP in colonic mucosa, while SSW inhibited β-catenin, ubiquitination of Nemo-like-kinase-associated ring finger protein and T-cell factor, and expression of Wnt/β-catenin downstream proteins (including c-Myc, cyclo-oxygenase-2, cyclin D1, survivin, signal transducer and activator of transcription 3 and zipper-interacting protein kinase), and improved lymphoid enhancer factor ubiquitination and β-TrCP activity, followed by excessive apoptosis of colonic epithelial cells. CONCLUSIONS SSW effectively attenuated experimental chronic colitis induced by TNBS, which was realized by inhibition of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hai-Mei Zhao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yi Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Xiao-Ying Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Xue-Ke Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Fang Chen
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Xiao-Yun Zhang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Fu-Chun Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Xiu-Yun Lu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yao Wang
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang Province, China.
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
28
|
Shi C, Xu L, Tang Z, Zhang W, Wei Y, Ni J, Zhang S, Feng J. Knockdown of Nemo‑like kinase promotes metastasis in non‑small‑cell lung cancer. Oncol Rep 2019; 42:1090-1100. [PMID: 31322229 PMCID: PMC6667924 DOI: 10.3892/or.2019.7226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved serine/threonine kinase Nemo-like kinase (NLK) serves an important role in cell proliferation, migration, invasion and apoptosis by regulating transcription factors among various cancers. In the present study, the function of NLK in human non-small cell lung cancer (NSCLC) was investigated. Immunohistochemical analysis and western blotting demonstrated that NLK expression was significantly reduced in NSCLC tissues compared with corresponding peritumoral tissues. Statistical analysis revealed that decreased NLK expression was associated with the presence of primary tumors, tumor node metastasis (TNM) staging, differentiation, lymph node metastasis, and E-cadherin and vimentin expression. Univariate analysis indicated that NLK expression, differentiation, lymph node metastasis, TNM stage, and E-cadherin and vimentin expression affected the prognosis of NSCLC. Cox regression analyses revealed NLK expression and TNM as independent factors that affected prognosis. Kaplan-Meier survival analysis revealed that patients with NSCLC and low NLK expression had relatively shorter durations of overall survival. In vitro, NLK overexpression inhibited A549 ncell migration and invasion as determined by wound healing and Transwell migration assays, respectively. Additionally, immunofluorescence staining indicated that downregulation of NLK expression could induce epithelial-mesenchymal transition in NSCLC. NLK knockdown significantly decreased the expression of the epithelial marker E-cadherin, and markedly increased that of β-catenin and the mesenchymal marker vimentin. Furthermore, NLK was reported to directly interact with β-catenin as determined by a co-immunoprecipitation assay. Collectively, the results of the present study indicated that decreased NLK expression could promote tumor metastasis in NSCLC.
Collapse
Affiliation(s)
- Cui Shi
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Liqin Xu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Weishuai Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yulin Wei
- Department of Respiratory Medicine, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226001, P.R. China
| | - Jun Ni
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shuwen Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
29
|
Wang HY, Zhao HM, Wang Y, Liu Y, Lu XY, Liu XK, Chen F, Ge W, Zuo ZY, Liu DY. Sishen Wan ® Ameliorated Trinitrobenzene-Sulfonic-Acid-Induced Chronic Colitis via NEMO/NLK Signaling Pathway. Front Pharmacol 2019; 10:170. [PMID: 30894816 PMCID: PMC6414459 DOI: 10.3389/fphar.2019.00170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/11/2019] [Indexed: 01/22/2023] Open
Abstract
The nuclear factor (NF)-κB signaling pathway plays an important role in the initialization and development phase of inflammatory injuries, including inflammatory bowel disease (IBD). Sishen Wan (SSW) is a classic Chinese patent medicine listed in the Chinese Pharmacopoeia, which is usually used to treat chronic colitis; however, it is unclear whether SSW can treat IBD via the NF-κB signaling pathway. In the present study, the therapeutic effect of SSW was demonstrated by the decreased index of colonic weight, macroscopic and microscopic score, and pathological observation in chronic colitis induced by trinitrobenzene sulfonic acid. In colonic mucosa of rats with chronic colitis, SSW reduced the levels of calprotectin and eliminated oxidative lesions; downregulated expression of interferon-γ, interleukin (IL)-1β and IL-17; increased expression of IL-4; and suppressed expression of NF-κB p65, and NF-κB essential modulator (NEMO)-like kinase (NLK). Furthermore, SSW inhibited ubiquitinated NEMO, ubiquitin-activated enzyme, and E2i activation, and phosphorylation of downstream proteins (cylindromatosis protein, transforming growth factor-β-activated kinase and P38). These results show that the therapeutic effects of SSW in chronic colitis were mediated by inhibiting the NEMO/NLK signaling pathway to suppress NF-κB activation.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Party and School Office, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hai-Mei Zhao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yao Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiu-Yun Lu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xue-Ke Liu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Fang Chen
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wei Ge
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zheng-Yun Zuo
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Nanchang, China
| |
Collapse
|
30
|
Morgan RG, Ridsdale J, Payne M, Heesom KJ, Wilson MC, Davidson A, Greenhough A, Davies S, Williams AC, Blair A, Waterman ML, Tonks A, Darley RL. LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells. Haematologica 2019; 104:1365-1377. [PMID: 30630973 PMCID: PMC6601079 DOI: 10.3324/haematol.2018.202846] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022] Open
Abstract
Canonical Wnt/β-catenin signaling is frequently dysregulated in myeloid leukemias and is implicated in leukemogenesis. Nuclear-localized β-catenin is indicative of active Wnt signaling and is frequently observed in acute myeloid leukemia (AML) patients; however, some patients exhibit little or no nuclear β-catenin even where cytosolic β-catenin is abundant. Control of the subcellular localization of β-catenin therefore represents an additional mechanism regulating Wnt signaling in hematopoietic cells. To investigate the factors mediating the nuclear-localization of β-catenin, we carried out the first nuclear/cytoplasmic proteomic analysis of the β-catenin interactome in myeloid leukemia cells and identified putative novel β-catenin interactors. Comparison of interacting factors between Wnt-responsive cells (high nuclear β-catenin) versus Wnt-unresponsive cells (low nuclear β-catenin) suggested the transcriptional partner, LEF-1, could direct the nuclear-localization of β-catenin. The relative levels of nuclear LEF-1 and β-catenin were tightly correlated in both cell lines and in primary AML blasts. Furthermore, LEF-1 knockdown perturbed β-catenin nuclear-localization and transcriptional activation in Wnt-responsive cells. Conversely, LEF-1 overexpression was able to promote both nuclear-localization and β-catenin-dependent transcriptional responses in previously Wnt-unresponsive cells. This is the first β-catenin interactome study in hematopoietic cells and reveals LEF-1 as a mediator of nuclear β- catenin level in human myeloid leukemia.
Collapse
Affiliation(s)
- Rhys G Morgan
- School of Life Sciences, University of Sussex, Brighton, UK .,School of Cellular and Molecular Medicine, University of Bristol, UK
| | - Jenna Ridsdale
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| | - Megan Payne
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | | | | | | | - Sara Davies
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| | - Ann C Williams
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Allison Blair
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Alex Tonks
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| | - Richard L Darley
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| |
Collapse
|
31
|
Lu Y, Han D, Liu W, Huang R, Ou J, Chen X, Zhang X, Wang X, Li S, Wang L, Liu C, Miao S, Wang L, Ma C, Song W. RNF138 confers cisplatin resistance in gastric cancer cells via activating Chk1 signaling pathway. Cancer Biol Ther 2018; 19:1128-1138. [PMID: 30260263 PMCID: PMC6301830 DOI: 10.1080/15384047.2018.1480293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy resistance represents a major issue associated with gastric cancer (GC) treatment, and arises through multiple mechanisms, including modulation of the cell-cycle check point. Several ubiquitin kinases, including RING finger protein 138 (RNF138), have been reported to mediate the G2/M phase arrest. In this study, we investigated the role of RNF138 in the development of cisplatin resistance of two GC cell lines. We show that RNF138 levels are higher in cisplatin-resistant cell lines, compared with cisplatin-sensitive cells, and RNF138 expression was elevated during drug withdrawal following the cisplatin treatment. Using gene overexpression and silencing, we analyzed the impact of altering RNF138 level on GC cell viability, apoptosis, and cell cycle phenotypes in two isogenic cisplatin-sensitive and resistant cell lines. We show that RNF138 overexpression increased GC cell viability, decreased apoptosis and delayed cell cycle progression in the cisplatin-sensitive GC cells. Conversely, RNF138 silencing produced opposite phenotypes in the cisplatin-resistant cells. Moreover, RNF138-dependent phosphorylation of Chk1 was seen in GC cells, indicating a novel connection between cisplatin-induced DNA damage and apoptosis. Collectively, these data suggest that RNF138 modulates the cisplatin resistance in the GC cells, thus serving as a potential drug target to challenge chemotherapy failure. In addition, RNF138 can also be used as a marker to monitor the development of cisplatin resistance in GC treatment.
Collapse
Affiliation(s)
- Yalan Lu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Deqiang Han
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Wenjie Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Rong Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Jinhuan Ou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Xiaoqiao Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Xizhe Zhang
- Department of Medical Oncology, Chifeng Municipal Hospital, Chifeng China
| | - Xuezhi Wang
- Department of Medical Oncology, Chifeng Municipal Hospital, Chifeng China
| | - Shijun Li
- Department of Medical Oncology, Chifeng Municipal Hospital, Chifeng China
| | - Lin Wang
- Department of Physiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Changzheng Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Shiying Miao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Linfang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Changwu Ma
- Department of Medical Oncology, Chifeng Municipal Hospital, Chifeng China
| | - Wei Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| |
Collapse
|
32
|
Vastrad C, Vastrad B. Bioinformatics analysis of gene expression profiles to diagnose crucial and novel genes in glioblastoma multiform. Pathol Res Pract 2018; 214:1395-1461. [PMID: 30097214 DOI: 10.1016/j.prp.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023]
Abstract
Therefore, the current study aimed to diagnose the genes associated in the pathogenesis of GBM. The differentially expressed genes (DEGs) were diagnosed using the limma software package. The ToppFun was used to perform pathway and Gene Ontology (GO) enrichment analysis of the DEGs. Protein-protein interaction (PPI) networks, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network were used to obtain insight into the actions of DEGs. Survival analysis for DEGs carried out. A total of 701 DEGs, including 413 upregulated and 288 downregulated genes, were diagnosed between U1118MG cell line (PK 11195 treated with 1 h exposure) and U1118MG cell line (PK 11195 treated with 24 h exposure). The up-regulated genes were enriched in superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis, cell cycle, cell cycle process and chromosome. The down-regulated genes were enriched in folate transformations I, biosynthesis of amino acids, cellular amino acid metabolic process and vacuolar membrane. The current study screened the genes in PPI network, extracted modules, miRNA-target genes regulatory network and miRNA-target genes regulatory network with higher degrees as hub genes, which included MYC, TERF2IP, CDK1, EEF1G, TXNIP, SLC1A5, RGS4 and IER5L Survival suggested that low expressed NR4A2, SLC7 A5, CYR61 and ID1 in patients with GBM was linked with a positive prognosis for overall survival. In conclusion, the current study could improve our understanding of the molecular mechanisms in the progression of GBM, and these crucial as well as new molecular markers might be used as therapeutic targets for GBM.
Collapse
Affiliation(s)
- Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, 580001, Karanataka, India.
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET`S College of Pharmacy, Dharwad, Karnataka, 580002, India
| |
Collapse
|
33
|
Kim W, Youn H, Lee S, Kim E, Kim D, Sub Lee J, Lee JM, Youn B. RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis. Exp Mol Med 2018; 50:e434. [PMID: 29371697 PMCID: PMC5799804 DOI: 10.1038/emm.2017.247] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/10/2017] [Accepted: 07/23/2017] [Indexed: 02/06/2023] Open
Abstract
An interaction between ribosomal protein S3 (rpS3) and nuclear factor kappa B or macrophage migration inhibitory factor in non-small-cell lung cancer is responsible for radioresistance. However, the role of rpS3 in glioblastoma (GBM) has not been investigated to date. Here we found that in irradiated GBM cells, rpS3 translocated into the nucleus and was subsequently ubiquitinated by ring finger protein 138 (RNF138). Ubiquitin-dependent degradation of rpS3 consequently led to radioresistance in GBM cells. To elucidate the apoptotic role of rpS3, we analyzed the interactome of rpS3 in ΔRNF138 GBM cells. Nuclear rpS3 interacted with DNA damage inducible transcript 3 (DDIT3), leading to DDIT3-induced apoptosis in irradiated ΔRNF138 GBM cells. These results were confirmed using in vivo orthotopic xenograft models and GBM patient tissues. This study aims to clarify the role of RNF138 in GBM cells and demonstrate that rpS3 may be a promising substrate of RNF138 for the induction of GBM radioresistance, indicating RNF138 as a potential target for GBM therapy.
Collapse
Affiliation(s)
- Wanyeon Kim
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - EunGi Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Daehoon Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, Medical Research Institute, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Jae-Myung Lee
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan, Republic of Korea
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
34
|
Lin B, Ke Q, Leaman DW, Goel V, Agarwal A. Regulation of RANKL-induced osteoclastogenesis by RING finger protein RNF114. J Orthop Res 2018; 36:159-166. [PMID: 28708287 DOI: 10.1002/jor.23654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/11/2017] [Indexed: 02/04/2023]
Abstract
Normal bone remodeling is a continuous process orchestrated by bone-resorbing osteoclasts and bone-forming osteoblasts, which an imbalance in bone remodeling results in metabolic bone diseases. RANKL, a member of the TNF cytokine family, functions as a key stimulator for osteoclast differentiation and maturation. Here, we report that RNF114, previously identified as a psoriasis susceptibility gene, plays a regulatory role in the RANKL/RANK/TRAF6 signaling pathway that mediates osteoclastogenesis. Our results demonstrated that RNF114 expression was significantly down-regulated in mouse osteoclast precursor cells undergoing RANKL-induced osteoclast differentiation. RNF114 knockout did not affect development or viability of the subpopulation of bone marrow macrophages capable of differentiating into osteoclasts in culture. However, in the presence of RANKL, RNF114 knockout bone marrow macrophages exhibited enhanced cell proliferation and augmented osteoclast differentiation, as shown by an increased expression of mature osteoclast markers, increased osteoclastic TRAP activity and bone resorption. Conversely, ectopic expression of RNF114 inhibited CTSK expression, TRAP activity, and bone resorption in RANKL-treated pre-osteoclasts. RNF114 also suppressed RANKL-activated NFATc1 expression and NFAT-regulated promoter activity. RNF114 suppressed TRAF6-, but not TAK1/TAB2-mediated NF-κB activation downstream of RANKL/RANK. In particular, TRAF6 protein levels were down-regulated by RNF114, possibly via K48-mediated proteasome-dependent degradation. These data suggested that RNF114's inhibitory effect on RANKL-stimulated osteoclastogenesis was mediated by blocking RANK/TRAF6/NF-κB signal transduction. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:159-166, 2018.
Collapse
Affiliation(s)
- Boren Lin
- Engineering Center for Orthopaedic Research Excellence, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio, 44606
| | - Qi Ke
- Department of Biological Sciences, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio, 44606
| | - Douglas W Leaman
- Department of Biological Sciences, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio, 44606
| | - Vijay Goel
- Engineering Center for Orthopaedic Research Excellence, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio, 44606
| | - Anand Agarwal
- Engineering Center for Orthopaedic Research Excellence, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio, 44606
| |
Collapse
|
35
|
Chen J, Hutchison KE, Bryan AD, Filbey FM, Calhoun VD, Claus ED, Lin D, Sui J, Du Y, Liu J. Opposite Epigenetic Associations With Alcohol Use and Exercise Intervention. Front Psychiatry 2018; 9:594. [PMID: 30498460 PMCID: PMC6249510 DOI: 10.3389/fpsyt.2018.00594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
Alcohol use disorder (AUD) is a devastating public health problem in which both genetic and environmental factors play a role. Growing evidence supports that epigenetic regulation is one major mechanism in neuroadaptation that contributes to development of AUD. Meanwhile, epigenetic patterns can be modified by various stimuli including exercise. Thus, it is an intriguing question whether exercise can lead to methylation changes that are opposite to those related to drinking. We herein conducted a comparative study to explore this issue. Three cohorts were profiled for DNA methylation (DNAm), including a longitudinal exercise intervention cohort (53 healthy participants profiled at baseline and after a 12-months exercise intervention), a cross-sectional case-control cohort (81 hazardous drinkers and 81 healthy controls matched in age and sex), and a cross-sectional binge drinking cohort (281 drinkers). We identified 906 methylation sites showing significant DNAm differences between drinkers and controls in the case-control cohort, as well as, associations with drinking behavior in the drinking cohort. In parallel, 341 sites were identified for significant DNAm alterations between baseline and follow-up in the exercise cohort. Thirty-two sites overlapped between these two set of findings, of which 15 sites showed opposite directions of DNAm associations between exercise and drinking. Annotated genes of these 15 sites were enriched in signaling pathways related to synaptic plasticity. In addition, the identified methylation sites significantly associated with impaired control over drinking, suggesting relevance to neural function. Collectively, the current findings provide preliminary evidence that exercise has the potential to partially reverse DNAm differences associated with drinking at some CpG sites, motivating rigorously designed longitudinal studies to better characterize epigenetic effects with respect to prevention and intervention of AUD.
Collapse
Affiliation(s)
- Jiayu Chen
- The Mind Research Network, Albuquerque, NM, United States
| | - Kent E Hutchison
- The Mind Research Network, Albuquerque, NM, United States.,Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, United States.,Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Eric D Claus
- The Mind Research Network, Albuquerque, NM, United States
| | - Dongdong Lin
- The Mind Research Network, Albuquerque, NM, United States
| | - Jing Sui
- The Mind Research Network, Albuquerque, NM, United States.,Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yuhui Du
- The Mind Research Network, Albuquerque, NM, United States.,School of Computer & Information Technology, Shanxi University, Taiyuan, China
| | - Jingyu Liu
- The Mind Research Network, Albuquerque, NM, United States.,Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
36
|
Komiya M, Ito A, Endo M, Hiruma D, Hattori M, Saitoh H, Yoshida M, Ozawa T. A genetic screen to discover SUMOylated proteins in living mammalian cells. Sci Rep 2017; 7:17443. [PMID: 29234079 PMCID: PMC5727073 DOI: 10.1038/s41598-017-17450-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Post-translational modification by the Small Ubiquitin-related Modifier (SUMO) is indispensable for diverse biological mechanisms. Although various attempts have been made to discover novel SUMO substrate proteins to unveil the roles of SUMOylation, the reversibility of SUMOylation, and the differences in the SUMOylation level still makes it difficult to explore infrequently-SUMOylated proteins in mammalian cells. Here, we developed a method to screen for mammalian SUMOylated proteins using the reconstitution of split fluorescent protein fragments in living mammalian cells. Briefly, the cells harboring cDNAs of SUMOylated proteins were identified by the reconstituted fluorescence emission and separated by cell sorting. The method successfully identified 36 unreported SUMO2-substrate candidates with distinct intracellular localizations and functions. Of the candidates, we found Atac2, a histone acetyltransferase, was SUMOylated at a lysine 408, and further modified by multiple SUMOs without isoform specificity. Because the present method is applicable to other SUMO isoforms and mammalian cell-types, it could contribute to a deeper understanding of the role of SUMOylation in various biological contexts.
Collapse
Affiliation(s)
- Maki Komiya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akihiro Ito
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mizuki Endo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daisuke Hiruma
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuru Hattori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Biomolecular Science and Engineering, The Institute of Scientific & Industrial Research, Osaka University, Osaka, Japan
| | - Hisato Saitoh
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takeaki Ozawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
37
|
Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 2017; 8:14089-14106. [PMID: 27793042 PMCID: PMC5355165 DOI: 10.18632/oncotarget.12923] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence has indicated microRNA (miR) dysregulation and the Wnt/β-catenin signaling pathway jointly drive carcinogenesis, cancer metastasis, and drug-resistance. The current review will focus on the role of the crosstalk between miRs and the Wnt/β-catenin signaling pathway in cancer development. MiRs were found to activate or inhibit the canonical Wnt pathway at various steps. On the other hand, Wnt activation increases expression of miR by directly binding to its promoter and activating transcription. Moreover, there are mutual feedback loops between some miRs and the Wnt/β-catenin signaling pathway. Clinical trials of miR-based therapeutic agents are investigated for solid and hematological tumors, however, challenges concerning low bioavailability and possible side effects must be overcome before the final clinical application. This review will describe current understanding of miR crosstalk with the Wnt/β-catenin signaling cascade. Better understanding of the regulatory network will provide insight into miR-based therapeutic development.
Collapse
Affiliation(s)
- Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, People's Republic of China
| | - Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinmim Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
38
|
Rnf138 deficiency promotes apoptosis of spermatogonia in juvenile male mice. Cell Death Dis 2017; 8:e2795. [PMID: 28518149 PMCID: PMC5520686 DOI: 10.1038/cddis.2017.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/24/2017] [Accepted: 02/01/2017] [Indexed: 11/09/2022]
Abstract
Spermatogenesis, the process by which haploid sperm cells are produced from a diploid precursor cell, is essential for sexual reproduction. Here, we report that RING-finger protein 138 (Rnf138) is highly expressed in testes, especially in spermatogonia and spermatocytes. The role of Rnf138 in spermatogenesis was examined using a Rnf138-knockout mouse model. Rnf138 deficiency resulted in increased apoptosis in spermatogenic cells, loss of proliferative spermatogonia, delayed development of spermatozoa and impaired fertility. The proportion of PLZF+Ki67+ cells within the PLZF+ population decreased in the knockout mice. The phenotype was further assessed by RNA-sequencing (RNA-seq), which determined that the expression levels of many genes involved in spermatogenesis were altered in the testis of Rnf138-knockout mice. Thus, Rnf138 deficiency promotes the apoptosis of spermatogenic cells, which may have been caused by the aberrant proliferation of spermatogonia in mouse testis development.
Collapse
|
39
|
Ubiquitin C-terminal hydrolase37 regulates Tcf7 DNA binding for the activation of Wnt signalling. Sci Rep 2017; 7:42590. [PMID: 28198400 PMCID: PMC5309806 DOI: 10.1038/srep42590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 12/18/2022] Open
Abstract
The Tcf/Lef family of transcription factors mediates the Wnt/β-catenin pathway that is involved in a wide range of biological processes, including vertebrate embryogenesis and diverse pathogenesis. Post-translational modifications, including phosphorylation, sumoylation and acetylation, are known to be important for the regulation of Tcf/Lef proteins. However, the importance of ubiquitination and ubiquitin-mediated regulatory mechanisms for Tcf/Lef activity are still unclear. Here, we newly show that ubiquitin C-terminal hydrolase 37 (Uch37), a deubiquitinase, interacts with Tcf7 (formerly named Tcf1) to activate Wnt signalling. Biochemical analyses demonstrated that deubiquitinating activity of Uch37 is not involved in Tcf7 protein stability but is required for the association of Tcf7 to target gene promoter in both Xenopus embryo and human liver cancer cells. In vivo analyses further revealed that Uch37 functions as a positive regulator of the Wnt/β-catenin pathway downstream of β-catenin stabilization that is required for the expression of ventrolateral mesoderm genes during Xenopus gastrulation. Our study provides a new mechanism for chromatin occupancy of Tcf7 and uncovers the physiological significance of Uch37 during early vertebrate development by regulating the Wnt/β-catenin pathway.
Collapse
|
40
|
Ubiquitin Ligase RNF138 Promotes Episodic Ataxia Type 2-Associated Aberrant Degradation of Human Ca v2.1 (P/Q-Type) Calcium Channels. J Neurosci 2017; 37:2485-2503. [PMID: 28167673 DOI: 10.1523/jneurosci.3070-16.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/09/2017] [Accepted: 01/31/2017] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated CaV2.1 channels comprise a pore-forming α1A subunit with auxiliary α2δ and β subunits. CaV2.1 channels play an essential role in regulating synaptic signaling. Mutations in the human gene encoding the CaV2.1 subunit are associated with the cerebellar disease episodic ataxia type 2 (EA2). Several EA2-causing mutants exhibit impaired protein stability and exert dominant-negative suppression of CaV2.1 wild-type (WT) protein expression via aberrant proteasomal degradation. Here, we set out to delineate the protein degradation mechanism of human CaV2.1 subunit by identifying RNF138, an E3 ubiquitin ligase, as a novel CaV2.1-binding partner. In neurons, RNF138 and CaV2.1 coexist in the same protein complex and display notable subcellular colocalization at presynaptic and postsynaptic regions. Overexpression of RNF138 promotes polyubiquitination and accelerates protein turnover of CaV2.1. Disrupting endogenous RNF138 function with a mutant (RNF138-H36E) or shRNA infection significantly upregulates the CaV2.1 protein level and enhances CaV2.1 protein stability. Disrupting endogenous RNF138 function also effectively rescues the defective protein expression of EA2 mutants, as well as fully reversing EA2 mutant-induced excessive proteasomal degradation of CaV2.1 WT subunits. RNF138-H36E coexpression only partially restores the dominant-negative effect of EA2 mutants on CaV2.1 WT functional expression, which can be attributed to defective membrane trafficking of CaV2.1 WT in the presence of EA2 mutants. We propose that RNF138 plays a critical role in the homeostatic regulation of CaV2.1 protein level and functional expression and that RNF138 serves as the primary E3 ubiquitin ligase promoting EA2-associated aberrant degradation of human CaV2.1 subunits.SIGNIFICANCE STATEMENT Loss-of-function mutations in the human CaV2.1 subunit are linked to episodic ataxia type 2 (EA2), a dominantly inherited disease characterized by paroxysmal attacks of ataxia and nystagmus. EA2-causing mutants may exert dominant-negative effects on the CaV2.1 wild-type subunit via aberrant proteasomal degradation. The molecular nature of the CaV2.1 ubiquitin-proteasome degradation pathway is currently unknown. The present study reports the first identification of an E3 ubiquitin ligase for CaV2.1, RNF138. CaV2.1 protein stability is dynamically regulated by RNF138 and auxiliary α2δ and β subunits. We provide a proof of concept that protecting the human CaV2.1 subunit from excessive proteasomal degradation with specific interruption of endogenous RNF138 function may partially contribute to the future development of a novel therapeutic strategy for EA2 patients.
Collapse
|
41
|
Kumar R, Ciprianidis A, Theiß S, Steinbeißer H, Kaufmann LT. Nemo-like kinase 1 (Nlk1) and paraxial protocadherin (PAPC) cooperatively control Xenopus gastrulation through regulation of Wnt/planar cell polarity (PCP) signaling. Differentiation 2016; 93:27-38. [PMID: 27875771 DOI: 10.1016/j.diff.2016.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/23/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022]
Abstract
The Wnt/planar cell polarity (PCP) pathway directs cell migration during vertebrate gastrulation and is essential for proper embryonic development. Paraxial protocadherin (PAPC, Gene Symbol pcdh8.2) is an important activator of Wnt/PCP signaling during Xenopus gastrulation, but how PAPC activity is controlled is incompletely understood. Here we show that Nemo-like kinase 1 (Nlk1), an atypical mitogen-activated protein (MAP) kinase, physically associates with the C-terminus of PAPC. This interaction mutually stabilizes both proteins by inhibiting polyubiquitination. The Nlk1 mediated stabilization of PAPC is essential for Wnt/PCP signaling, tissue separation and gastrulation movements. We identified two conserved putative phosphorylation sites in the PAPC C-terminus that are critical for Nlk1 mediated PAPC stabilization and Wnt/PCP regulation. Intriguingly, the kinase activity of Nlk1 itself was not essential for its cooperation with PAPC, suggesting an indirect regulation for example by impeding a different kinase that promotes protein degradation. Overall these results outline a novel, kinase independent role of Nlk1, wherein Nlk1 regulates PAPC stabilization and thereby controls gastrulation movements and Wnt/PCP signaling during development.
Collapse
Affiliation(s)
- Rahul Kumar
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Anja Ciprianidis
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Susanne Theiß
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Herbert Steinbeißer
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Lilian T Kaufmann
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
42
|
Huang T, Alvarez AA, Pangeni RP, Horbinski CM, Lu S, Kim SH, James CD, J Raizer J, A Kessler J, Brenann CW, Sulman EP, Finocchiaro G, Tan M, Nishikawa R, Lu X, Nakano I, Hu B, Cheng SY. A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nat Commun 2016; 7:12885. [PMID: 27698350 PMCID: PMC5059456 DOI: 10.1038/ncomms12885] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/11/2016] [Indexed: 12/16/2022] Open
Abstract
Molecularly defined subclassification is associated with phenotypic malignancy of glioblastoma (GBM). However, current understanding of the molecular basis of subclass conversion that is often involved in GBM recurrence remain rudimentary at best. Here we report that canonical Wnt signalling that is active in proneural (PN) but inactive in mesenchymal (MES) GBM, along with miR-125b and miR-20b that are expressed at high levels in PN compared with MES GBM, comprise a regulatory circuit involving TCF4-miR-125b/miR-20b-FZD6. FZD6 acts as a negative regulator of this circuit by activating CaMKII–TAK1–NLK signalling, which, in turn, attenuates Wnt pathway activity while promoting STAT3 and NF-κB signalling that are important regulators of the MES-associated phenotype. These findings are confirmed by targeting differentially enriched pathways in PN versus MES GBM that results in inhibition of distinct GBM subtypes. Correlative expressions of the components of this circuit are prognostic relevant for clinical GBM. Our findings provide insights for understanding GBM pathogenesis and for improving treatment of GBM. Glioblastoma (GBM) is classified as proneural (PN), neural, mesenchymal (MES) and classical GBM. Here the authors show that Wnt signalling, miR-125b and miR-20b establish a regulatory circuitry including FZD6 which distinguishes PN from the MES subtype.
Collapse
Affiliation(s)
- Tianzhi Huang
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Angel A Alvarez
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Rajendra P Pangeni
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Songjian Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, USA
| | - Sung-Hak Kim
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - C David James
- Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jeffery J Raizer
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - John A Kessler
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Cameron W Brenann
- Human Oncology and Pathogenesis Program, Department of Neurosurgery, Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Gaetano Finocchiaro
- Unit of Molecular Neuro-Oncology, Department of Neuro-Oncology, Fondazione IRCCS Istituto Neurologico, Via Celoria 11, 20133 Milano, Italy
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Bo Hu
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Shi-Yuan Cheng
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
43
|
Hrckulak D, Kolar M, Strnad H, Korinek V. TCF/LEF Transcription Factors: An Update from the Internet Resources. Cancers (Basel) 2016; 8:cancers8070070. [PMID: 27447672 PMCID: PMC4963812 DOI: 10.3390/cancers8070070] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022] Open
Abstract
T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) proteins (TCFs) from the High Mobility Group (HMG) box family act as the main downstream effectors of the Wnt signaling pathway. The mammalian TCF/LEF family comprises four nuclear factors designated TCF7, LEF1, TCF7L1, and TCF7L2 (also known as TCF1, LEF1, TCF3, and TCF4, respectively). The proteins display common structural features and are often expressed in overlapping patterns implying their redundancy. Such redundancy was indeed observed in gene targeting studies; however, individual family members also exhibit unique features that are not recapitulated by the related proteins. In the present viewpoint, we summarized our current knowledge about the specific features of individual TCFs, namely structural-functional studies, posttranslational modifications, interacting partners, and phenotypes obtained upon gene targeting in the mouse. In addition, we employed several publicly available databases and web tools to evaluate the expression patterns and production of gene-specific isoforms of the TCF/LEF family members in human cells and tissues.
Collapse
Affiliation(s)
- Dusan Hrckulak
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| | - Michal Kolar
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4 14220, Czech Republic.
| |
Collapse
|
44
|
Yard BD, Reilly NM, Bedenbaugh MK, Pittman DL. RNF138 interacts with RAD51D and is required for DNA interstrand crosslink repair and maintaining chromosome integrity. DNA Repair (Amst) 2016; 42:82-93. [PMID: 27161866 PMCID: PMC4884500 DOI: 10.1016/j.dnarep.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 11/26/2022]
Abstract
The RAD51 family is integral for homologous recombination (HR) mediated DNA repair and maintaining chromosome integrity. RAD51D, the fourth member of the family, is a known ovarian cancer susceptibility gene and required for the repair of interstrand crosslink DNA damage and preserving chromosomal stability. In this report, we describe the RNF138 E3 ubiquitin ligase that interacts with and ubiquitinates the RAD51D HR protein. RNF138 is a member of an E3 ligase family that contains an amino-terminal RING finger domain and a putative carboxyl-terminal ubiquitin interaction motif. In mammalian cells, depletion of RNF138 increased the stability of the RAD51D protein, suggesting that RNF138 governs ubiquitin-proteasome-mediated degradation of RAD51D. However, RNF138 depletion conferred sensitivity to DNA damaging agents, reduced RAD51 focus formation, and increased chromosomal instability. Site-specific mutagenesis of the RNF138 RING finger domain demonstrated that it was necessary for RAD51D ubiquitination. Presence of RNF138 also enhanced the interaction between RAD51D and a known interacting RAD51 family member XRCC2 in a yeast three-hybrid assay. Therefore, RNF138 is a newly identified regulatory component of the HR mediated DNA repair pathway that has implications toward understanding how ubiquitination modifies the functions of the RAD51 paralog protein complex.
Collapse
Affiliation(s)
- Brian D Yard
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44195, USA
| | - Nicole M Reilly
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Michael K Bedenbaugh
- Department of Pharmacy Services, Greenville Health System, Greenville, SC 29615, USA
| | - Douglas L Pittman
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
45
|
Schmidt CK, Galanty Y, Sczaniecka-Clift M, Coates J, Jhujh S, Demir M, Cornwell M, Beli P, Jackson SP. Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair. Nat Cell Biol 2015; 17:1458-1470. [PMID: 26502057 PMCID: PMC4894550 DOI: 10.1038/ncb3260] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
Abstract
Ubiquitylation is crucial for proper cellular responses to DNA double-strand breaks (DSBs). If unrepaired, these highly cytotoxic lesions cause genome instability, tumorigenesis, neurodegeneration or premature ageing. Here, we conduct a comprehensive, multilayered screen to systematically profile all human ubiquitin E2 enzymes for impacts on cellular DSB responses. With a widely applicable approach, we use an exemplary E2 family, UBE2Ds, to identify ubiquitylation-cascade components downstream of E2s. Thus, we uncover the nuclear E3 ligase RNF138 as a key homologous recombination (HR)-promoting factor that functions with UBE2Ds in cells. Mechanistically, UBE2Ds and RNF138 accumulate at DNA-damage sites and act at early resection stages by promoting CtIP ubiquitylation and accrual. This work supplies insights into regulation of DSB repair by HR. Moreover, it provides a rich information resource on E2s that can be exploited by follow-on studies.
Collapse
Affiliation(s)
- Christine K Schmidt
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN Cambridge, UK
| | - Yaron Galanty
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN Cambridge, UK
| | - Matylda Sczaniecka-Clift
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN Cambridge, UK
| | - Julia Coates
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN Cambridge, UK
| | - Satpal Jhujh
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN Cambridge, UK
| | - Mukerrem Demir
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN Cambridge, UK
| | - Matthew Cornwell
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN Cambridge, UK
| | - Petra Beli
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Stephen P Jackson
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN Cambridge, UK
- The Wellcome Trust Sanger Institute, Hinxton, CB10 1SA Cambridge, UK
| |
Collapse
|
46
|
Ismail IH, Gagné JP, Genois MM, Strickfaden H, McDonald D, Xu Z, Poirier GG, Masson JY, Hendzel MJ. The RNF138 E3 ligase displaces Ku to promote DNA end resection and regulate DNA repair pathway choice. Nat Cell Biol 2015; 17:1446-57. [PMID: 26502055 DOI: 10.1038/ncb3259] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 09/22/2015] [Indexed: 12/30/2022]
Abstract
DNA double-strand breaks (DSBs) are repaired mainly by non-homologous end joining or homologous recombination (HR). Cell cycle stage and DNA end resection are believed to regulate the commitment to HR repair. Here we identify RNF138 as a ubiquitin E3 ligase that regulates the HR pathway. RNF138 is recruited to DNA damage sites through zinc fingers that have a strong preference for DNA with 5'- or 3'-single-stranded overhangs. RNF138 stimulates DNA end resection and promotes ATR-dependent signalling and DSB repair by HR, thereby contributing to cell survival on exposure to DSB-inducing agents. Finally, we establish that RNF138-dependent Ku removal from DNA breaks is one mechanism whereby RNF138 can promote HR. These results establish RNF138 as an important regulator of DSB repair pathway choice.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada.,Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, 2705 boul. Laurier Québec city, Québec G1V 4G2, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec G1V 0A6, Canada
| | - Marie-Michelle Genois
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec G1V 0A6, Canada.,Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon Québec City, Québec G1R 2J6, Canada
| | - Hilmar Strickfaden
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada
| | - Darin McDonald
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada
| | - Zhizhong Xu
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, 2705 boul. Laurier Québec city, Québec G1V 4G2, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec G1V 0A6, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec G1V 0A6, Canada.,Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon Québec City, Québec G1R 2J6, Canada
| | - Michael J Hendzel
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
47
|
Suwei D, Liang Z, Zhimin L, Ruilei L, Yingying Z, Zhen L, Chunlei G, Zhangchao L, Yuanbo X, Jinyan Y, Gaofeng L, Xin S. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J Hematol Oncol 2015; 8:120. [PMID: 26503334 PMCID: PMC4620602 DOI: 10.1186/s13045-015-0203-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Objective Nemo-like kinase (NLK) is an evolutionarily conserved serine/threonine kinase that regulates the activity of a wide range of signal transduction pathways. Metformin, an oral antidiabetic drug, is used for cancer prevention. However, the significance and underlying mechanism of NLK and metformin in oncogenesis has not been fully elucidated. Here, we investigate a novel role of NLK and metformin in human non-small cell lung cancer (NSCLC). Materials and methods NLK expression was analyzed in 121 NSCLCs and 92 normal lung tissue samples from benign pulmonary disease. Lentivirus vectors with NLK-shRNA were used to examine the effect of NLK on cell proliferation and tumorigenesis in vitro. Then, tumor xenograft mouse models revealed that NLK knockdown cells had a reduced ability for tumor formation compared with the control group in vivo. Multiple cell cycle regulator expression patterns induced by NLK silencing were examined by western blots in A549 cells. We also employed metformin to study its anti-cancer effects and mechanisms. Cancer stem cell property was checked by tumor sphere formation and markers including CD133, Nanog, c-Myc, and TLF4. Results Immunohistochemical (IHC) analysis revealed that NLK expression was up-regulated in NSCLC cases (p < 0.001) and correlated with tumor T stage (p < 0.05). Silencing of NLK suppressed cell proliferation and tumorigenicity significantly in vitro and in vivo, which might be modulated by JUN family proteins. Furthermore, metformin selectively inhibits NLK expression and proliferation in NSCLC cells, but not immortalized noncancerous lung bronchial epithelial cells. In addition, both NLK knockdown and metformin treatment reduced the tumor sphere formation capacity and percentage of CD133+ cells. Accordingly, the expression level of stem cell markers (Nanog, c-Myc, and TLF4) were decreased significantly. Conclusion NLK is critical for cancer cell cycle progression, and tumorigenesis in NSCLC, NLK knockdown, and metformin treatment inhibit cancer cell proliferation and stemness. Metformin inhibits NLK expression and might be a potential treatment strategy for NSCLC.
Collapse
Affiliation(s)
- Dong Suwei
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic of China. .,Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Zeng Liang
- Department of Pathology, Hunan Tumor Hospital, Changsha, Hunan, People's Republic of China.
| | - Liu Zhimin
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Li Ruilei
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Zou Yingying
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, Yunnan, People's Republic of China.
| | - Li Zhen
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic of China. .,Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Ge Chunlei
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Lai Zhangchao
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Xue Yuanbo
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Yang Jinyan
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Li Gaofeng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| | - Song Xin
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People's Republic of China. .,Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China.
| |
Collapse
|
48
|
Loregger A, Grandl M, Mejías-Luque R, Allgäuer M, Degenhart K, Haselmann V, Oikonomou C, Hatzis P, Janssen KP, Nitsche U, Gradl D, van den Broek O, Destree O, Ulm K, Neumaier M, Kalali B, Jung A, Varela I, Schmid RM, Rad R, Busch DH, Gerhard M. The E3 ligase RNF43 inhibits Wnt signaling downstream of mutated β-catenin by sequestering TCF4 to the nuclear membrane. Sci Signal 2015; 8:ra90. [PMID: 26350900 DOI: 10.1126/scisignal.aac6757] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given its fundamental role in development and cancer, the Wnt-β-catenin signaling pathway is tightly controlled at multiple levels. RING finger protein 43 (RNF43) is an E3 ubiquitin ligase originally found in stem cells and proposed to inhibit Wnt signaling by interacting with the Wnt receptors of the Frizzled family. We detected endogenous RNF43 in the nucleus of human intestinal crypt and colon cancer cells. We found that RNF43 physically interacted with T cell factor 4 (TCF4) in cells and tethered TCF4 to the nuclear membrane, thus silencing TCF4 transcriptional activity even in the presence of constitutively active mutants of β-catenin. This inhibitory mechanism was disrupted by the expression of RNF43 bearing mutations found in human gastrointestinal tumors, and transactivation of the Wnt pathway was observed in various cells and in Xenopus embryos when the RING domain of RNF43 was mutated. Our findings indicate that RNF43 inhibits the Wnt pathway downstream of oncogenic mutations that activate the pathway. Mimicking or enhancing this inhibitory activity of RNF43 may be useful to treat cancers arising from aberrant activation of the Wnt pathway.
Collapse
Affiliation(s)
- Anke Loregger
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich 81675, Germany
| | - Martina Grandl
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich 81675, Germany
| | - Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich 81675, Germany
| | - Michael Allgäuer
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich 81675, Germany. Medical Department II, Technische Universität München, Munich 81675, Germany
| | - Kathrin Degenhart
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich 81675, Germany
| | - Verena Haselmann
- Institute for Clinical Chemistry, University Medical Centre Mannheim, Mannheim 68167, Germany
| | - Christina Oikonomou
- Division of Molecular Biology and Genetics, Biomedical Sciences Research Center "Alexander Fleming," Vari 16672, Greece
| | - Pantelis Hatzis
- Division of Molecular Biology and Genetics, Biomedical Sciences Research Center "Alexander Fleming," Vari 16672, Greece
| | - Klaus-Peter Janssen
- Department of Surgery, Technische Universität München, Munich 81675, Germany
| | - Ulrich Nitsche
- Department of Surgery, Technische Universität München, Munich 81675, Germany
| | - Dietmar Gradl
- Zoologisches Institut II, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | | | | | - Kurt Ulm
- Institute of Medical Statistics and Epidemiology, Technische Universität München, Munich 81675, Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry, University Medical Centre Mannheim, Mannheim 68167, Germany
| | - Behnam Kalali
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich 81675, Germany
| | - Andreas Jung
- Institute of Pathology, University of Munich, Munich 80337, Germany
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, Santander 39011, Spain
| | - Roland M Schmid
- Medical Department II, Technische Universität München, Munich 81675, Germany
| | - Roland Rad
- Medical Department II, Technische Universität München, Munich 81675, Germany
| | - Dirk H Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich 81675, Germany
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich 81675, Germany.
| |
Collapse
|
49
|
Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World J Exp Med 2015; 5:84-102. [PMID: 25992323 PMCID: PMC4436943 DOI: 10.5493/wjem.v5.i2.84] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/05/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancer-related deaths. Gastric adenocarcinoma is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal carcinomas. The aberrant activation of the Wnt/β-catenin signaling pathway is involved in the development and progression of a significant proportion of gastric cancer cases. This review focuses on the participation of the Wnt/β-catenin pathway in gastric cancer by offering an analysis of the relevant literature published in this field. Indeed, it is discussed the role of key factors in Wnt/β-catenin signaling and their downstream effectors regulating processes involved in tumor initiation, tumor growth, metastasis and resistance to therapy. Available data indicate that constitutive Wnt signalling resulting from Helicobacter pylori infection and inactivation of Wnt inhibitors (mainly by inactivating mutations and promoter hypermethylation) play an important role in gastric cancer. Moreover, a number of recent studies confirmed CTNNB1 and APC as driver genes in gastric cancer. The identification of specific membrane, intracellular, and extracellular components of the Wnt pathway has revealed potential targets for gastric cancer therapy. High-throughput “omics” approaches will help in the search for Wnt pathway antagonist in the near future.
Collapse
|
50
|
Ro H, Hur TL, Rhee M. Ubiquitin conjugation system for body axes specification in vertebrates. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1026399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|