1
|
Holendová B, Stokičová L, Plecitá-Hlavatá L. Lipid Dynamics in Pancreatic β-Cells: Linking Physiology to Diabetes Onset. Antioxid Redox Signal 2024; 41:865-889. [PMID: 39495600 DOI: 10.1089/ars.2024.0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Significance: Glucose-induced lipid metabolism is essential for preserving functional β-cells, and its disruption is linked to type 2 diabetes (T2D) development. Lipids are an integral part of the cells playing an indispensable role as structural components, energy storage molecules, and signals. Recent Advances: Glucose presence significantly impacts lipid metabolism in β-cells, where fatty acids are primarily synthesized de novo and/or are transported from the bloodstream. This process is regulated by the glycerolipid/free fatty acid cycle, which includes lipogenic and lipolytic reactions producing metabolic coupling factors crucial for insulin secretion. Disrupted lipid metabolism involving oxidative stress and inflammation is a hallmark of T2D. Critical Issues: Lipid metabolism in β-cells is complex involving multiple simultaneous processes. Exact compartmentalization and quantification of lipid metabolism and its intermediates, especially in response to glucose or chronic hyperglycemia, are essential. Current research often uses non-physiological conditions, which may not accurately reflect in vivo situations. Future Directions: Identifying and quantifying individual steps and their signaling, including redox, within the complex fatty acid and lipid metabolic pathways as well as the metabolites formed during acute versus chronic glucose stimulation, will uncover the detailed mechanisms of glucose-stimulated insulin secretion. This knowledge is crucial for understanding T2D pathogenesis and identifying pharmacological targets to prevent this disease. Antioxid. Redox Signal. 41, 865-889.
Collapse
Affiliation(s)
- Blanka Holendová
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Stokičová
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Thomas P, Gallagher MT, Da Silva Xavier G. Beta cell lipotoxicity in the development of type 2 diabetes: the need for species-specific understanding. Front Endocrinol (Lausanne) 2023; 14:1275835. [PMID: 38144558 PMCID: PMC10739424 DOI: 10.3389/fendo.2023.1275835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
The propensity to develop type 2 diabetes (T2D) is known to have both environmental and hereditary components. In those with a genetic predisposition to T2D, it is widely believed that elevated concentrations of circulatory long-chain fatty acids (LC-FFA) significantly contribute towards the demise of insulin-producing pancreatic β-cells - the fundamental feature of the development of T2D. Over 25 years of research support that LC-FFA are deleterious to β-cells, through a process termed lipotoxicity. However, the work underpinning the theory of β-cell lipotoxicity is mostly based on rodent studies. Doubts have been raised as to whether lipotoxicity also occurs in humans. In this review, we examine the evidence, both in vivo and in vitro, for the pathogenic effects of LC-FFA on β-cell viability and function in humans, highlighting key species differences. In this way, we aim to uncover the role of lipotoxicity in the human pathogenesis of T2D and motivate the need for species-specific understanding.
Collapse
Affiliation(s)
- Patricia Thomas
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Gabriela Da Silva Xavier
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Oh SJ, Hwang Y, Hur KY, Lee MS. Lysosomal Ca 2+ as a mediator of palmitate-induced lipotoxicity. Cell Death Discov 2023; 9:100. [PMID: 36944629 PMCID: PMC10030853 DOI: 10.1038/s41420-023-01379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
While the mechanism of lipotoxicity by palmitic acid (PA), an effector of metabolic stress in vitro and in vivo, has been extensively investigated, molecular details of lipotoxicity are still not fully characterized. Since recent studies reported that PA can exert lysosomal stress in addition to well-known ER and mitochondrial stress, we studied the role of lysosomal events in lipotoxicity by PA, focusing on lysosomal Ca2+. We found that PA induced accumulation of mitochondrial ROS and that mitochondrial ROS induced release of lysosomal Ca2+ due to lysosomal Ca2+ exit channel activation. Lysosomal Ca2+ release led to increased cytosolic Ca2+ which induced mitochondrial permeability transition (mPT). Chelation of cytoplasmic Ca2+ or blockade of mPT with olesoxime or decylubiquinone (DUB) suppressed lipotoxicity. Lysosomal Ca2+ release led to reduced lysosomal Ca2+ content which was replenished by ER Ca2+, the largest intracellular Ca2+ reservoir (ER → lysosome Ca2+ refilling), which in turn activated store-operated Ca2+ entry (SOCE). Inhibition of ER → lysosome Ca2+ refilling by blockade of ER Ca2+ exit channel using dantrolene or inhibition of SOCE using BTP2 inhibited lipotoxicity in vitro. Dantrolene or DUB also inhibited lipotoxic death of hepatocytes in vivo induced by administration of ethyl palmitate together with LPS. These results suggest a novel pathway of lipotoxicity characterized by mPT due to lysosomal Ca2+ release which was supplemented by ER → lysosome Ca2+ refilling and subsequent SOCE, and also suggest the potential role of modulation of ER → lysosome Ca2+ refilling by dantrolene or other blockers of ER Ca2+ exit channels in disease conditions characterized by lipotoxicity such as metabolic syndrome, diabetes, cardiomyopathy or nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Korea
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang Medical Center, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yeseong Hwang
- Severance Biomedical Science Institute, Graduate school of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyu Yeon Hur
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang Medical Center, Soonchunhyang University College of Medicine, Cheonan, Korea.
- Severance Biomedical Science Institute, Graduate school of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
4
|
Tranilast protects pancreatic β-cells from palmitic acid-induced lipotoxicity via FoxO-1 inhibition. Sci Rep 2023; 13:101. [PMID: 36596838 PMCID: PMC9810694 DOI: 10.1038/s41598-022-25428-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 01/05/2023] Open
Abstract
Tranilast, an anti-allergic drug used in the treatment of bronchial asthma, was identified as an inhibitor of the transcription factor Forkhead box O-1 (FoxO-1) by high throughput chemical library screening in the present study. Based on FoxO-1's role in apoptotic cell death and differentiation, we examined the effect of tranilast on palmitic acid (PA)-induced cell damage in INS-1 cells. Tranilast substantially inhibited lipoapoptosis and restored glucose-stimulated insulin secretion under high PA exposure. Moreover, PA-mediated downregulation of PDX-1, MafA, and insulin expression was attenuated by tranilast. PA-induced oxidative and ER stress were also reduced in the presence of tranilast. These protective effects were accompanied by increased phosphorylation and decreased nuclear translocation of FoxO-1. Conversely, the effects of tranilast were diminished when treated in transfected cells with FoxO-1 phosphorylation mutant (S256A), suggesting that the tranilast-mediated effects are associated with inactivation of FoxO-1. Examination of the in vivo effects of tranilast using wild type and diabetic db/db mice showed improved glucose tolerance along with FoxO-1 inactivation in the pancreas of the tranilast-treated groups. Thus, we report here that tranilast has protective effects against PA-induced lipotoxic stress in INS-1 cells, at least partly, via FoxO-1 inactivation, which results in improved glucose tolerance in vivo.
Collapse
|
5
|
Capece U, Moffa S, Improta I, Di Giuseppe G, Nista EC, Cefalo CMA, Cinti F, Pontecorvi A, Gasbarrini A, Giaccari A, Mezza T. Alpha-Lipoic Acid and Glucose Metabolism: A Comprehensive Update on Biochemical and Therapeutic Features. Nutrients 2022; 15:nu15010018. [PMID: 36615676 PMCID: PMC9824456 DOI: 10.3390/nu15010018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Alpha-lipoic acid (ALA) is a natural compound with antioxidant and pro-oxidant properties which has effects on the regulation of insulin sensitivity and insulin secretion. ALA is widely prescribed in patients with diabetic polyneuropathy due to its positive effects on nerve conduction and alleviation of symptoms. It is, moreover, also prescribed in other insulin resistance conditions such as metabolic syndrome (SM), polycystic ovary syndrome (PCOS) and obesity. However, several cases of Insulin Autoimmune Syndrome (IAS) have been reported in subjects taking ALA. The aim of the present review is to describe the main chemical and biological functions of ALA in glucose metabolism, focusing on its antioxidant activity, its role in modulating insulin sensitivity and secretion and in symptomatic peripheral diabetic polyneuropathy. We also provide a potential explanation for increased risk for the development of IAS.
Collapse
Affiliation(s)
- Umberto Capece
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Simona Moffa
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ilaria Improta
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Enrico Celestino Nista
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Chiara M. A. Cefalo
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Cinti
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Andrea Giaccari
- Endocrinology and Diabetology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| | - Teresa Mezza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Bajia D, Bottani E, Derwich K. Effects of Noonan Syndrome-Germline Mutations on Mitochondria and Energy Metabolism. Cells 2022; 11:cells11193099. [PMID: 36231062 PMCID: PMC9563972 DOI: 10.3390/cells11193099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Noonan syndrome (NS) and related Noonan syndrome with multiple lentigines (NSML) contribute to the pathogenesis of human diseases in the RASopathy family. This family of genetic disorders constitute one of the largest groups of developmental disorders with variable penetrance and severity, associated with distinctive congenital disabilities, including facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was first clinically described decades ago, and several genes have since been identified, providing a molecular foundation to understand their physiopathology and identify targets for therapeutic strategies. These genes encode proteins that participate in, or regulate, RAS/MAPK signalling. The RAS pathway regulates cellular metabolism by controlling mitochondrial homeostasis, dynamics, and energy production; however, little is known about the role of mitochondrial metabolism in NS and NSML. This manuscript comprehensively reviews the most frequently mutated genes responsible for NS and NSML, covering their role in the current knowledge of cellular signalling pathways, and focuses on the pathophysiological outcomes on mitochondria and energy metabolism.
Collapse
Affiliation(s)
- Donald Bajia
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, Piazzale L. A. Scuro 10, 37134 Verona, Italy
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| |
Collapse
|
7
|
Tsai KF, Shen CJ, Cheung CW, Wang TL, Chow LWC, Leung YM, Wong KL. Lipotoxicity in human lung alveolar type 2 A549 cells: Mechanisms and protection by tannic acid. CHINESE J PHYSIOL 2021; 64:289-297. [PMID: 34975122 DOI: 10.4103/cjp.cjp_68_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Palmitic acid (PA) is a saturated free fatty acid which, when being excessive, accounts for lipotoxicity. Using human lung A549 cells as a model for lung alveolar type 2 epithelial cells, we found that challenge of A549 cells with PA resulted in apoptotic cell death, as reflected by positive annexin V and PI staining, and also appearance of cleaved caspase-3. PA treatment also caused depletion of intracellular Ca2+ store, endoplasmic reticulum (ER) stress, and oxidative stress. Tannic acid (TA), a polyphenol present in wines and many beverages, alleviated PA-induced ER stress, oxidative stress and apoptotic death. Thus, our results suggest PA lipotoxicity in lung alveolar type 2 epithelial cells could be protected by TA.
Collapse
Affiliation(s)
- Kun-Feng Tsai
- Gastroenterology and Hepatology Section, Department of Internal Medicine, An Nan Hospital, China Medical University; Department of Medical Sciences Industry, Chang Jung Christian University, Tainan, Taiwan
| | - Chen-Jung Shen
- Endocrinology and Metabolism Section, Department of Internal Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Chi-Wai Cheung
- Department of Anesthesiology, University of Hong Kong, China
| | - Tzong-Luen Wang
- School of Medicine, Fu-Jen Catholic University; Department of Emergency Medicine, Fu-Jen Catholic University Hospital, Taipei, Taiwan
| | - Louis W C Chow
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; UNIMED Medical Institute, Hong Kong; Organisation for Oncology and Translational Research, Hong Kong, China
| | - Yuk-Man Leung
- Department of Physiology, China Medical University, Taichung, Taiwan
| | - Kar-Lok Wong
- Department of Anesthesiology, University of Hong Kong, China; Department of Anesthesiology, Kuang Tien General Hospital, Shalu, Taichung, Taiwan
| |
Collapse
|
8
|
Martens MD, Karch J, Gordon JW. The molecular mosaic of regulated cell death in the cardiovascular system. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166297. [PMID: 34718119 DOI: 10.1016/j.bbadis.2021.166297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/07/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Cell death is now understood to be a highly regulated process that contributes to normal development and tissue homeostasis, alongside its role in the etiology of various pathological conditions. Through detailed molecular analysis, we have come to know that all cells do not always die in the same way, and that there are at least 7 processes involved, including: apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, and autophagy-mediated cell death. These processes act as pieces in the mosaic of cardiomyocyte cell death, which come together depending on context and stimulus. This review details each individual process, as well as highlights how they come together to produce various cardiac pathologies. By knowing how the pieces go together we can aim towards the development of efficacious therapeutics, which will enable us to prevent cardiomyocyte loss in the face of stress, both reducing mortality and improving quality of life.
Collapse
Affiliation(s)
- Matthew D Martens
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Canada
| | - Jason Karch
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Canada.
| |
Collapse
|
9
|
Karunakaran U, Elumalai S, Moon JS, Won KC. CD36 Signal Transduction in Metabolic Diseases: Novel Insights and Therapeutic Targeting. Cells 2021; 10:cells10071833. [PMID: 34360006 PMCID: PMC8305429 DOI: 10.3390/cells10071833] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
The cluster of differentiation 36 (CD36) is a scavenger receptor present on various types of cells and has multiple biological functions that may be important in inflammation and in the pathogenesis of metabolic diseases, including diabetes. Here, we consider recent insights into how the CD36 response becomes deregulated under metabolic conditions, as well as the therapeutic benefits of CD36 inhibition, which may provide clues for developing strategies aimed at the treatment or prevention of diabetes associated with metabolic diseases. To facilitate this process further, it is important to pinpoint regulatory mechanisms that are relevant under physiological and pathological conditions. In particular, understanding the mechanisms involved in dictating specific CD36 downstream cellular outcomes will aid in the discovery of potent compounds that target specific CD36 downstream signaling cascades.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
| | - Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
| | - Jun-Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
- Yeungnam University College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.M.); +82-53-620-3846 (K.-C.W.)
| | - Kyu-Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
- Yeungnam University College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.M.); +82-53-620-3846 (K.-C.W.)
| |
Collapse
|
10
|
Šrámek J, Němcová-Fürstová V, Kovář J. Molecular Mechanisms of Apoptosis Induction and Its Regulation by Fatty Acids in Pancreatic β-Cells. Int J Mol Sci 2021; 22:4285. [PMID: 33924206 PMCID: PMC8074590 DOI: 10.3390/ijms22084285] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell failure and death contribute significantly to the pathogenesis of type 2 diabetes. One of the main factors responsible for β-cell dysfunction and subsequent cell death is chronic exposure to increased concentrations of FAs (fatty acids). The effect of FAs seems to depend particularly on the degree of their saturation. Saturated FAs induce apoptosis in pancreatic β-cells, whereas unsaturated FAs are well tolerated and are even capable of inhibiting the pro-apoptotic effect of saturated FAs. Molecular mechanisms of apoptosis induction by saturated FAs in β-cells are not completely elucidated. Saturated FAs induce ER stress, which in turn leads to activation of all ER stress pathways. When ER stress is severe or prolonged, apoptosis is induced. The main mediator seems to be the CHOP transcription factor. Via regulation of expression/activity of pro- and anti-apoptotic Bcl-2 family members, and potentially also through the increase in ROS production, CHOP switches on the mitochondrial pathway of apoptosis induction. ER stress signalling also possibly leads to autophagy signalling, which may activate caspase-8. Saturated FAs activate or inhibit various signalling pathways, i.e., p38 MAPK signalling, ERK signalling, ceramide signalling, Akt signalling and PKCδ signalling. This may lead to the activation of the mitochondrial pathway of apoptosis, as well. Particularly, the inhibition of the pro-survival Akt signalling seems to play an important role. This inhibition may be mediated by multiple pathways (e.g., ER stress signalling, PKCδ and ceramide) and could also consequence in autophagy signalling. Experimental evidence indicates the involvement of certain miRNAs in mechanisms of FA-induced β-cell apoptosis, as well. In the rather rare situations when unsaturated FAs are also shown to be pro-apoptotic, the mechanisms mediating this effect in β-cells seem to be the same as for saturated FAs. To conclude, FA-induced apoptosis rather appears to be preceded by complex cross talks of multiple signalling pathways. Some of these pathways may be regulated by decreased membrane fluidity due to saturated FA incorporation. Few data are available concerning molecular mechanisms mediating the protective effect of unsaturated FAs on the effect of saturated FAs. It seems that the main possible mechanism represents a rather inhibitory intervention into saturated FA-induced pro-apoptotic signalling than activation of some pro-survival signalling pathway(s) or metabolic interference in β-cells. This inhibitory intervention may be due to an increase of membrane fluidity.
Collapse
Affiliation(s)
- Jan Šrámek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | - Vlasta Němcová-Fürstová
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | | |
Collapse
|
11
|
Lipotoxic Impairment of Mitochondrial Function in β-Cells: A Review. Antioxidants (Basel) 2021; 10:antiox10020293. [PMID: 33672062 PMCID: PMC7919463 DOI: 10.3390/antiox10020293] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Lipotoxicity is a major contributor to type 2 diabetes mainly promoting mitochondrial dysfunction. Lipotoxic stress is mediated by elevated levels of free fatty acids through various mechanisms and pathways. Impaired peroxisome proliferator-activated receptor (PPAR) signaling, enhanced oxidative stress levels, and uncoupling of the respiratory chain result in ATP deficiency, while β-cell viability can be severely impaired by lipotoxic modulation of PI3K/Akt and mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) pathways. However, fatty acids are physiologically required for an unimpaired β-cell function. Thus, preparation, concentration, and treatment duration determine whether the outcome is beneficial or detrimental when fatty acids are employed in experimental setups. Further, ageing is a crucial contributor to β-cell decay. Cellular senescence is connected to loss of function in β-cells and can further be promoted by lipotoxicity. The potential benefit of nutrients has been broadly investigated, and particularly polyphenols were shown to be protective against both lipotoxicity and cellular senescence, maintaining the physiology of β-cells. Positive effects on blood glucose regulation, mitigation of oxidative stress by radical scavenging properties or regulation of antioxidative enzymes, and modulation of apoptotic factors were reported. This review summarizes the significance of lipotoxicity and cellular senescence for mitochondrial dysfunction in the pancreatic β-cell and outlines potential beneficial effects of plant-based nutrients by the example of polyphenols.
Collapse
|
12
|
Abstract
Excess fatty acid accumulation in nonadipose tissues leads to cell dysfunction and cell death that is linked to the pathogenesis of inherited and acquired human diseases. Study of this process, known as lipotoxicity, has provided new insights into the regulation of lipid homeostasis and has revealed new molecular pathways involved in lipid-induced cellular stress. The discovery that disruption of specific small nucleolar RNAs protects against fatty acid-induced cell death and remodels metabolism in vivo opens new opportunities for understanding how nutrient signals influence cellular and systemic metabolic homeostasis through RNA biology.
Collapse
Affiliation(s)
- Jean E Schaffer
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Effect of Anthocyanin-Rich Tart Cherry Extract on Inflammatory Mediators and Adipokines Involved in Type 2 Diabetes in a High Fat Diet Induced Obesity Mouse Model. Nutrients 2019; 11:nu11091966. [PMID: 31438590 PMCID: PMC6769902 DOI: 10.3390/nu11091966] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022] Open
Abstract
Male C57BL/6J mice were used to determine the possible therapeutic effects of our previously described tart cherry extract in a chronic obesity mouse model on metabolic parameters, glucose tolerance, inflammatory mediators, and antioxidant capacity. The control group received standard mouse chow, and the high fat control group was switched to a high fat diet and tap water supplemented with 5% sucrose. The high fat + anthocyanin group received the high fat and sucrose diet, but received the anthocyanin-rich tart cherry extract dissolved in their drinking water. After six weeks, an oral glucose tolerance test was performed, and the water-soluble antioxidant capacity (ACW), superoxide dismutase (SOD) activity, and the plasma levels of insulin, C-peptide, leptin, IL-6, MCP-1, adiponectin and resistin were measured. The high fat diet increased body weight, reduced glucose tolerance, and caused an elevation in leptin, IL-6, MCP-1, and resistin levels. Furthermore, antioxidant capacity was decreased with a significant elevation of SOD activity. Anthocyanin treatment failed to reverse the effects of the high fat diet on body weight and glucose tolerance, but significantly reduced the leptin and IL-6 levels. The tart cherry extract also made a significant enhancement in antioxidant capacity and SOD activity. Our results show that chronic anthocyanin intake has a potential to enhance redox status and alleviate inflammation associated with obesity.
Collapse
|
14
|
Polysaccharide from Rubus chingii Hu affords protection against palmitic acid-induced lipotoxicity in human hepatocytes. Int J Biol Macromol 2019; 133:1063-1071. [DOI: 10.1016/j.ijbiomac.2019.04.176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/06/2023]
|
15
|
Yi H, Xu D, Wu X, Xu F, Lin L, Zhou H. Isosteviol Protects Free Fatty Acid- and High Fat Diet-Induced Hepatic Injury via Modulating PKC-β/p66Shc/ROS and Endoplasmic Reticulum Stress Pathways. Antioxid Redox Signal 2019; 30:1949-1968. [PMID: 30484323 PMCID: PMC6486675 DOI: 10.1089/ars.2018.7521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aims: Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver diseases. However, there are no approved pharmacotherapies for the treatment of NAFLD other than managing life style and controlling diets. Extensive studies have demonstrated that multiple mechanisms are involved in free fatty acid (FFA)- and high fat diet (HFD)-induced hepatic injury, including mitochondrial dysfunction, activation of oxidative stress and endoplasmic reticulum (ER) stress, and lysosome dysfunction. A previous study reported that Isosteviol (ISV), a derivative of stevioside, prevents HFD-induced hepatic injury. However, the underlying mechanisms remain unclear. Results: In this study, we examined the potential cellular/molecular mechanisms underlying ISV-mediated protective effect against FFA-/HFD-induced hepatic lipotoxicity by using both in vitro primary rat hepatocytes and the in vivo rat NAFLD model. The results indicated that ISV inhibits FFA-/HFD-induced hepatic injury via reducing oxidative and ER stress. Specifically, ISV inhibited the expression, activation, and mitochondrial translocation of Src-homology-2-domain-containing transforming protein 1 (p66Shc), an adapter protein that mediates oxidative stress-induced injury and is a substrate of protein kinase C-β (PKC-β), via inhibition of PKC-β activity. However, ISV had no effect on the expression and activity of peptidyl-prolyl cis-trans isomerase and serine/threonine protein phosphatase 2A, isomerase and phosphorylase of p66Shc. In addition, ISV also inhibited FFA-induced ER stress and decreased ER-mitochondrial interaction. Innovation and Conclusion: We first identified that ISV prevents FFA-/HFD-induced hepatic injury through modulating PKC-β/p66Shc/oxidative and ER stress pathways. ISV represents a promising therapeutic agent for NAFLD in the future. Antioxid. Redox Signal. 30, 1949-1968.
Collapse
Affiliation(s)
- Hongwei Yi
- 1 Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Deyi Xu
- 1 Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Xudong Wu
- 2 State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fang Xu
- 2 State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lin Lin
- 1 Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Huiping Zhou
- 3 Department of Microbiology and Immunology, Virginia Commonwealth University and McGuire Veterans Affairs Medical Center, Richmond, Virginia
| |
Collapse
|
16
|
Rumora AE, LoGrasso G, Hayes JM, Mendelson FE, Tabbey MA, Haidar JA, Lentz SI, Feldman EL. The Divergent Roles of Dietary Saturated and Monounsaturated Fatty Acids on Nerve Function in Murine Models of Obesity. J Neurosci 2019; 39:3770-3781. [PMID: 30886017 PMCID: PMC6510336 DOI: 10.1523/jneurosci.3173-18.2019] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/23/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathy is the most common complication of prediabetes and diabetes and presents as distal-to-proximal loss of peripheral nerve function in the lower extremities. Neuropathy progression and disease severity in prediabetes and diabetes correlates with dyslipidemia in man and murine models of disease. Dyslipidemia is characterized by elevated levels of circulating saturated fatty acids (SFAs) that associate with the progression of neuropathy. Increased intake of monounsaturated fatty acid (MUFA)-rich diets confers metabolic health benefits; however, the impact of fatty acid saturation in neuropathy is unknown. This study examines the differential effect of SFAs and MUFAs on the development of neuropathy and the molecular mechanisms underlying the progression of the complication. Male mice Mus musculus fed a high-fat diet rich in SFAs developed robust peripheral neuropathy. This neuropathy was completely reversed by switching the mice from the SFA-rich high-fat diet to a MUFA-rich high-fat diet; nerve conduction velocities and intraepidermal nerve fiber density were restored. A MUFA oleate also prevented the impairment of mitochondrial transport and protected mitochondrial membrane potential in cultured sensory neurons treated with mixtures of oleate and the SFA palmitate. Moreover, oleate also preserved intracellular ATP levels, prevented apoptosis induced by palmitate treatment, and promoted lipid droplet formation in sensory neurons, suggesting that lipid droplets protect sensory neurons from lipotoxicity. Together, these results suggest that MUFAs reverse the progression of neuropathy by protecting mitochondrial function and transport through the formation of intracellular lipid droplets in sensory neurons.SIGNIFICANCE STATEMENT There is a global epidemic of prediabetes and diabetes, disorders that represent a continuum of metabolic disturbances in lipid and glucose metabolism. In the United States, 80 million individuals have prediabetes and 30 million have diabetes. Neuropathy is the most common complication of both disorders, carries a high morbidity, and, despite its prevalence, has no treatments. We report that dietary intervention with monounsaturated fatty acids reverses the progression of neuropathy and restores nerve function in high-fat diet-fed murine models of peripheral neuropathy. Furthermore, the addition of the monounsaturated fatty acid oleate to sensory neurons cultured under diabetic conditions shows that oleate prevents impairment of mitochondrial transport and mitochondrial dysfunction through a mechanism involving formation of axonal lipid droplets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen I Lentz
- Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
17
|
Rumora AE, Lentz SI, Hinder LM, Jackson SW, Valesano A, Levinson GE, Feldman EL. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. FASEB J 2018; 32:195-207. [PMID: 28904018 PMCID: PMC6191072 DOI: 10.1096/fj.201700206r] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/21/2017] [Indexed: 01/11/2023]
Abstract
Mitochondrial trafficking plays a central role in dorsal root ganglion (DRG) neuronal cell survival and neurotransmission by transporting mitochondria from the neuronal cell body throughout the bundles of DRG axons. In type 2 diabetes (T2DM), dyslipidemia and hyperglycemia damage DRG neurons and induce mitochondrial dysfunction; however, the impact of free fatty acids and glucose on mitochondrial trafficking in DRG neurons remains unknown. To evaluate the impact of free fatty acids compared to hyperglycemia on mitochondrial transport, primary adult mouse DRG neuron cultures were treated with physiologic concentrations of palmitate and glucose and assessed for alterations in mitochondrial trafficking, mitochondrial membrane potential, and mitochondrial bioenergetics. Palmitate treatment significantly reduced the number of motile mitochondria in DRG axons, but physiologic concentrations of glucose did not impair mitochondrial trafficking dynamics. Palmitate-treated DRG neurons also exhibited a reduction in mitochondrial velocity, and impaired mitochondrial trafficking correlated with mitochondrial depolarization in palmitate-treated DRG neurons. Finally, we found differential bioenergetic effects of palmitate and glucose on resting and energetically challenged mitochondria in DRG neurons. Together, these results suggest that palmitate induces DRG neuron mitochondrial depolarization, inhibiting axonal mitochondrial trafficking and altering mitochondrial bioenergetic capacity.-Rumora, A. E., Lentz, S. I., Hinder, L. M., Jackson, S. W., Valesano, A., Levinson, G. E., Feldman, E. L. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons.
Collapse
Affiliation(s)
- Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen I Lentz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel W Jackson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew Valesano
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gideon E Levinson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA;
| |
Collapse
|
18
|
Lee JS, Park JM, Lee S, Lee HJ, Yang HS, Yeo J, Lee KR, Choi BH, Hong EK. Hispidin rescues palmitate‑induced insulin resistance in C2C12 myotubes. Mol Med Rep 2017; 16:4229-4234. [PMID: 28731188 DOI: 10.3892/mmr.2017.7042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 03/01/2017] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle serves an important role in the utilization of glucose during insulin‑stimulated conditions. Excessive saturated fatty acids are considered to be a major contributing factor to insulin resistance in skeletal muscle cells. The present study investigated the effects of hispidin on palmitate‑induced insulin resistance in C2C12 skeletal muscle myotubes via an MTT assay, glucose uptake assay, Oil‑Red‑O staining and western blot analysis. Hispidin reversed the palmitate‑induced inhibition of glucose uptake, and inhibited palmitate‑induced intracellular lipid accumulation. Hispidin suppressed insulin receptor substrate‑1 Ser307 phosphorylation, and significantly promoted the activation of phosphatidylinositol‑3‑kinase and Akt, via inhibition of protein kinase C theta. Furthermore, hispidin treatment of C2C12 muscle cells increased glucose uptake via activation of adenosine monophosphate‑activated protein kinase. These findings indicated that hispidin may improve palmitate‑induced insulin resistance in skeletal muscle myotubes, and therefore hispidin treatment may be beneficial for patients with diabetes.
Collapse
Affiliation(s)
- Jong Seok Lee
- National Institute of Biological Resources, Incheon, Gyeonggi 22689, Republic of Korea
| | - Jun Myoung Park
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Incheon, Gyeonggi 22689, Republic of Korea
| | - Hye Jin Lee
- National Institute of Biological Resources, Incheon, Gyeonggi 22689, Republic of Korea
| | - Hee-Sun Yang
- National Institute of Biological Resources, Incheon, Gyeonggi 22689, Republic of Korea
| | - Joohong Yeo
- National Institute of Biological Resources, Incheon, Gyeonggi 22689, Republic of Korea
| | - Ki Rim Lee
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Byung Hyun Choi
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Eock Kee Hong
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
19
|
Yuan Z, Cao A, Liu H, Guo H, Zang Y, Wang Y, Wang Y, Wang H, Yin P, Peng W. Calcium Uptake via Mitochondrial Uniporter Contributes to Palmitic Acid-Induced Apoptosis in Mouse Podocytes. J Cell Biochem 2017; 118:2809-2818. [PMID: 28181698 DOI: 10.1002/jcb.25930] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 01/19/2023]
Abstract
Podocytes are component cells of the glomerular filtration barrier, and their loss by apoptosis is the main cause of proteinuria that leads to diabetic nephropathy (DN). Therefore, insights into podocyte apoptosis mechanism would allow a better understanding of DN pathogenesis and thus help develop adequate therapeutic strategies. Here, we investigated the molecular mechanism of palmitic acid-inhibited cell death in mouse podocytes, and found that palmitic acid increased cell death in a dose- and time-dependent manner. Palmitic acid induces apoptosis in podocytes through upregulation of cytosolic and mitochondrial Ca2+ , mitochondrial membrane potential (MMP), cytochrome c release, and depletion of endoplasmic reticulum (ER) Ca2+ . The intracellular calcium chelator, 1,2-bis (2-aminophenoxy) ethane-N,N,N, N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM), partially prevented this upregulation whereas 2-aminoethoxydiphenyl borate (2-APB), an inositol 1,4,5-triphosphate receptor (IP3R) inhibitor; dantrolene, a ryanodine receptor (RyR) inhibitor; and 4,4'-diisothiocyanatostibene-2,2'-disulfonic acid (DIDS), an anion exchange inhibitor, had no effect. Interestingly, ruthenium red and Ru360, both inhibitors of the mitochondrial Ca2+ uniporter (MCU), blocked palmitic acid-induced mitochondrial Ca2+ elevation, cytochrome c release from mitochondria to cytosol, and apoptosis. siRNA to MCU markedly reduced palmitic acid-induced apoptosis. These data indicate that Ca2+ uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. J. Cell. Biochem. 118: 2809-2818, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Aili Cao
- Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Hua Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai 201620, P.R. China
| | - Hengjiang Guo
- Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yingjun Zang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yi Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yunman Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Hao Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Wen Peng
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China.,Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
20
|
Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic β-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways. Apoptosis 2016; 20:1420-32. [PMID: 26330141 DOI: 10.1007/s10495-015-1150-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lipotoxicity plays a vital role in development and progression of type 2 diabetes. Prolonged elevation of free fatty acids especially the palmitate leads to pancreatic β-cell dysfunction and apoptosis. Curcumin (diferuloylmethane), a polyphenol from the curry spice turmeric, is considered to be a broadly cytoprotective agent. The present study was designed to determine the protective effect of curcumin on palmitate-induced apoptosis in β-cells and investigate underlying mechanisms. Our results showed that curcumin improved cell viability and enhanced glucose-induced insulin secretory function in MIN6 pancreatic β-cells. Palmitate incubation evoked chromatin condensation, DNA nick end labeling and activation of caspase-3 and -9. Curcumin treatment inhibited palmitate-induced apoptosis, relieved mitochondrial depolarization and up-regulated Bcl-2/Bax ratio. Palmitate induced the generation of reactive oxygen species and inhibited activities of antioxidant enzymes, which could be neutralized by curcumin treatment. Moreover, curcumin could promote rapid phosphorylation of Akt and nuclear exclusion of FoxO1 in MIN6 cells under lipotoxic condition. Phosphatidylinositol 3-kinase and Akt specific inhibitors abolished the anti-lipotoxic effect of curcumin and stimulated FoxO1 nuclear translocation. These findings suggested that curcumin protected MIN6 pancreatic β-Cells against apoptosis through activation of Akt, inhibition of nuclear translocation of FoxO1 and mitochondrial survival pathway.
Collapse
|
21
|
Xu S, Nam SM, Kim JH, Das R, Choi SK, Nguyen TT, Quan X, Choi SJ, Chung CH, Lee EY, Lee IK, Wiederkehr A, Wollheim CB, Cha SK, Park KS. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis 2015; 6:e1976. [PMID: 26583319 PMCID: PMC4670935 DOI: 10.1038/cddis.2015.331] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/02/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
Abstract
Pathologic alterations in podocytes lead to failure of an essential component of the glomerular filtration barrier and proteinuria in chronic kidney diseases. Elevated levels of saturated free fatty acid (FFA) are harmful to various tissues, implemented in the progression of diabetes and its complications such as proteinuria in diabetic nephropathy. Here, we investigated the molecular mechanism of palmitate cytotoxicity in cultured mouse podocytes. Incubation with palmitate dose-dependently increased cytosolic and mitochondrial reactive oxygen species, depolarized the mitochondrial membrane potential, impaired ATP synthesis and elicited apoptotic cell death. Palmitate not only evoked mitochondrial fragmentation but also caused marked dilation of the endoplasmic reticulum (ER). Consistently, palmitate upregulated ER stress proteins, oligomerized stromal interaction molecule 1 (STIM1) in the subplasmalemmal ER membrane, abolished the cyclopiazonic acid-induced cytosolic Ca2+ increase due to depletion of luminal ER Ca2+. Palmitate-induced ER Ca2+ depletion and cytotoxicity were blocked by a selective inhibitor of the fatty-acid transporter FAT/CD36. Loss of the ER Ca2+ pool induced by palmitate was reverted by the phospholipase C (PLC) inhibitor edelfosine. Palmitate-dependent activation of PLC was further demonstrated by following cytosolic translocation of the pleckstrin homology domain of PLC in palmitate-treated podocytes. An inhibitor of diacylglycerol (DAG) kinase, which elevates cytosolic DAG, strongly promoted ER Ca2+ depletion by low-dose palmitate. GF109203X, a PKC inhibitor, partially prevented palmitate-induced ER Ca2+ loss. Remarkably, the mitochondrial antioxidant mitoTEMPO inhibited palmitate-induced PLC activation, ER Ca2+ depletion and cytotoxicity. Palmitate elicited cytoskeletal changes in podocytes and increased albumin permeability, which was also blocked by mitoTEMPO. These data suggest that oxidative stress caused by saturated FFA leads to mitochondrial dysfunction and ER Ca2+ depletion through FAT/CD36 and PLC signaling, possibly contributing to podocyte injury.
Collapse
Affiliation(s)
- S Xu
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - S M Nam
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department of Internal Medicine, Daejeon Sun Hospital, Daejeon, Korea
| | - J-H Kim
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - R Das
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - S-K Choi
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - T T Nguyen
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - X Quan
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - S J Choi
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - C H Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - E Y Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - I-K Lee
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - A Wiederkehr
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - C B Wollheim
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - S-K Cha
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - K-S Park
- Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
22
|
Park JM, Lee JS, Song JE, Sim YC, Ha SJ, Hong EK. Cytoprotective effect of hispidin against palmitate-induced lipotoxicity in C2C12 myotubes. Molecules 2015; 20:5456-67. [PMID: 25826786 PMCID: PMC6272252 DOI: 10.3390/molecules20045456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/23/2023] Open
Abstract
It is well known that Phellinus linteus, which produces hispidin and its derivatives, possesses antioxidant activities. In this study, we investigated whether hispidin has protective effects on palmitate-induced oxidative stress in C2C12 skeletal muscle cells. Our results showed that palmitate treatment in C2C12 myotubes increased ROS generation and cell death as compared with the control. However, pretreatment of hispidin for 8 h improved the survival of C2C12 myotubes against palmitate-induced oxidative stress via inhibition of intracellular ROS production. Hispidin also inhibited palmitate-induced apoptotic nuclear condensation in C2C12 myotubes. In addition, we found that hispidin can suppress cleavage of caspase-3, expression of Bax, and NF-κB translocation. Therefore, these results suggest that hispidin is capable of protecting C2C12 myotubes against palmitate-induced oxidative stress.
Collapse
Affiliation(s)
- Jun Myoung Park
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea.
| | - Jong Seok Lee
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea.
- National Institute of Biological Resources, Incheon 404-708, Korea.
| | - Jeong Eun Song
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea.
| | - Ye Chan Sim
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea.
| | - Suk-Jin Ha
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea.
| | - Eock Kee Hong
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Gangwon-do 200-701, Korea.
| |
Collapse
|
23
|
Gilon P, Chae HY, Rutter GA, Ravier MA. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 2014; 56:340-61. [DOI: 10.1016/j.ceca.2014.09.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
|
24
|
Wang X, Welsh N. Bcl-2 maintains the mitochondrial membrane potential, but fails to affect production of reactive oxygen species and endoplasmic reticulum stress, in sodium palmitate-induced β-cell death. Ups J Med Sci 2014; 119:306-15. [PMID: 25266628 PMCID: PMC4248070 DOI: 10.3109/03009734.2014.962714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Sodium palmitate causes apoptosis of β-cells, and the anti-apoptotic protein Bcl-2 has been shown to counteract this event. However, the exact mechanisms that underlie palmitate-induced pancreatic β-cell apoptosis and through which pathway Bcl-2 executes the protective effect are still unclear. METHODS A stable Bcl-2-overexpressing RINm5F cell clone (BMG) and its negative control (B45) were exposed to palmitate for up to 8 h, and cell viability, mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, and NF-κB activation were studied in time course experiments. RESULTS Palmitate exposure for 8 h resulted in increased cell death rates, and this event was partially counteracted by Bcl-2. Bcl-2 overexpression promoted in parallel also a delayed induction of GADD153/CHOP and a weaker phosphorylation of BimEL in palmitate-exposed cells. At earlier time points (2-4 h) palmitate exposure resulted in increased generation of ROS, a decrease in mitochondrial membrane potential (Δψm), and a modest increase in the phosphorylation of eIF2α and IRE1α. BMG cells produced similar amounts of ROS and displayed the same eIF2α and IRE1α phosphorylation rates as B45 cells. However, the palmitate-induced dissipation of Δψm was partially counteracted by Bcl-2. In addition, basal NF-κB activity was increased in BMG cells. CONCLUSIONS Our results indicate that Bcl-2 counteracts palmitate-induced β-cell death by maintaining mitochondrial membrane integrity and augmenting NF-κB activity, but not by affecting ROS production and ER stress.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Martel C, Wang Z, Brenner C. VDAC phosphorylation, a lipid sensor influencing the cell fate. Mitochondrion 2014; 19 Pt A:69-77. [DOI: 10.1016/j.mito.2014.07.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022]
|
26
|
Boumhras M, Ouafik S, Nury T, Gresti J, Athias A, Ragot K, Nasser B, Cherkaoui-Malki M, Lizard G. Determination of heavy metal content and lipid profiles in mussel extracts from two sites on the moroccan atlantic coast and evaluation of their biological activities on MIN6 pancreatic cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:1245-1261. [PMID: 23450722 DOI: 10.1002/tox.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 06/01/2023]
Abstract
Mussels may concentrate pollutants, with possibly significant side effects on human health. Therefore, mussels (Mytilus galloprovincialis) from two sites of the Moroccan Atlantic coast (Jorf Lasfar [JL], an industrial site, and Oualidia [OL], a vegetable-growing area), were subjected to biochemical analyses to quantify the presence of heavy metals (Cd, Cr, and Pb) and to establish the lipid profile: fatty acid, cholesterol, oxysterol, phytosterol and phospholipid content. In addition, mussel lipid extracts known to accumulate numerous toxic components were tested on murine pancreatic β-cells (MIN6), and their biological activities were measured with various flow cytometric and biochemical methods to determine their impacts on cell death induction, organelle dysfunctions (mitochondria, lysosomes, and peroxisomes), oxidative stress and insulin secretion. The characteristics of JL and OL lipid extracts were compared with those of commercially available mussels from Spain (SP) used for human consumption. OL and JL contained heavy metals, high amounts of phospholipids, and high levels of oxysterols; the [(unsaturated fatty acids)/(saturated fatty acids)] ratio, which can be considered a sign of environmental stress leading to lipid peroxidation, was low. On MIN6 cells, JL and OL lipid extracts were able to trigger cell death. This event was associated with overproduction of H2 O2 , increased catalase activity, a decreased GSH level, lipid peroxidation and stimulation of insulin secretion. These effects were not observed with SP lipid extracts. These data suggest that some components from OL and JL lipid extracts might predispose to pancreatic dysfunctions. Epidemiological studies would be needed to assess the global risk on human health and the metabolic disease incidence in a context of regular seafood consumption from the OL and JL areas.
Collapse
Affiliation(s)
- M Boumhras
- Equipe 'Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique' (EA 7270) / Université de Bourgogne / INSERM, Dijon, France; Laboratoire de Biochimie et Neurosciences, Equipe de Toxicologie Appliquée, Université Hassan 1er, Faculté des Sciences et Techniques, Settat, Maroc
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wong KL, Wu YR, Cheng KS, Chan P, Cheung CW, Lu DY, Su TH, Liu ZM, Leung YM. Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacol Rep 2014; 66:1106-13. [PMID: 25443742 DOI: 10.1016/j.pharep.2014.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Astrocytes do not only maintain homeostasis of the extracellular milieu of the neurons, but also play an active role in modulating synaptic transmission. Palmitic acid (PA) is a saturated fatty acid which, when being excessive, is a significant risk factor for lipotoxicity. Activation of astrocytes by PA has been shown to cause neuronal inflammation and demyelination. However, direct damage by PA to astrocytes is relatively unexplored. The aim of this study was to identify the mechanism(s) of PA-induced cytotoxicity in rat cortical astrocytes and possible protection by (+)-catechin. METHODS Cytotoxicity and endoplasmic reticulum (ER) markers were assessed by MTT assay and Western blotting, respectively. Cytosolic Ca(2+) and mitochondrial membrane potential (MMP) were measured microfluorimetrically using fura-2 and rhodamine 123, respectively. Intracellular reactive oxygen species (ROS) production was assayed by the indicator 2'-7'-dichlorodihydrofluorescein diacetate. RESULTS Exposure of astrocytes to 100μM PA for 24h resulted in apoptotic cell death. Whilst PA-induced cell death appeared to be unrelated to ER stress and perturbation in cytosolic Ca(2+) signaling, it was likely a result of ROS production and subsequent MMP collapse, since ascorbic acid (anti-oxidant, 100μM) prevented PA-induced MMP collapse and cell death. Co-treatment of astrocytes with (+)-catechin (300μM), an anti-oxidant found abundantly in green tea, significantly prevented PA-induced ROS production, MMP collapse and cell death. CONCLUSION Our results suggest that PA-induced cytotoxicity in astrocytes may involve ROS generation and MMP collapse, which can be prevented by (+)-catechin.
Collapse
Affiliation(s)
- Kar-Lok Wong
- Department of Anesthesiology, China Medical University and Hospital, Taichung, Taiwan; Department of Anesthesiology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong; Department of Anesthesiology, Shandong University Nanshan Branch of Qilu Hospital, China
| | - Yu-Ru Wu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan
| | - Ka-Shun Cheng
- Department of Anesthesiology, China Medical University and Hospital, Taichung, Taiwan
| | - Paul Chan
- Division of Cardiology, Department of Medicine, Taipei Medical University Wan Fan Hospital, Taipei, Taiwan
| | - Chi-Wai Cheung
- Department of Anesthesiology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan
| | - Tzu-Hui Su
- Department of Anesthesiology, China Medical University and Hospital, Taichung, Taiwan
| | - Zhong-Min Liu
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Yuk-Man Leung
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
28
|
Hayashi H, Yamada R, Das SS, Sato T, Takahashi A, Hiratsuka M, Hirasawa N. Glucagon-like peptide-1 production in the GLUTag cell line is impaired by free fatty acids via endoplasmic reticulum stress. Metabolism 2014; 63:800-11. [PMID: 24680601 DOI: 10.1016/j.metabol.2014.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 12/16/2022]
Abstract
OBJECTS Glucagon-like peptide-1 (GLP-1) is secreted from intestinal L cells, enhances glucose-stimulated insulin secretion, and protects pancreas beta cells. However, few studies have examined hypernutrition stress in L cells and its effects on their function. Here, we demonstrated that a high-fat diet reduced glucose-stimulated secretion of GLP-1 and induced expression of an endoplasmic reticulum (ER) stress markers in the intestine of a diet-induced obesity mouse model. METHODS To clarify whether ER stress in L cells caused the attenuation of GLP-1 secretion, we treated the mouse intestinal L cell line, GLUTag cells with palmitate or oleate. RESULTS Palmitate, but not oleate caused ER stress and decreased the protein levels of prohormone convertase 1/3 (PC1/3), an essential enzyme in GLP-1 production. The same phenomena were observed in GLUTag cells treated with in ER stress inducer, thapsigargin. Moreover, oleate improved palmitate-induced ER stress, reduced protein and activity levels of PC1/3, and attenuated GLP-1 secretion from GLUTag cells. CONCLUSIONS/INTERPRETATION These results suggest that the intake of abundant saturated fatty acids induces ER stress in the intestine and decreases GLP-1 production.
Collapse
Affiliation(s)
- Hiroto Hayashi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Ren Yamada
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Siddhartha Shankar Das
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Taiki Sato
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Aki Takahashi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
29
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
30
|
Abstract
Thyroid hormone (TH) has long been recognized as a major modulator of metabolic efficiency, energy expenditure, and thermogenesis. TH effects in regulating metabolic efficiency are transduced by controlling the coupling of mitochondrial oxidative phosphorylation and the cycling of extramitochondrial substrate/futile cycles. However, despite our present understanding of the genomic and nongenomic modes of action of TH, its control of mitochondrial coupling still remains elusive. This review summarizes historical and up-to-date findings concerned with TH regulation of metabolic energetics, while integrating its genomic and mitochondrial activities. It underscores the role played by TH-induced gating of the mitochondrial permeability transition pore (PTP) in controlling metabolic efficiency. PTP gating may offer a unified target for some TH pleiotropic activities and may serve as a novel target for synthetic functional thyromimetics designed to modulate metabolic efficiency. PTP gating by long-chain fatty acid analogs may serve as a model for such strategy.
Collapse
Affiliation(s)
- Einav Yehuda-Shnaidman
- Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel 91120
| | | | | |
Collapse
|
31
|
Kim JY, Park KJ, Kim GH, Jeong EA, Lee DY, Lee SS, Kim DJ, Roh GS, Song J, Ki SH, Kim WH. In vivo activating transcription factor 3 silencing ameliorates the AMPK compensatory effects for ER stress-mediated β-cell dysfunction during the progression of type-2 diabetes. Cell Signal 2013; 25:2348-61. [PMID: 23916985 DOI: 10.1016/j.cellsig.2013.07.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/15/2013] [Accepted: 07/29/2013] [Indexed: 12/25/2022]
Abstract
In obese Zucker diabetic fatty (ZDF) rats, ER stress is associated with insulin resistance and pancreatic β-cell dysfunction; however the exact mechanisms by which ER stress drives type-2 diabetes remain uncertain. Here, we investigated the role of ATF3 on the preventive regulation of AMPK against ER stress-mediated β-cell dysfunction during the end-stage progression of hyperglycemia in ZDF rats. The impaired glucose metabolism and β-cell dysfunction were significantly increased in late-diabetic phase 19-week-old ZDF rats. Although AMPK phosphorylation reduced in 6- and 12-week-old ZDF rats was remarkably increased at 19weeks, the increases of lipogenice genes, ATF3, and ER stress or ROS-mediated β-cell dysfunction were still remained, which were attenuated by in vivo-injection of chemical chaperon tauroursodeoxycholate (TUDCA), chronic AICAR, or antioxidants. ATF3 did not directly affect AMPK phosphorylation, but counteracts the preventive effects of AMPK for high glucose-induced β-cell dysfunction. Moreover, knockdown of ATF3 by delivery of in vivo-jetPEI ATF3 siRNA attenuated ER stress-mediated β-cell dysfunction and enhanced the beneficial effect of AICAR. Our data suggest that ATF3 may play as a counteracting regulator of AMPK and thus promote β-cell dysfunction and the development of type-2 diabetes and could be a potential therapeutic target in treating type-2 diabetes.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, #187 Osong Saengmyeong2-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Malmgren S, Spégel P, Danielsson APH, Nagorny CL, Andersson LE, Nitert MD, Ridderstråle M, Mulder H, Ling C. Coordinate changes in histone modifications, mRNA levels, and metabolite profiles in clonal INS-1 832/13 β-cells accompany functional adaptations to lipotoxicity. J Biol Chem 2013; 288:11973-87. [PMID: 23476019 DOI: 10.1074/jbc.m112.422527] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lipotoxicity is a presumed pathogenetic process whereby elevated circulating and stored lipids in type 2 diabetes cause pancreatic β-cell failure. To resolve the underlying molecular mechanisms, we exposed clonal INS-1 832/13 β-cells to palmitate for 48 h. We observed elevated basal insulin secretion but impaired glucose-stimulated insulin secretion in palmitate-exposed cells. Glucose utilization was unchanged, palmitate oxidation was increased, and oxygen consumption was impaired. Halting exposure of the clonal INS-1 832/13 β-cells to palmitate largely recovered all of the lipid-induced functional changes. Metabolite profiling revealed profound but reversible increases in cellular lipids. Glucose-induced increases in tricarboxylic acid cycle intermediates were attenuated by exposure to palmitate. Analysis of gene expression by microarray showed increased expression of 982 genes and decreased expression of 1032 genes after exposure to palmitate. Increases were seen in pathways for steroid biosynthesis, cell cycle, fatty acid metabolism, DNA replication, and biosynthesis of unsaturated fatty acids; decreases occurred in the aminoacyl-tRNA synthesis pathway. The activity of histone-modifying enzymes and histone modifications of differentially expressed genes were reversibly altered upon exposure to palmitate. Thus, Insig1, Lss, Peci, Idi1, Hmgcs1, and Casr were subject to epigenetic regulation. Our analyses demonstrate that coordinate changes in histone modifications, mRNA levels, and metabolite profiles accompanied functional adaptations of clonal β-cells to lipotoxicity. It is highly likely that these changes are pathogenetic, accounting for loss of glucose responsiveness and perturbed insulin secretion.
Collapse
Affiliation(s)
- Siri Malmgren
- Department of Clinical Sciences, Units of Molecular Metabolism, Scania University Hospital, 205 02 Malmö, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Peng L, Men X, Zhang W, Wang H, Xu S, Fang Q, Liu H, Yang W, Lou J. Involvement of dynamin-related protein 1 in free fatty acid-induced INS-1-derived cell apoptosis. PLoS One 2012; 7:e49258. [PMID: 23166623 PMCID: PMC3498159 DOI: 10.1371/journal.pone.0049258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/04/2012] [Indexed: 01/09/2023] Open
Abstract
Elevated extracellular free fatty acids (FFAs) can induce pancreatic beta cell apoptosis, thereby contributing to the pathogenesis of type 2 diabetes mellitus (T2D). Mitochondrial dysfunction has been implicated in FFA-induced beta cell apoptosis. However, molecular mechanisms linking mitochondrial dysfunction and FFA-induced beta cell apoptosis are not clear. Dynamin-related protein 1 (DRP-1) is a mitochondrial fission modulator. In this study, we investigated its role in FFA-induced INS-1 beta cell apoptosis. DRP-1 protein was promptly induced in INS-1 cells and rat islets after stimulation by FFAs, and this DRP-1 upregulation was accompanied by increased INS-1 cell apoptosis. Induction of DRP-1 expression significantly promoted FFA-induced apoptosis in DRP-1 WT (DRP-1 wild type) inducible INS-1-derived cell line, but not in DRP-1K38A (a dominant negative mutant of DRP-1) inducible INS-1-derived cell line. To validate these in vitro results, we transplanted DRP-1 WT or DRP-1 K38A cells into renal capsules of streptozotocin (STZ)-treated diabetic mice to study the apoptosis in xenografts. Consistent with the in vitro results, the over-expression of DRP-1 led to aggravated INS-1-derived cell apoptosis triggered by FFAs. In contrast, dominant-negative suppression of DRP-1 function as represented by DRP-1 K38A significantly prevented FFA-induced apoptosis in xenografts. It was further demonstrated that mitochondrial membrane potential decreased, while cytochrome c release, caspase-3 activation, and generation of reactive oxygen species (ROS) were enhanced by the induction of DRP-1WT, but prevented by DRP-1 K38A in INS-1-derived cells under FFA stimulation. These results indicated that DRP-1 mediates FFA-induced INS-1-derived cell apoptosis, suggesting that suppression of DRP-1 is a potentially useful therapeutic strategy for protecting against beta cell loss that leads to type 2 diabetes.
Collapse
Affiliation(s)
- Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xiuli Men
- Department of Pathophysiology, North China Coal Medical University, Tangshan, China
| | - Wenjian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Haiyan Wang
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Geneva, Switzerland
| | - Shiqing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Qing Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Wenying Yang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jinning Lou
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
34
|
The role of fatty acid metabolism and lipotoxicity in pancreatic β-cell injury: Identification of potential therapeutic targets. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2012.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Knapp A, Czech U, Góralska J, Sliwa A, Gruca A, Kieć-Wilk B, Awsiuk M, Thiele C, Dudek W, Dembińska-Kieć A. Influence of fatty acids on mitochondrial metabolism of adipocyte progenitors and endothelial cells. Arch Physiol Biochem 2012; 118:128-34. [PMID: 22530948 DOI: 10.3109/13813455.2012.668193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT In obesity, the cells are exposed to excessive amounts of nutrients, especially free fatty acids (FFAs) that induce a variety of metabolic changes. OBJECTIVE We investigated the effect of FFAs on the mitochondrial function in different cell populations under stress conditions. METHODS Human adipose tissue progenitor cells (SVF) or endothelial cells (HUVECs) were incubated with 30μM of selected saturated or unsaturated FFA for 24 h, at times supplemented with 5ng/mL tumour necrosis factor alpha (TNFα) for the last 4 h. Changes in oxygen respiration rate, mitochondrial membrane potential (mitoMP) and total ATP content were monitored. RESULTS Saturated palmitic acid demonstrated no effect, while a selection of unsaturated FFAs ameliorated metabolism of the progenitor SVF cells. TNFα either did not affect or nullified some of the favourable FFA-induced effects. CONCLUSIONS The mitoMP was the most sensitive parameter reflecting positive impact of the unsaturated FFA on the adipose SVF cells' metabolism.
Collapse
Affiliation(s)
- Anna Knapp
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kruspig B, Nilchian A, Bejarano I, Orrenius S, Zhivotovsky B, Gogvadze V. Targeting mitochondria by α-tocopheryl succinate kills neuroblastoma cells irrespective of MycN oncogene expression. Cell Mol Life Sci 2012; 69:2091-9. [PMID: 22286068 PMCID: PMC11114637 DOI: 10.1007/s00018-012-0918-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/17/2011] [Accepted: 01/05/2012] [Indexed: 11/29/2022]
Abstract
Amplification of the MycN oncogene characterizes a subset of highly aggressive neuroblastomas, the most common extracranial solid tumor of childhood. However, the significance of MycN amplification for tumor cell survival is controversial, since down-regulation of MycN was found to decrease markedly neuroblastoma sensitivity towards conventional anticancer drugs, cisplatin, and doxorubicin. Here, we show that a redox-silent analogue of vitamin E, α-tocopheryl succinate (α-TOS), which triggers apoptotic cell death via targeting mitochondria, can kill tumor cells irrespective of their MycN expression level. In cells overexpressing MycN, as well as cells in which MycN was switched off, α-TOS stimulated rapid entry of Ca(2+) into the cytosol, compromised Ca(2+) buffering capacity of the mitochondria and sensitized them towards mitochondrial permeability transition and subsequent apoptotic cell death. Prevention of mitochondrial Ca(2+) accumulation or chelation of cytosolic Ca(2+) rescued the cells. Thus, targeting mitochondria might be advantageous for the elimination of tumor cells with otherwise dormant apoptotic pathways.
Collapse
Affiliation(s)
- Björn Kruspig
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden
| | - Azadeh Nilchian
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden
| | - Ignacio Bejarano
- Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain
| | - Sten Orrenius
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden
| | - Boris Zhivotovsky
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden
- MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir Gogvadze
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden
- MV Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
37
|
Hardy AB, Wijesekara N, Genkin I, Prentice KJ, Bhattacharjee A, Kong D, Chimienti F, Wheeler MB. Effects of high-fat diet feeding on Znt8-null mice: differences between β-cell and global knockout of Znt8. Am J Physiol Endocrinol Metab 2012; 302:E1084-96. [PMID: 22338079 PMCID: PMC3774340 DOI: 10.1152/ajpendo.00448.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genomewide association studies have linked a polymorphism in the zinc transporter 8 (Znt8) gene to higher risk of developing type 2 diabetes. Znt8 is highly expressed in pancreatic β-cells where it is involved in the regulation of zinc transport into granules. However, Znt8 is also expressed in other tissues including α-cells, where its function is as yet unknown. Previous work demonstrated that mice lacking Znt8 globally were more susceptible to diet-induced obesity (Lemaire et al., Proc Natl Acad Sci USA 106: 14872-14877, 2009; Nicolson et al., Diabetes 58: 2070-2083, 2009). Therefore, the main goal of this study was to examine the physiological impact of β-cell-specific Znt8 deficiency in mice during high-fat high-calorie (HFHC) diet feeding. For these studies, we used β-cell-specific Znt8 knockout (Ins2Cre:Znt8loxP/loxP) and whole body Znt8 knockout (Cre-:Znt8(-/-)) mice placed on a HFHC diet for 16 wk. Ins2Cre:Znt8loxP/loxP mice on HFHC diet had similar body weights throughout the study but displayed impaired insulin biosynthesis and secretion and were glucose intolerant compared with littermate control Ins2Cre mice. In contrast, Cre-:Znt8(-/-) mice became remarkably obese, hyperglycemic, hyperinsulinemic, insulin resistant, and glucose intolerant compared with littermate control Cre- mice. These data show that β-cell Znt8 alone does not considerably aggravate weight gain and glucose intolerance during metabolic stress imposed by an HFHC diet. However, global loss of Znt8 is involved in exacerbating diet-induced obesity and resulting insulin resistance, and this may be due to the loss of Znt8 activity in a tissue other than the β-cell. Thus, our data suggest that Znt8 contributes to the risk of developing type 2 diabetes through β-cell- and non-β-cell-specific effects.
Collapse
Affiliation(s)
| | | | | | | | | | - D. Kong
- 3Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and
| | | | - M. B. Wheeler
- 1Department of Physiology and
- 2Department of Medicine, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
38
|
Guards and culprits in the endoplasmic reticulum: glucolipotoxicity and β-cell failure in type II diabetes. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:639762. [PMID: 21977023 PMCID: PMC3184438 DOI: 10.1155/2012/639762] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle responsible for multiple important cellular functions including the biosynthesis and folding of newly synthesized proteins destined for secretion, such as insulin. The ER participates in all branches of metabolism, linking nutrient sensing to cellular signaling. Many pathological and physiological factors perturb ER function and induce ER stress. ER stress triggers an adaptive signaling cascade, called the unfolded protein response (UPR), to relieve the stress. The failure of the UPR to resolve ER stress leads to pathological conditions such as β-cell dysfunction and death, and type II diabetes. However, much less is known about the fine details of the control and regulation of the ER response to hyperglycemia (glucotoxicity), hyperlipidemia (lipotoxicity), and the combination of both (glucolipotoxicity). This paper considers recent insights into how the response is regulated, which may provide clues into the mechanism of ER stress-mediated β-cell dysfunction and death during the progression of glucolipotoxicity-induced type II diabetes.
Collapse
|
39
|
Las G, Serada SB, Wikstrom JD, Twig G, Shirihai OS. Fatty acids suppress autophagic turnover in β-cells. J Biol Chem 2011; 286:42534-42544. [PMID: 21859708 DOI: 10.1074/jbc.m111.242412] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that autophagy is essential for proper β-cell function and survival. However, it is yet unclear under what pathogenic conditions autophagy is inhibited in β-cells. Here, we report that long term exposure to fatty acids and glucose block autophagic flux in β-cells, contributing to their toxic effect. INS1 cells expressing GFP-LC3 (an autophagosome marker) were treated with 0.4 mm palmitate, 0.4 mm oleate, and various concentrations of glucose for 22 h. Kinetics of the effect of fatty acids on autophagy showed a biphasic response. During the second phase of autophagy, the size of autophagosomes and the content of autophagosome substrates (GFP-LC3, p62) and endogenous LC3 was increased. During the same phase, fatty acids suppressed autophagic degradation of long lived protein in both INS1 cells and islets. In INS1 cells, palmitate induced a 3-fold decrease in the number and the acidity of Acidic Vesicular Organelles. This decrease was associated with a suppression of hydrolase activity, suppression of endocytosis, and suppression of oxidative phosphorylation. The combination of fatty acids with glucose synergistically suppressed autophagic turnover, concomitantly suppressing insulin secretion. Rapamycin treatment resulted in partial reversal of the inhibition of autophagic flux, the inhibition of insulin secretion, and the increase in cell death. Our results indicate that excess nutrient could impair autophagy in the long term, hence contributing to nutrient-induced β-cell dysfunction. This may provide a novel mechanism that connects diet-induced obesity and diabetes.
Collapse
Affiliation(s)
- Guy Las
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Sam B Serada
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jakob D Wikstrom
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Gilad Twig
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Orian S Shirihai
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118.
| |
Collapse
|
40
|
Park JS, Pasupulati R, Feldkamp T, Roeser NF, Weinberg JM. Cyclophilin D and the mitochondrial permeability transition in kidney proximal tubules after hypoxic and ischemic injury. Am J Physiol Renal Physiol 2011; 301:F134-50. [PMID: 21490135 PMCID: PMC3129895 DOI: 10.1152/ajprenal.00033.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/08/2011] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial matrix cyclophilin D (CyPD) is known to promote development of the mitochondrial permeability transition (MPT). Kidney proximal tubule cells are especially prone to deleterious effects of mitochondrial damage because of their dependence on oxidative mitochondrial metabolism for ATP production. To clarify the role of CyPD and the MPT in proximal tubule injury during ischemia-reperfusion (I/R) and hypoxia-reoxygenation (H/R), we assessed freshly isolated tubules and in vivo injury in wild-type (WT) and Ppif(-/-) CyPD-null mice. Isolated mouse tubules developed a sustained, nonesterified fatty acid-mediated energetic deficit after H/R in vitro that could be substantially reversed by delipidated albumin and supplemental citric acid cycle substrates but was not modified by the absence of CyPD. Susceptibility of WT and Ppif(-/-) tubules to the MPT was increased by H/R but was less in normoxic and H/R Ppif(-/-) than WT tubules. Correction of the energetic deficit that developed during H/R strongly increased resistance to the MPT. Ppif(-/-) mice were resistant to I/R injury in vivo spanning a wide range of severity. The data clarify involvement of the MPT in oxygen deprivation-induced tubule cell injury by showing that the MPT does not contribute to the initial bioenergetic deficit produced by H/R but the deficit predisposes to subsequent development of the MPT, which contributes pathogenically to kidney I/R injury in vivo.
Collapse
Affiliation(s)
- Jeong Soon Park
- Nephrology Division, Dept. of Internal Medicine, Rm. 1560, MSRB II, University of Michigan Medical Center, Ann Arbor, MI 48109-0676, USA
| | | | | | | | | |
Collapse
|
41
|
Lang F, Ullrich S, Gulbins E. Ceramide formation as a target in beta-cell survival and function. Expert Opin Ther Targets 2011; 15:1061-71. [PMID: 21635197 DOI: 10.1517/14728222.2011.588209] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Ceramide may be synthesized de novo or generated by sphingomyelinase-dependent hydrolysis of sphingomyelin. AREAS COVERED The role of ceramide, ceramide-sensitive signaling and ion channels in β-cell apoptosis, lipotoxicity and amyloid-induced β-cell death. EXPERT OPINION Ceramide participates in β-cell dysfunction and apoptosis after exposure to TNFα, IL-1β and IFN-γ, excessive amyloid and islet amyloid polypeptide or non-esterified fatty acids (lipotoxicity). Knockout of sphingomyelin synthase 1, which converts ceramide to sphingomyelin, leads to impairment of insulin secretion. Increased ceramidase activity or pharmacological inhibition of ceramide synthetase, inhibits β-cell apoptosis. Ceramide contributes to endoplasmatic reticulum (ER) stress, decreased mitochondrial membrane potential in insulin-secreting cells and mitochondrial release of cytochrome c into the cytosol, which are all triggers of apoptotic cell death. Ceramide-dependent signaling involves activation of extracellularly regulated kinases 1 and 2 (ERK1/2), downregulation of Period (Per)-aryl hydrocarbon receptor nuclear translocator (Arnt)-single-minded (Sim) kinase (PASK), activation of okadaic-acid-sensitive protein phosphatase 2A (PP2A) and stimulation of NADPH-oxidase with generation of superoxides and lipid peroxides. Ceramide reduces the activity of voltage gated potassium (Kv)-channels in insulin-secreting cells. The role of ceramide in β-cell survival and function may be therapeutically relevant, because ceramide formation can be suppressed by pharmacological inhibition of ceramide synthetase and/or sphingomyelinase.
Collapse
Affiliation(s)
- Florian Lang
- University of Tübingen, Institute of Physiology, Germany.
| | | | | |
Collapse
|
42
|
Ting TC, Miyazaki-Anzai S, Masuda M, Levi M, Demer LL, Tintut Y, Miyazaki M. Increased lipogenesis and stearate accelerate vascular calcification in calcifying vascular cells. J Biol Chem 2011; 286:23938-49. [PMID: 21596756 DOI: 10.1074/jbc.m111.237065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Vascular calcification is recognized as an independent predictor of cardiovascular mortality, particularly in subjects with chronic kidney disease. However, the pathways by which dysregulation of lipid and mineral metabolism simultaneously occur in this particular population remain unclear. We have shown that activation of the farnesoid X receptor (FXR) blocks mineralization of bovine calcifying vascular cells (CVCs) and in ApoE knock-out mice with 5/6 nephrectomy. In contrast to FXR, this study showed that liver X receptor (LXR) activation by LXR agonists and adenovirus-mediated LXR overexpression by VP16-LXRα and VP16-LXRβ accelerated mineralization of CVCs. Conversely, LXR inhibition by dominant negative (DN) forms of LXRα and LXRβ reduced calcium content in CVCs. The regulation of mineralization by FXR and LXR agonists was highly correlated with changes in lipid accumulation, fatty acid synthesis, and the expression of sterol regulatory element binding protein-1 (SREBP-1). The rate of lipogenesis in CVCs through the SREBP-1c dependent pathway was reduced by FXR activation, but increased by LXR activation. SREBP-1c overexpression augmented mineralization in CVCs, whereas SREBP-1c DN inhibited alkaline phosphatase activity and mineralization induced by LXR agonists. LXR and SREBP-1c activations increased, whereas FXR activation decreased, saturated and monounsaturated fatty acids derived from lipogenesis. In addition, we found that stearate markedly promoted mineralization of CVCs as compared with other fatty acids. Furthermore, inhibition of either acetyl-CoA carboxylase or acyl-CoA synthetase reduced mineralization of CVCs, whereas inhibition of stearoyl-CoA desaturase induced mineralization. Therefore, a stearate metabolite derived from lipogenesis might be a risk factor for the development of vascular calcification.
Collapse
Affiliation(s)
- Tabitha C Ting
- Division of Renal Diseases and Hypertension, Department of Medicine, Denver VA Medical Center and University of Colorado, Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Tu YF, Kaipparettu BA, Ma Y, Wong LJC. Mitochondria of highly metastatic breast cancer cell line MDA-MB-231 exhibits increased autophagic properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1125-32. [PMID: 21570379 DOI: 10.1016/j.bbabio.2011.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/26/2011] [Accepted: 04/26/2011] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular housekeeping process that removes damaged or unwanted cellular components and recycles them to build new constituents. It is essential for tumor growth under adverse environment. Mitochondria play an important role in the formation of autophagosome and its subsequent docking and fusion with lysosome. To understand the contribution of mitochondria to the regulation of homeostatic autophagy in cancer cells, we used the transmitochondrial cytoplasmic hybrid (cybrid) model. Cybrid system allowed us to compare mitochondria from different cell types including highly metastatic breast cancer cell line MDA-MB-231 (c231), less metastatic breast cancer cell lines: MDA-MB-436 (c436) and MDA-MB-468 (c468), as well as non-cancerous mammary epithelial cell MCF-10A (c10A) in a defined nuclear background. The c231 exhibited lower LC3-II levels but higher ratio of LC3-II/LC3-I than c436, c468 and c10A. In addition, c231 displayed more punctate LC3-positive cells and had lower levels of sequestosome 1 (p62/SQSTM1) than other cybrids. These suggested that mitochondria could contribute to the increased autophagy and autophagic flux in metastatic cancer. This increased autophagy was found to be non-selective autophagy instead of selective mitophagy since LC3 puncta in c231 did not co-localize with mitochondria labeled by Mitotracker red or Tomm 20. The promotion of mitochondrial permeability transition (MPT) in c231 also contributed to increased autophagy. Block of MPT by the inhibition of low-conductance stage of MPT pores resulted in a decrease of LC3 puncta in c231. These results suggested that mitochondria from highly metastatic breast cancer cell line MDA-MB-231 can promote homeostatic autophagy of cancer through opening low-conductance MPT pores.
Collapse
Affiliation(s)
- Yi-Fang Tu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, NAB 2015, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
44
|
Effects of human serum albumin complexed with free fatty acids on cell viability and insulin secretion in the hamster pancreatic β-cell line HIT-T15. Life Sci 2011; 88:810-8. [PMID: 21396379 DOI: 10.1016/j.lfs.2011.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/29/2011] [Accepted: 02/17/2011] [Indexed: 12/17/2022]
Abstract
AIMS The effects of human serum albumin (HSA) complexed with various free fatty acids (FFAs) on ß-cells have not been studied in detail. In this study, we examined the effects of HSA and its mutants on FFA-induced cell viability changes and insulin secretion from the hamster pancreatic insulinoma cell line, HIT-TI5. MAIN METHODS Cells were exposed to different FFAs in the presence of HSA or its mutants and/or bovine serum albumin (BSA) for 24h. Cell viability, apoptosis, insulin secretion, and unbound FFA (FFA(u)) levels were determined. KEY FINDINGS In the presence of 0.1mM HSA, palmitate and stearate induced significant cell death at 0.1mM or higher, whereas myristate, palmitoleate, oleate, elaidate, linoleate, linoelaidate, and conjugated linoleate showed minimal changes on cell viability. Furthermore, oleate and linoleate were clearly cytoprotective against palmitate-induced cell death. The apoptosis inhibitors, cyclosporin A (csA) and the caspase inhibitor ZVAD-FMK, did not completely prevent FFA-induced cell death, although ZVAD-FMK blocked apoptosis with no differences in the presence of either HSA or BSA. In addition, insulin secretion from the cells was significantly reduced in the presence of HSA/oleate complexes. We also found differential effects of HSA mutants complexed with FFAs on cell viability. SIGNIFICANCE In summary, our results showed that saturated FFAs induced more cell death than unsaturated FFAs. Furthermore, modified HSA/FFA interactions caused by mutations of key amino acids involved in the binding of FFA to HSA resulted in changes in cell viability, suggesting a possible role of HSA polymorphism on FFA-induced changes in cellular functions.
Collapse
|
45
|
Padilla A, Descorbeth M, Almeyda AL, Payne K, De Leon M. Hyperglycemia magnifies Schwann cell dysfunction and cell death triggered by PA-induced lipotoxicity. Brain Res 2010; 1370:64-79. [PMID: 21108938 DOI: 10.1016/j.brainres.2010.11.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/01/2010] [Accepted: 11/05/2010] [Indexed: 01/01/2023]
Abstract
Lipid overload resulting in lipotoxicity is prominent in a number of chronic diseases and has been associated with cellular dysfunction and cell death. This study characterizes palmitic acid-induced lipotoxicity (PA-LTx) in Schwann cell cultures grown in normal and high glucose concentrations. The study shows for the first time that Schwann cell (SC) cultures exposed to elevated levels of PA exhibit a dose- and time-dependent loss in cell viability. Hoescht and Annexin V/7AAD staining confirmed cell death through apoptosis and the lipotoxic effect was more dramatic in SC cultures grown under high glucose conditions. The first indication of cellular dysfunction in treated SC cultures was a decrease in Ca(++) levels in the endoplasmic reticulum (ER, [Ca(++)](ER)) observed five minutes following the initial challenge with PA. This decrease in [Ca(++) ](ER) was followed by a significant increase in the expression of ER stress signature genes CHOP, Xbp1 and GRP78. The early ER stress response induced by PA-LTx was followed by a strong mitochondrial membrane depolarization. Flow cytometry using 2', 7'-dichlorodihydrofluorescein diacetate (H(2)DCFDA) showed an increase in oxidative stress within three to six hours after PA treatment. Treatment of cultures undergoing PA-LTx with the calcium chelator BAPTA-AM and the anti-oxidant MCI-186 significantly reversed the lipotoxic effect by decreasing the generation of ROS and significantly increasing cell viability. We conclude that lipotoxicity in Schwann cells results in cellular dysfunction and cell death that involves a robust ER stress response, mitochondrial dysfunction and an augmented state of cellular oxidative stress (ASCOS).
Collapse
Affiliation(s)
- Amelia Padilla
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
46
|
Gogvadze V, Norberg E, Orrenius S, Zhivotovsky B. Involvement of Ca2+ and ROS in α-tocopheryl succinate-induced mitochondrial permeabilization. Int J Cancer 2010; 127:1823-32. [DOI: 10.1002/ijc.25204] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Syed I, Jayaram B, Subasinghe W, Kowluru A. Tiam1/Rac1 signaling pathway mediates palmitate-induced, ceramide-sensitive generation of superoxides and lipid peroxides and the loss of mitochondrial membrane potential in pancreatic beta-cells. Biochem Pharmacol 2010; 80:874-83. [PMID: 20493824 DOI: 10.1016/j.bcp.2010.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 12/15/2022]
Abstract
The phagocytic NADPH oxidase [NOX] has been implicated in the generation of superoxides in the pancreatic beta-cell. Herein, using normal rat islets and clonal INS 832/13 cells, we tested the hypothesis that activation of the small G-protein Rac1, which is a member of the NOX holoenzyme, is necessary for palmitate [PA]-induced generation of superoxides in pancreatic beta-cells. Incubation of isolated beta-cells with PA potently increased the NOX activity culminating in a significant increase in the generation of superoxides and lipid peroxides in these cells; such effects of PA were attenuated by diphenyleneiodonium [DPI], a known inhibitor of NOX. In addition, PA caused a transient, but significant activation [i.e., GTP-bound form] of Rac1 in these cells. NSC23766, a selective inhibitor of Rac1, but not Cdc42 or Rho activation, inhibited Rac1 activation and the generation of superoxides and lipid peroxides induced by PA. Fumonisin B-1 [FB-1], which inhibits de novo synthesis of ceramide [CER] from PA, also attenuated PA-induced superoxide and lipid peroxide generation and NOX activity implicating intracellularly generated CER in the metabolic effects of PA; such effects were also demonstrable in the presence of the cell-permeable C2-CER. Further, NSC23766 prevented C2-CER-induced Rac1 activation and production of superoxides and lipid peroxides. Lastly, C2-CER, but not its inactive analogue, significantly reduced the mitochondrial membrane potential, which was prevented to a large degree by NSC23766. Together, our findings suggest that Tiam1/Rac1 signaling pathway regulates PA-induced, CER-dependent superoxide generation and mitochondrial dysfunction in pancreatic beta-cells.
Collapse
Affiliation(s)
- Ismail Syed
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy, Wayne State University, Detroit, MI 48201, United States
| | | | | | | |
Collapse
|
48
|
Morgan NG, Dhayal S. Unsaturated fatty acids as cytoprotective agents in the pancreatic beta-cell. Prostaglandins Leukot Essent Fatty Acids 2010; 82:231-6. [PMID: 20206490 DOI: 10.1016/j.plefa.2010.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
It is widely accepted that, in type 2 diabetes, elevated levels of free fatty acids and glucose contribute to a state of glucolipotoxicity in which beta-cell function declines and, ultimately, cell viability is compromised. This suggests that beta-cells do not readily tolerate chronic elevations in fatty acid levels. In vitro studies suggest, however, that beta-cells respond differentially to long chain fatty acids, such that saturated species are lipotoxic whereas long chain mono-unsaturated fatty acids can provide cytoprotection. This difference does not appear to be mediated by a mutual metabolic antagonism between saturated and unsaturated species (although differential alterations in neutral lipid disposition may occur in response to these fatty acids) and the mechanisms remain unclear. This review summaries the current understanding of the actions of mono-unsaturated fatty acids in beta-cells and highlights areas of controversy as well as key unresolved issues which require to be addressed.
Collapse
Affiliation(s)
- Noel G Morgan
- Institute of Biomedical & Clinical Science, Peninsula Medical School (University of Exeter), Plymouth, UK.
| | | |
Collapse
|
49
|
Samovski D, Kalderon B, Yehuda-Shnaidman E, Bar-Tana J. Gating of the mitochondrial permeability transition pore by long chain fatty acyl analogs in vivo. J Biol Chem 2010; 285:6879-90. [PMID: 20037159 PMCID: PMC2844138 DOI: 10.1074/jbc.m109.080416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/22/2009] [Indexed: 11/06/2022] Open
Abstract
The role played by long chain fatty acids (LCFA) in promoting energy expenditure is confounded by their dual function as substrates for oxidation and as putative classic uncouplers of mitochondrial oxidative phosphorylation. LCFA analogs of the MEDICA (MEthyl-substituted DICarboxylic Acids) series are neither esterified into lipids nor beta-oxidized and may thus simulate the uncoupling activity of natural LCFA in vivo, independently of their substrate role. Treatment of rats or cell lines with MEDICA analogs results in low conductance gating of the mitochondrial permeability transition pore (PTP), with 10-40% decrease in the inner mitochondrial membrane potential. PTP gating by MEDICA analogs is accounted for by inhibition of Raf1 expression and kinase activity, resulting in suppression of the MAPK/RSK1 and the adenylate cyclase/PKA transduction pathways. Suppression of RSK1 and PKA results in a decrease in phosphorylation of their respective downstream targets, Bad(Ser-112) and Bad(Ser-155). Decrease in Bad(Ser-112, Ser-155) phosphorylation results in increased binding of Bad to mitochondrial Bcl2 with concomitant displacement of Bax, followed by PTP gating induced by free mitochondrial Bax. Low conductance PTP gating by LCFA/MEDICA may account for their thyromimetic calorigenic activity in vivo.
Collapse
Affiliation(s)
- Dmitri Samovski
- From the Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Bella Kalderon
- From the Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Einav Yehuda-Shnaidman
- From the Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Jacob Bar-Tana
- From the Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem 91120, Israel
| |
Collapse
|
50
|
Chen J, Fontes G, Saxena G, Poitout V, Shalev A. Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell death. Diabetes 2010; 59:440-7. [PMID: 19875615 PMCID: PMC2809961 DOI: 10.2337/db09-0949] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE We have previously shown that lack of thioredoxin-interacting protein (TXNIP) protects against diabetes and glucotoxicity-induced beta-cell apoptosis. Because the role of TXNIP in lipotoxicity is unknown, the goal of the present study was to determine whether TXNIP expression is regulated by fatty acids and whether TXNIP deficiency also protects beta-cells against lipoapoptosis. RESARCH DESIGN AND METHODS: To determine the effects of fatty acids on beta-cell TXNIP expression, INS-1 cells and isolated islets were incubated with/without palmitate and rats underwent cyclic infusions of glucose and/or Intralipid prior to islet isolation and analysis by quantitative real-time RT-PCR and immunoblotting. Using primary wild-type and TXNIP-deficient islets, we then assessed the effects of palmitate on apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]), mitochondrial death pathway (cytochrome c release), and endoplasmic reticulum (ER) stress (binding protein [BiP], C/EBP homologous protein [CHOP]). Effects of TXNIP deficiency were also tested in the context of staurosporine (mitochondrial damage) or thapsigargin (ER stress). RESULTS Glucose elicited a dramatic increase in islet TXNIP expression both in vitro and in vivo, whereas fatty acids had no such effect and, when combined with glucose, even abolished the glucose effect. We also found that TXNIP deficiency does not effectively protect against palmitate or thapsigargin-induced beta-cell apoptosis, but specifically prevents staurosporine- or glucose-induced toxicity. CONCLUSIONS Our results demonstrate that unlike glucose, fatty acids do not induce beta-cell expression of proapoptotic TXNIP. They further reveal that TXNIP deficiency specifically inhibits the mitochondrial death pathway underlying beta-cell glucotoxicity, whereas it has very few protective effects against ER stress-mediated lipoapoptosis.
Collapse
Affiliation(s)
- Junqin Chen
- Department of Medicine, University of Wisconsin and William F. Middleton Veterans Administration Hospital, Madison, Wisconsin
| | - Ghislaine Fontes
- Montreal Diabetes Research Center, CRCHUM, and Department of Medicine, University of Montreal, Quebec, Canada
| | - Geetu Saxena
- Department of Medicine, University of Wisconsin and William F. Middleton Veterans Administration Hospital, Madison, Wisconsin
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, and Department of Medicine, University of Montreal, Quebec, Canada
| | - Anath Shalev
- Department of Medicine, University of Wisconsin and William F. Middleton Veterans Administration Hospital, Madison, Wisconsin
- Corresponding author: Anath Shalev,
| |
Collapse
|