1
|
Lancaster CE, Fountain A, Dayam RM, Somerville E, Sheth J, Jacobelli V, Somerville A, Terebiznik MR, Botelho RJ. Phagosome resolution regenerates lysosomes and maintains the degradative capacity in phagocytes. J Cell Biol 2021; 220:212440. [PMID: 34180943 PMCID: PMC8241537 DOI: 10.1083/jcb.202005072] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
Phagocytes engulf unwanted particles into phagosomes that then fuse with lysosomes to degrade the enclosed particles. Ultimately, phagosomes must be recycled to help recover membrane resources that were consumed during phagocytosis and phagosome maturation, a process referred to as “phagosome resolution.” Little is known about phagosome resolution, which may proceed through exocytosis or membrane fission. Here, we show that bacteria-containing phagolysosomes in macrophages undergo fragmentation through vesicle budding, tubulation, and constriction. Phagosome fragmentation requires cargo degradation, the actin and microtubule cytoskeletons, and clathrin. We provide evidence that lysosome reformation occurs during phagosome resolution since the majority of phagosome-derived vesicles displayed lysosomal properties. Importantly, we show that clathrin-dependent phagosome resolution is important to maintain the degradative capacity of macrophages challenged with two waves of phagocytosis. Overall, our work suggests that phagosome resolution contributes to lysosome recovery and to maintaining the degradative power of macrophages to handle multiple waves of phagocytosis.
Collapse
Affiliation(s)
- Charlene E Lancaster
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Fountain
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Roaya M Dayam
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Elliott Somerville
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Javal Sheth
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | - Vanessa Jacobelli
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Alex Somerville
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Best JT, Xu P, McGuire JG, Leahy SN, Graham TR. Yeast synaptobrevin, Snc1, engages distinct routes of postendocytic recycling mediated by a sorting nexin, Rcy1-COPI, and retromer. Mol Biol Cell 2020; 31:944-962. [PMID: 32074001 PMCID: PMC7185969 DOI: 10.1091/mbc.e19-05-0290] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
The budding yeast v-SNARE, Snc1, mediates fusion of exocytic vesicles to the plasma membrane (PM) and is subsequently recycled back to the Golgi. Postendocytic recycling of Snc1 requires a phospholipid flippase (Drs2-Cdc50), an F-box protein (Rcy1), a sorting nexin (Snx4-Atg20), and the COPI coat complex. A portion of the endocytic tracer FM4-64 is also recycled back to the PM after internalization. However, the relationship between Snx4, Drs2, Rcy1, and COPI in recycling Snc1 or FM4-64 is unclear. Here we show that rcy1∆ and drs2∆ single mutants, or a COPI mutant deficient in ubiquitin binding, display a defect in recycling FM4-64 while snx4∆ cells recycle FM4-64 normally. The addition of latrunculin A to acutely inhibit endocytosis shows that rcy1∆ and snx4∆ single mutants retain the ability to recycle Snc1, but a snx4∆rcy1∆ mutant substantially blocks export. Additional deletion of a retromer subunit completely eliminates recycling of Snc1 in the triple mutant (snx4∆rcy1∆vps35∆). A minor role for retromer in Snc1 recycling can also be observed in single and double mutants harboring vps35∆. These data support the existence of three distinct and parallel recycling pathways mediated by Drs2/Rcy1/COPI, Snx4-Atg20, and retromer that retrieve an exocytic v-SNARE from the endocytic pathway to the Golgi.
Collapse
Affiliation(s)
- Jordan T. Best
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - Peng Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - Jack G. McGuire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
3
|
Promchan K, Natarajan V. Leucine zipper transcription factor-like 1 binds adaptor protein complex-1 and 2 and participates in trafficking of transferrin receptor 1. PLoS One 2020; 15:e0226298. [PMID: 31895934 PMCID: PMC6939906 DOI: 10.1371/journal.pone.0226298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/22/2019] [Indexed: 11/27/2022] Open
Abstract
LZTFL1 participates in immune synapse formation, ciliogenesis, and the localization of ciliary proteins, and knockout of LZTFL1 induces abnormal distribution of heterotetrameric adaptor protein complex-1 (AP-1) in the Lztfl1-knockout mouse photoreceptor cells, suggesting that LZTFL1 is involved in intracellular transport. Here, we demonstrate that in vitro LZTFL1 directly binds to AP-1 and AP-2 and coimmunoprecipitates AP-1 and AP-2 from cell lysates. DxxFxxLxxxR motif of LZTFL1 is essential for these bindings, suggesting LZTFL1 has roles in AP-1 and AP-2-mediated protein trafficking. Since AP-1 and AP-2 are known to be involved in transferrin receptor 1 (TfR1) trafficking, the effect of LZTFL1 on TfR1 recycling was analyzed. TfR1, AP-1 and LZTFL1 from cell lysates could be coimmunoprecipitated. However, pull-down results indicate there is no direct interaction between TfR1 and LZTFL1, suggesting that LZTFL1 interaction with TfR1 is indirect through AP-1. We report the colocalization of LZTFL1 and AP-1, AP-1 and TfR1 as well as LZTFL1 and TfR1 in the perinuclear region (PNR) and the cytoplasm, suggesting a potential complex between LZTFL1, AP-1 and TfR1. The results from the disruption of adaptin recruitment with brefeldin A treatment suggested ADP-ribosylation factor-dependent localization of LZFL1 and AP-1 in the PNR. Knockdown of AP-1 reduces the level of LZTFL1 in the PNR, suggesting that AP-1 plays a role in LZTFL1 trafficking. Knockout of LZTFL1 reduces the cell surface level and the rate of internalization of TfR1, leading to a decrease of transferrin uptake, efflux, and internalization. However, knockout of LZTFL1 did not affect the cell surface levels of epidermal growth factor receptor and cation-independent mannose 6-phosphate receptor, indicating that LZTFL1 specifically regulates the cell surface level of TfR1. These data support a novel role of LZTFL1 in regulating the cell surface TfR1 level by interacting with AP-1 and AP-2.
Collapse
Affiliation(s)
- Kanyarat Promchan
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Ven Natarajan
- Laboratory of Molecular Cell Biology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| |
Collapse
|
4
|
Tan JZA, Fourriere L, Wang J, Perez F, Boncompain G, Gleeson PA. Distinct anterograde trafficking pathways of BACE1 and amyloid precursor protein from the TGN and the regulation of amyloid-β production. Mol Biol Cell 2020; 31:27-44. [PMID: 31746668 PMCID: PMC6938271 DOI: 10.1091/mbc.e19-09-0487] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023] Open
Abstract
Processing of amyloid precursor protein (APP) by the β-secretase BACE1 is the initial step of the amyloidogenic pathway to generate amyloid-β (Aβ). Although newly synthesized BACE1 and APP are transported along the secretory pathway, it is not known whether BACE1 and APP share the same post-Golgi trafficking pathways or are partitioned into different transport routes. Here we demonstrate that BACE1 exits the Golgi in HeLa cells and primary neurons by a pathway distinct from the trafficking pathway for APP. By using the Retention Using Selective Hooks system, we show that BACE1 is transported from the trans-Golgi network to the plasma membrane in an AP-1- and Arf1/4-dependent manner. Subsequently, BACE1 is endocytosed to early and recycling endosomes. Perturbation of BACE1 post-Golgi trafficking results in an increase in BACE1 cleavage of APP and increased production of both Aβ40 and Aβ42. These findings reveal that Golgi exit of BACE1 and APP in primary neurons is tightly regulated, resulting in their segregation along different transport routes, which limits APP processing.
Collapse
Affiliation(s)
- Jing Zhi A. Tan
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Lou Fourriere
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Jingqi Wang
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75248 Paris, France
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75248 Paris, France
| | - Paul A. Gleeson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Pakdel M, von Blume J. Exploring new routes for secretory protein export from the trans-Golgi network. Mol Biol Cell 2019; 29:235-240. [PMID: 29382805 PMCID: PMC5996961 DOI: 10.1091/mbc.e17-02-0117] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Sorting of soluble proteins for transport to intracellular compartments and for secretion from cells is essential for cell and tissue homeostasis. The trans-Golgi network (TGN) is a major sorting station that sorts secretory proteins into specific carriers to transport them to their final destinations. The sorting of lysosomal hydrolases at the TGN by the mannose 6-phosphate receptor is well understood. The recent discovery of a Ca2+-based sorting of secretory cargo at the TGN is beginning to uncover the mechanism by which cells sort secretory cargoes from Golgi residents and cargoes destined to the other cellular compartments. This Ca2+-based sorting involves the cytoplasmic actin cytoskeleton, which through membrane anchored Ca2+ ATPase SPCA1 and the luminal Ca2+ binding protein Cab45 sorts of a subset of secretory proteins at the TGN. We present this discovery and highlight important challenges that remain unaddressed in the overall pathway of cargo sorting at the TGN.
Collapse
Affiliation(s)
- Mehrshad Pakdel
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
6
|
Moreira CMDN, Batista CM, Fernandes JC, Kessler RL, Soares MJ, Fragoso SP. Knockout of the gamma subunit of the AP-1 adaptor complex in the human parasite Trypanosoma cruzi impairs infectivity and differentiation and prevents the maturation and targeting of the major protease cruzipain. PLoS One 2017; 12:e0179615. [PMID: 28759609 PMCID: PMC5536268 DOI: 10.1371/journal.pone.0179615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/31/2017] [Indexed: 11/18/2022] Open
Abstract
The AP-1 Adaptor Complex assists clathrin-coated vesicle assembly in the trans-Golgi network (TGN) of eukaryotic cells. However, the role of AP-1 in the protozoan Trypanosoma cruzi-the Chagas disease parasite-has not been addressed. Here, we studied the function and localization of AP-1 in different T. cruzi life cycle forms, by generating a gene knockout of the large AP-1 subunit gamma adaptin (TcAP1-γ), and raising a monoclonal antibody against TcAP1-γ. Co-localization with a Golgi marker and with the clathrin light chain showed that TcAP1-γ is located in the Golgi, and it may interact with clathrin in vivo, at the TGN. Epimastigote (insect form) parasites lacking TcAP1-γ (TcγKO) have reduced proliferation and differentiation into infective metacyclic trypomastigotes (compared with wild-type parasites). TcγKO parasites have also displayed significantly reduced infectivity towards mammalian cells. Importantly, TcAP1-γ knockout impaired maturation and transport to lysosome-related organelles (reservosomes) of a key cargo-the major cysteine protease cruzipain, which is important for parasite nutrition, differentiation and infection. In conclusion, the defective processing and transport of cruzipain upon AP-1 ablation may underlie the phenotype of TcγKO parasites.
Collapse
Affiliation(s)
| | | | | | - Rafael Luis Kessler
- Laboratory of Functional Genomics. Instituto Carlos Chagas/Fiocruz, Curitiba - PR, Brazil
| | - Maurilio José Soares
- Laboratory of Cell Biology, Instituto Carlos Chagas/Fiocruz, Curitiba - PR, Brazil
| | - Stenio Perdigão Fragoso
- Laboratory of Molecular Biology of Trypanosomatids, Instituto Carlos Chagas/Fiocruz, Curitiba - PR, Brazil
| |
Collapse
|
7
|
Ballmer BA, Moos R, Liberali P, Pelkmans L, Hornemann S, Aguzzi A. Modifiers of prion protein biogenesis and recycling identified by a highly parallel endocytosis kinetics assay. J Biol Chem 2017; 292:8356-8368. [PMID: 28341739 DOI: 10.1074/jbc.m116.773283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
The cellular prion protein, PrPC, is attached by a glycosylphosphatidylinositol anchor to the outer leaflet of the plasma membrane. Its misfolded isoform PrPSc is the causative agent of prion diseases. Conversion of PrPC into PrPSc is thought to take place at the cell surface or in endolysosomal organelles. Understanding the intracellular trafficking of PrPC may, therefore, help elucidate the conversion process. Here we describe a time-resolved fluorescence energy transfer (FRET) assay reporting membrane expression and real-time internalization rates of PrPC The assay is suitable for high-throughput genetic and pharmaceutical screens for modulators of PrPC trafficking. Simultaneous administration of FRET donor and acceptor anti-PrPC antibodies to living cells yielded a measure of PrPC surface density, whereas sequential addition of each antibody visualized the internalization rate of PrPC (Z' factor >0.5). RNA interference assays showed that suppression of AP2M1 (AP-2 adaptor protein), RAB5A, VPS35 (vacuolar protein sorting 35 homolog), and M6PR (mannose 6-phosphate receptor) blocked PrPC internalization, whereas down-regulation of GIT2 and VPS28 increased PrPC internalization. PrPC cell-surface expression was reduced by down-regulation of RAB5A, VPS28, and VPS35 and enhanced by silencing EHD1. These data identify a network of proteins implicated in PrPC trafficking and demonstrate the power of this assay for identifying modulators of PrPC trafficking.
Collapse
Affiliation(s)
- Boris A Ballmer
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Prisca Liberali
- Institute of Molecular Life Sciences, University of Zurich, CH-8091 Zurich, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, CH-8091 Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
8
|
Schultzhaus Z, Johnson TB, Shaw BD. Clathrin localization and dynamics in Aspergillus nidulans. Mol Microbiol 2016; 103:299-318. [PMID: 27741567 DOI: 10.1111/mmi.13557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Cell growth necessitates extensive membrane remodeling events including vesicle fusion or fission, processes that are regulated by coat proteins. The hyphal cells of filamentous fungi concentrate both exocytosis and endocytosis at the apex. This investigation focuses on clathrin in Aspergillus nidulans, with the aim of understanding its role in membrane remodeling in growing hyphae. We examined clathrin heavy chain (ClaH-GFP) which localized to three distinct subcellular structures: late Golgi (trans-Golgi equivalents of filamentous fungi), which are concentrated just behind the hyphal tip but are intermittently present throughout all hyphal cells; the region of concentrated endocytosis just behind the hyphal apex (the "endocytic collar"); and small, rapidly moving puncta that were seen trafficking long distances in nearly all hyphal compartments. ClaH localized to distinct domains on late Golgi, and these clathrin "hubs" dispersed in synchrony after the late Golgi marker PHOSBP . Although clathrin was essential for growth, ClaH did not colocalize well with the endocytic patch marker fimbrin. Tests of FM4-64 internalization and repression of ClaH corroborated the observation that clathrin does not play an important role in endocytosis in A. nidulans. A minor portion of ClaH puncta exhibited bidirectional movement, likely along microtubules, but were generally distinct from early endosomes.
Collapse
Affiliation(s)
- Z Schultzhaus
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - T B Johnson
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - B D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| |
Collapse
|
9
|
Park BC, Yim YI, Zhao X, Olszewski MB, Eisenberg E, Greene LE. The clathrin-binding and J-domains of GAK support the uncoating and chaperoning of clathrin by Hsc70 in the brain. J Cell Sci 2015; 128:3811-21. [PMID: 26345367 DOI: 10.1242/jcs.171058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022] Open
Abstract
Cyclin-G-associated kinase (GAK), the ubiquitously expressed J-domain protein, is essential for the chaperoning and uncoating of clathrin that is mediated by Hsc70 (also known as HSPA8). Adjacent to the C-terminal J-domain that binds to Hsc70, GAK has a clathrin-binding domain that is linked to an N-terminal kinase domain through a PTEN-like domain. Knocking out GAK in fibroblasts caused inhibition of clathrin-dependent trafficking, which was rescued by expressing a 62-kDa fragment of GAK, comprising just the clathrin-binding and J-domains. Expressing this fragment as a transgene in mice rescued the lethality and the histological defects caused by knocking out GAK in the liver or in the brain. Furthermore, when both GAK and auxilin (also known as DNAJC6), the neuronal-specific homolog of GAK, were knocked out in the brain, mice expressing the 62-kDa GAK fragment were viable, lived a normal life-span and had no major behavior abnormalities. However, these mice were about half the size of wild-type mice. Therefore, the PTEN-like domains of GAK and auxilin are not essential for Hsc70-dependent chaperoning and uncoating of clathrin, but depending on the tissue, these domains appear to increase the efficiency of these co-chaperones.
Collapse
Affiliation(s)
- Bum-Chan Park
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang-In Yim
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maciej B Olszewski
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan Eisenberg
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lois E Greene
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Kienzle C, Basnet N, Crevenna AH, Beck G, Habermann B, Mizuno N, von Blume J. Cofilin recruits F-actin to SPCA1 and promotes Ca2+-mediated secretory cargo sorting. ACTA ACUST UNITED AC 2014; 206:635-54. [PMID: 25179631 PMCID: PMC4151145 DOI: 10.1083/jcb.201311052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cofilin CFL-1 recruits actin to the P-type calcium ATPase SPCA1 at the trans-Golgi network, thereby activating the ATPase, promoting Ca2+ influx, and driving secretory cargo sorting. The actin filament severing protein cofilin-1 (CFL-1) is required for actin and P-type ATPase secretory pathway calcium ATPase (SPCA)-dependent sorting of secretory proteins at the trans-Golgi network (TGN). How these proteins interact and activate the pump to facilitate cargo sorting, however, is not known. We used purified proteins to assess interaction of the cytoplasmic domains of SPCA1 with actin and CFL-1. A 132–amino acid portion of the SPCA1 phosphorylation domain (P-domain) interacted with actin in a CFL-1–dependent manner. This domain, coupled to nickel nitrilotriacetic acid (Ni-NTA) agarose beads, specifically recruited F-actin in the presence of CFL-1 and, when expressed in HeLa cells, inhibited Ca2+ entry into the TGN and secretory cargo sorting. Mutagenesis of four amino acids in SPCA1 that represent the CFL-1 binding site also affected Ca2+ import into the TGN and secretory cargo sorting. Altogether, our findings reveal the mechanism of CFL-1–dependent recruitment of actin to SPCA1 and the significance of this interaction for Ca2+ influx and secretory cargo sorting.
Collapse
Affiliation(s)
| | - Nirakar Basnet
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alvaro H Crevenna
- Physical Chemistry, Department of Chemistry and Biochemistry and Center for NanoScience (CeNS), Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Gisela Beck
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca Habermann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Naoko Mizuno
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
11
|
Kienzle C, von Blume J. Secretory cargo sorting at the trans-Golgi network. Trends Cell Biol 2014; 24:584-93. [DOI: 10.1016/j.tcb.2014.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 12/22/2022]
|
12
|
von Blume J, Alleaume AM, Kienzle C, Carreras-Sureda A, Valverde M, Malhotra V. Cab45 is required for Ca(2+)-dependent secretory cargo sorting at the trans-Golgi network. ACTA ACUST UNITED AC 2013; 199:1057-66. [PMID: 23266954 PMCID: PMC3529532 DOI: 10.1083/jcb.201207180] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Golgi resident protein Cab45 is required for trans-Golgi network Ca2+ homeostasis and sorting of cargos that are destined for secretion. Ca2+ import into the lumen of the trans-Golgi network (TGN) by the secretory pathway calcium ATPase1 (SPCA1) is required for the sorting of secretory cargo. How is Ca2+ retained in the lumen of the Golgi, and what is its role in cargo sorting? We show here that a soluble, lumenal Golgi resident protein, Cab45, is required for SPCA1-dependent Ca2+ import into the TGN; it binds secretory cargo in a Ca2+-dependent reaction and is required for its sorting at the TGN.
Collapse
Affiliation(s)
- Julia von Blume
- Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Progida C, Cogli L, Piro F, De Luca A, Bakke O, Bucci C. Rab7b controls trafficking from endosomes to the TGN. J Cell Sci 2010; 123:1480-91. [DOI: 10.1242/jcs.051474] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rab7b is a recently identified member of the Rab GTPase protein family and has high similarity to Rab7. It has been reported that Rab7b is lysosome associated, that it is involved in monocytic differentiation and that it promotes lysosomal degradation of TLR4 and TLR9. Here we investigated further the localization and function of this GTPase. We found that wild-type Rab7b is lysosome associated whereas an activated, GTP-bound form of Rab7b localizes to the Golgi apparatus. In contrast to Rab7, Rab7b is not involved in EGF and EGFR degradation. Depletion of Rab7b or expression of Rab7b T22N, a Rab7b dominant-negative mutant, impairs cathepsin-D maturation and causes increased secretion of hexosaminidase. Moreover, expression of Rab7b T22N or depletion of Rab7b alters TGN46 distribution, cation-independent mannose-6-phosphate receptor (CI-MPR) trafficking, and causes an increase in the levels of the late endosomal markers CI-MPR and cathepsin D. Vesicular stomatitis virus G protein (VSV-G) trafficking, by contrast, is normal in Rab7b-depleted or Rab7b-T22N-expressing cells. In addition, depletion of Rab7b prevents cholera toxin B-subunit from reaching the Golgi. Altogether, these data indicate that Rab7b is required for normal lysosome function, and, in particular, that it is an essential factor for retrograde transport from endosomes to the trans-Golgi network (TGN).
Collapse
Affiliation(s)
- Cinzia Progida
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
- Centre for Immune Regulation, Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Laura Cogli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | - Francesco Piro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | - Azzurra De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | - Oddmund Bakke
- Centre for Immune Regulation, Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
- The Gade Institute, University of Bergen, 5021 Bergen, Norway
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| |
Collapse
|
14
|
Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN. Nat Cell Biol 2010; 12:330-40. [PMID: 20228810 DOI: 10.1038/ncb2034] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/19/2010] [Indexed: 12/12/2022]
Abstract
Actin dynamics is a tightly regulated process involved in various cellular events including biogenesis of clathrin-coated, AP-1 (adaptor protein 1)-coated transport carriers connecting the trans-Golgi network (TGN) and the endocytic pathway. However, the mechanisms coordinating coat assembly, membrane and actin remodelling during post-TGN transport remain poorly understood. Here we show that the Arf1 (ADP-ribosylation factor 1) GTPase synchronizes the TGN association of clathrin-AP-1 coats and protein complexes comprising CYFIP (cytoplasmic fragile-X mental retardation interacting protein; Sra, PIR121), a clathrin heavy chain binding protein associated with mental retardation. The Rac1 GTPase and its exchange factor beta-PIX (PAK-interacting exchange factor) activate these complexes, allowing N-WASP-dependent and Arp2/3-dependent actin polymerization towards membranes, thus promoting tubule formation. These phenomena can be recapitulated with synthetic membranes. This protein-network-based mechanism facilitates the sequential coordination of Arf1-dependent membrane priming, through the recruitment of coats and CYFIP-containing complexes, and of Rac1-dependent actin polymerization, and provides complementary but independent levels of regulation during early stages of clathrin-AP1-coated carrier biogenesis.
Collapse
|
15
|
Delevoye C, Hurbain I, Tenza D, Sibarita JB, Uzan-Gafsou S, Ohno H, Geerts WJC, Verkleij AJ, Salamero J, Marks MS, Raposo G. AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis. ACTA ACUST UNITED AC 2009; 187:247-64. [PMID: 19841138 PMCID: PMC2768840 DOI: 10.1083/jcb.200907122] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type-specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1- and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type-specific positioning of endosomes that facilitate endosome-LRO contacts and are required for organelle maturation.
Collapse
Affiliation(s)
- Cédric Delevoye
- Structure and Membrane Compartments, Centre Nationale de la Recherche Scientifique, UMR 144 Institut Curie, Centre de Recherche, Paris F-75248, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Transport of mannose-6-phosphate receptors from the trans-Golgi network to endosomes requires Rab31. Exp Cell Res 2009; 315:2215-30. [PMID: 19345684 DOI: 10.1016/j.yexcr.2009.03.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 03/06/2009] [Accepted: 03/26/2009] [Indexed: 01/17/2023]
Abstract
Rab31, a protein that we originally cloned from a rat oligodendrocyte cDNA library, localizes in the trans-Golgi network (TGN) and endosomes. However, its function has not yet been established. Here we show the involvement of Rab31 in the transport of mannose 6-phosphate receptors (MPRs) from TGN to endosomes. We demonstrate the specific sorting of cation-dependent-MPR (CD-MPR), but not CD63 and vesicular stomatitis virus G (VSVG) protein, to Rab31-containing trans-Golgi network carriers. CD-MPR and Rab31 containing carriers originate from extending TGN tubules that also contain clathrin and GGA1 coats. Expression of constitutively active Rab31 reduced the content of CD-MPR in the TGN relative to that of endosomes, while expression of dominant negative Rab31 triggered reciprocal changes in CD-MPR distribution. Expression of dominant negative Rab31 also inhibited the formation of carriers containing CD-MPR in the TGN, without affecting the exit of VSVG from this compartment. Importantly, siRNA-mediated depletion of endogenous Rab31 caused the collapse of the Golgi apparatus. Our observations demonstrate that Rab31 is required for transport of MPRs from TGN to endosomes and for the Golgi/TGN organization.
Collapse
|
17
|
Mari M, Bujny MV, Zeuschner D, Geerts WJC, Griffith J, Petersen CM, Cullen PJ, Klumperman J, Geuze HJ. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 2007; 9:380-93. [PMID: 18088323 DOI: 10.1111/j.1600-0854.2007.00686.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mannose-6-phosphate receptors (MPRs) transport lysosomal hydrolases from the trans Golgi network (TGN) to endosomes. Recently, the multi-ligand receptor sortilin has also been implicated in this transport, but the transport carriers involved herein have not been identified. By quantitative immuno-electron microscopy, we localized endogenous sortilin of HepG2 cells predominantly to the TGN and endosomes. In the TGN, sortilin colocalized with MPRs in the same clathrin-coated vesicles. In endosomes, sortilin and MPRs concentrated in sorting nexin 1 (SNX1)-positive buds and vesicles. SNX1 depletion by small interfering RNA resulted in decreased pools of sortilin in the TGN and an increase in lysosomal degradation. These data indicate that sortilin and MPRs recycle to the TGN in SNX1-dependent carriers, which we named endosome-to-TGN transport carriers (ETCs). Notably, ETCs emerge from early endosomes (EE), lack recycling plasma membrane proteins and by three-dimensional electron tomography exhibit unique structural features. Hence, ETCs are distinct from hitherto described EE-derived membranes involved in recycling. Our data emphasize an important role of EEs in recycling to the TGN and indicate that different, specialized exit events occur on the same EE vacuole.
Collapse
Affiliation(s)
- Muriel Mari
- Cell Microscopy Center, Department of Cell Biology, Institute of Biomembranes, University Medical Centre (UMC) Utrecht, AZU Rm G02.525, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Holloway ZG, Grabski R, Szul T, Styers ML, Coventry JA, Monaco AP, Sztul E. Activation of ADP-ribosylation factor regulates biogenesis of the ATP7A-containing trans-Golgi network compartment and its Cu-induced trafficking. Am J Physiol Cell Physiol 2007; 293:C1753-67. [PMID: 17913844 DOI: 10.1152/ajpcell.00253.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP7A (MNK) regulates copper homeostasis by translocating from a compartment localized within the trans-Golgi network to the plasma membrane (PM) in response to increased copper load. The mechanisms that regulate the biogenesis of the MNK compartment and the trafficking of MNK are unclear. Here we show that the architecture of the MNK compartment is linked to the structure of the Golgi ribbon. Depletion of p115 tethering factor, which causes fragmentation of the Golgi ribbon, also disrupts the MNK compartment. In p115-depleted cells, MNK localizes to punctate structures that pattern on Golgi ministacks dispersed throughout the cell. Despite altered localization MNK trafficking still occurs, and MNK relocates from and returns to the fragmented compartment in response to copper. We further show that the biogenesis of the MNK compartment requires activation of ADP-ribosylation factor (Arf)1 GTPase, shown previously to facilitate the biogenesis of the Golgi ribbon. Activation of cellular Arf1 is prevented by 1) expressing an inactive "empty" form of Arf (Arf1/N126I), 2) expressing an inactive form of GBF1 (GBF1/E794K), guanine nucleotide exchange factor for Arf1, or 3) treating cells with brefeldin A, an inhibitor of GBF1 that disrupts MNK into a diffuse pattern. Importantly, preventing Arf activation inhibits copper-responsive trafficking of MNK to the PM. Our findings support a model in which active Arf is essential for the generation of the MNK compartment and for copper-responsive trafficking of MNK from there to the PM. Our findings provide an exciting foundation for identifying Arf1 effectors that facilitate the biogenesis of the MNK compartment and MNK traffic.
Collapse
Affiliation(s)
- Zoe G Holloway
- Wellcome Trust Centre for Human Genetics; University of Oxford, Headington, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Hinz G, Colanesi S, Hillmer S, Rogers JC, Robinson DG. Localization of vacuolar transport receptors and cargo proteins in the Golgi apparatus of developing Arabidopsis embryos. Traffic 2007; 8:1452-64. [PMID: 17696967 DOI: 10.1111/j.1600-0854.2007.00625.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using immunogold electron microscopy, we have investigated the relative distribution of two types of vacuolar sorting receptors (VSR) and two different types of lumenal cargo proteins, which are potential ligands for these receptors in the secretory pathway of developing Arabidopsis embryos. Interestingly, both cargo proteins are deposited in the protein storage vacuole, which is the only vacuole present during the bent-cotyledon stage of embryo development. Cruciferin and aleurain do not share the same pattern of distribution in the Golgi apparatus. Cruciferin is mainly detected in the cis and medial cisternae, especially at the rims where storage proteins aggregate into dense vesicles (DVs). Aleurain is found throughout the Golgi stack, particularly in the trans cisternae and trans Golgi network where clathrin-coated vesicles (CCVs) are formed. Nevertheless, aleurain was detected in both DV and CCV. VSR-At1, a VSR that recognizes N-terminal vacuolar sorting determinants (VSDs) of the NPIR type, localizes mainly to the trans Golgi and is hardly detectable in DV. Receptor homology-transmembrane-RING H2 domain (RMR), a VSR that recognizes C-terminal VSDs, has a distribution that is very similar to that of cruciferin and is found in DV. Our results do not support a role for VSR-At1 in storage protein sorting, instead RMR proteins because of their distribution similar to that of cruciferin in the Golgi apparatus and their presence in DV are more likely candidates. Aleurain, which has an NPIR motif and seems to be primarily sorted via VSR-At1 into CCV, also possesses putative hydrophobic sorting determinants at its C-terminus that could allow the additional incorporation of this protein into DV.
Collapse
Affiliation(s)
- Giselbert Hinz
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
20
|
Mardones GA, Burgos PV, Brooks DA, Parkinson-Lawrence E, Mattera R, Bonifacino JS. The trans-Golgi network accessory protein p56 promotes long-range movement of GGA/clathrin-containing transport carriers and lysosomal enzyme sorting. Mol Biol Cell 2007; 18:3486-501. [PMID: 17596511 PMCID: PMC1951763 DOI: 10.1091/mbc.e07-02-0190] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The sorting of acid hydrolase precursors at the trans-Golgi network (TGN) is mediated by binding to mannose 6-phosphate receptors (MPRs) and subsequent capture of the hydrolase-MPR complexes into clathrin-coated vesicles or transport carriers (TCs) destined for delivery to endosomes. This capture depends on the function of three monomeric clathrin adaptors named GGAs. The GGAs comprise a C-terminal "ear" domain that binds a specific set of accessory proteins. Herein we show that one of these accessory proteins, p56, colocalizes and physically interacts with the three GGAs at the TGN. Moreover, overexpression of the GGAs enhances the association of p56 with the TGN, and RNA interference (RNAi)-mediated depletion of the GGAs decreases the TGN association and total levels of p56. RNAi-mediated depletion of p56 or the GGAs causes various degrees of missorting of the precursor of the acid hydrolase, cathepsin D. In the case of p56 depletion, this missorting correlates with decreased mobility of GGA-containing TCs. Transfection with an RNAi-resistant p56 construct, but not with a p56 construct lacking the GGA-ear-interacting motif, restores the mobility of the TCs. We conclude that p56 tightly cooperates with the GGAs in the sorting of cathepsin D to lysosomes, probably by enabling the movement of GGA-containing TCs.
Collapse
Affiliation(s)
- Gonzalo A. Mardones
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Patricia V. Burgos
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Doug A. Brooks
- Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; and
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Children Youth and Women's Health Service, North Adelaide, SA 5006, Australia
| | - Emma Parkinson-Lawrence
- Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; and
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Children Youth and Women's Health Service, North Adelaide, SA 5006, Australia
| | - Rafael Mattera
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Juan S. Bonifacino
- *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Subramanian S, Sijwali PS, Rosenthal PJ. Falcipain cysteine proteases require bipartite motifs for trafficking to the Plasmodium falciparum food vacuole. J Biol Chem 2007; 282:24961-9. [PMID: 17565983 DOI: 10.1074/jbc.m703316200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 hydrolyze hemoglobin in an acidic food vacuole to provide amino acids for erythrocytic malaria parasites. Trafficking to the food vacuole has not been well characterized. To study trafficking of falcipains, which include large membrane-spanning prodomains, we utilized chimeras with portions of the proteases fused to green fluorescent protein. The prodomains of falcipain-2 and falcipain-3 were sufficient to target green fluorescent protein to the food vacuole. Using serial truncations, deletions, and point mutations, we showed that both a 20-amino acid stretch of the lumenal portion and a 10-amino acid stretch of the cytoplasmic portion of the falcipain-2 prodomain were required for efficient food vacuolar trafficking. Mutants with altered trafficking were arrested at the plasma membrane, implicating trafficking via this structure. Our results indicate that falcipains utilize a previously undescribed bipartite motif-dependent mechanism for targeting to a hydrolytic organelle, suggesting inhibition of this unique mechanism as a new means of antimalarial chemotherapy.
Collapse
Affiliation(s)
- Shoba Subramanian
- Department of Medicine, Division of Infectious Disease, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
22
|
Abstract
Under experimental conditions, the Golgi apparatus can undergo de novo biogenesis from the endoplasmic reticulum (ER), involving a rapid phase of growth followed by a return to steady state, but the mechanisms that control growth are unknown. Quantification of coat protein complex (COP) II assembly revealed a dramatic up-regulation at exit sites driven by increased levels of Golgi proteins in the ER. Analysis in a permeabilized cell assay indicated that up-regulation of COPII assembly occurred in the absence GTP hydrolysis and any cytosolic factors other than the COPII prebudding complex Sar1p–Sec23p–Sec24p. Remarkably, acting via a direct interaction with Sar1p, increased expression of the Golgi enzyme N-acetylgalactosaminyl transferase-2 induced increased COPII assembly on the ER and an overall increase in the size of the Golgi apparatus. These results suggest that direct interactions between Golgi proteins exiting the ER and COPII components regulate ER exit, providing a variable exit rate mechanism that ensures homeostasis of the Golgi apparatus.
Collapse
Affiliation(s)
- Yusong Guo
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
23
|
Abstract
The selective transfer of material between membrane-delimited organelles is mediated by protein-coated vesicles. In many instances, formation of membrane trafficking intermediates is regulated by the GTP-binding protein Arf. Binding and hydrolysis of GTP by Arf was originally linked to the assembly and disassembly of vesicle coats. Arf GTPase-activating proteins (GAPs), a family of proteins that induce hydrolysis of GTP bound to Arf, were therefore proposed to regulate the disassembly and dissociation of vesicle coats. Following the molecular identification of Arf GAPs, the roles for GAPs and GTP hydrolysis have been directly examined. GAPs have been found to bind cargo and known coat proteins as well as directly contribute to vesicle formation, which is consistent with the idea that GAPs function as subunits of coat proteins rather than simply Arf inactivators. In addition, GTP hydrolysis induced by GAPs occurs largely before vesicle formation and is required for sorting. These results are the primary basis for modifications to the classical model for the function of Arf in transport vesicle formation, including a recent proposal that Arf has a proofreading, rather than a structural, role.
Collapse
Affiliation(s)
- Zhongzhen Nie
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | |
Collapse
|
24
|
Koduru S, Vegiraju SR, Nadimpalli SK, von Figura K, Pohlmann R, Dennes A. The early vertebrate Danio rerio Mr 46000 mannose-6-phosphate receptor: biochemical and functional characterisation. Dev Genes Evol 2006; 216:133-43. [PMID: 16362416 DOI: 10.1007/s00427-005-0043-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
Mannose-6-phosphate receptors (MPRs) have been identified in a wide range of species from humans to invertebrates such as molluscs. A characteristic of all MPRs is their common property to recognize mannose-6-phosphate residues that are labelling lysosomal enzymes and to mediate their targeting to lysosomes in mammalian cells by the corresponding receptor proteins. We present here the analysis of full-length sequences for MPR 46 from zebrafish (Danio rerio) and its functional analysis. This is the first non-mammalian MPR 46 to be characterised. The amino acid sequences of the zebrafish MPR 46 displays 70% similarity to the human MPR 46 protein. In particular, all essential cysteine residues, the transmembrane domain as well as the cytoplasmic tail residues harbouring the signals for endocytosis and Golgi-localizing, gamma-ear-containing, ARF-binding protein (GGA)-mediated sorting at the trans-Golgi network, are highly conserved. The zebrafish MPR 46 has the arginine residue known to be essential for mannose-6-phosphate binding and other additional characteristic residues of the mannose-6-phosphate ligand-binding pocket. Like the mammalian MPR 46, zebrafish MPR 46 binds to the multimeric mannose-6-phosphate ligand phosphomannan and can rescue the missorting of lysosomal enzymes in mammalian MPR-deficient cells. The conserved C-terminal acidic dileucine motif (DxxLL) in the cytoplasmic domain of zebrafish MPR 46 essential for the interaction of the GGAs with the receptor domains interacts with the human GGA1-VHS domain. Interestingly, the serine residue suggested to regulate the interaction between the tail and the GGAs in a phosphorylation-dependent manner is substituted by a proline residue in fish.
Collapse
Affiliation(s)
- Suresh Koduru
- Protein Biochemistry Laboratory, Department of Biochemistry, University of Hyderabad, Hyderabad 500 046, India
| | | | | | | | | | | |
Collapse
|
25
|
Dennes A, Cromme C, Suresh K, Kumar NS, Eble JA, Hahnenkamp A, Pohlmann R. The Novel Drosophila Lysosomal Enzyme Receptor Protein Mediates Lysosomal Sorting in Mammalian Cells and Binds Mammalian and Drosophila GGA Adaptors. J Biol Chem 2005; 280:12849-57. [PMID: 15664992 DOI: 10.1074/jbc.m410626200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biogenesis of lysosomes depends in mammalian cells on the specific recognition and targeting of mannose 6-phosphate-containing lysosomal enzymes by two mannose 6-phosphate receptors (MPR46, MPR300), key components of the extensively studied receptor-mediated lysosomal sorting system in complex metazoans. In contrast, the biogenesis of lysosomes is poorly investigated in the less complex metazoan Drosophila melanogaster. We identified the novel type I transmembrane protein lysosomal enzyme receptor protein (LERP) with partial homology to the mammalian MPR300 encoded by Drosophila gene CG31072. LERP contains 5 lumenal repeats that share homology to the 15 lumenal repeats found in all identified MPR300. Four of the repeats display the P-lectin type pattern of conserved cysteine residues. However, the arginine residues identified to be essential for mannose 6-phosphate binding are not conserved. The recombinant LERP protein was expressed in mammalian cells and displayed an intracellular localization pattern similar to the mammalian MPR300. The LERP cytoplasmic domain shows highly conserved interactions with Drosophila and mammalian GGA adaptors known to mediate Golgi-endosome traffic of MPRs and other transmembrane cargo. Moreover, LERP rescues missorting of soluble lysosomal enzymes in MPR-deficient cells, giving strong evidence for a function that is equivalent to the mammalian counterpart. However, unlike the mammalian MPRs, LERP did not bind to the multimeric mannose 6-phosphate ligand phosphomannan. Thus ligand recognition by LERP does not depend on mannose 6-phosphate but may depend on a common feature present in mammalian lysosomal enzymes. Our data establish a potential important role for LERP in biogenesis of Drosophila lysosomes and suggest a GGA function also in the receptor-mediated lysosomal transport system in the fruit fly.
Collapse
MESH Headings
- ADP-Ribosylation Factors/metabolism
- Adaptor Proteins, Vesicular Transport/metabolism
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Arginine/chemistry
- Cathepsin D/chemistry
- Cathepsin L
- Cathepsins/chemistry
- Cell Membrane/metabolism
- Cells, Cultured
- Chromatography
- Conserved Sequence
- Cysteine Endopeptidases/chemistry
- Cytoplasm/metabolism
- Drosophila melanogaster
- Fibroblasts/metabolism
- Glycoside Hydrolases/metabolism
- Glycosylation
- Immunoprecipitation
- Lectins/metabolism
- Ligands
- Lysosomes/metabolism
- Mannans/chemistry
- Mannosephosphates/metabolism
- Mice
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Protein Binding
- Protein Sorting Signals
- Protein Structure, Tertiary
- Protein Transport
- RNA, Messenger/metabolism
- Receptor, IGF Type 2
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/physiology
- Recombinant Fusion Proteins/metabolism
- Recombinant Proteins/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- André Dennes
- Institut für Physiologische Chemie und Pathobiochemie, Universitaets-Klinikum-Muenster, Waldeyerstr. 15, D-48149 Muenster, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Neubrand VE, Will RD, Möbius W, Poustka A, Wiemann S, Schu P, Dotti CG, Pepperkok R, Simpson JC. Gamma-BAR, a novel AP-1-interacting protein involved in post-Golgi trafficking. EMBO J 2005; 24:1122-33. [PMID: 15775984 PMCID: PMC556403 DOI: 10.1038/sj.emboj.7600600] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 02/04/2005] [Indexed: 01/31/2023] Open
Abstract
A novel peripheral membrane protein (2c18) that interacts directly with the gamma 'ear' domain of the adaptor protein complex 1 (AP-1) in vitro and in vivo is described. Ultrastructural analysis demonstrates a colocalization of 2c18 and gamma1-adaptin at the trans-Golgi network (TGN) and on vesicular profiles. Overexpression of 2c18 increases the fraction of membrane-bound gamma1-adaptin and inhibits its release from membranes in response to brefeldin A. Knockdown of 2c18 reduces the steady-state levels of gamma1-adaptin on membranes. Overexpression or downregulation of 2c18 leads to an increased secretion of the lysosomal hydrolase cathepsin D, which is sorted by the mannose-6-phosphate receptor at the TGN, which itself involves AP-1 function for trafficking between the TGN and endosomes. This suggests that the direct interaction of 2c18 and gamma1-adaptin is crucial for membrane association and thus the function of the AP-1 complex in living cells. We propose to name this protein gamma-BAR.
Collapse
Affiliation(s)
- Veronika E Neubrand
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rainer D Will
- Molecular Genome Analysis, German Cancer Research Centre, Heidelberg, Germany
| | - Wiebke Möbius
- Max Planck Institute for Experimental Medicine, Neurogenetics, Göttingen, Germany
| | - Annemarie Poustka
- Molecular Genome Analysis, German Cancer Research Centre, Heidelberg, Germany
| | - Stefan Wiemann
- Molecular Genome Analysis, German Cancer Research Centre, Heidelberg, Germany
| | - Peter Schu
- Zentrum fuer Biochemie und Molekulare Zellbiologie, Department Biochemie II, Universitaet Göttingen, Goettingen, Germany
| | - Carlos G Dotti
- Cavalieri Ottolenghi Scientific Institute, Unversita degli Studi di Torino, AO San Luigi Gonzaga, Orbassano (Torino), Italy
| | - Rainer Pepperkok
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Tel.: +49 6221 387 8332; Fax: +49 6221 387 8306; E-mail:
| | - Jeremy C Simpson
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
27
|
Masuda T, Ueyama H, Nakamura KI, Jikumaru M, Toyoshima I, Kumamoto T. Skeletal muscle expression of clathrin and mannose 6-phosphate receptor in experimental chloroquine-induced myopathy. Muscle Nerve 2005; 31:495-502. [PMID: 15712280 DOI: 10.1002/mus.20288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies suggest that the muscle fiber lysosome system plays a central role in the increased formation of autophagosomes and autolysosomes that occurs in the context of chloroquine-induced myopathy. The goal of this study was to characterize the contribution of receptor-mediated intracellular transport, particularly the endosomal pathway, to the abnormal accumulation of vacuoles in experimental chloroquine myopathy. Expression of the mannose 6-phosphate receptor (M6PR) and clathrin were analyzed in innervated and denervated rat soleus muscles after treatment with either saline or chloroquine. Accumulation of vacuoles was observed only in chloroquine-treated denervated muscles. Further, clathrin immunostaining and M6PR messenger ribonucleic acid (mRNA) were significantly increased in denervated soleus muscle from saline- and chloroquine-treated rats compared to contralateral, innervated muscles. However, there was no difference in clathrin levels when comparing saline- and chloroquine-treated denervated muscles. These data suggest that chloroquine activates the transport of newly synthesized lysosomal enzymes from the secretory pathway via the trans-Golgi network of the Golgi apparatus (an endosomal pathway) as well as autophagosome formation (an autophagic process) in skeletal muscles. Vacuoles may subsequently accumulate secondary to abnormal formation or turnover of autolysosomes at or after fusion of autophagosomes with early endosomes.
Collapse
Affiliation(s)
- Tomoko Masuda
- Department of Neurology and Neuromuscular Disorders, Oita University Faculty of Medicine, Idaigaoka 1-1, Hasama, Oita 879-5593, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Stöckli J, Rohrer J. The palmitoyltransferase of the cation-dependent mannose 6-phosphate receptor cycles between the plasma membrane and endosomes. Mol Biol Cell 2004; 15:2617-26. [PMID: 15034140 PMCID: PMC420087 DOI: 10.1091/mbc.e03-11-0808] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The cation-dependent mannose 6-phosphate receptor (CD-MPR) mediates the transport of lysosomal enzymes from the trans-Golgi network to endosomes. Evasion of lysosomal degradation of the CD-MPR requires reversible palmitoylation of a cysteine residue in its cytoplasmic tail. Because palmitoylation is reversible and essential for correct trafficking, it presents a potential regulatory mechanism for the sorting signals within the cytoplasmic domain of the CD-MPR. Characterization of the palmitoylation performing an in vitro palmitoylation assay by using purified full-length CD-MPR revealed that palmitoylation of the CD-MPR occurs enzymatically by a membrane-bound palmitoyltransferase. In addition, analysis of the localization revealed that the palmitoyltransferase cycles between endosomes and the plasma membrane. This was identified by testing fractions from HeLa cell homogenate separated on a density gradient in the in vitro palmitoylation assay and further confirmed by in vivo labeling experiments by using different treatments to block specific protein trafficking steps within the cell. We identified a novel palmitoyltransferase activity in the endocytic pathway responsible for palmitoylation of the CD-MPR. The localization of the palmitoyltransferase not only fulfills the requirement of our hypothesis to be a regulator of the intracellular trafficking of the CD-MPR but also may affect the sorting/activity of other receptors cycling through endosomes.
Collapse
|
29
|
van der Wouden JM, Maier O, van IJzendoorn SCD, Hoekstra D. Membrane dynamics and the regulation of epithelial cell polarity. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:127-64. [PMID: 12921237 DOI: 10.1016/s0074-7696(03)01003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plasma membranes of epithelial cells consist of two domains, an apical and a basolateral domain, the surfaces of which differ in composition. The separation of these domains by a tight junction and the fact that specific transport pathways exist for intracellular communication between these domains and distinct intracellular compartments relevant to cell polarity development, have triggered extensive research on issues that focus on how the polarity is generated and maintained. Apart from proper assembly of tight junctions, their potential functioning as landmark for the transport machinery, cell-cell adhesion is obviously instrumental in barrier formation. In recent years, distinct endocytic compartments, defined as subapical compartment or common endosome, were shown to play a prominent role in regulating membrane trafficking to and from polarized membrane domains. Sorting devices remain to be determined but likely include distinct rab proteins, and evidence is accumulating to indicate that signaling events may direct intracellular membrane transport, intimately involved in the biogenesis and maintenance of polarized membrane domains and hence the development of cell polarity.
Collapse
Affiliation(s)
- Johanna M van der Wouden
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
30
|
Moreno RD. Differential expression of lysosomal associated membrane protein (LAMP-1) during mammalian spermiogenesis. Mol Reprod Dev 2003; 66:202-9. [PMID: 12950108 DOI: 10.1002/mrd.10342] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mammalian acrosome is a secretory vesicle of mature sperms that plays an important role in fertilization. Recent evidence had pointed out that some components found at endosomes in somatic cells are associated with the developing acrosome during the early steps of spermiogenesis. Moreover, the mammalian acrosome contains many enzymes found within lysosomes in somatic cells. In this work, we studied the dynamics of some components of the endosome/lysosome system, as a way to understand the complex membrane trafficking circuit established during spermatogenesis. We show that the cation independent-mannose-6-phosphate receptor (CI-MPR) is transiently expressed in the cytoplasm of mid-stage spermatids (steps 5-11). On the other hand, gamma-adaptin, an adaptor molecule of a complex involved in trafficking from the Golgi to lysosomes, was expressed in cytoplasmic vesicles only in pachytene and Cap-phase spermatids (steps 1-5). Our major finding is that the lysosomal protein LAMP-1 is differentially expressed during spermiogenesis. LAMP-1 appears late in spermatogenesis (Acrosome-phase) contrasting with LAMP-2, which is present throughout the complete process. Both proteins appear to be associated with cytoplasmic vesicles and not with the developing acrosome. None of the studied proteins is present in epididymal spermatozoa. Our results suggest that the CI-MPR could be involved in membrane trafficking and/or acrosomal shaping during spermiogenesis.
Collapse
Affiliation(s)
- Ricardo D Moreno
- Unit of Reproduction and Development, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile.
| |
Collapse
|
31
|
Ghosh P, Kornfeld S. Phosphorylation-induced conformational changes regulate GGAs 1 and 3 function at the trans-Golgi network. J Biol Chem 2003; 278:14543-9. [PMID: 12578827 DOI: 10.1074/jbc.m212543200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-binding) are a family of multidomain proteins implicated in protein trafficking between the Golgi and the endosomes. All three GGAs (1, 2, and 3) bind to the mannose 6-phosphate receptor tail via their VHS domains, as well as to the adaptor protein complex-1 via their hinge domains. The latter interaction has been proposed to be important for cooperative packaging of cargo into forming clathrin-coated carriers at the trans-Golgi network. Here we present evidence that GGA1 function is highly regulated by cycles of phosphorylation and dephosphorylation. Cell fractionation showed that the phosphorylated pool of GGA1 resided predominantly in the cytosol and that recruitment onto membranes was associated with dephosphorylation. Okadaic acid inhibition studies and in vitro dephosphorylation assays indicated that dephosphorylation is mediated by a protein phosphatase 2A-like phosphatase. Dephosphorylation of GGA1 induced a change in the conformation to an "open" form as measured by gel filtration and sucrose gradient analyses. This was associated with enhanced binding to ligands because of release of autoinhibition and increased binding to the adaptor protein complex-1 gamma-appendage. A model is proposed for the regulation of GGA1 function at the trans-Golgi network.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
32
|
Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 2003; 4:202-12. [PMID: 12612639 DOI: 10.1038/nrm1050] [Citation(s) in RCA: 811] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The two mannose 6-phosphate (M6P) receptors were identified because of their ability to bind M6P-containing soluble acid hydrolases in the Golgi and transport them to the endosomal-lysosomal system. During the past decade, we have started to understand the structural features of these receptors that allow them to do this job, and how the receptors themselves are sorted as they pass through various membrane-bound compartments. But trafficking of acid hydrolases is only part of the story. Evidence is emerging that one of the receptors can regulate cell growth and motility, and that it functions as a tumour suppressor.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
33
|
Abstract
Autophagy is a membrane trafficking mechanism that delivers cytoplasmic cargo to the vacuole/lysosome for degradation and recycling. In addition to non-specific bulk cytosol, selective cargoes, such as peroxisomes, are sorted for autophagic transport under specific physiological conditions. In a nutrient-rich growth environment, many of the autophagic components are recruited for executing a biosynthetic trafficking process, the cytoplasm to vacuole targeting (Cvt) pathway, that transports the resident hydrolases aminopeptidase I and alpha-mannosidase to the vacuole in Saccharomyces cerevisiae. Recent studies have identified pathway-specific components that are necessary to divert a protein kinase and a lipid kinase complex to regulate the conversion between the Cvt pathway and autophagy. Downstream of these proteins, the general machinery for transport vesicle formation involves two novel conjugation systems and a putative membrane protein complex. Completed vesicles are targeted to, and fuse with, the vacuole under the control of machinery shared with other vacuolar trafficking pathways. Inside the vacuole, a potential lipase and several proteases are responsible for the final steps of vesicle breakdown, precursor enzyme processing and substrate turnover. In this review, we discuss the most recent developments in yeast autophagy and point out the challenges we face in the future.
Collapse
Affiliation(s)
- Wei-Pang Huang
- Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
34
|
Crottet P, Meyer DM, Rohrer J, Spiess M. ARF1.GTP, tyrosine-based signals, and phosphatidylinositol 4,5-bisphosphate constitute a minimal machinery to recruit the AP-1 clathrin adaptor to membranes. Mol Biol Cell 2002; 13:3672-82. [PMID: 12388765 PMCID: PMC129974 DOI: 10.1091/mbc.e02-05-0309] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2002] [Revised: 07/09/2002] [Accepted: 07/16/2002] [Indexed: 11/11/2022] Open
Abstract
At the trans-Golgi network, clathrin coats containing AP-1 adaptor complexes are formed in an ARF1-dependent manner, generating vesicles transporting cargo proteins to endosomes. The mechanism of site-specific targeting of AP-1 and the role of cargo are poorly understood. We have developed an in vitro assay to study the recruitment of purified AP-1 adaptors to chemically defined liposomes presenting peptides corresponding to tyrosine-based sorting motifs. AP-1 recruitment was found to be dependent on myristoylated ARF1, GTP or nonhydrolyzable GTP-analogs, tyrosine signals, and small amounts of phosphoinositides, most prominently phosphatidylinositol 4,5-bisphosphate, in the absence of any additional cytosolic or membrane bound proteins. AP-1 from cytosol could be recruited to a tyrosine signal independently of the lipid composition, but the rate of recruitment was increased by phosphatidylinositol 4,5-bisphosphate. The results thus indicate that cargo proteins are involved in coat recruitment and that the local lipid composition contributes to specifying the site of vesicle formation.
Collapse
Affiliation(s)
- Pascal Crottet
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
35
|
Shinotsuka C, Waguri S, Wakasugi M, Uchiyama Y, Nakayama K. Dominant-negative mutant of BIG2, an ARF-guanine nucleotide exchange factor, specifically affects membrane trafficking from the trans-Golgi network through inhibiting membrane association of AP-1 and GGA coat proteins. Biochem Biophys Res Commun 2002; 294:254-60. [PMID: 12051703 DOI: 10.1016/s0006-291x(02)00456-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BIG2 is one of the guanine nucleotide exchange factors (GEFs) for the ADP-ribosylation factor (ARF) family of small GTPases, which regulate membrane association of COPI and AP-1 coat protein complexes and GGA proteins. Brefeldin A (BFA), an ARF-GEF inhibitor, causes redistribution of the coat proteins from membranes to the cytoplasm and membrane tubulation of the Golgi complex and the trans-Golgi network (TGN). We have recently shown that BIG2 overexpression blocks BFA-induced redistribution of the AP-1 complex but not TGN membrane tubulation. In the present study, we constructed a dominant-negative BIG2 mutant and found that when expressed in cells it induced redistribution of AP-1 and GGA1 and membrane tubulation of the TGN. By contrast, the mutant did not induce COPI redistribution or Golgi membrane tubulation. These observations indicate that BIG2 is involved in trafficking from the TGN by regulating membrane association of AP-1 and GGA through activating ARF.
Collapse
Affiliation(s)
- Chisa Shinotsuka
- Institute of Biological Sciences and Gene Research Center, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
36
|
Eskelinen EL, Meyer C, Ohno H, von Figura K, Schu P. The polarized epithelia-specific mu 1B-adaptin complements mu 1A-deficiency in fibroblasts. EMBO Rep 2002; 3:471-7. [PMID: 11964383 PMCID: PMC1084105 DOI: 10.1093/embo-reports/kvf092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The heterotetrameric AP-1A adaptor complex of clathrin-coated vesicles is ubiquitously expressed. The mu 1-adaptin subunit of the complex exists as the ubiquitous mu 1A and the polarized epithelia-specific mu 1B, which are 80% identical. In polarized epithelia, mu 1B is incorporated into the AP-1B complex, which is required for basolateral plasma membrane sorting of the low-density lipoprotein receptor. Binding of AP-1B to subdomains of the trans-Golgi network (TGN) appears to be part of the mechanism by which protein sorting is mediated. We expressed mu 1B in mu 1A-deficient fibroblasts to test for mu 1B function in non-polarized cells. AP-1B complexes were formed and bound to the TGN and to endosomes. Moreover, AP-1B restored the AP-1A-dependent sorting of mannose 6-phosphate receptors between endosomes and the TGN. This demonstrates that mu 1A and mu 1B do have overlapping sorting functions and indicates that AP-1A and AP-1B mediate protein sorting along parallel pathways between the TGN and endosomes in polarized epithelia.
Collapse
Affiliation(s)
- Eeva-Liisa Eskelinen
- School of Life Sciences, Center for High Resolution Imaging and Processing, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
37
|
Mircheff AK, Xie J, Qian L, Hamm-Alvarez SF. Diverse perturbations may alter the lacrimal acinar cell autoantigenic spectra. DNA Cell Biol 2002; 21:435-42. [PMID: 12167246 DOI: 10.1089/10445490260099728] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lacrimal gland acinar cell autoantigens in Sjögren's syndrome include both intracellular proteins and plasma membrane proteins, to which the immune system normally must be tolerant. Attention has largely focused on the roles apoptotic cell death may play in exposing sequestered autoantigens and novel surface epitopes. We hypothesize that perturbations of ongoing membrane traffic in intact, functioning cells may also increase autoantigen exposure. We review the vesicular traffic between acinar cell basal-lateral plasma membranes (blm) and endomembrane compartments, then describe experiments in which isolated acinar cells were stimulated with epidermal growth factor (EGF), lysed, and analyzed by sorbitol gradient centrifugation. Whereas the cholinergic agonist, carbachol, impairs traffic from the trans-Golgi network to prelysosomes, causing Golgi, secretory, and lysosomal proteins to reflux into domains of the trans-Golgi network that communicate with the blm and to accumulate in the blm, EGF specifically causes a 2.6-fold (P < 0.05) increase in the beta-hexosaminidase content of the blm fraction, apparently by impairing traffic from early endosomes to prelysosome. We, therefore, suggest that a variety of physiologic stimuli may alter the spectra of autoantigens acinar cells secrete to the interstitium, express in their blm, and present via MHC Class II molecules after proteolytic processing.
Collapse
Affiliation(s)
- Austin K Mircheff
- Department of Physiology & Biophysics, and Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | |
Collapse
|
38
|
Dennes A, Madsen P, Nielsen MS, Petersen CM, Pohlmann R. The yeast Vps10p cytoplasmic tail mediates lysosomal sorting in mammalian cells and interacts with human GGAs. J Biol Chem 2002; 277:12288-93. [PMID: 11801606 DOI: 10.1074/jbc.m112295200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Vps10p is a receptor for transport of the soluble vacuolar hydrolase carboxypeptidase Y to the lysosome-like vacuole. Its functional equivalents in mammalian cells are the mannose 6-phosphate receptors that mediate sorting to lysosomes of mannose 6-phosphate-containing lysosomal proteins. A chimeric receptor was constructed by substituting the cytoplasmic domain of M(r) 300,000 mannose 6-phosphate receptor with the Vps10p cytoplasmic tail. Expression of the chimera in cells lacking endogenous mannose 6-phosphate receptors resulted in a subcellular receptor distribution and an efficiency in sorting of lysosomal enzymes similar to that of the wild type M(r) 300,000 mannose 6-phosphate receptor. Moreover, the cytoplasmic tail of the Vps10p was found to interact with GGA1 and GGA2, two mammalian members of a recently discovered family of clathrin-binding cytosolic proteins that participate in trans-Golgi network-endosome trafficking in both mammals and yeast. Our findings suggest a conserved machinery for Golgi-endosome/vacuole sorting and may serve as a model for future studies of yeast proteins.
Collapse
Affiliation(s)
- André Dennes
- Universitätsklinikum Münster, Institut für Physiologische Chemie und Pathobiochemie, Waldeyerstrasse 15, Universität Münster, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
39
|
Hsich G, Sena-Esteves M, Breakefield XO. Critical issues in gene therapy for neurologic disease. Hum Gene Ther 2002; 13:579-604. [PMID: 11916483 DOI: 10.1089/10430340252837198] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene therapy for the nervous system is a newly emerging field with special issues related to modes of delivery, potential toxicity, and realistic expectations for treatment of this vital and highly complex tissue. This review focuses on the potential for gene delivery to the brain, as well as possible risks and benefits of these procedures. This includes discussion of appropriate vectors, such as adeno-associated virus, lentivirus, gutless adenovirus, and herpes simplex virus hybrid amplicons, and cell vehicles, such as neuroprogenitor cells. Routes of delivery for focal and global diseases are enumerated, including use of migratory cells, facilitation of vascular delivery across the blood-brain barrier, cerebrospinal fluid delivery, and convection injection. Attention is given to examples of diseases falling into different etiologic types: metabolic deficiency states, including Canavan disease and lysosomal storage disorders; and degenerative conditions, including Parkinson's disease and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Gary Hsich
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
40
|
Valdivia RH, Baggott D, Chuang JS, Schekman RW. The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins. Dev Cell 2002; 2:283-94. [PMID: 11879634 DOI: 10.1016/s1534-5807(02)00127-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In yeast, certain resident trans-Golgi network (TGN) proteins achieve steady-state localization by cycling through late endosomes. Here, we show that chitin synthase III (Chs3p), an enzyme involved in the assembly of the cell wall at the mother-bud junction, populates an intracellular reservoir that is maintained by a cycle of transport between the TGN and early endosomes. Traffic of Chs3p from the TGN/early endosome to the cell surface requires CHS5 and CHS6, mutant alleles of which trap Chs3p in the TGN/early endosome. Disruption of the clathrin adaptor protein complex 1 (AP-1) restores Chs3p transport to the plasma membrane. Similarly, in AP-1 deficient cells, the resident TGN/early endosome syntaxin, Tlg1p, is missorted. We propose that clathrin and AP-1 act to recycle Chs3p and Tlg1p from the early endosome to the TGN.
Collapse
Affiliation(s)
- Raphael H Valdivia
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
41
|
Huang F, Nesterov A, Carter RE, Sorkin A. Trafficking of yellow-fluorescent-protein-tagged mu1 subunit of clathrin adaptor AP-1 complex in living cells. Traffic 2001; 2:345-57. [PMID: 11350630 DOI: 10.1034/j.1600-0854.2001.25020506.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Clathrin adaptor protein AP-1 complex is thought to function in forming clathrin-coated vesicles at the trans-Golgi network (TGN) and mediating transport of cargo between the TGN and endosomes. To study trafficking of AP-1 in living cells, yellow fluorescent protein (YFP) was inserted in the middle of mu1 A subunit of AP-1. When expressed in a tetracycline-dependent manner in HeLa cells, YFP-mu1 was efficiently incorporated into the AP-1 complex, replacing endogenous mu1 in most of cellular AP-1. Time-lapse imaging revealed that YFP-mu1/AP-1 departs from TGN as isolated vesicles and spherical structures, or varicosities, associated with fine tubular processes. Typically, several vesicles or varicosities were seen moving sequentially along the same 'tracks' from TGN to cell periphery. These data suggest that AP-1 may function after formation of Golgi transport intermediates in facilitating their intracellular movement. Mutagenesis of YFP-mu1 determined that the structural requirements for its binding to tyrosine-containing sequence motifs are similar to those previously defined in mu2 subunit of AP-2. Moreover, the carboxyl-terminal half of mu2 could replace the corresponding fragment of mu1 without loss of the ability of the resulting mu1-YFP-mu2 chimeric protein to incorporate into AP-1 and bind tyrosine-containing motifs. Mutations that abolish binding capacity for tyrosine motifs did not mistarget AP-1 in the cell, suggesting that AP-1 interactions with this type of sorting signals are not essential for membrane docking of AP-1 at the TGN. Altogether, this study demonstrates that YFP-tagged mu1 protein can serve as a useful tool for visualizing the dynamics of AP-1 in living cells and for the structure-function analysis of mu1-cargo interactions.
Collapse
Affiliation(s)
- F Huang
- Department of Pharmacology, University of Colorado Health Science Center, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
42
|
Zhu Y, Drake MT, Kornfeld S. Adaptor protein 1-dependent clathrin coat assembly on synthetic liposomes and Golgi membranes. Methods Enzymol 2001; 329:379-87. [PMID: 11210557 DOI: 10.1016/s0076-6879(01)29099-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Y Zhu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
43
|
Wyss S, Berlioz-Torrent C, Boge M, Blot G, Höning S, Benarous R, Thali M. The highly conserved C-terminal dileucine motif in the cytosolic domain of the human immunodeficiency virus type 1 envelope glycoprotein is critical for its association with the AP-1 clathrin adaptor [correction of adapter]. J Virol 2001; 75:2982-92. [PMID: 11222723 PMCID: PMC115924 DOI: 10.1128/jvi.75.6.2982-2992.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Short amino acid sequences in the cytosolic domains of transmembrane proteins are recognized by specialized adaptor [corrected] proteins which are part of coated vesicles utilized to transport membrane proteins between the trans-Golgi network (TGN) and the plasma membrane (forward and backward). Previously, we and others reported that the membrane-proximal tyrosine residues Y712 (human immunodeficiency virus [HIV]) and Y721 (simian immunodeficiency virus [SIV]) in the envelope glycoprotein (Env) of the primate lentiviruses are crucial for the association of Env with clathrin-associated adaptor [corrected] complex AP-2. The same tyrosine-based endocytosis motifs in the cytosolic domains (EnvCD) of transmembrane gp41 of HIV type 1 (HIV-1) and SIV, respectively, were also shown to modulate the interaction with TGN- and endosome-based clathrin-associated complex AP-1. Our findings suggested that EnvCD binding to AP-1, unlike the association of EnvCD with AP-2, is dependent largely on residues other than Y712 and Y721. Here, we tested if motifs downstream of Y712 affect HIV-1 EnvCD-AP-1 binding and Env trafficking. Mutational analysis revealed that the C-terminal leucine-based motif in Env was crucial for the recruitment of AP-1 in vitro and in Env-expressing cells. In addition to affecting Env-AP-1 association, mutations at the C terminus of Env also altered the subcellular localization of Env, suggesting that proper post-Golgi routing of Env depends on its recruitment of AP-1. Finally, the C-terminal dileucine was shown to assist the membrane-proximal Y712 motif in restricting the cell surface expression of Env.
Collapse
Affiliation(s)
- S Wyss
- Institute of Microbiology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
44
|
Fölsch H, Pypaert M, Schu P, Mellman I. Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells. J Cell Biol 2001; 152:595-606. [PMID: 11157985 PMCID: PMC2195989 DOI: 10.1083/jcb.152.3.595] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2000] [Accepted: 12/22/2000] [Indexed: 12/30/2022] Open
Abstract
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Cell Biology and Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Marc Pypaert
- Department of Cell Biology and Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Peter Schu
- Center for Biochemistry and Molecular Cell Biology, Biochemistry Department II, University of Göttingen, D-37073 Göttingen, Germany
| | - Ira Mellman
- Department of Cell Biology and Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
45
|
Deloche O, Yeung BG, Payne GS, Schekman R. Vps10p transport from the trans-Golgi network to the endosome is mediated by clathrin-coated vesicles. Mol Biol Cell 2001; 12:475-85. [PMID: 11179429 PMCID: PMC30957 DOI: 10.1091/mbc.12.2.475] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A native immunoisolation procedure has been used to investigate the role of clathrin-coated vesicles (CCVs) in the transport of vacuolar proteins between the trans-Golgi network (TGN) and the prevacuolar/endosome compartments in the yeast Saccharomyces cerevisiae. We find that Apl2p, one large subunit of the adaptor protein-1 complex, and Vps10p, the carboxypeptidase Y vacuolar protein receptor, are associated with clathrin molecules. Vps10p packaging in CCVs is reduced in pep12 Delta and vps34 Delta, two mutants that block Vps10p transport from the TGN to the endosome. However, Vps10p sorting is independent of Apl2p. Interestingly, a Vps10C(t) Delta p mutant lacking its C-terminal cytoplasmic domain, the portion of the receptor responsible for carboxypeptidase Y sorting, is also coimmunoprecipitated with clathrin. Our results suggest that CCVs mediate Vps10p transport from the TGN to the endosome independent of direct interactions between Vps10p and clathrin coats. The Vps10p C-terminal domain appears to play a principal role in retrieval of Vps10p from the prevacuolar compartment rather than in sorting from the TGN.
Collapse
Affiliation(s)
- O Deloche
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, 229 Stanley Hall, Berkeley, California 94720-3206, USA
| | | | | | | |
Collapse
|
46
|
Hillmer S, Movafeghi A, Robinson DG, Hinz G. Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J Cell Biol 2001; 152:41-50. [PMID: 11149919 PMCID: PMC2193652 DOI: 10.1083/jcb.152.1.41] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2000] [Accepted: 11/29/2000] [Indexed: 11/22/2022] Open
Abstract
Developing pea cotyledons contain functionally different vacuoles, a protein storage vacuole and a lytic vacuole. Lumenal as well as membrane proteins of the protein storage vacuole exit the Golgi apparatus in dense vesicles rather than in clathrin-coated vesicles (CCVs). Although the sorting receptor for vacuolar hydrolases BP-80 is present in CCVs, it is not detectable in dense vesicles. To localize these different vacuolar sorting events in the Golgi, we have compared the distribution of vacuolar storage proteins and of alpha-TIP, a membrane protein of the protein storage vacuole, with the distribution of the vacuolar sorting receptor BP-80 across the Golgi stack. Analysis of immunogold labeling from cryosections and from high pressure frozen samples has revealed a steep gradient in the distribution of the storage proteins within the Golgi stack. Intense labeling for storage proteins was registered for the cis-cisternae, contrasting with very low labeling for these antigens in the trans-cisternae. The distribution of BP-80 was the reverse, showing a peak in the trans-Golgi network with very low labeling of the cis-cisternae. These results indicate a spatial separation of different vacuolar sorting events in the Golgi apparatus of developing pea cotyledons.
Collapse
Affiliation(s)
- S Hillmer
- Department of Structural Cell Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|
47
|
Reaves BJ, Row PE, Bright NA, Luzio JP, Davidson HW. Loss of cation-independent mannose 6-phosphate receptor expression promotes the accumulation of lysobisphosphatidic acid in multilamellar bodies. J Cell Sci 2000; 113 ( Pt 22):4099-108. [PMID: 11058096 DOI: 10.1242/jcs.113.22.4099] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of recent studies have highlighted the importance of lipid domains within endocytic organelles in the sorting and movement of integral membrane proteins. In particular, considerable attention has become focussed upon the role of the unusual phospholipid lysobisphosphatidic acid (LBPA). This lipid appears to be directly involved in the trafficking of cholesterol and glycosphingolipids, and accumulates in a number of lysosomal storage disorders. Antibody-mediated disruption of LBPA function also leads to mis-sorting of cation-independent mannose 6-phosphate receptors. We now report that the converse is also true, and that spontaneous loss of cation-independent mannose 6-phosphate receptors from a rat fibroblast cell line led to the formation of aberrant late endocytic structures enriched in LBPA. Accumulation of LBPA was directly dependent upon the loss of the receptors, and could be reversed by expression of bovine cation-independent mannose 6-phosphate receptors in the mutant cell line. Ultrastructural analysis indicated that the abnormal organelles were electron-dense, had a multi-lamellar structure, accumulated endocytosed probes, and were distinct from dense-core lysosomes present within the same cells. The late endocytic structures present at steady state within any particular cell likely reflect the balance of membrane traffic through the endocytic pathway of that cell, and the rate of maturation of individual endocytic organelles. Moreover, there is considerable evidence which suggests that cargo receptors also play a direct mechanistic role in membrane trafficking events. Therefore, loss of such a protein may disturb the overall equilibrium of the pathway, and hence cause the accumulation of aberrant organelles. We propose that this mechanism underlies the phenotype of the mutant cell line, and that the formation of inclusion bodies in many lysosomal storage diseases is also due to an imbalance in membrane trafficking within the endocytic pathway.
Collapse
Affiliation(s)
- B J Reaves
- Wellcome Trust Centre for Molecular Mechanisms in Disease, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | | | | | | | | |
Collapse
|
48
|
Kumamoto T, Ito T, Horinouchi H, Ueyama H, Toyoshima I, Tsuda T. Increased lysosome-related proteins in the skeletal muscles of distal myopathy with rimmed vacuoles. Muscle Nerve 2000; 23:1686-93. [PMID: 11054746 DOI: 10.1002/1097-4598(200011)23:11<1686::aid-mus3>3.0.co;2-f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Investigators have speculated that the degenerative process in distal myopathy with rimmed vacuoles (DMRV) mainly involves the lysosomal system. To investigate possible protein abnormalities related to intracellular lysosomal proteolytic pathways in DMRV-affected muscles, we performed immunohistochemical analyses of certain proteins in muscle biopsy specimens obtained from patients with various neuromuscular diseases, including DMRV, muscular dystrophy, polymyositis, and amyotrophic lateral sclerosis, and in normal human muscles specimens. Immunohistochemically, most muscle fibers in normal control specimens showed little or no reaction for clathrin and alpha- and gamma-subunits of adaptin-constituted adaptin proteins (AP)-1 and AP-2, respectively. Abnormal increases in these proteins were demonstrated mainly in the cytoplasm of atrophic fibers or in necrotic fibers in all diseased specimens. Particularly in DMRV-affected muscles, alpha- and gamma-adaptins were often observed inside or on the rims of vacuoles and in the cytoplasm of vacuolated fibers. Abnormal increases in Golgi-zone protein were also demonstrated in DMRV muscles. The rims of rimmed vacuoles were negative for kinectin, an endoplasmic reticulum-binding protein. Positive staining for both proteins, however, was sometimes seen inside the vacuoles in DMRV-affected fibers. These results suggest increased endocytosis at the plasma membrane as well as secretion involving transport from the trans-Golgi network of the Golgi apparatus in DMRV. Accumulation of various lysosome-related proteins within the rimmed vacuoles indicates at least some of these vacuoles may be autolysosomes.
Collapse
Affiliation(s)
- T Kumamoto
- Third Department of Internal Medicine, Oita Medical University, Hasama 1-1, Oita 879-5593, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Wang ZH, Gershon MD, Lungu O, Zhu Z, Gershon AA. Trafficking of varicella-zoster virus glycoprotein gI: T(338)-dependent retention in the trans-Golgi network, secretion, and mannose 6-phosphate-inhibitable uptake of the ectodomain. J Virol 2000; 74:6600-13. [PMID: 10864674 PMCID: PMC112170 DOI: 10.1128/jvi.74.14.6600-6613.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trans-Golgi network (TGN) is putatively the site where varicella-zoster virus is enveloped. gE is targeted to the TGN by selective retrieval from the plasmalemma in response to signaling sequences in its endodomain. gI lacks these sequences but forms a complex with gE. We now find that gI is targeted to the TGN and plasma membrane when expressed in Cos-7 cells; nevertheless, surface labeling revealed that gI is not retrieved from the plasma membrane. TGN targeting of gI depended on the T(338) of its endodomain and was lost when T(338) was deleted or mutated to A, S, or D. The endodomain of gI was sufficient, if it contained T(338), to target a fusion protein containing the ectodomain of the human interleukin-2 receptor to the TGN. A truncated protein consisting only of the gI ectodomain was secreted and taken up by nontransfected cells. This uptake of the secreted gI ectodomain was blocked by mannose 6-phosphate. Following cotransfection, both gI and gE were retrieved to the TGN from the plasma membrane in 26.7% of cells, neither gI nor gE was internalized in 18.3%, and gE was retrieved to the TGN while gI remained at the plasma membrane in 55%. We suggest that the T(338) of its endodomain is necessary to retain gI in the TGN; moreover, because gI and gE interact, the signaling sequences of each glycoprotein reinforce one another in ensuring that both glycoproteins are concentrated in the TGN yet remain on the cell surface.
Collapse
Affiliation(s)
- Z H Wang
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
50
|
Rohn WM, Rouillé Y, Waguri S, Hoflack B. Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system. J Cell Sci 2000; 113 ( Pt 12):2093-101. [PMID: 10825282 DOI: 10.1242/jcs.113.12.2093] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein transport in the secretory and endocytic pathways of eukaryotic cells is mediated by vesicular transport intermediates. Their formation is a tightly controlled multistep process in which coat components are recruited onto specific membranes, and cargo, as well as targeting molecules, become segregated into nascent vesicles. At the trans-Golgi network, two transport systems deliver cargo molecules to the endosomal system. They can be distinguished with regard to coat components that select cargo molecules. AP-1 assembly proteins mediate transport of MPRs and furin, whereas AP-3 adaptors mediate transport of lysosomal membrane glycoproteins to the endosomal/lysosomal system. The molecular basis for protein-specific sorting lies within sorting signals that are present in the cytoplasmic tails of cargo proteins and allow specific interactions with individual coat components. In order to maintain cellular homeostasis, some proteins are retrieved from endosomal compartments and transported back to the trans-Golgi network. Distinct points for protein retrieval exist within the endosomal system, retrieval occurring from either early or late endosomes. Whereas significant progress has been made in recent years in identifying anterograde and retrograde transport pathways, the molecular mechanisms underlying protein sorting and retrieval are only poorly defined. Recently, however, novel vesicle coats (e.g. AP-4) and proteins that might be involved in sorting (e.g. PACS-1 and TIP47) have been described, and the interactions between assembly proteins and sorting signals are becoming increasingly well defined.
Collapse
Affiliation(s)
- W M Rohn
- Institut de Biologie de Lille, CNRS EP 525, Institute de Pasteur de Lille, BP447, 59021 Lille Cédex, France.
| | | | | | | |
Collapse
|