1
|
Castillo-Cruz J, Palacios-Barreto S, Mosso-Pani MA, Serna-Pérez AB, Rodríguez-Tovar AV, Serafin-López J, Castrejón-Jiménez NS, García-Pérez BE. Candida glabrata subverts intracellular trafficking and modulates autophagy to replicate in human epithelial cells. Microb Pathog 2025; 203:107479. [PMID: 40089194 DOI: 10.1016/j.micpath.2025.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
In recent years, Candida glabrata (C. glabrata) has emerged as a pathogen responsible for systemic mortal infections. C. glabrata invades nonphagocytic cells, but the mechanisms involved in its internalization and its intracellular fate in these cells remain poorly understood. Here, it was shown that endocytosis of C. glabrata in epithelial cells partially depends on actin and microtubule rearrangements; importantly, C. glabrata promotes its uptake. The analysis of intracellular fate determined that C. glabrata avoids the fusion of endocytic vacuoles with lysosomes and replicates in epithelial cells. Additionally, C. glabrata downregulates host cell autophagy in the first hour of infection, which correlates with its intracellular replication. Remarkably, the ectopic activation of autophagy contributed to the control of intracellular growth of this yeast. These findings highlight the ability of C. glabrata to manipulate host proteins involved in endocytic processes and intracellular trafficking. Likewise, these results suggest a strong role of host autophagy in controlling fungal pathogens such as C. glabrata.
Collapse
Affiliation(s)
- Juan Castillo-Cruz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Microbiology, México City, Mexico; Instituto Politécnico Nacional, Escuela Superior de Medicina, Department of Graduate, México City, Mexico
| | - Samara Palacios-Barreto
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Microbiology, México City, Mexico
| | - Manuel Alejandro Mosso-Pani
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Microbiology, México City, Mexico
| | - Amanda Belén Serna-Pérez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Microbiology, México City, Mexico
| | - Aída Verónica Rodríguez-Tovar
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Microbiology, México City, Mexico
| | - Jeanet Serafin-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Immunology, México City, Mexico
| | - Nayeli Shantal Castrejón-Jiménez
- Instituto de Ciencias Agropecuarias, Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Santiago Tulantepec de Lugo Guerrero, Hidalgo, Mexico
| | - Blanca Estela García-Pérez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Department of Microbiology, México City, Mexico.
| |
Collapse
|
2
|
Khan ZA, Song SS, Xu H, Ahmad M, Wang A, Abdullah A, Jiang L, Ding X. Elimination of intracellular microbes using drug combination therapy and unveiling survival mechanism of host cells upon microbial invasion. Int J Antimicrob Agents 2025; 65:107471. [PMID: 39986398 DOI: 10.1016/j.ijantimicag.2025.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/16/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Intracellular microbes are actively present in various tumor types in low biomass and play a major role in metastasis. Eliminating intracellular microbes on a cellular level with precision remains a challenge. To address this issue, we designed a screening pipeline to characterize intracellular microbes and their interaction with host cells. We used host and microbial in vitro lab-based constant and reproducible model, host as (mammalian cancer HeLa), and microbial strain as (Escherichia coli 25922). To study the pharmacological impact on intracellular bacterial load, we used antibiotics (ampicillin, roxithromycin, and ciprofloxacin) and chemotherapy drugs (doxorubicin and cisplatin) as external stimuli for both host and microbes. We found that increasing pharmacological stress does not increase microbial load inside the host cells. Eliminations of intracellular bacteria was done by using permutation orthogonal arrays (POA), whereby we acquired optimal drug combination in particular sequence of drugs, which reduced 90%-95% of the intracellular microbial load. Proteomic analysis revealed that upon invasion of Escherichia coli 25922, HeLa cells enriched ATP production pathways to activate intermediate filaments, which should be investigated closely via in vivo models.
Collapse
Affiliation(s)
- Zara Ahmad Khan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China
| | - Sha-Sha Song
- Pathology Department, Yantai Fushan People's Hospital, Yantai, China
| | - Hongquan Xu
- Department of Statistics and Data Science, University of California, Los Angeles, California, USA
| | - Mashaal Ahmad
- Department of Anatomy, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China
| | - Aynur Abdullah
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Pathology, Wenling First People's Hospital, Wenling City, Zhejiang Province, China.
| |
Collapse
|
3
|
Kokusho R, Katsuma S. Baculoviruses remodel the cytoskeleton of insect hemocytes to breach the host basal lamina. Commun Biol 2025; 8:268. [PMID: 40011612 PMCID: PMC11865517 DOI: 10.1038/s42003-025-07579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Many pathogens and endosymbionts hijack the host's cytoskeleton for efficient propagation and transfer within or between host cells. Once released into the host's circulatory system, however, they have to confront structural barriers without utilizing host cell functions. Many insect viruses and insect-borne viruses can re-enter from the hemolymph into insect tissues despite the barrier of the basal lamina (BL), but the molecular mechanism remains unclear in many cases. Here, we demonstrate that Bombyx mori nucleopolyhedrovirus (BmNPV) remodels host hemocytes to breach the BL. We found that the viral membrane protein actin rearrangement-inducing factor 1 (ARIF-1) induces filopodia-like protrusions and invadosome-like structures in hemocytes, which play a critical role in attaching to the tissue surface, penetrating the tracheal BL and thus facilitating the transport of viral nucleocapsids into host tissues. Our findings clearly show the role of hemocyte infection in viral systemic spread and its molecular basis.
Collapse
Affiliation(s)
- Ryuhei Kokusho
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Levandosky K, Copos C. Model supports asymmetric regulation across the intercellular junction for collective cell polarization. PLoS Comput Biol 2024; 20:e1012216. [PMID: 39689113 DOI: 10.1371/journal.pcbi.1012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/31/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Symmetry breaking, which is ubiquitous in biological cells, functionally enables directed cell movement and organized embryogenesis. Prior to movement, cells break symmetry to form a well-defined cell front and rear in a process called polarization. In developing and regenerating tissues, collective cell movement requires the coordination of the polarity of the migration machineries of neighboring cells. Though several works shed light on the molecular basis of polarity, fewer studies have focused on the regulation across the cell-cell junction required for collective polarization, thus limiting our ability to connect tissue-level dynamics to subcellular interactions. Here, we investigated how polarity signals are communicated from one cell to its neighbor to ensure coordinated front-to-rear symmetry breaking with the same orientation across the group. In a theoretical setting, we systematically searched a variety of intercellular interactions and identified that co-alignment arrangement of the polarity axes in groups of two and four cells can only be achieved with strong asymmetric regulation of Rho GTPases or enhanced assembly of complementary F-actin structures across the junction. Our results held if we further assumed the presence of an external stimulus, intrinsic cell-to-cell variability, or larger groups. The results underline the potential of using quantitative models to probe the molecular interactions required for macroscopic biological phenomena. Lastly, we posit that asymmetric regulation is achieved through junction proteins and predict that in the absence of cytoplasmic tails of such linker proteins, the likeliness of doublet co-polarity is greatly diminished.
Collapse
Affiliation(s)
- Katherine Levandosky
- Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America
| | - Calina Copos
- Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
5
|
Höhler M, Alcázar-Román AR, Schenk K, Aguirre-Huamani MP, Braun C, Zrieq R, Mölleken K, Hegemann JH, Fleig U. Direct targeting of host microtubule and actin cytoskeletons by a chlamydial pathogenic effector protein. J Cell Sci 2024; 137:jcs263450. [PMID: 39099397 PMCID: PMC11444262 DOI: 10.1242/jcs.263450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
To propagate within a eukaryotic cell, pathogenic bacteria hijack and remodulate host cell functions. The Gram-negative obligate intracellular Chlamydiaceae, which pose a serious threat to human and animal health, attach to host cells and inject effector proteins that reprogram host cell machineries. Members of the conserved chlamydial TarP family have been characterized as major early effectors that bind to and remodel the host actin cytoskeleton. We now describe a new function for the Chlamydia pneumoniae TarP member CPn0572, namely the ability to bind and alter the microtubule cytoskeleton. Thus, CPn0572 is unique in being the only prokaryotic protein that directly modulates both dynamic cytoskeletons of a eukaryotic cell. Ectopically expressed GFP-CPn0572 associates in a dose-independent manner with either cytoskeleton singly or simultaneously. In vitro, CPn0572 binds directly to microtubules. Expression of a microtubule-only CPn0572 variant resulted in the formation of an aberrantly thick, stabilized microtubule network. Intriguingly, during infection, secreted CPn0572 also colocalized with altered microtubules, suggesting that this protein also affects microtubule dynamics during infection. Our analysis points to a crosstalk between actin and microtubule cytoskeletons via chlamydial CPn0572.
Collapse
Affiliation(s)
- Mona Höhler
- Eukaryotic Microbiology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Katharina Schenk
- Eukaryotic Microbiology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Corinna Braun
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Rafat Zrieq
- Department of Public Health, College of Public Health and Health Informatics, University of Ha'il, Ha'il City 2440, Saudi Arabia
- Applied Science Research Centre, Applied Science Private University, Amman 11931, Jordan
| | - Katja Mölleken
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Ursula Fleig
- Eukaryotic Microbiology, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Li Z, Shang D. NOD1 and NOD2: Essential Monitoring Partners in the Innate Immune System. Curr Issues Mol Biol 2024; 46:9463-9479. [PMID: 39329913 PMCID: PMC11430502 DOI: 10.3390/cimb46090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Nucleotide-binding oligomerization domain containing 1 (NOD1) and NOD2 are pivotal cytoplasmic pattern-recognition receptors (PRRs) that exhibit remarkable evolutionary conservation. They possess the ability to discern specific peptidoglycan (PGN) motifs, thereby orchestrating innate immunity and contributing significantly to immune homeostasis maintenance. The comprehensive understanding of both the structure and function of NOD1 and NOD2 has been extensively elucidated. These receptors proficiently recognize an array of damage-associated molecular patterns (DAMPs) as well as pathogen-associated molecular patterns (PAMPs), subsequently mediating inflammatory responses and autophagy. In recent years, emerging evidence has highlighted the crucial roles played by NOD1 and NOD2 in regulating infectious diseases, metabolic disorders, cancer, and autoimmune conditions, among others. Perturbation in either their loss or excessive activation can detrimentally impact immune homeostasis. This review offers a comprehensive overview of the structural characteristics, subcellular localization, activation mechanisms, and significant roles of NOD1 and NOD2 in innate immunity and related disease.
Collapse
Affiliation(s)
- Zhenjia Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
7
|
Kunishima H, Ichiki K, Ohge H, Sakamoto F, Sato Y, Suzuki H, Nakamura A, Fujimura S, Matsumoto K, Mikamo H, Mizutani T, Morinaga Y, Mori M, Yamagishi Y, Yoshizawa S. Japanese Society for infection prevention and control guide to Clostridioides difficile infection prevention and control. J Infect Chemother 2024; 30:673-715. [PMID: 38714273 DOI: 10.1016/j.jiac.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/09/2024]
Affiliation(s)
- Hiroyuki Kunishima
- Department of Infectious Diseases. St. Marianna University School of Medicine, Japan.
| | - Kaoru Ichiki
- Department of Infection Control and Prevention, Hyogo Medical University Hospital, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Japan
| | - Fumie Sakamoto
- Quality Improvement and Safety Center, Itabashi Chuo Medical Center, Japan
| | - Yuka Sato
- Department of Infection Control and Nursing, Graduate School of Nursing, Aichi Medical University, Japan
| | - Hiromichi Suzuki
- Department of Infectious Diseases, University of Tsukuba School of Medicine and Health Sciences, Japan
| | - Atsushi Nakamura
- Department of Infection Prevention and Control, Graduate School of Medical Sciences, Nagoya City University, Japan
| | - Shigeru Fujimura
- Division of Clinical Infectious Diseases and Chemotherapy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | | | - Yoshitomo Morinaga
- Department of Microbiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Minako Mori
- Department of Infection Control, Hiroshima University Hospital, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi University, Japan
| | - Sadako Yoshizawa
- Department of Laboratory Medicine/Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Japan
| |
Collapse
|
8
|
Ayibieke A, Wajima T, Kano S, Chatterjee NS, Hamabata T. The colonization factor CS6 of enterotoxigenic Escherichia coli contributes to host cell invasion. Microb Pathog 2024; 190:106636. [PMID: 38556103 DOI: 10.1016/j.micpath.2024.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in children and travelers in low-income regions. The virulence of ETEC is attributed to its heat-labile and heat-stable enterotoxins, as well as its colonization factors (CFs). CFs are essential for ETEC adherence to the intestinal epithelium. However, its invasive capability remains unelucidated. In this study, we demonstrated that the CS6-positive ETEC strain 4266 can invade mammalian epithelial cells. The invasive capability was reduced in the 4266 ΔCS6 mutant but reintroduction of CS6 into this mutant restored the invasiveness. Additionally, the laboratory E. coli strain Top 10, which lacks the invasive capability, was able to invade Caco-2 cells after gaining the CS6-expressing plasmid pCS6. Cytochalasin D inhibited cell invasion in both 4266 and Top10 pCS6 cells, and F-actin accumulation was observed near the bacteria on the cell membrane, indicating that CS6-positive bacteria were internalized via actin polymerization. Other cell signal transduction inhibitors, such as genistein, wortmannin, LY294002, PP1, and Ro 32-0432, inhibited the CS6-mediated invasion of Caco-2 cells. The internalized bacteria of both 4266 and Top10 pCS6 strains were able to survive for up to 48 h, and 4266 cells were able to replicate within Caco-2 cells. Immunofluorescence microscopy revealed that the internalized 4266 cells were present in bacteria-containing vacuoles, which underwent a maturation process indicated by the recruitment of the early endosomal marker EEA-1 and late endosomal marker LAMP-1 throughout the infection process. The autophagy marker LC3 was also observed near these vacuoles, indicating the initiation of LC-3-associated phagocytosis (LAP). However, intracellular bacteria continued to replicate, even after the initiation of LAP. Moreover, intracellular filamentation was observed in 4266 cells at 24 h after infection. Overall, this study shows that CS6, in addition to being a major CF, mediates cell invasion. This demonstrates that once internalized, CS6-positive ETEC is capable of surviving and replicating within host cells. This capability may be a key factor in the extended and recurrent nature of ETEC infections in humans, thus highlighting the critical role of CS6.
Collapse
Affiliation(s)
- Alafate Ayibieke
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takeaki Wajima
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigeyuki Kano
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Takashi Hamabata
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
9
|
Tikhomirova A, McNabb ER, Petterlin L, Bellamy GL, Lin KH, Santoso CA, Daye ES, Alhaddad FM, Lee KP, Roujeinikova A. Campylobacter jejuni virulence factors: update on emerging issues and trends. J Biomed Sci 2024; 31:45. [PMID: 38693534 PMCID: PMC11064354 DOI: 10.1186/s12929-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Emmylee R McNabb
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luca Petterlin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Georgia L Bellamy
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kyaw H Lin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher A Santoso
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ella S Daye
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fatimah M Alhaddad
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kah Peng Lee
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Anna Roujeinikova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
10
|
Yeh YT, Del Álamo JC, Caffrey CR. Biomechanics of parasite migration within hosts. Trends Parasitol 2024; 40:164-175. [PMID: 38172015 DOI: 10.1016/j.pt.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The dissemination of protozoan and metazoan parasites through host tissues is hindered by cellular barriers, dense extracellular matrices, and fluid forces in the bloodstream. To overcome these diverse biophysical impediments, parasites implement versatile migratory strategies. Parasite-exerted mechanical forces and upregulation of the host's cellular contractile machinery are the motors for these strategies, and these are comparably better characterized for protozoa than for helminths. Using the examples of the protozoans, Toxoplasma gondii and Plasmodium, and the metazoan, Schistosoma mansoni, we highlight how quantitative tools such as traction force and reflection interference contrast microscopies have improved our understanding of how parasites alter host mechanobiology to promote their migration.
Collapse
Affiliation(s)
- Yi-Ting Yeh
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| | - Juan C Del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, University of Washington, Seattle, WA 98109, USA; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 93093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC0657, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Yao R, Wang M, Zhao Y, Ji Q, Feng X, Bai L, Bao L, Wang Y, Hao H, Li X, Wang Z. Chlorogenic acid enhances PPARγ-mediated lipogenesis through preventing Lipin 1 nuclear translocation in Staphylococcus aureus-exposed bovine mammary epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159396. [PMID: 37717905 DOI: 10.1016/j.bbalip.2023.159396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Chlorogenic acid (CGA) as one of the most ubiquitously dietary polyphenolic compounds, has been reported to have various antimicrobial effects and exhibit strong anti-inflammatory ability. Staphylococcus aureus is a gram-positive bacterium that can induce mastitis. However, the mechanism through which S. aureus infection affects lipid synthesis and whether CGA have protective effect on S. aureus reduced lipid synthesis is not fully understood. In this study, the internalization of S. aureus reduced intracellular lipid droplet formation, decreased the levels of intracellular triacylglycerol, total cholesterol and 7 types of fatty acid and downregulated the expression of lipogenic genes FAS, ACC, and DGAT1 in bovine mammary epithelial cells (BMECs). In addition, we found that S. aureus intracellular infection attenuated mTORC1 activation resulting in Lipin 1 nuclear localization. Remarkablely, S. aureus infection-mediated repression of lipid synthesis related to the mTORC1 signaling and Lipin 1 nuclear localization can be alleviated by CGA. Thus, our findings provide a novel mechanism by which lipid synthesis is regulated under S. aureus infection and the protective effects of CGA on lipid synthesis in BMECs.
Collapse
Affiliation(s)
- Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Manshulin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yue Zhao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qiang Ji
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Hohhot No. 1 High School, Hohhot 010030, China
| | - Linfeng Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lili Bao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Xihe Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot 010070, China; Inner Mongolia SaiKexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China.
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
12
|
Dixon CL, Wu A, Fairn GD. Multifaceted roles and regulation of nucleotide-binding oligomerization domain containing proteins. Front Immunol 2023; 14:1242659. [PMID: 37869013 PMCID: PMC10585062 DOI: 10.3389/fimmu.2023.1242659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Nucleotide-binding oligomerization domain-containing proteins, NOD1 and NOD2, are cytosolic receptors that recognize dipeptides and tripeptides derived from the bacterial cell wall component peptidoglycan (PGN). During the past two decades, studies have revealed several roles for NODs beyond detecting PGN fragments, including activation of an innate immune anti-viral response, NOD-mediated autophagy, and ER stress induced inflammation. Recent studies have also clarified the dynamic regulation of NODs at cellular membranes to generate specific and balanced immune responses. This review will describe how NOD1 and NOD2 detect microbes and cellular stress and detail the molecular mechanisms that regulate activation and signaling while highlighting new evidence and the impact on inflammatory disease pathogenesis.
Collapse
Affiliation(s)
| | - Amy Wu
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory D. Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Zhang Q, Wan M, Kudryashova E, Kudryashov DS, Mao Y. Membrane-dependent actin polymerization mediated by the Legionella pneumophila effector protein MavH. PLoS Pathog 2023; 19:e1011512. [PMID: 37463171 PMCID: PMC10381072 DOI: 10.1371/journal.ppat.1011512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
L. pneumophila propagates in eukaryotic cells within a specialized niche, the Legionella-containing vacuole (LCV). The infection process is controlled by over 330 effector proteins delivered through the type IV secretion system. In this study, we report that the Legionella MavH effector localizes to endosomes and remodels host actin cytoskeleton in a phosphatidylinositol 3-phosphate (PI(3)P) dependent manner when ectopically expressed. We show that MavH recruits host actin capping protein (CP) and actin to the endosome via its CP-interacting (CPI) motif and WH2-like actin-binding domain, respectively. In vitro assays revealed that MavH stimulates actin assembly on PI(3)P-containing liposomes causing their tubulation. In addition, the recruitment of CP by MavH negatively regulates F-actin density at the membrane. We further show that, in L. pneumophila-infected cells, MavH appears around the LCV at the very early stage of infection and facilitates bacterium entry into the host. Together, our results reveal a novel mechanism of membrane tubulation induced by membrane-dependent actin polymerization catalyzed by MavH that contributes to the early stage of L. pneumophila infection by regulating host actin dynamics.
Collapse
Affiliation(s)
- Qing Zhang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
14
|
Kemper L, Hensel A. Campylobacter jejuni: targeting host cells, adhesion, invasion, and survival. Appl Microbiol Biotechnol 2023; 107:2725-2754. [PMID: 36941439 PMCID: PMC10027602 DOI: 10.1007/s00253-023-12456-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Campylobacter jejuni, causing strong enteritis, is an unusual bacterium with numerous peculiarities. Chemotactically controlled motility in viscous milieu allows targeted navigation to intestinal mucus and colonization. By phase variation, quorum sensing, extensive O-and N-glycosylation and use of the flagellum as type-3-secretion system C. jejuni adapts effectively to environmental conditions. C. jejuni utilizes proteases to open cell-cell junctions and subsequently transmigrates paracellularly. Fibronectin at the basolateral side of polarized epithelial cells serves as binding site for adhesins CadF and FlpA, leading to intracellular signaling, which again triggers membrane ruffling and reduced host cell migration by focal adhesion. Cell contacts of C. jejuni results in its secretion of invasion antigens, which induce membrane ruffling by paxillin-independent pathway. In addition to fibronectin-binding proteins, other adhesins with other target structures and lectins and their corresponding sugar structures are involved in host-pathogen interaction. Invasion into the intestinal epithelial cell depends on host cell structures. Fibronectin, clathrin, and dynein influence cytoskeletal restructuring, endocytosis, and vesicular transport, through different mechanisms. C. jejuni can persist over a 72-h period in the cell. Campylobacter-containing vacuoles, avoid fusion with lysosomes and enter the perinuclear space via dynein, inducing signaling pathways. Secretion of cytolethal distending toxin directs the cell into programmed cell death, including the pyroptotic release of proinflammatory substances from the destroyed cell compartments. The immune system reacts with an inflammatory cascade by participation of numerous immune cells. The development of autoantibodies, directed not only against lipooligosaccharides, but also against endogenous gangliosides, triggers autoimmune diseases. Lesions of the epithelium result in loss of electrolytes, water, and blood, leading to diarrhea, which flushes out mucus containing C. jejuni. Together with the response of the immune system, this limits infection time. Based on the structural interactions between host cell and bacterium, the numerous virulence mechanisms, signaling, and effects that characterize the infection process of C. jejuni, a wide variety of targets for attenuation of the pathogen can be characterized. The review summarizes strategies of C. jejuni for host-pathogen interaction and should stimulate innovative research towards improved definition of targets for future drug development. KEY POINTS: • Bacterial adhesion of Campylobacter to host cells and invasion into host cells are strictly coordinated processes, which can serve as targets to prevent infection. • Reaction and signalling of host cell depend on the cell type. • Campylobacter virulence factors can be used as targets for development of antivirulence drug compounds.
Collapse
Affiliation(s)
- Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
15
|
Río-Bergé C, Cong Y, Reggiori F. Getting on the right track: Interactions between viruses and the cytoskeletal motor proteins. Traffic 2023; 24:114-130. [PMID: 35146839 DOI: 10.1111/tra.12835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
The cytoskeleton is an essential component of the cell and it is involved in multiple physiological functions, including intracellular organization and transport. It is composed of three main families of proteinaceous filaments; microtubules, actin filaments and intermediate filaments and their accessory proteins. Motor proteins, which comprise the dynein, kinesin and myosin superfamilies, are a remarkable group of accessory proteins that mainly mediate the intracellular transport of cargoes along with the cytoskeleton. Like other cellular structures and pathways, viruses can exploit the cytoskeleton to promote different steps of their life cycle through associations with motor proteins. The complexity of the cytoskeleton and the differences among viruses, however, has led to a wide diversity of interactions, which in most cases remain poorly understood. Unveiling the details of these interactions is necessary not only for a better comprehension of specific infections, but may also reveal new potential drug targets to fight dreadful diseases such as rabies disease and acquired immunodeficiency syndrome (AIDS). In this review, we describe a few examples of the mechanisms that some human viruses, that is, rabies virus, adenovirus, herpes simplex virus, human immunodeficiency virus, influenza A virus and papillomavirus, have developed to hijack dyneins, kinesins and myosins.
Collapse
Affiliation(s)
- Clàudia Río-Bergé
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yingying Cong
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Cummings MJ, Bakamutumaho B, Price A, Owor N, Kayiwa J, Namulondo J, Byaruhanga T, Jain K, Postler TS, Muwanga M, Nsereko C, Nayiga I, Kyebambe S, Che X, Sameroff S, Tokarz R, Shah SS, Larsen MH, Lipkin WI, Lutwama JJ, O’Donnell MR. HIV infection drives pro-inflammatory immunothrombotic pathway activation and organ dysfunction among adults with sepsis in Uganda. AIDS 2023; 37:233-245. [PMID: 36355913 PMCID: PMC9780191 DOI: 10.1097/qad.0000000000003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The global burden of sepsis is concentrated in high HIV-burden settings in sub-Saharan Africa (SSA). Despite this, little is known about the immunopathology of sepsis in persons with HIV (PWH) in the region. We sought to determine the influence of HIV on host immune responses and organ dysfunction among adults hospitalized with suspected sepsis in Uganda. DESIGN Prospective cohort study. METHODS We compared organ dysfunction and 30-day outcome profiles of PWH and those without HIV. We quantified 14 soluble immune mediators, reflective of key domains of sepsis immunopathology, and performed whole-blood RNA-sequencing on samples from a subset of patients. We used propensity score methods to match PWH and those without HIV by demographics, illness duration, and clinical severity, and compared immune mediator concentrations and gene expression profiles across propensity score-matched groups. RESULTS Among 299 patients, 157 (52.5%) were PWH (clinical stage 3 or 4 in 80.3%, 67.7% with known HIV on antiretroviral therapy). PWH presented with more severe physiologic derangement and shock, and had higher 30-day mortality (34.5% vs. 10.2%; P < 0.001). Across propensity score-matched groups, PWH exhibited greater pro-inflammatory immune activation, including upregulation of interleukin (IL)-6, IL-8, IL-15, IL-17 and HMGB1 signaling, with concomitant T-cell exhaustion, prothrombotic pathway activation, and angiopoeitin-2-related endothelial dysfunction. CONCLUSIONS Sepsis-related organ dysfunction and mortality in Uganda disproportionately affect PWH, who demonstrate exaggerated activation of multiple immunothrombotic and metabolic pathways implicated in sepsis pathogenesis. Further investigations are needed to refine understanding of sepsis immunopathology in PWH, particularly mechanisms amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- Matthew J. Cummings
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Barnabas Bakamutumaho
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
- Immunizable Diseases Unit, Uganda Virus Research Institute, Entebbe, Uganda
| | - Adam Price
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicholas Owor
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - John Kayiwa
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Joyce Namulondo
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Timothy Byaruhanga
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Thomas S. Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Moses Muwanga
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | | | - Irene Nayiga
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | - Stephen Kyebambe
- Entebbe General Referral Hospital, Ministry of Health, Entebbe, Uganda
| | - Xiaoyu Che
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shivang S. Shah
- Division of Infectious Diseases, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michelle H. Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julius J. Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Max R. O’Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Zhang Q, Wan M, Mao Y. Membrane-dependent actin polymerization mediated by the Legionella pneumophila effector protein MavH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525393. [PMID: 36747622 PMCID: PMC9900769 DOI: 10.1101/2023.01.24.525393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
L. pneumophila propagates in eukaryotic cells within a specialized niche, the Legionella -containing vacuole (LCV). The infection process is controlled by over 330 effector proteins delivered through the type IV secretion system. In this study, we report that the Legionella MavH effector harbors a lipid-binding domain that specifically recognizes PI(3)P (phosphatidylinositol 3-phosphate) and localizes to endosomes when ectopically expressed. We show that MavH recruits host actin capping proteins (CP) and actin to the endosome via its CP interacting (CPI) motif and WH2-like actin-binding domain, respectively. In vitro assays revealed that MavH stimulates robust actin polymerization only in the presence of PI(3)P-containing liposomes and the recruitment of CP by MavH negatively regulates F-actin density at the membrane. Furthermore, in L. pneumophila -infected cells, MavH can be detected around the LCV at the very early stage of infection. Together, our results reveal a novel mechanism of membrane-dependent actin polymerization catalyzed by MavH that may play a role at the early stage of L. pneumophila infection by regulating host actin dynamics.
Collapse
Affiliation(s)
- Qing Zhang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Corresponding Author: , Telephone: 607-255-0783
| |
Collapse
|
18
|
Macedo-da-Silva J, Rosa-Fernandes L, Gomes VDM, Santiago VF, Santos DM, Molnar CMS, Barboza BR, de Souza EE, Marques RF, Boscardin SB, Durigon EL, Marinho CRF, Wrenger C, Marie SKN, Palmisano G. Protein Arginylation Is Regulated during SARS-CoV-2 Infection. Viruses 2023; 15:v15020290. [PMID: 36851505 PMCID: PMC9964439 DOI: 10.3390/v15020290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In 2019, the world witnessed the onset of an unprecedented pandemic. By February 2022, the infection by SARS-CoV-2 has already been responsible for the death of more than 5 million people worldwide. Recently, we and other groups discovered that SARS-CoV-2 infection induces ER stress and activation of the unfolded protein response (UPR) pathway. Degradation of misfolded/unfolded proteins is an essential element of proteostasis and occurs mainly in lysosomes or proteasomes. The N-terminal arginylation of proteins is characterized as an inducer of ubiquitination and proteasomal degradation by the N-degron pathway. RESULTS The role of protein arginylation during SARS-CoV-2 infection was elucidated. Protein arginylation was studied in Vero CCL-81, macrophage-like THP1, and Calu-3 cells infected at different times. A reanalysis of in vivo and in vitro public omics data combined with immunoblotting was performed to measure levels of arginyl-tRNA-protein transferase (ATE1) and its substrates. Dysregulation of the N-degron pathway was specifically identified during coronavirus infections compared to other respiratory viruses. We demonstrated that during SARS-CoV-2 infection, there is an increase in ATE1 expression in Calu-3 and Vero CCL-81 cells. On the other hand, infected macrophages showed no enzyme regulation. ATE1 and protein arginylation was variant-dependent, as shown using P1 and P2 viral variants and HEK 293T cells transfection with the spike protein and receptor-binding domains (RBD). In addition, we report that ATE1 inhibitors, tannic acid and merbromine (MER) reduce viral load. This finding was confirmed in ATE1-silenced cells. CONCLUSIONS We demonstrate that ATE1 is increased during SARS-CoV-2 infection and its inhibition has potential therapeutic value.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Vinicius de Morais Gomes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Veronica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Deivid Martins Santos
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Bruno Rafael Barboza
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Edmarcia Elisa de Souza
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo 05508-000, Brazil
| | - Rodolfo Ferreira Marques
- Laboratory of Antigen Targeting for Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo 05508-000, Brazil
| | - Silvia Beatriz Boscardin
- Laboratory of Antigen Targeting for Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo 05508-000, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Claudio Romero Farias Marinho
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo 05508-000, Brazil
| | - Suely Kazue Nagahashi Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
- School of Natural Sciences, Macquarie University, Sydney 2109, Australia
- Correspondence: or ; Tel.: +55-11-99920-8662
| |
Collapse
|
19
|
Identification of the Actin-Binding Region and Binding to Host Plant Apple Actin of Immunodominant Transmembrane Protein of ' Candidatus Phytoplasma mali'. Int J Mol Sci 2023; 24:ijms24020968. [PMID: 36674483 PMCID: PMC9860668 DOI: 10.3390/ijms24020968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
'Candidatus Phytoplasma mali' ('Ca. P. mali') has only one major membrane protein, the immunodominant membrane protein (Imp), which is regarded as being close to the ancestor of all phytoplasma immunodominant membrane proteins. Imp binds to actin and possibly facilitates its movement in the plant or insect host cells. However, protein sequences of Imp are quite diverse among phytoplasma species, thus resulting in difficulties in identifying conserved domains across species. In this work, we compare Imp protein sequences of 'Ca. P. mali' strain PM19 (Imp-PM19) with Imp of different strains of 'Ca. P. mali' and identify its actin-binding domain. Moreover, we show that Imp binds to the actin of apple (Malus x domestica), which is the host plant of 'Ca. P. mali'. Using molecular and scanning force spectroscopy analysis, we find that the actin-binding domain of Imp-PM19 contains a highly positively charged amino acid cluster. Our result could allow investigating a possible correlation between Imp variants and the infectivity of the corresponding 'Ca. P. mali' isolates.
Collapse
|
20
|
Alqassim SS. Functional Mimicry of Eukaryotic Actin Assembly by Pathogen Effector Proteins. Int J Mol Sci 2022; 23:ijms231911606. [PMID: 36232907 PMCID: PMC9569871 DOI: 10.3390/ijms231911606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The actin cytoskeleton lies at the heart of many essential cellular processes. There are hundreds of proteins that cells use to control the size and shape of actin cytoskeletal networks. As such, various pathogens utilize different strategies to hijack the infected eukaryotic host actin dynamics for their benefit. These include the control of upstream signaling pathways that lead to actin assembly, control of eukaryotic actin assembly factors, encoding toxins that distort regular actin dynamics, or by encoding effectors that directly interact with and assemble actin filaments. The latter class of effectors is unique in that, quite often, they assemble actin in a straightforward manner using novel sequences, folds, and molecular mechanisms. The study of these mechanisms promises to provide major insights into the fundamental determinants of actin assembly, as well as a deeper understanding of host-pathogen interactions in general, and contribute to therapeutic development efforts targeting their respective pathogens. This review discusses mechanisms and highlights shared and unique features of actin assembly by pathogen effectors that directly bind and assemble actin, focusing on eukaryotic actin nucleator functional mimics Rickettsia Sca2 (formin mimic), Burkholderia BimA (Ena/VASP mimic), and Vibrio VopL (tandem WH2-motif mimic).
Collapse
Affiliation(s)
- Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Health Care City, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
21
|
Kunishima H, Ohge H, Suzuki H, Nakamura A, Matsumoto K, Mikamo H, Mori N, Morinaga Y, Yanagihara K, Yamagishi Y, Yoshizawa S. Japanese Clinical Practice Guidelines for Management of Clostridioides (Clostridium) difficile infection. J Infect Chemother 2022; 28:1045-1083. [PMID: 35618618 DOI: 10.1016/j.jiac.2021.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Hiroyuki Kunishima
- Department of Infectious Diseases, St. Marianna University School of Medicine, Japan.
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Japan
| | - Hiromichi Suzuki
- Division of Infectious Diseases, Department of Medicine, Tsukuba Medical Center Hospital, Japan
| | - Atsushi Nakamura
- Division of Infection Control and Prevention, Nagoya City University Hospital, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Japan
| | - Hiroshige Mikamo
- Clinical Infectious Diseases, Graduate School of Medicine, Aichi Medical University, Japan
| | - Nobuaki Mori
- Division of General Internal Medicine and Infectious Diseases, National Hospital Organization Tokyo Medical Center, Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yuka Yamagishi
- Clinical Infectious Diseases, Graduate School of Medicine, Aichi Medical University, Japan
| | - Sadako Yoshizawa
- Department of Clinical Laboratory/Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Japan
| |
Collapse
|
22
|
Hill NS, Welch MD. A glycine-rich PE_PGRS protein governs mycobacterial actin-based motility. Nat Commun 2022; 13:3608. [PMID: 35750685 PMCID: PMC9232537 DOI: 10.1038/s41467-022-31333-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Many key insights into actin regulation have been derived through examining how microbial pathogens intercept the actin cytoskeleton during infection. Mycobacterium marinum, a close relative of the human pathogen Mycobacterium tuberculosis, polymerizes host actin at the bacterial surface to drive intracellular movement and cell-to-cell spread during infection. However, the mycobacterial factor that commandeers actin polymerization has remained elusive. Here, we report the identification and characterization of the M. marinum actin-based motility factor designated mycobacterial intracellular rockets A (MirA), which is a member of the glycine-rich PE_PGRS protein family. MirA contains an amphipathic helix to anchor into the mycobacterial outer membrane and, surprisingly, also the surface of host lipid droplet organelles. MirA directly binds to and activates the host protein N-WASP to stimulate actin polymerization through the Arp2/3 complex, directing both bacterial and lipid droplet actin-based motility. MirA is dissimilar to known N-WASP activating ligands and may represent a new class of microbial and host actin regulator. Additionally, the MirA-N-WASP interaction represents a model to understand how the enigmatic PE_PGRS proteins contribute to mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Norbert S Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
23
|
Jahagirdar S, Morris L, Benis N, Oppegaard O, Svenson M, Hyldegaard O, Skrede S, Norrby-Teglund A, Martins Dos Santos VAP, Saccenti E. Analysis of host-pathogen gene association networks reveals patient-specific response to streptococcal and polymicrobial necrotising soft tissue infections. BMC Med 2022; 20:173. [PMID: 35505341 PMCID: PMC9066942 DOI: 10.1186/s12916-022-02355-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Necrotising soft tissue infections (NSTIs) are rapidly progressing bacterial infections usually caused by either several pathogens in unison (polymicrobial infections) or Streptococcus pyogenes (mono-microbial infection). These infections are rare and are associated with high mortality rates. However, the underlying pathogenic mechanisms in this heterogeneous group remain elusive. METHODS In this study, we built interactomes at both the population and individual levels consisting of host-pathogen interactions inferred from dual RNA-Seq gene transcriptomic profiles of the biopsies from NSTI patients. RESULTS NSTI type-specific responses in the host were uncovered. The S. pyogenes mono-microbial subnetwork was enriched with host genes annotated with involved in cytokine production and regulation of response to stress. The polymicrobial network consisted of several significant associations between different species (S. pyogenes, Porphyromonas asaccharolytica and Escherichia coli) and host genes. The host genes associated with S. pyogenes in this subnetwork were characterised by cellular response to cytokines. We further found several virulence factors including hyaluronan synthase, Sic1, Isp, SagF, SagG, ScfAB-operon, Fba and genes upstream and downstream of EndoS along with bacterial housekeeping genes interacting with the human stress and immune response in various subnetworks between host and pathogen. CONCLUSIONS At the population level, we found aetiology-dependent responses showing the potential modes of entry and immune evasion strategies employed by S. pyogenes, congruent with general cellular processes such as differentiation and proliferation. After stratifying the patients based on the subject-specific networks to study the patient-specific response, we observed different patient groups with different collagens, cytoskeleton and actin monomers in association with virulence factors, immunogenic proteins and housekeeping genes which we utilised to postulate differing modes of entry and immune evasion for different bacteria in relationship to the patients' phenotype.
Collapse
Affiliation(s)
- Sanjeevan Jahagirdar
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Lorna Morris
- Lifeglimmer GmbH, Markelstraße 38, 12163, Berlin, Germany
| | - Nirupama Benis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands.,Present affiliation: Department of Medical Informatics, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Oddvar Oppegaard
- Department of Medicine, Division for infectious diseases, Haukeland University Hospital, Bergen, Norway
| | - Mattias Svenson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Ole Hyldegaard
- Department of Anesthesia, Centre of Head and Orthopaedics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Steinar Skrede
- Department of Medicine, Division for infectious diseases, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands.,Lifeglimmer GmbH, Markelstraße 38, 12163, Berlin, Germany
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands.
| |
Collapse
|
24
|
da Silva RAG, Tay WH, Ho FK, Tanoto FR, Chong KKL, Choo PY, Ludwig A, Kline KA. Enterococcus faecalis alters endo-lysosomal trafficking to replicate and persist within mammalian cells. PLoS Pathog 2022; 18:e1010434. [PMID: 35390107 PMCID: PMC9017951 DOI: 10.1371/journal.ppat.1010434] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/19/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Enterococcus faecalis is a frequent opportunistic pathogen of wounds, whose infections are associated with biofilm formation, persistence, and recalcitrance toward treatment. We have previously shown that E. faecalis wound infection persists for at least 7 days. Here we report that viable E. faecalis are present within both immune and non-immune cells at the wound site up to 5 days after infection, raising the prospect that intracellular persistence contributes to chronic E. faecalis infection. Using in vitro keratinocyte and macrophage infection models, we show that E. faecalis becomes internalized and a subpopulation of bacteria can survive and replicate intracellularly. E. faecalis are internalized into keratinocytes primarily via macropinocytosis into single membrane-bound compartments and can persist in late endosomes up to 24 h after infection in the absence of colocalization with the lysosomal protease Cathepsin D or apparent fusion with the lysosome, suggesting that E. faecalis blocks endosomal maturation. Indeed, intracellular E. faecalis infection results in heterotypic intracellular trafficking with partial or absent labelling of E. faecalis-containing compartments with Rab5 and Rab7, small GTPases required for the endosome-lysosome trafficking. In addition, E. faecalis infection results in marked reduction of Rab5 and Rab7 protein levels which may also contribute to attenuated Rab incorporation into E. faecalis-containing compartments. Finally, we demonstrate that intracellular E. faecalis derived from infected keratinocytes are significantly more efficient in reinfecting new keratinocytes. Together, these data suggest that intracellular proliferation of E. faecalis may contribute to its persistence in the face of a robust immune response, providing a primed reservoir of bacteria for subsequent reinfection.
Collapse
Affiliation(s)
- Ronni A. G. da Silva
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore
| | - Wei Hong Tay
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Frederick Reinhart Tanoto
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
25
|
Ngo QV, Faass L, Sähr A, Hildebrand D, Eigenbrod T, Heeg K, Nurjadi D. Inflammatory Response Against Staphylococcus aureus via Intracellular Sensing of Nucleic Acids in Keratinocytes. Front Immunol 2022; 13:828626. [PMID: 35281009 PMCID: PMC8907419 DOI: 10.3389/fimmu.2022.828626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Staphylococcus aureus is one of the clinically most relevant pathogens causing infections. Humans are often exposed to S. aureus. In approximately one-third of the healthy population it can be found on the skin either for long or short periods as colonizing "commensals", without inducing infections or an inflammatory immune response. While tolerating S. aureus seems to be limited to certain individuals and time periods in most cases, Staphylococcus epidermidis is tolerated permanently on the skin of almost all individuals without activating overwhelming skin inflammation. To investigate this, we co-cultured a keratinocyte cell line (HaCaT) with viable S. aureus or S. epidermidis to study the differences in the immune activation. S. aureus activated keratinocytes depicted by a profound IL-6 and IL-8 response, whereas S. epidermidis did not. Our data indicate that internalization of S. aureus and the subsequent intracellular sensing of bacterial nucleic acid may be essential for initiating inflammatory response in keratinocytes. Internalized dsRNA activates IL-6 and IL-8 release, but not TNF-α or IFNs by human keratinocytes. This is a non-specific effect of dsRNA, which can be induced using Poly(I:C), as well as RNA from S. aureus and S. epidermidis. However, only viable S. aureus were able to induce this response as these bacteria and not S. epidermidis were actively internalized by HaCaT. The stimulatory effect of S. aureus seems to be independent of the TLR3, -7 and -8 pathways.
Collapse
Affiliation(s)
- Quang Vinh Ngo
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Larissa Faass
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Max von Pettenkofer Institute, Chair for Medical Microbiology and Hygiene, Ludwig Maximilians University Munich, Munich, Germany
| | - Aline Sähr
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
26
|
Ivanov SS, Castore R, Juarez Rodriguez MD, Circu M, Dragoi AM. Neisseria gonorrhoeae subverts formin-dependent actin polymerization to colonize human macrophages. PLoS Pathog 2021; 17:e1010184. [PMID: 34962968 PMCID: PMC8746766 DOI: 10.1371/journal.ppat.1010184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/10/2022] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Dynamic reorganization of the actin cytoskeleton dictates plasma membrane morphogenesis and is frequently subverted by bacterial pathogens for entry and colonization of host cells. The human-adapted bacterial pathogen Neisseria gonorrhoeae can colonize and replicate when cultured with human macrophages, however the basic understanding of how this process occurs is incomplete. N. gonorrhoeae is the etiological agent of the sexually transmitted disease gonorrhea and tissue resident macrophages are present in the urogenital mucosa, which is colonized by the bacteria. We uncovered that when gonococci colonize macrophages, they can establish an intracellular or a cell surface-associated niche that support bacterial replication independently. Unlike other intracellular bacterial pathogens, which enter host cells as single bacterium, establish an intracellular niche and then replicate, gonococci invade human macrophages as a colony. Individual diplococci are rapidly phagocytosed by macrophages and transported to lysosomes for degradation. However, we found that surface-associated gonococcal colonies of various sizes can invade macrophages by triggering actin skeleton rearrangement resulting in plasma membrane invaginations that slowly engulf the colony. The resulting intracellular membrane-bound organelle supports robust bacterial replication. The gonococci-occupied vacuoles evaded fusion with the endosomal compartment and were enveloped by a network of actin filaments. We demonstrate that gonococcal colonies invade macrophages via a process mechanistically distinct from phagocytosis that is regulated by the actin nucleating factor FMNL3 and is independent of the Arp2/3 complex. Our work provides insights into the gonococci life-cycle in association with human macrophages and defines key host determinants for macrophage colonization. During infection, the human-adapted bacterial pathogen Neisseria gonorrhoeae and causative agent of gonorrhea can invade the submucosa of the urogenital tract where it encounters tissue-resident innate immune sentinels, such as macrophages and neutrophils. Instead of eliminating gonococci, macrophages support robust bacterial replication. Here, we detail the life cycle of N. gonorrhoeae in association with macrophages and define key regulators that govern the colonization processes. We uncovered that N. gonorrhoeae establishes two distinct subcellular niches that support bacterial replication autonomously–one niche was on the macrophage surface and another one was intracellular. Gonococci subverted the host actin cytoskeleton through the actin nucleating factor FMNL3 to invade colonized macrophages and occupy a membrane-bound intracellular organelle. We propose that N. gonorrhoeae ability to occupy distinct subcellular niches when colonizing macrophages likely confers broad protection against multiple host defense responses.
Collapse
Affiliation(s)
- Stanimir S. Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
- * E-mail: (SSI); (AMD)
| | - Reneau Castore
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
| | - Maria Dolores Juarez Rodriguez
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
| | - Magdalena Circu
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
- * E-mail: (SSI); (AMD)
| |
Collapse
|
27
|
Li Q, Yuan Q, Wang T, Zhan Y, Yang L, Fan Y, Lei H, Su J. Fumonisin B 1 Inhibits Cell Proliferation and Decreases Barrier Function of Swine Umbilical Vein Endothelial Cells. Toxins (Basel) 2021; 13:toxins13120863. [PMID: 34941701 PMCID: PMC8704807 DOI: 10.3390/toxins13120863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
The fumonisins are a group of common mycotoxins found around the world that mainly contaminate maize. As environmental toxins, they pose a threat to human and animal health. Fumonisin B1 (FB1) is the most widely distributed and the most toxic. FB1 can cause pulmonary edema in pigs. However, the current toxicity mechanism of fumonisins is still in the exploratory stage, which may be related to sphingolipid metabolism. Our study is designed to investigate the effect of FB1 on the cell proliferation and barrier function of swine umbilical vein endothelial cells (SUVECs). We show that FB1 can inhibit the cell viability of SUVECs. FB1 prevents cells from entering the S phase from the G1 phase by regulating the expression of the cell cycle-related genes cyclin B1, cyclin D1, cyclin E1, Cdc25c, and the cyclin-dependent kinase-4 (CDK-4). This results in an inhibition of cell proliferation. In addition, FB1 can also change the cell morphology, increase paracellular permeability, destroy tight junctions and the cytoskeleton, and reduce the expression of tight junction-related genes claudin 1, occludin, and ZO-1. This indicates that FB1 can cause cell barrier dysfunction of SUVECs and promote the weakening or even destruction of the connections between endothelial cells. In turn, this leads to increased blood vessel permeability and promotes exudation. Our findings suggest that FB1 induces toxicity in SUVECs by affecting cell proliferation and disrupting the barrier function.
Collapse
|
28
|
Actin Cytoskeleton Dynamics and Type I IFN-Mediated Immune Response: A Dangerous Liaison in Cancer? BIOLOGY 2021; 10:biology10090913. [PMID: 34571790 PMCID: PMC8469949 DOI: 10.3390/biology10090913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Actin cytoskeleton is a dynamic subcellular component critical for maintaining cell shape and for elaborating response to any stimulus converging on the cell. Cytoskeleton constantly interfaces with diverse cellular components and affects a wide range of processes important in homeostasis and disease. What has been clearly demonstrated to date is that pathogens modify and use host cytoskeleton to their advantage. What is now emerging is that in sterile conditions, when a chronic inflammation occurs as in cancer, the subversion of tissue homeostasis induces an alarm status which mimics infection. This activates cellular players similar to those that solve an infection, but their persistence may pave the way for tumor progression. Understanding molecular mechanisms engaged by cytoskeleton to induce this viral mimicry could improve our knowledge of processes governing tumor progression and resistance to therapy. Abstract Chronic viral infection and cancer are closely inter-related and are both characterized by profound alteration of tissue homeostasis. The actin cytoskeleton dynamics highly participate in tissue homeostasis and act as a sensor leading to an immune-mediated anti-cancer and anti-viral response. Herein we highlight the crucial role of actin cytoskeleton dynamics in participating in a viral mimicry activation with profound effect in anti-tumor immune response. This still poorly explored field understands the cytoskeleton dynamics as a platform of complex signaling pathways which may regulate Type I IFN response in cancer. This emerging network needs to be elucidated to identify more effective anti-cancer strategies and to further advance the immuno-oncology field which has revolutionized the cancer treatment. For a progress to occur in this exciting arena we have to shed light on actin cytoskeleton related pathways and immune response. Herein we summarize the major findings, considering the double sword of the immune response and in particular the role of Type I IFN pathways in resistance to anti-cancer treatment.
Collapse
|
29
|
Rodríguez-Bejarano OH, Avendaño C, Patarroyo MA. Mechanisms Associated with Trypanosoma cruzi Host Target Cell Adhesion, Recognition and Internalization. Life (Basel) 2021; 11:534. [PMID: 34207491 PMCID: PMC8227291 DOI: 10.3390/life11060534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is caused by the kinetoplastid parasite Trypanosoma cruzi, which is mainly transmitted by hematophagous insect bites. The parasite's lifecycle has an obligate intracellular phase (amastigotes), while metacyclic and bloodstream-trypomastigotes are its infective forms. Mammalian host cell recognition of the parasite involves the interaction of numerous parasite and host cell plasma membrane molecules and domains (known as lipid rafts), thereby ensuring internalization by activating endocytosis mechanisms triggered by various signaling cascades in both host cells and the parasite. This increases cytoplasmatic Ca2+ and cAMP levels; cytoskeleton remodeling and endosome and lysosome intracellular system association are triggered, leading to parasitophorous vacuole formation. Its membrane becomes modified by containing the parasite's infectious form within it. Once it has become internalized, the parasite seeks parasitophorous vacuole lysis for continuing its intracellular lifecycle, fragmenting such a vacuole's membrane. This review covers the cellular and molecular mechanisms involved in T. cruzi adhesion to, recognition of and internalization in host target cells.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9#51-11, Bogotá 110231, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| |
Collapse
|
30
|
de Lima JB, da Silva Fonseca LP, Xavier LP, de Matos Macchi B, Cassoli JS, da Silva EO, da Silva Valadares RB, do Nascimento JLM, Santos AV, de Sena CBC. Culture of Mycobacterium smegmatis in Different Carbon Sources to Induce In Vitro Cholesterol Consumption Leads to Alterations in the Host Cells after Infection: A Macrophage Proteomics Analysis. Pathogens 2021; 10:pathogens10060662. [PMID: 34071265 PMCID: PMC8230116 DOI: 10.3390/pathogens10060662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
During tuberculosis, Mycobacterium uses host macrophage cholesterol as a carbon and energy source. To mimic these conditions, Mycobacterium smegmatis can be cultured in minimal medium (MM) to induce cholesterol consumption in vitro. During cultivation, M. smegmatis consumes MM cholesterol and changes the accumulation of cell wall compounds, such as PIMs, LM, and LAM, which plays an important role in its pathogenicity. These changes lead to cell surface hydrophobicity modifications and H2O2 susceptibility. Furthermore, when M. smegmatis infects J774A.1 macrophages, it induces granuloma-like structure formation. The present study aims to assess macrophage molecular disturbances caused by M. smegmatis after cholesterol consumption, using proteomics analyses. Proteins that showed changes in expression levels were analyzed in silico using OmicsBox and String analysis to investigate the canonical pathways and functional networks involved in infection. Our results demonstrate that, after cholesterol consumption, M. smegmatis can induce deregulation of protein expression in macrophages. Many of these proteins are related to cytoskeleton remodeling, immune response, the ubiquitination pathway, mRNA processing, and immunometabolism. The identification of these proteins sheds light on the biochemical pathways involved in the mechanisms of action of mycobacteria infection, and may suggest novel protein targets for the development of new and improved treatments.
Collapse
Affiliation(s)
- Jaqueline Batista de Lima
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.B.d.L.); (E.O.d.S.)
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.P.X.); (A.V.S.)
| | | | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.P.X.); (A.V.S.)
| | - Barbarella de Matos Macchi
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (B.d.M.M.); (J.L.M.d.N.)
- National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro 21040-900, RJ, Brazil
| | - Juliana Silva Cassoli
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Edilene Oliveira da Silva
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.B.d.L.); (E.O.d.S.)
- National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro 21941-901, RJ, Brazil
| | | | - José Luiz Martins do Nascimento
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (B.d.M.M.); (J.L.M.d.N.)
- National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro 21040-900, RJ, Brazil
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.P.X.); (A.V.S.)
| | - Chubert Bernardo Castro de Sena
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.B.d.L.); (E.O.d.S.)
- National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro 21040-900, RJ, Brazil
- Correspondence:
| |
Collapse
|
31
|
Robertin S, Mostowy S. The history of septin biology and bacterial infection. Cell Microbiol 2021; 22:e13173. [PMID: 32185906 DOI: 10.1111/cmi.13173] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/29/2022]
Abstract
Investigation of cytoskeleton during bacterial infection has significantly contributed to both cell and infection biology. Bacterial pathogens Listeria monocytogenes and Shigella flexneri are widely recognised as paradigms for investigation of the cytoskeleton during bacterial entry, actin-based motility, and cell-autonomous immunity. At the turn of the century, septins were a poorly understood component of the cytoskeleton mostly studied in the context of yeast cell division and human cancer. In 2002, a screen performed in the laboratory of Pascale Cossart identified septin family member MSF (MLL septin-like fusion, now called SEPT9) associated with L. monocytogenes entry into human epithelial cells. These findings inspired the investigation of septins during L. monocytogenes and S. flexneri infection at the Institut Pasteur, illuminating important roles for septins in host-microbe interactions. In this review, we revisit the history of septin biology and bacterial infection, and discuss how the comparative study of L. monocytogenes and S. flexneri has been instrumental to understand septin roles in cellular homeostasis and host defence.
Collapse
Affiliation(s)
- Stevens Robertin
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Serge Mostowy
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
32
|
Tabusi M, Thorsdottir S, Lysandrou M, Narciso AR, Minoia M, Srambickal CV, Widengren J, Henriques-Normark B, Iovino F. Neuronal death in pneumococcal meningitis is triggered by pneumolysin and RrgA interactions with β-actin. PLoS Pathog 2021; 17:e1009432. [PMID: 33760879 PMCID: PMC7990213 DOI: 10.1371/journal.ppat.1009432] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/28/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal damage is a major consequence of bacterial meningitis, but little is known about mechanisms of bacterial interaction with neurons leading to neuronal cell death. Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and many survivors develop neurological sequelae after the acute infection has resolved, possibly due to neuronal damage. Here, we studied mechanisms for pneumococcal interactions with neurons. Using human primary neurons, pull-down experiments and mass spectrometry, we show that pneumococci interact with the cytoskeleton protein β-actin through the pilus-1 adhesin RrgA and the cytotoxin pneumolysin (Ply), thereby promoting adhesion and invasion of neurons, and neuronal death. Using our bacteremia-derived meningitis mouse model, we observe that RrgA- and Ply-expressing pneumococci co-localize with neuronal β-actin. Using purified proteins, we show that Ply, through its cholesterol-binding domain 4, interacts with the neuronal plasma membrane, thereby increasing the exposure on the outer surface of β-actin filaments, leading to more β-actin binding sites available for RrgA binding, and thus enhanced pneumococcal interactions with neurons. Pneumococcal infection promotes neuronal death possibly due to increased intracellular Ca2+ levels depending on presence of Ply, as well as on actin cytoskeleton disassembly. STED super-resolution microscopy showed disruption of β-actin filaments in neurons infected with pneumococci expressing RrgA and Ply. Finally, neuronal death caused by pneumococcal infection could be inhibited using antibodies against β-actin. The generated data potentially helps explaining mechanisms for why pneumococci frequently cause neurological sequelae.
Collapse
Affiliation(s)
- Mahebali Tabusi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sigrun Thorsdottir
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Lysandrou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ana Rita Narciso
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Melania Minoia
- Department of Molecular Biosciences, The Wenner-Gren Institutet, Stockholm University, Stockholm, Sweden
| | | | - Jerker Widengren
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, BioClinicum J7:20, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
33
|
Autophagy-A Story of Bacteria Interfering with the Host Cell Degradation Machinery. Pathogens 2021; 10:pathogens10020110. [PMID: 33499114 PMCID: PMC7911818 DOI: 10.3390/pathogens10020110] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a highly conserved and fundamental cellular process to maintain cellular homeostasis through recycling of defective organelles or proteins. In a response to intracellular pathogens, autophagy further acts as an innate immune response mechanism to eliminate pathogens. This review will discuss recent findings on autophagy as a reaction to intracellular pathogens, such as Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Staphylococcus aureus, and pathogenic Escherichia coli. Interestingly, while some of these bacteria have developed methods to use autophagy for their own benefit within the cell, others have developed fascinating mechanisms to evade recognition, to subvert the autophagic pathway, or to escape from autophagy.
Collapse
|
34
|
Alers-Velazquez R, Jacques S, Muller C, Boldt J, Schoelz J, Leisner S. Cauliflower mosaic virus P6 inclusion body formation: A dynamic and intricate process. Virology 2021; 553:9-22. [PMID: 33197754 DOI: 10.1016/j.virol.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022]
Abstract
During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.
Collapse
Affiliation(s)
- Roberto Alers-Velazquez
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Sarah Jacques
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Clare Muller
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Jennifer Boldt
- USDA-Agricultural Research Service, Application Technology Research Unit, 2801 West Bancroft Street, Mail Stop 604, Toledo, OH, 43606, USA
| | - James Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA.
| |
Collapse
|
35
|
Shini S, Aland RC, Bryden WL. Avian intestinal ultrastructure changes provide insight into the pathogenesis of enteric diseases and probiotic mode of action. Sci Rep 2021; 11:167. [PMID: 33420315 PMCID: PMC7794591 DOI: 10.1038/s41598-020-80714-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/24/2020] [Indexed: 01/27/2023] Open
Abstract
Epithelial damage and loss of barrier integrity occur following intestinal infections in humans and animals. Gut health was evaluated by electron microscopy in an avian model that exposed birds to subclinical necrotic enteritis (NE) and fed them a diet supplemented with the probiotic Bacillus amyloliquefaciens strain H57 (H57). Scanning electron microscopy of ileal mucosa revealed significant villus damage, including focal erosions of epithelial cells and villous atrophy, while transmission electron microscopy demonstrated severe enterocyte damage and loss of cellular integrity in NE-exposed birds. In particular, mitochondria were morphologically altered, appearing irregular in shape or swollen, and containing electron-lucent regions of matrix and damaged cristae. Apical junctional complexes between adjacent enterocytes were significantly shorter, and the adherens junction was saccular, suggesting loss of epithelial integrity in NE birds. Segmented filamentous bacteria attached to villi, which play an important role in intestinal immunity, were more numerous in birds exposed to NE. The results suggest that mitochondrial damage may be an important initiator of NE pathogenesis, while H57 maintains epithelium and improves the integrity of intestinal mucosa. Potential actions of H57 are discussed that further define the mechanisms responsible for probiotic bacteria’s role in maintaining gut health.
Collapse
Affiliation(s)
- Shaniko Shini
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, 4343, Australia.
| | - R Claire Aland
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, 4071, Australia
| | - Wayne L Bryden
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, 4343, Australia
| |
Collapse
|
36
|
Sachdeva K, Sundaramurthy V. The Interplay of Host Lysosomes and Intracellular Pathogens. Front Cell Infect Microbiol 2020; 10:595502. [PMID: 33330138 PMCID: PMC7714789 DOI: 10.3389/fcimb.2020.595502] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Lysosomes are an integral part of the intracellular defense system against microbes. Lysosomal homeostasis in the host is adaptable and responds to conditions such as infection or nutritional deprivation. Pathogens such as Mycobacterium tuberculosis (Mtb) and Salmonella avoid lysosomal targeting by actively manipulating the host vesicular trafficking and reside in a vacuole altered from the default lysosomal trafficking. In this review, the mechanisms by which the respective pathogen containing vacuoles (PCVs) intersect with lysosomal trafficking pathways and maintain their distinctness are discussed. Despite such active inhibition of lysosomal targeting, emerging literature shows that different pathogens or pathogen derived products exhibit a global influence on the host lysosomal system. Pathogen mediated lysosomal enrichment promotes the trafficking of a sub-set of pathogens to lysosomes, indicating heterogeneity in the host-pathogen encounter. This review integrates recent advancements on the global lysosomal alterations upon infections and the host protective role of the lysosomes against these pathogens. The review also briefly discusses the heterogeneity in the lysosomal targeting of these pathogens and the possible mechanisms and consequences.
Collapse
|
37
|
Okanda T, Mitsutake H, Aso R, Sekizawa R, Takemura H, Matsumoto T, Nakamura S. Rapid detection assay of toxigenic Clostridioides difficile through PathOC RightGene, a novel high-speed polymerase chain reaction device. Diagn Microbiol Infect Dis 2020; 99:115247. [PMID: 33188946 DOI: 10.1016/j.diagmicrobio.2020.115247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023]
Abstract
Nucleic acid amplification tests for diagnosing Clostridioides difficile infections (CDI) are improving to become faster and more accurate. This study aimed to evaluate the accuracy of rapid detection of toxigenic C. difficile using the novel high-speed polymerase chain reaction (PCR) device, PathOC RightGene. These results were compared and evaluated with real-time PCR (qPCR) and enzyme immunoassays (EIA) kit. For this study, 102 C. difficile and 3 Clostridium species isolated from CDI patients were used. These C. difficile isolates were 85 toxigenic and 17 non-toxigenic strains. The results of qPCR served as a standard, and sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the PathOC Right Gene were 99.2%, 99.4%, 100%, 98.8%, and 99.3%, respectively. Turnaround time of qPCR and EIA was 85 and 30 minutes, whereas PathOC RightGene was only 25 minutes including DNA extraction. This novel high-speed PCR device detected toxigenic C. difficile rapidly and accurately.
Collapse
Affiliation(s)
- Takashi Okanda
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan; Department of Microbiology, Tokyo Medical University, Tokyo, Japan.
| | | | - Ryoko Aso
- Metaboscreen Co., Ltd., Yokohama, Japan
| | | | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, International University of Health and Welfare, Narita, Japan
| | - Shigeki Nakamura
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
38
|
Sharma D, Malik A, Balakrishnan A, Malireddi RKS, Kanneganti TD. RIPK3 Promotes Mefv Expression and Pyrin Inflammasome Activation via Modulation of mTOR Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 205:2778-2785. [PMID: 32989095 DOI: 10.4049/jimmunol.2000244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/02/2020] [Indexed: 01/15/2023]
Abstract
Mutations in MEFV, the gene encoding pyrin in humans, are associated with the autoinflammatory disorder familial Mediterranean fever. Pyrin is an innate sensor that assembles into an inflammasome complex in response to Rho-modifying toxins, including Clostridium difficile toxins A and B. Cell death pathways have been shown to intersect with and modulate inflammasome activation, thereby affecting host defense. Using bone marrow-derived macrophages and a murine model of peritonitis, we show in this study that receptor-interacting protein kinase (RIPK) 3 impacts pyrin inflammasome activation independent of its role in necroptosis. RIPK3 was instead required for transcriptional upregulation of Mefv through negative control of the mechanistic target of rapamycin (mTOR) pathway and independent of alterations in MAPK and NF-κB signaling. RIPK3 did not affect pyrin dephosphorylation associated with inflammasome activation. We further demonstrate that inhibition of mTOR was sufficient to promote Mefv expression and pyrin inflammasome activation, highlighting the cross-talk between the mTOR pathway and regulation of the pyrin inflammasome. Our study reveals a novel interaction between molecules involved in cell death and the mTOR pathway to regulate the pyrin inflammasome, which can be harnessed for therapeutic interventions.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ankit Malik
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Arjun Balakrishnan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | | |
Collapse
|
39
|
Copos C, Mogilner A. A hybrid stochastic-deterministic mechanochemical model of cell polarization. Mol Biol Cell 2020; 31:1637-1649. [PMID: 32459563 PMCID: PMC7521800 DOI: 10.1091/mbc.e19-09-0549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Polarization is a crucial component in cell differentiation, development, and motility, but its details are not yet well understood. At the onset of cell locomotion, cells break symmetry to form well-defined cell fronts and rears. This polarity establishment varies across cell types: in Dictyostelium discoideum cells, it is mediated by biochemical signaling pathways and can function in the absence of a cytoskeleton, while in keratocytes, it is tightly connected to cytoskeletal dynamics and mechanics. Theoretical models that have been developed to understand the onset of polarization have explored either signaling or mechanical pathways, yet few have explored mechanochemical mechanisms. However, many motile cells rely on both signaling modules and actin cytoskeleton to break symmetry and achieve a stable polarized state. We propose a general mechanochemical polarization model based on coupling between a stochastic model for the segregation of signaling molecules and a simplified mechanical model for actin cytoskeleton network competition. We find that local linear coupling between minimally nonlinear signaling and cytoskeletal systems, separately not supporting stable polarization, yields a robustly polarized cell state. The model captures the essence of spontaneous polarization of neutrophils, which has been proposed to emerge due to the competition between frontness and backness pathways.
Collapse
Affiliation(s)
- Calina Copos
- Courant Institute, New York University, New York, NY 10012
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012
- Department of Biology, New York University, New York, NY 10012
| |
Collapse
|
40
|
Miyata M, Robinson RC, Uyeda TQP, Fukumori Y, Fukushima SI, Haruta S, Homma M, Inaba K, Ito M, Kaito C, Kato K, Kenri T, Kinosita Y, Kojima S, Minamino T, Mori H, Nakamura S, Nakane D, Nakayama K, Nishiyama M, Shibata S, Shimabukuro K, Tamakoshi M, Taoka A, Tashiro Y, Tulum I, Wada H, Wakabayashi KI. Tree of motility - A proposed history of motility systems in the tree of life. Genes Cells 2020; 25:6-21. [PMID: 31957229 PMCID: PMC7004002 DOI: 10.1111/gtc.12737] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 12/27/2022]
Abstract
Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement‐producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility.
Collapse
Affiliation(s)
- Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| | - Robert C Robinson
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan.,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Taro Q P Uyeda
- Department of Physics, Faculty of Science and Technology, Waseda University, Tokyo, Japan
| | - Yoshihiro Fukumori
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Shun-Ichi Fukushima
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Shin Haruta
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Tsuyoshi Kenri
- Laboratory of Mycoplasmas and Haemophilus, Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mori
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Miyagi, Japan
| | - Daisuke Nakane
- Department of Physics, Gakushuin University, Tokyo, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masayoshi Nishiyama
- Department of Physics, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Satoshi Shibata
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Katsuya Shimabukuro
- Department of Chemical and Biological Engineering, National Institute of Technology, Ube College, Yamaguchi, Japan
| | - Masatada Tamakoshi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Azuma Taoka
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yosuke Tashiro
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Isil Tulum
- Department of Botany, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Hirofumi Wada
- Department of Physics, Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
41
|
Kühn S, Enninga J. The actin comet guides the way: How
Listeria
actin subversion has impacted cell biology, infection biology and structural biology. Cell Microbiol 2020; 22:e13190. [DOI: 10.1111/cmi.13190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Sonja Kühn
- Unit of Dynamics of Host‐Pathogen InteractionsInstitut Pasteur Paris France
- Centre National de la Recherche Scientifique (CNRS‐UMR3691) Paris France
| | - Jost Enninga
- Unit of Dynamics of Host‐Pathogen InteractionsInstitut Pasteur Paris France
- Centre National de la Recherche Scientifique (CNRS‐UMR3691) Paris France
| |
Collapse
|
42
|
Singh V, Davidson AC, Hume PJ, Humphreys D, Koronakis V. Arf GTPase interplay with Rho GTPases in regulation of the actin cytoskeleton. Small GTPases 2019; 10:411-418. [PMID: 28524754 PMCID: PMC6748364 DOI: 10.1080/21541248.2017.1329691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 01/04/2023] Open
Abstract
The Arf and Rho subfamilies of small GTPases are nucleotide-dependent molecular switches that act as master regulators of vesicular trafficking and the actin cytoskeleton organization. Small GTPases control cell processes with high fidelity by acting through distinct repertoires of binding partners called effectors. While we understand a great deal about how these GTPases act individually, relatively little is known about how they cooperate, especially in the control of effectors. This review highlights how Arf GTPases collaborate with Rac1 to regulate actin cytoskeleton dynamics at the membrane via recruiting and activating the Wave Regulatory Complex (WRC), a Rho effector that underpins lamellipodia formation and macropinocytosis. This provides insight into Arf regulation of the actin cytoskeleton, while putting the spotlight on small GTPase cooperation with emerging evidence of its importance in fundamental cell biology and interactions with pathogenic bacteria.
Collapse
Affiliation(s)
- Vikash Singh
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Peter J. Hume
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Daniel Humphreys
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
43
|
Bravo-Santano N, Capilla-Lasheras P, Mateos LM, Calle Y, Behrends V, Letek M. Identification of novel targets for host-directed therapeutics against intracellular Staphylococcus aureus. Sci Rep 2019; 9:15435. [PMID: 31659191 PMCID: PMC6817851 DOI: 10.1038/s41598-019-51894-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/09/2019] [Indexed: 01/26/2023] Open
Abstract
During patient colonization, Staphylococcus aureus is able to invade and proliferate within human cells to evade the immune system and last resort drugs such as vancomycin. Hijacking specific host molecular factors and/or pathways is necessary for pathogens to successfully establish an intracellular infection. In this study, we employed an unbiased shRNA screening coupled with ultra-fast sequencing to screen 16,000 human genes during S. aureus infection and we identified several host genes important for this intracellular pathogen. In addition, we interrogated our screening results to find novel host-targeted therapeutics against intracellular S. aureus. We found that silencing the human gene TRAM2 resulted in a significant reduction of intracellular bacterial load while host cell viability was restored, showing its importance during intracellular infection. Furthermore, TRAM2 is an interactive partner of the endoplasmic reticulum SERCA pumps and treatment with the SERCA-inhibitor Thapsigargin halted intracellular MRSA survival. Our results suggest that Thapsigargin could be repurposed to tackle S. aureus host cell infection in combination with conventional antibiotics.
Collapse
Affiliation(s)
| | | | - Luis M Mateos
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain
| | - Yolanda Calle
- Health Sciences Research Centre, University of Roehampton, London, UK
| | - Volker Behrends
- Health Sciences Research Centre, University of Roehampton, London, UK.
| | - Michal Letek
- Health Sciences Research Centre, University of Roehampton, London, UK.
| |
Collapse
|
44
|
Militello G. Motility Control of Symbionts and Organelles by the Eukaryotic Cell: The Handling of the Motile Capacity of Individual Parts Forges a Collective Biological Identity. Front Psychol 2019; 10:2080. [PMID: 31551897 PMCID: PMC6747060 DOI: 10.3389/fpsyg.2019.02080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Motility occupies a decisive role in an organism's ability to autonomously interact with its environment. However, collective biological organizations exhibit individual parts, which have temporally or definitively lost their motor capacities, but still able to autonomously interact with their host. Indeed, although the flagella of bacterial symbionts of eukaryotic cells are usually inhibited or lost, they autonomously modify the environment provided by their host. Furthermore, the eukaryotic organelles of endosymbiotic origin (i.e., mitochondria and plastids) are no longer able to move autonomously; nonetheless, they make a cytoskeletal-driven motion that allows them to communicate with other eukaryotic cells and to perform a considerable number of physiological functions. The purpose of this article is twofold: first, to investigate how changes in the motile capacities of the parts of a nested biological organization affect their interactive autonomy; second, to examine how the modification of the interactive autonomy of the individual parts influences the constitutive autonomy of the collective association as a whole. The article argues that the emergence and maintenance of collective biological identities involves a strict control of the motile abilities of their constituting members. This entails a restriction, but not necessarily a complete loss, of the agential capacities of the individual parts.
Collapse
Affiliation(s)
- Guglielmo Militello
- Department of Logics and Philosophy of Science, IAS-Research Centre, University of the Basque Country, San Sebastián, Spain
| |
Collapse
|
45
|
Olotu C, Lehmensiek F, Koch B, Kiefmann M, Riegel AK, Hammerschmidt S, Kiefmann R. Streptococcus pneumoniae inhibits purinergic signaling and promotes purinergic receptor P2Y 2 internalization in alveolar epithelial cells. J Biol Chem 2019; 294:12795-12806. [PMID: 31289122 DOI: 10.1074/jbc.ra118.007236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Bacterial pneumonia is a global health challenge that causes up to 2 million deaths each year. Purinergic signaling plays a pivotal role in healthy alveolar epithelium. Here, we used fluorophore-based analysis and live-cell calcium imaging to address the question of whether the bacterial pathogen Streptococcus pneumoniae directly interferes with purinergic signaling in alveolar epithelial cells. Disturbed purinergic signaling might result in pathophysiologic changes like edema formation and atelectasis, which are commonly seen in bacterial pneumonia. Purine receptors are mainly activated by ATP, mediating a cytosolic calcium response. We found that this purinergic receptor P2Y2-mediated response is suppressed in the presence of S. pneumoniae in A549 and isolated primary alveolar cells in a temperature-dependent manner. Downstream inositol 3-phosphate (IP3) signaling appeared to be unaffected, as calcium signaling via protease-activated receptor 2 remained unaltered. S. pneumoniae-induced suppression of the P2Y2-mediated calcium response depended on the P2Y2 phosphorylation sites Ser-243, Thr-344, and Ser-356, which are involved in receptor desensitization and internalization. Spinning-disk live-cell imaging revealed that S. pneumoniae induces P2Y2 translocation into the cytosol. In conclusion, our results show that S. pneumoniae directly inhibits purinergic signaling by inducing P2Y2 phosphorylation and internalization, resulting in the suppression of the calcium response of alveolar epithelial cells to ATP, thereby affecting cellular integrity and function.
Collapse
Affiliation(s)
- Cynthia Olotu
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22051 Hamburg, Germany
| | - Felix Lehmensiek
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22051 Hamburg, Germany
| | - Bastian Koch
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22051 Hamburg, Germany
| | - Martina Kiefmann
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22051 Hamburg, Germany
| | - Ann-Kathrin Riegel
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22051 Hamburg, Germany
| | - Sven Hammerschmidt
- Institute of Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany
| | - Rainer Kiefmann
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 22051 Hamburg, Germany
| |
Collapse
|
46
|
Li F, Song X, Su G, Wang Y, Wang Z, Jia J, Qing S, Huang L, Wang Y, Zheng K, Wang Y. Amentoflavone Inhibits HSV-1 and ACV-Resistant Strain Infection by Suppressing Viral Early Infection. Viruses 2019; 11:E466. [PMID: 31121928 PMCID: PMC6563227 DOI: 10.3390/v11050466] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
Infection of Herpes simplex virus 1 (HSV-1) induces severe clinical disorders, such as herpes simplex encephalitis and keratitis. Acyclovir (ACV) is the current therapeutic drug against viral infection and ACV-resistant strains have gradually emerged, leading to the requirement for novel antiviral agents. In this study, we exhibited the antiviral activity of amentoflavone, a naturally occurring biflavonoid, toward HSV-1 and ACV-resistant strains. Amentoflavone significantly inhibited infection of HSV-1 (F strain), as well as several ACV-resistant strains including HSV-1/106, HSV-1/153 and HSV-1/Blue at high concentrations. Time-of-drug-addition assay further revealed that amentoflavone mainly impaired HSV-1 early infection. More detailed study demonstrated that amentoflavone affected cofilin-mediated F-actin reorganization and reduced the intracellular transportation of HSV-1 from the cell membrane to the nucleus. In addition, amentoflavone substantially decreased transcription of viral immediate early genes. Collectively, amentoflavone showed strong antiviral activity against HSV-1 and ACV-resistant strains, and amentoflavone could be a promising therapeutic candidate for HSV-1 pathogenesis.
Collapse
Affiliation(s)
- Feng Li
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xiaowei Song
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Guifeng Su
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yiliang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Zhaoyang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Jiaoyan Jia
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Shurong Qing
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lianzhou Huang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yuan Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
47
|
Abstract
The entry of pathogens into nonphagocytic host cells has received much attention in the past three decades, revealing a vast array of strategies employed by bacteria and viruses. A method of internalization that has been extensively studied in the context of viral infections is the use of the clathrin-mediated pathway. More recently, a role for clathrin in the entry of some intracellular bacterial pathogens was discovered. Classically, clathrin-mediated endocytosis was thought to accommodate internalization only of particles smaller than 150 nm; however, this was challenged upon the discovery that Listeria monocytogenes requires clathrin to enter eukaryotic cells. Now, with discoveries that clathrin is required during other stages of some bacterial infections, another paradigm shift is occurring. There is a more diverse impact of clathrin during infection than previously thought. Much of the recent data describing clathrin utilization in processes such as bacterial attachment, cell-to-cell spread and intracellular growth may be due to newly discovered divergent roles of clathrin in the cell. Not only does clathrin act to facilitate endocytosis from the plasma membrane, but it also participates in budding from endosomes and the Golgi apparatus and in mitosis. Here, the manipulation of clathrin processes by bacterial pathogens, including its traditional role during invasion and alternative ways in which clathrin supports bacterial infection, is discussed. Researching clathrin in the context of bacterial infections will reveal new insights that inform our understanding of host-pathogen interactions and allow researchers to fully appreciate the diverse roles of clathrin in the eukaryotic cell.
Collapse
Affiliation(s)
- Eleanor A Latomanski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Costa AC, Carvalho F, Cabanes D, Sousa S. Stathmin recruits tubulin to Listeria monocytogenes-induced actin comets and promotes bacterial dissemination. Cell Mol Life Sci 2019; 76:961-975. [PMID: 30506415 PMCID: PMC11105747 DOI: 10.1007/s00018-018-2977-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 01/18/2023]
Abstract
The tubulin cytoskeleton is one of the main components of the cytoarchitecture and is involved in several cellular functions. Here, we examine the interplay between Listeria monocytogenes (Lm) and the tubulin cytoskeleton upon cellular infection. We show that non-polymeric tubulin is present throughout Lm actin comet tails and, to a less extent, in actin clouds. Moreover, we demonstrate that stathmin, a regulator of microtubule dynamics, is also found in these Lm-associated actin structures and is required for tubulin recruitment. Depletion of host stathmin results in longer comets containing less F-actin, which may be correlated with higher levels of inactive cofilin in the comet, thus suggesting a defect on local F-actin dynamics. In addition, intracellular bacterial speed is significantly reduced in stathmin-depleted cells, revealing the importance of stathmin/tubulin in intracellular Lm motility. In agreement, the area of infection foci and the total bacterial loads are also significantly reduced in stathmin-depleted cells. Collectively, our results demonstrate that stathmin promotes efficient cellular infection, possibly through tubulin recruitment and control of actin dynamics at Lm-polymerized actin structures.
Collapse
Affiliation(s)
- Ana Catarina Costa
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Filipe Carvalho
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 25 Rue du Dr Roux, 75015, Paris, France
| | - Didier Cabanes
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, i3S-Instituto de Investigação e Inovação em Saúde, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
49
|
He L, Lin Y, Ge ZH, He SY, Zhao BB, Shen D, He JG, Lu YJ. The Legionella pneumophila effector WipA disrupts host F-actin polymerisation by hijacking phosphotyrosine signalling. Cell Microbiol 2019; 21:e13014. [PMID: 30702192 DOI: 10.1111/cmi.13014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 11/29/2022]
Abstract
The major virulence determinant of Legionella pneumophila is the type IVB secretion system (T4BSS), which delivers approximately 330 effector proteins into the host cell to modulate various cellular processes. However, the functions of most effector proteins remain unclear. WipA, an effector, was the first phosphotyrosine phosphatase of Legionella with unknown function. In this study, we found that WipA induced relatively strong growth defects in yeast in a phosphatase activity-dependent manner. Phosphoproteomics data showed that WipA was likely involved into endocytosis, FcγR-mediated phagocytosis, tight junction, and regulation of actin cytoskeleton pathways. Western blotting further confirmed WipA dephosphorylates several proteins associated with actin polymerisation, such as p-N-WASP, p-ARP3, p-ACK1, and p-NCK1. Thus, we hypothesised that WipA targets N-WASP/ARP2/3 complex signalling pathway, leading to disturbance of actin polymerisation. Indeed, we demonstrated that WipA inhibits host F-actin polymerisation by reducing the G-actin to F-actin transition during L. penumophila infection. Furthermore, the intracellular proliferation of wipA/legK2 double mutant was significantly impaired at the late stage of infection, although the absence of WipA does not confer any further effect on actin polymerisation to the legK2 mutant. Collectively, this study provides unique insights into the WipA-mediated regulation of host actin polymerisation and assists us to elucidate the pathogenic mechanisms of L. pnuemophila infection.
Collapse
Affiliation(s)
- Lei He
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Yun Lin
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Zhen-Huang Ge
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Shi-Yu He
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Bei-Bei Zhao
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Dong Shen
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| | - Jian-Guo He
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Yong-Jun Lu
- School of life sciences, Sun Yat-sen University, Guangzhou, China.,Biomedical Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Krokowski S, Lobato-Márquez D, Chastanet A, Pereira PM, Angelis D, Galea D, Larrouy-Maumus G, Henriques R, Spiliotis ET, Carballido-López R, Mostowy S. Septins Recognize and Entrap Dividing Bacterial Cells for Delivery to Lysosomes. Cell Host Microbe 2018; 24:866-874.e4. [PMID: 30543779 PMCID: PMC6299245 DOI: 10.1016/j.chom.2018.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/14/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Abstract
The cytoskeleton occupies a central role in cellular immunity by promoting bacterial sensing and antibacterial functions. Septins are cytoskeletal proteins implicated in various cellular processes, including cell division. Septins also assemble into cage-like structures that entrap cytosolic Shigella, yet how septins recognize bacteria is poorly understood. Here, we discover that septins are recruited to regions of micron-scale membrane curvature upon invasion and division by a variety of bacterial species. Cardiolipin, a curvature-specific phospholipid, promotes septin recruitment to highly curved membranes of Shigella, and bacterial mutants lacking cardiolipin exhibit less septin cage entrapment. Chemically inhibiting cell separation to prolong membrane curvature or reducing Shigella cell growth respectively increases and decreases septin cage formation. Once formed, septin cages inhibit Shigella cell division upon recruitment of autophagic and lysosomal machinery. Thus, recognition of dividing bacterial cells by the septin cytoskeleton is a powerful mechanism to restrict the proliferation of intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Sina Krokowski
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Damián Lobato-Márquez
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Arnaud Chastanet
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Pedro Matos Pereira
- Quantitative Imaging and NanoBiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Dimitrios Angelis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Dieter Galea
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- Faculty of Natural Sciences, Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Ricardo Henriques
- Quantitative Imaging and NanoBiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Rut Carballido-López
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
| |
Collapse
|