1
|
Yao X, Cai H, Chen J, Yu F, Wu X, Shi Y, Hu Y, Xu Y, Xu Q, Liu Z. Increased long-term central memory T cells in patients with retreatment pulmonary tuberculosis. Front Immunol 2025; 16:1545537. [PMID: 40170853 PMCID: PMC11959053 DOI: 10.3389/fimmu.2025.1545537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025] Open
Abstract
Background T cells are crucial in controlling Mycobacterium tuberculosis infection and disease progression. Nevertheless, the specific functions and changes of T lymphocyte subsets in retreatment tuberculosis remain poorly understand. The study aims to identify the changes in T lymphocyte subsets and the immunoprotective effect of TCM in retreatment tuberculosis. Method We collected venous blood from the participants and assessed using flow cytometry. Univariate analysis and regression model were used to evaluate the changes of T lymphocyte subsets and key subsets in retreatment tuberculosis. Results In the study, while the frequencies of CD4 and CD8 T cells were similar between primary and retreatment patients, retreatment patients exhibited a significant increase in TCM (P < 0.05), which may represent a protective factor for retreatment (adjusted OR=0.926, 95%CI: 0.860-0.996, P < 0.05) (adjusted OR=0.951, 95%CI: 0.912-0.992, P<0.05). Furthermore, TCM significantly increased in retreatment patients who achieved cure (P < 0.05), though were similar between the cure and no-cure for primary patients; The potentially protective effect of TCM in patients with repeated infection may possibly contribute by improving the efficacy of retreatment chemotherapy (adjusted OR=0.803, 95%CI: 0.677-0.953, P < 0.05) (adjusted OR=0.890, 95% CI: 0.812-0.976, P<0.05), particularly in those with lung injury (adjusted OR=0.780, 95% CI: 0.635-0.957, P< 0.05) (adjusted OR=0.805, 95% CI: 0.660-0.983, P<0.05). Conclusion Development of adjunct immunotherapies for increasing TCM responses may improve the efficacy of retreatment tuberculosis with existing and with novel chemotherapies.
Collapse
Affiliation(s)
- Xin Yao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Haomin Cai
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianxia Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fangyong Yu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaocui Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yarong Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yang Hu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Qinghua Xu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
DeGolier KR, Danis E, D'Antonio M, Cimons J, Yarnell M, Kedl RM, Kohler ME, Scott-Browne JP, Fry TJ. Antigen experience history directs distinct functional states of CD8 + CAR T cells during the antileukemia response. Nat Immunol 2025; 26:68-81. [PMID: 39747430 PMCID: PMC11695263 DOI: 10.1038/s41590-024-02034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
Although chimeric antigen receptor (CAR) T cells are effective against B-lineage malignancies, post-CAR relapse is common, and efficacy in other tumors is limited. These challenges may be addressed through rational manipulations to control CAR T cell function. Here we examine the impact of cognate T cell antigen experience on subsequent CD8+ CAR T cell activity. Prior antigen encounter resulted in superior effector function against leukemia expressing low target antigen density at the expense of reduced proliferative capacity and susceptibility to dysfunction at limiting CAR doses. Distinctive temporal transcriptomic and epigenetic profiles in naive-derived and memory-derived CAR T cells identified RUNX family transcription factors as potential targets to augment the function of naive-derived CD8+ CAR T cells. RUNX2 overexpression enhanced antitumor efficacy of mouse CAR T cells, dependent on prior cell state, and heightened human CAR T cell functions. Our data demonstrate that prior antigen experience of CAR T cells determines functional attributes and amenability to transcription factor-mediated functional enhancement.
Collapse
Affiliation(s)
- Kole R DeGolier
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Etienne Danis
- Biostatistics and Bioinformatics Shared Resource, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marc D'Antonio
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer Cimons
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Yarnell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Ross M Kedl
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M Eric Kohler
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - James P Scott-Browne
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Terry J Fry
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
3
|
Dias J, Garcia J, Agliardi G, Roddie C. CAR-T cell manufacturing landscape-Lessons from the past decade and considerations for early clinical development. Mol Ther Methods Clin Dev 2024; 32:101250. [PMID: 38737799 PMCID: PMC11088187 DOI: 10.1016/j.omtm.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
CAR-T cell therapies have consolidated their position over the last decade as an effective alternative to conventional chemotherapies for the treatment of a number of hematological malignancies. With an exponential increase in the number of commercial therapies and hundreds of phase 1 trials exploring CAR-T cell efficacy in different settings (including autoimmunity and solid tumors), demand for manufacturing capabilities in recent years has considerably increased. In this review, we explore the current landscape of CAR-T cell manufacturing and discuss some of the challenges limiting production capacity worldwide. We describe the latest technical developments in GMP production platform design to facilitate the delivery of a range of increasingly complex CAR-T cell products, and the challenges associated with translation of new scientific developments into clinical products for patients. We explore all aspects of the manufacturing process, namely early development, manufacturing technology, quality control, and the requirements for industrial scaling. Finally, we discuss the challenges faced as a small academic team, responsible for the delivery of a high number of innovative products to patients. We describe our experience in the setup of an effective bench-to-clinic pipeline, with a streamlined workflow, for implementation of a diverse portfolio of phase 1 trials.
Collapse
Affiliation(s)
- Juliana Dias
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - John Garcia
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Giulia Agliardi
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital NHS Foundation Trust, London NW3 2QG, UK
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Claire Roddie
- Research Department of Haematology, Cancer Institute, University College London, London WC1E 6DD, UK
| |
Collapse
|
4
|
Kam NW, Laczka O, Li X, Wilkinson J, Hung D, Lai SPH, Wu KC, Tsao SW, Dai W, Che CM, Lee VHF, Kwong DLW. ENOX2 inhibition enhances infiltration of effector memory T-cell and mediates response to chemotherapy in immune-quiescent nasopharyngeal carcinoma. J Adv Res 2024; 56:69-86. [PMID: 37061217 PMCID: PMC10834794 DOI: 10.1016/j.jare.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/01/2023] [Accepted: 04/01/2023] [Indexed: 04/17/2023] Open
Abstract
INTRODUCTION The immunosuppressive tumor microenvironment is a major barrier for chemotherapy. Different chemosensitization approaches to reinstate immunological surveillance for cancers that are immune quiescent at the outset, have thus been devised. Cancer-specific ENOX2 expression is correlated with abnormal cell growth and has been proposed as a cellular target for anti-cancer activity. However, the potential effects of ENOX2 on the interaction between immune system and tumor cells remain elusive. OBJECTIVES To understand the mechanisms by which tumor-intrinsic ENOX2-mediated alterations in anti-tumor activity of T-cells and response to chemotherapy. METHODS In situ multiplexed immunohistochemistry with single cell and bulk RNA sequencing data from nasopharyngeal carcinoma (NPC) human tissues were used to define tumor phenotypes. Two NPC cell lines, with distinct ENOX2 expression, were used in a co-culture platform to study tumor-immune interactions between cancer cells/spheroids and T-cells. The effect of cisplatin treatment with ENOX2 inhibition by idronoxil (IDX) were tested in vitro and in vivo. Multi-parametric flow cytometry was used to characterize T-cell infiltrates in an NPC tumor humanized mouse model treated with combined treatment. RESULTS NPC predominantly displayed an immune-excluded profile. This "cold-phenotype" was shown to exhibit higher ENOX2 expression and was associate with poorer progression-free survival (PFS). The therapeutic combination of IDX with cisplatin was effective in promoting CD8+ effector memory T cell (Tem) differentiation and mobilization. This Tem signature was highly cytotoxic, with Tem-mediated preferential lysis of higher ENOX2-expressing NPC cells. A combination-treated humanized mouse model showing dramatic shrinkage in tumors, were intra-tumoral Tem-enriched. CONCLUSION Tumor-intrinsic ENOX2 expression is associated with tumor phenotype and PFS in NPC. Targeting ENOX2 with IDX and cisplatin impose qualitative control of T-cell response by preferentially increasing immune cells infiltration, Tem differentiation and tumor suppression. We suggest that ENOX2 inhibition may be a promising therapeutic strategy to enhance the effects of chemotherapy.
Collapse
Affiliation(s)
- Ngar-Woon Kam
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Laboratory of Synthetic Chemistry and Chemical Biology Limited, Hong Kong, China
| | - Olivier Laczka
- Noxopharm Limited, Level 20, Tower A, The Zenith, 821 Pacific Highway, CHATSWOOD NSW 2067, Australia
| | - Xiang Li
- Noxopharm Limited, Level 20, Tower A, The Zenith, 821 Pacific Highway, CHATSWOOD NSW 2067, Australia
| | - John Wilkinson
- Noxopharm Limited, Level 20, Tower A, The Zenith, 821 Pacific Highway, CHATSWOOD NSW 2067, Australia
| | - Desmond Hung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Syrus Pak Hei Lai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka Chun Wu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Laboratory of Synthetic Chemistry and Chemical Biology Limited, Hong Kong, China
| | - Sai Wa Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Ming Che
- Laboratory of Synthetic Chemistry and Chemical Biology Limited, Hong Kong, China; Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
5
|
van der Heide V, Davenport B, Cubitt B, Roudko V, Choo D, Humblin E, Jhun K, Angeliadis K, Dawson T, Furtado G, Kamphorst A, Ahmed R, de la Torre JC, Homann D. Functional impairment of "helpless" CD8 + memory T cells is transient and driven by prolonged but finite cognate antigen presentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576725. [PMID: 38328184 PMCID: PMC10849538 DOI: 10.1101/2024.01.22.576725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Generation of functional CD8 + T cell memory typically requires engagement of CD4 + T cells. However, in certain scenarios, such as acutely-resolving viral infections, effector (T E ) and subsequent memory (T M ) CD8 + T cell formation appear impervious to a lack of CD4 + T cell help during priming. Nonetheless, such "helpless" CD8 + T M respond poorly to pathogen rechallenge. At present, the origin and long-term evolution of helpless CD8 + T cell memory remain incompletely understood. Here, we demonstrate that helpless CD8 + T E differentiation is largely normal but a multiplicity of helpless CD8 T M defects, consistent with impaired memory maturation, emerge as a consequence of prolonged yet finite exposure to cognate antigen. Importantly, these defects resolve over time leading to full restoration of CD8 + T M potential and recall capacity. Our findings provide a unified explanation for helpless CD8 + T cell memory and emphasize an unexpected CD8 + T M plasticity with implications for vaccination strategies and beyond.
Collapse
|
6
|
Heinzel S, Cheon H, Belz GT, Hodgkin PD. Survival and division fate programs are preserved but retuned during the naïve to memory CD8 + T-cell transition. Immunol Cell Biol 2024; 102:46-57. [PMID: 37840018 PMCID: PMC10952575 DOI: 10.1111/imcb.12699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Memory T cells are generated from naïve precursors undergoing proliferation during the initial immune response. Both naïve and memory T cells are maintained in a resting, quiescent state and respond to activation with a controlled proliferative burst and differentiation into effector cells. This similarity in the maintenance and response dynamics points to the preservation of key cellular fate programs; however, whether memory T cells have acquired intrinsic changes in these programs that may contribute to the enhanced immune protection in a recall response is not fully understood. Here we used a quantitative model-based analysis of proliferation and survival kinetics of in vitro-stimulated murine naïve and memory CD8+ T cells in response to homeostatic and activating signals to establish intrinsic similarities or differences within these cell types. We show that resting memory T cells display heightened sensitivity to homeostatic cytokines, responding to interleukin (IL)-2 in addition to IL-7 and IL-15. The proliferative response to αCD3 was equal in size and kinetics, demonstrating that memory T cells undergo the same controlled division burst and automated return to quiescence as naïve T cells. However, perhaps surprisingly, we observed reduced expansion of αCD3-stimulated memory T cells in response to activating signals αCD28 and IL-2 compared with naïve T cells. Overall, we demonstrate that although sensitivities to cytokine and costimulatory signals have shifted, fate programs regulating the scale of the division burst are conserved in memory T cells.
Collapse
Affiliation(s)
- Susanne Heinzel
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - HoChan Cheon
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
| | - Gabrielle T Belz
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
- Frazer InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Philip D Hodgkin
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|
7
|
DeGolier KR, Danis E, D'Antonio M, Cimons J, Yarnell M, Kedl RM, Kohler ME, Scott-Browne JP, Fry TJ. Antigen experience history directs distinct functional states of CD8+ CAR T cells during the anti-leukemia response. RESEARCH SQUARE 2023:rs.3.rs-3712137. [PMID: 38196657 PMCID: PMC10775394 DOI: 10.21203/rs.3.rs-3712137/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Chimeric antigen receptor T cells are an effective therapy for B-lineage malignancies. However, many patients relapse and this therapeutic has yet to show strong efficacy in other hematologic or solid tumors. One opportunity for improvement lies in the ability to generate T cells with desirable functional characteristics. Here, we dissect the biology of CD8+ CAR T cells (CAR8) by controlling whether the T cell has encountered cognate TCR antigen prior to CAR generation. We find that prior antigen experience influences multiple aspects of in vitro and in vivo CAR8 functionality, resulting in superior effector function and leukemia clearance in the setting of limiting target antigen density compared to antigen-inexperienced T cells. However, this comes at the expense of inferior proliferative capacity, susceptibility to phenotypic exhaustion and dysfunction, and inability to clear wildtype leukemia in the setting of limiting CAR+ cell dose. Epigenomic and transcriptomic comparisons of these cell populations identified overexpression of the Runx2 transcription factor as a novel strategy to enhance CAR8 function, with a differential impact depending on prior cell state. Collectively, our data demonstrate that prior antigen experience determines functional attributes of a CAR T cell, as well as amenability to functional enhancement by transcription factor modulation.
Collapse
Affiliation(s)
- Kole R DeGolier
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Etienne Danis
- Biostatistics and Bioinformatics Shared Resource, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Marc D'Antonio
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Jennifer Cimons
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Michael Yarnell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado; Aurora, CO, USA
| | - Ross M Kedl
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - M Eric Kohler
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado; Aurora, CO, USA
| | - James P Scott-Browne
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Terry J Fry
- Department of Immunology, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado; Aurora, CO, USA
| |
Collapse
|
8
|
Mraz V, Funch AB, Jee MH, Gadsbøll ASØ, Weber JF, Yeung K, Lohmann RKD, Hawkes A, Ødum N, Woetmann A, McKay D, Witherden D, Geisler C, Bonefeld CM. CD100 boosts the inflammatory response in the challenge phase of allergic contact dermatitis in mice. Contact Dermatitis 2023; 89:442-452. [PMID: 37700557 DOI: 10.1111/cod.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Allergic contact dermatitis (ACD) is an inflammatory disease with a complex pathophysiology in which epidermal-resident memory CD8+ T (TRM ) cells play a key role. The mechanisms involved in the activation of CD8+ TRM cells during allergic flare-up responses are not understood. METHODS The expression of CD100 and its ligand Plexin B2 on CD8+ TRM cells and keratinocytes before and after allergen exposure was determined by flow cytometry and RT-qPCR. The role of CD100 in the inflammatory response during the challenge phase of ACD was determined in a model of ACD in CD100 knockout and wild-type mice. RESULTS We show that CD8+ TRM cells express CD100 during homeostatic conditions and up-regulate it following re-exposure of allergen-experienced skin to the experimental contact allergen 1-fluoro-2,4-dinitrobenzene (DNFB). Furthermore, Plexin B2 is up-regulated on keratinocytes following exposure to some contact allergens. We show that loss of CD100 results in a reduced inflammatory response to DNFB with impaired production of IFNγ, IL-17A, CXCL1, CXCL2, CXCL5, and IL-1β and decreased recruitment of neutrophils to the epidermis. CONCLUSION Our study demonstrates that CD100 is expressed on CD8+ TRM cells and is required for full activation of CD8+ TRM cells and the flare-up response of ACD.
Collapse
Affiliation(s)
- Veronika Mraz
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anders B Funch
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergy, National Allergy Research Center, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - Mia H Jee
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sofie Ø Gadsbøll
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Julie F Weber
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Kelvin Yeung
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergy, National Allergy Research Center, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - Rebecca K D Lohmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Alana Hawkes
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Niels Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Dianne McKay
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Deborah Witherden
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Abstract
Gene transfer using adeno-associated viral (AAV) vectors has made tremendous progress in the last decade and has achieved cures of debilitating diseases such as hemophilia A and B. Nevertheless, progress is still being hampered by immune responses against the AAV capsid antigens or the transgene products. Immunosuppression designed to blunt T cell responses has shown success in some patients but failed in others especially if they received very high AAV vectors doses. Although it was initially thought that AAV vectors induce only marginal innate responses below the threshold of systemic symptoms recent trials have shown that complement activation can results in serious adverse events. Dorsal root ganglia toxicity has also been identified as a complication of high vector doses as has severe hepatotoxicity. Most of the critical complications occur in patients who are treated with very high vector doses indicating that the use of more efficient AAV vectors to allow for dose sparing or giving smaller doses repeatedly, the latter in conjunction with antibody or B cell depleting measures, should be explored.
Collapse
Affiliation(s)
- Hildegund C. J. Ertl
- Ertl Laboratory, Vaccine Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
10
|
Tizaoui K, Shin JI, Jeong GH, Yang JW, Park S, Kim JH, Hwang SY, Park SJ, Koyanagi A, Smith L. Genetic Polymorphism of PTPN22 in Autoimmune Diseases: A Comprehensive Review. Medicina (B Aires) 2022; 58:medicina58081034. [PMID: 36013501 PMCID: PMC9415475 DOI: 10.3390/medicina58081034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
It is known that the etiology and clinical outcomes of autoimmune diseases are associated with a combination of genetic and environmental factors. In the case of the genetic factor, the SNPs of the PTPN22 gene have shown strong associations with several diseases. The recent exploding numbers of genetic studies have made it possible to find these associations rapidly, and a variety of autoimmune diseases were found to be associated with PTPN22 polymorphisms. Proteins encoded by PTPN22 play a key role in the adaptative and immune systems by regulating both T and B cells. Gene variants, particularly SNPs, have been shown to significantly disrupt several immune functions. In this review, we summarize the mechanism of how PTPN22 and its genetic variants are involved in the pathophysiology of autoimmune diseases. In addition, we sum up the findings of studies reporting the genetic association of PTPN22 with different types of diseases, including type 1 diabetes mellitus, systemic lupus erythematosus, juvenile idiopathic arthritis, and several other diseases. By understanding these findings comprehensively, we can explain the complex etiology of autoimmunity and help to determine the criteria of disease diagnosis and prognosis, as well as medication developments.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Department of Basic Sciences, Division of Histology and Immunology, Faculty of Medicine Tunis, Tunis El Manar University, Tunis 2092, Tunisia;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Ji Hong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2019-3352; Fax: +82-2-3461-9473
| | - Soo Young Hwang
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Se Jin Park
- Department of Pediatrics, Eulji University School of Medicine, Daejeon 35233, Korea;
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain;
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Lee Smith
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| |
Collapse
|
11
|
Huang J, Zhou Q. CD8+T Cell-Related Gene Biomarkers in Macular Edema of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:907396. [PMID: 35937822 PMCID: PMC9355330 DOI: 10.3389/fendo.2022.907396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND CD8+T lymphocytes have a strong pro-inflammatory effect in all parts of the tissue, and some studies have demonstrated that its concentration in the vitreous increased significantly, suggesting that CD8+T cells play a pivotal role in the inflammatory response of diabetic retinopathy (DR). However, the infiltration of CD8+T cells in the DR retina, especially in diabetic macular edema (DME), and its related genes are still unclear. METHODS Download the GSE16036 dataset from the Gene Expression Omnibus (GEO) database. The ImmuCellAI program was performed to evaluate the abundance of 24 immune cells including CD8+T cells. The CD8+T cell-related genes (DECD8+TRGs) between non-proliferative diabetic retinopathy (NPDR) and DME were detected via difference analysis and correlation analysis. Enrichment analysis and protein-protein interaction (PPI) network mapping were implemented to explore the potential function of DECD8+TRGs. Lasso regression, support vector machine recursive feature elimination (SVM-RFE), CytoHubba plug-in and MCODE plug-in in Cytoscape software, and Weighted Gene Co-Expression Network Analysis (WGCNA) were performed to comprehensively analyze and obtain Hub DECD8+TRGs. Hub DECD8+TRGs expression patterns were further validated in other two DR-related independent datasets. The CD8+TRG score was defined as the genetic characterization of Hub DECD8+TRGs using the GSVA sample scoring method, which can be administered to distinguish early and advanced diabetic nephropathy (DN) as well as normal and DN. Finally, the transcription level of DECD8+TRGs in DR model mouse were verified by quantitative real-time PCR (qPCR). RESULTS A total of 371 DECD8+TRGs were identified, of which 294 genes were positively correlated and only 77 genes were negatively correlated. Eight genes (IKZF1, PTPRC, ITGB2, ITGAX, TLR7, LYN, CD74, SPI1) were recognized as Hub DECD8+TRGs. DR and DN, which have strong clinical correlation, have been proved to be associated with CD8+T cell-related hub genes by multiple independent data sets. Hub DECD8+TRGs can not only distinguish PDR from normal and DN from normal, but also play a role in the early and progressive stages of the two diseases (NPDR vs DME, Early DN vs Advanced DN). The qPCR transcription level and trend of Hub DECD8+TRGs in DR mouse model was basically the same as that in human transcriptome. CONCLUSION This study not only increases our understanding of the molecular mechanism of CD8+T cells in the progression of DME, but also expands people's cognitive vision of the molecular mechanism of crosstalk of CD8+T cells in the eyes and kidneys of patients with diabetes.
Collapse
|
12
|
Guha P, Katz SC. Strategies for manufacturing cell therapy products aligned with patient needs. Methods Cell Biol 2022; 167:203-226. [DOI: 10.1016/bs.mcb.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Reina-Campos M, Scharping NE, Goldrath AW. CD8 + T cell metabolism in infection and cancer. Nat Rev Immunol 2021; 21:718-738. [PMID: 33981085 PMCID: PMC8806153 DOI: 10.1038/s41577-021-00537-8] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Cytotoxic CD8+ T cells play a key role in the elimination of intracellular infections and malignant cells and can provide long-term protective immunity. In the response to infection, CD8+ T cell metabolism is coupled to transcriptional, translational and epigenetic changes that are driven by extracellular metabolites and immunological signals. These programmes facilitate the adaptation of CD8+ T cells to the diverse and dynamic metabolic environments encountered in the circulation and in the tissues. In the setting of disease, both cell-intrinsic and cell-extrinsic metabolic cues contribute to CD8+ T cell dysfunction. In addition, changes in whole-body metabolism, whether through voluntary or disease-induced dietary alterations, can influence CD8+ T cell-mediated immunity. Defining the metabolic adaptations of CD8+ T cells in specific tissue environments informs our understanding of how these cells protect against pathogens and tumours and maintain tissue health at barrier sites. Here, we highlight recent findings revealing how metabolic networks enforce specific CD8+ T cell programmes and discuss how metabolism is integrated with CD8+ T cell differentiation and function and determined by environmental cues.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E. Scharping
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.,
| |
Collapse
|
14
|
Lewis DA, Ly T. Cell Cycle Entry Control in Naïve and Memory CD8 + T Cells. Front Cell Dev Biol 2021; 9:727441. [PMID: 34692683 PMCID: PMC8526999 DOI: 10.3389/fcell.2021.727441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
CD8+ T cells play important roles in immunity and immuno-oncology. Upon antigen recognition and co-stimulation, naïve CD8+ T cells escape from dormancy to engage in a complex programme of cellular growth, cell cycle entry and differentiation, resulting in rapid proliferation cycles that has the net effect of producing clonally expanded, antigen-specific cytotoxic T lymphocytes (CTLs). A fraction of activated T cells will re-enter dormancy by differentiating into memory T cells, which have essential roles in adaptive immunity. In this review, we discuss the current understanding of cell cycle entry control in CD8+ T cells and crosstalk between these mechanisms and pathways regulating immunological phenotypes.
Collapse
Affiliation(s)
- David A. Lewis
- Ashworth Laboratories, Institute of Immunology and Infectious Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Tony Ly
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
15
|
Pan YG, Aiamkitsumrit B, Bartolo L, Wang Y, Lavery C, Marc A, Holec PV, Rappazzo CG, Eilola T, Gimotty PA, Hensley SE, Antia R, Zarnitsyna VI, Birnbaum ME, Su LF. Vaccination reshapes the virus-specific T cell repertoire in unexposed adults. Immunity 2021; 54:1245-1256.e5. [PMID: 34004140 PMCID: PMC8192456 DOI: 10.1016/j.immuni.2021.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
We examined how baseline CD4+ T cell repertoire and precursor states impact responses to pathogen infection in humans using primary immunization with yellow fever virus (YFV) vaccine. YFV-specific T cells in unexposed individuals were identified by peptide-MHC tetramer staining and tracked pre- and post-vaccination by tetramers and TCR sequencing. A substantial number of YFV-reactive T cells expressed memory phenotype markers and contained expanded clones in the absence of exposure to YFV. After vaccination, pre-existing YFV-specific T cell populations with low clonal diversity underwent limited expansion, but rare populations with a reservoir of unexpanded TCRs generated robust responses. These altered dynamics reorganized the immunodominance hierarchy and resulted in an overall increase in higher avidity T cells. Thus, instead of further increasing the representation of dominant clones, YFV vaccination recruits rare and more responsive T cells. Our findings illustrate the impact of vaccines in prioritizing T cell responses and reveal repertoire reorganization as a key component of effective vaccination.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamas Aiamkitsumrit
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Bartolo
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yifeng Wang
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Criswell Lavery
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Adam Marc
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Patrick V Holec
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Garrett Rappazzo
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theresa Eilola
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | | | - Michael E Birnbaum
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura F Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Lasigliè D. Sirtuins and the prevention of immunosenescence. VITAMINS AND HORMONES 2021; 115:221-264. [PMID: 33706950 DOI: 10.1016/bs.vh.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging of hematopoietic stem cells (HSCs) has been largely described as one underlying cause of senescence of the immune-hematopoietic system (immunosenescence). A set of well-defined hallmarks characterizes aged HSCs contributing to unbalanced hematopoiesis and aging-associated functional alterations of both branches of the immune system. In this chapter, the contribution of sirtuins, a family of conserved NAD+ dependent deacetylases with key roles in metabolism, genome integrity, aging and lifespan, to immunosenescence, will be addressed. In particular, the role of SIRT6 will be deeply analyzed highlighting a multifaceted part of this deacetylase in HSCs aging as well as in the immunosenescence of dendritic cells (DCs). These and other emerging data are currently paving the way for future design and development of rejuvenation means aiming at rescuing age-related changes in immune function in the elderly and combating age-associated hematopoietic diseases.
Collapse
Affiliation(s)
- Denise Lasigliè
- Istituto Comprensivo "Franco Marro", Ministero dell'Istruzione Ministero dell'Università e della Ricerca (M.I.U.R), Villar Perosa, TO, Italy.
| |
Collapse
|
17
|
The Potential of T Cell Factor 1 in Sustaining CD8 + T Lymphocyte-Directed Anti-Tumor Immunity. Cancers (Basel) 2021; 13:cancers13030515. [PMID: 33572793 PMCID: PMC7866257 DOI: 10.3390/cancers13030515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The transcription factor T cell factor 1 (TCF1), encoded by the TCF7 gene, is a key regulator of T-cell fate, which is known to promote T cell proliferation and establish T cell stemness. Importantly, increasing evidence has demonstrated that TCF1 is a critical determinant of the success of anti-tumor immunotherapy, implicating that TCF1 is a promising biomarker and therapeutic target in cancer. In recent years, new findings have emerged to provide a clearer view of TCF1 and its role in T cell biology. In this review, we aim to provide a comprehensive outline of the most recent literature on the role of TCF1 in T cell development and to discuss the potential of TCF1 in sustaining CD8+ T lymphocyte-directed anti-tumor immunity. Abstract T cell factor 1 (TCF1) is a transcription factor that has been highlighted to play a critical role in the promotion of T cell proliferation and maintenance of cell stemness in the embryonic and CD8+ T cell populations. The regulatory nature of TCF1 in CD8+ T cells is of great significance, especially within the context of T cell exhaustion, which is linked to the tumor and viral escape in pathological contexts. Indeed, inhibitory signals, such as programmed cell death 1 (PD-1) and cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4), expressed on exhausted T lymphocytes (TEX), have become major therapeutic targets in immune checkpoint blockade (ICB) therapy. The significance of TCF1 in the sustenance of CTL-mediated immunity against pathogens and tumors, as well as its recently observed necessity for an effective anti-tumor immune response in ICB therapy, presents TCF1 as a potentially significant biomarker and/or therapeutic target for overcoming CD8+ T cell exhaustion and resistance to ICB therapy. In this review, we aim to outline the recent findings on the role of TCF1 in T cell development and discuss its implications in anti-tumor immunity.
Collapse
|
18
|
Huang GL, Nampe DP, Yi J, Gabrelow GB, Negri KR, Kamb A, Xu H. A multivariate, quantitative assay that disentangles key kinetic parameters of primary human T cell function in vitro. PLoS One 2020; 15:e0241421. [PMID: 33166305 PMCID: PMC7652339 DOI: 10.1371/journal.pone.0241421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Cell therapy is poised to play a larger role in medicine, most notably for immuno-oncology. Despite the recent success of CAR-T therapeutics in the treatment of blood tumors and the rapid progress toward improved versions of both CAR- and TCR-Ts, important analytical aspects of preclinical development and manufacturing of engineered T cells remain immature. One limiting factor is the absence of robust multivariate assays to disentangle key parameters related to function of engineered effector cells, especially in the peptide-MHC (pMHC) target realm, the natural ligand for TCRs. Here we describe an imaging-based primary T cell assay that addresses several of these limitations. To our knowledge, this assay is the first quantitative, high-content assay that separates the key functional parameters of time- and antigen-dependent T cell proliferation from cytotoxicity. We show that the assay sheds light on relevant biology of CAR- and TCR-T cells, including response kinetics and the influence of effector:target ratio.
Collapse
Affiliation(s)
- Grace L. Huang
- Discovery Research, A2 Biotherapeutics, Inc., Agoura Hills, California, United States of America
| | - Daniel P. Nampe
- Discovery Research, A2 Biotherapeutics, Inc., Agoura Hills, California, United States of America
| | - Jason Yi
- Discovery Research, A2 Biotherapeutics, Inc., Agoura Hills, California, United States of America
| | - Grant B. Gabrelow
- Discovery Research, A2 Biotherapeutics, Inc., Agoura Hills, California, United States of America
| | - Kathleen R. Negri
- Discovery Research, A2 Biotherapeutics, Inc., Agoura Hills, California, United States of America
| | - Alexander Kamb
- Discovery Research, A2 Biotherapeutics, Inc., Agoura Hills, California, United States of America
| | - Han Xu
- Discovery Research, A2 Biotherapeutics, Inc., Agoura Hills, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Cecílio P, Oristian J, Meneses C, Serafim TD, Valenzuela JG, Cordeiro da Silva A, Oliveira F. Engineering a vector-based pan-Leishmania vaccine for humans: proof of principle. Sci Rep 2020; 10:18653. [PMID: 33122717 PMCID: PMC7596519 DOI: 10.1038/s41598-020-75410-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Leishmaniasis is a spectrum of diseases transmitted by sand fly vectors that deposit Leishmania spp. parasites in the host skin during blood feeding. Currently, available treatment options are limited, associated with high toxicity and emerging resistance. Even though a vaccine for human leishmaniasis is considered an achievable goal, to date we still do not have one available, a consequence (amongst other factors) of a lack of pre-clinical to clinical translatability. Pre-exposure to uninfected sand fly bites or immunization with defined sand fly salivary proteins was shown to negatively impact infection. Still, cross-protection reports are rare and dependent on the phylogenetic proximity of the sand fly species, meaning that the applicability of a sand fly saliva-based vaccine will be limited to a defined geography, one parasite species and one form of leishmaniasis. As a proof of principle of a future vector saliva-based pan-Leishmania vaccine, we engineered through a reverse vaccinology approach that maximizes translation to humans, a fusion protein consisting of immunogenic portions of PdSP15 and LJL143, sand fly salivary proteins demonstrated as potential vaccine candidates against cutaneous and visceral leishmaniasis, respectively. The in silico analysis was validated ex vivo, through T cell proliferation experiments, proving that the fusion protein (administered as a DNA vaccine) maintained the immunogenicity of both PdSP15 and LJL143. Additionally, while no significant effect was detected in the context of L. major transmission by P. duboscqi, this DNA vaccine was defined as partially protective, in the context of L. major transmission by L. longipalpis sand flies. Importantly, a high IFNγ response alone was not enough to confer protection, that mainly correlated with low T cell mediated Leishmania-specific IL-4 and IL-10 responses, and consequently with high pro/anti-inflammatory cytokine ratios. Overall our immunogenicity data suggests that to design a potentially safe vector-based pan-Leishmania vaccine, without geographic restrictions and against all forms of leishmaniasis is an achievable goal. This is why we propose our approach as a proof-of principle, perhaps not only applicable to the anti-Leishmania vector-based vaccines' field, but also to other branches of knowledge that require the design of multi-epitope T cell vaccines with a higher potential for translation.
Collapse
Affiliation(s)
- Pedro Cecílio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - James Oristian
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Anabela Cordeiro da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal.
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| |
Collapse
|
20
|
Poltorak MP, Graef P, Tschulik C, Wagner M, Cletiu V, Dreher S, Borjan B, Fraessle SP, Effenberger M, Turk M, Busch DH, Plitzko J, Kugler DG, Ragan S, Schmidt T, Stemberger C, Germeroth L. Expamers: a new technology to control T cell activation. Sci Rep 2020; 10:17832. [PMID: 33082362 PMCID: PMC7575567 DOI: 10.1038/s41598-020-74595-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/05/2020] [Indexed: 11/12/2022] Open
Abstract
T cell activation is a cornerstone in manufacturing of T cell-based therapies, and precise control over T cell activation is important in the development of the next generation T-cell based therapeutics. This need cannot be fulfilled by currently available methods for T cell stimulation, in particular not in a time dependent manner. Here, we describe a modular activation reagent called Expamers, which addresses these limitations. Expamers are versatile stimuli that are intended for research and clinical use. They are readily soluble and can be rapidly bound and removed from the cell surface, allowing nearly instantaneous initiation and termination of activation signal, respectively. Hence, Expamers enable precise regulation of T cell stimulation duration and provide promise of control over T cell profiles in future products. Expamers can be easily adopted to different T cell production formats and have the potential to increase efficacy of T cell immunotherapeutics.
Collapse
Affiliation(s)
- Mateusz P Poltorak
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany.
| | - Patricia Graef
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Claudia Tschulik
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Michaela Wagner
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Vlad Cletiu
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Stefan Dreher
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Bojana Borjan
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Simon P Fraessle
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Manuel Effenberger
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Martin Turk
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Juergen Plitzko
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - David G Kugler
- Juno Therapeutics Inc., a Bristol-Myers Squibb Company, 400 Dexter Avenue North, Suite 1200, Seattle, WA, 98109, USA
| | - Seamus Ragan
- Juno Therapeutics Inc., a Bristol-Myers Squibb Company, 400 Dexter Avenue North, Suite 1200, Seattle, WA, 98109, USA
| | - Thomas Schmidt
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Christian Stemberger
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Lothar Germeroth
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| |
Collapse
|
21
|
Behr FM, Beumer-Chuwonpad A, Kragten NAM, Wesselink TH, Stark R, van Gisbergen KPJM. Circulating memory CD8 + T cells are limited in forming CD103 + tissue-resident memory T cells at mucosal sites after reinfection. Eur J Immunol 2020; 51:151-166. [PMID: 32762051 DOI: 10.1002/eji.202048737] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Tissue-resident memory CD8+ T cells (TRM ) localize to barrier tissues and mediate local protection against reinvading pathogens. Circulating central memory (TCM ) and effector memory CD8+ T cells (TEM ) also contribute to tissue recall responses, but their potential to form mucosal TRM remains unclear. Here, we employed adoptive transfer and lymphocytic choriomeningitis virus reinfection models to specifically assess secondary responses of TCM and TEM at mucosal sites. Donor TCM and TEM exhibited robust systemic recall responses, but only limited accumulation in the small intestine, consistent with reduced expression of tissue-homing and -retention molecules. Murine and human circulating memory T cells also exhibited limited CD103 upregulation following TGF-β stimulation. Upon pathogen clearance, TCM and TEM readily gave rise to secondary TEM . TCM also formed secondary central memory in lymphoid tissues and TRM in internal tissues, for example, the liver. Both TCM and TEM failed to substantially contribute to resident mucosal memory in the small intestine, while activated intestinal TRM , but not liver TRM , efficiently reformed CD103+ TRM . Our findings demonstrate that circulating TCM and TEM are limited in generating mucosal TRM upon reinfection. This may pose important implications on cell therapy and vaccination strategies employing memory CD8+ T cells for protection at mucosal sites.
Collapse
Affiliation(s)
- Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ammarina Beumer-Chuwonpad
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas H Wesselink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Mondino A, Manzo T. To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors. Front Immunol 2020; 11:1915. [PMID: 32973794 PMCID: PMC7481451 DOI: 10.3389/fimmu.2020.01915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The generation of immunological memory is a hallmark of adaptive immunity by which the immune system "remembers" a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also "bad memories"-in the form of antigen-experienced T cell subsets-co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy.
Collapse
Affiliation(s)
- Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
23
|
Figueiredo CR, Kalirai H, Sacco JJ, Azevedo RA, Duckworth A, Slupsky JR, Coulson JM, Coupland SE. Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development. J Pathol 2020; 250:420-439. [PMID: 31960425 PMCID: PMC7216965 DOI: 10.1002/path.5384] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/28/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) induces durable responses in many metastatic cancers. Metastatic uveal melanoma (mUM), typically occurring in the liver, is one of the most refractory tumours to ICIs and has dismal outcomes. Monosomy 3 (M3), polysomy 8q, and BAP1 loss in primary uveal melanoma (pUM) are associated with poor prognoses. The presence of tumour-infiltrating lymphocytes (TILs) within pUM and surrounding mUM - and some evidence of clinical responses to adoptive TIL transfer - strongly suggests that UMs are indeed immunogenic despite their low mutational burden. The mechanisms that suppress TILs in pUM and mUM are unknown. We show that BAP1 loss is correlated with upregulation of several genes associated with suppressive immune responses, some of which build an immune suppressive axis, including HLA-DR, CD38, and CD74. Further, single-cell analysis of pUM by mass cytometry confirmed the expression of these and other markers revealing important functions of infiltrating immune cells in UM, most being regulatory CD8+ T lymphocytes and tumour-associated macrophages (TAMs). Transcriptomic analysis of hepatic mUM revealed similar immune profiles to pUM with BAP1 loss, including the expression of IDO1. At the protein level, we observed TAMs and TILs entrapped within peritumoural fibrotic areas surrounding mUM, with increased expression of IDO1, PD-L1, and β-catenin (CTNNB1), suggesting tumour-driven immune exclusion and hence the immunotherapy resistance. These findings aid the understanding of how the immune response is organised in BAP1 - mUM, which will further enable functional validation of detected biomarkers and the development of focused immunotherapeutic approaches. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Carlos R Figueiredo
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Department of the Faculty of Medicine, MediCity Research Laboratory and Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Helen Kalirai
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Joseph J Sacco
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Department of Medical OncologyThe Clatterbridge Cancer CentreWirralUK
| | - Ricardo A Azevedo
- Department of Cancer BiologyThe University of Texas–MD Anderson Cancer CenterHoustonTXUSA
| | - Andrew Duckworth
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Judy M Coulson
- Department of Cellular and Molecular PhysiologyUniversity of LiverpoolLiverpoolUK
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Liverpool Clinical LaboratoriesRoyal Liverpool University HospitalLiverpoolUK
| |
Collapse
|
24
|
Liu Q, Sun Z, Chen L. Memory T cells: strategies for optimizing tumor immunotherapy. Protein Cell 2020; 11:549-564. [PMID: 32221812 PMCID: PMC7381543 DOI: 10.1007/s13238-020-00707-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Several studies have demonstrated that memory T cells including stem cell memory (Tscm) T cells and central memory (Tcm) T cells show superior persistence and antitumor immunity compared with effector memory T (Tem) cells and effector T (Teff) cells. Furthermore, the Tcm/Teff ratio has been reported to be a predictive biomarker of immune responses against some tumors. Thus, a system-level understanding of the mechanisms underlying the differentiation of effector and memory T cells is of increasing importance for developing immunological strategies against various tumors. This review focuses on recent advances in efficacy against tumors, the origin, formation mechanisms of memory T cells, and the role of the gut microbiota in memory T cell formation. Furthermore, we summarize strategies to generate memory T cells in (ex) vivo that, might be applicable in clinical practice.
Collapse
Affiliation(s)
- Qingjun Liu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.,Newish Technology (Beijing) Co., Ltd., Xihuan South Road 18, Economic & Technical Development Zone, Beijing, 100176, China.,Moon (Guangzhou) Biotech Co., Ltd., Room 301, Building B5, Enterprise Accelerator, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, 510000, China
| | - Zhongjie Sun
- Newish Technology (Beijing) Co., Ltd., Xihuan South Road 18, Economic & Technical Development Zone, Beijing, 100176, China.
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China. .,Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100088, China.
| |
Collapse
|
25
|
Nolz JC, Richer MJ. Control of memory CD8 + T cell longevity and effector functions by IL-15. Mol Immunol 2019; 117:180-188. [PMID: 31816491 DOI: 10.1016/j.molimm.2019.11.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
IL-15 is a member of the common gamma chain family of cytokines and plays important roles in regulating several aspects of innate and adaptive immunity. Besides its established role in controlling homeostatic proliferation and survival of memory CD8+ T cells and natural killer cells, recent findings demonstrate that inflammatory IL-15 can also stimulate a variety of effector functions, such as enhanced cytotoxicity, entry into the cell cycle, and trafficking into non-lymphoid tissues. Here, we discuss how IL-15 is critical in regulating many functions of memory CD8+ T cells and how these processes act collectively to ensure optimal protective cellular immunity against re-infections.
Collapse
Affiliation(s)
- Jeffrey C Nolz
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, United States; Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - Martin J Richer
- Department of Microbiology & Immunology, McGill University, 712 McIntyre Medical Building, 3655 promenade Sir William Osler, Montreal, Quebec, Canada; Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Herr MM, Torka P, Zhang Y, Wallace PK, Tario JD, Repasky EA, Chen GL, Ho CM, Balderman SR, Ross M, Paiva B, Hernandez-Ilizaliturri FJ, McCarthy PL, Hahn T. Immune profiling in diffuse large B-cell lymphoma and mantle cell lymphoma patients treated with autologous hematopoietic cell transplant. Bone Marrow Transplant 2019; 55:77-85. [PMID: 31227776 PMCID: PMC6925359 DOI: 10.1038/s41409-019-0591-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/03/2022]
Abstract
This is the first longitudinal study of immune profiles and autologous hematopoietic cell transplant (AHCT) survival in B-cell non-Hodgkin lymphoma (B-NHL) patients and the effect of plerixafor mobilization on immune reconstitution in this population. A comprehensive immunophenotyping panel was performed in 104 consecutive adult B-NHL patients (58% diffuse large B-cell, 42% mantle cell) who received AHCT (1/2008-11/2014), at a median of 28 days pre-AHCT (N=104) and Day+100 (N=83) post-AHCT. Median follow-up post-AHCT was 61 months (range: 8-120 months). Compared to patients mobilized with filgrastim and plerixafor, patients mobilized with filgrastim alone had a higher proportion of CD4+ naïve (p=0.006) and CD8+ central memory T-cells (p=0.006) pre-AHCT. For patients transplanted in complete remission (CR), a higher proportion of CD8+ effector memory T-cells pre-AHCT was associated with worse progression-free survival (PFS; p<0.01) and overall survival (OS; p<0.01). A higher ratio of CD8:CD4+ central memory T-cells pre-AHCT was associated with worse PFS (p<0.0001) and OS (p=0.0034). This same ratio measured post-AHCT among patients in CR on Day+100 was associated with worse and OS (p=0.008) but not PFS (p=not significant). These immune subsets are complementary biomarkers which identify patients transplanted in CR who have poor survival prognoses and may warrant further clinical interventions.
Collapse
Affiliation(s)
- Megan M Herr
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Pallawi Torka
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yali Zhang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul K Wallace
- Department of Flow & Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Joseph D Tario
- Department of Flow & Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - George L Chen
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine M Ho
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sophia R Balderman
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Maureen Ross
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Bruno Paiva
- Clínica Universidad de Navarra, Pamplona, Spain
| | - Francisco J Hernandez-Ilizaliturri
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Theresa Hahn
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
27
|
Mayya V, Judokusumo E, Abu-Shah E, Neiswanger W, Sachar C, Depoil D, Kam LC, Dustin ML. Cutting Edge: Synapse Propensity of Human Memory CD8 T Cells Confers Competitive Advantage over Naive Counterparts. THE JOURNAL OF IMMUNOLOGY 2019; 203:601-606. [PMID: 31201237 PMCID: PMC6643047 DOI: 10.4049/jimmunol.1801687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/28/2019] [Indexed: 01/04/2023]
Abstract
Microcontact printing can be used to mimic spatially limiting Ag presentation. High synapse propensity of human memory CD8 T cells prevents naive cell recruitment.
Memory T cells are endowed with multiple functional features that enable them to be more protective than naive T cells against infectious threats. It is not known if memory cells have a higher synapse propensity (SP; i.e., increased probability to form immature immunological synapses that then provide an entry into different modes of durable interaction with APCs). In this study, we show that only human memory CD8 T cells have remarkably high SP compared with naive counterparts. Such a dichotomy between naive and memory cells is not observed within the human CD4 or murine CD8 T cell population. Higher SP in human memory CD8 T cells allows them to outcompete and prevent naive CD8 T cells from getting recruited to the response. This observation has implications for original antigenic sin and aging of the immune system in humans.
Collapse
Affiliation(s)
- Viveka Mayya
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom.,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Edward Judokusumo
- Department of Biological Engineering, Columbia University, New York, NY 10027; and
| | - Enas Abu-Shah
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Willie Neiswanger
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Chirag Sachar
- Department of Biological Engineering, Columbia University, New York, NY 10027; and
| | - David Depoil
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Lance C Kam
- Department of Biological Engineering, Columbia University, New York, NY 10027; and
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom; .,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
28
|
Mustelin T, Bottini N, Stanford SM. The Contribution of PTPN22 to Rheumatic Disease. Arthritis Rheumatol 2019; 71:486-495. [PMID: 30507064 PMCID: PMC6438733 DOI: 10.1002/art.40790] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
One of the unresolved questions in modern medicine is why certain individuals develop a disorder such as rheumatoid arthritis (RA) or lupus, while others do not. Contemporary science indicates that genetics is partly responsible for disease development, while environmental and stochastic factors also play a role. Among the many genes that increase the risk of autoimmune conditions, the risk allele encoding the W620 variant of protein tyrosine phosphatase N22 (PTPN22) is shared between multiple rheumatic diseases, suggesting that it plays a fundamental role in the development of immune dysfunction. Herein, we discuss how the presence of the PTPN22 risk allele may shape the signs and symptoms of these diseases. Besides the emerging clarity regarding how PTPN22 tunes T and B cell antigen receptor signaling, we discuss recent discoveries of important functions of PTPN22 in myeloid cell lineages. Taken together, these new insights reveal important clues to the molecular mechanisms of prevalent diseases like RA and lupus and may open new avenues for the development of personalized therapies that spare the normal function of the immune system.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican Street, Room E507, Seattle, WA 99108, phone (206) 616-6130,
| | - Nunzio Bottini
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, MC0656, La Jolla, CA 92093-0656, phone (858) 246-2398 (N.B.) and (858) 246-2397 (S.M.S.), (N.B.) and (S.M.S.)
| | - Stephanie M. Stanford
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, MC0656, La Jolla, CA 92093-0656, phone (858) 246-2398 (N.B.) and (858) 246-2397 (S.M.S.), (N.B.) and (S.M.S.)
| |
Collapse
|
29
|
Abstract
After selection in the thymus, the post-thymic T cell compartments comprise heterogenous subsets of naive and memory T cells that make continuous T cell receptor (TCR) contact with self-ligands bound to major histocompatibility complex (MHC) molecules. T cell recognition of self-MHC ligands elicits covert TCR signaling and is particularly important for controlling survival of naive T cells. Such tonic TCR signaling is tightly controlled and maintains the cells in a quiescent state to avoid autoimmunity. Here, we review how naive and memory T cells are differentially tuned and wired for TCR sensitivity to self and foreign ligands.
Collapse
Affiliation(s)
- Jae-Ho Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Jonathan Sprent
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea.,Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
30
|
Bystander T Cells: A Balancing Act of Friends and Foes. Trends Immunol 2018; 39:1021-1035. [PMID: 30413351 DOI: 10.1016/j.it.2018.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
T cell responses are essential for appropriate protection against pathogens. T cell immunity is achieved through the ability to discriminate between foreign and self-molecules, and this relies heavily on stringent T cell receptor (TCR) specificity. Recently, bystander activated T lymphocytes, that are specific for unrelated epitopes during an antigen-specific response, have been implicated in diverse diseases. Numerous infection models have challenged the classic dogma of T cell activation as being solely dependent on TCR and major histocompatibility complex (MHC) interactions, indicating an unappreciated role for pathogen-associated receptors on T cells. We discuss here the specific roles of bystander activated T cells in pathogenesis, shedding light on the ability of these cells to modulate disease severity independently from TCR recognition.
Collapse
|
31
|
Mulherkar R, Karabudak A, Ginwala R, Huang X, Rowan A, Philip R, Murphy EL, Clements D, Ndhlovu LC, Khan ZK, Jain P. In vivo and in vitro immunogenicity of novel MHC class I presented epitopes to confer protective immunity against chronic HTLV-1 infection. Vaccine 2018; 36:5046-5057. [PMID: 30005946 PMCID: PMC6091894 DOI: 10.1016/j.vaccine.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) has infected as many as 10 million people worldwide. While 90% are asymptomatic, 5% develop severe diseases including adult T-cell leukemia/lymphoka (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). No vaccine against HTLV-1 exists, and screening programs are not universal. However, patients with chronic HTLV-1 infection have high frequencies of HTLV-1-activated CD8+ T cells, and the two main HLA alleles (A2, A24) are present in 88% of infected individuals. We thus utilized an immunoproteomics approach to characterize MHC-I restricted epitopes presented by HLA-A2+, A24+ MT-2 and SLB-1 cell lines. Unlike traditional motif prediction algorithms, this approach identifies epitopes associated with cytotoxic T-cell responses in their naturally processed forms, minimizing differences in antigen processing and protein expression levels. Out of nine identified peptides, we confirmed six novel MHC-I restricted epitopes that were capable of binding HLA-A2 and HLA-A24 alleles and used in vitro and in vivo methods to generate CD8+ T cells specific for each of these peptides. MagPix MILLIPLEX data showed that in vitro generated epitope-specific CD8+ T cells secreted IFN-ɣ, granzyme B, MIP-1α, TNF-α, perforin and IL-10 when cultured in the presence of MT-2 cell line. Degranulation assay confirmed cytotoxic response through surface expression of CD107 on CD8+ T cells when cultured with MT-2 cells. A CD8+ T-cell killing assay indicated significant antiviral activity of CD8+ T cells specific against all identified peptides. In vivo generated CD8+ T cells similarly demonstrated immunogenicity on ELISpot, CD107 degranulation assay, and MagPix MILLIPLEX analysis. These epitopes are thus candidates for a therapeutic peptide-based vaccine against HTLV-1, and our results provide preclinical data for the advancement of such a vaccine.
Collapse
Affiliation(s)
- Ria Mulherkar
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Aykan Karabudak
- Immunotope, Inc., Pennsylvania Institute for Biotechnology, Doylestown, PA, USA
| | - Rashida Ginwala
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xiaofang Huang
- Immunotope, Inc., Pennsylvania Institute for Biotechnology, Doylestown, PA, USA
| | - Aileen Rowan
- Department of Medicine, Imperial College, London, UK
| | - Ramila Philip
- Immunotope, Inc., Pennsylvania Institute for Biotechnology, Doylestown, PA, USA
| | - Edward L. Murphy
- Department of Medicine and Department of Laboratory Medicine, University of California at San Francisco
- Blood Systems Research Institute San Francisco, CA, USA
| | - Danielle Clements
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Zafar K. Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
32
|
Shah NM, Imami N, Johnson MR. Progesterone Modulation of Pregnancy-Related Immune Responses. Front Immunol 2018; 9:1293. [PMID: 29973928 PMCID: PMC6020784 DOI: 10.3389/fimmu.2018.01293] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022] Open
Abstract
Progesterone (P4) is an important steroid hormone for the establishment and maintenance of pregnancy and its functional withdrawal in reproductive tissue is linked with the onset of parturition. However, the effects of P4 on adaptive immune responses are poorly understood. In this study, we took a novel approach by comparing the effects of P4 supplementation longitudinally, with treatment using a P4 antagonist mifepristone (RU486) in mid-trimester pregnancies. Thus, we were able to demonstrate the immune-modulatory functions of P4. We show that, in pregnancy, the immune system is increasingly activated (CD38, CCR6) with greater antigen-specific cytotoxic T cell responses (granzyme B). Simultaneously, pregnancy promotes a tolerant immune environment (IL-10 and regulatory-T cells) that gradually reverses prior to the onset of labor. P4 suppresses and RU486 enhances antigen-specific CD4 and CD8 T cell inflammatory cytokine (IFN-γ) and cytotoxic molecule release (granzyme B). P4 and RU486 effectively modulate immune cell-mediated interactions, by regulating differentiated memory T cell subset sensitivity to antigen stimulation. Our results indicate that P4 and RU486, as immune modulators, share a reciprocal relationship. These data unveil key contributions of P4 to the modulation of the maternal immune system and suggests targets for future modulation of maternal immune function during pregnancy.
Collapse
Affiliation(s)
- Nishel M. Shah
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Nesrina Imami
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R. Johnson
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
33
|
Villarreal DO, Chin D, Smith MA, Luistro LL, Snyder LA. Combination GITR targeting/PD-1 blockade with vaccination drives robust antigen-specific antitumor immunity. Oncotarget 2018; 8:39117-39130. [PMID: 28388572 PMCID: PMC5503599 DOI: 10.18632/oncotarget.16605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022] Open
Abstract
Tumor progression is facilitated immunologically by mechanisms that include low antigen expression, an absence of coimmunostimulatory signals, and the presence of regulatory T cells (Tregs), all of which act to suppress and restrict effector T cells in the tumor. It may be possible to overcome these conditions by a combination of modulatory immunotherapy agents and tumor-antigen targeting to activate and drive effective antitumor T cell responses. Here, we demonstrated that co-administration of aGITR and aPD-1 monoclonal antibodies (mAb) in combination with a peptide vaccine (Vax) in mice bearing established tumors significantly delayed tumor growth and induced complete regression in 50% of the mice. This response was associated with increased expansion and functionality of potent Ag-specific polyfunctional CD8+ T cells, reduced Tregs, and the generation of memory T cells. Tumor regression correlated with the expansion of tumor-infiltrating antigen-specific CD8+ effector memory T cells, as depletion of this cell population significantly reduced the effectiveness of the triple combination Vax/aGITR/aPD-1 therapy. These findings support the concept that dual aGITR/aPD-1 combination with cancer vaccines may be a novel strategy against poorly immunogenic tumors.
Collapse
Affiliation(s)
- Daniel O Villarreal
- Oncology Discovery, Janssen Research and Development, Spring House, PA 19477, USA
| | - Diana Chin
- Oncology Discovery, Janssen Research and Development, Spring House, PA 19477, USA
| | - Melissa A Smith
- Oncology Discovery, Janssen Research and Development, Spring House, PA 19477, USA
| | - Leopoldo L Luistro
- Oncology Discovery, Janssen Research and Development, Spring House, PA 19477, USA
| | - Linda A Snyder
- Oncology Discovery, Janssen Research and Development, Spring House, PA 19477, USA
| |
Collapse
|
34
|
Drobek A, Moudra A, Mueller D, Huranova M, Horkova V, Pribikova M, Ivanek R, Oberle S, Zehn D, McCoy KD, Draber P, Stepanek O. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J 2018; 37:embj.201798518. [PMID: 29752423 PMCID: PMC6043851 DOI: 10.15252/embj.201798518] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/11/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Virtual memory T cells are foreign antigen‐inexperienced T cells that have acquired memory‐like phenotype and constitute 10–20% of all peripheral CD8+ T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen‐experienced memory T cells are incompletely understood. By analyzing T‐cell receptor repertoires and using retrogenic monoclonal T‐cell populations, we demonstrate that the virtual memory T‐cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self‐reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T‐cell compartment via modulating the self‐reactivity of individual T cells. Although virtual memory T cells descend from the highly self‐reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self‐reactivity in polyclonal T cells for the generation of functional T‐cell diversity.
Collapse
Affiliation(s)
- Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Moudra
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Mueller
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Horkova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Pribikova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Ivanek
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Susanne Oberle
- Swiss Vaccine Research Institute, Epalinges, Switzerland
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, Epalinges, Switzerland.,Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kathy D McCoy
- Department of Clinical Research (DKF), Inselspital, University of Bern, Bern, Switzerland
| | - Peter Draber
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic .,Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
35
|
Intrinsic and extrinsic contributors to defective CD8+ T cell responses with aging. Exp Gerontol 2018; 105:140-145. [DOI: 10.1016/j.exger.2018.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
|
36
|
Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front Immunol 2018; 9:339. [PMID: 29545794 PMCID: PMC5839096 DOI: 10.3389/fimmu.2018.00339] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023] Open
Abstract
T lymphocytes, from their first encounter with their specific antigen as naïve cell until the last stages of their differentiation, in a replicative state of senescence, go through a series of phases. In several of these stages, T lymphocytes are subjected to exponential growth in successive encounters with the same antigen. This entire process occurs throughout the life of a human individual and, earlier, in patients with chronic infections/pathologies through inflammatory mediators, first acutely and later in a chronic form. This process plays a fundamental role in amplifying the activating signals on T lymphocytes and directing their clonal proliferation. The mechanisms that control cell growth are high levels of telomerase activity and maintenance of telomeric length that are far superior to other cell types, as well as metabolic adaptation and redox control. Large numbers of highly differentiated memory cells are accumulated in the immunological niches where they will contribute in a significant way to increase the levels of inflammatory mediators that will perpetuate the new state at the systemic level. These levels of inflammation greatly influence the process of T lymphocyte differentiation from naïve T lymphocyte, even before, until the arrival of exhaustion or cell death. The changes observed during lymphocyte differentiation are correlated with changes in cellular metabolism and these in turn are influenced by the inflammatory state of the environment where the cell is located. Reactive oxygen species (ROS) exert a dual action in the population of T lymphocytes. Exposure to high levels of ROS decreases the capacity of activation and T lymphocyte proliferation; however, intermediate levels of oxidation are necessary for the lymphocyte activation, differentiation, and effector functions. In conclusion, we can affirm that the inflammatory levels in the environment greatly influence the differentiation and activity of T lymphocyte populations. However, little is known about the mechanisms involved in these processes. The elucidation of these mechanisms would be of great help in the advance of improvements in pathologies with a large inflammatory base such as rheumatoid arthritis, intestinal inflammatory diseases, several infectious diseases and even, cancerous processes.
Collapse
Affiliation(s)
- Marco A Moro-García
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Juan C Mayo
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
37
|
Foreign antigen-independent memory-phenotype CD4 + T cells: a new player in innate immunity? Nat Rev Immunol 2018; 18:1. [PMID: 29480288 DOI: 10.1038/nri.2018.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Heinzel S, Marchingo JM, Horton MB, Hodgkin PD. The regulation of lymphocyte activation and proliferation. Curr Opin Immunol 2018; 51:32-38. [PMID: 29414529 DOI: 10.1016/j.coi.2018.01.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 01/10/2023]
Abstract
Activation induced proliferation and clonal expansion of antigen specific lymphocytes is a hallmark of the adaptive immune response to pathogens. Recent studies identify two distinct control phases. In the first T and B lymphocytes integrate antigen and additional costimuli to motivate a programmed proliferative burst that ceases with a return to cell quiescence and eventual death. This proliferative burst is autonomously timed, ensuring an appropriate response magnitude whilst preventing uncontrolled expansion. This initial response is subject to further modification and extension by a range of signals that modify, expand and direct the emergence of a rich array of new cell types. Thus, both robust clonal expansion of a small number of antigen specific T cells, and the concurrent emergence of extensive cellular diversity, confers immunity to a vast array of different pathogens. The in vivo response to a given pathogen is made up by the sum of all responding clones and is reproducible and pathogen specific. Thus, a precise description of the regulatory principles governing lymphocyte proliferation, differentiation and survival is essential to a unified understanding of the immune system.
Collapse
Affiliation(s)
- Susanne Heinzel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Julia M Marchingo
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Miles B Horton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Philip D Hodgkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
39
|
Carpenter SM, Yang JD, Lee J, Barreira-Silva P, Behar SM. Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis. PLoS Pathog 2017; 13:e1006704. [PMID: 29176787 PMCID: PMC5720822 DOI: 10.1371/journal.ppat.1006704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/07/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022] Open
Abstract
Immunological memory is the key biological process that makes vaccines possible. Although tuberculosis vaccines elicit protective immunity in animals, few provide durable protection. To understand why protection is transient, we evaluated the ability of memory CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naïve and memory CD4+ T cells initially proliferated exponentially, and the accumulation of memory T cells in the lung correlated with early bacterial control. However, later during infection, memory CD4+ T cell proliferation was curtailed and no protection was observed. We show that memory CD4+ T cells are first activated in the LN and their recruitment to the lung attenuates bacterial growth. However, their interaction with Mtb-infected macrophages does not promote continued proliferation. We conclude that a lack of sustained expansion by memory-derived T cells in the lung limits the durability of their protection, linking their slower expansion with transient protection in vaccinated mice. Vaccines elicit pathogen-specific memory T cells whose early and potent activation upon infection should provide long-lasting control of bacterial growth. Although many experimental vaccines generate memory CD4+ T cells and can control the growth of Mycobacterium tuberculosis (Mtb) early during infection, none reliably provide protection from pulmonary tuberculosis (TB) that is durable. Although the etiology of the clinical failure of memory T cells is not well understood, few studies monitor memory T cell fate and function throughout chronic infection. Using both clonal and polyclonal models of Mtb-specific memory CD4+ T cell function during TB, we show that the expansion of memory-derived T cell responses is impaired in the lungs, compared with the primary (naïve) CD4 response. Despite expressing a protective effector phenotype, and reducing bacterial growth early after Mtb challenge, we further show that memory CD4+ T cells do not proliferate in response to Mtb-infected macrophages. Their impaired expansion corresponded with waning protection in vaccinated mice later during infection. We propose that both the induction of memory T cell proliferation by infected macrophages, and the durability of vaccine-elicited T cell responses during TB should serve as preclinical vaccine benchmarks.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
- * E-mail: (SMB); (SMC)
| | - Jason D. Yang
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jinhee Lee
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Palmira Barreira-Silva
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SMB); (SMC)
| |
Collapse
|
40
|
Condotta SA, Richer MJ. The immune battlefield: The impact of inflammatory cytokines on CD8+ T-cell immunity. PLoS Pathog 2017; 13:e1006618. [PMID: 29073270 PMCID: PMC5658174 DOI: 10.1371/journal.ppat.1006618] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Stephanie A. Condotta
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, Rosalind and Morris Goodman Cancer Research Centre McGill University, Montreal, Quebec, Canada
| | - Martin J. Richer
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, Rosalind and Morris Goodman Cancer Research Centre McGill University, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Sohn HJ, Lee JY, Lee HJ, Sohn DH, Cho HI, Kim HJ, Kim TG. Simultaneous in vitro generation of CD8 and CD4 T cells specific to three universal tumor associated antigens of WT1, survivin and TERT and adoptive T cell transfer for the treatment of acute myeloid leukemia. Oncotarget 2017; 8:44059-44072. [PMID: 28477011 PMCID: PMC5546462 DOI: 10.18632/oncotarget.17212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/03/2017] [Indexed: 01/21/2023] Open
Abstract
Previously, we found that most patients with acute myeloid leukemia (AML) expressed at least one of the leukemic associated antigens (LAAs) WT1, survivin and TERT, and different combinations of the three LAAs predicted negative clinical outcomes. Multi-tumor antigen-specific T cells were generated to overcome antigenic variation and may be sufficient to maximize antitumoral effects. To generate triple antigen-specific (Tri)-T cells that recognize three LAAs, dendritic cells (DCs) were transfected with three tumor antigen-encoding RNAs. These DCs were used to stimulate both CD8 and CD4 T cells and to overcome the limitation of known human leukocyte antigen-restricted epitopes. The sum of the antigen-specific T cell frequencies was higher in the Tri-T cells than in the T cells that recognized a single antigen. Furthermore, the Tri-T cells were more effective against leukemic blasts that expressed all three LAAs compared with blasts that expressed one or two LAAs, suggesting a proportional correlation between IFN-γ secretion and LAA expression. Engrafted leukemic blasts in the bone marrow of mice significantly decreased in the presence of Tri-T cells. This technique represents an effective immunotherapeutic strategy in AML.
Collapse
Affiliation(s)
- Hyun-Jung Sohn
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
- ViGenCell Inc., Seoul, Korea
| | - Ji Yoon Lee
- Leukemia Research Institute, Seoul St. Mary`s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biomedical Laboratory Science, College of Health Sciences, Sangji University, Wonju, Korea
| | - Hyun-Joo Lee
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
- ViGenCell Inc., Seoul, Korea
| | - Dae-Hee Sohn
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- ViGenCell Inc., Seoul, Korea
| | - Hyun-Il Cho
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, Seoul St. Mary`s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee-Je Kim
- Leukemia Research Institute, Seoul St. Mary`s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary`s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tai-Gyu Kim
- Catholic Hematopoietic Stem Cell Bank, The Catholic University of Korea, Seoul, Korea
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
42
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
43
|
Reeves PL, Rudraraju R, Liu X, Wong FS, Hamilton-Williams EE, Steptoe RJ. APC-targeted proinsulin expression inactivates insulin-specific memory CD8 + T cells in NOD mice. Immunol Cell Biol 2017; 95:765-774. [PMID: 28611473 DOI: 10.1038/icb.2017.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) results from T-cell-mediated autoimmune destruction of pancreatic β cells. Effector T-cell responses emerge early in disease development and expand as disease progresses. Following β-cell destruction, a long-lived T-cell memory is generated that represents a barrier to islet transplantation and other cellular insulin-replacement therapies. Development of effective immunotherapies that control or ablate β-cell destructive effector and memory T-cell responses has the potential to prevent disease progression and recurrence. Targeting antigen expression to antigen-presenting cells inactivates cognate CD8+ effector and memory T-cell responses and has therapeutic potential. Here we investigated this in the context of insulin-specific responses in the non-obese diabetic mouse where genetic immune tolerance defects could impact on therapeutic tolerance induction. Insulin-specific CD8+ memory T cells transferred to mice expressing proinsulin in antigen-presenting cells proliferated in response to transgenically expressed proinsulin and the majority were rapidly deleted. A small proportion of transferred insulin-specific Tmem remained undeleted and these were antigen-unresponsive, exhibited reduced T cell receptor (TCR) expression and H-2Kd/insB15-23 tetramer binding and expressed co-inhibitory molecules. Expression of proinsulin in antigen-presenting cells also abolished the diabetogenic capacity of CD8+ effector T cells. Therefore, destructive insulin-specific CD8+ T cells are effectively inactivated by enforced proinsulin expression despite tolerance defects that exist in diabetes-prone NOD mice. These findings have important implications in developing immunotherapeutic approaches to T1D and other T-cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Peta Ls Reeves
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Rajeev Rudraraju
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Xiao Liu
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - F Susan Wong
- Institute of Molecular &Experimental Medicine, Cardiff University School of Medicine, Cardiff, Wales
| | | | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| |
Collapse
|
44
|
da Rocha DG, Fernandez JH, de Almeida CMC, da Silva CL, Magnoli FC, da Silva OÉ, da Silva WD. Development of IgY antibodies against anti-snake toxins endowed with highly lethal neutralizing activity. Eur J Pharm Sci 2017; 106:404-412. [PMID: 28595875 DOI: 10.1016/j.ejps.2017.05.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/15/2017] [Accepted: 05/31/2017] [Indexed: 10/19/2022]
Abstract
Snakebite envenoming is a major neglected disease related to poverty in developing countries. Treatment involves the administration of a specific antivenom serum and auxiliary therapies, if necessary. The improvement of antibodies is of great importance for the technological advancement of antivenom therapy and to reduce the morbidity and mortality associated with this medical burden. In the present study, adult hens were immunized nine times with 20μg of B. arietans or C. d. terrificus venoms at three-week intervals between immunizations. Developing antibodies presented increasing avidity and affinity to antigenic toxin epitopes along immunization, attaining a plateau after the seventh immunization. Pooled egg yolk-purified IgY antivenom antibodies, subjected to in vitro-in vivo lethality assay using Swiss adult mice, exhibited potent venom lethal neutralizing activity. Taken together, chickens under the described immunization schedule were considered alternative candidates for antivenom production. Lower maintenance costs, a simple antibody manufacturing process and immunization suffering restrictions are additional advantages.
Collapse
Affiliation(s)
- David Gitirana da Rocha
- Laboratório de Biologia do Reconhecer (LBR), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego, 2000 - Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Jorge Hernandez Fernandez
- Laboratório de Química e Função de Proteínas e Peptídeos (LQFPP), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego, 2000 - Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Cláudia Maria Costa de Almeida
- Laboratório de Sanidade Animal (LSA), Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego, 2000 - Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Cláudia Letícia da Silva
- Laboratório de Biologia do Reconhecer (LBR), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Avenida Alberto Lamego, 2000 - Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Fábio Carlos Magnoli
- Laboratório de Imunoquímica, Instituto Butantan, Avenida Vital Brazil, 1500 - São Paulo, São Paulo 05503-900, Brazil.
| | - Osmair Élder da Silva
- Laboratório de Imunoquímica, Instituto Butantan, Avenida Vital Brazil, 1500 - São Paulo, São Paulo 05503-900, Brazil.
| | - Wilmar Dias da Silva
- Laboratório de Imunoquímica, Instituto Butantan, Avenida Vital Brazil, 1500 - São Paulo, São Paulo 05503-900, Brazil.
| |
Collapse
|
45
|
White JT, Cross EW, Kedl RM. Antigen-inexperienced memory CD8 + T cells: where they come from and why we need them. Nat Rev Immunol 2017; 17:391-400. [PMID: 28480897 DOI: 10.1038/nri.2017.34] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Memory-phenotype CD8+ T cells exist in substantial numbers within hosts that have not been exposed to either foreign antigen or overt lymphopenia. These antigen-inexperienced memory-phenotype T cells can be divided into two major subsets: 'innate memory' T cells and 'virtual memory' T cells. Although these two subsets are nearly indistinguishable by surface markers alone, notable developmental and functional differences exist between the two subsets, which suggests that they represent distinct populations. In this Opinion article, we review the available literature on each subset, highlighting the key differences between these populations. Furthermore, we suggest a unifying model for the categorization of antigen-inexperienced memory-phenotype CD8+ T cells.
Collapse
Affiliation(s)
- Jason T White
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Eric W Cross
- Department of Immunology and Microbiology, University of Colorado Denver at Anschutz Medical Campus, School of Medicine, Mail Stop 8333, Room P18-8115, 12800 East 19th Avenue, Aurora, Colorado 80045-2537, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Denver at Anschutz Medical Campus, School of Medicine, Mail Stop 8333, Room P18-8115, 12800 East 19th Avenue, Aurora, Colorado 80045-2537, USA
| |
Collapse
|
46
|
Khiew SH, Yang J, Young JS, Chen J, Wang Q, Yin D, Vu V, Miller ML, Sciammas R, Alegre ML, Chong AS. CTLA4-Ig in combination with FTY720 promotes allograft survival in sensitized recipients. JCI Insight 2017; 2:92033. [PMID: 28469082 PMCID: PMC5414557 DOI: 10.1172/jci.insight.92033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
Despite recent evidence of improved graft outcomes and safety, the high incidence of early acute cellular rejection with belatacept, a high-affinity CTLA4-Ig, has limited its use in clinical transplantation. Here we define how the incomplete control of endogenous donor-reactive memory T cells results in belatacept-resistant rejection in an experimental model of BALB/c.2W-OVA donor heart transplantation into C57BL/6 recipients presensitized to donor splenocytes. These sensitized mice harbored modestly elevated numbers of endogenous donor-specific memory T cells and alloantibodies compared with naive recipients. Continuous CTLA4-Ig treatment was unexpectedly efficacious at inhibiting endogenous graft-reactive T cell expansion but was unable to inhibit late CD4+ and CD8+ T cell infiltration into the allografts, and rejection was observed in 50% of recipients by day 35 after transplantation. When CTLA4-Ig was combined with the sphingosine 1-phosphate receptor-1 (S1PR1) functional antagonist FTY720, alloantibody production was inhibited and donor-specific IFN-γ-producing T cells were reduced to levels approaching nonsensitized tolerant recipients. Late T cell recruitment into the graft was also restrained, and graft survival improved with this combination therapy. These observations suggest that a rational strategy consisting of inhibiting memory T cell expansion and trafficking into the allograft with CTLA4-Ig and FTY720 can promote allograft survival in allosensitized recipients.
Collapse
Affiliation(s)
| | - Jinghui Yang
- Section of Transplantation, Department of Surgery
| | | | - Jianjun Chen
- Section of Transplantation, Department of Surgery
| | - Qiang Wang
- Section of Transplantation, Department of Surgery
| | - Dengping Yin
- Section of Transplantation, Department of Surgery
| | - Vinh Vu
- Section of Transplantation, Department of Surgery
| | - Michelle L. Miller
- Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Roger Sciammas
- Center for Comparative Medicine, University of California, Davis, California, USA
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
47
|
Nasal-associated lymphoid tissues (NALTs) support the recall but not priming of influenza virus-specific cytotoxic T cells. Proc Natl Acad Sci U S A 2017; 114:5225-5230. [PMID: 28461487 DOI: 10.1073/pnas.1620194114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lymphoid tissue that drains the upper respiratory tract represents an important induction site for cytotoxic T lymphocyte (CTL) immunity to airborne pathogens and intranasal vaccines. Here, we investigated the role of the nasal-associated lymphoid tissues (NALTs), which are mucosal-associated lymphoid organs embedded in the submucosa of the nasal passage, in the initial priming and recall expansion of CD8+ T cells following an upper respiratory tract infection with a pathogenic influenza virus and immunization with a live attenuated influenza virus vaccine. Whereas NALTs served as the induction site for the recall expansion of memory CD8+ T cells following influenza virus infection or vaccination, they failed to support activation of naïve CD8+ T cells. Strikingly, NALTs, unlike other lymphoid tissues, were not routinely surveyed during the steady state by circulating T cells. The selective recruitment of memory T cells into these lymphoid structures occurred in response to infection-induced elevation of the chemokine CXCL10, which attracted CXCR3+ memory CD8+ T cells. These results have significant implications for intranasal vaccines, which deliver antigen to mucosal-associated lymphoid tissue and aim to elicit protective CTL-mediated immunity.
Collapse
|
48
|
Gonzalez-Perez G, Lamousé-Smith ESN. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8 + T Cell Receptor Signaling. Front Immunol 2017; 8:265. [PMID: 28337207 PMCID: PMC5340779 DOI: 10.3389/fimmu.2017.00265] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/23/2017] [Indexed: 01/08/2023] Open
Abstract
We recently reported that maternal antibiotic treatment (MAT) of mice in the last days of pregnancy and during lactation dramatically alters the density and composition of the gastrointestinal microbiota of their infants. MAT infants also exhibited enhanced susceptibility to a systemic viral infection and altered adaptive immune cell activation phenotype and function. CD8+ effector T cells from MAT infants consistently demonstrate an inability to sustain interferon gamma (IFN-γ) production in vivo following vaccinia virus infection and in vitro upon T cell receptor (TCR) stimulation. We hypothesize that T cells developing in infant mice with gastrointestinal microbiota dysbiosis and insufficient toll-like receptor (TLR) exposure alters immune responsiveness associated with intrinsic T cell defects in the TCR signaling pathway and compromised T cell effector function. To evaluate this, splenic T cells from day of life 15 MAT infant mice were stimulated in vitro with anti-CD3 and anti-CD28 antibodies prior to examining the expression of ZAP-70, phosphorylated ZAP-70, phospho-Erk-1/2, c-Rel, total protein tyrosine phosphorylation, and IFN-γ production. We determine that MAT infant CD8+ T cells fail to sustain total protein tyrosine phosphorylation and Erk1/2 activation. Lipopolysaccharide treatment in vitro and in vivo, partially restored IFN-γ production in MAT effector CD8+ T cells and reduced mortality typically observed in MAT mice following systemic viral infection. Our results demonstrate a surprising dependence on the gastrointestinal microbiome and TLR ligand stimulation toward shaping optimal CD8+ T cell function during infancy.
Collapse
Affiliation(s)
- Gabriela Gonzalez-Perez
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Medical Center , New York, NY , USA
| | - Esi S N Lamousé-Smith
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Medical Center , New York, NY , USA
| |
Collapse
|
49
|
Bonifer C, Cockerill PN. Chromatin priming of genes in development: Concepts, mechanisms and consequences. Exp Hematol 2017; 49:1-8. [PMID: 28185904 DOI: 10.1016/j.exphem.2017.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 01/06/2023]
Abstract
During ontogeny, cells progress through multiple alternate differentiation states by activating distinct gene regulatory networks. In this review, we highlight the important role of chromatin priming in facilitating gene activation during lineage specification and in maintaining an epigenetic memory of previous gene activation. We show that chromatin priming is part of a hugely diverse repertoire of regulatory mechanisms that genes use to ensure that they are expressed at the correct time, in the correct cell type, and at the correct level, but also that they react to signals. We also emphasize how increasing our knowledge of these principles could inform our understanding of developmental failure and disease.
Collapse
Affiliation(s)
- Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
50
|
Barski A, Cuddapah S, Kartashov AV, Liu C, Imamichi H, Yang W, Peng W, Lane HC, Zhao K. Rapid Recall Ability of Memory T cells is Encoded in their Epigenome. Sci Rep 2017; 7:39785. [PMID: 28054639 PMCID: PMC5215294 DOI: 10.1038/srep39785] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022] Open
Abstract
Even though T-cell receptor (TCR) stimulation together with co-stimulation is sufficient for the activation of both naïve and memory T cells, the memory cells are capable of producing lineage specific cytokines much more rapidly than the naïve cells. The mechanisms behind this rapid recall response of the memory cells are still not completely understood. Here, we performed epigenetic profiling of human resting naïve, central and effector memory T cells using ChIP-Seq and found that unlike the naïve cells, the regulatory elements of the cytokine genes in the memory T cells are marked by activating histone modifications even in the resting state. Therefore, the ability to induce expression of rapid recall genes upon activation is associated with the deposition of positive histone modifications during memory T cell differentiation. We propose a model of T cell memory, in which immunological memory state is encoded epigenetically, through poising and transcriptional memory.
Collapse
Affiliation(s)
- Artem Barski
- Divisions of Allergy &Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, NY, 10987, USA
| | - Andrey V Kartashov
- Divisions of Allergy &Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Chong Liu
- Divisions of Allergy &Immunology and Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Hiromi Imamichi
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenjing Yang
- Department of Physics, The George Washington University, D.C., 20052, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, D.C., 20052, USA
| | - H Clifford Lane
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|