1
|
Herzog MKM, Peters A, Shayya N, Cazzaniga M, Kaka Bra K, Arora T, Barthel M, Gül E, Maurer L, Kiefer P, Christen P, Endhardt K, Vorholt JA, Frankel G, Heimesaat MM, Bereswill S, Gahan CGM, Claesson MJ, Domingo-Almenara X, Hardt WD. Comparing Campylobacter jejuni to three other enteric pathogens in OligoMM 12 mice reveals pathogen-specific host and microbiota responses. Gut Microbes 2025; 17:2447832. [PMID: 39835346 DOI: 10.1080/19490976.2024.2447832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Campylobacter jejuni, non-typhoidal Salmonella spp., Listeria monocytogenes and enteropathogenic/enterohemorrhagic Escherichia coli (EPEC/EHEC) are leading causes of food-borne illness worldwide. Citrobacter rodentium has been used to model EPEC and EHEC infection in mice. The gut microbiome is well-known to affect gut colonization and host responses to many food-borne pathogens. Recent progress has established gnotobiotic mice as valuable models to study how microbiota affect the enteric infections by S. Typhimurium, C. rodentium and L. monocytogenes. However, for C. jejuni, we are still lacking a suitable gnotobiotic mouse model. Moreover, the limited comparability of data across laboratories is often negatively affected by variations between different research facilities or murine microbiotas. In this study, we applied the standardized gnotobiotic OligoMM12 microbiota mouse model and compared the infections in the same facility. We provide evidence of robust colonization and significant pathological changes in OligoMM12 mice following infection with these pathogens. Moreover, we offer insights into pathogen-specific host responses and metabolite signatures, highlighting the advantages of a standardized mouse model for direct comparisons of factors influencing the pathogenesis of major food-borne pathogens. Notably, we reveal for the first time that C. jejuni stably colonizes OligoMM12 mice, triggering inflammation. Additionally, our comparative approach successfully identifies pathogen-specific responses, including the detection of genes uniquely associated with C. jejuni infection in humans. These findings underscore the potential of the OligoMM12 model as a versatile tool for advancing our understanding of food-borne pathogen interactions.
Collapse
Affiliation(s)
- Mathias K-M Herzog
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nizar Shayya
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Kardokh Kaka Bra
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Trisha Arora
- Omic Sciences Unit, EURECAT - Technology Centre of Catalonia, Reus, Spain
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Katharina Endhardt
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Oliveira M, Barbosa J, Teixeira P. Listeria monocytogenes gut interactions and listeriosis: Gut modulation and pathogenicity. Microbiol Res 2025; 297:128187. [PMID: 40279724 DOI: 10.1016/j.micres.2025.128187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Following ingestion via contaminated food, Listeria monocytogenes faces multiple hurdles through the human digestive system, thereby influencing its capacity to cause infection. This review provides a comprehensive overview of the multifaceted mechanisms employed by L. monocytogenes to overcome gastrointestinal hurdles and interact with the host's microbiota, facing chemical and physical barriers such as saliva, stomach acidity, bile salts and mechanical clearance. Proposed evasion strategies will be highlighted, exploring the bacteriocins produced by L. monocytogenes, such as the well-described bacteriocin Listeriolysin S (LLS), a bacteriocin that inhibits inflammogenic species - Lmo2776, and a phage tail-like bacteriocin, monocin. The competitive dynamic interactions within the gut microbiota, as well as the modulation of microbiota composition and immune responses, will also be explored. Finally, the adhesion and invasion of the intestinal epithelium by L. monocytogenes is described, exploring the mechanism of pathogenesis, biofilm and aggregation capacities and other virulence factors. Unlike previous reviews that may focus on individual aspects of L. monocytogenes pathogenicity, this review offers a holistic perspective on the bacterium's ability to persist and cause infection, integrating information about survival strategies, including bacteriocin production, immune modulation, and virulence factors. By connecting recent findings on microbial interactions and infection dynamics, this review incorporates recent developments in the field and connects various lines of research that explore both host and microbial factors influencing infection outcomes.
Collapse
Affiliation(s)
- M Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - J Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - P Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
3
|
Liu Y, Ma X, Cazzaniga M, Gahan CGM, den Besten HMW, Abee T. Nano in Micro: Novel Concepts in Foodborne Pathogen Transmission and Pathogenesis. Annu Rev Food Sci Technol 2025; 16:245-268. [PMID: 39621535 DOI: 10.1146/annurev-food-111523-121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In this article, we highlight novel components of foodborne pathogens that influence their response, physiology, adaptation, and survival in the face of diverse stresses, and consequently have implications for their transmission in the food chain and their pathogenesis. Recent insights into the role of bacteriophages/prophages, bacterial extracellular vesicles, and bacterial microcompartments, which make up the emerging field we coined as "nano in micro," are presented, together with the role of understudied food-relevant substrates in pathogen fitness and virulence. These new insights also lead to reflections on generally adopted laboratory conditions in the long-standing research field of adaptive stress response in foodborne pathogens. In addition, selected examples of the impact of diet and microbiota on intestinal colonization and host invasion are discussed. A final section on risk assessment presents an overview of tools for (kinetic) data modeling and perspectives for the implementation of information derived from whole-genome sequencing, combined with advancements in dose-response models and exposure assessments.
Collapse
Affiliation(s)
- Yue Liu
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| | - Xuchuan Ma
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- School of Pharmacy, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| |
Collapse
|
4
|
Udayan S, Floyd AN, John V, Barrios BE, Rusconi BA, McDonald KG, Schill EM, Kulkarni DH, Martin AL, Gutierrez R, Talati KB, Harris DL, Sundas S, Burgess KM, Pauta JT, Joyce EL, Wang JD, Wilson LD, Knoop KA, Tarr PI, Hsieh CS, Newberry RD. Colonic goblet cell-associated antigen passages mediate physiologic and beneficial translocation of live gut bacteria in preweaning mice. Nat Microbiol 2025; 10:927-938. [PMID: 40169738 DOI: 10.1038/s41564-025-01965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025]
Abstract
Gut-resident microorganisms have time-limited effects in distant tissues during early life. However, the reasons behind this phenomenon are largely unknown. Here, using bacterial culture techniques, we show that a subset of live gut-resident bacteria translocate and disseminate to extraintestinal tissues (mesenteric lymph nodes and spleen) in preweaning (day of life 17), but not adult (day of life 35), mice. Translocation and dissemination in preweaning mice appeared physiologic as it did not induce an inflammatory response and required host goblet cells, the formation of goblet cell-associated antigen passages, sphingosine-1-phosphate receptor-dependent leukocyte trafficking and phagocytic cells. One translocating strain, Lactobacillus animalisWU, showed antimicrobial activity against the late-onset sepsis pathogen Escherichia coli ST69 in vitro, and its translocation was associated with protection from systemic sepsis in vivo. While limited in context, these findings challenge the idea that translocation of gut microbiota is pathological and show physiologic and beneficial translocation during early life.
Collapse
Affiliation(s)
- Sreeram Udayan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Alexandria N Floyd
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Vini John
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Bibiana E Barrios
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Brigida A Rusconi
- Division of Gastroenterology Hepatology & Nutrition, Department of Pediatrics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Keely G McDonald
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Ellen Merrick Schill
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Division of Newborn Medicine, Department of Pediatrics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Devesha H Kulkarni
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew L Martin
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Rafael Gutierrez
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Division of Newborn Medicine, Department of Pediatrics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Khushi B Talati
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Dalia L Harris
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Sushma Sundas
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Kayla M Burgess
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Jocelyn T Pauta
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Elisabeth L Joyce
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Jacqueline D Wang
- Division of Gastroenterology Hepatology & Nutrition, Department of Pediatrics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Leslie D Wilson
- Division of Comparative Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Kathryn A Knoop
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
| | - Phillip I Tarr
- Division of Gastroenterology Hepatology & Nutrition, Department of Pediatrics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Rodney D Newberry
- Division of Gastroenterology, Department of Internal Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Hu W, Zhou S, Ibrahim A, Li G, Awad S, Ramos-Vivas J, Kan J, Du M. Whole Genome Analysis of Pediococcus acidilactici XJ-24 and Its Role in Preventing Listeria monocytogenes ATCC ® 19115 TM Infection in C57BL/6 Mice. Antibiotics (Basel) 2025; 14:323. [PMID: 40149133 PMCID: PMC11939717 DOI: 10.3390/antibiotics14030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: As probiotics gain prominence in the prevention and treatment of intestinal diseases, their protective effects against pathogens and influence on host health have drawn significant attention. This study investigates the genomic characteristics and functional potential of Pediococcus acidilactici XJ-24 (XJ-24) in the prevention of Listeria monocytogenes (LM) infection in mice. Methods/Results: Whole-genome analysis confirmed the safety and probiotic properties of XJ-24, including acid and bile salt tolerance, antimicrobial activity, and safety. In vivo, C57BL/6 mice challenges indicated that XJ-24 significantly reduced LM colonization, suppressed pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, IFN-γ), alleviated colon and spleen tissue damage, and maintained intestinal barrier integrity by upregulating tight junction proteins (Occludin, Claudin-1, ZO-1). Moreover, XJ-24 modulated gut microbiota composition by increasing beneficial taxa while reducing harmful bacteria. Correlation analysis highlighted a positive association between Lachnospiraceae and tight junction proteins. Conclusions: These findings demonstrate the potential of XJ-24 as a functional probiotic for preventing LM infection and provide a basis for further clinical exploration.
Collapse
Affiliation(s)
- Weizhong Hu
- College of Food Science, Southwest University, Chongqing 400715, China; (W.H.); (S.Z.); (J.K.)
- Chinese-Hungarian Cooperative Research Center for Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Shuxin Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; (W.H.); (S.Z.); (J.K.)
- Chinese-Hungarian Cooperative Research Center for Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Amel Ibrahim
- Faculty of Agriculture, Alexandria University, Alexandria 21500, Egypt; (A.I.); (S.A.)
| | - Guannan Li
- College of Sericulture, Textile and Biomass, Southwest University, Chongqing 400716, China;
| | - Sameh Awad
- Faculty of Agriculture, Alexandria University, Alexandria 21500, Egypt; (A.I.); (S.A.)
| | - José Ramos-Vivas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain;
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China; (W.H.); (S.Z.); (J.K.)
- Chinese-Hungarian Cooperative Research Center for Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing 400715, China; (W.H.); (S.Z.); (J.K.)
- Chinese-Hungarian Cooperative Research Center for Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
6
|
Schwardt NH, Halsey CR, Sanchez ME, Ngo BM, Reniere ML. A genome-wide screen in ex vivo gallbladders identifies Listeria monocytogenes factors required for virulence in vivo. PLoS Pathog 2025; 21:e1012491. [PMID: 40029882 PMCID: PMC11892859 DOI: 10.1371/journal.ppat.1012491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/10/2025] [Accepted: 01/29/2025] [Indexed: 03/12/2025] Open
Abstract
Listeria monocytogenes is a Gram-positive pathogen that causes the severe foodborne disease listeriosis. Following oral infection of the host, L. monocytogenes disseminates from the gastrointestinal tract to peripheral organs, including the gallbladder, where it replicates to high densities, establishing the gallbladder as the primary bacterial reservoir. Despite its importance in pathogenesis, little is known about how L. monocytogenes survives and replicates in the gallbladder. In this study, we assessed the L. monocytogenes genes required for growth and survival in ex vivo non-human primate gallbladders using a transposon sequencing approach. The screen identified 43 genes required for replication in the gallbladder, some of which were known to be important for virulence, and others had not been previously studied in the context of infection. We evaluated the roles of 19 genes identified in our screen both in vitro and in vivo, and demonstrate that most were required for replication in bile in vitro, for intracellular infection of murine cells in tissue culture, and for virulence in an oral murine model of listeriosis. Interestingly, strains lacking the mannose and glucose phosphoenolpyruvate-dependent phosphotransferase system (PTS) permeases Mpt and Mpo exhibited no defects in intracellular growth or intercellular spread, but were significantly attenuated during murine infection. While the roles of PTS systems in vivo were not previously appreciated, these results suggest that PTS permeases are necessary for extracellular replication during infection. Overall, this study demonstrates that L. monocytogenes genes required for replication in the gallbladder also play broader roles in disease.
Collapse
Affiliation(s)
- Nicole H. Schwardt
- Microbiology Department, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Cortney R. Halsey
- Microbiology Department, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Madison E. Sanchez
- Microbiology Department, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Billy M. Ngo
- Microbiology Department, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michelle L. Reniere
- Microbiology Department, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
7
|
Lin ZH, Li CP, Sun CK, Cho DY, Tsai FJ, Yip HT, Chang R, Hung YM. Increased Risk of Inflammatory Bowel Disease Among Patients With Nontyphoidal Salmonella Infections: A Population-Based Cohort Study. Inflamm Bowel Dis 2025; 31:351-361. [PMID: 38567440 DOI: 10.1093/ibd/izae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Indexed: 04/04/2024]
Abstract
BACKGROUND Despite the known association between microorganisms and development of inflammatory bowel disease (IBD), the role of nontyphoidal Salmonella (NTS) in IBD is not adequately addressed. We aimed at elucidating the relationship between NTS infection and the risk of IBD. METHODS Based on the National Health Insurance Research Database in Taiwan, this retrospective cohort study enrolled patients with NTS infection (exposure group; n = 4651) and those without NTS infection (comparator group; n = 4651) who were propensity score matched (1:1) by demographic data, medications, comorbidities, and index date. All patients were followed until IBD onset, individual mortality, or December 31, 2018. Cox proportional hazards regression analysis was performed to determine the hazard ratios and 95% confidence intervals (CIs). Sensitivity analyses were used for cross-validation. RESULTS The NTS group demonstrated an increased risk of IBD compared with the non-NTS groups (adjusted hazard ratio [aHR], 2.12; 95% CI, 1.62-2.78) with a higher risk of developing ulcerative colitis in the former (aHR, 2.27; 95% CI, 1.69-3.04). Nevertheless, the small sample size may contribute to lack of significant difference in Crohn's disease. Consistent findings were noted after excluding IBD diagnosed within 6 months of NTS infection (aHR, 2.28; 95% CI, 1.71-3.03), excluding those with enteritis/colitis before index date (aHR, 1.85; 95% CI, 1.28-2.68), excluding those using antibiotics for 1 month in the year before IBD onset (aHR, 1.81; 95% CI, 1.34-2.45), inverse probability of treatment weighting (aHR, 1.64; 95% CI, 1.31-2.04), and inclusion of individuals regardless of age (n = 10 431; aHR, 1.83; 95% CI, 1.53-2.19). CONCLUSIONS Patients with NTS were associated with an increased risk of developing IBD, especially ulcerative colitis.
Collapse
Affiliation(s)
- Zong-Han Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chung-Pin Li
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Clinical Skills Training, Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Therapeutic and Research Center of Pancreatic Cancer, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Der-Yang Cho
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Renin Chang
- Division of Medical Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yao-Min Hung
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital Taitung Branch, Taitung, Taiwan
- Master Program in Biomedicine, College of Science and Engineering, National Taitung University, Taitung, Taiwan
- College of Health and Nursing, Meiho University, Pingtung, Taiwan
| |
Collapse
|
8
|
Abd El-Hamid MI, El-Malt RMS, Khater SI, Abdelwarith AA, Khamis T, Abd El-Wahab RA, Younis EM, Davies SJ, Mohamed DI, Mohamed RI, Zayed S, Abdelrahman MA, Ibrahim D. Impact of liposomal hesperetin in broilers: prospects for improving performance, antioxidant potential, immunity, and resistance against Listeria monocytogenes. Avian Pathol 2025; 54:120-148. [PMID: 39169883 DOI: 10.1080/03079457.2024.2395357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Liposomal encapsulated phytogenics, such as liposomal hesperetin, are considered novel substitutes for antibiotics in the broiler industry owing to their improved nutritional and therapeutic properties. Therefore, our key goal was to investigate liposomal hesperetin impact on broiler growth performance, health, antioxidant status, tight junction proteins (TJP), and resistance against Listeria monocytogenes. Four broiler groups were fed 0, 150, 250, or 400 mg/kg of liposomal hesperetin-supplemented diets and experimentally infected with L. monocytogenes strain. Herein, liposomal hesperetin, especially at higher concentrations, augmented broilers FCR with upregulation of genes encoding TJP (occludin, JAM-2, MUC-2), and antioxidant attributes (GPX-1, SOD-1, CAT, HO-1, NQO1, COX2), which reflect enhancing health and welfare of broilers. Muscle antioxidant biomarkers were enhanced; meanwhile, muscle MDA, ROS, and H2O2 levels were reduced in response to 400 mg/kg of liposomal hesperetin. Liposomal hesperetin fortification reduced L. monocytogenes loads and expression levels of its virulence-related genes (flaA, hlyA, and ami). Remarkably, histopathological alterations in intestinal and brain tissues of L. monocytogenes-infected broilers were restored post-inclusion at higher levels of liposomal hesperetin, which reflects increase of the birds' resistance to L. monocytogenes infection. Transcription levels of genes encoding cytokines/chemokines (MyD88, AVBD6, CCL20, IL-1β, IL-18), and autophagy (Bcl-2, LC3, AMPK, AKT, CHOP, Bip, p62, XBP1) were ameliorated following dietary liposomal hesperetin fortification, which suggests enhancement of the birds' immunity and health. Collectively, our research recommends liposomal hesperetin application in broiler diets owing to its promoting impact on growth performance, antioxidant status, immunity, health, and welfare besides its antibacterial, and antivirulence characteristics to fight against L. monocytogenes.
Collapse
Affiliation(s)
- Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rania M S El-Malt
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig, Egypt
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit (ANRU), Carna Research Station, College of Science and Engineering, Ryan Institute, University of Galway, Galway, Ireland
| | - Dalia Ibrahim Mohamed
- Department of Biochemistry, Animal Health Research Institute, Zagazig Branch, Agriculture Research Center, Zagazig, Egypt
| | - Rania I Mohamed
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute, Mansoura Provincial Laboratory (AHRI-Mansoura), Cairo, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Mahmoud A Abdelrahman
- Bacteriology Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Eislmayr KD, Langner C, Liu FL, Yuvaraj S, Babirye JP, Roncaioli JL, Vickery JM, Barton GM, Lesser CF, Vance RE. Macrophages orchestrate elimination of Shigella from the intestinal epithelial cell niche via TLR-induced IL-12 and IFN-γ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633976. [PMID: 39896533 PMCID: PMC11785076 DOI: 10.1101/2025.01.20.633976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bacteria of the genus Shigella replicate in intestinal epithelial cells and cause shigellosis, a severe diarrheal disease that resolves spontaneously in most healthy individuals. During shigellosis, neutrophils are abundantly recruited to the gut, and have long been thought to be central to Shigella control and pathogenesis. However, how shigellosis resolves remains poorly understood due to the longstanding lack of a tractable and physiological animal model. Here, using our newly developed Nlrc4 -/- Casp11 -/- mouse model of shigellosis, we unexpectedly find no major role for neutrophils in limiting Shigella or in disease pathogenesis. Instead, we uncover an essential role for macrophages in the host control of Shigella . Macrophages respond to Shigella via TLRs to produce IL-12, which then induces IFN-γ, a cytokine that is essential to control Shigella replication in intestinal epithelial cells. Collectively, our findings reshape our understanding of the innate immune response to Shigella .
Collapse
|
10
|
Yan H, Xu B, Gao B, Xu Y, Xia X, Ma Y, Qin X, Dong Q, Hirata T, Li Z. Comparative Analysis of In Vivo and In Vitro Virulence Among Foodborne and Clinical Listeria monocytogenes Strains. Microorganisms 2025; 13:191. [PMID: 39858959 PMCID: PMC11767709 DOI: 10.3390/microorganisms13010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens that can cause invasive listeriosis. In this study, the virulence levels of 26 strains of L. monocytogenes isolated from food and clinical samples in Shanghai, China, between 2020 and 2022 were analyzed. There were significant differences among isolates in terms of their mortality rate in Galleria mellonella, cytotoxicity to JEG-3 cells, hemolytic activity, and expression of important virulence genes. Compared with other STs, both the ST121 (food source) and ST1930 (clinic source) strains exhibited higher G. mellonella mortality. The 48 h mortality in G. mellonella of lineage II strains was significantly higher than that in lineage I. Compared with other STs, ST1930, ST3, ST5, and ST1032 exhibited higher cytotoxicity to JEG-3 cells. Based on the classification of sources (food and clinical strains) and serogroups (II a, II b, and II c), there were no significant differences observed in terms of G. mellonella mortality, cytotoxicity, and hemolytic activity. In addition, ST121 exhibited significantly higher hly, inlA, inlB, prfA, plcA, and plcB gene expression compared with other STs. A gray relation analysis showed a high correlation between the toxicity of G. mellonella and the expression of the hly and inlB genes; in addition, L. monocytogenes may have a consistent virulence mechanism involving hemolysis activity and cytotoxicity. Through the integration of in vivo and in vitro infection models with information on the expression of virulence factor genes, the differences in virulence between strains or subtypes can be better understood.
Collapse
Affiliation(s)
- Hui Yan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Biyao Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200051, China;
| | - Binru Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Yunyan Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| | - Takashi Hirata
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan;
- Faculty of Rehabilitation, Shijonawate Gakuen University, Osaka 574-0011, Japan
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.Y.); (B.G.); (Y.X.); (X.X.); (Y.M.); (X.Q.); (Q.D.)
| |
Collapse
|
11
|
Chen-Liaw A, Aggarwala V, Mogno I, Haifer C, Li Z, Eggers J, Helmus D, Hart A, Wehkamp J, Lamousé-Smith ESN, Kerby RL, Rey FE, Colombel JF, Kamm MA, Olle B, Norman JM, Menon R, Watson AR, Crossette E, Terveer EM, Keller JJ, Borody TJ, Grinspan A, Paramsothy S, Kaakoush NO, Dubinsky MC, Faith JJ. Gut microbiota strain richness is species specific and affects engraftment. Nature 2025; 637:422-429. [PMID: 39604726 DOI: 10.1038/s41586-024-08242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
Despite the fundamental role of bacterial strain variation in gut microbiota function1-6, the number of unique strains of a species that can stably colonize the human intestine is still unknown for almost all species. Here we determine the strain richness (SR) of common gut species using thousands of sequenced bacterial isolates with paired metagenomes. We show that SR varies across species, is transferable by faecal microbiota transplantation, and is uniquely low in the gut compared with soil and lake environments. Active therapeutic administration of supraphysiologic numbers of strains per species increases recipient SR, which then converges back to the population average after dosing is ceased. Stratifying engraftment outcomes by high or low SR shows that SR predicts microbial addition or replacement in faecal transplants. Together, these results indicate that properties of the gut ecosystem govern the number of strains of each species colonizing the gut and thereby influence strain addition and replacement in faecal microbiota transplantation and defined live biotherapeutic products.
Collapse
Affiliation(s)
- Alice Chen-Liaw
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Varun Aggarwala
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Reliance Foundation Institution of Education and Research, Jio Institute, Navi Mumbai, India
| | - Ilaria Mogno
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Craig Haifer
- Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Zhihua Li
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Eggers
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew Helmus
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy Hart
- Janssen R&D, Spring House, PA, USA
| | | | | | - Robert L Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jean Frédéric Colombel
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael A Kamm
- Department of Gastroenterology and Medicine, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | | | | | | | | | | | - Elisabeth M Terveer
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gastroenterology, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas J Borody
- Centre for Digestive Diseases, Sydney, New South Wales, Australia
| | - Ari Grinspan
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sudarshan Paramsothy
- Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Gastroenterology and Hepatology, Macquarie University Hospital, Sydney, New South Wales, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marla C Dubinsky
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Tewari N, Dey P. Navigating commensal dysbiosis: Gastrointestinal host-pathogen interplay orchestrating opportunistic infections. Microbiol Res 2024; 286:127832. [PMID: 39013300 DOI: 10.1016/j.micres.2024.127832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
The gut commensals, which are usually symbiotic or non-harmful bacteria that live in the gastrointestinal tract, have a positive impact on the health of the host. This review, however, specifically discuss distinct conditions where commensals aid in the development of pathogenic opportunistic infections. We discuss that the categorization of gut bacteria as either pathogens or non-pathogens depends on certain circumstances, which are significantly affected by the tissue microenvironment and the dynamic host-microbe interaction. Under favorable circumstances, commensals have the ability to transform into opportunistic pathobionts by undergoing overgrowth. These conditions include changes in the host's physiology, simultaneous infection with other pathogens, effective utilization of nutrients, interactions between different species of bacteria, the formation of protective biofilms, genetic mutations that enhance pathogenicity, acquisition of genes associated with virulence, and the ability to avoid the host's immune response. These processes allow commensals to both initiate infections themselves and aid other pathogens in populating the host. This review highlights the need of having a detailed and sophisticated knowledge of the two-sided nature of gut commensals. Although commensals mostly promote health, they may also become harmful in certain changes in the environment or the body's functioning. This highlights the need of acknowledging the intricate equilibrium in interactions between hosts and microbes, which is crucial for preserving intestinal homeostasis and averting diseases. Finally, we also emphasize the further need of research to better understand and anticipate the behavior of gut commensals in different situations, since they play a crucial and varied role in human health and disease.
Collapse
Affiliation(s)
- Nisha Tewari
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
13
|
Xie C, Gao W, Liang X, Chye FY. Effects of garlic-derived fructan and oligofructose mixtures on intestinal health and constipation relief in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7476-7487. [PMID: 38742546 DOI: 10.1002/jsfa.13567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Garlic polysaccharides (GPs) constitute over 75% of the dry weight of garlic. They are characterized by fructan with a 2,1-β-d-Fruf backbone and 2,6-β-d-Fruf branches. Studies have suggested a role for GPs in regulating gut microbiota but whether they possess a comprehensive function in maintaining intestinal well-being and can serve as effective prebiotics remains unknown. To explore this, varied doses of GPs (1.25-5.0 g kg-1 body weight) and inulin (as a positive control) were administered to Kunming mice via gavage, and their effects on the intestinal epithelial, chemical, and biological barriers were assessed. A constipation model was also established using loperamide to investigate the potential effects of GPs on the relief of constipation. RESULTS Administration of GPs significantly upregulated expression of tight-junction proteins and mucins in Kunming mouse small-intestine tissue. Garlic polysaccharides elevated cecal butyric acid content, reduced the abundance of Desulfobacterota, and decreased the ratio of Firmicutes to Bacteroidetes (the F/B ratio). Garlic polysaccharides also promoted the growth of Bacteroides acidifaciens and Clostridium saccharogumia. Tax4Fun functional predictions suggested the potential of GPs to prevent human diseases, reducing the risk of insulin resistance, infectious diseases, and drug resistance. Garlic polysaccharides also exhibited a beneficial effect in alleviating loperamide-induced constipation symptoms by enhancing small intestinal transit, softening stool consistency, accelerating bowel movements, and promoting the release of excitatory neurotransmitters. CONCLUSIONS These findings highlight the important role of GPs in maintaining gut fitness by enhancing intestinal barrier function and peristalsis. Garlic polysaccharides are promising prebiotics, potentially contributing to overall intestinal well-being and health. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chanyuan Xie
- Food Security Research Laboratory, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
- Key Laboratory of Natural Products and Functional Food Development in Handan City, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Wei Gao
- Key Laboratory of Comprehensive Utilization of Plant Resources in Hebei Province, Chenguang Biotech Group Co., Ltd, Handan, China
- Chenguang Biotech Group Co., Ltd, Handan, China
| | - Xingdi Liang
- Key Laboratory of Comprehensive Utilization of Plant Resources in Hebei Province, Chenguang Biotech Group Co., Ltd, Handan, China
| | - Fook Yee Chye
- Food Security Research Laboratory, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
14
|
Osbelt L, Almási ÉDH, Wende M, Kienesberger S, Voltz A, Lesker TR, Muthukumarasamy U, Knischewski N, Nordmann E, Bielecka AA, Giralt-Zúñiga M, Kaganovitch E, Kühne C, Baier C, Pietsch M, Müsken M, Greweling-Pils MC, Breinbauer R, Flieger A, Schlüter D, Müller R, Erhardt M, Zechner EL, Strowig T. Klebsiella oxytoca inhibits Salmonella infection through multiple microbiota-context-dependent mechanisms. Nat Microbiol 2024; 9:1792-1811. [PMID: 38862602 PMCID: PMC11222139 DOI: 10.1038/s41564-024-01710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
The Klebsiella oxytoca species complex is part of the human microbiome, especially during infancy and childhood. K. oxytoca species complex strains can produce enterotoxins, namely, tilimycin and tilivalline, while also contributing to colonization resistance (CR). The relationship between these seemingly contradictory roles is not well understood. Here, by coupling ex vivo assays with CRISPR-mutagenesis and various mouse models, we show that K. oxytoca provides CR against Salmonella Typhimurium. In vitro, the antimicrobial activity against various Salmonella strains depended on tilimycin production and was induced by various simple carbohydrates. In vivo, CR against Salmonella depended on toxin production in germ-free mice, while it was largely toxin-independent in mice with residual microbiota. This was linked to the relative levels of toxin-inducing carbohydrates in vivo. Finally, dulcitol utilization was essential for toxin-independent CR in gnotobiotic mice. Together, this demonstrates that nutrient availability is key to both toxin-dependent and substrate-driven competition between K. oxytoca and Salmonella.
Collapse
Affiliation(s)
- Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Éva D H Almási
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Marie Wende
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Graz, Austria
| | - Alexander Voltz
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Nele Knischewski
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Elke Nordmann
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Agata A Bielecka
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - María Giralt-Zúñiga
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eugen Kaganovitch
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Caroline Kühne
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claas Baier
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Michael Pietsch
- Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Rolf Breinbauer
- BioTechMed-Graz, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Dirk Schlüter
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Marc Erhardt
- Institute for Biology-Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, BioTechMed-Graz, Graz, Austria
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- German Center for Infection Research (DZIF),Partner Site Hannover-Braunschweig, Braunschweig, Germany.
- Center for Individualized Infection Medicine, Hannover, Germany.
| |
Collapse
|
15
|
Gaspari S, Akkermans S, Akritidou T, Whelan R, Devine F, Van Impe JFM. Interference of gastrointestinal barriers with antibiotic susceptibility of foodborne pathogens: an in vitro case study of ciprofloxacin and tetracycline against Salmonella enterica and Listeria monocytogenes. Food Res Int 2024; 188:114491. [PMID: 38823842 DOI: 10.1016/j.foodres.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Minimum inhibitory concentrations (MIC) assays are often questioned for their representativeness. Especially when foodborne pathogens are tested, it is of crucial importance to also consider parameters of the human digestive system. Hence, the current study aimed to assess the inhibitory capacity of two antibiotics, ciprofloxacin and tetracycline, against Salmonella enterica and Listeria monocytogenes, under representative environmental conditions. More specifically, aspects of the harsh environment of the human gastrointestinal tract (GIT) were gradually added to the experimental conditions starting from simple aerobic lab conditions into an in vitro simulation of the GIT. In this way, the effects of parameters including the anoxic environment, physicochemical conditions of the GIT (low gastric pH, digestive enzymes, bile acids) and the gut microbiota were evaluated. The latter was simulated by including a representative consortium of selected gut bacteria species. In this study, the MIC of the two antibiotics against the relevant foodborne pathogens were established, under the previously mentioned environmental conditions. The results of S. enterica highlighted the importance of the anaerobic environment when conducting such studies, since the pathogen thrived under such conditions. Inclusion of physicochemical barriers led to exactly opposite results for S. enterica and L. monocytogenes since the former became more susceptible to ciprofloxacin while the latter showed lower susceptibility towards tetracycline. Finally, the inclusion of gut bacteria had a bactericidal effect against L. monocytogenes even in the absence of antibiotics, while gut bacteria protected S. enterica from the effect of ciprofloxacin.
Collapse
Affiliation(s)
- Sotiria Gaspari
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
| | - Simen Akkermans
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
| | - Theodora Akritidou
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
| | - Rory Whelan
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium; School of Biological, Health and Sport Sciences, Technological University Dublin, Ireland
| | - Faye Devine
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium; School of Biological, Health and Sport Sciences, Technological University Dublin, Ireland
| | - Jan F M Van Impe
- BioTeC(+), Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium.
| |
Collapse
|
16
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
17
|
Jin T, Zhang Y, Yang Y, Teng Y, Yan C, Shan Z, Meng J, Xia X. Intestinal linoleic acid contributes to the protective effects of Akkermansia muciniphila against Listeria monocytogenes infection in mice. IMETA 2024; 3:e196. [PMID: 38898984 PMCID: PMC11183177 DOI: 10.1002/imt2.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/21/2024]
Abstract
Akkermansia muciniphila pretreatment mitigated Listeria monocytogenes infection in mice. A. muciniphila improved gut microbiota disturbed by L. monocytogenes infection and significantly increased the level of intestinal linoleic acid in mice. Linoleic acid strengthened the intestinal epithelial barrier and reduced pathogen translocation partly by regulating NF-κB/MLCK pathway in a GPR40-dependent manner.
Collapse
Affiliation(s)
- Tong Jin
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- Department of Food Safety, College of Food Science and EngineeringNorthwest A&F UniversityXianyangChina
| | - Yingying Zhang
- Department of Food Safety, College of Food Science and EngineeringNorthwest A&F UniversityXianyangChina
| | - Yanpeng Yang
- Department of Food Safety, College of Food Science and EngineeringNorthwest A&F UniversityXianyangChina
| | - Yue Teng
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Chunhong Yan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Zhongguo Shan
- Department of Food Safety, College of Food Science and EngineeringNorthwest A&F UniversityXianyangChina
| | - Jianghong Meng
- Department of Food Science and NutritionUniversity of MarylandCollege ParkMarylandUSA
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
- Department of Food Safety, College of Food Science and EngineeringNorthwest A&F UniversityXianyangChina
| |
Collapse
|
18
|
Evans TJ, Siratana V, Venkatesan T, Davong V, Thanadabouth K, Ashley EA. Case Report: A case of disseminated cutaneous listeriosis following appendicitis from Lao PDR. Wellcome Open Res 2024; 8:504. [PMID: 38434737 PMCID: PMC10905163 DOI: 10.12688/wellcomeopenres.20210.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 03/05/2024] Open
Abstract
Background Listeria monocytogenes is a food-borne pathogen that is a rare cause of bacteraemia and meningitis in immunosuppressed patients, and carries a high mortality rate. Cutaneous manifestations of listeriosis are rare, and are usually associated with direct inoculation of the skin. Case A 41-year-old woman who initially presented to a hospital in Laos with appendicitis was diagnosed with disseminated listeriosis with cutaneous involvement. Intra-abdominal pathology probably contributed to bacterial bloodstream invasion. Initial treatment with meropenem was switched to ampicillin based on best practice, however our patient died 5 days after diagnosis. Conclusions This case highlights listeriosis as an important cause of mortality in low- and middle-income countries, exacerbated by poor availability of laboratory diagnostics and ineffective empiric antibiotic regimens. Improvements in food hygiene, surveillance, and increased laboratory capacity are important strategies to reduce rates of infection and clinical outcomes.
Collapse
Affiliation(s)
- Terry John Evans
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Vannavong Siratana
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Timothy Venkatesan
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- London School of Hygiene and Tropical Medicine, London, UK
| | - Viengmon Davong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | | | - Elizabeth A. Ashley
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| |
Collapse
|
19
|
Chen Y, Sun H, Luo Z, Mei Y, Xu Z, Tan J, Xie Y, Li M, Xia J, Yang B, Su B. Crosstalk between CD8 + T cells and mesenchymal stromal cells in intestine homeostasis and immunity. Adv Immunol 2024; 162:23-58. [PMID: 38866438 DOI: 10.1016/bs.ai.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The intestine represents the most complex cellular network in the whole body. It is constantly faced with multiple types of immunostimulatory agents encompassing from food antigen, gut microbiome, metabolic waste products, and dead cell debris. Within the intestine, most T cells are found in three primary compartments: the organized gut-associated lymphoid tissue, the lamina propria, and the epithelium. The well-orchestrated epithelial-immune-microbial interaction is critically important for the precise immune response. The main role of intestinal mesenchymal stromal cells is to support a structural framework within the gut wall. However, recent evidence from stromal cell studies indicates that they also possess significant immunomodulatory functions, such as maintaining intestinal tolerance via the expression of PDL1/2 and MHC-II molecules, and promoting the development of CD103+ dendritic cells, and IgA+ plasma cells, thereby enhancing intestinal homeostasis. In this review, we will summarize the current understanding of CD8+ T cells and stromal cells alongside the intestinal tract and discuss the reciprocal interactions between T subsets and mesenchymal stromal cell populations. We will focus on how the tissue residency, migration, and function of CD8+ T cells could be potentially regulated by mesenchymal stromal cell populations and explore the molecular mediators, such as TGF-β, IL-33, and MHC-II molecules that might influence these processes. Finally, we discuss the potential pathophysiological impact of such interaction in intestine hemostasis as well as diseases of inflammation, infection, and malignancies.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengnan Luo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisong Mei
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengda Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Xia
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beichun Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
20
|
Guo L, Liu Q, Yin X. Gut Microbiota Protects Listeria monocytogenes-Infected Mice by Reducing the Inflammatory Cytokines Storm and Cell Apoptosis. Foodborne Pathog Dis 2024; 21:288-297. [PMID: 38237167 DOI: 10.1089/fpd.2023.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Gut microbiota (GM) has been proven to resist pathogenic infection through nutritional competition, colonization resistance and promotion of the host immune response. However, in clinical practice, GM is mainly used in intestinal diseases, such as Clostridium difficile infection, and there are few reports on its application in the treatment of pathogenic bacterial infections. In this study, GM from healthy mice was transplanted into mice infected with Listeria monocytogenes using fecal microbiota transplantation (FMT) and the effects were observed. We found that GM from healthy mice could reduce the mortality of infected mice and decrease the counts of L. monocytogenes in their liver and spleen. In addition, FMT inhibited the expression of inflammatory factors in the liver and spleen of infected mice. In vitro cell experiments revealed that GM can reduce the count of L. monocytogenes invading Caco-2 cells and inhibit the L. monocytogenes-caused apoptosis. These results indicate that GM can be used to protect mice infected with L. monocytogenes by eliminating the amount of L. monocytogenes in the host and inhibiting the overexpression of inflammatory factors. Hence, this method can potentially replace antibiotics in the treatment of L. monocytogenes infection.
Collapse
Affiliation(s)
- Liang Guo
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Shandong, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xianhong Yin
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Shandong, China
| |
Collapse
|
21
|
Chevée V, Hullahalli K, Dailey KG, Güereca L, Zhang C, Waldor MK, Portnoy DA. Temporal and spatial dynamics of Listeria monocytogenes central nervous system infection in mice. Proc Natl Acad Sci U S A 2024; 121:e2320311121. [PMID: 38635627 PMCID: PMC11046682 DOI: 10.1073/pnas.2320311121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 04/20/2024] Open
Abstract
Listeria monocytogenes is a bacterial pathogen that can cause life-threatening central nervous system (CNS) infections. While mechanisms by which L. monocytogenes and other pathogens traffic to the brain have been studied, a quantitative understanding of the underlying dynamics of colonization and replication within the brain is still lacking. In this study, we used barcoded L. monocytogenes to quantify the bottlenecks and dissemination patterns that lead to cerebral infection. Following intravenous (IV) inoculation, multiple independent invasion events seeded all parts of the CNS from the blood, however, only one clone usually became dominant in the brain. Sequential IV inoculations and intracranial inoculations suggested that clones that had a temporal advantage (i.e., seeded the CNS first), rather than a spatial advantage (i.e., invaded a particular brain region), were the main drivers of clonal dominance. In a foodborne model of cerebral infection with immunocompromised mice, rare invasion events instead led to a highly infected yet monoclonal CNS. This restrictive bottleneck likely arose from pathogen transit into the blood, rather than directly from the blood to the brain. Collectively, our findings provide a detailed quantitative understanding of the L. monocytogenes population dynamics that lead to CNS infection and a framework for studying the dynamics of other cerebral infections.
Collapse
Affiliation(s)
- Victoria Chevée
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Katherine G. Dailey
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Leslie Güereca
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Chenyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- HHMI, Bethesda, MD20815
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| |
Collapse
|
22
|
Daniel BBJ, Steiger Y, Sintsova A, Field CM, Nguyen BD, Schubert C, Cherrak Y, Sunagawa S, Hardt WD, Vorholt JA. Assessing microbiome population dynamics using wild-type isogenic standardized hybrid (WISH)-tags. Nat Microbiol 2024; 9:1103-1116. [PMID: 38503975 PMCID: PMC10994841 DOI: 10.1038/s41564-024-01634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
Microbiomes feature recurrent compositional structures under given environmental conditions. However, these patterns may conceal diverse underlying population dynamics that require intrastrain resolution. Here we developed a genomic tagging system, termed wild-type isogenic standardized hybrid (WISH)-tags, that can be combined with quantitative polymerase chain reaction and next-generation sequencing for microbial strain enumeration. We experimentally validated the performance of 62 tags and showed that they can be differentiated with high precision. WISH-tags were introduced into model and non-model bacterial members of the mouse and plant microbiota. Intrastrain priority effects were tested using one species of isogenic barcoded bacteria in the murine gut and the Arabidopsis phyllosphere, both with and without microbiota context. We observed colonization resistance against late-arriving strains of Salmonella Typhimurium in the mouse gut, whereas the phyllosphere accommodated Sphingomonas latecomers in a manner proportional to their presence at the late inoculation timepoint. This demonstrates that WISH-tags are a resource for deciphering population dynamics underlying microbiome assembly across biological systems.
Collapse
Affiliation(s)
| | - Yves Steiger
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Guo L, Liu Q, Yin X. Clostridiales in the Gut Against Listeria monocytogenes Infection Through Growth Inhibition. Foodborne Pathog Dis 2024; 21:248-256. [PMID: 38150235 DOI: 10.1089/fpd.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Listeria monocytogenes (Lm) mainly infect pregnant women, children, the elderly, and other populations with low immunity causing septicemia and meningitis. Healthy people can tolerate higher doses of Lm and only cause gastrointestinal symptoms such as abdominal pain and diarrhea after infection. Compared to the above population, healthy people have a richer and more diverse gut microbiota. In this study, we show that the microbiota in the large intestine and the feces of mice can significantly inhibit the growth of Lm compared to the microbiota in the small intestine. Bacteria larger than 1 μm in the gut microbiota play an important role in inhibiting Lm growth. 16s rRNA sequencing results show that these bacteria are mainly composed of Clostridiales under the phylum Firmicutes, including Ruminiclostridium, Butyricicoccus, Lachnoclostridium, Roseburia, Coprooccus, and Blautia. Thus, we demonstrate that there are some potential functional bacteria in the gut microbiota that can increase resistance against Lm.
Collapse
Affiliation(s)
- Liang Guo
- Zaozhuang University, Shandong, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | | |
Collapse
|
24
|
Keane JM, Cazzaniga M, Gahan CG. Akkermansia muciniphila in infectious disease: A new target for this next-generation probiotic? Sci Prog 2024; 107:368504241231159. [PMID: 38490164 PMCID: PMC10943722 DOI: 10.1177/00368504241231159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The common gastrointestinal commensal Akkermansia muciniphila is a mucin-degrading bacterium that is greatly reduced in individuals consuming a high-fat diet. Increasing evidence from a variety of clinical and pre-clinical studies suggests that oral supplementation with Akkermansia can improve metabolic health and moderate systemic inflammation. We and others have demonstrated a role for Akkermansia administration in protection against infectious disease and the outcome from sepsis. Very recent studies have indicated the molecular mechanisms by which A. muciniphila may interact with the host to influence systemic immune-regulation and control of microbial pathogenesis. Here we consider recent studies which demonstrate the efficacy of this potential next-generation probiotic in animal models of Salmonella Typhimurium, Listeria monocytogenes and Clostridioides difficile as well as influenza virus and phlebovirus. The potential mechanisms by which A. muciniphila may influence local and systemic immune responses are discussed.
Collapse
Affiliation(s)
- Jonathan M. Keane
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Monica Cazzaniga
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cormac G.M. Gahan
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Ghani R, Chrysostomou D, Roberts LA, Pandiaraja M, Marchesi JR, Mullish BH. Faecal (or intestinal) microbiota transplant: a tool for repairing the gut microbiome. Gut Microbes 2024; 16:2423026. [PMID: 39499189 PMCID: PMC11540080 DOI: 10.1080/19490976.2024.2423026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024] Open
Abstract
Faecal/intestinal microbiota transplant (FMT/IMT) is an efficacious treatment option for recurrent Clostridioides difficile infection, which has prompted substantial interest in FMT's potential role in the management of a much broader range of diseases associated with the gut microbiome. Despite its promise, the success rates of FMT in these other settings have been variable. This review critically evaluates the current evidence on the impact of clinical, biological, and procedural factors upon the therapeutic efficacy of FMT, and identifies areas that remain nebulous. Due to some of these factors, the optimal therapeutic approach remains unclear; for example, the preferred timing of FMT administration in a heavily antibiotic-exposed hematopoietic cell transplant recipient is not standardized, with arguments that can be made in alternate directions. We explore how these factors may impact upon more informed selection of donors, potential matching of donors to recipients, and aspects of clinical care of FMT recipients. This includes consideration of how gut microbiome composition and functionality may strategically inform donor selection criteria. Furthermore, we review how the most productive advances within the FMT space are those where clinical and translational outcomes are assessed together, and where this model has been used productively in recent years to better understand the contribution of the gut microbiome to human disease, and start the process toward development of more targeted microbiome therapeutics.
Collapse
Affiliation(s)
- Rohma Ghani
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Infectious Diseases, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Despoina Chrysostomou
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Lauren A Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Madhumitha Pandiaraja
- Department of Gastroenterology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
26
|
Shayya NW, Bandick R, Busmann LV, Mousavi S, Bereswill S, Heimesaat MM. Metabolomic signatures of intestinal colonization resistance against Campylobacter jejuni in mice. Front Microbiol 2023; 14:1331114. [PMID: 38164399 PMCID: PMC10757985 DOI: 10.3389/fmicb.2023.1331114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Campylobacter jejuni stands out as one of the leading causes of bacterial enteritis. In contrast to humans, specific pathogen-free (SPF) laboratory mice display strict intestinal colonization resistance (CR) against C. jejuni, orchestrated by the specific murine intestinal microbiota, as shown by fecal microbiota transplantation (FMT) earlier. Methods Murine infection models, comprising SPF, SAB, hma, and mma mice were employed. FMT and microbiota depletion were confirmed by culture and culture-independent analyses. Targeted metabolome analyses of fecal samples provided insights into the associated metabolomic signatures. Results In comparison to hma mice, the murine intestinal microbiota of mma and SPF mice (with CR against C. jejuni) contained significantly elevated numbers of lactobacilli, and Mouse Intestinal Bacteroides, whereas numbers of enterobacteria, enterococci, and Clostridium coccoides group were reduced. Targeted metabolome analysis revealed that fecal samples from mice with CR contained increased levels of secondary bile acids and fatty acids with known antimicrobial activities, but reduced concentrations of amino acids essential for C. jejuni growth as compared to control animals without CR. Discussion The findings highlight the role of microbiota-mediated nutrient competition and antibacterial activities of intestinal metabolites in driving murine CR against C. jejuni. The study underscores the complex dynamics of host-microbiota-pathogen interactions and sets the stage for further investigations into the mechanisms driving CR against enteric infections.
Collapse
|
27
|
Morgan AL, Woolhouse ME, Wagenaar JA, van Bunnik BA. Modelling the effects of antibiotic usage in livestock on human salmonellosis. One Health 2023; 17:100639. [PMID: 38024252 PMCID: PMC10665166 DOI: 10.1016/j.onehlt.2023.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Antibiotic usage in livestock has been suggested as a driver of antimicrobial resistance in human and livestock populations. This has contributed to the implementation of stewardship programs to curtail usage of antibiotics in livestock. However, the consequences of antibiotic curtailment in livestock on human health are poorly understood. There is the potential for increases in the carriage of pathogens such as Salmonella spp. in livestock, and subsequent increases in human foodborne disease. We use a mathematical model fitted to four case studies, ampicillin and tetracycline usage in fattening pig and broiler poultry populations, to explore the impact of curtailing antibiotic usage in livestock on salmonellosis in humans. Increases in the daily incidence of salmonellosis and a decrease in the proportion of resistant salmonellosis were identified following curtailment of antibiotic usage in livestock. The extent of these increases in human foodborne disease ranged from negligible, to controllable through interventions to target the farm-to-fork pathway. This study provides a motivating example of one plausible scenario following curtailment of antibiotic usage in livestock and suggests that a focus on ensuring good farm-to-fork hygiene and livestock biosecurity is sufficient to mitigate the negative human health consequences of antibiotic stewardship in livestock populations.
Collapse
Affiliation(s)
- Alex L.K. Morgan
- Centre for Immunity, Infection & Evolution and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Mark E.J. Woolhouse
- Centre for Immunity, Infection & Evolution and School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jaap A. Wagenaar
- Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Wageningen Bioveterinary Research, Lelystad, Netherlands
- WHO Collaborating Center for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/WOAH Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | | |
Collapse
|
28
|
Abdelsalam NA, Hegazy SM, Aziz RK. The curious case of Prevotella copri. Gut Microbes 2023; 15:2249152. [PMID: 37655441 PMCID: PMC10478744 DOI: 10.1080/19490976.2023.2249152] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Prevotella copri is an abundant member of the human gastrointestinal microbiome, whose relative abundance has curiously been associated with positive and negative impacts on diseases, such as Parkinson's disease and rheumatoid arthritis. Yet, the verdict is still out on the definitive role of P. copri in human health, and on the effect of different diets on its relative abundance in the gut microbiome. The puzzling discrepancies among P. copri studies have only recently been attributed to the diversity of its strains, which substantially differ in their encoded metabolic patterns from the commonly used reference strain. However, such strain differences cannot be resolved by common 16S rRNA amplicon profiling methods. Here, we scrutinize P. copri, its versatile metabolic potential, and the hypotheses behind the conflicting observations on its association with diet and human health. We also provide suggestions for designing studies and bioinformatics pipelines to better research P. copri.
Collapse
Affiliation(s)
| | - Shaimaa M. Hegazy
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ramy K. Aziz
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| |
Collapse
|
29
|
Hugon AM, Deblois CL, Simmons HA, Mejia A, Schotzo ML, Czuprynski CJ, Suen G, Golos TG. Listeria monocytogenes infection in pregnant macaques alters the maternal gut microbiome†. Biol Reprod 2023; 109:618-634. [PMID: 37665249 PMCID: PMC10651077 DOI: 10.1093/biolre/ioad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVES The bacterium Listeria monocytogenes (Lm) is associated with adverse pregnancy outcomes. Infection occurs through consumption of contaminated food that is disseminated to the maternal-fetal interface. The influence on the gastrointestinal microbiome during Lm infection remains unexplored in pregnancy. The objective of this study was to determine the impact of listeriosis on the gut microbiota of pregnant macaques. METHODS A non-human primate model of listeriosis in pregnancy has been previously described. Both pregnant and non-pregnant cynomolgus macaques were inoculated with Lm and bacteremia and fecal shedding were monitored for 14 days. Non-pregnant animal tissues were collected at necropsy to determine bacterial burden, and fecal samples from both pregnant and non-pregnant animals were evaluated by 16S rRNA next-generation sequencing. RESULTS Unlike pregnant macaques, non-pregnant macaques did not exhibit bacteremia, fecal shedding, or tissue colonization by Lm. Dispersion of Lm during pregnancy was associated with a significant decrease in alpha diversity of the host gut microbiome, compared to non-pregnant counterparts. The combined effects of pregnancy and listeriosis were associated with a significant loss in microbial richness, although there were increases in some genera and decreases in others. CONCLUSIONS Although pregnancy alone is not associated with gut microbiome disruption, we observed dysbiosis with listeriosis during pregnancy. The macaque model may provide an understanding of the roles that pregnancy and the gut microbiota play in the ability of Lm to establish intestinal infection and disseminate throughout the host, thereby contributing to adverse pregnancy outcomes and risk to the developing fetus.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Courtney L Deblois
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Michele L Schotzo
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Charles J Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
30
|
Fiedler AW, Gundersen MS, Vo TP, Almaas E, Vadstein O, Bakke I. Phage therapy minimally affects the water microbiota in an Atlantic salmon (Salmo salar) rearing system while still preventing infection. Sci Rep 2023; 13:19145. [PMID: 37932331 PMCID: PMC10628140 DOI: 10.1038/s41598-023-44987-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023] Open
Abstract
Excessive usage of antibiotics threatens the bacterial diversity in the microbiota of animals. An alternative to antibiotics that has been suggested to not disturb the microbiota is (bacterio)phage therapy. In this study, we challenged germ-free and microbially colonized yolk sac fry of Atlantic salmon with Flavobacterium columnare and observed that the mere presence of a microbiota protected the fish against lethal infection. We then investigated the effect of phage- or oxytetracycline treatment on fish survival and rearing water bacterial community characteristics using 16S rRNA gene amplicon sequencing. Phage treatment led to an increased survival of F. columnare-challenged fish and reduced the relative amounts of the pathogen in the water microbiota. In the absence of F. columnare, phage treatment did not affect the composition or the α-diversity of the rearing water microbiota. In the presence of the phage's host, phage treatment induced minor changes to the bacterial community composition, without affecting the α-diversity. Surprisingly, oxytetracycline treatment had no observable effect on the water microbiota and did not reduce the relative abundance of F. columnare in the water. In conclusion, we showed that phage treatment prevents mortality while not negatively affecting the rearing water microbiota, thus suggesting that phage treatment may be a suitable alternative to antibiotics. We also demonstrated a protective effect of the microbiota in Atlantic salmon yolk sac fry.
Collapse
Affiliation(s)
- Alexander W Fiedler
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Madeleine S Gundersen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Toan P Vo
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Ingrid Bakke
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| |
Collapse
|
31
|
Dey P, Ray Chaudhuri S. The opportunistic nature of gut commensal microbiota. Crit Rev Microbiol 2023; 49:739-763. [PMID: 36256871 DOI: 10.1080/1040841x.2022.2133987] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
The abundance of gut commensals has historically been associated with health-promoting effects despite the fact that the definition of good or bad microbiota remains condition-specific. The beneficial or pathogenic nature of microbiota is generally dictated by the dimensions of host-microbiota and microbe-microbe interactions. With the increasing popularity of gut microbiota in human health and disease, emerging evidence suggests opportunistic infections promoted by those gut bacteria that are generally considered beneficial. Therefore, the current review deals with the opportunistic nature of the gut commensals and aims to summarise the concepts behind the occasional commensal-to-pathogenic transformation of the gut microbes. Specifically, relevant clinical and experimental studies have been discussed on the overgrowth and bacteraemia caused by commensals. Three key processes and their underlying mechanisms have been summarised to be responsible for the opportunistic nature of commensals, viz. improved colonisation fitness that is dictated by commensal-pathogen interactions and availability of preferred nutrients; pathoadaptive mutations that can trigger the commensal-to-pathogen transformation; and evasion of host immune response as a survival and proliferation strategy of the microbes. Collectively, this review provides an updated concept summary on the underlying mechanisms of disease causative events driven by gut commensal bacteria.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
32
|
Ravindhiran R, Sivarajan K, Sekar JN, Murugesan R, Dhandapani K. Listeria monocytogenes an Emerging Pathogen: a Comprehensive Overview on Listeriosis, Virulence Determinants, Detection, and Anti-Listerial Interventions. MICROBIAL ECOLOGY 2023; 86:2231-2251. [PMID: 37479828 DOI: 10.1007/s00248-023-02269-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Listeria monocytogenes, the third most deleterious zoonotic pathogen, is a major causative agent of animal and human listeriosis, an infection related to the consumption of contaminated food products. Even though, this pathogen has been responsible for the outbreaks of foodborne infections in the early 1980s, the major outbreaks have been reported during the past two decades. Listeriosis infection in the host is a rare but life-threatening disease with major public health and economic implications. Extensive reports on listeriosis outbreaks are associated with milk and milk products, meat and meat products, and fresh produce. This bacterium can adapt to any environmental and stress conditions, making it a prime causative agent for major foodborne diseases. The pathogen could survive an antibiotic treatment and persist in the host cell, thereby escaping the standard diagnostic practices. The current review strives to provide concise information on the epidemiology, serotypes, and pathogenesis of the L. monocytogenes to decipher the knowledge on the endurance of the pathogen inside the host and food products as a vehicle for Listeria contaminations. In addition, various detection methods for Listeria species from food samples and frontline regimens of L. monocytogenes treatment have also been discussed.
Collapse
Affiliation(s)
- Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Jothi Nayaki Sekar
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India.
| |
Collapse
|
33
|
McCuaig B, Goto Y. Immunostimulating Commensal Bacteria and Their Potential Use as Therapeutics. Int J Mol Sci 2023; 24:15644. [PMID: 37958628 PMCID: PMC10647581 DOI: 10.3390/ijms242115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The gut microbiome is intimately intertwined with the host immune system, having effects on the systemic immune system. Dysbiosis of the gut microbiome has been linked not only to gastrointestinal disorders but also conditions of the skin, lungs, and brain. Commensal bacteria can affect the immune status of the host through a stimulation of the innate immune system, training of the adaptive immune system, and competitive exclusion of pathogens. Commensal bacteria improve immune response through the production of immunomodulating compounds such as microbe-associated molecular patterns (MAMPs), short-chain fatty acids (SCFAs), and secondary bile acids. The microbiome, especially when in dysbiosis, is plastic and can be manipulated through the introduction of beneficial bacteria or the adjustment of nutrients to stimulate the expansion of beneficial taxa. The complex nature of the gastrointestinal tract (GIT) ecosystem complicates the use of these methods, as similar treatments have various results in individuals with different residential microbiomes and differential health statuses. A more complete understanding of the interaction between commensal species, host genetics, and the host immune system is needed for effective microbiome interventions to be developed and implemented in a clinical setting.
Collapse
Affiliation(s)
- Bonita McCuaig
- Project for Host-Microbial Interactions in Symbiosis and Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Yoshiyuki Goto
- Project for Host-Microbial Interactions in Symbiosis and Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- Division of Pandemic and Post-Disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8673, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8673, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
34
|
Cho J, Alexander KL, Ferrell JL, Johnson LA, Estus S, D’Orazio SEF. Apolipoprotein E genotype affects innate susceptibility to Listeria monocytogenes infection in aged male mice. Infect Immun 2023; 91:e0025123. [PMID: 37594272 PMCID: PMC10501219 DOI: 10.1128/iai.00251-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023] Open
Abstract
Apolipoprotein E (ApoE) is a lipid transport protein that is hypothesized to suppress proinflammatory cytokine production, particularly after stimulation with Toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). Studies using transgenic ApoE human replacement mice (APOE) expressing one of three different allelic variants suggest that there is a hierarchy in terms of responsiveness to proinflammatory stimuli such as APOE4/E4 > APOE3/E3 > APOE2/E2. In this study, we test the hypothesis that APOE genotype can also predict susceptibility to infection with the facultative intracellular gram-positive bacterium Listeria monocytogenes. We found that bone-marrow-derived macrophages isolated from aged APOE4/E4 mice expressed elevated levels of nitric oxide synthase 2 and were highly resistant to in vitro infection with L. monocytogenes compared to APOE3/E3 and APOE2/E2 mice. However, we did not find statistically significant differences in cytokine or chemokine output from either macrophages or whole splenocytes isolated from APOE2/E2, APOE3/E3, or APOE4/E4 mice following L. monocytogenes infection. In vivo, overall susceptibility to foodborne listeriosis also did not differ by APOE genotype in either young (2 mo old) or aged (15 mo old) C57BL/6 mice. However, we observed a sex-dependent susceptibility to infection in aged APOE2/E2 male mice and a sex-dependent resistance to infection in aged APOE4/E4 male mice that was not present in female mice. Thus, these results suggest that APOE genotype does not play an important role in innate resistance to infection with L. monocytogenes but may be linked to sex-dependent changes that occur during immune senescence.
Collapse
Affiliation(s)
- Jooyoung Cho
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Katie L. Alexander
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jessica L. Ferrell
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Lance A. Johnson
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Steven Estus
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
35
|
Charlier C, Noel C, Hafner L, Moura A, Mathiaud C, Pitsch A, Meziane C, Jolly-Sanchez L, de Pontfarcy A, Diamantis S, Bracq-Dieye H, Disson O, Thouvenot P, Valès G, Tessaud-Rita N, Tourdjman M, Leclercq A, Lecuit M. Fatal neonatal listeriosis following L. monocytogenes horizontal transmission highlights neonatal susceptibility to orally acquired listeriosis. Cell Rep Med 2023; 4:101094. [PMID: 37385252 PMCID: PMC10394164 DOI: 10.1016/j.xcrm.2023.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/18/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023]
Abstract
We report a case of fulminant fatal neonatal listeriosis due to horizontal transmission of Listeria monocytogenes (Lm) in a neonatal double room. Genomic analyses reveal a close genetic relationship between clinical isolates, supporting cross-contamination. Oral inoculation experiments in adult and neonatal mice show that neonates are susceptible to a low Lm inoculum and that this susceptibility results from the immaturity of the neonatal gut microbiota. Infected neonates should therefore be isolated for as long as they shed Lm in their feces to avoid horizontal transmission and its dire consequences.
Collapse
Affiliation(s)
- Caroline Charlier
- Institut Pasteur, Université Paris Cité, INSERM U1117, Biology of Infection Unit, 75015 Paris, France; Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France; Cochin University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75015 Paris, France.
| | - Coralie Noel
- Groupe Hospitalier Sud Ile-de-France, 77000 Melun, France
| | - Lukas Hafner
- Institut Pasteur, Université Paris Cité, INSERM U1117, Biology of Infection Unit, 75015 Paris, France
| | - Alexandra Moura
- Institut Pasteur, Université Paris Cité, INSERM U1117, Biology of Infection Unit, 75015 Paris, France; Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France
| | | | - Aurélia Pitsch
- Groupe Hospitalier Sud Ile-de-France, 77000 Melun, France
| | - Chakib Meziane
- Groupe Hospitalier Sud Ile-de-France, 77000 Melun, France
| | | | | | | | - Hélène Bracq-Dieye
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France
| | - Olivier Disson
- Institut Pasteur, Université Paris Cité, INSERM U1117, Biology of Infection Unit, 75015 Paris, France
| | - Pierre Thouvenot
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France
| | - Guillaume Valès
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France
| | - Nathalie Tessaud-Rita
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France
| | | | - Alexandre Leclercq
- Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université Paris Cité, INSERM U1117, Biology of Infection Unit, 75015 Paris, France; Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, 75015 Paris, France; Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75015 Paris, France.
| |
Collapse
|
36
|
Strain R, Tran TT, Mills S, Stanton C, Ross RP. A pilot study of dietary fibres on pathogen growth in an ex vivo colonic model reveals their potential ability to limit vancomycin-resistant Enterococcus expansion. MICROBIOME RESEARCH REPORTS 2023; 2:22. [PMID: 38046819 PMCID: PMC10688796 DOI: 10.20517/mrr.2022.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 12/05/2023]
Abstract
Aim: Dietary fibre is important for shaping gut microbiota. The aim of this pilot study was to investigate the impact of dietary fibres on pathogen performance in the presence of gut microbiota. Methods: In an ex vivo gut model, pooled faecal samples were spiked with a cocktail of representative gastrointestinal pathogens and fermented with yeast β-glucan for 24 hours, after which 16S rRNA amplicon sequencing and short-chain and branched-chain fatty acid (SCFA and BCFA) analyses were performed. In addition, oat β-glucan, arabinoxylan, yeast β-glucan, and galactooligosaccharides were each tested against individual representative pathogens and pathogen growth was assessed via qPCR. Glucose served as a control carbon source. Results: Based on 16S rRNA amplicon sequencing, yeast β-glucan selected for higher proportions of Bacteroides (P = 0.0005, ~6 fold) and Clostridia (P = 0.005, ~3.6 fold) while species of Escherichia/Shigella (P = 0.021, ~2.8 fold) and Lactobacillus (P = 0.007, ~ 15.7-fold) were higher in glucose. Pathogen relative abundance did not differ between glucose and yeast β-glucan. In the absence of pathogens, higher production of BCFAs (P = 0.002) and SCFAs (P = 0.002) fatty acids was observed for fibre group(s). For individual pathogens, yeast β-glucan increased growth of Escherichia coli, Salmonella typhimurium, and Listeria monocytogenes (P < 0.05), arabinoxylan increased S. typhimurium (P < 0.05). Tested fibres decreased vancomycin-resistant Enterococcus faecium (P < 0.05), with yeast β-glucan causing a 1-log reduction (P < 0.01), while galactooligosaccharides decreased L. monocytogenes (P < 0.05). Conclusion: Tested fibres differentially influenced the growth of pathogens, but yeast β-glucan could represent a dietary strategy to help limit vancomycin-resistant enterococci (VRE) expansion in the gut.
Collapse
Affiliation(s)
- Ronan Strain
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Tam T.T. Tran
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Susan Mills
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Catherine Stanton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
| |
Collapse
|
37
|
Tsigalou C, Paraschaki A, Bragazzi NL, Aftzoglou K, Stavropoulou E, Tsakris Z, Vradelis S, Bezirtzoglou E. Alterations of gut microbiome following gastrointestinal surgical procedures and their potential complications. Front Cell Infect Microbiol 2023; 13:1191126. [PMID: 37333847 PMCID: PMC10272562 DOI: 10.3389/fcimb.2023.1191126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Intestinal microorganisms play a crucial role in shaping the host immunity and maintaining homeostasis. Nevertheless, alterations in gut bacterial composition may occur and these alterations have been linked with the pathogenesis of several diseases. In surgical practice, studies revealed that the microbiome of patients undergoing surgery changes and several post-operative complications seem to be associated with the gut microbiota composition. In this review, we aim to provide an overview of gut microbiota (GM) in surgical disease. We refer to several studies which describe alterations of GM in patients undergoing different types of surgery, we focus on the impacts of peri-operative interventions on GM and the role of GM in development of post-operative complications, such as anastomotic leak. The review aims to enhance comprehension regarding the correlation between GM and surgical procedures based in the current knowledge. However, preoperative and postoperative synthesis of GM needs to be further examined in future studies, so that GM-targeted measures could be assessed and the different surgery complications could be reduced.
Collapse
Affiliation(s)
- Christina Tsigalou
- Laboratory of Microbiology, Faculty of Medicine, Democritus University of Thrace, Dragana Campus, Alexandroupolis, Greece
| | - Afroditi Paraschaki
- Department of Biopathology/Microbiology, Faculty of Medicine, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - K. Aftzoglou
- Medical School, Comenius University, Bratislava, Slovakia
| | - Elisavet Stavropoulou
- Department of Infectious Diseases, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon, Lausanne, Switzerland
| | - Z. Tsakris
- Laboratory of Microbiology, Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - S. Vradelis
- Department of Gastrenterology, Faculty of Medicine, Democritus University of Thrace, Dragana Campus, Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Dragana, Alexandroupolis, Greece
| |
Collapse
|
38
|
Martin AJ, Serebrinsky-Duek K, Riquelme E, Saa PA, Garrido D. Microbial interactions and the homeostasis of the gut microbiome: the role of Bifidobacterium. MICROBIOME RESEARCH REPORTS 2023; 2:17. [PMID: 38046822 PMCID: PMC10688804 DOI: 10.20517/mrr.2023.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 12/05/2023]
Abstract
The human gut is home to trillions of microorganisms that influence several aspects of our health. This dense microbial community targets almost all dietary polysaccharides and releases multiple metabolites, some of which have physiological effects on the host. A healthy equilibrium between members of the gut microbiota, its microbial diversity, and their metabolites is required for intestinal health, promoting regulatory or anti-inflammatory immune responses. In contrast, the loss of this equilibrium due to antibiotics, low fiber intake, or other conditions results in alterations in gut microbiota composition, a term known as gut dysbiosis. This dysbiosis can be characterized by a reduction in health-associated microorganisms, such as butyrate-producing bacteria, enrichment of a small number of opportunistic pathogens, or a reduction in microbial diversity. Bifidobacterium species are key species in the gut microbiome, serving as primary degraders and contributing to a balanced gut environment in various ways. Colonization resistance is a fundamental property of gut microbiota for the prevention and control of infections. This community competes strongly with foreign microorganisms, such as gastrointestinal pathogens, antibiotic-resistant bacteria, or even probiotics. Resistance to colonization is based on microbial interactions such as metabolic cross-feeding, competition for nutrients, or antimicrobial-based inhibition. These interactions are mediated by metabolites and metabolic pathways, representing the inner workings of the gut microbiota, and play a protective role through colonization resistance. This review presents a rationale for how microbial interactions provide resistance to colonization and gut dysbiosis, highlighting the protective role of Bifidobacterium species.
Collapse
Affiliation(s)
- Alberto J.M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8580702, Chile
| | - Kineret Serebrinsky-Duek
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| | - Erick Riquelme
- Department of Respiratory Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| |
Collapse
|
39
|
Glover RC, Schwardt NH, Leano SKE, Sanchez ME, Thomason MK, Olive AJ, Reniere ML. A genome-wide screen in macrophages identifies PTEN as required for myeloid restriction of Listeria monocytogenes infection. PLoS Pathog 2023; 19:e1011058. [PMID: 37216395 PMCID: PMC10237667 DOI: 10.1371/journal.ppat.1011058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/02/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Listeria monocytogenes (Lm) is an intracellular foodborne pathogen which causes the severe disease listeriosis in immunocompromised individuals. Macrophages play a dual role during Lm infection by both promoting dissemination of Lm from the gastrointestinal tract and limiting bacterial growth upon immune activation. Despite the relevance of macrophages to Lm infection, the mechanisms underlying phagocytosis of Lm by macrophages are not well understood. To identify host factors important for Lm infection of macrophages, we performed an unbiased CRISPR/Cas9 screen which revealed pathways that are specific to phagocytosis of Lm and those that are required for internalization of bacteria generally. Specifically, we discovered the tumor suppressor PTEN promotes macrophage phagocytosis of Lm and L. ivanovii, but not other Gram-positive bacteria. Additionally, we found that PTEN enhances phagocytosis of Lm via its lipid phosphatase activity by promoting adherence to macrophages. Using conditional knockout mice lacking Pten in myeloid cells, we show that PTEN-dependent phagocytosis is important for host protection during oral Lm infection. Overall, this study provides a comprehensive identification of macrophage factors involved in regulating Lm uptake and characterizes the function of one factor, PTEN, during Lm infection in vitro and in vivo. Importantly, these results demonstrate a role for opsonin-independent phagocytosis in Lm pathogenesis and suggest that macrophages play a primarily protective role during foodborne listeriosis.
Collapse
Affiliation(s)
- Rochelle C. Glover
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nicole H. Schwardt
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Shania-Kate E. Leano
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Madison E. Sanchez
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Andrew J. Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
40
|
Tucker JS, Cho J, Albrecht TM, Ferrell JL, D’Orazio SEF. Egress of Listeria monocytogenes from Mesenteric Lymph Nodes Depends on Intracellular Replication and Cell-to-Cell Spread. Infect Immun 2023; 91:e0006423. [PMID: 36916918 PMCID: PMC10112146 DOI: 10.1128/iai.00064-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023] Open
Abstract
The mesenteric lymph nodes (MLN) function as a barrier to systemic spread for both commensal and pathogenic bacteria in the gut. Listeria monocytogenes, a facultative intracellular foodborne pathogen, readily overcomes this barrier and spreads into the bloodstream, causing life-threatening systemic infections. We show here that intracellular replication protected L. monocytogenes from clearance by monocytes and neutrophils and promoted colonization of the small intestine-draining MLN (sMLN) but was not required for dissemination to the colon-draining MLN (cMLN). Intestinal tissue had enough free lipoate to support LplA2-dependent extracellular growth of L. monocytogenes, but exogenous lipoate in the MLN was severely limited, and so the bacteria could replicate only inside cells, where they used LplA1 to scavenge lipoate from host peptides. When foodborne infection was manipulated to allow ΔlplA1 L. monocytogenes to colonize the MLN to the same extent as wild-type bacteria, the mutant was still never recovered in the spleen or liver of any animal. We found that intracellular replication in the MLN promoted actin-based motility and cell-to-cell spread of L. monocytogenes and that rapid efficient exit from the MLN was actA dependent. We conclude that intracellular replication of L. monocytogenes in intestinal tissues is not essential and serves primarily to amplify bacterial burdens above a critical threshold needed to efficiently colonize the cMLN. In contrast, intracellular replication in the MLN is absolutely required for further systemic spread and serves primarily to promote ActA-mediated cell-to-cell spread.
Collapse
Affiliation(s)
- Jamila S. Tucker
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jooyoung Cho
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Taylor M. Albrecht
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jessica L. Ferrell
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
41
|
Hirschberger S, Schmid A, Kreth S. [Immunomodulation by nutritional intervention in critically ill patients]. DIE ANAESTHESIOLOGIE 2023; 72:229-244. [PMID: 36797533 PMCID: PMC9934515 DOI: 10.1007/s00101-023-01258-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 04/12/2023]
Abstract
Critically ill patients often suffer from a complex and severe immunological dysfunction. The differentiation and function of human immune cells are fundamentally controlled through metabolic processes. New concepts of immunonutrition therefore try to use enteral and parenteral nutrition to positively impact on the immune function of intensive care unit patients. This review article concisely presents the currently available evidence on the commonly used isolated supplements (anti-oxidative substances, amino acids, essential fatty acids) and difficulties related to their clinical use. The second part presents new and more comprehensive concepts of immunonutrition to influence the intestinal microbiome and to modulate the macronutrient composition. Immunonutrition of critically ill patients bears enormous potential and could become a valuable clinical tool for modulation of the immunometabolism of intensive care unit patients.
Collapse
Affiliation(s)
- Simon Hirschberger
- Klinik für Anaesthesiologie, LMU Klinikum München, München, Deutschland
- Walter-Brendel-Zentrum für experimentelle Medizin, Ludwig-Maximilians-Universität München (LMU), Marchioninistr. 68, 81377, München, Deutschland
| | - Annika Schmid
- Klinik für Anaesthesiologie, LMU Klinikum München, München, Deutschland
- Walter-Brendel-Zentrum für experimentelle Medizin, Ludwig-Maximilians-Universität München (LMU), Marchioninistr. 68, 81377, München, Deutschland
| | - Simone Kreth
- Klinik für Anaesthesiologie, LMU Klinikum München, München, Deutschland.
- Walter-Brendel-Zentrum für experimentelle Medizin, Ludwig-Maximilians-Universität München (LMU), Marchioninistr. 68, 81377, München, Deutschland.
| |
Collapse
|
42
|
Serbanescu MA, Apple CG, Fernandez-Moure JS. Role of Resident Microbial Communities in Biofilm-Related Implant Infections: Recent Insights and Implications. Surg Infect (Larchmt) 2023; 24:258-264. [PMID: 37010966 PMCID: PMC11074437 DOI: 10.1089/sur.2023.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
The use of medical implants continues to grow as the population ages. Biofilm-related implant infection is the leading cause of medical implant failure and remains difficult to diagnose and treat. Recent technologies have enhanced our understanding of the composition and complex functions of microbiota occupying various body site niches. In this review, we leverage data from molecular sequencing technologies to explore how silent changes in microbial communities from various sites can influence the development of biofilm-related infections. Specifically, we address biofilm formation and recent insights of the organisms involved in biofilm-related implant infections; how composition of microbiomes from skin, nasopharyngeal, and nearby tissue can impact biofilm-formation, and infection; the role of the gut microbiome in implant-related biofilm formation; and therapeutic strategies to mitigate implant colonization.
Collapse
Affiliation(s)
- Mara A. Serbanescu
- Department of Anesthesia, Acute Care Surgery, and Surgical Critical Care, Department of Surgery, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Camille G. Apple
- Division of Trauma, Acute Care Surgery, and Surgical Critical Care, Department of Surgery, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joseph S. Fernandez-Moure
- Division of Trauma, Acute Care Surgery, and Surgical Critical Care, Department of Surgery, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
43
|
Liu X, Qiu X, Yang Y, Wang J, Wang Q, Liu J, Yang F, Liu Z, Qi R. Alteration of gut microbiome and metabolome by Clostridium butyricum can repair the intestinal dysbiosis caused by antibiotics in mice. iScience 2023; 26:106190. [PMID: 36895644 PMCID: PMC9988658 DOI: 10.1016/j.isci.2023.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
This study evaluated the repair effects of Clostridium butyricum (CBX 2021) on the antibiotic (ABX)-induced intestinal dysbiosis in mice by the multi-omics method. Results showed that ABX eliminated more than 90% of cecal bacteria and also exerted adverse effects on the intestinal structure and overall health in mice after 10 days of the treatment. Of interest, supplementing CBX 2021 in the mice for the next 10 days colonized more butyrate-producing bacteria and accelerated butyrate production compared with the mice by natural recovery. The reconstruction of intestinal microbiota efficiently promoted the improvement of the damaged gut morphology and physical barrier in the mice. In addition, CBX 2021 significantly reduced the content of disease-related metabolites and meanwhile promoted carbohydrate digestion and absorption in mice followed the microbiome alternation. In conclusion, CBX 2021 can repair the intestinal ecology of mice damaged by the antibiotics through reconstructing gut microbiota and optimizing metabolic functions.
Collapse
Affiliation(s)
- Xin Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Yong Yang
- College of Life Sciences, Southwest University of Science and Technology, Mianyang 621000, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Jingbo Liu
- College of Life Sciences, Southwest University of Science and Technology, Mianyang 621000, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
44
|
Serbanescu MA, Da Silva M, Zaky A. Impact of Intensive Care Unit Nutrition on the Microbiome and Patient Outcomes. Anesthesiol Clin 2023; 41:263-281. [PMID: 36872003 PMCID: PMC10157520 DOI: 10.1016/j.anclin.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The bipartite relationship between nutrition and the intestinal microbiome represents an exciting frontier in critical care medicine. In this review, the authors first address these topics independently, leading with a summary of recent clinical studies assessing intensive care unit nutritional strategies, followed by an exploration of the microbiome in the context of perioperative and intensive care, including recent clinical data implicating microbial dysbiosis as a key driver of clinical outcomes. Finally, the authors address the intersection of nutrition and the microbiome, exploring the use of supplemental pre-, pro-, and synbiotics to influence microbial composition and improve outcomes in critically ill and postsurgical patients.
Collapse
Affiliation(s)
- Mara A Serbanescu
- Department of Anesthesiology, Duke University Hospital, 2301 Erwin Road, Box #3094, Durham, NC 27710, USA.
| | - Monica Da Silva
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, 950 Jefferson Tower, 625 19th Street South, Birmingham, AL 35249-6810, USA
| | - Ahmet Zaky
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, 950 Jefferson Tower, 625 19th Street South, Birmingham, AL 35249-6810, USA
| |
Collapse
|
45
|
Tholany J, Samra H, Kobayashi T, Prasidthrathsint K. Primary spontaneous listerial peritonitis. IDCases 2023; 32:e01748. [PMID: 36974133 PMCID: PMC10038783 DOI: 10.1016/j.idcr.2023.e01748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
A male in his mid-60s with chronic kidney disease, ischemic cardiomyopathy, and nonalcoholic cirrhosis due to congestive hepatopathy presented with fever and abdominal pain for two weeks. He underwent diagnostic paracentesis, which noted an ascitic neutrophil count over 7000/mm3. Gram stain of the ascitic fluid showed Gram-positive cocci. He was diagnosed with spontaneous bacterial peritonitis (SBP) and was started on ceftriaxone. Ascites cultures grew Listeria monocytogenes and antibiotics were changed to ampicillin. He received one week of ampicillin while inpatient and seven weeks of oral amoxicillin, at which point his ascitic neutrophil count was less than 250/mm3. He was continued on suppressive amoxicillin for an additional 14 weeks with no recurrence in over a year after the discontinuation of amoxicillin. Though uncommon, L. monocytogenes should be considered a pathogen causing SBP. Focal listerial infections can be treated with penicillins alone while invasive disease may require the addition of aminoglycosides.
Collapse
|
46
|
Guo L, Yin X, Liu Q. Fecal microbiota transplantation reduces mouse mortality from Listeria monocytogenes infection. Microb Pathog 2023; 178:106036. [PMID: 36813004 DOI: 10.1016/j.micpath.2023.106036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Listeria monocytogenes (Lm) is a food bacterium with strong pathogenicity which causes infections via the gastrointestinal tract. Mechanisms by which gut microbiota (GM) resist microbial infections have received little attention. Eight-week-old mice were orally inoculated with wild-type Lm EGD-e and fecal microbiota transplantation (FMT) employed. GM richness and diversity of infected mice changed rapidly within 24h. Firmicutes class decreased and Bacteroidetes, Tenericutes and Ruminococcaceae increased significantly. Coprococcus, Blautia and Eubacterium also increased on the 3rd day post-infection. Moreover, GM transplanted from healthy mice reduced mortality of infected mice by approximately 32%. FMT treatment decreased production of TNFα, IFN-γ, IL-1β and IL-6 relative to PBS treatment. In summary, FMT has potential as a treatment against Lm infection and may be used for bacterial resistance management. Further work is required to elucidate the key GM effector molecules.
Collapse
Affiliation(s)
- Liang Guo
- Zaozhuang University, Shandong, 277160, China; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | | | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
47
|
Cheng JKJ, Unnikrishnan M. Clostridioides difficile infection: traversing host-pathogen interactions in the gut. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848200 DOI: 10.1099/mic.0.001306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
Collapse
Affiliation(s)
- Jeffrey K J Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
48
|
Effects of probiotics on hypertension. Appl Microbiol Biotechnol 2023; 107:1107-1117. [PMID: 36646911 DOI: 10.1007/s00253-023-12369-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
Emerging data have suggested that probiotics had good potential in regulating intestinal flora and preventing hypertension. Some studies in human and animal models have demonstrated probiotic intervention could attenuate hypertension, regulate intestinal flora to increase the abundance of beneficial bacteria, and regulate intestinal microbial metabolites such as trimethylamine oxide, short-chain fatty acids, and polyphenols. However, there is still some debate as to whether probiotics exert effective benefits. These recently published reviews did not systematically expound on the heterogeneity between the effect and mechanism of probiotics with different types, doses, and carriers to exert antihypertensive effects, as well as the possible application of probiotics in the prevention and treatment of hypertension in food and clinic. Here we try to systematically review the association between hypertension and intestinal microflora, the effect of probiotics and their metabolites on hypertension, and the recent research progress on the specific mechanism of probiotics on hypertension. In addition, we also summarized the potential application of probiotics in antihypertension. Future challenges include elucidating the functions of metabolites produced by microorganisms and their downstream pathway or molecules, identifying specific strains, not just microbial communities, and developing therapeutic interventions that target hypertension by modulation of gut microbes and metabolites.
Collapse
|
49
|
Allahverdy J, Rashidi N. MicroRNAs induced by Listeria monocytogenes and their role in cells. Microb Pathog 2023; 175:105997. [PMID: 36669673 DOI: 10.1016/j.micpath.2023.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Listeria monocytogenes (Lm) causes abortions at high rates and threatens newborns' lives. Also, the elderly and immunocompromised individuals are particularly vulnerable neurologically. The bacterium exerts its pathogenesis intracellularly by manipulating cell organs. It manipulates nucleus elements, microRNAs (miRNAs), in order to increase survival and evade immunity. miRNAs are small non-coding RNAs that degrade gene expression post-transcriptionally. Any alteration to the expression of miRNAs affects various cascades in cells, especially immunity-related responses. Thus, utilizing miRNAs as a novel therapeutic agent not only restricts infection but enhances immunity reactions. This review provides an overview of miRNAs in listeriosis, their role in cells, and their prospects as therapy.
Collapse
Affiliation(s)
- Javad Allahverdy
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Niloufar Rashidi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|