1
|
Abdeljaoued S, Doussot A, Kroemer M, Laloy E, Pallandre JR, El Kaddissi A, Spehner L, Ben Khelil M, Bouard A, Mougey V, Chartral U, Vienot A, Viot J, Lakkis Z, Monnien F, Loyon R, Borg C. Liver metastases of colorectal cancer contain different subsets of tissue-resident memory CD8 T cells correlated with a distinct risk of relapse following surgery. Oncoimmunology 2025; 14:2455176. [PMID: 39844661 PMCID: PMC11760230 DOI: 10.1080/2162402x.2025.2455176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Tissue-resident memory (TRM) T cells have emerged as key players in cancer immunosurveillance, and their presence has been linked to a favorable clinical outcome in solid cancer patients. Liver metastases exhibit a highly immunosuppressive tumor microenvironment, however, the role and clinical impact of TRM cell infiltration in colorectal cancer remain elusive. The expression of several tissue residency and activation biomarkers has been investigated on tumor-infiltrating lymphocytes isolated from 26 patients' colorectal cancer liver metastases (CRC liver metastases) and compared to 16 peripheral blood samples of patients with CRC liver metastases. Cytokine production was also evaluated in in vitro-activated TRM and non-TRM cells. The prognostic value of TRM cells was also assessed in a well-defined cohort of CRC liver metastases. Here we identified two subsets of TRM cells expressing CD103 and/or CD69 showing significantly higher expression of tissue residency and activation biomarkers. CD103+CD69+ TRM cells subset showed almost exclusive expression of tumor reactivity biomarkers PD-1 and CD39. Supporting this observation, CD103+CD69+ TRM cells showed a more oligoclonal TCR repertoire. Both TRM subsets presented higher cytotoxic and functional capacity compared to non-TRM cells. Our study shows that only the presence of CD103+CD69+ TRM cells is associated with longer recurrence-free survival of colorectal cancer patients with liver metastases. Taken together, our work demonstrates the existence of a phenotypic heterogeneity of TRM cells in colorectal cancer liver metastases. In this study, we identified a population of CD103+CD69+ TRM cells exhibiting the characteristics of tumor reactivity and correlated with better patients' prognosis, with potential implications in optimal therapeutic strategies determination.
Collapse
Affiliation(s)
- Syrine Abdeljaoued
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Clinical Investigational Center, France
| | - Alexandre Doussot
- Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Marie Kroemer
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Clinical Investigational Center, France
- Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Emilien Laloy
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | | | - Antoine El Kaddissi
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Laurie Spehner
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Clinical Investigational Center, France
| | - Myriam Ben Khelil
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Adeline Bouard
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- ITAC platform, University of Bourgogne Franche-Comté, Besançon, France
| | - Virginie Mougey
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- ITAC platform, University of Bourgogne Franche-Comté, Besançon, France
| | - Ugo Chartral
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Angélique Vienot
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Clinical Investigational Center, France
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Julien Viot
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Clinical Investigational Center, France
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Zaher Lakkis
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Franck Monnien
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Department of Pathology, University Hospital of Besançon, Besançon, France
| | - Romain Loyon
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Christophe Borg
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, Besançon, France
- Clinical Investigational Center, France
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| |
Collapse
|
2
|
Takahashi H, Matsuyama T, Kawabata-Iwakawa R, Kawamoto T, Chikamatsu K. Comprehensive profiling of the heterogeneity of molecular endotypic traits in chronic rhinosinusitis. Hum Immunol 2025; 86:111267. [PMID: 39986126 DOI: 10.1016/j.humimm.2025.111267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/26/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Chronic rhinosinusitis (CRS) is a common clinical disease with molecular endotypes. In the present study, we performed a comprehensive transcriptomic profiling to investigate the heterogeneity of endotypes in CRS with nasal polyps (CRSwNP). The GSE23552 dataset, which includes microarray, was acquired from the Gene Expression Omnibus database. Additionally, surgical specimens were collected at Gunma University Hospital, and reverse transcription-quantitative PCR was performed. We performed gene expression analysis, Gene Set Enrichment Analysis (GSEA), deconvolution analysis, and hierarchical clustering of samples. Gene expression analysis and GSEA revealed that type 1, type 2, and Treg-related responses, were upregulated in nasal polyp tissues when compared with those in controls. Deconvolution analysis indicated the enrichment of type 1-related cells and generation of memory T cells. Furthermore, nasal polyps exhibited higher expression of effector function- and immune checkpoint-related genes than controls. In addition, hierarchical clustering revealed the heterogeneity in patients with type 2-inflamed CRSwNP. Notably, type 1 and type 2 scores correlated with the duration from surgery to biopharmaceuticals initiation. In conclusion, our study demonstrated the heterogeneity of molecular endotypes in CRSwNP. Further characterisation and stratification are required to develop a new endotype-based precision medicine for patients with CRS.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Toshiyuki Matsuyama
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Takayuki Kawamoto
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
3
|
Seo ES, Lee SK, Son YM. Multifaceted functions of tissue-resident memory T cells in tumorigenesis and cancer immunotherapy. Cancer Immunol Immunother 2025; 74:184. [PMID: 40285796 PMCID: PMC12033165 DOI: 10.1007/s00262-025-04035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Tissue-resident memory T (TRM) cells are well reported as a strong protective first line of defense against foreign antigens in non-lymphoid tissues. Moreover, TRM cells have demonstrated critical protective roles in antitumor immunity, contributing to enhanced survival and tumor growth inhibition across various cancer types. However, surprisingly, recent studies suggest that TRM cells can exhibit paradoxical effects, potentially promoting tumor progression under certain conditions and leading to adverse outcomes during antitumor immune responses. Understanding the complexities of TRM cell functions will enable us to harness their potential in advancing cancer immunotherapy more effectively. Therefore, this review comprehensively investigates the dual roles of TRM cells in different tumor contexts, highlighting their protective functions in combating cancers and their unfavorable potential to exacerbate tumor development. Additionally, we explore the implications of TRM cell behaviors for future cancer treatment strategies, emphasizing the need for further research to optimize the therapeutic exploitation of TRM cells while mitigating their deleterious effects.
Collapse
Affiliation(s)
- Eun Sang Seo
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sung-Kyu Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
4
|
Tilsed CM, Brotman J, O’Brien S, Lee B, Moon E, Albelda SM. Identification and characterization of tissue resident memory T cells in malignant pleural effusions associated with non-small cell lung cancer. Immunohorizons 2025; 9:vlaf013. [PMID: 40285480 PMCID: PMC12032394 DOI: 10.1093/immhor/vlaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/29/2025] Open
Abstract
Tissue resident memory T cells (TRM) play a critical role in cancer immunity and their presence in solid tumors is associated with improved prognosis and response to therapy. Although TRM have been identified and their function characterized in lung cancers, little is known regarding TRM outside of a tissue context, such as within malignant pleural effusions (MPE). As MPE are routinely drained and collected to manage symptoms, analysis of this fluid can provide an insight into the peri-tumoral environment. In this study, we performed flow cytometry and single cell RNAseq (scRNAseq) on MPE associated with non-small lung cancer and examined the phenotype and function of TRM. We found that 14% of CD8+ T cells and 6% of CD4+ T cells were TRM, as defined by the phenotype of CD45RO+CCR7-CD62L- and expressing 1 or both of CD69 and CD103. The scRNAseq revealed distinct clusters expressing TRM-associated genes including ITGAE and CD49A and lacking expression of SELL, CCR7, and IL7RA. TRM did not differ from other memory T cell subsets, such as T central memory (TCM) and T effector memory (TEM) cells, in expression of the inhibitory markers PD-1, TIGIT, and CD39. When TRM function was assessed by measuring the production of IFN-γ, TNF-α, and CD107a after stimulation with αnti-CD3 antibodies in vitro, TRM had comparable function to T effector cells (TE), indicating that despite expression of exhaustion markers these cells retained effector function. Finally, we found that CD69 expression, and not CD103 expression, on TRM was associated with production of effector cytokines.
Collapse
Affiliation(s)
- Caitlin M Tilsed
- Pulmonary, Critical Care, and Allergy Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Joshua Brotman
- Pulmonary, Critical Care, and Allergy Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Shaun O’Brien
- Informatics and Predictive Sciences, Mechanisms of Cancer Resistance, Bristol Myers Squibb, Cambridge, MA, United States
| | - Brennan Lee
- Informatics and Predictive Sciences, Mechanisms of Cancer Resistance, Bristol Myers Squibb, Cambridge, MA, United States
| | - Edmund Moon
- Pulmonary, Critical Care, and Allergy Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Steven M Albelda
- Pulmonary, Critical Care, and Allergy Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Li H, Zandberg DP, Kulkarni A, Chiosea SI, Santos PM, Isett BR, Joy M, Sica GL, Contrera KJ, Tatsuoka CM, Brand M, Duvvuri U, Kim S, Kubik M, Sridharan S, Tu F, Chen J, Bruno TC, Vignali DAA, Cillo AR, Bao R, Wang JH, Vujanovic L, Ferris RL. Distinct CD8 + T cell dynamics associate with response to neoadjuvant cancer immunotherapies. Cancer Cell 2025; 43:757-775.e8. [PMID: 40086437 DOI: 10.1016/j.ccell.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/30/2024] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
We leverage a clinical trial (NCT04080804) that compared neoadjuvant anti-PD-1, anti-PD-1+CTLA-4, and anti-PD-1+LAG-3 therapies in head and neck squamous cell carcinoma patients. Combination therapies promote higher pathologic response rates versus monotherapy, and major pathologic response is associated with better survival. To address whether successful immune checkpoint inhibitor (ICI) regimens act through similar or distinct pathways, we robustly and longitudinally characterize transcriptional and proteomic dynamics of CD8+ tumor-infiltrating lymphocytes (TILs) in a clonal manner. Anti-PD-1+LAG-3 reprograms CD8+ TIL with type-I interferon response and exhaustion gene programs into effector memory and resident memory (TEM/TRM). In contrast, anti-PD-1+CTLA-4 activates and expands pre-existing TEM/TRM CD8+ TIL, but does not rejuvenate exhausted phenotypes into T effector cells. Anti-PD-1+LAG-3, but not anti-PD-1+CTLA-4, induces widespread TCR sharing among the different transcriptional states, as well as increased TCR diversity in responding patients. Our data suggest doublet regimen-specific transcriptional and clonal dynamics of tumor-reactive CD8+ T cells.
Collapse
Affiliation(s)
- Housaiyin Li
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Molecular Genetics and Development Biology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dan P Zandberg
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Aditi Kulkarni
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simion I Chiosea
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia M Santos
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian R Isett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marion Joy
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Gabriel L Sica
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin J Contrera
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Curtis M Tatsuoka
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Matthias Brand
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Umamaheswar Duvvuri
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, NYU Grossman School of Medicine, New York, NY, USA
| | - Seungwon Kim
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Kubik
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shaum Sridharan
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fei Tu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jie Chen
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Molecular Genetics and Development Biology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R Cillo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jing Hong Wang
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Lazar Vujanovic
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Robert L Ferris
- UNC Lineberger Comprehensive Cancer Center, UNC Health Care System, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Rausch L, Kallies A. Molecular Mechanisms Governing CD8 T Cell Differentiation and Checkpoint Inhibitor Response in Cancer. Annu Rev Immunol 2025; 43:515-543. [PMID: 40279308 DOI: 10.1146/annurev-immunol-082223-044122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
CD8 T cells play a critical role in antitumor immunity. However, over time, they often become dysfunctional or exhausted and ultimately fail to control tumor growth. To effectively harness CD8 T cells for cancer immunotherapy, a detailed understanding of the mechanisms that govern their differentiation and function is crucial. This review summarizes our current knowledge of the molecular pathways that regulate CD8 T cell heterogeneity and function in chronic infection and cancer and outlines how T cells respond to therapeutic checkpoint blockade. We explore how T cell-intrinsic and -extrinsic factors influence CD8 T cell differentiation, fate choices, and functional states and ultimately dictate their response to therapy. Identifying cells that orchestrate long-term antitumor immunity and understanding the mechanisms that govern their development and persistence are critical steps toward improving cancer immunotherapy.
Collapse
Affiliation(s)
- Lisa Rausch
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| | - Axel Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| |
Collapse
|
7
|
Dervenis V. The Role of HPV in the Development of Cutaneous Squamous Cell Carcinoma-Friend or Foe? Cancers (Basel) 2025; 17:1195. [PMID: 40227794 PMCID: PMC11988061 DOI: 10.3390/cancers17071195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 04/15/2025] Open
Abstract
The incidence of cutaneous squamous cell carcinoma (cSCC) is increasing, with UV radiation being the main cause. Other risk factors are age, sex, skin type and immunosuppression. Human papillomaviruses (HPVs) are associated with benign and malignant skin tumours. In contrast to anogenital and oropharyngeal carcinomas, which are caused by alpha papillomaviruses, the HPV types associated with cSCC belong to the beta-HPV genus. These viruses infect the skin epithelium and are widespread in skin samples from healthy people. It is assumed that HPV amplifies the DNA damage caused by UV radiation and disrupts the repair mechanisms of the cells, without remaining permanently detectable in the tumour tissue, the so-called hit-and-run theory. The HPV status of tumours appears to have a positive influence on prognosis and response to therapy due to increased immune infiltration, in particular by tissue-resident memory T cells and activation of immune effector cells. This favours responses to immunotherapies such as PD-1/PD-L1 inhibitors, whereas immunosuppression may promote a pro-carcinogenic effect. In conclusion, the role of beta HPV in the development of cSCC appears to be closely associated with the immune status of the host. Depending on the immune status, beta HPV can play either a protective or a tumour-promoting role, and in view of the increasing incidence of skin cancer worldwide, enhancing the immune response against virus-infected keratinocytes, e.g., through HPV vaccination, could represent a promising approach for the prevention and therapy of squamous cell carcinomas.
Collapse
Affiliation(s)
- Vasileios Dervenis
- Department of Dermatology, St. Josef Hospital, Ruhr University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany
| |
Collapse
|
8
|
Wu Z, Wang X, Shi S, Kong D, Ren C, Bian L, Gu Y, An F, Zhan Q, Yan C, Hu C, Chen Y, Jiang R, Chen J. Heterogeneity of T cells regulates tumor immunity mediated by Helicobacter pylori infection in gastric cancer. BMC Cancer 2025; 25:567. [PMID: 40155861 PMCID: PMC11954285 DOI: 10.1186/s12885-025-13957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
The impact of Helicobacter pylori (H. pylori) status on gastric cancer survival remains unclear. In this study, we conducted a prognostic analysis of 488 gastric cancer patients and performed single-cell RNA sequencing (scRNA-seq) on 18,717 T cells from six tumor samples with varying H. pylori statuses. Our findings revealed that gastric cancer patients with H. pylori infection had significantly longer survival times compared to those with negative H. pylori status. After unsupervised re-clustering of T cells based on scRNA-seq data, we identified ten CD4+ and twelve CD8+ clusters. Among them, four CD8+ T cell clusters exhibited distinct distributions based on H. pylori infection status. One cluster, marked by CXCL13, showed high levels of IFNG and GZMB in H. pylori-infected patients, while another cluster, which expressed immune suppression related genes like AREG and PTGER2, was predominantly comprised of cells from non-infected patients. High PTGER2 expression was significantly associated with worse prognosis in patients with high CD8 expression. These insights advance our understanding of H. pylori's influence on T cell responses in gastric cancer, aiding in treatment and prognostic strategies.
Collapse
Affiliation(s)
- Zhisheng Wu
- School of Chemistry and Chemical Engineering, Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Xinya Wang
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Shujing Shi
- Department of Rehabilitation, School of Sport and Health, Nanjing Sport Institute, Nanjing, China
| | - Deyuan Kong
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Lijun Bian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuanliang Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fangmei An
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China
- Department of Gastroenterology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Qiang Zhan
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China
- Department of Gastroenterology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Caiwang Yan
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chupeng Hu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China.
| | - Yun Chen
- School of Chemistry and Chemical Engineering, Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China.
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- Research center for clinical oncology, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Runqiu Jiang
- Jiangsu Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| | - Jinfei Chen
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
9
|
Metoikidou C, Karnaukhov V, Boeckx B, Timperi E, Bonté PE, Wang L, Espenel M, Albaud B, Loirat D, Wang X, Sotiriou C, Aftimos P, Punie K, Wildiers H, Labroska V, Wang MW, Waterfall JJ, Piccart-Gebhart M, Mora T, Walczak A, Lantz O, Buisseret L, Lambrechts D, Amigorena S, Romano E. Continuous replenishment of the dysfunctional CD8 T cell axis is associated with response to chemoimmunotherapy in advanced breast cancer. Cell Rep Med 2025; 6:101973. [PMID: 39983715 PMCID: PMC11970331 DOI: 10.1016/j.xcrm.2025.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/18/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Chemotherapy combined with immune checkpoint blockade has shown clinical activity in breast cancer. Response, however, occurs in only a low proportion of patients. How the immune landscape of the tumor determines the immune and clinical responses to chemoimmunotherapy is not well understood. Here, using a combination of single-cell RNA sequencing (scRNA-seq) and single-cell T cell receptor sequencing (scTCR-seq), we profile 40 biopsies from 27 patients with metastatic triple-negative breast cancer (TNBC), receiving chemotherapy and anti-PD-L1 alone or in combination with anti-CD73, in a phase 2 randomized clinical trial. Our results show an enrichment of late-dysfunctional, clonally expanded CD8+ T cells in responder (R) patients. On treatment, R display an influx of newly emerging clonotypes, as well as expansion of the CD8+ precursors. Collectively, our data suggest that baseline clonal expansion could be a potential predictor of response and that both clonal reinvigoration of pre-existing tumor-reactive T cells and clonal replacement on-treatment are important for a protective response to chemoimmunotherapy.
Collapse
Affiliation(s)
- Christina Metoikidou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vadim Karnaukhov
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Laboratoire de Physique de l'École Normale Supérieure, Paris Sciences & Lettres University, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Eleonora Timperi
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Pierre-Emmanuel Bonté
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Ling Wang
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Marion Espenel
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, 75005 Paris, France
| | - Benoit Albaud
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, 75005 Paris, France
| | - Delphine Loirat
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - Xiaoxiao Wang
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Christos Sotiriou
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Aftimos
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, Leuven, Belgium; University Hospitals Leuven, Leuven, Belgium
| | - Viktorija Labroska
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joshua J Waterfall
- Translational Research Department, Institut Curie, 75005 Paris, France; INSERM U830, Institut Curie, 75005 Paris, France
| | | | - Thierry Mora
- Laboratoire de Physique de l'École Normale Supérieure, Paris Sciences & Lettres University, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Aleksandra Walczak
- Laboratoire de Physique de l'École Normale Supérieure, Paris Sciences & Lettres University, CNRS, Sorbonne Université and Université Paris Cité, 75005 Paris, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Laboratoire d'immunologie clinique, Institut Curie, 75005 Paris, France; Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | | | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Sebastian Amigorena
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Emanuela Romano
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France.
| |
Collapse
|
10
|
Lopez de Rodas M, Villalba-Esparza M, Sanmamed MF, Chen L, Rimm DL, Schalper KA. Biological and clinical significance of tumour-infiltrating lymphocytes in the era of immunotherapy: a multidimensional approach. Nat Rev Clin Oncol 2025; 22:163-181. [PMID: 39820025 DOI: 10.1038/s41571-024-00984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Immune-checkpoint inhibitors (ICIs) have improved clinical outcomes across several solid tumour types. Prominent efforts have focused on understanding the anticancer mechanisms of these agents, identifying biomarkers of response and uncovering resistance mechanisms to develop new immunotherapeutic approaches. This research has underscored the crucial roles of the tumour microenvironment and, particularly, tumour-infiltrating lymphocytes (TILs) in immune-mediated tumour elimination. Numerous studies have evaluated the prognostic and predictive value of TILs and the mechanisms that govern T cell dysfunction, fuelled by technical developments in single-cell transcriptomics, proteomics, high-dimensional spatial platforms and advanced computational models. However, questions remain regarding the definition of TILs, optimal strategies to study them, specific roles of different TIL subpopulations and their clinical implications in different treatment contexts. Additionally, most studies have focused on the abundance of major TIL subpopulations but have not developed standardized quantification strategies or analysed other crucial aspects such as their functional profile, spatial distribution and/or arrangement, tumour antigen-reactivity, clonal diversity and heterogeneity. In this Review, we discuss a conceptual framework for the systematic study of TILs and summarize the evidence regarding their biological properties and biomarker potential for ICI therapy. We also highlight opportunities, challenges and strategies to support future developments in this field.
Collapse
Affiliation(s)
- Miguel Lopez de Rodas
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Cancer Center Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Maria Villalba-Esparza
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Miguel F Sanmamed
- Department of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada and Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kurt A Schalper
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Li Z, Lin X, Yang Y, Tian M, Zhang L, Huang F, Wen X, Wei Z, Tian Y. EXO1 is a key gene for lung-resident memory T cells and has diagnostic and predictive values for lung adenocarcinoma. Sci Rep 2025; 15:4002. [PMID: 39893221 PMCID: PMC11787328 DOI: 10.1038/s41598-025-88126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a very common and lethal kind of lung malignancy. An increasing number of studies indicated that tissue-resident memory T (TRM) cells played significant roles in anti-cancer immunity. In our previous study, EXO1 was found to be a core gene for TRM cells in the prognosis of LUAD. However, the roles of EXO1 in the tumor microenvironment, and its application in the diagnosis and prognosis prediction of LUAD are still inadequately explored. In this study, the RNA expression, DNA methylation, CNV, somatic mutation data of EXO1, and the corresponding patients' clinical information from publicly available databases were analyzed using bioinformatic methods. The results were validated through immunohistochemical staining of EXO1 in LUAD samples. The results showed EXO1 was aberrantly highly expressed in LUAD tissues. High expression of EXO1 was a risky factor for LUAD patients. The expression level of EXO1 was associated with many clinical features such as TNM stages. It can also distinguish normal tissues and LUAD tumor tissues accurately. EXO1 expression was correlated with the infiltration of immune cells, and high expression of EXO1 was an adverse effect on LUAD patients receiving anti-PD-1/PD-L1 immunotherapy. Moreover, patients with EXO1 mutation had worse DSS, DFI and PFI.
Collapse
Affiliation(s)
- Zhuoqi Li
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital, Shandong University, 250021, Jinan, P.R. China
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, P.R. China
| | - Yuanhui Yang
- Department of Pathology, Shandong Provincial Hospital, Shandong University, 250021, Jinan, P.R. China
| | - Mei Tian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, P.R. China
| | - Lu Zhang
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China
| | - Fujing Huang
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China
| | - Xiao Wen
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China
| | - Zhigang Wei
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, 250014, Jinan, P.R. China.
| | - Yuan Tian
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250011, Jinan, P.R. China.
| |
Collapse
|
12
|
Thirunavukkarasu MK, Ramesh P, Karuppasamy R, Veerappapillai S. Transcriptome profiling and metabolic pathway analysis towards reliable biomarker discovery in early-stage lung cancer. J Appl Genet 2025; 66:115-126. [PMID: 38443694 DOI: 10.1007/s13353-024-00847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
Earlier diagnosis of lung cancer is crucial for reducing mortality and morbidity in high-risk patients. Liquid biopsy is a critical technique for detecting the cancer earlier and tracking the treatment outcomes. However, noninvasive biomarkers are desperately needed due to the lack of therapeutic sensitivity and early-stage diagnosis. Therefore, we have utilized transcriptomic profiling of early-stage lung cancer patients to discover promising biomarkers and their associated metabolic functions. Initially, PCA highlights the diversity level of gene expression in three stages of lung cancer samples. We have identified two major clusters consisting of highly variant genes among the three stages. Further, a total of 7742, 6611, and 643 genes were identified as DGE for stages I-III respectively. Topological analysis of the protein-protein interaction network resulted in seven candidate biomarkers such as JUN, LYN, PTK2, UBC, HSP90AA1, TP53, and UBB cumulatively for the three stages of lung cancers. Gene enrichment and KEGG pathway analyses aid in the comprehension of pathway mechanisms and regulation of identified hub genes in lung cancer. Importantly, the medial survival rates up to ~ 70 months were identified for hub genes during the Kaplan-Meier survival analysis. Moreover, the hub genes displayed the significance of risk factors during gene expression analysis using TIMER2.0 analysis. Therefore, we have reason that these biomarkers may serve as a prospective targeting candidate with higher treatment efficacy in early-stage lung cancer patients.
Collapse
Affiliation(s)
| | - Priyanka Ramesh
- Bioinformatics Core, College of Agriculture, Agriculture Research and Graduate Education, Purdue University, West Lafayette, IN, 47907, USA
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
13
|
Scott MC, Steier Z, Pierson MJ, Stolley JM, O'Flanagan SD, Soerens AG, Wijeyesinghe SP, Beura LK, Dileepan G, Burbach BJ, Künzli M, Quarnstrom CF, Ghirardelli Smith OC, Weyu E, Hamilton SE, Vezys V, Shalek AK, Masopust D. Deep profiling deconstructs features associated with memory CD8 + T cell tissue residence. Immunity 2025; 58:162-181.e10. [PMID: 39708817 PMCID: PMC11852946 DOI: 10.1016/j.immuni.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 12/23/2024]
Abstract
Tissue-resident memory CD8+ T (Trm) cells control infections and cancer and are defined by their lack of recirculation. Because migration is difficult to assess, residence is usually inferred by putative residence-defining phenotypic and gene signature proxies. We assessed the validity and universality of residence proxies by integrating mouse parabiosis, multi-organ sampling, intravascular staining, acute and chronic infection models, dirty mice, and single-cell multi-omics. We report that memory T cells integrate a constellation of inputs-location, stimulation history, antigen persistence, and environment-resulting in myriad differentiation states. Thus, current Trm-defining methodologies have implicit limitations, and a universal residence-specific signature may not exist. However, we define genes and phenotypes that more robustly correlate with tissue residence across the broad range of conditions that we tested. This study reveals broad adaptability of T cells to diverse stimulatory and environmental inputs and provides practical recommendations for evaluating Trm cells.
Collapse
Affiliation(s)
- Milcah C Scott
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zoë Steier
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Mark J Pierson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Michael Stolley
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen D O'Flanagan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew G Soerens
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sathi P Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lalit K Beura
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gayathri Dileepan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandon J Burbach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marco Künzli
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clare F Quarnstrom
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia C Ghirardelli Smith
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eyob Weyu
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sara E Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex K Shalek
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Yoffe L, Bhinder B, Kang SW, Zhang H, Singh A, Ravichandran H, Markowitz G, Martin M, Kim J, Zhang C, Elemento O, Tansey W, Bates S, McGraw TE, Borczuk A, Lee HS, Altorki NK, Mittal V. Acquisition of discrete immune suppressive barriers contributes to the initiation and progression of preinvasive to invasive human lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630523. [PMID: 39803458 PMCID: PMC11722343 DOI: 10.1101/2024.12.31.630523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Computerized chest tomography (CT)-guided screening in populations at risk for lung cancer has increased the detection of preinvasive subsolid nodules, which progress to solid invasive adenocarcinoma. Despite the clinical significance, there is a lack of effective therapies for intercepting the progression of preinvasive to invasive adenocarcinoma. To uncover determinants of early disease emergence and progression, we used integrated single-cell approaches, including scRNA-seq, multiplexed imaging mass cytometry and spatial transcriptomics, to construct the first high-resolution map of the composition, lineage/functional states, developmental trajectories and multicellular crosstalk networks from microdissected non-solid (preinvasive) and solid compartments (invasive) of individual part-solid nodules. We found that early disease initiation and subsequent progression are associated with the evolution of immune-suppressive cellular phenotypes characterized by decreased cytotoxic CD8 T and NK cells, increased T cell exhaustion and accumulation of immunosuppressive regulatory T cells (Tregs) and M2-like macrophages expressing TREM2. Within Tregs, we identified a unique population of 4-1BB+ Treg subset enriched for the IL2-STAT5 suppressive pathway with transcription profiles supporting discrete metabolic alterations. Spatial analysis showed increased density of suppressive immune cells around tumor cells, increased exhaustion phenotype of both CD4 and CD8 T cells expressing chemokine CXCL13, and spatial microcomplex of endothelial and lymphocyte interactions within tertiary lymphoid structures. The single-cell architecture identifies determinants of early disease emergence and progression, which may be developed not only as diagnostic/prognostic biomarkers but also as targets for disease interception. Additionally, our dataset constitutes a valuable resource for the preinvasive lung cancer research community.
Collapse
Affiliation(s)
- Liron Yoffe
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Sung Wook Kang
- David Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Haoran Zhang
- Department of Computer Science, University of Texas at Austin, TX 78712, USA
| | - Arshdeep Singh
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Geoffrey Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Mitchell Martin
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Junbum Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Chen Zhang
- Department of Pathology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Wesley Tansey
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stewart Bates
- Interventional Oncology, Johnson and Johnson, 50-100 Holmers Farm Way, High Wycombe, UK, HP12 4DP
| | - Timothy E. McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Alain Borczuk
- Department of Pathology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Hyun-Sung Lee
- David Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nasser K. Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| |
Collapse
|
15
|
Liao J, Zhu Z, Zou J, Liu S, Luo X, Bao W, Du C, Lei Y, Huang W. Macrophage Membrane-Biomimetic Multi-Layered Nanoparticles Targeting Synovial Angiogenesis for Osteoarthritis Therapy. Adv Healthc Mater 2025; 14:e2401985. [PMID: 39402771 DOI: 10.1002/adhm.202401985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Indexed: 01/15/2025]
Abstract
Osteoarthritis (OA) is an inflammatory and progressive joint disease characterized by angiogenesis-mediated sustained, chronic, and low-grade synovitis. Anti-angiogenesis is emerging as a strategy for attenuating OA progression, but is often compromised by poor targeted drug delivery and immune clearance. Recent studies have identified macrophages formed a "protective barrier" in the lining layer (LL) of synovium, which blocked the communication of joint cavity and sublining layer (SL) of synovium. Inspired by natural mimicry, macrophage membrane-camouflaged drug delivery is explored to avoid immune clearance. Based on the single cell RNA sequencing, the CD34+ synovial cells are identified as "sentinel cells" for synovium angiogenesis. Consequently, CD34 antibody-modified macrophage membrane is constructed to target new angiogenesis. Hence, a biomimetic multi-layered nanoparticle (NP) is developed that incorporates axitinib-loaded poly(lactic-co-glycolic) acid (PLGA) with CD34 antibody modified macrophage membrane (Atb@NP@Raw@CD34) to specifically deliver axitinib (Atb) to the SL and sustain inhibiting angiogenesis without immune elimination. It is found that the Atb@NP@Raw@CD34 can pass through macrophage "barrier", specifically targeting CD34+ cells, continuously releasing Atb and anti-angiogenesis in OA synovitis. Furthermore, in vivo data demonstrated that Atb@NP@Raw@CD34 can attenuate joint degeneration by inhibiting synovium angiogenesis-mediated synovitis. In conclusion, local injection of Atb@NP@Raw@CD34 presents a promising approach for clinically impeding OA progression.
Collapse
Affiliation(s)
- Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenglin Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Xuefeng Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Bao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
16
|
Paolini L, Tran T, Corgnac S, Villemin JP, Wislez M, Arrondeau J, Johannes L, Ulmer J, Vieillard LV, Pineau J, Gey A, Quiniou V, Barennes P, Pham HP, Gruel N, Hasan M, Libri V, Mella S, De Percin S, Boudou-Rouquette P, Caidi A, Cremer I, Blons H, Leroy K, Laurent-Puig P, De Saint Basile H, Gibault L, Ravel P, Mami-Chouaib F, Goldwasser F, Fabre E, Damotte D, Tartour E. Differential predictive value of resident memory CD8 +T cell subpopulations in patients with non-small-cell lung cancer treated by immunotherapy. J Immunother Cancer 2024; 12:e009440. [PMID: 39631852 PMCID: PMC11624836 DOI: 10.1136/jitc-2024-009440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND A high density of resident memory T cells (TRM) in tumors correlates with improved clinical outcomes in immunotherapy-treated patients. In most clinical studies, TRM are defined by the CD103 marker. However, it is clearly established that not all TRM express CD103, but can be defined by other markers (CD49a, CD69, etc). The frequency of these subpopulations of TRM expressing or not CD103 varies according to the location of the cancer. Little is known about their functionality and their predictive impact on response to immunotherapy. In preclinical models, only some subpopulations of TRM are associated with cancer vaccine efficacy. METHODS Multiparametric cytometry analyses were used to demonstrate the presence of TRM subpopulations in the lung in mice after vaccination and in fresh ex vivo human non-small cell lung cancer (NSCLC). An analysis of the T-cell repertoire of these TRM was conducted to search for their relationships. Multiplex immunofluorescence techniques were used to quantify intratumor infiltration of TRM subpopulations in two cohorts of patients with NSCLC. The impact on the clinical outcome of the TRM tumor infiltration was also investigated. RESULTS We identified two main TRM subpopulations in tumor-infiltrating lymphocytes derived from patients with NSCLC: one co-expressing CD103 and CD49a (double positive (DP)), and the other expressing only CD49a (simple positive (SP)); both exhibiting additional TRM surface markers like CD69. Despite higher expression of inhibitory receptors, DP TRM exhibited greater functionality compared with SP TRM. Analysis of T-cell receptor (TCR) repertoire and expression of the stemness marker TCF1 revealed shared TCRs between populations, with the SP subset appearing more progenitor-like phenotype. In the training cohort, PD-L1 (Programmed Death-Ligand 1) and TCF1+CD8+T cells predict response to anti-PD-1. In patient with NSCLC validation cohorts, only DP TRM predicted PD-1 blockade response. Multivariate analysis, including various biomarkers associated with responses to anti-PD-(L)1, such as total CD8, TCF1+CD8+T cells, and PD-L1, showed that only intratumoral infiltration by DP TRM remained significant. CONCLUSIONS This study highlights the non-equivalence of TRM subpopulations. The population of TRM co-expressing CD103 and CD49a appears to be the most functional and has the most significant capacity for predicting response to immunotherapy in multivariate analysis in patients with NSCLC.
Collapse
Affiliation(s)
- Léa Paolini
- Université Paris Cité, INSERM, PARCC, Paris, France, Paris, France
| | - Thi Tran
- Université Paris Cité, INSERM, PARCC, Paris, France, Paris, France
| | - Stéphanie Corgnac
- INSERM UMR1186, Gustave Roussy, Fac.de Medecine-Univ Paris-Sud, Université Paris-Saclay, Villejuif, France, INSERM, Villejuif, France
| | | | - Marie Wislez
- Service de Pneumologie Hopital Cochin, Université de Paris, Paris, France
- Centre de recherche des Cordeliers, Universite Paris Cité, Sorbonne Université, INSERM UMRS1138, Paris, France
| | - Jennifer Arrondeau
- Department of Medical Oncology, Université Paris Cité, Cochin Hospital, APHP, Paris, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, Paris, France
| | - Jonathan Ulmer
- Cellular and Chemical Biology Unit, Institut Curie, Paris, France
| | | | - Joséphine Pineau
- Université Paris Cité, INSERM, PARCC, Paris, France, Paris, France
- Department Immunology, Hôpital Européen Georges Pompidou, Hopital Necker, APHP, Paris, France
| | - Alain Gey
- Université Paris Cité, INSERM, PARCC, Paris, France, Paris, France
- Department Immunology, Hôpital Européen Georges Pompidou, Hopital Necker, APHP, Paris, France
| | | | | | | | - Nadège Gruel
- Diversity and plasticity of childhood tumours lab, INSERM U830 Equipe Labellisée Ligue National contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France
- Department of translational research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Milena Hasan
- Cytometry and Biomarkers UTechs, Center for translational Science, Institut Pasteur, Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers UTechs, Center for translational Science, Institut Pasteur, Paris, France
| | - Sebastien Mella
- Cytometry and Biomarkers UTechs, Center for translational Science, Institut Pasteur, Paris, France
| | - Sixtine De Percin
- Department of Medical Oncology, Université Paris Cité, Cochin Hospital, APHP, Paris, France
| | | | - Aziza Caidi
- INSERM UMR1186, Gustave Roussy, Fac.de Medecine-Univ Paris-Sud, Université Paris-Saclay, Villejuif, France, INSERM, Villejuif, France
| | - Isabelle Cremer
- Centre de recherche des Cordeliers, Universite Paris Cité, Sorbonne Université, INSERM UMRS1138, Paris, France
| | - Hélène Blons
- Centre de recherche des Cordeliers, Universite Paris Cité, Sorbonne Université, INSERM UMRS1138, Paris, France
- Biochimie, Hopital Européen Georges Pompidou, Paris, France
| | - Karen Leroy
- Centre de recherche des Cordeliers, Universite Paris Cité, Sorbonne Université, INSERM UMRS1138, Paris, France
- Biochimie, Hopital Européen Georges Pompidou, Paris, France
| | - Pierre Laurent-Puig
- Centre de recherche des Cordeliers, Universite Paris Cité, Sorbonne Université, INSERM UMRS1138, Paris, France
- Biochimie, Hopital Européen Georges Pompidou, Paris, France
- Paris Cancer Institute Carpem, Paris, France
| | | | - Laure Gibault
- Department Pathology, Hôpital Européen Georges Pompidou, Paris, France
| | - Patrice Ravel
- INSERM U1194, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Fathia Mami-Chouaib
- INSERM UMR1186, Gustave Roussy, Fac.de Medecine-Univ Paris-Sud, Université Paris-Saclay, Villejuif, France, INSERM, Villejuif, France
| | - François Goldwasser
- Department of Medical Oncology, Université Paris Cité, Cochin Hospital, APHP, Paris, France
| | - Elizabeth Fabre
- Université Paris Cité, INSERM, PARCC, Paris, France, Paris, France
- Onco-pneumology, Hopital Européen Georges Pompidou, Paris, France
| | - Diane Damotte
- Centre de recherche des Cordeliers, Universite Paris Cité, Sorbonne Université, INSERM UMRS1138, Paris, France
- Departments of Pathology Hospital Cochin Assistance Publique Hopitaux de Paris, APHP, Paris, France
- Department of Pathology, Hopital Cochin, APHP, Paris, France
| | - Eric Tartour
- Université Paris Cité, INSERM, PARCC, Paris, France, Paris, France
- Department Immunology, Hôpital Européen Georges Pompidou, Hopital Necker, APHP, Paris, France
| |
Collapse
|
17
|
Tasis A, Papaioannou NE, Grigoriou M, Paschalidis N, Loukogiannaki C, Filia A, Katsiki K, Lamprianidou E, Papadopoulos V, Rimpa CM, Chatzigeorgiou A, Kourtzelis I, Gerasimou P, Kyprianou I, Costeas P, Liakopoulos P, Liapis K, Kolovos P, Chavakis T, Alissafi T, Kotsianidis I, Mitroulis I. Single-Cell Analysis of Bone Marrow CD8+ T Cells in Myeloid Neoplasms Reveals Pathways Associated with Disease Progression and Response to Treatment with Azacitidine. CANCER RESEARCH COMMUNICATIONS 2024; 4:3067-3083. [PMID: 39485042 PMCID: PMC11616010 DOI: 10.1158/2767-9764.crc-24-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
Immunophenotypic analysis identified a BM CD57+CXCR3+ subset of CD8+ T cells associated with response to AZA in patients with MDS and AML. Single-cell RNA sequencing analysis revealed that IFN signaling is linked to the response to treatment, whereas TGF-β signaling is associated with treatment failure, providing insights into new therapeutic approaches.
Collapse
Affiliation(s)
- Athanasios Tasis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikos E. Papaioannou
- Laboratory of Immune Regulation, Center of Basic Sciences, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Maria Grigoriou
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikolaos Paschalidis
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Catherine Loukogiannaki
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anastasia Filia
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Kyriaki Katsiki
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Papadopoulos
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Maria Rimpa
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kourtzelis
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - Ioannis Kyprianou
- Molecular Hematology-Oncology, Karaiskakio Foundation, Nicosia, Cyprus
| | - Paul Costeas
- Molecular Hematology-Oncology, Karaiskakio Foundation, Nicosia, Cyprus
| | - Panagiotis Liakopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Liapis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany
| | - Themis Alissafi
- Laboratory of Immune Regulation, Center of Basic Sciences, Biomedical Research Foundation Academy of Athens, Athens, Greece
- Laboratory of Biology, School of Medicine, Athens, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany
| |
Collapse
|
18
|
Kim N, Park S, Jo A, Eum HH, Kim HK, Lee K, Cho JH, Ku BM, Jung HA, Sun JM, Lee SH, Ahn JS, Lee JI, Choi JW, Jeong D, Na M, Kang H, Kim JY, Choi JK, Lee HO, Ahn MJ. Unveiling the influence of tumor and immune signatures on immune checkpoint therapy in advanced lung cancer. eLife 2024; 13:RP98366. [PMID: 39514276 PMCID: PMC11548875 DOI: 10.7554/elife.98366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
This study investigates the variability among patients with non-small cell lung cancer (NSCLC) in their responses to immune checkpoint inhibitors (ICIs). Recognizing that patients with advanced-stage NSCLC rarely qualify for surgical interventions, it becomes crucial to identify biomarkers that influence responses to ICI therapy. We conducted an analysis of single-cell transcriptomes from 33 lung cancer biopsy samples, with a particular focus on 14 core samples taken before the initiation of palliative ICI treatment. Our objective was to link tumor and immune cell profiles with patient responses to ICI. We discovered that ICI non-responders exhibited a higher presence of CD4+ regulatory T cells, resident memory T cells, and TH17 cells. This contrasts with the diverse activated CD8+ T cells found in responders. Furthermore, tumor cells in non-responders frequently showed heightened transcriptional activity in the NF-kB and STAT3 pathways, suggesting a potential inherent resistance to ICI therapy. Through the integration of immune cell profiles and tumor molecular signatures, we achieved an discriminative power (area under the curve [AUC]) exceeding 95% in identifying patient responses to ICI treatment. These results underscore the crucial importance of the interplay between tumor and immune microenvironment, including within metastatic sites, in affecting the effectiveness of ICIs in NSCLC.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Microbiology, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of KoreaSeoulRepublic of Korea
| | - Sehhoon Park
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Areum Jo
- Department of Microbiology, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of KoreaSeoulRepublic of Korea
| | - Hye Hyeon Eum
- Department of Microbiology, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of KoreaSeoulRepublic of Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Kyungjong Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Jong Ho Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Bo Mi Ku
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Hyun Ae Jung
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Jong-Mu Sun
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Se-Hoon Lee
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Jin Seok Ahn
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Jung Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Dasom Jeong
- Department of Microbiology, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of KoreaSeoulRepublic of Korea
| | - Minsu Na
- Department of Microbiology, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of KoreaSeoulRepublic of Korea
| | - Huiram Kang
- Department of Microbiology, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of KoreaSeoulRepublic of Korea
| | - Jeong Yeon Kim
- Department of Bio and Brain Engineering, KAISTDaejeonRepublic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAISTDaejeonRepublic of Korea
| | - Hae-Ock Lee
- Department of Microbiology, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of KoreaSeoulRepublic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
| | - Myung-Ju Ahn
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| |
Collapse
|
19
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400702. [PMID: 39248327 PMCID: PMC11538707 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Lu Gan
- Research Laboratory of Emergency MedicineDepartment of Emergency MedicineNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsLaboratory of Clinical Cell TherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
20
|
Yang Z, Tian H, Chen X, Li B, Bai G, Cai Q, Xu J, Guo W, Wang S, Peng Y, Liang Q, Xue L, Gao S. Single-cell sequencing reveals immune features of treatment response to neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma. Nat Commun 2024; 15:9097. [PMID: 39438438 PMCID: PMC11496748 DOI: 10.1038/s41467-024-52977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Neoadjuvant immunochemotherapy (nICT) has dramatically changed the treatment landscape of operable esophageal squamous cell carcinoma (ESCC), but factors influencing tumor response to nICT are not well understood. Here, using single-cell RNA sequencing paired with T cell receptor sequencing, we profile tissues from ESCC patients accepting nICT treatment and characterize the tumor microenvironment context. CXCL13+CD8+ Tex cells, a subset of exhausted CD8+ T cells, are revealed to highly infiltrate in pre-treatment tumors and show prominent progenitor exhaustion phenotype in post-treatment samples from responders. We validate CXCL13+CD8+ Tex cells as a predictor of improved response to nICT and reveal CXCL13 to potentiate anti-PD-1 efficacy in vivo. Post-treatment tumors from non-responders are enriched for CXCL13+CD8+ Tex cells with notably remarkable exhaustion phenotype and TNFRSF4+CD4+ Tregs with activated immunosuppressive function and a significant clone expansion. Several critical markers for therapeutic resistance are also identified, including LRRC15+ fibroblasts and SPP1+ macrophages, which may recruit Tregs to form an immunosuppressive landscape. Overall, our findings unravel immune features of distinct therapeutic response to nICT treatment, providing a rationale for optimizing individualized neoadjuvant strategy in ESCC.
Collapse
Affiliation(s)
- Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Respiratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingyuan Cai
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Guangdong Provincial People's Hospital/Guangdong Provincial Academy of Medical Sciences, Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangdong, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaibo Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qing Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
Parker ME, Mehta NU, Liao TC, Tomaszewski WH, Snyder SA, Busch J, Ciofani M. Restriction of innate Tγδ17 cell plasticity by an AP-1 regulatory axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618522. [PMID: 39463970 PMCID: PMC11507935 DOI: 10.1101/2024.10.15.618522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
IL-17-producing γδ T (Tγδ17) cells are innate-like mediators of intestinal barrier immunity. While Th17 cell and ILC3 plasticity have been extensively studied, the mechanisms governing Tγδ17 cell effector flexibility remain undefined. Here, we combined type 3 fate-mapping with single cell ATAC/RNA-seq multiome profiling to define the cellular features and regulatory networks underlying Tγδ17 cell plasticity. During homeostasis, Tγδ17 cell effector identity was stable across tissues, including for intestinal T-bet+ Tγδ17 cells that restrained IFNγ production. However, S. typhimurium infection induced intestinal Vγ6+ Tγδ17 cell conversion into type 1 effectors, with loss of IL-17A production and partial RORγt downregulation. Multiome analysis revealed a trajectory along Vγ6+ Tγδ17 effector conversion, with TIM-3 marking ex-Tγδ17 cells with enhanced type 1 functionality. Lastly, we characterized and validated a critical AP-1 regulatory axis centered around JunB and Fosl2 that controls Vγ6+ Tγδ17 cell plasticity by stabilizing type 3 identity and restricting type 1 effector conversion.
Collapse
Affiliation(s)
- Morgan E Parker
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Naren U Mehta
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Tzu-Chieh Liao
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - William H Tomaszewski
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Stephanie A Snyder
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Julia Busch
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Maria Ciofani
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
22
|
Xu H, Yue M, Zhou R, Wang P, Wong MYC, Wang J, Huang H, Chen B, Mo Y, Tam RCY, Zhou B, Du Z, Huang H, Liu L, Tan Z, Yuen KY, Song Y, Chen H, Chen Z. A Prime-Boost Vaccination Approach Induces Lung Resident Memory CD8+ T Cells Derived from Central Memory T Cells That Prevent Tumor Lung Metastasis. Cancer Res 2024; 84:3173-3188. [PMID: 39350665 PMCID: PMC11443216 DOI: 10.1158/0008-5472.can-23-3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/15/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024]
Abstract
Memory T cells play a key role in immune protection against cancer. Vaccine-induced tissue-resident memory T (TRM) cells in the lung have been shown to protect against lung metastasis. Identifying the source of lung TRM cells can help to improve strategies, preventing tumor metastasis. Here, we found that a prime-boost vaccination approach using intramuscular DNA vaccine priming, followed by intranasal live-attenuated influenza-vectored vaccine (LAIV) boosting induced higher frequencies of lung CD8+ TRM cells compared with other vaccination regimens. Vaccine-induced lung CD8+ TRM cells, but not circulating memory T cells, conferred significant protection against metastatic melanoma and mesothelioma. Central memory T (TCM) cells induced by the DNA vaccination were major precursors of lung TRM cells established after the intranasal LAIV boost. Single-cell RNA sequencing analysis indicated that transcriptional reprogramming of TCM cells for differentiation into TRM cells in the lungs started as early as day 2 post the LAIV boost. Intranasal LAIV altered the mucosal microenvironment to recruit TCM cells via CXCR3-dependent chemotaxis and induced CD8+ TRM-associated transcriptional programs. These results identified TCM cells as the source of vaccine-induced CD8+ TRM cells that protect against lung metastasis. Significance: Prime-boost vaccination shapes the mucosal microenvironment and reprograms central memory T cells to generate lung resident memory T cells that protect against lung metastasis, providing insights for the optimization of vaccine strategies.
Collapse
Affiliation(s)
- Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ming Yue
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Pui Wang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Michael Yik-Chun Wong
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jinlin Wang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Huarong Huang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Bohao Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yufei Mo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Rachel Chun-Yee Tam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Biao Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhenglong Du
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Haode Huang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Li Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhiwu Tan
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong, People's Republic of China
| | - Youqiang Song
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Honglin Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong, People's Republic of China
| |
Collapse
|
23
|
Yang G, Hu M, Cai S, Li C, Yang L, Zhao M, Jing H, Xing L, Sun X. Optimizing the spatial immune landscape of CD103 +CD8 + tissue-resident memory T cells in non-small cell lung cancer by neoadjuvant chemotherapy. Cell Oncol (Dordr) 2024; 47:1957-1971. [PMID: 39158668 DOI: 10.1007/s13402-024-00980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) combined with immunotherapy is increasingly used in non-small cell lung cancer (NSCLC). Tissue-resident memory T (TRM) cells are the primary subset responding to anti-cancer immunity. However, the immunomodulatory effects of NAC on TRM cells remain unknown. METHODS We established two NSCLC cohorts including patients undergoing upfront surgery (US) and NAC followed by surgery. Beyond the unpaired comparison between the US cohort (n = 122) and NAC cohort (n = 141) with resection samples, 58 matched pre-NAC biopsy samples were available for paired comparisons. Using multiplex immunofluorescence, we characterized TRM cells (CD103+CD8+) and four heterogeneous TRM subsets, including naive TRM1 (PD-1-Tim-3-), pre-exhausted TRM2 (PD-1+Tim-3-), TRM3 (PD-1-Tim-3+), and terminally exhausted TRM4 (PD-1+Tim-3+). Cell density, cytotoxicity, and two spatial features were defined to evaluate the effect of NAC on TRM subsets. RESULTS The cell densities, infiltration scores, and cancer-cell proximity scores of TRM cells, especially TRM1&2 subsets, were significantly increased after NAC and associated with better prognosis of patients. In Contrast, no significant change was observed in the TRM4 subset, which was associated with poor prognosis. Besides, the cytotoxicity of TRM subsets was unaltered after NAC. Compared with patients without major pathologic response (MPRs), patients with MPR had higher densities of TRM1&2 subsets and higher cancer-cell proximity scores of TRM2&3 subsets. Furthermore, increased density of CD31 + cancer microvessels was positively associated with both TRM and Tnon-RM cells after NAC. CONCLUSIONS NAC may remodel the cell density and spatial distribution of TRM subsets, which is associated with favorable therapeutic effect and prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Hongbiao Jing
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China.
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, China.
| |
Collapse
|
24
|
Karlsson JW, Sah VR, Olofsson Bagge R, Kuznetsova I, Iqba M, Alsen S, Stenqvist S, Saxena A, Ny L, Nilsson LM, Nilsson JA. Patient-derived xenografts and single-cell sequencing identifies three subtypes of tumor-reactive lymphocytes in uveal melanoma metastases. eLife 2024; 12:RP91705. [PMID: 39312285 PMCID: PMC11419671 DOI: 10.7554/elife.91705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Uveal melanoma (UM) is a rare melanoma originating in the eye's uvea, with 50% of patients experiencing metastasis predominantly in the liver. In contrast to cutaneous melanoma, there is only a limited effectiveness of combined immune checkpoint therapies, and half of patients with uveal melanoma metastases succumb to disease within 2 years. This study aimed to provide a path toward enhancing immunotherapy efficacy by identifying and functionally validating tumor-reactive T cells in liver metastases of patients with UM. We employed single-cell RNA-seq of biopsies and tumor-infiltrating lymphocytes (TILs) to identify potential tumor-reactive T cells. Patient-derived xenograft (PDX) models of UM metastases were created from patients, and tumor sphere cultures were generated from these models for co-culture with autologous or MART1-specific HLA-matched allogenic TILs. Activated T cells were subjected to TCR-seq, and the TCRs were matched to those found in single-cell sequencing data from biopsies, expanded TILs, and in livers or spleens of PDX models injected with TILs. Our findings revealed that tumor-reactive T cells resided not only among activated and exhausted subsets of T cells, but also in a subset of cytotoxic effector cells. In conclusion, combining single-cell sequencing and functional analysis provides valuable insights into which T cells in UM may be useful for cell therapy amplification and marker selection.
Collapse
Affiliation(s)
- Joakim W Karlsson
- Harry Perkins Institute of Medical Research and University of Western AustraliaPerthAustralia
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Vasu R Sah
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Surgery, Sahlgrenska University HospitalGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, University of GothenburgGothenburgSweden
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical Research and University of Western AustraliaPerthAustralia
| | - Munir Iqba
- Genomics WA, Telethon Kids Institute, Harry Perkins Institute of Medical Research and University of Western AustraliaNedlandsAustralia
| | - Samuel Alsen
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Sofia Stenqvist
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Alka Saxena
- Genomics WA, Telethon Kids Institute, Harry Perkins Institute of Medical Research and University of Western AustraliaNedlandsAustralia
| | - Lars Ny
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Oncology, Sahlgrenska University HospitalGothenburgSweden
| | - Lisa M Nilsson
- Harry Perkins Institute of Medical Research and University of Western AustraliaPerthAustralia
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Jonas A Nilsson
- Harry Perkins Institute of Medical Research and University of Western AustraliaPerthAustralia
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
25
|
Hill SL, Sugiyarto G, Harrington J, James E, Underwood TJ, Elliott T. High proportion of PD-1 and CD39 positive CD8+ tissue resident T lymphocytes correlates with better clinical outcome in resected human oesophageal adenocarcinoma. Cancer Immunol Immunother 2024; 73:213. [PMID: 39235606 PMCID: PMC11377377 DOI: 10.1007/s00262-024-03799-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE To understand the CD8+ tumour infiltrating lymphocyte (TIL) compartment of oesophageal adenocarcinoma (OAC) with regards to markers of lymphocyte exhaustion, tissue residency and to identify possible reasons behind differential responses to therapy. DESIGN Tumour samples from 44 patients undergoing curative resection for OAC were assessed by flow cytometry for presence of antigen-experienced TILs and markers of activation and exhaustion. Populations of PD-1 and CD39 positive OAC TILs were sorted, and bulk RNA sequencing undertaken using a modified SmartSeq2 protocol. Flow cytometric assessment of functionality was completed. RESULTS A higher proportion of antigen experienced CD8+ OAC TILs was associated with improved survival following surgery; while, high double positivity (DP) for PD-1 and CD39 among these TILs also correlated significantly with outcome. These DP TILs possess a minority population which is positive for the markers of exhaustion TIM3 and LAG3. Transcriptomic assessment of the PD-1 and CD39 DP TILs demonstrated enrichment for a tissue resident memory T lymphocyte (TRM) phenotype associated with improved survival in other cancers, reinforced by positivity for the canonical TRM marker CD103 by flow cytometry. This population demonstrated maintained functional capacity both in their transcriptomic profile, and on flow cytometric assessment, as well as preserved proliferative capacity. CONCLUSION Resected OAC are variably infiltrated by PD-1 and CD39 DP TILs, an abundance of which among lymphocytes is associated with improved survival. This DP population has an increased, but still modest, frequency of TIM3 and LAG3 positivity compared to DN, and is in keeping with a functionally competent TRM phenotype.
Collapse
Affiliation(s)
- Samuel L Hill
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Gessa Sugiyarto
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jack Harrington
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Edward James
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Timothy J Underwood
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tim Elliott
- Oxford Cancer Centre for Immuno-Oncology and CAMS-Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Steiner C, Denlinger N, Huang X, Yang Y. Stem-like CD8 + T cells in cancer. Front Immunol 2024; 15:1426418. [PMID: 39211052 PMCID: PMC11357971 DOI: 10.3389/fimmu.2024.1426418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Stem-like CD8+ T cells (TSL) are a subset of immune cells with superior persistence and antitumor immunity. They are TCF1+ PD-1+ and important for the expansion of tumor specific CD8+ T cells in response to checkpoint blockade immunotherapy. In acute infections, naïve CD8+ T cells differentiate into effector and memory CD8+ T cells; in cancer and chronic infections, persistent antigen stimulation can lead to T cell exhaustion. Recent studies have highlighted the dichotomy between late dysfunctional (or exhausted) T cells (TLD) that are TCF1- PD-1+ and self-renewing TCF1+ PD-1+ TSL from which they derive. TCF1+ TSL cells are considered to have stem cell-like properties akin to memory T cell populations and can give rise to cytotoxic effector and transitory T cell phenotypes (TTE) which mediate tumor control. In this review, we will discuss recent advances made in research on the formation and expansion of TSL, as well as distinct niches required for their differentiation and maintenance in the setting of cancer. We will also discuss potential strategies to generate these cells, with clinical implications for stemness enhancement in vaccine design, immune checkpoint blockade (ICB), and adoptive T cell therapies.
Collapse
Affiliation(s)
| | | | - Xiaopei Huang
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Yiping Yang
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
27
|
Gavil NV, Cheng K, Masopust D. Resident memory T cells and cancer. Immunity 2024; 57:1734-1751. [PMID: 39142275 PMCID: PMC11529779 DOI: 10.1016/j.immuni.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Tissue-resident memory T (TRM) cells positively correlate with cancer survival, but the anti-tumor mechanisms underlying this relationship are not understood. This review reconciles these observations, summarizing concepts of T cell immunosurveillance, fundamental TRM cell biology, and clinical observations on the role of TRM cells in cancer and immunotherapy outcomes. We also discuss emerging strategies that utilize TRM-phenotype cells for patient diagnostics, staging, and therapy. Current challenges are highlighted, including a lack of standardized T cell nomenclature and our limited understanding of relationships between T cell markers and underlying tumor biology. Existing findings are integrated into a summary of the field while emphasizing opportunities for future research.
Collapse
Affiliation(s)
- Noah Veis Gavil
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Katarina Cheng
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Mietz J, Kaulfuss M, Egli L, Opitz L, Münz C, Chijioke O. Human effector CD8 + T cells with an activated and exhausted-like phenotype control tumour growth in vivo in a humanized tumour model. EBioMedicine 2024; 106:105240. [PMID: 38986249 PMCID: PMC11296066 DOI: 10.1016/j.ebiom.2024.105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Humanized tumour models could be particularly valuable for cancer immunotherapy research, as they may better reflect human-specific aspects of the interfaces between tumour and immune system of human cancer. However, endogenous antitumour immunity in humanized models is still largely undefined. METHODS We established an autologous humanized mouse tumour model by using NSG mice reconstituted with human immune cells from hematopoietic progenitors and tumours generated from transformed autologous human B cells. We demonstrate growth of solid lymphoid tumours after subcutaneous implantation, infiltration by endogenous human immune cells and immunocompetence of the model. FINDINGS We found human T cell subsets described in human cancer, including progenitor exhausted (Tpex), terminally exhausted (Tex-term) and tissue-resident (TRM) cells in tumour-bearing humanized mice with accumulation of Tex-term and TRM in the tumour. In addition, we identified tumour-reactive CD8+ T cells through expression of CD137. This subpopulation of de novo arising human CD137+ CD8+ T cells displayed a highly proliferative, fully activated effector and exhausted-like phenotype with enhanced expression of activation and exhaustion markers like PD-1, CD39, CD160, TIM-3, TIGIT and TOX, the senescence marker CD57 (B3GAT1) and cytolytic effector molecules such as PRF1, GZMH and NKG7. Moreover, these CD137+ CD8+ T cells exhibited tumour-specific clonal expansion and presented signature overlap with tumour-reactive CD8+ T cells described in human cancer. We demonstrate superior anticancer activity of this activated and exhausted-like human CD8+ T cell subset by adoptive transfer experiments using recipients bearing autologous human tumours. Mice adoptively transferred with CD137+ CD8+ T cells showed reduced tumour growth and higher CD8+ T cell tumour infiltration, correlating with control of human tumours. INTERPRETATION We established an immunocompetent humanized tumour model, providing a tool for immunotherapy research and defined effective anticancer activity of human effector CD8+ T cells with an activated and exhausted-like phenotype, supporting clinical exploration of such cells in adoptive T cell therapies. FUNDING Swiss Cancer Research foundation.
Collapse
Affiliation(s)
- Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Meike Kaulfuss
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Lukas Egli
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
29
|
Wang F, Yue S, Huang Q, Lei T, Li X, Wang C, Yue J, Liu C. Cellular heterogeneity and key subsets of tissue-resident memory T cells in cervical cancer. NPJ Precis Oncol 2024; 8:145. [PMID: 39014148 PMCID: PMC11252146 DOI: 10.1038/s41698-024-00637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Tissue-resident memory T cells (TRMs) play a critical role in cancer immunity by offering quick and effective immune responses. However, the cellular heterogeneity of TRMs and their significance in cervical cancer (CC) remain unknown. In this study, we generated and analyzed single-cell RNA sequencing data from 12,945 TRMs (ITGAE+ CD3D+) and 25,627 non-TRMs (ITGAE- CD3D+), derived from 11 CC tissues and 5 normal cervical tissues. We found that TRMs were more immunoreactive than non-TRMs, and TRMs in CC tissues were more activated than those in normal cervical tissues. Six CD8+ TRM subclusters and one CD4+ TRM subcluster were identified. Among them, CXCL13+ CD8+ TRMs were more abundant in CC tissues than in normal cervical tissues, had both cytotoxic and inhibitory features, and were enriched in pathways related to defense responses to the virus. Meanwhile, PLAC8+ CD8+ TRMs were less abundant in CC tissues than in normal cervical tissues but had highly cytotoxic features. The signature gene set scores of both cell subclusters were positively correlated with the overall survival and progression-free survival of patients with CC following radiotherapy. Of note, the association between HLA-E and NKG2A, either alone or in a complex with CD94, was enriched in CXCL13+ CD8+ TRMs interacting with epithelial cells at CC tissues. The in-depth characterization of TRMs heterogeneity in the microenvironment of CC could have important implications for advancing treatment and improving the prognosis of patients with CC.
Collapse
Affiliation(s)
- Fuhao Wang
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China
| | - Shengqin Yue
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingyu Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaohui Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Cong Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
30
|
Shen A, Garrett A, Chao CC, Liu D, Cheng C, Wang Z, Qian C, Zhu Y, Mai J, Jiang C. A comprehensive meta-analysis of tissue resident memory T cells and their roles in shaping immune microenvironment and patient prognosis in non-small cell lung cancer. Front Immunol 2024; 15:1416751. [PMID: 39040095 PMCID: PMC11260734 DOI: 10.3389/fimmu.2024.1416751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Tissue-resident memory T cells (TRM) are a specialized subset of long-lived memory T cells that reside in peripheral tissues. However, the impact of TRM-related immunosurveillance on the tumor-immune microenvironment (TIME) and tumor progression across various non-small-cell lung cancer (NSCLC) patient populations is yet to be elucidated. Our comprehensive analysis of multiple independent single-cell and bulk RNA-seq datasets of patient NSCLC samples generated reliable, unique TRM signatures, through which we inferred the abundance of TRM in NSCLC. We discovered that TRM abundance is consistently positively correlated with CD4+ T helper 1 cells, M1 macrophages, and resting dendritic cells in the TIME. In addition, TRM signatures are strongly associated with immune checkpoint and stimulatory genes and the prognosis of NSCLC patients. A TRM-based machine learning model to predict patient survival was validated and an 18-gene risk score was further developed to effectively stratify patients into low-risk and high-risk categories, wherein patients with high-risk scores had significantly lower overall survival than patients with low-risk. The prognostic value of the risk score was independently validated by the Cancer Genome Atlas Program (TCGA) dataset and multiple independent NSCLC patient datasets. Notably, low-risk NSCLC patients with higher TRM infiltration exhibited enhanced T-cell immunity, nature killer cell activation, and other TIME immune responses related pathways, indicating a more active immune profile benefitting from immunotherapy. However, the TRM signature revealed low TRM abundance and a lack of prognostic association among lung squamous cell carcinoma patients in contrast to adenocarcinoma, indicating that the two NSCLC subtypes are driven by distinct TIMEs. Altogether, this study provides valuable insights into the complex interactions between TRM and TIME and their impact on NSCLC patient prognosis. The development of a simplified 18-gene risk score provides a practical prognostic marker for risk stratification.
Collapse
Affiliation(s)
- Aidan Shen
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Aliesha Garrett
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Cheng-Chi Chao
- Department of Pipeline Development, Biomap, Inc., San Francisco, CA, United States
| | - Dongliang Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Zhaohui Wang
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Chen Qian
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yangzhi Zhu
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Chongming Jiang
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| |
Collapse
|
31
|
De León-Rodríguez SG, Aguilar-Flores C, Gajón JA, Juárez-Flores Á, Mantilla A, Gerson-Cwilich R, Martínez-Herrera JF, Villegas-Osorno DA, Gutiérrez-Quiroz CT, Buenaventura-Cisneros S, Sánchez-Prieto MA, Castelán-Maldonado E, Rivera Rivera S, Fuentes-Pananá EM, Bonifaz LC. TCF1-positive and TCF1-negative TRM CD8 T cell subsets and cDC1s orchestrate melanoma protection and immunotherapy response. J Immunother Cancer 2024; 12:e008739. [PMID: 38969523 PMCID: PMC11227852 DOI: 10.1136/jitc-2023-008739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Melanoma, the most lethal form of skin cancer, has undergone a transformative treatment shift with the advent of checkpoint blockade immunotherapy (CBI). Understanding the intricate network of immune cells infiltrating the tumor and orchestrating the control of melanoma cells and the response to CBI is currently of utmost importance. There is evidence underscoring the significance of tissue-resident memory (TRM) CD8 T cells and classic dendritic cell type 1 (cDC1) in cancer protection. Transcriptomic studies also support the existence of a TCF7+ (encoding TCF1) T cell as the most important for immunotherapy response, although uncertainty exists about whether there is a TCF1+TRM T cell due to evidence indicating TCF1 downregulation for tissue residency activation. METHODS We used multiplexed immunofluorescence and spectral flow cytometry to evaluate TRM CD8 T cells and cDC1 in two melanoma patient cohorts: one immunotherapy-naive and the other receiving immunotherapy. The first cohort was divided between patients free of disease or with metastasis 2 years postdiagnosis while the second between CBI responders and non-responders. RESULTS Our study identifies two CD8+TRM subsets, TCF1+ and TCF1-, correlating with melanoma protection. TCF1+TRM cells show heightened expression of IFN-γ and Ki67 while TCF1- TRM cells exhibit increased expression of cytotoxic molecules. In metastatic patients, TRM subsets undergo a shift in marker expression, with the TCF1- subset displaying increased expression of exhaustion markers. We observed a close spatial correlation between cDC1s and TRMs, with TCF1+TRM/cDC1 pairs enriched in the stroma and TCF1- TRM/cDC1 pairs in tumor areas. Notably, these TCF1- TRMs express cytotoxic molecules and are associated with apoptotic melanoma cells. Both TCF1+ and TCF1- TRM subsets, alongside cDC1, prove relevant to CBI response. CONCLUSIONS Our study supports the importance of TRM CD8 T cells and cDC1 in melanoma protection while also highlighting the existence of functionally distinctive TCF1+ and TCF1- TRM subsets, both crucial for melanoma control and CBI response.
Collapse
Affiliation(s)
- Saraí G De León-Rodríguez
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Cristina Aguilar-Flores
- Unidad de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Julián A Gajón
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
- Posgrado en Ciencias Bioquímicas, Facultad de Química, Universad Nacional Autónoma de México, Mexico City, Mexico
| | - Ángel Juárez-Flores
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Alejandra Mantilla
- Servicio de Patología, Hospital de Oncología Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | | | - José Fabián Martínez-Herrera
- Medical Center American British Cowdray, Mexico City, Mexico
- Latin American Network for Cancer Research (LAN-CANCER), Lima, Peru
| | | | - Claudia T Gutiérrez-Quiroz
- UMAE Hospital de Especialidades, Centro Médico Nacional General Manuel Avila Camacho, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | | | - Mario Alberto Sánchez-Prieto
- Unidad Médica de Alta Especialidad No.25, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, Mexico
- División de Atención Oncológica en Adultos. Coordinación de Atención Oncológica, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Edmundo Castelán-Maldonado
- Unidad Médica de Alta Especialidad No.25, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, Mexico
| | - Samuel Rivera Rivera
- Medical Center American British Cowdray, Mexico City, Mexico
- División de Atención Oncológica en Adultos. Coordinación de Atención Oncológica, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
- Coordinación de investigación en salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| |
Collapse
|
32
|
Wu C, Yu H, Liang F, Huang X, Jiang B, Lou Z, Liu Y, Wu Z, Wang Q, Shen H, Chen M, Wu P, Wu M. Hypoxia inhibits the iMo/cDC2/CD8+ TRMs immune axis in the tumor microenvironment of human esophageal cancer. J Immunother Cancer 2024; 12:e008889. [PMID: 38964786 PMCID: PMC11227851 DOI: 10.1136/jitc-2024-008889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Esophageal cancer (ESCA) is a form of malignant tumor associated with chronic inflammation and immune dysregulation. However, the specific immune status and key mechanisms of immune regulation in this disease require further exploration. METHODS To investigate the features of the human ESCA tumor immune microenvironment and its possible regulation, we performed mass cytometry by time of flight, single-cell RNA sequencing, multicolor fluorescence staining of tissue, and flow cytometry analyses on tumor and paracancerous tissue from treatment-naïve patients. RESULTS We depicted the immune landscape of the ESCA and revealed that CD8+ (tissue-resident memory CD8+ T cells (CD8+ TRMs) were closely related to disease progression. We also revealed the heterogeneity of CD8+ TRMs in the ESCA tumor microenvironment (TME), which was associated with their differentiation and function. Moreover, the subset of CD8+ TRMs in tumor (called tTRMs) that expressed high levels of granzyme B and immune checkpoints was markedly decreased in the TME of advanced ESCA. We showed that tTRMs are tumor effector cells preactivated in the TME. We then demonstrated that conventional dendritic cells (cDC2s) derived from intermediate monocytes (iMos) are essential for maintaining the proliferation of CD8+ TRMs in the TME. Our preliminary study showed that hypoxia can promote the apoptosis of iMos and impede the maturation of cDC2s, which in turn reduces the proliferative capacity of CD8+ TRMs, thereby contributing to the progression of cancer. CONCLUSIONS Our study revealed the essential antitumor roles of CD8+ TRMs and preliminarily explored the regulation of the iMo/cDC2/CD8+ TRM immune axis in the human ESCA TME.
Collapse
Affiliation(s)
- Chuanqiang Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Laboratory of Clinical Research Center of Zhejiang Province, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Huan Yu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Fuxiang Liang
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiancong Huang
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital, Jinan, Shandong Province, People's Republic of China
| | - Zhiling Lou
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yafei Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zixiang Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Qi Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hong Shen
- Department of Medical Oncology, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine,Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Laboratory of Clinical Research Center of Zhejiang Province, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
33
|
Porte R, Belloy M, Audibert A, Bassot E, Aïda A, Alis M, Miranda-Capet R, Jourdes A, van Gisbergen KPJM, Masson F, Blanchard N. Protective function and differentiation cues of brain-resident CD8+ T cells during surveillance of latent Toxoplasma gondii infection. Proc Natl Acad Sci U S A 2024; 121:e2403054121. [PMID: 38838017 PMCID: PMC11181119 DOI: 10.1073/pnas.2403054121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.
Collapse
Affiliation(s)
- Rémi Porte
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Marcy Belloy
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Alexis Audibert
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Emilie Bassot
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Amel Aïda
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Marine Alis
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Romain Miranda-Capet
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Aurélie Jourdes
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | | | - Frédérick Masson
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| |
Collapse
|
34
|
Zhang Y, Qian L, Chen K, Gu S, Meng Z, Wang J, Li Y, Wang P. Oncolytic adenovirus in treating malignant ascites: A phase II trial and longitudinal single-cell study. Mol Ther 2024; 32:2000-2020. [PMID: 38659226 PMCID: PMC11184408 DOI: 10.1016/j.ymthe.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/24/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
Malignant ascites is a common complication resulting from the peritoneal spread of malignancies, and currently lacks effective treatments. We conducted a phase II trial (NCT04771676) to investigate the efficacy and safety of oncolytic adenovirus H101 and virotherapy-induced immune response in 25 patients with malignant ascites. Oncolytic virotherapy achieved an increased median time to repeat paracentesis of 45 days (95% confidence interval 16.5-73.5 days), compared with the preset control value of 13 days. Therapy was well-tolerated, with pyrexia, fatigue, nausea, and abdominal pain as the most common toxicities. Longitudinal single-cell profiling identified marked oncolysis, early virus replication, and enhanced CD8+ T cells-macrophages immune checkpoint crosstalk, especially in responsive patients. H101 also triggered a proliferative burst of CXCR6+ and GZMK+CD8+ T cells with promoted tumor-specific cytotoxicity. Further establishment of oncolytic virus-induced T cell expansion signature (OiTE) implicated the potential benefits for H101-responsive patients from subsequent anti-PD(L)1 therapy. Patients with upregulated immune-signaling pathways in tumor cells and a higher proportion of CLEC10A+ dendritic cells and GZMK+CD8+ T cells at baseline showed a superior response to H101 treatment. Our study demonstrates promising clinical responses and tolerability of oncolytic adenovirus in treating malignant ascites and provides insights into the relevant cellular processes following oncolytic virotherapy.
Collapse
Affiliation(s)
- Yalei Zhang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Qian
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Chen
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sijia Gu
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 300032, China.
| | - Ye Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Peng Wang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Li X, Qiu P. Gene representation bias in spatial transcriptomics. J Bioinform Comput Biol 2024; 22:2450007. [PMID: 39036848 DOI: 10.1142/s0219720024500070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
For sequencing-based spatial transcriptomics data, the gene-spot count matrix is highly sparse. This feature is similar to scRNA-seq. The goal of this paper is to identify whether there exist genes that are frequently under-detected in Visium compared to bulk RNA-seq, and the underlying potential mechanism of under-detection in Visium. We collected paired Visium and bulk RNA-seq data for 28 human samples and 19 mouse samples, which covered diverse tissue sources. We compared the two data types and observed that there indeed exists a collection of genes frequently under-detected in Visium compared to bulk RNA-seq. We performed a motif search to examine the last 350 bp of the frequently under-detected genes, and we observed that the poly (T) motif was significantly enriched in genes identified from both human and mouse data, which matches with our previous finding about frequently under-detected genes in scRNA-seq. We hypothesized that the poly (T) motif may be able to form a hairpin structure with the poly (A) tails of their mRNA transcripts, making it difficult for their mRNA transcripts to be captured during Visium library preparation.
Collapse
Affiliation(s)
- Xinling Li
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Peng Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
36
|
Franzese O, Ancona P, Bianchi N, Aguiari G. Apoptosis, a Metabolic "Head-to-Head" between Tumor and T Cells: Implications for Immunotherapy. Cells 2024; 13:924. [PMID: 38891056 PMCID: PMC11171541 DOI: 10.3390/cells13110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Induction of apoptosis represents a promising therapeutic approach to drive tumor cells to death. However, this poses challenges due to the intricate nature of cancer biology and the mechanisms employed by cancer cells to survive and escape immune surveillance. Furthermore, molecules released from apoptotic cells and phagocytes in the tumor microenvironment (TME) can facilitate cancer progression and immune evasion. Apoptosis is also a pivotal mechanism in modulating the strength and duration of anti-tumor T-cell responses. Combined strategies including molecular targeting of apoptosis, promoting immunogenic cell death, modulating immunosuppressive cells, and affecting energy pathways can potentially overcome resistance and enhance therapeutic outcomes. Thus, an effective approach for targeting apoptosis within the TME should delicately balance the selective induction of apoptosis in tumor cells, while safeguarding survival, metabolic changes, and functionality of T cells targeting crucial molecular pathways involved in T-cell apoptosis regulation. Enhancing the persistence and effectiveness of T cells may bolster a more resilient and enduring anti-tumor immune response, ultimately advancing therapeutic outcomes in cancer treatment. This review delves into the pivotal topics of this multifaceted issue and suggests drugs and druggable targets for possible combined therapies.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via F. Mortara 74, 44121 Ferrara, Italy;
| |
Collapse
|
37
|
Upadhye A, Meza Landeros KE, Ramírez-Suástegui C, Schmiedel BJ, Woo E, Chee SJ, Malicki D, Coufal NG, Gonda D, Levy ML, Greenbaum JA, Seumois G, Crawford J, Roberts WD, Schoenberger SP, Cheroutre H, Ottensmeier CH, Vijayanand P, Ganesan AP. Intra-tumoral T cells in pediatric brain tumors display clonal expansion and effector properties. NATURE CANCER 2024; 5:791-807. [PMID: 38228835 DOI: 10.1038/s43018-023-00706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Brain tumors in children are a devastating disease in a high proportion of patients. Owing to inconsistent results in clinical trials in unstratified patients, the role of immunotherapy remains unclear. We performed an in-depth survey of the single-cell transcriptomes and clonal relationship of intra-tumoral T cells from children with brain tumors. Our results demonstrate that a large fraction of T cells in the tumor tissue are clonally expanded with the potential to recognize tumor antigens. Such clonally expanded T cells display enrichment of transcripts linked to effector function, tissue residency, immune checkpoints and signatures of neoantigen-specific T cells and immunotherapy response. We identify neoantigens in pediatric brain tumors and show that neoantigen-specific T cell gene signatures are linked to better survival outcomes. Notably, among the patients in our cohort, we observe substantial heterogeneity in the degree of clonal expansion and magnitude of T cell response. Our findings suggest that characterization of intra-tumoral T cell responses may enable selection of patients for immunotherapy, an approach that requires prospective validation in clinical trials.
Collapse
Affiliation(s)
- Aditi Upadhye
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kevin E Meza Landeros
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | | | | | - Edwin Woo
- Southampton University Hospitals NHS Trust, Southampton, UK
| | - Serena J Chee
- Department of Respiratory Medicine, Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Denise Malicki
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Nicole G Coufal
- Rady Children's Hospital, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - David Gonda
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA
| | - Michael L Levy
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA
| | | | | | - John Crawford
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Children's Hospital Orange County, Irvine, CA, USA
| | - William D Roberts
- Rady Children's Hospital, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | | | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Anusha-Preethi Ganesan
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
38
|
Broquet A, Gourain V, Goronflot T, Le Mabecque V, Sinha D, Ashayeripanah M, Jacqueline C, Martin P, Davieau M, Boutin L, Poulain C, Martin FP, Fourgeux C, Petrier M, Cannevet M, Leclercq T, Guillonneau M, Chaumette T, Laurent T, Harly C, Scotet E, Legentil L, Ferrières V, Corgnac S, Mami-Chouaib F, Mosnier JF, Mauduit N, McWilliam HEG, Villadangos JA, Gourraud PA, Asehnoune K, Poschmann J, Roquilly A. Sepsis-trained macrophages promote antitumoral tissue-resident T cells. Nat Immunol 2024; 25:802-819. [PMID: 38684922 DOI: 10.1038/s41590-024-01819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.
Collapse
Affiliation(s)
- Alexis Broquet
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Victor Gourain
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Thomas Goronflot
- CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des Données, INSERM, Nantes Université, CIC 1413, Nantes, France
| | - Virginie Le Mabecque
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Debajyoti Sinha
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Mitra Ashayeripanah
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Cédric Jacqueline
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Pierre Martin
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Marion Davieau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Lea Boutin
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Cecile Poulain
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Florian P Martin
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Cynthia Fourgeux
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Melanie Petrier
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Manon Cannevet
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Thomas Leclercq
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Maeva Guillonneau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- Olgram SAS, Bréhan, France
| | - Tanguy Chaumette
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | - Thomas Laurent
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
| | | | | | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes, ISCR - UMR CNRS 6226, Rennes, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes, ISCR - UMR CNRS 6226, Rennes, France
| | - Stephanie Corgnac
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Faculty de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Faculty de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | | | | | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Pierre Antoine Gourraud
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, Pôle Hospitalo-Universitaire 11: Santé Publique, Clinique des Données, INSERM, Nantes Université, CIC 1413, Nantes, France
| | - Karim Asehnoune
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Jeremie Poschmann
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France.
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology UMR 1064, Nantes, France.
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France.
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
39
|
Alvarez Calderon F, Kang BH, Kyrysyuk O, Zheng S, Wang H, Mathewson ND, Luoma AM, Ning X, Pyrdol J, Cao X, Suvà ML, Yuan GC, Wittrup KD, Wucherpfennig KW. Targeting of the CD161 inhibitory receptor enhances T-cell-mediated immunity against hematological malignancies. Blood 2024; 143:1124-1138. [PMID: 38153903 PMCID: PMC10972713 DOI: 10.1182/blood.2023022882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023] Open
Abstract
ABSTRACT The CD161 inhibitory receptor is highly upregulated by tumor-infiltrating T cells in multiple human solid tumor types, and its ligand, CLEC2D, is expressed by both tumor cells and infiltrating myeloid cells. Here, we assessed the role of the CD161 receptor in hematological malignancies. Systematic analysis of CLEC2D expression using the Cancer Cell Line Encyclopedia revealed that CLEC2D messenger RNA was most abundant in hematological malignancies, including B-cell and T-cell lymphomas as well as lymphocytic and myelogenous leukemias. CLEC2D protein was detected by flow cytometry on a panel of cell lines representing a diverse set of hematological malignancies. We, therefore, used yeast display to generate a panel of high-affinity, fully human CD161 monoclonal antibodies (mAbs) that blocked CLEC2D binding. These mAbs were specific for CD161 and had a similar affinity for human and nonhuman primate CD161, a property relevant for clinical translation. A high-affinity CD161 mAb enhanced key aspects of T-cell function, including cytotoxicity, cytokine production, and proliferation, against B-cell lines originating from patients with acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and Burkitt lymphoma. In humanized mouse models, this CD161 mAb enhanced T-cell-mediated immunity, resulting in a significant survival benefit. Single cell RNA-seq data demonstrated that CD161 mAb treatment enhanced expression of cytotoxicity genes by CD4 T cells as well as a tissue-residency program by CD4 and CD8 T cells that is associated with favorable survival outcomes in multiple human cancer types. These fully human mAbs, thus, represent potential immunotherapy agents for hematological malignancies.
Collapse
Affiliation(s)
- Francesca Alvarez Calderon
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
- Harvard Medical School, Boston, MA
| | - Byong H. Kang
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shiwei Zheng
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hao Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Nathan D. Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Adrienne M. Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Xiaohan Ning
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Jason Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Xuan Cao
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mario L. Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
40
|
Ban M, Bredikhin D, Huang Y, Bonder MJ, Katarzyna K, Oliver AJ, Wilson NK, Coupland P, Hadfield J, Göttgens B, Madissoon E, Stegle O, Sawcer S. Expression profiling of cerebrospinal fluid identifies dysregulated antiviral mechanisms in multiple sclerosis. Brain 2024; 147:554-565. [PMID: 38038362 PMCID: PMC10834244 DOI: 10.1093/brain/awad404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Despite the overwhelming evidence that multiple sclerosis is an autoimmune disease, relatively little is known about the precise nature of the immune dysregulation underlying the development of the disease. Reasoning that the CSF from patients might be enriched for cells relevant in pathogenesis, we have completed a high-resolution single-cell analysis of 96 732 CSF cells collected from 33 patients with multiple sclerosis (n = 48 675) and 48 patients with other neurological diseases (n = 48 057). Completing comprehensive cell type annotation, we identified a rare population of CD8+ T cells, characterized by the upregulation of inhibitory receptors, increased in patients with multiple sclerosis. Applying a Multi-Omics Factor Analysis to these single-cell data further revealed that activity in pathways responsible for controlling inflammatory and type 1 interferon responses are altered in multiple sclerosis in both T cells and myeloid cells. We also undertook a systematic search for expression quantitative trait loci in the CSF cells. Of particular interest were two expression quantitative trait loci in CD8+ T cells that were fine mapped to multiple sclerosis susceptibility variants in the viral control genes ZC3HAV1 (rs10271373) and IFITM2 (rs1059091). Further analysis suggests that these associations likely reflect genetic effects on RNA splicing and cell-type specific gene expression respectively. Collectively, our study suggests that alterations in viral control mechanisms might be important in the development of multiple sclerosis.
Collapse
Affiliation(s)
- Maria Ban
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Danila Bredikhin
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yuanhua Huang
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| | - Marc Jan Bonder
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kania Katarzyna
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Nicola K Wilson
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul Coupland
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - James Hadfield
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Elo Madissoon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| | - Stephen Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
41
|
Lin X, Tang S, Guo Y, Tang R, Li Z, Pan X, Chen G, Qiu L, Dong X, Zhang L, Liu X, Cai Z, Xie B. Personalized neoantigen vaccine enhances the therapeutic efficacy of bevacizumab and anti-PD-1 antibody in advanced non-small cell lung cancer. Cancer Immunol Immunother 2024; 73:26. [PMID: 38280084 PMCID: PMC10821847 DOI: 10.1007/s00262-023-03598-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 01/29/2024]
Abstract
Clinically, a considerable number of non-small cell lung cancer (NSCLC) patients are unable to receive or resist chemotherapy, and the efficacy of non-chemotherapy treatment strategies based on anti-angiogenic agents combined with immune checkpoint blockade is still unsatisfactory. Neoantigen vaccine, based on personalized tumor DNA mutations, could elicit tumor specific T cell infiltration into the tumor site, exerting potent anti-tumor efficacy. Here, we evaluated the feasibility and safety of a new antitumor strategy by adding neoantigen vaccine to the regimen of bevacizumab and anti-PD-1 antibody. Firstly, 7 novel immunogenic neoantigen peptides were identified and developed for neoantigen vaccine (LLCvac), which can elicit strong antitumor immune response in vivo. Then, in orthotopic lung cancer model, LLCvac further combining with bevacizumab and anti-PD-1 antibody exerted a stronger antitumor effect, exhibiting significant decrease of tumor volume without obvious toxicity. Furthermore, tumor immune microenvironment assessment also showed that the proportion of neoantigen-specific T cells in blood could be induced dramatically by the combined therapy. And a large amount of neoantigen-specific Ki67-positive CD8+ T cells were found in tumor tissues, which infiltrated tumor tissues effectively to kill tumor cells expressing identified neoantigens. Overall, these results suggested that this combined therapy could safely induce robust antitumor efficacy, serving as an effective chemotherapy-free strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Xiuhua Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Shichuan Tang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Yutong Guo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Ruijing Tang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Xinting Pan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Liman Qiu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine On Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, China.
| | - Baosong Xie
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China.
| |
Collapse
|
42
|
Yang G, Cai S, Hu M, Li C, Yang L, Zhang W, Sun J, Sun F, Xing L, Sun X. Spatial features of specific CD103 +CD8 + tissue-resident memory T cell subsets define the prognosis in patients with non-small cell lung cancer. J Transl Med 2024; 22:27. [PMID: 38183111 PMCID: PMC10770937 DOI: 10.1186/s12967-023-04839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Tissue-resident memory T (TRM) cells can reside in the tumor microenvironment and are considered the primary response cells to immunotherapy. Heterogeneity in functional status and spatial distribution may contribute to the controversial role of TRM cells but we know little about it. METHODS Through multiplex immunofluorescence (mIF) (CD8, CD103, PD-1, Tim-3, GZMB, CK), the quantity and spatial location of TRM cell subsets were recognized in the tissue from 274 patients with NSCLC after radical surgery. By integrating multiple machine learning methods, we constructed a TRM-based spatial immune signature (TRM-SIS) to predict the prognosis. Furthermore, we conducted a CD103-related gene set enrichment analysis (GSEA) and verified its finding by another mIF panel (CD8, CD103, CK, CD31, Hif-1α). RESULTS The density of TRM cells was significantly correlated with the expression of PD-1, Tim-3 and GZMB. Four types of TRM cell subsets was defined, including TRM1 (PD-1-Tim-3-TRM), TRM2 (PD-1+Tim-3-TRM), TRM3 (PD-1-Tim-3+TRM) and TRM4 (PD-1+Tim-3+TRM). The cytotoxicity of TRM2 was the strongest while that of TRM4 was the weakest. Compare with TRM1 and TRM2, TRM3 and TRM4 had better infiltration and stronger interaction with cancer cells. The TRM-SIS was an independent prognostic factor for disease-free survival [HR = 2.43, 95%CI (1.63-3.60), P < 0.001] and showed a better performance than the TNM staging system for recurrence prediction. Furthermore, by CD103-related GSEA and mIF validation, we found a negative association between tumor angiogenesis and infiltration of TRM cells. CONCLUSIONS These findings reveal a significant heterogeneity in the functional status and spatial distribution of TRM cells, and support it as a biomarker for the prognosis of NSCLC patients. Regulating TRM cells by targeting tumor angiogenesis may be a potential strategy to improve current immunotherapy.
Collapse
Affiliation(s)
- Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Fenghao Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China.
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
43
|
von Witzleben A, Ellis M, Thomas GJ, Hoffmann TK, Jackson R, Laban S, Ottensmeier CH. Tumor-Infiltrating CD103+ Tissue-Resident Memory T Cells and CD103-CD8+ T Cells in HNSCC Are Linked to Outcome in Primary but not Metastatic Disease. Clin Cancer Res 2024; 30:224-234. [PMID: 37874322 DOI: 10.1158/1078-0432.ccr-23-0445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/14/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE High numbers of tumor-infiltrating lymphocytes (TIL) are linked to better survival in patients with cancer. Tissue-resident memory T cells (TRM; CD8+CD103+) are recognized as a key player of anticancer immune response. To assess TRM cells in primary, metastatic, and recurrent head and neck squamous cell carcinoma (HNSCC), we developed a tissue microarray (TMA) and used multiplex IHC (MxIHC). EXPERIMENTAL DESIGN Samples from primary tumors of 379 HNSCC cases treated at Southampton Hospitals between 2000 and 2016 were collected and analyzed. Of these, 105 cases had lymph node metastases and 82 recurrences. A TMA was generated with triplicate cores for each sample. MxIHC with a stain-and-strip approach was performed using CD8, CD103, and TIM3. Scanned slides were analyzed (digital image analysis) and quality checked (QC). RESULTS After QC, 194 primary tumors, 76 lymph node metastases, and 65 recurrences were evaluable. Alcohol consumption was statistically significantly correlated with a reduction of TRM cells in primary tumors (nondrinker vs. heavy drinker: P = 0.0036). The known survival benefit of TRM cell infiltration in primary tumors was not found for lymph node metastasis. In recurrences, a high TRM cell number led to a favorable outcome after 12 months. The checkpoint molecule TIM3, was expressed significantly higher on TRM and non-TRM cells in the lymph node compared with primary tumors (P < 0.0001), which was also seen in recurrences (P = 0.0134 and P = 0.0007, respectively). CONCLUSIONS We confirm the prognostic impact of TIL in primary tumors and in recurrences. TRM cell density in lymph node metastases was not linked to outcome. The role of TIM3, as a therapeutic target remains to be defined.
Collapse
Affiliation(s)
- Adrian von Witzleben
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Ulm, Germany
- CRUK and NIHR Experimental Cancer Medicine Center and School of Cancer Sciences, Faculty of Medicine, H, Southampton, United Kingdom
| | - Matthew Ellis
- CRUK and NIHR Experimental Cancer Medicine Center and School of Cancer Sciences, Faculty of Medicine, H, Southampton, United Kingdom
| | - Gareth J Thomas
- CRUK and NIHR Experimental Cancer Medicine Center and School of Cancer Sciences, Faculty of Medicine, H, Southampton, United Kingdom
- Southampton University Hospitals NHS Foundation Trust, Southampton, United Kingdom
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Ulm, Germany
| | - Richard Jackson
- Liverpool Clinical Trials Center, University of Liverpool, Liverpool, United Kingdom
| | - Simon Laban
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Ulm, Germany
| | - Christian H Ottensmeier
- Liverpool Head and Neck Center, Institute of Systems, Molecular and Integrative Biology and Liverpool CRUK and NIHR Experimental Cancer Medicine Center, UK University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
44
|
Xu H, Zhou R, Chen Z. Tissue-Resident Memory T Cell: Ontogenetic Cellular Mechanism and Clinical Translation. Clin Exp Immunol 2023; 214:249-259. [PMID: 37586053 PMCID: PMC10719502 DOI: 10.1093/cei/uxad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/22/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
Mounting evidence has indicated the essential role of tissue-resident memory T (TRM) cells for frontline protection against viral infection and for cancer immune surveillance (Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defense. Nat Rev Immunol 2016, 16, 79-89. doi:10.1038/nri.2015.3.). TRM cells are transcriptionally, phenotypically, and functionally distinct from circulating memory T (Tcirm) cells. It is necessary to understand the unique ontogenetic mechanism, migratory regulation, and biological function of TRM cells. In this review, we discuss recent insights into cellular mechanisms and discrete responsiveness in different tissue microenvironments underlying TRM cell development. We also emphasize the translational potential of TRM cells by focusing on their establishment in association with improved protection in mucosal tissues against various types of diseases and effective strategies for eliciting TRM cells in both pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
45
|
Herrera-De La Mata S, Ramírez-Suástegui C, Mistry H, Castañeda-Castro FE, Kyyaly MA, Simon H, Liang S, Lau L, Barber C, Mondal M, Zhang H, Arshad SH, Kurukulaaratchy RJ, Vijayanand P, Seumois G. Cytotoxic CD4 + tissue-resident memory T cells are associated with asthma severity. MED 2023; 4:875-897.e8. [PMID: 37865091 PMCID: PMC10964988 DOI: 10.1016/j.medj.2023.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Patients with severe uncontrolled asthma represent a distinct endotype with persistent airway inflammation and remodeling that is refractory to corticosteroid treatment. CD4+ TH2 cells play a central role in orchestrating asthma pathogenesis, and biologic therapies targeting their cytokine pathways have had promising outcomes. However, not all patients respond well to such treatment, and their effects are not always durable nor reverse airway remodeling. This observation raises the possibility that other CD4+ T cell subsets and their effector molecules may drive airway inflammation and remodeling. METHODS We performed single-cell transcriptome analysis of >50,000 airway CD4+ T cells isolated from bronchoalveolar lavage samples from 30 patients with mild and severe asthma. FINDINGS We observed striking heterogeneity in the nature of CD4+ T cells present in asthmatics' airways, with tissue-resident memory T (TRM) cells making a dominant contribution. Notably, in severe asthmatics, a subset of CD4+ TRM cells (CD103-expressing) was significantly increased, comprising nearly 65% of all CD4+ T cells in the airways of male patients with severe asthma when compared to mild asthma (13%). This subset was enriched for transcripts linked to T cell receptor activation (HLA-DRB1, HLA-DPA1) and cytotoxicity (GZMB, GZMA) and, following stimulation, expressed high levels of transcripts encoding for pro-inflammatory non-TH2 cytokines (CCL3, CCL4, CCL5, TNF, LIGHT) that could fuel persistent airway inflammation and remodeling. CONCLUSIONS Our findings indicate the need to look beyond the traditional T2 model of severe asthma to better understand the heterogeneity of this disease. FUNDING This research was funded by the NIH.
Collapse
Affiliation(s)
| | | | - Heena Mistry
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | | | - Mohammad A Kyyaly
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shu Liang
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Laurie Lau
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
| | - Clair Barber
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK
| | | | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK
| | - Ramesh J Kurukulaaratchy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton Foundation Trust, Southampton SO16 6YD, UK; The David Hide Asthma and Allergy Research Centre, St. Mary's Hospital, Newport PO30 5TG, Isle of Wight, UK.
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| | | |
Collapse
|
46
|
Schenkel JM, Pauken KE. Localization, tissue biology and T cell state - implications for cancer immunotherapy. Nat Rev Immunol 2023; 23:807-823. [PMID: 37253877 PMCID: PMC11448857 DOI: 10.1038/s41577-023-00884-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Tissue localization is a critical determinant of T cell immunity. CD8+ T cells are contact-dependent killers, which requires them to physically be within the tissue of interest to kill peptide-MHC class I-bearing target cells. Following their migration and extravasation into tissues, T cells receive many extrinsic cues from the local microenvironment, and these signals shape T cell differentiation, fate and function. Because major organ systems are variable in their functions and compositions, they apply disparate pressures on T cells to adapt to the local microenvironment. Additional complexity arises in the context of malignant lesions (either primary or metastatic), and this has made understanding the factors that dictate T cell function and longevity in tumours challenging. Moreover, T cell differentiation state influences how cues from the microenvironment are interpreted by tissue-infiltrating T cells, highlighting the importance of T cell state in the context of tissue biology. Here, we review the intertwined nature of T cell differentiation state, location, survival and function, and explain how dysfunctional T cell populations can adopt features of tissue-resident memory T cells to persist in tumours. Finally, we discuss how these factors have shaped responses to cancer immunotherapy.
Collapse
Affiliation(s)
- Jason M Schenkel
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
47
|
Muñoz-Ruiz M, Llorian M, D'Antuono R, Pavlova A, Mavrigiannaki AM, McKenzie D, García-Cassani B, Iannitto ML, Wu Y, Dart R, Davies D, Jamal-Hanjani M, Jandke A, Ushakov DS, Hayday AC. IFN-γ-dependent interactions between tissue-intrinsic γδ T cells and tissue-infiltrating CD8 T cells limit allergic contact dermatitis. J Allergy Clin Immunol 2023; 152:1520-1540. [PMID: 37562754 DOI: 10.1016/j.jaci.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Elicitation of allergic contact dermatitis (ACD), an inflammatory type 4 hypersensitivity disease, induces skin infiltration by polyclonal effector CD8 αβ T cells and precursors of tissue-resident memory T (TRM) cells. Because TRM have long-term potential to contribute to body-surface immunoprotection and immunopathology, their local regulation needs a fuller understanding. OBJECTIVE We sought to investigate how TRM-cell maturation might be influenced by innate-like T cells pre-existing within many epithelia. METHODS This study examined CD8+ TRM-cell maturation following hapten-induced ACD in wild-type mice and in strains harboring altered compartments of dendritic intraepidermal γδ T cells (DETCs), a prototypic tissue-intrinsic, innate-like T-cell compartment that reportedly regulates ACD, but by no elucidated mechanism. RESULTS In addition to eliciting CD8 TRM, ACD induced DETC activation and an intimate coregulatory association of the 2 cell types. This depended on DETC sensing IFN-γ produced by CD8 cells and involved programmed death-ligand 1 (PD-L1). Thus, in mice lacking DETC or lacking IFN-γ receptor solely on γδ cells, ACD-elicited CD8 T cells showed enhanced proliferative and effector potentials and reduced motility, collectively associated with exaggerated ACD pathology. Comparable dysregulation was elicited by PD-L1 blockade in vitro, and IFN-γ-regulated PD-L1 expression was a trait of human skin-homing and intraepithelial γδ T cells. CONCLUSIONS The size and quality of the tissue-infiltrating CD8 T-cell response during ACD can be profoundly regulated by local innate-like T cells responding to IFN-γ and involving PD-L1. Thus, interindividual and tissue-specific variations in tissue-intrinsic lymphocytes may influence responses to allergens and other challenges and may underpin inflammatory pathologies such as those repeatedly observed in γδ T-cell-deficient settings.
Collapse
Affiliation(s)
- Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Department of Immunology, Ophthalmology and Ear, Nose and Throat, Complutense University School of Medicine and 12 de Octubre Health Research Institute, Madrid, Spain
| | - Miriam Llorian
- Bioinformatics and Biostatistics science technology platform (STP), The Francis Crick Institute, London, United Kingdom
| | - Rocco D'Antuono
- Light Microscopy STP, The Francis Crick Institute, London, United Kingdom
| | - Anna Pavlova
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Erlangen, Germany
| | | | - Duncan McKenzie
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Bethania García-Cassani
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Maria Luisa Iannitto
- Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Yin Wu
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Robin Dart
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Daniel Davies
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Anett Jandke
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Dmitry S Ushakov
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom.
| |
Collapse
|
48
|
Abstract
T cells can acquire a broad spectrum of differentiation states following activation. At the extreme ends of this continuum are short-lived cells equipped with effector machinery and more quiescent, long-lived cells with heightened proliferative potential and stem cell-like developmental plasticity. The latter encompass stem-like exhausted T cells and memory T cells, both of which have recently emerged as key determinants of cancer immunity and response to immunotherapy. Here, we discuss key similarities and differences in the regulation and function of stem-like exhausted CD8+ T cells and memory CD8+ T cells, and consider their context-specific contributions to protective immunity in diverse outcomes of cancer, including tumour escape, long-term control and eradication. Finally, we emphasize how recent advances in the understanding of the molecular regulation of stem-like exhausted T cells and memory T cells are being explored for clinical benefit in cancer immunotherapies such as checkpoint inhibition, adoptive cell therapy and vaccination.
Collapse
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Simone L Park
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
49
|
Luo H, Wang W, Mai J, Yin R, Cai X, Li Q. The nexus of dynamic T cell states and immune checkpoint blockade therapy in the periphery and tumor microenvironment. Front Immunol 2023; 14:1267918. [PMID: 37881432 PMCID: PMC10597640 DOI: 10.3389/fimmu.2023.1267918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies, that is, using monoclonal antibodies to reinvigorate tumor-reactive, antigen-specific T cells from the inhibitory effects of CTLA-4, PD-1 and PD-L1 immune checkpoints, have revolutionized the therapeutic landscape of modern oncology. However, only a subset of patients can benefit from the ICB therapy. Biomarkers associated with ICB response, resistance and prognosis have been subjected to intensive research in the past decade. Early studies focused on the analysis of tumor specimens and their residing microenvironment. However, biopsies can be challenging to obtain in clinical practice, and do not reflect the dynamic changes of immunological parameters during the ICB therapy. Recent studies have investigated profiles of antigen-specific T cells derived from the peripheral compartment using multi-omics approaches. By tracking the clonotype and diversity of tumor-reactive T cell receptor repertoire, these studies collectively establish that de novo priming of antigen-specific T cells in peripheral blood occurs throughout the course of ICB, whereas preexisting T cells prior to ICB are exhausted to various degrees. Here, we review what is known about ICB-induced T cell phenotypic and functional changes in cancer patients both within the tumor microenvironment and in the peripheral compartment. A better understanding of parameters influencing the response to ICBs will provide rationales for developing novel diagnostics and combinatorial therapeutic strategies to maximize the clinical efficacies of ICB therapies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jia Mai
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyu Cai
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
50
|
van der Leun AM, Traets JJ, Vos JL, Elbers JB, Patiwael S, Qiao X, Machuca-Ostos M, Thommen DS, Haanen JB, Schumacher TN, Zuur CL. Dual Immune Checkpoint Blockade Induces Analogous Alterations in the Dysfunctional CD8+ T-cell and Activated Treg Compartment. Cancer Discov 2023; 13:2212-2227. [PMID: 37548431 PMCID: PMC10551666 DOI: 10.1158/2159-8290.cd-22-0851] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
To dissect the effect of neoadjuvant PD-1 and CTLA4 blockade on intratumoral T cells in treatment-naive head and neck squamous cell carcinoma, we analyzed primary tumor immune infiltrates from responding and nonresponding patients. At baseline, a higher ratio between active (4-1BB/OX40+) and inactive regulatory CD4+ T cells was associated with immunotherapy response. Furthermore, upon therapy, this active regulatory T-cell (Treg) population showed a profound decrease in responding patients. In an analogous process, intratumoral dysfunctional CD8+ T cells displayed decreased expression of activity and dysfunction-related genes in responding patients, whereas in clinical nonresponders, natural killer cells showed an increased cytotoxic profile early upon treatment. These data reveal immunologic changes in response to dual PD-1/CTLA4 blockade, including a parallel remodeling of presumed tumor-reactive Treg and CD8+ T-cell compartments in responding patients, and indicate that the presence of activated Tregs at baseline may be associated with response. SIGNIFICANCE In head and neck squamous cell carcinoma, neoadjuvant PD-1/CTLA4 blockade has shown substantial response rates (20%-35%). As recognition of tumor antigens by T cells appears to be a critical driver of therapy response, a better understanding of alterations in T-cell state that are associated with response and resistance is of importance. This article is featured in Selected Articles from This Issue, p. 2109.
Collapse
Affiliation(s)
- Anne M. van der Leun
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joleen J.H. Traets
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joris L. Vos
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joris B.W. Elbers
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sanne Patiwael
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Xiaohang Qiao
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mercedes Machuca-Ostos
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daniela S. Thommen
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B.A.G. Haanen
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ton N.M. Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Charlotte L. Zuur
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Otorhinolaryngology Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|