1
|
Seydoux E, Wan YH, Feng J, Wall A, Aljedani S, Homad LJ, MacCamy AJ, Weidle C, Gray MD, Brumage L, Taylor JJ, Pancera M, Stamatatos L, McGuire AT. Development of a VRC01-class germline targeting immunogen derived from anti-idiotypic antibodies. Cell Rep 2021; 35:109084. [PMID: 33951425 PMCID: PMC8127986 DOI: 10.1016/j.celrep.2021.109084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/08/2021] [Accepted: 04/13/2021] [Indexed: 10/27/2022] Open
Abstract
An effective HIV-1 vaccine will likely need to elicit broadly neutralizing antibodies (bNAbs). Broad and potent VRC01-class bNAbs have been isolated from multiple infected individuals, suggesting that they could be reproducibly elicited by vaccination. Several HIV-1 envelope-derived germline-targeting immunogens have been designed to engage naive VRC01-class precursor B cells. However, they also present off-target epitopes that could hinder development of VRC01-class bNAbs. We characterize a panel of anti-idiotypic monoclonal antibodies (ai-mAbs) raised against inferred-germline (iGL) VRC01-class antibodies. By leveraging binding, structural, and B cell sorting data, we engineered a bispecific molecule derived from two ai-mAbs; one specific for VRC01-class heavy chains and one specific for VRC01-class light chains. The bispecific molecule preferentially activates iGL-VRC01 B cells in vitro and induces specific antibody responses in a murine adoptive transfer model with a diverse polyclonal B cell repertoire. This molecule represents an alternative non-envelope-derived germline-targeting immunogen that can selectively activate VRC01-class precursors in vivo.
Collapse
Affiliation(s)
- Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Abigail Wall
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Safia Aljedani
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Connor Weidle
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Matthew D Gray
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Lauren Brumage
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Justin J Taylor
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA; University of Washington, Department of Immunology, Seattle, WA 98109, USA
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA.
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Kumar A, Giorgi EE, Tu JJ, Martinez DR, Eudailey J, Mengual M, Honnayakanahalli Marichannegowda M, Van Dyke R, Gao F, Permar SR. Mutations that confer resistance to broadly-neutralizing antibodies define HIV-1 variants of transmitting mothers from that of non-transmitting mothers. PLoS Pathog 2021; 17:e1009478. [PMID: 33798244 PMCID: PMC8055002 DOI: 10.1371/journal.ppat.1009478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/19/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023] Open
Abstract
Despite considerable reduction of mother-to-child transmission (MTCT) of HIV through use of maternal and infant antiretroviral therapy (ART), over 150,000 infants continue to become infected with HIV annually, falling far short of the World Health Organization goal of reaching <20,000 annual pediatric HIV cases worldwide by 2020. Prior to the widespread use of ART in the setting of pregnancy, over half of infants born to HIV-infected mothers were protected against HIV acquisition. Yet, the role of maternal immune factors in this protection against vertical transmission is still unclear, hampering the development of synergistic strategies to further reduce MTCT. It has been established that infant transmitted/founder (T/F) viruses are often resistant to maternal plasma, yet it is unknown if the neutralization resistance profile of circulating viruses predicts the maternal risk of transmission to her infant. In this study, we amplified HIV-1 envelope genes (env) by single genome amplification and produced representative Env variants from plasma of 19 non-transmitting mothers from the U.S. Women Infant Transmission Study (WITS), enrolled in the pre-ART era. Maternal HIV Env variants from non-transmitting mothers had similar sensitivity to autologous plasma as observed for non-transmitting variants from transmitting mothers. In contrast, infant variants were on average 30% less sensitive to paired plasma neutralization compared to non-transmitted maternal variants from both transmitting and non-transmitting mothers (p = 0.015). Importantly, a signature sequence analysis revealed that motifs enriched in env sequences from transmitting mothers were associated with broadly neutralizing antibody (bnAb) resistance. Altogether, our findings suggest that circulating maternal virus resistance to bnAb-mediated neutralization, but not autologous plasma neutralization, near the time of delivery, predicts increased MTCT risk. These results caution that enhancement of maternal plasma neutralization through passive or active vaccination during pregnancy may potentially drive the evolution of variants fit for vertical transmission. Despite widespread, effective use of ART among HIV infected pregnant women, new pediatric HIV infections increase by about 150,000 every year. Thus, alternative strategies will be required to reduce MTCT and eliminate pediatric HIV infections. Interestingly, in the absence of ART, less than half of HIV-infected pregnant women will transmit HIV, suggesting natural immune protection of infants from virus acquisition. To understand the impact of maternal plasma autologous virus neutralization responses on MTCT, we compared the plasma and bnAb neutralization sensitivity of the circulating viral population present at the time of delivery in untreated, HIV-infected transmitting and non-transmitting mothers. While there was no significant difference in the ability of transmitting and non-transmitting women to neutralize their own circulating virus strains, specific genetic motifs enriched in variants from transmitting mothers were associated with resistance to bnAbs, suggesting that acquired bnAb resistance is a common feature of vertically-transmitted variants. This work suggests that enhancement of plasma neutralization responses in HIV-infected mothers through passive or active vaccination could further drive selection of variants that could be vertically transmitted, and cautions the use of passive bnAbs for HIV-1 prophylaxis or therapy during pregnancy.
Collapse
Affiliation(s)
- Amit Kumar
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Elena E. Giorgi
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - David R. Martinez
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Joshua Eudailey
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Michael Mengual
- Department of Medicine, Duke University Medical Centre, Durham, North Carolina, United States of America
| | | | - Russell Van Dyke
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Feng Gao
- Department of Medicine, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Centre, Durham, North Carolina, United States of America
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
3
|
Targeting broadly neutralizing antibody precursors: a naïve approach to vaccine design. Curr Opin HIV AIDS 2020; 14:294-301. [PMID: 30946041 DOI: 10.1097/coh.0000000000000548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW It is believed that broadly neutralizing antibodies (bNAbs) will be an important component of an effective HIV-1 vaccine. Several immunogens have been designed that can target specific precursor B cells as a first step in a vaccine strategy to elicit bNAbs. RECENT FINDINGS Germline-targeting immunogens have been developed that specifically engage precursors of reproducible classes of anti-HIV antibodies, such as VRC01-class and apex-directed bNAbs. However, these precursors represent only a small portion of the immune repertoire and any antigen will inherently present off-target epitopes to the immune system that may confound bNAb development. Novel animal models are being utilized to understand the competitive fitness of bNAb precursors in the context of immunization with germline-targeting immunogens. In parallel, immunogen design efforts are being pursued to favor the development of bNAb responses over off-target responses following immunization. New studies of bNAb precursor interactions with glycosylated Env variants can inform prime-boost regimens geared towards accelerating bNAb development. SUMMARY Germline-targeting immunogens hold promise as a first step in eliciting a bNAb response through vaccination. A better understating of how efficiently germline-targeting immunogens can specifically target rare bNAb precursors is emerging. In addition, a more comprehensive structure-based understanding of critical barriers to bNAb elicitation, as well as commonalities between bNAb classes can further inform vaccine design.
Collapse
|
4
|
Abstract
It is clear that antibodies can play a pivotal role in preventing the transmission of HIV-1 and large efforts to identify an effective antibody-based vaccine to quell the epidemic. Shortly after HIV-1 was discovered as the cause of AIDS, the search for epitopes recognized by neutralizing antibodies became the driving strategy for an antibody-based vaccine. Neutralization escape variants were discovered shortly thereafter, and, after almost three decades of investigation, it is now known that autologous neutralizing antibody responses and their selection of neutralization resistant HIV-1 variants can lead to broadly neutralizing antibodies in some infected individuals. This observation drives an intensive effort to identify a vaccine to elicit broadly neutralizing antibodies. In contrast, there has been less systematic study of antibody specificities that must rely mainly or exclusively on other protective mechanisms, although non-human primate (NHP) studies as well as the RV144 vaccine trial indicate that non-neutralizing antibodies can contribute to protection. Here we propose a novel strategy to identify new epitope targets recognized by these antibodies for which viral escape is unlikely or impossible.
Collapse
Affiliation(s)
- George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marzena Pazgier
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony L DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
The first 24 h: targeting the window of opportunity for antibody-mediated protection against HIV-1 transmission. Curr Opin HIV AIDS 2016; 11:561-568. [PMID: 27559708 DOI: 10.1097/coh.0000000000000319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW I will review evidence that antibodies protect against HIV-1 transmission in a short window of opportunity, involving neutralization, Fc-mediated effector function, or both. RECENT FINDINGS The last decade witnessed a dramatic progress in the understanding of antibody-mediated protection against HIV-1, including active and passive immunization studies in nonhuman primates; association between reduced infection risk and the specificities and function of antibodies in the RV144 clinical trial; identification of potent, broadly neutralizing antibodies; high-resolution structural studies of the HIV-1 envelope trimer; and an increasing appreciation that Fc-mediated effector function is critical to protection against transmission for neutralizing and nonneutralizing antibodies. Less information is known about how antibodies protect in situ, except that they must do in the first 24 h after exposure. New evidence suggests that antibodies protect in an acute innate immune environment involving the NXLRX1 inflammasome and transforming growth factor beta (TGF-β) that favors infection and rapid dissemination of CCR6RORγ Th17 cells. SUMMARY These recent findings set the stage for understanding how antibodies can prevent the transmission of HIV-1. In this context, antibodies must prevent infection in an innate immune environment that strongly favors transmission. This information is key for the development of a vaccine against HIV-1.
Collapse
|
6
|
Marcobal A, Liu X, Zhang W, Dimitrov AS, Jia L, Lee PP, Fouts TR, Parks TP, Lagenaur LA. Expression of Human Immunodeficiency Virus Type 1 Neutralizing Antibody Fragments Using Human Vaginal Lactobacillus. AIDS Res Hum Retroviruses 2016; 32:964-971. [PMID: 26950606 PMCID: PMC5067876 DOI: 10.1089/aid.2015.0378] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eradication of human immunodeficiency virus type 1 (HIV-1) by vaccination with epitopes that produce broadly neutralizing antibodies is the ultimate goal for HIV prevention. However, generating appropriate immune responses has proven difficult. Expression of broadly neutralizing antibodies by vaginal colonizing lactobacilli provides an approach to passively target these antibodies to the mucosa. We tested the feasibility of expressing single-chain and single-domain antibodies (dAbs) in Lactobacillus to be used as a topical microbicide/live biotherapeutic. Lactobacilli provide an excellent platform to express anti-HIV proteins. Broadly neutralizing antibodies have been identified against epitopes on the HIV-1 envelope and have been made into active antibody fragments. We tested single-chain variable fragment m9 and dAb-m36 and its derivative m36.4 as prototype antibodies. We cloned and expressed the antibody fragments m9, m36, and m36.4 in Lactobacillus jensenii-1153 and tested the expression levels and functionality. We made a recombinant L. jensenii 1153-1128 that expresses dAb-m36.4. All antibody fragments m9, m36, and m36.4 were expressed by lactobacilli. However, we noted the smaller m36/m36.4 were expressed to higher levels, ≥3 μg/ml. All L. jensenii-expressed antibody fragments bound to gp120/CD4 complex; Lactobacillus-produced m36.4 inhibited HIV-1BaL in a neutralization assay. Using a TZM-bl assay, we characterized the breadth of neutralization of the m36.4. Delivery of dAbs by Lactobacillus could provide passive transfer of these antibodies to the mucosa and longevity at the site of HIV-1 transmission.
Collapse
Affiliation(s)
| | | | - Wenlei Zhang
- Profectus Biosciences, Inc., Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
7
|
Dunkel A, Shen S, LaBranche CC, Montefiori D, McGettigan JP. A Bivalent, Chimeric Rabies Virus Expressing Simian Immunodeficiency Virus Envelope Induces Multifunctional Antibody Responses. AIDS Res Hum Retroviruses 2015; 31:1126-38. [PMID: 25848984 DOI: 10.1089/aid.2014.0319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We previously showed that a matrix (M) gene-deleted rabies virus (RABV)-based vaccine (RABV-ΔM) is highly immunogenic and induces potent B cell responses in the context of RABV infection. We speculated that RABV-ΔM expressing HIV proteins would also induce potent B cell responses against HIV antigens. As a prerequisite to future studies in nonhuman primates, we completed immunogenicity studies in mice to confirm the ability of RABV-ΔM to induce polyfunctional B cell responses in the context of HIV. To that end, the envelope protein from the mac239 strain of SIV (SIVmac239Env) was cloned into RABV-ΔM, resulting in RABV-ΔM-Env. Infectious virus was recovered following standard methods and propagated on baby hamster kidney cells stably expressing RABV M [>10(7) focus forming units (ffu)/ml]. Western blot analysis of cell lysates or of purified virions confirmed Env expression on the surface of infected cells and within virus particles, respectively. Positive neutralization activity against a neutralization-sensitive SIV strain and to a lesser extent against a neutralization-resistant SIV strain was detected in mice after a single intramuscular inoculation with RABV-ΔM-Env. The quality, but not quantity, of the antibody response was enhanced via boosting with recombinant gp130 or RABV-ΔM-Env as measured by an increase in antibody avidity and a skewing toward a Th1-type antibody response. We also show that an intradermal inoculation induces higher antibodies than an intramuscular or intranasal inoculation. An intradermal inoculation of RABV-ΔM-Env followed by a boost inoculation with recombinant gp130 produced anti-SIV antibodies with neutralizing and nonneutralizing antibody (nNAb) effector functions. Together, RABV-ΔM-Env induces B cells to secrete antibodies against SIV with the potential to clear both "free" and cell-associated virus. Strategies capable of eliciting both NAbs as well as nNAbs might help to improve the efficacy of HIV-1 vaccines.
Collapse
Affiliation(s)
- Amber Dunkel
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shixue Shen
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - James P. McGettigan
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1. Viruses 2015; 7:5115-32. [PMID: 26393642 PMCID: PMC4584300 DOI: 10.3390/v7092856] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 01/11/2023] Open
Abstract
The mechanism of antibody-mediated protection is a major focus of HIV-1 vaccine development and a significant issue in the control of viremia. Virus neutralization, Fc-mediated effector function, or both, are major mechanisms of antibody-mediated protection against HIV-1, although other mechanisms, such as virus aggregation, are known. The interplay between virus neutralization and Fc-mediated effector function in protection against HIV-1 is complex and only partially understood. Passive immunization studies using potent broadly neutralizing antibodies (bnAbs) show that both neutralization and Fc-mediated effector function provides the widest dynamic range of protection; however, a vaccine to elicit these responses remains elusive. By contrast, active immunization studies in both humans and non-human primates using HIV-1 vaccine candidates suggest that weakly neutralizing or non-neutralizing antibodies can protect by Fc-mediated effector function, albeit with a much lower dynamic range seen for passive immunization with bnAbs. HIV-1 has evolved mechanisms to evade each type of antibody-mediated protection that must be countered by a successful AIDS vaccine. Overcoming the hurdles required to elicit bnAbs has become a major focus of HIV-1 vaccine development. Here, we discuss a less studied problem, the structural basis of protection (and its evasion) by antibodies that protect only by potent Fc-mediated effector function.
Collapse
|
9
|
Antibody persistence and T-cell balance: two key factors confronting HIV vaccine development. Proc Natl Acad Sci U S A 2014; 111:15614-21. [PMID: 25349379 DOI: 10.1073/pnas.1413550111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The quest for a prophylactic AIDS vaccine is ongoing, but it is now clear that the successful vaccine must elicit protective antibody responses. Accordingly, intense efforts are underway to identify immunogens that elicit these responses. Regardless of the mechanism of antibody-mediated protection, be it neutralization, Fc-mediated effector function, or both, antibody persistence and appropriate T-cell help are significant problems confronting the development of a successful AIDS vaccine. Here, we discuss the evidence illustrating the poor persistence of antibody responses to Env, the envelope glycoprotein of HIV-1, and the related problem of CD4(+) T-cell responses that compromise vaccine efficacy by creating excess cellular targets of HIV-1 infection. Finally, we propose solutions to both problems that are applicable to all Env-based AIDS vaccines regardless of the mechanism of antibody-mediated protection.
Collapse
|
10
|
Braibant M, Barin F. The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context? Retrovirology 2013; 10:103. [PMID: 24099103 PMCID: PMC3851888 DOI: 10.1186/1742-4690-10-103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
In most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1.
Collapse
Affiliation(s)
- Martine Braibant
- Université François-Rabelais, UFR Médecine, Inserm U966 10 bld Tonnellé, cedex, 37032 Tours, France.
| | | |
Collapse
|
11
|
van Montfort T, Melchers M, Isik G, Menis S, Huang PS, Matthews K, Michael E, Berkhout B, Schief WR, Moore JP, Sanders RW. A chimeric HIV-1 envelope glycoprotein trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain induces enhanced antibody and T cell responses. J Biol Chem 2011; 286:22250-61. [PMID: 21515681 DOI: 10.1074/jbc.m111.229625] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An effective HIV-1 vaccine should ideally induce strong humoral and cellular immune responses that provide sterilizing immunity over a prolonged period. Current HIV-1 vaccines have failed in inducing such immunity. The viral envelope glycoprotein complex (Env) can be targeted by neutralizing antibodies to block infection, but several Env properties limit the ability to induce an antibody response of sufficient quantity and quality. We hypothesized that Env immunogenicity could be improved by embedding an immunostimulatory protein domain within its sequence. A stabilized Env trimer was therefore engineered with the granulocyte-macrophage colony-stimulating factor (GM-CSF) inserted into the V1V2 domain of gp120. Probing with neutralizing antibodies showed that both the Env and GM-CSF components of the chimeric protein were folded correctly. Furthermore, the embedded GM-CSF domain was functional as a cytokine in vitro. Mouse immunization studies demonstrated that chimeric Env(GM-CSF) enhanced Env-specific antibody and T cell responses compared with wild-type Env. Collectively, these results show that targeting and activation of immune cells using engineered cytokine domains within the protein can improve the immunogenicity of Env subunit vaccines.
Collapse
Affiliation(s)
- Thijs van Montfort
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Licensed vaccines against viral diseases generate antibodies that neutralize the infecting virus and protect against infection or disease. Similarly, an effective vaccine against HIV-1 will likely need to induce antibodies that prevent initial infection of host cells or that limit early events of viral dissemination. Such antibodies must target the surface envelope glycoproteins of HIV-1, which are highly variable in sequence and structure. The first subunit vaccines to enter clinical trails were safe and immunogenic but unable to elicit antibodies that neutralized most circulating strains of HIV-1. However, potent virus neutralizing antibodies (NAbs) can develop during the course of HIV-1 infection, and this is the type of antibody response that researchers seek to generate with a vaccine. Thus, current vaccine design efforts have focused on a more detailed understanding of these broadly neutralizing antibodies and their epitopes to inform the design of improved vaccines.
Collapse
Affiliation(s)
- John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
13
|
Sealy R, Zhan X, Lockey TD, Martin L, Blanchard J, Traina-Dorge V, Hurwitz JL. SHIV infection protects against heterologous pathogenic SHIV challenge in macaques: a gold-standard for HIV-1 vaccine development? Curr HIV Res 2010; 7:497-503. [PMID: 19925400 DOI: 10.2174/157016209789346255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A current debate in the HIV-1 vaccine field concerns the ability of an immunodeficiency virus to elicit a protective response. One argument is that HIV-1 superinfections are frequent in healthy individuals, because virus evades conventional immune surveillance, a serious obstacle to vaccine design. The opposing argument is that protection from superinfection is significant, reflecting a robust immune response that might be harnessed by vaccination to prevent disease. In an experiment designed to address the debate, two macaques received an I.V. inoculation with SHIV KU-1-d (a derivative of SHIV KU-1) and were rested for >10 months. Infection elicited diverse neutralizing antibody activities in both animals. Animals were then exposed to SHIV 89.6P (I.V.), a virus carrying a heterologous envelope protein relative to the vaccine strain. Infection was monitored by viral load and CD4+ T-cell measurements. All control animals were infected and most succumbed to disease. In contrast, protection from superinfection was statistically significant in test monkeys; one animal showed no evidence of superinfection at any time point and the second showed evidence of virus at only one time point over a 6-month observation period. Neither animal showed signs of disease. Perhaps this protective state may serve as a 'gold-standard' for HIV-1 vaccine development, as a similar degree of protection against immunodeficiency virus infections in humans would be much desired.
Collapse
Affiliation(s)
- Robert Sealy
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Sexual transmission of HIV-1. Antiviral Res 2009; 85:276-85. [PMID: 19874852 DOI: 10.1016/j.antiviral.2009.10.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/02/2009] [Accepted: 10/16/2009] [Indexed: 12/18/2022]
Abstract
HIV-1 transmission occurs in a limited number of ways all of which are preventable. Overall, the risk of HIV-1 transmission following a single sexual exposure is low especially in comparison with other sexually transmitted infections (STIs); with estimates of the average probability of male to female HIV-1 transmission only 0.0005-0.0026 per coital act. The risk of acquiring HIV-1 from a single contact varies enormously and is dependant upon the infectiousness of the HIV-1 positive individual and the susceptibility to HIV-1 of their sexual partner. An understanding of the determinants of HIV-1 transmission is important not only to assess the infection risk to an individual when exposed to the virus (e.g. to determine the provision of post exposure prophylaxis), but also to make accurate predictions on the potential spread of HIV-1 infection in a population and to direct appropriate targeted prevention strategies. In this review article we summarise the current literature on the major worldwide source of HIV-1 acquisition, sexual transmission. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
|
15
|
Postinfection passive transfer of KD-247 protects against simian/human immunodeficiency virus-induced CD4+ T-cell loss in macaque lymphoid tissue. AIDS 2009; 23:1485-94. [PMID: 19528788 DOI: 10.1097/qad.0b013e32832e5331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Preadministration of high-affinity humanized anti-HIV-1 mAb KD-247 by passive transfer provides sterile protection of monkeys from heterologous chimeric simian/human immunodeficiency virus infection. METHODS Beginning 1 h, 1 day, or 1 week after simian/human immunodeficiency virus-C2/1 challenge (20 50% tissue culture infective dose), mature, male cynomolgus monkeys received multiple passive transfers of KD-247 (45 mg/kg) on a weekly basis for approximately 2 months. Concentrations and viral loads were measured in peripheral blood, and CD4 T-cell counts were examined in both peripheral blood and various lymphoid tissues. RESULTS Pharmacokinetic examination revealed similar plasma maintenance levels ranging from 200 to 500 microg/ml of KD-247 in the three groups. One of the six monkeys given KD-247 could not maintain these concentrations, and elicitation of anti-KD-247 idiotype antibody was suggested. All monkeys given KD-247 exhibited striking postinfection protection against both CD4 T-cell loss in various lymphoid tissues and atrophic changes in organs compared with control group animals treated with normal human immunoglobulin G. The KD-247-treated groups were also partially protected against plasma viral load elevation in peripheral blood samples, although the complete protection previously reported with preadministration of this mAb was not achieved. CONCLUSION Postinfection passive transfer of humanized mAb KD-247 with strong neutralizing capacity against challenged virus simian/human immunodeficiency virus-C2/1 protected CD4 T cells in lymphoid organs.
Collapse
|
16
|
McBurney SP, Ross TM. Viral sequence diversity: challenges for AIDS vaccine designs. Expert Rev Vaccines 2008; 7:1405-17. [PMID: 18980542 DOI: 10.1586/14760584.7.9.1405] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Among the greatest challenges facing AIDS vaccine development is the intrinsic diversity among circulating populations of HIV-1 in various geographical locations and the need to develop vaccines that can elicit enduring protective immunity to variant HIV-1 strains. While variation is observed in all of the viral proteins, the greatest diversity is localized to the viral envelope glycoproteins, evidently reflecting the predominant role of these proteins in eliciting host immune recognition and responses that result in progressive evolution of the envelope proteins during persistent infection. Interestingly, while envelope glycoprotein variation is widely assumed to be a major obstacle to AIDS vaccine development, there is very little experimental data in animal or human lentivirus systems addressing this critical issue. In this review, the state of vaccine development to address envelope diversity will be presented, focusing on the use of centralized and polyvalent sequence design as mechanisms to elicit broadly reactive immune responses.
Collapse
Affiliation(s)
- Sean P McBurney
- University of Pittsburgh, School of Medicine, Center for Vaccine Research, Program in Molecular Virology and Microbiology, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
17
|
Steckbeck JD, Cole KS. Dissecting the humoral immune response to simian immunodeficiency virus: mechanisms of antibody-mediated virus neutralization. Immunol Res 2007; 36:51-60. [PMID: 17337766 PMCID: PMC3357918 DOI: 10.1385/ir:36:1:51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/28/2022]
Abstract
The ultimate goal of an AIDS vaccine is to elicit potent cellular and humoral immune responses that will result in broadly enduring protective immunity. During the past several years, we have focused on characterizing the quantitative and qualitative properties of the antibody response, principally working to define the mechanism(s) of antibody-mediated neutralization in vitro. We have utilized a panel of monoclonal antibodies generated from monkeys infected with attenuated SIV for more than 8 mo to dissect the early events of virus infection involved in antibody-mediated neutralization. Presented herein are highlights from our studies that have identified potential mechanisms by which antibodies neutralize SIV in vitro.
Collapse
Affiliation(s)
- Jonathan D Steckbeck
- Department of Medicine, Infectious Diseases Division, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA
| | | |
Collapse
|
18
|
Sheppard NC, Davies SL, Jeffs SA, Vieira SM, Sattentau QJ. Production and characterization of high-affinity human monoclonal antibodies to human immunodeficiency virus type 1 envelope glycoproteins in a mouse model expressing human immunoglobulins. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 14:157-67. [PMID: 17167037 PMCID: PMC1797789 DOI: 10.1128/cvi.00274-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human (Hu) monoclonal antibodies (MAbs) against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) are useful tools in the structural and functional analysis of Env, are under development both as potential prophylaxis and as therapy for established HIV-1 infection, and have crucial roles in guiding the design of preventative vaccines. Despite representing more than 50% of infections globally, no MAbs have been generated in any species against C clade HIV-1 Env. To generate HuMAbs to a novel Chinese C clade Env vaccine candidate (primary isolate strain HIV-1(97CN54)), we used BAB5 mice that express a human immunoglobulin (Ig) M antibody repertoire in place of endogenous murine immunoglobulins. When immunized with HIV-1(97CN54) Env, these mice developed antigen-specific IgM antibodies. Hybridoma fusions using splenocytes from these mice enabled the isolation of two Env-specific IgM HuMAbs: N3C5 and N03B11. N3C5 bound to HIV-1 Env from clades A and C, whereas N03B11 bound two geographically distant clade C isolates but not Env from other clades. These HuMAbs bind conformational epitopes within the immunodominant region of the gp41 ectodomain. N3C5 weakly neutralized the autologous isolate in the absence of complement and weakly enhanced infection in the presence of complement. N03B11 has no effect on infectivity in either the presence or the absence of complement. These novel HuMAbs are useful reagents for the study of HIV-1 Env relevant to the global pandemic, and mice producing human immunoglobulin present a tool for the production of such antibodies.
Collapse
Affiliation(s)
- Neil C Sheppard
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | | | | | | | | |
Collapse
|
19
|
McBurney SP, Young KR, Ross TM. Membrane embedded HIV-1 envelope on the surface of a virus-like particle elicits broader immune responses than soluble envelopes. Virology 2006; 358:334-46. [PMID: 17011011 DOI: 10.1016/j.virol.2006.08.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/07/2006] [Accepted: 08/22/2006] [Indexed: 11/24/2022]
Abstract
Virally regulated HIV-1 particles were expressed from DNA plasmids encoding Gag, protease, reverse transcriptase, Vpu, Tat, Rev, and Env. The sequences for integrase, Vpr, Vif, Nef, and the long terminal repeats (LTRs) were deleted. Mutations were engineered into the VLP genome to produce particles deficient in activities associated with viral reverse transcriptase, RNase H, and RNA packaging. Each plasmid efficiently secreted particles from primate cells in vitro and particles were purified from the supernatants and used as immunogens. Mice (BALB/c) were vaccinated intranasally (day 1 and weeks 3 and 6) with purified VLPs and the elicited immunity was compared to particles without Env (Gag(p55)), to soluble monomeric Env(gp120), or to soluble trimerized Env(gp140). Only mice vaccinated with VLPs had robust anti-Env cellular immunity. In contrast, all mice had high titer anti-Env serum antibody (IgG). However, VLP-vaccinated mice had antisera that detected a broader number of linear Env peptides, had anti-Env mucosal IgA and IgG, as well as higher titers of serum neutralizing antibodies. VLPs elicited high titer antibodies that recognized linear regions in V4-C5 and the ectodomain of gp41, but did not recognize V3. These lentiviral VLPs are effective mucosal immunogens that elicit broader immunity against Env determinants in both the systemic and mucosal immune compartments than soluble forms of Env.
Collapse
Affiliation(s)
- Sean P McBurney
- Center for Vaccine Research for Emerging Diseases and Biodefense, University of Pittsburgh School of Medicine, 9047 Biomedical Sciences Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
20
|
Steckbeck JD, Grieser HJ, Sturgeon T, Taber R, Chow A, Bruno J, Murphy-Corb M, Montelaro RC, Cole KS. Dynamic evolution of antibody populations in a rhesus macaque infected with attenuated simian immunodeficiency virus identified by surface plasmon resonance. J Med Primatol 2006; 35:248-60. [PMID: 16872288 PMCID: PMC3361734 DOI: 10.1111/j.1600-0684.2006.00173.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Increasing evidence suggests that an effective AIDS vaccine will need to elicit broadly neutralizing antibody responses. However, the mechanisms of antibody-mediated neutralization have not been defined. Previous studies from our lab have identified significant differences in the rates of antibody binding to trimeric SIV envelope proteins that correlate with neutralization sensitivity. Importantly, these results demonstrate differences in monoclonal antibody (MAb) binding to neutralization-sensitive and neutralization-resistant envelope proteins, suggesting that one mechanism for virus neutralization may be related to the stability of antibody binding. To date, little has been done to evaluate the binding properties of polyclonal serum antibodies elicited by SIV infection or vaccination. METHODS In the current study, we translate these findings with MAbs to study antibody binding properties of polyclonal serum antibody responses generated in rhesus macaques infected with attenuated SIV. Quantitative and qualitative binding properties of well-characterized longitudinal serum samples to trimeric, recombinant SIV gp140 envelope proteins were analyzed using surface plasmon resonance (SPR) technology (Biacore). RESULTS Results from these studies identified two antibody populations in most of the samples analyzed; one antibody population exhibited fast association/dissociation rates (unstable) while the other population demonstrated slower association/dissociation rates (stable). Over time, the percentage of the total binding response of each antibody population evolved, demonstrating a dynamic evolution of the antibody response that was consistent with the maturation of antibody responses defined using our standard panel of serological assays. However, the current studies provided a higher resolution analysis of polyclonal antibody binding properties, particularly with respect to the early time-points post-infection (PI), that is not possible with standard serological assays. More importantly, the increased stability of the antibody population with time PI corresponded with potent neutralization of homologous SIV in vitro. CONCLUSIONS These results suggest that the stability of the antibody-envelope interaction may be an important mechanism of serum antibody virus neutralization. In addition, measurements of the 'apparent' rates of association and dissociation may offer unique numerical descriptors to characterize the level of antibody maturation achieved by candidate vaccine strategies capable of eliciting broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- J D Steckbeck
- Department of Medicine, Infectious Diseases Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hammonds J, Chen X, Fouts T, DeVico A, Montefiori D, Spearman P. Induction of neutralizing antibodies against human immunodeficiency virus type 1 primary isolates by Gag-Env pseudovirion immunization. J Virol 2005; 79:14804-14. [PMID: 16282480 PMCID: PMC1287556 DOI: 10.1128/jvi.79.23.14804-14814.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 09/15/2005] [Indexed: 11/20/2022] Open
Abstract
A major challenge for the development of an effective HIV vaccine is to elicit neutralizing antibodies against a broad array of primary isolates. Monomeric gp120-based vaccine approaches have not been successful in inducing this type of response, prompting a number of approaches designed to recreate the native glycoprotein complex that exists on the viral membrane. Gag-Env pseudovirions are noninfectious viruslike particles that recreate the native envelope glycoprotein structure and have the potential to generate neutralizing antibody responses against primary isolates. In this study, an inducible cell line was created in order to generate Gag-Env pseudovirions for examination of neutralizing antibody responses in guinea pigs. Unadjuvanted pseudovirions generated relatively weak anti-gp120 responses, while the use of a block copolymer water-in-oil emulsion or aluminum hydroxide combined with CpG oligodeoxynucleotides resulted in high levels of antibodies that bind to gp120. Sera from immunized animals neutralized a panel of human immunodeficiency virus (HIV) type 1 primary isolate viruses at titers that were significantly higher than that of the corresponding monomeric gp120 protein. Interpretation of these results was complicated by the occurrence of neutralizing antibodies directed against cellular (non-envelope protein) components of the pseudovirion. However, a major component of the pseudovirion-elicited antibody response was directed specifically against the HIV envelope. These results provide support for the role of pseudovirion-based vaccines in generating neutralizing antibodies against primary isolates of HIV and highlight the potential confounding role of antibodies directed at non-envelope cell surface components.
Collapse
Affiliation(s)
- Jason Hammonds
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
22
|
Steckbeck JD, Orlov I, Chow A, Grieser H, Miller K, Bruno J, Robinson JE, Montelaro RC, Cole KS. Kinetic rates of antibody binding correlate with neutralization sensitivity of variant simian immunodeficiency virus strains. J Virol 2005; 79:12311-20. [PMID: 16160158 PMCID: PMC1211559 DOI: 10.1128/jvi.79.19.12311-12320.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 05/28/2005] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that an effective AIDS vaccine will need to elicit both broadly reactive humoral and cellular immune responses. Potent and cross-reactive neutralization of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) by polyclonal and monoclonal antibodies is well documented. However, the mechanisms of antibody-mediated neutralization have not been defined. The current study was designed to determine whether the specificity and quantitative properties of antibody binding to SIV envelope proteins correlate with neutralization. Using a panel of rhesus monoclonal antibodies previously characterized for their ability to bind and neutralize variant SIVs, we compared the kinetic rates and affinity of antibody binding to soluble envelope trimers by using surface plasmon resonance. We identified significant differences in the kinetic rates but not the affinity of monoclonal antibody binding to the neutralization-sensitive SIV/17E-CL and neutralization-resistant SIVmac239 envelope proteins that correlated with the neutralization sensitivities of the corresponding virus strains. These results suggest for the first time that neutralization resistance may be related to quantitative differences in the rates but not the affinity of the antibody-envelope interaction and may provide one mechanism for the inherent resistance of SIVmac239 to neutralization in vitro. Further, we provide evidence that factors in addition to antibody binding, such as epitope specificity, contribute to the mechanisms of neutralization of SIV/17E-CL in vitro. This study will impact the method by which HIV/SIV vaccines are evaluated and will influence the design of candidate AIDS vaccines capable of eliciting effective neutralizing antibody responses.
Collapse
Affiliation(s)
- Jonathan D Steckbeck
- University of Pittsburgh School of Medicine, Department of Medicine, Infectious Diseases Division, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Singh DK, Liu Z, Sheffer D, Mackay GA, Smith M, Dhillon S, Hegde R, Jia F, Adany I, Narayan O. A noninfectious simian/human immunodeficiency virus DNA vaccine that protects macaques against AIDS. J Virol 2005; 79:3419-28. [PMID: 15731236 PMCID: PMC1075712 DOI: 10.1128/jvi.79.6.3419-3428.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian/human immunodeficiency virus SHIV(KU2) replicates with extremely high titers in macaques. In order to determine whether the DNA of the viral genome could be used as a vaccine if the DNA were rendered noninfectious, we deleted the reverse transcriptase gene from SHIVKU2 and inserted this DNA (DeltartSHIVKU2) into a plasmid that was then used to test gene expression and immunogenicity. Transfection of Jurkat and human embryonic kidney epithelial (HEK 293) cells with the DNA resulted in production of all of the major viral proteins and their precursors and transient export of a large quantity of the Gag p27 into the supernatant fluid. As expected, no infectious virus was produced in these cultures. Four macaques were injected intradermally with 2 mg of the DNA at 0, 8, and 18 weeks. The animals developed neutralizing antibodies and low enzyme-linked immunospot assay (E-SPOT) titers against SHIVKU2. These four animals and two unvaccinated control animals were then challenged with heterologous SHIV89.6P administered into their rectums. The two control animals developed viral RNA titers exceeding 10(6) copies/ml of plasma, and these titers were accompanied by the loss of CD4+ T cells by 2 weeks after challenge. The two control animals died at weeks 8 and 16, respectively. All four of the immunized animals became infected with the challenge virus but developed lower titers of viral RNA in plasma than the control animals, and the titers decreased over time in three of the four macaques. The fourth animal remained viremic and died at week 47. Whereas the control animals failed to develop E-SPOT responses, all four of the immunized animals developed anamnestic E-SPOT responses after challenge. The animal that died developed the highest E-SPOT response and was the only one that produced neutralizing antibodies against the challenge virus. These results established that noninfectious DNA of pathogenic SHIV could be used as a vaccine to prevent AIDS, even though the immunological assays used did not predict the manner in which the challenge virus would replicate in the vaccinated animals.
Collapse
Affiliation(s)
- Dinesh K Singh
- Marion Merrell Dow Laboratory of Viral Pathogenesis, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Evans TG, Frey S, Israel H, Chiu J, El-Habib R, Gilbert P, Gaitan A, Montefiori DC. Long-term memory B-cell responses in recipients of candidate human immunodeficiency virus type 1 vaccines. Vaccine 2004; 22:2626-30. [PMID: 15193388 DOI: 10.1016/j.vaccine.2003.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 12/08/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
The efficacy and practical application of human immunodeficiency virus type 1 (HIV-1) vaccines may depend in part on the longevity of the immune responses generated, particularly those in the memory compartment. Candidate vaccines based on the HIV-1 envelope glycoproteins generate binding and neutralizing antibodies in humans but there have been no prior studies on the long-term persistence and recall of those responses. We evaluated six healthy, HIV non-infected adults who had received a combination of recombinant canarypox HIV-1 vaccines boosted by gp120 and who had achieved a high serum titer of neutralizing antibody to HIV-1 MN. These individuals were administered a gp160 boost 4-5 years after their last vaccination. Four volunteers had detectable binding and neutralizing antibodies at the time of boosting and all six volunteers exhibited a recall binding and neutralizing antibody response. The antibodies neutralized multiple T cell line-adapted (TCLA) strains of virus, including the vaccine strain, but not primary isolates. These results demonstrate that memory B-cell responses can last for many years following HIV-1 envelope glycoprotein immunization. In principle, similar long-term memory may be possible with improved immunogens that generate broadly cross-reactive neutralizing antibodies.
Collapse
Affiliation(s)
- Thomas G Evans
- Division of Infectious Diseases, University of California, Davis, Sacramento, CA 92121 USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang L, Ribeiro RM, Mascola JR, Lewis MG, Stiegler G, Katinger H, Perelson AS, Davenport MP. Effects of antibody on viral kinetics in simian/human immunodeficiency virus infection: implications for vaccination. J Virol 2004; 78:5520-2. [PMID: 15113932 PMCID: PMC400367 DOI: 10.1128/jvi.78.10.5520-5522.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Passive antibody treatment of macaques prior to simian/human immunodeficiency virus infection produces "sterilizing immunity" in some animals and long-term reductions in viral loads in others. Analysis of viral kinetics suggests that antibody mediates sterilizing immunity by its effects on the initial viral inoculum. By contrast, reduction in peak viral load later in infection prevents CD4 depletion and contributes to long-term viral control.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Haematology, Prince of Wales Hospital and Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mascola JR, Lewis MG, VanCott TC, Stiegler G, Katinger H, Seaman M, Beaudry K, Barouch DH, Korioth-Schmitz B, Krivulka G, Sambor A, Welcher B, Douek DC, Montefiori DC, Shiver JW, Poignard P, Burton DR, Letvin NL. Cellular immunity elicited by human immunodeficiency virus type 1/ simian immunodeficiency virus DNA vaccination does not augment the sterile protection afforded by passive infusion of neutralizing antibodies. J Virol 2003; 77:10348-56. [PMID: 12970419 PMCID: PMC228504 DOI: 10.1128/jvi.77.19.10348-10356.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
High levels of infused anti-human immunodeficiency virus type 1 (HIV-1) neutralizing monoclonal antibodies (MAbs) can completely protect macaque monkeys against mucosal chimeric simian-human immunodeficiency virus (SHIV) infection. Antibody levels below the protective threshold do not prevent infection but can substantially reduce plasma viremia. To assess if HIV-1/SIV-specific cellular immunity could combine with antibodies to produce sterile protection, we studied the effect of a suboptimal infusion of anti-HIV-1 neutralizing antibodies in macaques with active cellular immunity induced by interleukin-2 (IL-2)-adjuvanted DNA immunization. Twenty female macaques were divided into four groups: (i). DNA immunization plus irrelevant antibody, (ii). DNA immunization plus infusion of neutralizing MAbs 2F5 and 2G12, (iii). sham DNA plus 2F5 and 2G12, and (iv). sham DNA plus irrelevant antibody. DNA-immunized monkeys developed CD4 and CD8 T-cell responses as measured by epitope-specific tetramer staining and by pooled peptide ELISPOT assays for gamma interferon-secreting cells. After vaginal challenge, DNA-immunized animals that received irrelevant antibody became SHIV infected but displayed lower plasma viremia than control animals. Complete protection against SHIV challenge occurred in three animals that received sham DNA plus MAbs 2F5 and 2G12 and in two animals that received the DNA vaccine plus MAbs 2F5 and 2G12. Thus, although DNA immunization produced robust HIV-specific T-cell responses, we were unable to demonstrate that these responses contributed to the sterile protection mediated by passive infusion of neutralizing antibodies. These data suggest that although effector T cells can limit viral replication, they are not able to assist humoral immunity to prevent the establishment of initial infection.
Collapse
Affiliation(s)
- John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Montefiori DC, Altfeld M, Lee PK, Bilska M, Zhou J, Johnston MN, Gao F, Walker BD, Rosenberg ES. Viremia control despite escape from a rapid and potent autologous neutralizing antibody response after therapy cessation in an HIV-1-infected individual. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3906-14. [PMID: 12646660 DOI: 10.4049/jimmunol.170.7.3906] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neutralizing Ab response after primary HIV-1 infection is delayed relative to the virus-specific CD8(+) T cell response and the initial decline in plasma viremia. Because nearly all HIV-1 infections result in AIDS, it would be instructive to study cases where neutralizing Ab production commenced sooner. This was done in subject AC10, an individual treated during early infection and in whom a rapid autologous neutralizing Ab response was detected after therapy cessation as rebound viremia declined and remained below 1000 RNA copies/ml of blood for over 2.5 years. This subject's Abs were capable of reducing the infectivity of his rebound virus by >4 logs in vitro at a time when rebound viremia was down-regulated and virus-specific CD8(+) T cells were minimal, suggesting that neutralizing Abs played an important role in the early control of viremia. The rebound virus did not exhibit an unusual phenotype that might explain its high sensitivity to neutralization by autologous sera. Neutralization escape occurred within 75 days and was proceeded by neutralizing Ab production to the escape variant and subsequent escape. Notably, escape was not associated with a significant rise in plasma viremia, perhaps due to increasing CD8(+) T cell responses. Sequence analysis of gp160 revealed a growing number of mutations over time, suggesting ongoing viral evolution in the face of potent antiviral immune responses. We postulate that an early effective neutralizing Ab response can provide long-term clinical benefits despite neutralization escape.
Collapse
Affiliation(s)
- David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The past few months have seen encouraging successes for neutralizing antibodies against HIV; human monoclonal antibodies targeting conserved HIV envelope epitopes potently neutralized primary virus isolates, including strains of different clades. In primates, passive immunization with combinations containing human monoclonal antibodies completely prevented infection, even after mucosal virus challenges. Epitopes recognized by the protective monoclonal antibodies are important determinants for protection and provide a rational basis for AIDS vaccine development.
Collapse
Affiliation(s)
- Flavia Ferrantelli
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
29
|
Abstract
Development of a prophylactic human immunodeficiency virus type 1 (HIV-1) vaccine is a leading priority in biomedical research. Much of this work has been done with the nonhuman primate model of AIDS. In a historical context, vaccine studies, which use this model, are summarized and discussed.
Collapse
Affiliation(s)
- Stephen M Smith
- Saint Michael's Medical Center and The New Jersey Medical School - UMDNJ, Newark, NJ, USA.
| |
Collapse
|
30
|
Montefiori DC, Hill TS, Vo HT, Walker BD, Rosenberg ES. Neutralizing antibodies associated with viremia control in a subset of individuals after treatment of acute human immunodeficiency virus type 1 infection. J Virol 2001; 75:10200-7. [PMID: 11581388 PMCID: PMC114594 DOI: 10.1128/jvi.75.21.10200-10207.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immediate treatment of acute human immunodeficiency virus type 1 (HIV-1) infection has been associated with subsequent control of viremia in a subset of patients after therapy cessation, but the immune responses contributing to control have not been fully defined. Here we examined neutralizing antibodies as a correlate of viremia control following treatment interruption in HIV-1-infected individuals in whom highly active antiretriviral therapy (HAART) was initiated during early seroconversion and who remained on therapy for 1 to 3 years. Immediately following treatment interruption, neutralizing antibodies were undetectable with T-cell-line adapted strains and the autologous primary HIV-1 isolate in seven of nine subjects. Env- and Gag-specific antibodies as measured by enzyme-linked immunosorbent assay were also low or undetectable at this time. Despite this apparent poor maturation of the virus-specific B-cell response during HAART, autologous neutralizing antibodies emerged rapidly and correlated with a spontaneous downregulation in rebound viremia following treatment interruption in three subjects. Control of rebound viremia was seen in other subjects in the absence of detectable neutralizing antibodies. The results indicate that virus-specific B-cell priming occurs despite the early institution of HAART, allowing rapid secondary neutralizing-antibody production following treatment interruption in a subset of individuals. Since early HAART limits viral diversification, we hypothesize that potent neutralizing-antibody responses to autologous virus are able to mature and that in some persons these responses contribute to the control of plasma viremia after treatment cessation.
Collapse
Affiliation(s)
- D C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
31
|
Zhuge W, Jia F, Mackay G, Kumar A, Narayan O. Antibodies that neutralize SIV(mac)251 in T lymphocytes cause interruption of the viral life cycle in macrophages by preventing nuclear import of viral DNA. Virology 2001; 287:436-45. [PMID: 11531420 DOI: 10.1006/viro.2001.1053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous reports from our lab had shown that sera obtained from SIV(mac)-infected animals neutralized SIV(mac) infectivity in CD4(+) T cells but failed to protect monkey primary macrophages from infection with the virus. However, the antibodies could inhibit completion of the viral life cycle in the macrophages at the postentry stage(s). In this report we examined the mechanisms of the late effect of the antibodies. Using monoclonal antibodies (MAbs), we demonstrated that only antibodies to the SIV envelope protein (KK17 and KK42) but not antibody to the viral core protein (FA2) had the same inhibitory effect as that of the anti-SIV sera. To identify the stage of the viral replication cycle that was inhibited by anti-SIV antibodies in macrophages, we used various PCR techniques to study viral entry/reverse transcription (by amplifying the viral gag gene), viral genome nuclear transport (by amplifying 2-LTR circular forms), viral integration (by Alu-PCR assay), and viral protein expression (by RIPA). We found that in macrophage cultures inoculated with SIV(mac)251 that were preincubated with antienvelope MAbs, viral DNA was detected at 8 h postinoculation but the 2-LTR circular forms and integrated viral DNAs were undetectable, and viral proteins were not expressed in these infected macrophages. These results strongly suggested that anti-SIV antibodies inhibited SIV(mac) replication in macrophages by blocking nuclear transport of viral genomes since viral DNA could not be detected in the nuclei of treated cultures. Furthermore, we showed that although viral replication in macrophages was interrupted by the antibodies, when cocultured with permissive T cells, the viral genomes presented in the cytoplasm of the macrophages could readily transfer to T cells during cell-cell contact. Importantly, this transfer could not be prevented by the antibodies. These results might explain the failure of passive antibody immunization against SIV(mac)251--a critical obstacle in AIDS vaccine development.
Collapse
Affiliation(s)
- W Zhuge
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160-7424, USA.
| | | | | | | | | |
Collapse
|
32
|
Montefiori DC, Safrit JT, Lydy SL, Barry AP, Bilska M, Vo HT, Klein M, Tartaglia J, Robinson HL, Rovinski B. Induction of neutralizing antibodies and gag-specific cellular immune responses to an R5 primary isolate of human immunodeficiency virus type 1 in rhesus macaques. J Virol 2001; 75:5879-90. [PMID: 11390589 PMCID: PMC114303 DOI: 10.1128/jvi.75.13.5879-5890.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to generate antibodies that cross-neutralize diverse primary isolates is an important goal for human immunodeficiency virus type 1 (HIV-1) vaccine development. Most of the candidate HIV-1 vaccines tested in humans and nonhuman primates have failed in this regard. Past efforts have focused almost entirely on the envelope glycoproteins of a small number of T-cell line-adapted strains of the virus as immunogens. Here we assessed the immunogenicity of noninfectious virus-like particles (VLP) consisting of Gag, Pro (protease), and Env from R5 primary isolate HIV-1(Bx08). Immunogens were delivered to rhesus macaques in the form of either purified VLP, recombinant DNA and canarypox (ALVAC) vectors engineered to express VLP, or a combination of these products. Seroconversion to Gag and Pro was detected in all of the immunized animals. Antibodies that could neutralize HIV-1(Bx08) were detected in animals that received (i) coinoculations with DNA(Bx08) and VLP(Bx08), (ii) DNA(Bx08) followed by ALVAC(Bx08) boosting, and (iii) VLP(Bx08) alone. The neutralizing antibodies were highly strain specific despite the fact that they did not appear to be directed to linear epitopes in the V3 loop. Virus-specific cellular immune responses also were generated, as judged by the presence of Gag-specific gamma interferon (IFN-gamma)-producing cells. These cellular immune responses required the inclusion of DNA(Bx08) in the immunization modality, since few or no IFN-gamma-producing cells were detected in animals that received either VLP(Bx08) or ALVAC(Bx08) alone. The results demonstrate the feasibility of generating neutralizing antibodies and cellular immune responses that target an R5 primary HIV-1 isolate by vaccination in primates.
Collapse
Affiliation(s)
- D C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kumar A, Lifson JD, Li Z, Jia F, Mukherjee S, Adany I, Liu Z, Piatak M, Sheffer D, McClure HM, Narayan O. Sequential immunization of macaques with two differentially attenuated vaccines induced long-term virus-specific immune responses and conferred protection against AIDS caused by heterologous simian human immunodeficiency Virus (SHIV(89.6)P). Virology 2001; 279:241-56. [PMID: 11145906 DOI: 10.1006/viro.2000.0695] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four rhesus macaques were sequentially immunized with live vaccines DeltavpuDeltanefSHIV-4 (vaccine-I) and Deltavpu SHIV(PPC) (vaccine-II). The vaccine viruses did not replicate productively in the peripheral blood mononuclear cells (PBMCs) of the vaccinated animals. All four animals developed binding antibodies against both the vaccine-I and -II envelope glycoproteins but neutralizing antibodies only against vaccine-I. They developed vaccine virus-specific CTLs that also recognized homologous as well as heterologous pathogenic SHIVs. Thirty weeks after the last immunization, the vaccinated animals and three unvaccinated control animals were challenged iv with a highly virulent heterologous SHIV(89.6)P. As expected, the three unvaccinated control animals developed large numbers of infectious PBMCs, high plasma viremia, and precipitous loss of CD4(+) T cells. Two controls did not develop any immune response and succumbed to AIDS in about 6 months. The third control animal developed neutralizing antibodies and had a more chronic disease course, but eventually succumbed to AIDS-related complications 81 weeks after inoculation. The four vaccinated animals became infected with challenge virus as indicated by the presence of challenge virus-specific DNA in the PBMCs and RNA in plasma. However, virus in these animals replicated approximately 200- to 60,000-fold less efficiently than in control animals and eventually, plasma viral RNA became undetectable in three of the four vaccinates. The animals maintained normal CD4(+) T-cell levels throughout the observation period of 85 weeks after a transient drop at Week 3 postchallenge. They also maintained CTL responses throughout the observation period. These studies thus showed that the graded immunization schedule resulted in a safe and highly effective long-lasting immune response that was associated with protection against AIDS by highly pathogenic heterologous SHIV(89.6)P.
Collapse
Affiliation(s)
- A Kumar
- Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kumar A, Buch S, Foresman L, Bischofberger N, Lifson JD, Narayan O. Development of virus-specific immune responses in SHIV(KU)-infected macaques treated with PMPA. Virology 2001; 279:97-108. [PMID: 11145893 DOI: 10.1006/viro.2000.0710] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Therapeutic intervention with highly active antiretroviral therapy (HAART) can lead to the suppression of HIV viremia below the threshold of detection for several years. However, impact of HAART on reconstitution of virus-specific immune responses remains poorly understood. In this study, four macaques were infected with pathogenic SHIV(KU). One week postinoculation two of the four animals were treated with PMPA [9-R-(2-phosphophomethoxypropyl)adenine] daily for 83 days. Two other macaques, that did not receive treatment, exhibited explosive virus replication accompanied by a near total loss of CD4(+) T cells and succumbed to AIDS-related complications within 6 months of infection. These animals did not develop any virus-specific immune responses. On the contrary, the animals that received PMPA showed transient loss of CD4(+) T cells that recovered during the treatment period. The virus burden declined below the level of detection that rebounded soon after cessation of PMPA therapy. The virus replicated productively for several weeks before both animals controlled the productive replication of virus. This control of virus replication was found to be associated with the development of virus-specific neutralizing antibodies, T-helper cells, and CTLs. Although PMPA did not eliminate virus from the animals, it provided them with enough time to mount virus-specific immune responses that eventually controlled the virus replication in the blood. Our results suggest that antiretroviral therapy, if initiated early during infection, would help the host in mounting virus-specific immune responses that might control productive replication of the virus.
Collapse
Affiliation(s)
- A Kumar
- Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Smith MS, Foresman L, Lopez GJ, Tsay J, Wodarz D, Lifson JD, Page A, Wang C, Li Z, Adany I, Buch S, Bischofberger N, Narayan O. Lasting effects of transient postinoculation tenofovir [9-R-(2-Phosphonomethoxypropyl)adenine] treatment on SHIV(KU2) infection of rhesus macaques. Virology 2000; 277:306-15. [PMID: 11080478 DOI: 10.1006/viro.2000.0609] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SHIV(KU2) replicates to high levels in inoculated macaques and reproducibly causes an acute depletion of CD4(+) T cells. We evaluated the ability of treatment with the antiretroviral drug 9-R-(2-phosphonomethoxypropyl)adenine (PMPA; tenofovir), begun 7 days postinoculation, to inhibit viral replication and associated pathogenesis. Highly productive infection (plasma viral RNA > 10(6) copy eq/mL) was present and CD4 depletion had started when treatment was initiated. PMPA treatment was associated with a rapid decline in plasma viral RNA to undetectable levels, with parallel decreases in the infectivity of plasma and infectious cells in PBMCs and CSF and stabilization of CD4(+)T-cell levels. Viral dynamics parameters were calculated for the initial phase of exponential viral replication and the treatment-related decline in plasma viremia. Following cessation of treatment after 12 weeks, plasma viral RNA was detectable intermittently at low levels, and spliced viral transcripts were detected in lymph nodes. Although treatment was begun after viral dissemination, high viremia, and CD4 decreases had occurred, following withdrawal of PMPA, CD4(+) T-cell counts normalized and stabilized in the normal range, despite persistent low-level infection. No PMPA-resistance mutations were detected. These results validate the similar viral replicative dynamics of SHIV(KU2) and HIV and SIV, and also underscore the potential for long-term modulation of viral replication patterns and clinical course by perturbation of primary infection.
Collapse
Affiliation(s)
- M S Smith
- Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Parren PW, Poignard P, Ditzel HJ, Williamson RA, Burton DR. Antibodies in human infectious disease. Immunol Res 2000; 21:265-78. [PMID: 10852127 DOI: 10.1385/ir:21:2-3:265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Investigation of human antibody responses to viral pathogens at the molecular level is revealing novel aspects of the interplay of viruses with the humoral immune system. In viral infection, at least two types of human antibody responses exist: a response to mature envelope on virions that is neutralizing and a response to immature forms of envelope (viral debris) that is not. Many pathogens have, to varying degrees, evolved envelopes to minimize antibody responses against epitopes exposed on the virion. In this article, we review recent studies on human immunodeficiency virus type 1, Ebola virus, and respiratory syncytial virus. Prion diseases are diseases of protein conformation. We have generated a large panel of antibodies recognizing the cellular prion protein (PrP(c)), some of which also react with the abnormally folded infectious prion protein (PrP(Sc)). These antibodies are being used to gain insight into both the molecular events leading to the formation of infectious PrP and the physiologic role played by PrP in normal and prion-infected cells.
Collapse
Affiliation(s)
- P W Parren
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
37
|
Kumar A, Lifson JD, Silverstein PS, Jia F, Sheffer D, Li Z, Narayan O. Evaluation of immune responses induced by HIV-1 gp120 in rhesus macaques: effect of vaccination on challenge with pathogenic strains of homologous and heterologous simian human immunodeficiency viruses. Virology 2000; 274:149-64. [PMID: 10936096 DOI: 10.1006/viro.2000.0444] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The simian human immunodeficiency virus (SHIV) macaque model of AIDS has provided a very useful system for evaluation of envelope-based candidate vaccines against HIV-1. Eight rhesus macaques were immunized with monomeric recombinant gp120 of HIV-1(LAI) (rgp120) and used to evaluate whether this vaccine conferred protection against challenge with pathogenic SHIVs (SHIV(KU-2) and SHIV(89.6)P). The vaccinated macaques developed high titers of antibodies against rgp120 that reacted efficiently with the envelope proteins of homologous SHIV (SHIV(KU-2)) and poorly with the SHIV(89.6)P envelope, a heterologous strain of SHIV. This vaccine also induced neutralizing antibodies but only against SHIV(KU-2). Vaccine-induced antibodies were of high avidity and predominantly against linear epitopes on the protein. Vaccinated macaques developed gp120-specific T-helper cells but no consistent cytotoxic T lymphocytes. However, cellular immune responses were short-lived in all eight vaccinates. At week 22 postimmunization, four vaccinates were challenged with SHIV(KU-2) and the other four with SHIV(89.6)P. Four unvaccinated control macaques were also infected: two with SHIV(KU-2) and two with SHIV(89.6)P. Vaccinated macaques generally showed anamnestic antibody and T-helper cell responses. However, T-helper responses were again short-lived. Upon challenge, the level of productive virus replication was indistinguishable between vaccine and control groups, suggesting that rgp120 did not confer protection against virus replication when animals were challenged with homologous or heterologous SHIV viruses.
Collapse
Affiliation(s)
- A Kumar
- Laboratory of Viral Pathogenesis, Department of Microbiology, MolecularGenetics, and Immunolgy, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Binley JM, Clas B, Gettie A, Vesanen M, Montefiori DC, Sawyer L, Booth J, Lewis M, Marx PA, Bonhoeffer S, Moore JP. Passive infusion of immune serum into simian immunodeficiency virus-infected rhesus macaques undergoing a rapid disease course has minimal effect on plasma viremia. Virology 2000; 270:237-49. [PMID: 10772996 DOI: 10.1006/viro.2000.0254] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibody responses are often considered to play only a limited role in controlling viremia during chronic infections with human or simian immunodeficiency virus (SIV). We investigated this by determining the effect of passively infused antibody on plasma viremia in infected rhesus macaques. The emphasis of the study was to understand the mechanism(s) underlying any observed effects. We infused serum immunoglobulins (SIVIG) purified from SIV(mac)251-infected macaques into other SIV(mac)251-infected macaques. The rapid progressor recipients had high viral loads but negligible titers of antibodies to SIV. Thus, we could significantly increase antibody titers with exogenous SIVIG. Despite restoring anti-SIV titers to levels typical of macaques with a normal disease course, SIVIG had only a modest effect on plasma SIV RNA and cell-associated viral load; the maximum, transient, reduction was threefold. The decrease in plasma RNA commenced within 1-2 h of SIVIG infusion, the nadir was at 12 h, and then a rebound occurred. A two- to threefold drop in cell-associated viral RNA was simultaneous with the decrease in plasma RNA. The kinetics of the viremia changes are inconsistent with neutralization of new cycles of infection. More likely, perhaps unexpectedly, is that infused antibodies killed SIV-infected cells, via an effector mechanism such as antibody-dependent cellular cytotoxicity.
Collapse
Affiliation(s)
- J M Binley
- The Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ourmanov I, Bilska M, Hirsch VM, Montefiori DC. Recombinant modified vaccinia virus ankara expressing the surface gp120 of simian immunodeficiency virus (SIV) primes for a rapid neutralizing antibody response to SIV infection in macaques. J Virol 2000; 74:2960-5. [PMID: 10684319 PMCID: PMC111793 DOI: 10.1128/jvi.74.6.2960-2965.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutralizing antibodies were assessed before and after intravenous challenge with pathogenic SIVsmE660 in rhesus macaques that had been immunized with recombinant modified vaccinia virus Ankara expressing one or more simian immunodeficiency virus gene products (MVA-SIV). Animals received either MVA-gag-pol, MVA-env, MVA-gag-pol-env, or nonrecombinant MVA. Although no animals were completely protected from infection with SIV, animals immunized with recombinant MVA-SIV vaccines had lower virus loads and prolonged survival relative to control animals that received nonrecombinant MVA (I. Ourmanov et al., J. Virol. 74:2740-2751, 2000). Titers of neutralizing antibodies measured with the vaccine strain SIVsmH-4 were low in the MVA-env and MVA-gag-pol-env groups of animals and were undetectable in the MVA-gag-pol and nonrecombinant MVA groups of animals on the day of challenge (4 weeks after final immunization). Titers of SIVsmH-4-neutralizing antibodies remained unchanged 1 week later but increased approximately 100-fold 2 weeks postchallenge in the MVA-env and MVA-gag-pol-env groups while the titers remained low or undetectable in the MVA-gag-pol and nonrecombinant MVA groups. This anamnestic neutralizing antibody response was also detected with T-cell-line-adapted stocks of SIVmac251 and SIV/DeltaB670 but not with SIVmac239, as this latter virus resisted neutralization. Most animals in each group had high titers of SIVsmH-4-neutralizing antibodies 8 weeks postchallenge. Titers of neutralizing antibodies were low or undetectable until about 12 weeks of infection in all groups of animals and showed little or no evidence of an anamnestic response when measured with SIVsmE660. The results indicate that recombinant MVA is a promising vector to use to prime for an anamnestic neutralizing antibody response following infection with primate lentiviruses that cause AIDS. However, the Env component of the present vaccine needs improvement in order to target a broad spectrum of viral variants, including those that resemble primary isolates.
Collapse
Affiliation(s)
- I Ourmanov
- Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, Rockville, Maryland 20852, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The primate models of AIDS provide insights into pathogenesis, transmission, and immune responses to infection and are useful in testing vaccines and drugs. The HIV-1/chimpanzee, SIV(mac)/macaque, and SHIV/macaque models are the most widely used. The advantages and drawbacks of these and other models are discussed.
Collapse
Affiliation(s)
- S V Joag
- JODI Research Inc., Wexford, Pennsylvania and the Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas School of Medicine, Kansas, City, Kansas, USA
| |
Collapse
|
41
|
Crawford JM, Earl PL, Moss B, Reimann KA, Wyand MS, Manson KH, Bilska M, Zhou JT, Pauza CD, Parren PW, Burton DR, Sodroski JG, Letvin NL, Montefiori DC. Characterization of primary isolate-like variants of simian-human immunodeficiency virus. J Virol 1999; 73:10199-207. [PMID: 10559336 PMCID: PMC113073 DOI: 10.1128/jvi.73.12.10199-10207.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several different strains of simian-human immunodeficiency virus (SHIV) that contain the envelope glycoproteins of either T-cell-line-adapted (TCLA) strains or primary isolates of human immunodeficiency virus type 1 (HIV-1) are now available. One of the advantages of these chimeric viruses is their application to studies of HIV-1-specific neutralizing antibodies in preclinical AIDS vaccine studies in nonhuman primates. In this regard, an important consideration is the spectrum of antigenic properties exhibited by the different envelope glycoproteins used for SHIV construction. The antigenic properties of six SHIV variants were characterized here in neutralization assays with recombinant soluble CD4 (rsCD4), monoclonal antibodies, and serum samples from SHIV-infected macaques and HIV-1-infected individuals. Neutralization of SHIV variants HXBc2, KU2, 89.6, and 89.6P by autologous and heterologous sera from SHIV-infected macaques was restricted to an extent that these viruses may be considered heterologous to one another in their major neutralization determinants. Little or no variation was seen in the neutralization determinants on SHIV variants 89.6P, 89.6PD, and SHIV-KB9. Neutralization of SHIV HXBc2 by sera from HXBc2-infected macaques could be blocked with autologous V3-loop peptide; this was less true in the case of SHIV 89.6 and sera from SHIV 89.6-infected macaques. The poorly immunogenic but highly conserved epitope for monoclonal antibody IgG1b12 was a target for neutralization on SHIV variants HXBc2, KU2, and 89.6 but not on 89.6P and KB9. The 2G12 epitope was a target for neutralization on all five SHIV variants. SHIV variants KU2, 89.6, 89.6P, 89.6PD, and KB9 exhibited antigenic properties characteristic of primary isolates by being relatively insensitive to neutralization in peripheral blood mononuclear cells with serum samples from HIV-1-infected individuals and 12-fold to 38-fold less sensitive to inhibition with recombinant soluble CD4 than TCLA strains of HIV-1. The utility of nonhuman primate models in AIDS vaccine development is strengthened by the availability of SHIV variants that are heterologous in their neutralization determinants and exhibit antigenic properties shared with primary isolates.
Collapse
Affiliation(s)
- J M Crawford
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dreyer K, Kallas EG, Planelles V, Montefiori D, McDermott MP, Hasan MS, Evans TG. Primary isolate neutralization by HIV type 1-infected patient sera in the era of highly active antiretroviral therapy. AIDS Res Hum Retroviruses 1999; 15:1563-71. [PMID: 10580407 DOI: 10.1089/088922299309856] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sera from highly selected HIV-1-positive patients are known to have the ability to neutralize a diverse array of primary isolates of HIV-1. The human osteosarcoma cell line that expresses CD4 and chemokine receptors (GHOST cells) was adapted to study HIV-1 neutralization in 37 HIV-1-infected individuals who were selected because of slow disease progression or nonprogression. Many of these individuals were receiving combination drug therapy. Molecularly cloned HIV-1 JR-FL and NL4-3 viruses were used as prototypes to define assay conditions. Sera were then tested at a 1:40 dilution against six additional primary isolates, three of which utilized CCR5 and three of which used both CCR5 and CXCR4. The assay was highly reproducible and independent of viral input titer, with a readout at 48 hr equivalent to that at later time points. As previously reported, neutralization sensitivity was entirely independent of coreceptor usage. Only a few sera from slow progressors were able to neutralize a broad array of primary isolates at a 1:40 dilution, and the best clinical predictor of broadly neutralizing antibody for primary isolates was the present use of antiretroviral agents. In further studies it was found that purified antibody accounted for the majority of the measured neutralization. However, experiments with exogenous addition of antiviral agents showed that the use of nucleosides also greatly contributed to the measured neutralization in some patients. Measurement of neutralization of HIV-1 primary isolates by sera from patients receiving antiretroviral therapy must be carried out with some caution.
Collapse
Affiliation(s)
- K Dreyer
- Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Warren JT, Levinson MA. AIDS preclinical vaccine development: biennial survey of HIV, SIV, and SHIV challenge studies in vaccinated nonhuman primates. J Med Primatol 1999; 28:249-73. [PMID: 10593492 DOI: 10.1111/j.1600-0684.1999.tb00276.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J T Warren
- AIDS Vaccine Evaluation Group, The EMMES Corporation, Potomac, MD 20854, USA.
| | | |
Collapse
|
44
|
Liu ZQ, Muhkerjee S, Sahni M, McCormick-Davis C, Leung K, Li Z, Gattone VH, Tian C, Doms RW, Hoffman TL, Raghavan R, Narayan O, Stephens EB. Derivation and biological characterization of a molecular clone of SHIV(KU-2) that causes AIDS, neurological disease, and renal disease in rhesus macaques. Virology 1999; 260:295-307. [PMID: 10417264 DOI: 10.1006/viro.1999.9812] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we described the derivation of a pathogenic strain of simian-human immunodeficiency virus (SHIV(KU-2)) consisting of the tat, rev, vpu, and env genes of HIV-1 (strain HXB2) in a genetic background of SIV(mac)239 that causes AIDS and productive infection of the CNS in rhesus macaques (Macca mulatta) (Raghavan et al., 1997, Brain Pathol. 7, 851-861). We report here on the characterization of a molecular clone of SHIV(KU-2), designated SHIV(KU-2MC4), that caused CD4(+) T cell loss as well as neurological and renal disease in macaques. DNA sequence analysis of selected SIV regions of SHIV(KU-2MC4) revealed 10 nucleotide changes in the LTR, whereas Gag, Vif, Vpr, Vpx, and Nef had 1, 1, 1, 2, and 13 predicted amino acid substitutions, respectively, compared to SIV(mac)239. DNA sequence analysis of HIV-1 derived regions of SHIV(KU-2MC4) revealed 2, 1, 2, and 18 predicted amino acid substitutions in the Tat, Rev, Vpu, and Env proteins, respectively, when compared to SHIV-4. Unlike the parental SHIV-4, which is not tropic for macrophages, SHIV(KU-2MC4) replicated efficiently in macrophage cultures as determined by p27 assays. However, despite the numerous changes in the Env protein and newly acquired tropism for macrophages, SHIV(KU-2MC4), like the parental SHIV-4, used CXCR4 exclusively as its coreceptor for entry into susceptible cells. Inoculation of SHIV(KU-2MC4) into two rhesus macaques resulted in severe infection in which the numbers of circulating CD4(+) T cells in the blood declined rapidly by 2 weeks postinoculation and virus producing cells in the peripheral blood mononuclear cells were identified throughout the course of infection. At the time of euthanasia (20 and 22 weeks), both macaques had lost a significant amount of weight and had no circulating CD4(+) T cells. In addition, one macaque developed intension tremors and uncoordinated movements. Virological examination of tissues at necropsy revealed active virus replication in both lymphoid and nonlymphoid tissues such as the lung and brain. Histological examination revealed that the induced immunodeficiency was associated with lymphoid depletion of the lymph nodes and spleen, opportunistic infections, lentiviral encephalitis, and severe glomerulosclerosis of the kidney. This molecular clone will serve as the basis for analyzing the molecular determinants through which SHIV(KU-2) causes severe CD4(+) T cell loss, neurological disease, and SHIV nephropathy in rhesus macaques.
Collapse
Affiliation(s)
- Z Q Liu
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Efforts to develop animal models for human immunodeficiency virus type-1 (HIV-1) vaccine testing have focused on lentivirus infection of nonhuman primates. A long-term goal of this primate research is to utilize the models to understand the mechanisms of pathogenesis leading to AIDS. Because the time to disease is compressed relative to HIV infection in humans, therapeutic strategies and compounds can be tested in nonhuman primate models in a shorter time frame and under more controlled conditions than are possible in many clinical studies. Recent interventive studies in primates using antiviral drugs or passive immune globulin (IgG) have demonstrated that multiple log reductions in plasma virus can be achieved and sustained, with accompanying health benefits. Information gained about timing and dosage may be of utility in designing clinical studies. The development of reliable and predictable animal models for effective therapies and vaccines against AIDS remains a critical priority for primate research.
Collapse
Affiliation(s)
- N L Haigwood
- Seattle Biomedical Research Institute, WA 98109-1651, USA.
| |
Collapse
|
46
|
Montefiori DC, Evans TG. Toward an HIV type 1 vaccine that generates potent, broadly cross-reactive neutralizing antibodies. AIDS Res Hum Retroviruses 1999; 15:689-98. [PMID: 10357464 DOI: 10.1089/088922299310773] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- D C Montefiori
- Center for AIDS Research, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
47
|
Narayan SV, Mukherjee S, Jia F, Li Z, Wang C, Foresman L, McCormick-Davis C, Stephens EB, Joag SV, Narayan O. Characterization of a neutralization-escape variant of SHIVKU-1, a virus that causes acquired immune deficiency syndrome in pig-tailed macaques. Virology 1999; 256:54-63. [PMID: 10087226 DOI: 10.1006/viro.1999.9605] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A chimeric simian-human immunodeficiency virus (SHIV-4) containing the tat, rev, vpu, and env genes of HIV type 1 (HIV-1) in a genetic background of SIVmac239 was used to develop an animal model in which a primate lentivirus expressing the HIV-1 envelope glycoprotein caused acquired immune deficiency syndrome (AIDS) in macaques. An SHIV-infected pig-tailed macaque that died from AIDS at 24 weeks postinoculation experienced two waves of viremia: one extending from weeks 2-8 and the second extending from week 18 until death. Virus (SHIVKU-1) isolated during the first wave was neutralized by antibodies appearing at the end of the first viremic phase, but the virus (SHIVKU-1b) isolated during the second viremic phase was not neutralized by these antibodies. Inoculation of SHIVKU-1b into 4 pig-tailed macaques resulted in severe CD4(+) T cell loss by 2 weeks postinoculation, and all 4 macaques died from AIDS at 23-34 weeks postinoculation. Because this virus had a neutralization-resistant phenotype, we sequenced the env gene and compared these sequences with those of the env gene of SHIVKU-1 and parental SHIV-4. With reference to SHIV-4, SHIVKU-1b had 18 and 6 consensus amino acid substitutions in the gp120 and gp41 regions of Env, respectively. These compared with 10 and 3 amino acid substitutions in the gp120 and gp41 regions of SHIVKU-1. Our data suggested that SHIVKU-1 and SHIVKU-1b probably evolved from a common ancestor but that SHIVKU-1b did not evolve from SHIVKU-1. A chimeric virus, SHIVKU-1bMC17, constructed with the consensus env from the SHIVKU-1b on a background of SHIV-4, confirmed that amino acid substitutions in Env were responsible for the neutralization-resistant phenotype. These results are consistent with the hypothesis that neutralizing antibodies induced by SHIVKU-1 in pig-tailed macaque resulted in the selection of a neutralization-resistant virus that was responsible for the second wave of viremia.
Collapse
Affiliation(s)
- S V Narayan
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160-7420, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Joag SV, Li Z, Wang C, Foresman L, Jia F, Stephens EB, Zhuge W, Narayan O. Passively administered neutralizing serum that protected macaques against infection with parenterally inoculated pathogenic simian-human immunodeficiency virus failed to protect against mucosally inoculated virus. AIDS Res Hum Retroviruses 1999; 15:391-4. [PMID: 10082123 DOI: 10.1089/088922299311367] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Macaques inoculated orally, vaginally, or parenterally with SHIV(KU-1) develop severe systemic infection, acute loss of CD4+ T cells, and AIDS. We showed in a previous report that passive immunization with neutralizing serum protected macaques against infection with parenterally inoculated pathogenic SHIV given 24 hr later. In the study reported here we asked whether the identical passive immunization protocol would protect macaques against infection with pathogenic SHIV following oral inoculation of the virus. Ten pigtail macaques were inoculated orally with one animal infectious dose of SHIV(KU-1). Four of the 10 had been given pooled anti-SHIV plasma (15 ml/kg) 24 hr earlier, 4 others were given the same dose of anti-SHIV plasma 2 hr after virus challenge, and the 2 remaining animals were used as controls. The neutralizing antibodies failed to protect macaques against infection after mucosal challenge with SHIV(KU-1).
Collapse
Affiliation(s)
- S V Joag
- Department of Microbiology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Joag SV, Liu ZQ, Stephens EB, Smith MS, Kumar A, Li Z, Wang C, Sheffer D, Jia F, Foresman L, Adany I, Lifson J, McClure HM, Narayan O. Oral immunization of macaques with attenuated vaccine virus induces protection against vaginally transmitted AIDS. J Virol 1998; 72:9069-78. [PMID: 9765452 PMCID: PMC110324 DOI: 10.1128/jvi.72.11.9069-9078.1998] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/1998] [Accepted: 07/24/1998] [Indexed: 12/31/2022] Open
Abstract
The chimeric simian-human immunodeficiency virus SHIVKU-1, bearing the envelope of human immunodeficiency virus type 1 (HIV-1), causes fulminant infection with subtotal loss of CD4(+) T cells followed by development of AIDS in intravaginally inoculated macaques and thus provides a highly relevant model of sexually transmitted disease caused by HIV-1 in human beings. Previous studies using this SHIV model had shown that the vpu and nef genes were important in pathogenesis of the infection, and so we deleted portions of these genes to create two vaccines, DeltavpuDeltanefSHIV-4 (vaccine 1) and DeltavpuSHIVPPc (vaccine 2). Six adult macaques were immunized subcutaneously with vaccine 1, and six were immunized orally with vaccine 2. Both viruses caused infection in all inoculated animals, but whereas vaccine 1 virus caused only a nonproductive type of infection, vaccine 2 virus replicated productively but transiently for a 6- to 10-week period. Both groups were challenged 6 to 7 months later with pathogenic SHIVKU-1 by the intravaginal route. All four unvaccinated controls developed low CD4(+) T-cell counts (<200/microliter) and AIDS. The 12 vaccinated animals all became infected with SHIVKU-1, and two in group 1 developed a persistent productive infection followed by development of AIDS in one. The other 10 have maintained almost complete control over virus replication even though spliced viral RNA was detected in lymph nodes. This suppression of virus replication correlated with robust antiviral cell-mediated immune responses. This is the first demonstration of protection against virulent SHIV administered by the intravaginal route. This study supports the concept that sexually transmitted HIV disease can be prevented by parenteral or oral immunization.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- Acquired Immunodeficiency Syndrome/immunology
- Acquired Immunodeficiency Syndrome/prevention & control
- Acquired Immunodeficiency Syndrome/transmission
- Administration, Oral
- Animals
- Base Sequence
- CD4 Lymphocyte Count
- DNA Primers/genetics
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Disease Models, Animal
- Female
- Genes, nef
- Genes, vpu
- HIV-1/genetics
- HIV-1/immunology
- HIV-1/physiology
- Humans
- Immunization
- Macaca nemestrina
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- SAIDS Vaccines/administration & dosage
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Synthetic/administration & dosage
- Vagina
- Virus Replication
Collapse
Affiliation(s)
- S V Joag
- Marion Merrell Dow Laboratory of Viral Pathogenesis and Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhuge W, Jia F, Stephens EB, Li Z, Wang C, Joag SV, Narayan O. Failure of SIVmac to be neutralized in macrophage cultures is unique to SIVmac and not observed with neutralization of SHIV or HIV-1. AIDS Res Hum Retroviruses 1998; 14:1045-51. [PMID: 9718119 DOI: 10.1089/aid.1998.14.1045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Except during acutely lethal infection, macaques infected with SIVmac251 produce antibodies that neutralize the virus in CEMx174 cells, macaque PBMC and macrophage cultures. In a previous report, we had shown that whereas neutralization of the SIVmac251 was complete in lymphocyte cultures, "protected" macrophages had actually become latently infected, and remained viral DNA-positive, but the infection was nonproductive as long as antibodies were maintained in the medium. Removal of the antibodies as long as 1 week later, resulted in resurgence of virus replication. In the present study, we compared neutralization of SIVmac239 with that of neutralization of SHIV and HIV-1, and sought to determine whether the failure to prevent infection in macrophages was also typical of neutralization of SHIV and HIV-1 in macaque and human macrophage cultures, respectively. The results showed that similar to SIVmac251, neutralizing antibodies did not block SIVmac239 infection in macaque macrophages, although they blocked infection of the virus in T cells. The data from neutralization of SHIV using anti-SHIV antibodies and for neutralization of HIV-1 (89.6 and Bal) using anti-HIV IgG in both T cells and macrophages, however, can be summarized with a single statement: neutralization of SHIV and HIV-1 was complete in all of the cultures, with no evidence of establishment of latent infection in or resurgence of virus replication after antibodies were removed from macrophage cultures. The non-neutralizability of SIVmac (251 and 239) in macrophages is therefore unique to the SIVmac and not relevant to neutralization of HIV-1.
Collapse
Affiliation(s)
- W Zhuge
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66160-7424, USA.
| | | | | | | | | | | | | |
Collapse
|