1
|
MacNeill AL, Micheloud JF, Parvin R, Gjessing M, Airas NA, Sant'Ana FJFD, Adamek M. Poxvirus pathology and pathogenesis in agriculturally important species. Vet Pathol 2025:3009858251338854. [PMID: 40421764 DOI: 10.1177/03009858251338854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Zoonotic poxviruses, including monkeypox virus (MPV), the causative agent for Mpox disease, have gained significant media and scientific attention due to recent outbreaks in human populations across the globe. The increase in human cases of poxvirus infection is not unexpected, as routine vaccination against smallpox (a disease caused by the poxvirus variola virus, which cross protects against other orthopoxviruses) was discontinued in the 1980s after its eradication. Large numbers of vertebrate and invertebrate species are susceptible to infection by Poxviridae. Clinical signs and histologic lesions caused by genetically different poxviruses can be strikingly similar with some notable exceptions (eg, poxviral infections in fish). The purpose of this article is to review poxvirus pathology and pathogenesis observed in species of agricultural significance including poultry, cattle, goats, sheep, camels, swine, rabbits, horses, salmon, and carp.
Collapse
Affiliation(s)
| | - Juan Francisco Micheloud
- Área de Sanidad Animal-IIACS/CIAP-INTA, Salta, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Universidad Católica de Salta, Salta, Argentina
| | | | | | | | | | - Mikolaj Adamek
- University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
2
|
Bamouh Z, Hamdi J, Elkarhat Z, Kichou F, Fellahi S, Watts DM, Elharrak M. Isolation and phylogenetic analysis of camel contagious ecthyma virus in Morocco. Microb Pathog 2025; 198:107130. [PMID: 39561908 DOI: 10.1016/j.micpath.2024.107130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Camel contagious ecthyma is a highly infectious viral skin disease that affects camels and causes economic losses. This study reports the isolation and the phylogenetic analysis of contagious ecthyma virus among camels in Morocco. The disease was detected in four among fifteen camels with severe papules on the lips and nares. Samples of skin crusts were collected and pooled for virus isolation and titration, PCR testing, and histopathological examination. PCR was used to amplify the B2L gene and the resulting product was sequenced and analyzed genetically. The study's findings indicate the presence of characteristic microscopic changes of poxvirus infection in the examined tissues and the virus was isolated on two cells (lambs testis and Vero) and showed distinct growth patterns. The virus grew rapidly on TA cells and delayed growth on Vero cells. The third passage showed cytopathic effects characterized by cell aggregation. Sequence analysis of the B2L gene revealed 100 % similarity to the camel contagious Ecthyma virus isolated from Ethiopia. The camel virus isolates can be classified into two genetic clades according to the B2L gene sequence: the Asian lineage, which includes isolates from Saudi Arabia, Bahrain, and India, and the African lineage, which includes isolates from the Sudan. In conclusion, this is the first instance of the camel contagious ecthyma virus being identified in North Africa in a herd of camels following exposure to stress. Moreover, the progression of the disease was closely monitored from onset to recovery in a setting without the bacterial complication often observed in the field. The virus exhibited opportunistic behavior, exploiting the stress response. Further studies are warranted to evaluate the pathogenicity of the virus in camels and to genetically characterize the circulating virus from different regions. This will be highly beneficial in the development of an appropriate vaccine.
Collapse
Affiliation(s)
- Zohra Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco; Hassan II Agronomic and Veterinary Institute, Rabat, Morocco.
| | - Jihane Hamdi
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Zouhair Elkarhat
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Faouzi Kichou
- Hassan II Agronomic and Veterinary Institute, Rabat, Morocco.
| | - Siham Fellahi
- Hassan II Agronomic and Veterinary Institute, Rabat, Morocco.
| | - Doug M Watts
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA.
| | - Mehdi Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| |
Collapse
|
3
|
Premraj A, Aleyas AG, Nautiyal B, Rasool TJ. First report of a chemokine from camelids: Dromedary CXCL8 is induced by poxvirus and heavy metal toxicity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105261. [PMID: 39241936 DOI: 10.1016/j.dci.2024.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Low molecular weight proteins, known as chemokines, facilitate the migration and localization of immune cells to the site of infection and injury. One of the first chemokines identified, CXCL8 functions as a key neutrophil activator, recruiting neutrophils to sites of inflammation. Several viral infections, including zoonotic coronaviruses and poxviruses, have been reported to induce the expression of CXCL8. Dromedary camels are known to harbor several potentially zoonotic pathogens, but critical immune molecules such as chemokines remain unidentified. We report here the identification of CXCL8 from the dromedary camel - the first chemokine identified from camelids. The complete dromedary CXCL8 cDNA sequence as well as the corresponding gene sequence from dromedary and two New World camelids - alpaca and llama were cloned. CXCL8 mRNA expression was relatively higher in PBMC, spleen, lung, intestine, and liver. Poly(I:C) and lipopolysaccharide stimulated CXCL8 expression in vitro, while interferon treatment inhibited it. In vitro infection with potentially zoonotic camelpox virus induced the expression of CXCL8 in camel kidney cells. Toxicological studies on camelids have been limited, and no biomarkers have been identified. Hence, we also evaluated CXCL8 mRNA expression as a potential biomarker to assess heavy metal toxicity in camel kidney cells in vitro. CXCL8 expression was increased after in vitro exposure to heavy metal compounds of cobalt and cadmium, suggesting potential utility as a biomarker for renal toxicity in camels. The results of our study demonstrate that camel CXCL8 plays a significant role in immunomodulatory and induced toxicity responses in dromedary camels.
Collapse
Affiliation(s)
- Avinash Premraj
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates
| | - Abi George Aleyas
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates
| | - Binita Nautiyal
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates
| | - Thaha Jamal Rasool
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates.
| |
Collapse
|
4
|
Subissi L, Stefanelli P, Rezza G. Human mpox: global trends, molecular epidemiology and options for vaccination. Pathog Glob Health 2024; 118:25-32. [PMID: 37715739 PMCID: PMC10769137 DOI: 10.1080/20477724.2023.2258641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
The eradication of smallpox and the cessation of vaccination have led to the growth of the susceptible human population to poxviruses. This has led to the increasing detection of zoonotic orthopoxviruses. Among those viruses, monkeypox virus (MPV) is the most commonly detected in Western and Central African regions. Since 2022, MPV is causing local transmission in newly affected countries all over the world. While the virus causing the current outbreak remains part of clade II (historically referred to as West African clade), it has a significant number of mutations as compared to other clade II sequences and is therefore referred to as clade IIb. It remains unclear whether those mutations may have caused a change in the virus phenotype. Vaccine effectiveness data show evidence of a high cross-protection of vaccines designed to prevent smallpox against mpox. These vaccines therefore represent a great opportunity to control human-to-human transmission, provided that their availability has short time-frames and that mistakes from the recent past (vaccine inequity) will not be reiterated.
Collapse
Affiliation(s)
- Lorenzo Subissi
- Health Emergencies Programme, World Health Organization, Geneva, Switzerland
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Giovanni Rezza
- Health Prevention Directorate, Ministry of Health, Roma, Italy
| |
Collapse
|
5
|
Obermeier PE, Buder SC, Hillen U. Pockenvirusinfektionen in der Dermatologie: Poxvirus infections in dermatology - the neglected, the notable, and the notorious. J Dtsch Dermatol Ges 2024; 22:56-96. [PMID: 38212918 DOI: 10.1111/ddg.15257_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/20/2023] [Indexed: 01/13/2024]
Abstract
ZusammenfassungDie Familie Poxviridae umfasst derzeit 22 Gattungen, die Wirbeltiere infizieren können. Humanpathogene Pockenviren gehören den Gattungen Ortho‐, Para‐, Mollusci‐ und Yatapoxvirus an. Bis zur Eradikation der Variola vera im Jahr 1979 waren die Pocken, im Volksmund auch Blattern genannt, eine schwerwiegende Gesundheitsbedrohung für die Bevölkerung. Noch heute sind Dermatologen mit zahlreichen Pockenvirusinfektionen konfrontiert, wie den Bauernhofpocken, die als Zoonosen nach Tierkontakten in ländlichen Gebieten oder nach Massenversammlungen auftreten können. In den Tropen können Erkrankungen durch Tanapox‐ oder Vaccinia‐Viren zu den Differenzialdiagnosen gehören. Dellwarzen sind weltweit verbreitet und werden in bestimmten Fällen als sexuell übertragbare Pockenvirusinfektion angesehen. In jüngster Zeit hatten sich Mpox (Affenpocken) zu einer gesundheitlichen Notlage von internationaler Tragweite entwickelt, die eine rasche Identifizierung und angemessene Behandlung durch Dermatologen und Infektiologen erfordert. Fortschritte und neue Erkenntnisse über Epidemiologie, Diagnose, klinische Manifestationen und Komplikationen sowie Behandlung und Prävention von Pockenvirusinfektionen erfordern ein hohes Maß an Fachwissen und interdisziplinärer Zusammenarbeit in den Bereichen Virologie, Infektiologie und Dermatologie. Dieser CME‐Artikel bietet einen aktualisierten systematischen Überblick, um praktizierende Dermatologen bei der Identifizierung, Differenzialdiagnose und Behandlung klinisch relevanter Pockenvirusinfektionen zu unterstützen.
Collapse
Affiliation(s)
- Patrick E Obermeier
- Klinik für Dermatologie und Venerologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
- Abteilung für Infektionskrankheiten, Vaccine Safety Initiative, Berlin, Deutschland
| | - Susanne C Buder
- Klinik für Dermatologie und Venerologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
- Konsiliarlabor für Gonokokken, Fachgebiet Sexuell übertragbare bakterielle Krankheitserreger, Robert Koch-Institut, Berlin, Deutschland
| | - Uwe Hillen
- Klinik für Dermatologie und Venerologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| |
Collapse
|
6
|
Obermeier PE, Buder SC, Hillen U. Poxvirus infections in dermatology - the neglected, the notable, and the notorious. J Dtsch Dermatol Ges 2024; 22:56-93. [PMID: 38085140 DOI: 10.1111/ddg.15257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/20/2023] [Indexed: 12/22/2023]
Abstract
The family Poxviridae currently comprises 22 genera that infect vertebrates. Of these, members of the Ortho-, Para-, Mollusci- and Yatapoxvirus genera have been associated with human diseases of high clinical relevance in dermatology. Historically, smallpox had been a notorious health threat until it was declared eradicated by the World Health Organization in 1979. Today, dermatologists are confronted with a variety of poxviral infections, such as farmyard pox, which occurs as a zoonotic infection after contact with animals. In the tropics, tanapox or vaccinia may be in the differential diagnosis as neglected tropical dermatoses. Molluscum contagiosum virus infection accounts for significant disease burden worldwide and is classified as a sexually transmitted infection in certain scenarios. Recently, mpox (monkeypox) has emerged as a public health emergency of international concern, requiring rapid recognition and appropriate management by dermatologists and infectious disease specialists. Advances and new insights into the epidemiology, diagnosis, clinical manifestations and complications, treatment, and prevention of poxviral infections require a high level of expertise and interdisciplinary skills from healthcare professionals linking virology, infectious diseases, and dermatology. This CME article provides a systematic overview and update to assist the practicing dermatologist in the identification, differential diagnosis, and management of poxviral infections.
Collapse
Affiliation(s)
- Patrick E Obermeier
- Department of Dermatology and Venereology, Vivantes Hospital Neukölln, Berlin, Germany
- Department of Infectious Diseases, Vaccine Safety Initiative, Berlin, Germany
| | - Susanne C Buder
- Department of Dermatology and Venereology, Vivantes Hospital Neukölln, Berlin, Germany
- German Reference Laboratory for Gonococci, Unit Sexually Transmitted Bacterial Pathogens, Department for Infectious Diseases, Robert Koch-Institute, Berlin, Germany
| | - Uwe Hillen
- Department of Dermatology and Venereology, Vivantes Hospital Neukölln, Berlin, Germany
| |
Collapse
|
7
|
Haller S, Babouee Flury B. Zoonotic poxvirus lesions vs mosquito bite lesions: differential diagnosis of the uncommon vs the common. J Travel Med 2023; 30:taad064. [PMID: 37133452 DOI: 10.1093/jtm/taad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
A returning traveller presents with skin lesions resembling an orthopox virus infection and a history of animal contact. Despite the suggestive presentation, polymerase chain reaction (PCR) rules out this rare differential diagnosis. The clinical course and histologic analysis lead to the diagnosis of insect bites; a common traveller’s affliction with an unusual presentation.
Collapse
Affiliation(s)
- Sabine Haller
- Department of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Baharak Babouee Flury
- Department of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
8
|
Khalafalla AI. Zoonotic diseases transmitted from the camels. Front Vet Sci 2023; 10:1244833. [PMID: 37929289 PMCID: PMC10620500 DOI: 10.3389/fvets.2023.1244833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Zoonotic diseases, infections transmitted naturally from animals to humans, pose a significant public health challenge worldwide. After MERS-CoV was discovered, interest in camels was raised as potential intermediate hosts for zoonotic viruses. Most published review studies pay little attention to case reports or zoonotic epidemics where there is epidemiological proof of transmission from camels to humans. Accordingly, any pathogen found in camels known to cause zoonotic disease in other animals or humans is reported. METHODS Here, zoonotic diseases linked to camels are reviewed in the literature, focusing on those with epidemiological or molecular evidence of spreading from camels to humans. This review examines the risks posed by camel diseases to human health, emphasizing the need for knowledge and awareness in mitigating these risks. RESULTS A search of the literature revealed that eight (36.4%) of the 22 investigations that offered convincing evidence of camel-to-human transmission involved MERS, five (22.7%) Brucellosis, four (18.2%) plague caused by Yersinia pestis, three (13.6%) camelpox, one (4.5%) hepatitis E, and one (4.5%) anthrax. The reporting of these zoonotic diseases has been steadily increasing, with the most recent period, from 2010 to the present, accounting for 59% of the reports. Additionally, camels have been associated with several other zoonotic diseases, including toxoplasmosis, Rift Valley fever, TB, Crimean-Congo hemorrhagic fever, and Q fever, despite having no evidence of a transmission event. Transmission of human zoonotic diseases primarily occurs through camel milk, meat, and direct or indirect contact with camels. The above-mentioned diseases were discussed to determine risks to human health. CONCLUSION MERS, Brucellosis, plague caused by Y. pestis, camelpox, hepatitis E, and anthrax are the main zoonotic diseases associated with human disease events or outbreaks. Transmission to humans primarily occurs through camel milk, meat, and direct contact with camels. There is a need for comprehensive surveillance, preventive measures, and public health interventions based on a one-health approach to mitigate the risks of zoonotic infections linked to camels.
Collapse
Affiliation(s)
- Abdelmalik Ibrahim Khalafalla
- Development and Innovation Sector, Biosecurity Affairs Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Premraj A, Aleyas AG, Nautiyal B, Rasool TJ. Novel type-I interferons from the dromedary camel: Molecular identification, prokaryotic expression and functional characterization of camelid interferon-delta. Mol Immunol 2023; 153:212-225. [PMID: 36563641 DOI: 10.1016/j.molimm.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
The last two decades have seen the emergence of three highly pathogenic coronaviruses with zoonotic origins, which prompted immediate attention to the underlying cause and prevention of future outbreaks. Intensification of camel husbandry in the Middle East has resulted in increased human-camel interactions, which has led to the spread of potentially zoonotic viruses with human spillover risks like MERS-coronavirus, camelpox virus, etc. Type-I interferons function as the first line of defense against invading viruses and are pivotal for limiting viral replication and immune-mediated pathologies. Seven novel dromedary camel interferon delta genes were identified and cloned. Functional characterization of this novel class of IFNs from the mammalian suborder tylopoda is reported for the first time. The camel interferon-delta proteins resemble the reported mammalian counterparts in sequence similarity, conservation of cysteines, and phylogenetic proximity. Prokaryotically expressed recombinant camel interferon-δ1 induced IFN-stimulated gene expression and also exerted antiviral action against camelpox virus, an endemic zoonotic virus. The pre-treatment of camel kidney cells with recombinant camel IFN-δ1 increased cell survival and reduced camelpox virus in a dose-dependent manner. The identification of novel IFNs from species with zoonotic spillover risk such as camels, and evaluating their antiviral effects in-vitro will play a key role in improving immunotherapies against viruses and expanding the arsenal to combat emerging zoonotic pathogens.
Collapse
Affiliation(s)
- Avinash Premraj
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, P.O. Box 17292, Al Ain, United Arab Emirates
| | - Abi George Aleyas
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, P.O. Box 17292, Al Ain, United Arab Emirates
| | - Binita Nautiyal
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, P.O. Box 17292, Al Ain, United Arab Emirates
| | - Thaha Jamal Rasool
- Camel Biotechnology Center, Presidential Camels & Camel Racing Affairs Centre, Department of the President's Affairs, P.O. Box 17292, Al Ain, United Arab Emirates.
| |
Collapse
|
10
|
Shchelkunova GA, Shchelkunov SN. Smallpox, Monkeypox and Other Human Orthopoxvirus Infections. Viruses 2022; 15:103. [PMID: 36680142 PMCID: PMC9865299 DOI: 10.3390/v15010103] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Considering that vaccination against smallpox with live vaccinia virus led to serious adverse effects in some cases, the WHO, after declaration of the global eradication of smallpox in 1980, strongly recommended to discontinue the vaccination in all countries. This led to the loss of immunity against not only smallpox but also other zoonotic orthopoxvirus infections in humans over the past years. An increasing number of human infections with zoonotic orthopoxviruses and, first of all, monkeypox, force us to reconsider a possible re-emergence of smallpox or a similar disease as a result of natural evolution of these viruses. The review contains a brief analysis of the results of studies on genomic organization and evolution of human pathogenic orthopoxviruses, development of modern methods for diagnosis, vaccination, and chemotherapy of smallpox, monkeypox, and other zoonotic human orthopoxvirus infections.
Collapse
Affiliation(s)
| | - Sergei N. Shchelkunov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, 630559 Novosibirsk, Russia
| |
Collapse
|
11
|
Othieno J, Njagi O, Masika S, Apamaku M, Tenge E, Mwasa B, Kimondo P, Gardner E, Von Dobschuetz S, Muriira J, Adul B, Mwongela L, Hambe HA, Nyariki T, Fasina FO. Knowledge, attitudes, and practices on camel respiratory diseases and conditions in Garissa and Isiolo, Kenya. Front Vet Sci 2022; 9:1022146. [DOI: 10.3389/fvets.2022.1022146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
BackgroundLivestock farmers' attitudes, practices, and behaviors are major factors in infection prevention and control of animal diseases. Kenya has the fourth largest global camel population, and the industry has grown over the last two decades, transforming beyond the traditional camel-keeping areas to include peri-urban camel trade and value chain growth. The dromedary camel is resilient, and it is a preferred species in the arid and semi-arid areas (ASALs) of Kenya. However, it still faces many health and production challenges; to identify infection drivers and risky behaviors for camel respiratory illnesses and conditions in Kenya, we conducted a knowledge, attitudes, and practices (KAP) survey.MethodUsing a set of tools (questionnaires, key informant interviews, and focus group discussions), we interviewed camel owners, herders, agro-veterinary outlets, and other relevant value chain stakeholders in Garissa and Isiolo counties (n = 85). Data were analyzed using descriptive and analytic statistics.ResultsMost camel owners/herders are male and most are relatively uneducated (85.5%). The camels were used primarily for milk and meat production, income generation, and transport. Larger herd sizes (>30 camels) and owner/herder's lack of formal education are risk factors for owner-reported respiratory illnesses in camels. Major clinical signs of respiratory conditions were coughing (85.7%), nasal discharge (59.7%), and fever (23.4%). Diseases, lack of feeds, theft, and marketing challenges are the major constraints to camel production in Kenya. Owners-herders use drugs indiscriminately and this may contribute to antimicrobial resistance challenges.ConclusionPractitioners in the camel value chain want more commitment from the government and animal health officials on support services and access to veterinary services. Watering points, grazing areas, and marketing points are the primary areas for congregating camels and have a significant potential for disease spread. Kenya camels have a massive capacity for rural and ASALs' livelihoods transformation but the identified health challenges, and other issues must be addressed. Further studies on the Kenyan camels' respiratory microbial ecology are important to understand microbial risks and reduce the burden of zoonotic infections. Intensification of risk communication and community engagement, and messaging targeted at behavior change interventions should be directed at camel value chain actors.
Collapse
|
12
|
Kandeel M, Al-Mubarak AIA. Camel viral diseases: Current diagnostic, therapeutic, and preventive strategies. Front Vet Sci 2022; 9:915475. [PMID: 36032287 PMCID: PMC9403476 DOI: 10.3389/fvets.2022.915475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Many pathogenic viruses infect camels, generally regarded as especially hardy livestock because of their ability to thrive in harsh and arid conditions. Transmission of these viruses has been facilitated by the commercialization of camel milk and meat and their byproducts, and vaccines are needed to prevent viruses from spreading. There is a paucity of information on the effectiveness of viral immunizations in camels, even though numerous studies have looked into the topic. More research is needed to create effective vaccines and treatments for camels. Because Camels are carriers of coronavirus, capable of producing a powerful immune response to recurrent coronavirus infections. As a result, camels may be a suitable model for viral vaccine trials since vaccines are simple to create and can prevent viral infection transfer from animals to humans. In this review, we present available data on the diagnostic, therapeutic, and preventative strategies for the following viral diseases in camels, most of which result in significant economic loss: camelpox, Rift Valley fever, peste des petits ruminants, bovine viral diarrhea, bluetongue, rotavirus, Middle East respiratory syndrome, and COVID-19. Although suitable vaccines have been developed for controlling viral infections and perhaps interrupting the transmission of the virus from the affected animals to blood-feeding vectors, there is a paucity of information on the effectiveness of viral immunizations in camels and more research is needed. Recent therapeutic trials that include specific antivirals or supportive care have helped manage viral infections.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- *Correspondence: Mahmoud Kandeel
| | - Abdullah I. A. Al-Mubarak
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| |
Collapse
|
13
|
MacNeill AL. Comparative Pathology of Zoonotic Orthopoxviruses. Pathogens 2022; 11:pathogens11080892. [PMID: 36015017 PMCID: PMC9412692 DOI: 10.3390/pathogens11080892] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
This review provides a brief history of the impacts that a human-specific Orthopoxvirus (OPXV), Variola virus, had on mankind, recalls how critical vaccination was for the eradication of this disease, and discusses the consequences of discontinuing vaccination against OPXV. One of these consequences is the emergence of zoonotic OPXV diseases, including Monkeypox virus (MPXV). The focus of this manuscript is to compare pathology associated with zoonotic OPXV infection in veterinary species and in humans. Efficient recognition of poxvirus lesions and other, more subtle signs of disease in multiple species is critical to prevent further spread of poxvirus infections. Additionally included are a synopsis of the pathology observed in animal models of MPXV infection, the recent spread of MPXV among humans, and a discussion of the potential for this virus to persist in Europe and the Americas.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
Outbreak of a Systemic Form of Camelpox in a Dromedary Herd ( Camelus dromedarius) in the United Arab Emirates. Viruses 2021; 13:v13101940. [PMID: 34696370 PMCID: PMC8541543 DOI: 10.3390/v13101940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Camelpox virus (CMLV) is the causative agent of camelpox, which frequently occurs in the Old World camelids-rearing countries except for Australia. It has also been described in experimentally inoculated New World camelids. Camelpox outbreaks are often experienced shortly after the rainy season, which occurs twice a year on the Arabian Peninsula because of the increased density of the insect population, particularly mosquitos. A systemic form of camelpox outbreak in seven dromedary camels was diagnosed by histology, virus isolation, and PCR. A phylogenetic analysis using full length CMLV genomes of the isolated CMLV strains showed a single phylogenetic unit without any distinctive differences between them. The United Arab Emirates (UAE) isolate sequences showed phylogenetical relatedness with CMLV isolates from Israel with only minor sequence differences. Although the sequences of viruses from both countries were closely related, the disease manifestation was vastly different. Our study shows that the virulence is not only determined by genetic features of CMLV alone but may also depend on other factors such as unknown aspects of the host (e.g., age, overall fitness), management, and the environment.
Collapse
|
15
|
Hutson CL, Kondas AV, Ritter JM, Reed Z, Ostergaard SD, Morgan CN, Gallardo-Romero N, Tansey C, Mauldin MR, Salzer JS, Hughes CM, Goldsmith CS, Carroll D, Olson VA. Teaching a new mouse old tricks: Humanized mice as an infection model for Variola virus. PLoS Pathog 2021; 17:e1009633. [PMID: 34547055 PMCID: PMC8454956 DOI: 10.1371/journal.ppat.1009633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/11/2021] [Indexed: 01/12/2023] Open
Abstract
Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.
Collapse
Affiliation(s)
- Christina L. Hutson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ashley V. Kondas
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jana M. Ritter
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Zachary Reed
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sharon Dietz Ostergaard
- Comparative Medicine Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Clint N. Morgan
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nadia Gallardo-Romero
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Cassandra Tansey
- Comparative Medicine Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Matthew R. Mauldin
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Johanna S. Salzer
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christine M. Hughes
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Cynthia S. Goldsmith
- Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Darin Carroll
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Victoria A. Olson
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
16
|
Shchelkunov SN, Shchelkunova GA. [We should be prepared to smallpox re-emergence.]. Vopr Virusol 2021; 64:206-214. [PMID: 32167685 DOI: 10.36233/0507-4088-2019-64-5-206-214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Abstract
The review contains a brief analysis of the results of investigations conducted during 40 years after smallpox eradication and directed to study genomic organization and evolution of variola virus (VARV) and development of modern diagnostics, vaccines and chemotherapies of smallpox and other zoonotic orthopoxviral infections of humans. Taking into account that smallpox vaccination in several cases had adverse side effects, WHO recommended ceasing this vaccination after 1980 in all countries of the world. The result of this decision is that the mankind lost the collective immunity not only to smallpox, but also to other zoonotic orthopoxvirus infections. The ever more frequently recorded human cases of zoonotic orthopoxvirus infections force to renew consideration of the problem of possible smallpox reemergence resulting from natural evolution of these viruses. Analysis of the available archive data on smallpox epidemics, the history of ancient civilizations, and the newest data on the evolutionary relationship of orthopoxviruses has allowed us to hypothesize that VARV could have repeatedly reemerged via evolutionary changes in a zoonotic ancestor virus and then disappeared because of insufficient population size of isolated ancient civilizations. Only the historically last smallpox pandemic continued for a long time and was contained and stopped in the 20th century thanks to the joint efforts of medics and scientists from many countries under the aegis of WHO. Thus, there is no fundamental prohibition on potential reemergence of smallpox or a similar human disease in future in the course of natural evolution of the currently existing zoonotic orthopoxviruses. Correspondingly, it is of the utmost importance to develop and widely adopt state-of-the-art methods for efficient and rapid species-specific diagnosis of all orthopoxvirus species pathogenic for humans, VARV included. It is also most important to develop new safe methods for prevention and therapy of human orthopoxvirus infections.
Collapse
Affiliation(s)
- S N Shchelkunov
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region, 630559, Russia
| | - G A Shchelkunova
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk region, 630559, Russia
| |
Collapse
|
17
|
Narnaware SD, Ranjan R, Dahiya SS, Panchbuddhe A, Bajpai D, Tuteja FC, Sawal RK. Pathological and molecular investigations of systemic form of camelpox in naturally infected adult male dromedary camels in India. Heliyon 2021; 7:e06186. [PMID: 33598582 PMCID: PMC7868614 DOI: 10.1016/j.heliyon.2021.e06186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 01/31/2021] [Indexed: 11/16/2022] Open
Abstract
Camelpox is a wide-spread infectious viral disease of camelids. An outbreak of camelpox was reported in 15 adult male dromedary camels aged between 10 to 16 years of an organized herd in winter season. The infected camels showed clinical signs of fever, anorexia, lachrymation, pendulous lips, excessive salivation and pock lesions on the skin of head, neck, mouth, lips, extremities, thigh, abdomen, scrotum and inguinal region. Mortalities were recorded in three infected camels after 10-12 days of infection and showed systemic pox lesions characterized by vesicles, papules, ulcerations and raised pock lesions in the mucous membranes of the mouth, tongue, tracheal mucosa, lung, abomasum and liver. Histopathology study revealed characteristic pox lesions with intracytoplasmic eosinophilic inclusion bodies in tongue. Lung showed lesion of interstitial pneumonia (n = 2) and bronchointerstitial pneumonia (n = 1). Liver showed infiltration of mononuclear cells around central veins and degenerative changes of hepatocytes. The abomasum and intestine showed ulcerations, marked capillary congestion and areas of lymphocyte infiltration in mucosa and submucosa. The presence of camelpox virus (CMLV) was confirmed in viral DNA isolated from formalin fixed paraffin embedded (FFPE) tissues of tongue, lung, abomasum, liver, heart and intestine of infected camels by C18L gene PCR. The sequencing of viral DNAs showed phylogenetic relatedness with other CMLV isolates from India and other countries. Thus, our study confirmed the rare severe form of systemic camelpox outbreak in adult male dromedary camels hence future attention should be given for studies on virulence, strain identification and molecular epidemiology of CMLV for planning of effective preventive and control strategies.
Collapse
Affiliation(s)
| | - Rakesh Ranjan
- ICAR-National Research Centre on Camel, Post Bag No. 07, Jorbeer, Bikaner, Rajasthan, India
| | - Shyam Singh Dahiya
- ICAR- Directorate of Foot and Mouth Disease, Mukteswar, Nainital, Uttarakhand, India
| | | | - Devika Bajpai
- ICAR-National Research Centre on Camel, Post Bag No. 07, Jorbeer, Bikaner, Rajasthan, India
| | - Fateh Chand Tuteja
- ICAR-National Research Centre on Camel, Post Bag No. 07, Jorbeer, Bikaner, Rajasthan, India
| | - Rajesh Kumar Sawal
- ICAR-National Research Centre on Camel, Post Bag No. 07, Jorbeer, Bikaner, Rajasthan, India
| |
Collapse
|
18
|
Park C, Peng C, Rahman MJ, Haller SL, Tazi L, Brennan G, Rothenburg S. Orthopoxvirus K3 orthologs show virus- and host-specific inhibition of the antiviral protein kinase PKR. PLoS Pathog 2021; 17:e1009183. [PMID: 33444388 PMCID: PMC7840043 DOI: 10.1371/journal.ppat.1009183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/27/2021] [Accepted: 11/25/2020] [Indexed: 01/06/2023] Open
Abstract
The antiviral protein kinase R (PKR) is an important host restriction factor, which poxviruses must overcome to productively infect host cells. To inhibit PKR, many poxviruses encode a pseudosubstrate mimic of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2), designated K3 in vaccinia virus. Although the interaction between PKR and eIF2α is highly conserved, some K3 orthologs from host-restricted poxviruses were previously shown to inhibit PKR in a species-specific manner. To better define this host range function, we compared the sensitivity of PKR from 17 mammals to inhibition by K3 orthologs from closely related orthopoxviruses, a genus with a generally broader host range. The K3 orthologs showed species-specific inhibition of PKR and exhibited three distinct inhibition profiles. In some cases, PKR from closely related species showed dramatic differences in their sensitivity to K3 orthologs. Vaccinia virus expressing the camelpox virus K3 ortholog replicated more than three orders of magnitude better in human and sheep cells than a virus expressing vaccinia virus K3, but both viruses replicated comparably well in cow cells. Strikingly, in site-directed mutagenesis experiments between the variola virus and camelpox virus K3 orthologs, we found that different amino acid combinations were necessary to mediate improved or diminished inhibition of PKR derived from different host species. Because there is likely a limited number of possible variations in PKR that affect K3-interactions but still maintain PKR/eIF2α interactions, it is possible that by chance PKR from some potential new hosts may be susceptible to K3-mediated inhibition from a virus it has never previously encountered. We conclude that neither the sensitivity of host proteins to virus inhibition nor the effectiveness of viral immune antagonists can be inferred from their phylogenetic relatedness but must be experimentally determined. Most virus families are composed of large numbers of virus species. However, in general, only a few prototypic viruses are experimentally studied in-depth, and it is often assumed that the obtained results are representative of other viruses in the same family. In order to test this assumption, we compared the sensitivity of the antiviral protein kinase PKR from various mammals to inhibition by multiple orthologs of K3, a PKR inhibitor expressed by several closely related orthopoxviruses. We found strong differences in PKR inhibition by the K3 orthologs, demonstrating that sensitivity to a specific inhibitor was not indicative of broad sensitivity to orthologs of these inhibitors from closely related viruses. We also show that PKR from even closely related species displayed markedly different sensitivities to these poxvirus inhibitors. Furthermore, we identified amino acid residues in these K3 orthologs that are critical for enhanced or decreased PKR inhibition and found that distinct amino acid combinations affected PKRs from various species differently. Our study shows that even closely related inhibitors of an antiviral protein can vary dramatically in their inhibitory potential, and cautions that results from host-virus interaction studies of a prototypic virus genus member cannot necessarily be extrapolated to other viruses in the same genus without experimental verification.
Collapse
Affiliation(s)
- Chorong Park
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Chen Peng
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Laboratory of Viral Diseases, Bethesda, Maryland, United States of America
| | - M. Julhasur Rahman
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Sherry L. Haller
- University of Texas Medical Branch at Galveston, Department of Microbiology and Immunology, Galveston, Texas, United States of America
| | - Loubna Tazi
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Greg Brennan
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Stefan Rothenburg
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Silva NIO, de Oliveira JS, Kroon EG, Trindade GDS, Drumond BP. Here, There, and Everywhere: The Wide Host Range and Geographic Distribution of Zoonotic Orthopoxviruses. Viruses 2020; 13:E43. [PMID: 33396609 PMCID: PMC7823380 DOI: 10.3390/v13010043] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023] Open
Abstract
The global emergence of zoonotic viruses, including poxviruses, poses one of the greatest threats to human and animal health. Forty years after the eradication of smallpox, emerging zoonotic orthopoxviruses, such as monkeypox, cowpox, and vaccinia viruses continue to infect humans as well as wild and domestic animals. Currently, the geographical distribution of poxviruses in a broad range of hosts worldwide raises concerns regarding the possibility of outbreaks or viral dissemination to new geographical regions. Here, we review the global host ranges and current epidemiological understanding of zoonotic orthopoxviruses while focusing on orthopoxviruses with epidemic potential, including monkeypox, cowpox, and vaccinia viruses.
Collapse
Affiliation(s)
| | | | | | | | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais: Belo Horizonte, Minas Gerais 31270-901, Brazil; (N.I.O.S.); (J.S.d.O.); (E.G.K.); (G.d.S.T.)
| |
Collapse
|
20
|
Struzik J, Szulc-Dąbrowska L. NF-κB as an Important Factor in Optimizing Poxvirus-Based Vaccines against Viral Infections. Pathogens 2020; 9:pathogens9121001. [PMID: 33260450 PMCID: PMC7760304 DOI: 10.3390/pathogens9121001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Poxviruses are large dsDNA viruses that are regarded as good candidates for vaccine vectors. Because the members of the Poxviridae family encode numerous immunomodulatory proteins in their genomes, it is necessary to carry out certain modifications in poxviral candidates for vaccine vectors to improve the vaccine. Currently, several poxvirus-based vaccines targeted at viral infections are under development. One of the important aspects of the influence of poxviruses on the immune system is that they encode a large array of inhibitors of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which is the key element of both innate and adaptive immunity. Importantly, the NF-κB transcription factor induces the mechanisms associated with adaptive immunological memory involving the activation of effector and memory T cells upon vaccination. Since poxviruses encode various NF-κB inhibitor proteins, before the use of poxviral vaccine vectors, modifications that influence NF-κB activation and consequently affect the immunogenicity of the vaccine should be carried out. This review focuses on NF-κB as an essential factor in the optimization of poxviral vaccines against viral infections.
Collapse
|
21
|
Hughes EC, Anderson NE. Zoonotic Pathogens of Dromedary Camels in Kenya: A Systematised Review. Vet Sci 2020; 7:vetsci7030103. [PMID: 32764264 PMCID: PMC7559378 DOI: 10.3390/vetsci7030103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 01/26/2023] Open
Abstract
Kenya is home to Africa’s third largest population of dromedary camels, and production at commercial and local levels are increasingly important. In pastoral and nomadic communities in the arid and semi-arid lands (ASALs), camels play a vital role in food security, while commercial milk production and formalized export markets are rapidly emerging as camel populations expand into non-traditional areas. Until recently, little focus was placed on camels as hosts of zoonotic disease, but the emergence of Middle Eastern respiratory coronavirus (MERS-CoV) in 2012, and the discovery of exposure to the virus in Kenyan camels, highlighted the need for further understanding of this area. This systematised review utilised a robust search strategy to assess the occurrence of camel-associated zoonoses in Kenya and to evaluate the quality of the published literature. Seventy-four studies were identified, covering sixteen pathogens, with an increasing number of good quality studies in recent years. Despite this, the area remains under-researched and there is a lack of robust, high-quality research. Trypanosome spp., Echinococcus granulosus and Brucella spp. appeared most frequently in the literature. Pathogens with the highest reported prevalence were MERS-CoV (0–100%), Echinococcus granulosa (7–60%) and Rift Valley fever virus (7–57%). Exposure to Brucella spp., Coxiella burnetii and Crimean-Congo haemorrhagic fever virus showed higher levels in camel or camel-associated vectors than other livestock species, although brucellosis was the only disease for which there was robust evidence linking camel and human exposure. Zoonotic agents with less severe human health outcomes, such as Dermatophilosus congolensis and contagious ecthyma, were also represented in the literature. This review provides an important summary of the scope and quality of current knowledge. It demonstrates that further research, and improved adherence to robust study design and reporting are essential if the zoonotic risk from camels in Kenya, and elsewhere, is to be better understood.
Collapse
Affiliation(s)
- Ellen Clare Hughes
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin EH25 9RG, UK;
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Henry Wellcome Building, Garscube Campus, Glasgow G61 1QH, UK
- Correspondence:
| | - Neil Euan Anderson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin EH25 9RG, UK;
| |
Collapse
|
22
|
Khalafalla AI, Al Hosani MA, Ishag HZA, Al Muhairi SS. More cell culture passaged Camelpox virus sequences found resembling those of vaccinia virus. Open Vet J 2020; 10:144-156. [PMID: 32821659 PMCID: PMC7419068 DOI: 10.4314/ovj.v10i2.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/24/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Camelpox is the most infectious and economically important disease of camelids that causes significant morbidity and mortality rates. Several live attenuated vaccines against Camelpox virus (CMLV) are produced worldwide by passaging field isolates in cell culture. Sequence of a high passage Saudi isolate of CMLV was previously found closely resembled Vaccinia virus (VACV). AIM To determine whether other high cell culture passage CMLV isolates are genetically resemble VACV and further to explore the possible mechanism of the resemblance. METHODS We performed polymerase chain reaction and DNA sequence analysis of A-type inclusion body protein (ATIP), L1R, and open reading frame (ORF) 185 genes on different cell culture passage levels of a field isolate, two high passage vaccines, wild-type, and reference strains of CMLV. RESULTS We demonstrate that additional two high passage attenuated vaccine candidate from Sudan and UAE likewise contain sequences resembling VACV more than CMLV. Furthermore, sequence analysis of the ATIP gene of selected virus passages in cell culture revealed that the shift to VACV-like occurred between passage 11 and 20 and up to the 10th passage the genome still resembles wild-type virus. This observation was further confirmed by recombination analysis which indicated recombination events at ATIP and ORF185 genes occurred at higher passages. CONCLUSION We confirmed that the cell culture passage CMLV turns to resemble VACV after cell culture passage and concluded that the resemblance may not be a result of contamination or misidentification as previously thought but could be due to recombination events that occurred during the passage process.
Collapse
Affiliation(s)
- Abdelmalik I. Khalafalla
- Veterinary Laboratories Division, Animal Health Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, UAE
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, Khartoum North Sudan
| | - Mohamed A. Al Hosani
- Veterinary Laboratories Division, Animal Health Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, UAE
| | - Hassan Zackaria Ali Ishag
- Veterinary Laboratories Division, Animal Health Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, UAE
| | - Salama S. Al Muhairi
- Veterinary Laboratories Division, Animal Health Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, UAE
| |
Collapse
|
23
|
Marcacci M, Khalafalla AI, Al Hammadi ZM, Monaco F, Cammà C, Yusof MF, Al Yammahi SM, Mangone I, Valleriani F, Alhosani MA, Decaro N, Lorusso A, Almuhairi SS, Savini G. Genome Sequencing of a Camelpox Vaccine Reveals Close Similarity to Modified Vaccinia virus Ankara (MVA). Viruses 2020; 12:786. [PMID: 32717784 PMCID: PMC7472314 DOI: 10.3390/v12080786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
Camelpox is a viral contagious disease of Old-World camelids sustained by Camelpox virus (CMLV). The disease is characterized by mild, local skin or severe systemic infections and may have a major economic impact due to significant losses in terms of morbidity and mortality, weight loss, and low milk yield. Prevention of camelpox is performed by vaccination. In this study, we investigated the composition of a CMLV-based, live-attenuated commercial vaccine using next-generation sequencing (NGS) technology. The results of this analysis revealed genomic sequences of Modified Vaccinia virus Ankara (MVA).
Collapse
Affiliation(s)
- Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; (F.M.); (C.C.); (I.M.); (F.V.); (A.L.); (G.S.)
- Department of Veterinary Medicine, University of Bari, Valenzano, 70010 Bari, Italy;
| | - Abdelmalik I. Khalafalla
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi 52150, UAE; (A.I.K.); (Z.M.A.H.); (M.F.Y.); (S.M.A.Y.); (M.A.A.); (S.S.A.)
| | - Zulaikha M. Al Hammadi
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi 52150, UAE; (A.I.K.); (Z.M.A.H.); (M.F.Y.); (S.M.A.Y.); (M.A.A.); (S.S.A.)
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; (F.M.); (C.C.); (I.M.); (F.V.); (A.L.); (G.S.)
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; (F.M.); (C.C.); (I.M.); (F.V.); (A.L.); (G.S.)
| | - Mohammed F. Yusof
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi 52150, UAE; (A.I.K.); (Z.M.A.H.); (M.F.Y.); (S.M.A.Y.); (M.A.A.); (S.S.A.)
| | - Saeed M. Al Yammahi
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi 52150, UAE; (A.I.K.); (Z.M.A.H.); (M.F.Y.); (S.M.A.Y.); (M.A.A.); (S.S.A.)
| | - Iolanda Mangone
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; (F.M.); (C.C.); (I.M.); (F.V.); (A.L.); (G.S.)
| | - Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; (F.M.); (C.C.); (I.M.); (F.V.); (A.L.); (G.S.)
| | - Mohamed A. Alhosani
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi 52150, UAE; (A.I.K.); (Z.M.A.H.); (M.F.Y.); (S.M.A.Y.); (M.A.A.); (S.S.A.)
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, 70010 Bari, Italy;
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; (F.M.); (C.C.); (I.M.); (F.V.); (A.L.); (G.S.)
| | - Salama S. Almuhairi
- Veterinary Laboratories Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi 52150, UAE; (A.I.K.); (Z.M.A.H.); (M.F.Y.); (S.M.A.Y.); (M.A.A.); (S.S.A.)
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; (F.M.); (C.C.); (I.M.); (F.V.); (A.L.); (G.S.)
| |
Collapse
|
24
|
Premraj A, Aleyas AG, Nautiyal B, Rasool TJ. Camelid type I interferons: Identification and functional characterization of interferon alpha from the dromedary camel (Camelus dromedarius). Mol Immunol 2020; 119:132-143. [PMID: 32014632 PMCID: PMC7112685 DOI: 10.1016/j.molimm.2020.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 11/20/2022]
Abstract
Investigations into the molecular immune response of dromedary camel, a key livestock species of the arid, have been limited due to the lack of species-specific reagents. Here we describe for the first time, the identification and characterization of type I IFNs of dromedary camel, which are the most important cytokines in the innate host immune response against viruses. We cloned camel IFN-α coding sequences and identified a total of eleven subtypes. The canonical IFN-α subtype designated as IFN-α1 contained a 555-bp Open Reading Frame encoding a protein of 184 amino acids. Recombinant IFN-α1 protein was produced in E. coli and purified from inclusion bodies. Recombinant camel IFN-α1 induced the mRNA expression of interferon-stimulated genes (ISGs) in camel kidney cells. The purified protein also showed potent in-vitro antiviral activity against Camelpox Virus in kidney cells. The identified camel IFN-α protein and the subtypes will facilitate a better understanding of the host immune response to viral infections in camel and the development of potential antiviral biologicals for zoonotic diseases for which camel act as a reservoir.
Collapse
Affiliation(s)
- Avinash Premraj
- Camel Biotechnology Center, Presidential Camels and Camel Racing Affairs centre, Department of the President's Affairs, P O Box 17292, Al Ain, United Arab Emirates
| | - Abi George Aleyas
- Camel Biotechnology Center, Presidential Camels and Camel Racing Affairs centre, Department of the President's Affairs, P O Box 17292, Al Ain, United Arab Emirates
| | - Binita Nautiyal
- Camel Biotechnology Center, Presidential Camels and Camel Racing Affairs centre, Department of the President's Affairs, P O Box 17292, Al Ain, United Arab Emirates
| | - Thaha Jamal Rasool
- Camel Biotechnology Center, Presidential Camels and Camel Racing Affairs centre, Department of the President's Affairs, P O Box 17292, Al Ain, United Arab Emirates.
| |
Collapse
|
25
|
Wogu JO, Chukwu CO, Orekyeh ES, Nwankiti CO, Okoye-Ugwu S. Assessment of media reportage of monkeypox in southern Nigeria. Medicine (Baltimore) 2020; 99:e17985. [PMID: 32000354 PMCID: PMC7004708 DOI: 10.1097/md.0000000000017985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/30/2019] [Accepted: 10/16/2019] [Indexed: 11/25/2022] Open
Abstract
Monkeypox is a zoonotic viral disease. Media campaigns are planned to create awareness about the disease. This is because mass media is often the leading source of information and mobilization during important health issues or crisis. The main objective of this study was to assess the media coverage of monkeypox outbreak in Nigeria.The study adopted a cross-sectional survey of residents in Southern Nigeria. A total of 600 respondents were sampled for this study through a multi-stage cluster random sampling technique. Research assistants helped in collecting data from respondents through structured questionnaire. The data collected was analyzed using percentages, mean score, and univariate analysis of variance (ANOVA).Respondents had little or no knowledge of monkeypox virus, its nature, mode of transmission, and prevention mechanism (2.30 ± .918, P = .000). Respondents stated that they learnt about the virus through friends and social institutions instead of media (4.44 ± .945, P = .006). Media failed to create effective and comprehensive awareness campaigns to mobilize the public (1.86 ± 1.196, P = .001), while inappropriate and insufficient media programs and lack of funds were blamed for media ineffectiveness (4.18 ± 1.352, P = .004).The outbreak of monkeypox virus is a public health concern in Nigeria. Media campaigns are planned to raise awareness about the disease; however, these campaigns have not demonstrated effectiveness in changing people's health behavior toward monkeypox. Media, health professionals, and government should synergize to promote a consistent health policy for the control and prevention of monkeypox virus.
Collapse
Affiliation(s)
| | - Christiana Ogeri Chukwu
- Department of Mass Communication, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, Ebonyi State
| | - Emeka S.S. Orekyeh
- Department of Mass Communication, University of Nigeria Nsukka, Enugu State
| | | | - Stella Okoye-Ugwu
- Department of English and Literary Studies, University of Nigeria Nsukka, Enugu State, Nigeria
| |
Collapse
|
26
|
Complete Genome Sequence of the First Camelpox Virus Case Diagnosed in Israel. Microbiol Resour Announc 2019; 8:8/34/e00671-19. [PMID: 31439696 PMCID: PMC6706688 DOI: 10.1128/mra.00671-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the whole-genome sequence of the first camelpox virus case diagnosed in Israel. The strain (Negev2016) was isolated in 2016 from a camel in southern Israel and was sequenced on the Illumina MiSeq and Oxford Nanopore MinION platforms.
Collapse
|
27
|
Zhu S, Zimmerman D, Deem SL. A Review of Zoonotic Pathogens of Dromedary Camels. ECOHEALTH 2019; 16:356-377. [PMID: 31140075 PMCID: PMC7087575 DOI: 10.1007/s10393-019-01413-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Dromedary, or one-humped, camels Camelus dromedarius are an almost exclusively domesticated species that are common in arid areas as both beasts of burden and production animals for meat and milk. Currently, there are approximately 30 million dromedary camels, with highest numbers in Africa and the Middle East. The hardiness of camels in arid regions has made humans more dependent on them, especially as a stable protein source. Camels also carry and may transmit disease-causing agents to humans and other animals. The ability for camels to act as a point source or vector for disease is a concern due to increasing human demands for meat, lack of biosafety and biosecurity protocols in many regions, and a growth in the interface with wildlife as camel herds become sympatric with non-domestic species. We conducted a literature review of camel-borne zoonotic diseases and found that the majority of publications (65%) focused on Middle East respiratory syndrome (MERS), brucellosis, Echinococcus granulosus, and Rift Valley fever. The high fatality from MERS outbreaks during 2012-2016 elicited an immediate response from the research community as demonstrated by a surge of MERS-related publications. However, we contend that other camel-borne diseases such as Yersinia pestis, Coxiella burnetii, and Crimean-Congo hemorrhagic fever are just as important to include in surveillance efforts. Camel populations, particularly in sub-Saharan Africa, are increasing exponentially in response to prolonged droughts, and thus, the risk of zoonoses increases as well. In this review, we provide an overview of the major zoonotic diseases present in dromedary camels, their risk to humans, and recommendations to minimize spillover events.
Collapse
Affiliation(s)
- Sophie Zhu
- Graduate Group in Epidemiology, University of California, Davis, CA, 95616, USA.
| | - Dawn Zimmerman
- Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, 20008, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO, 63110, USA
| |
Collapse
|
28
|
Venkatesan G, Kumar A, Manimuthu P, Balamurugan V, Bhanuprakash V, Singh RK. Sequence analysis of haemagglutinin gene of camelpox viruses shows deletion leading to frameshift: Circulation of diverse clusters among camelpox viruses. Transbound Emerg Dis 2018; 65:1920-1934. [PMID: 30105893 DOI: 10.1111/tbed.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/09/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Abstract
Orthopoxviruses (OPVs) have broad host range infecting a variety of species along with gene-specific determinants. Several genes including haemagglutinin (HA) are used for differentiation of OPVs. Among poxviruses, OPVs are sole members encoding HA protein as part of extracellular enveloped virion membrane. Camelpox virus (CMLV) causes an important contagious disease affecting mainly young camels, endemic to Indian subcontinent, Africa and the Middle East. This study describes the sequence features and phylogenetic analysis of HA gene (homologue of VACV A56R) of Indian CMLV isolates. Comparative analysis of CMLV HA gene revealed conserved nature within CMLVs but considerable variability was observed between various species of OPVs. Most Indian CMLV isolates showed 99.5%-100% and 96.3%-100% identity, at nucleotide (nt) and amino acid (aa) levels respectively, among themselves and with CMLV-M96 strain. Importantly, Indian CMLV strains along with CMLV-M96 showed deletion of seven nucleotides resulting in frameshift mutation at C-terminus of HA protein. Phylogenetic analysis displayed distinct clustering among CMLVs which might point to the circulation of diverse CMLV strains in nature. Despite different host specificity of OPVs, comparative sequence analysis of HA protein showed highly conserved N-terminal Ig V-set functional domain with tandem repeats. Understanding of molecular diversity of CMLVs and structural domains of HA protein will help in the elucidation of molecular mechanisms for immune evasion and design of novel antivirals for OPVs.
Collapse
Affiliation(s)
- Gnanavel Venkatesan
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Amit Kumar
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Prabhu Manimuthu
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Vinayagamurthy Balamurugan
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India.,ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Veerakyathappa Bhanuprakash
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India.,ICAR-Indian Veterinary Research Institute, Bengaluru, Karnataka, India
| | - Raj Kumar Singh
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India.,ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
29
|
Khalafalla AI, Rector A, Elfadl AK. Papillomavirus Infection in Humans and Dromedary Camels in Eastern Sudan. Vector Borne Zoonotic Dis 2018; 18:440-444. [PMID: 29893639 DOI: 10.1089/vbz.2017.2242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cases of wart-like lesions in humans and dromedary camels occurred in eastern Sudan in 2015 were described. Involvement of papillomavirus (PV) in causing these cases was affirmed by PCR and immunoperoxidase test. Mostly, the lesions were observed on the skin of the chest and forearms in addition to lips and mandible. Sequence analysis revealed Camelus dromedarius PV types 1 and 2 genotypes as the causative genotypes. We also observed cases of wart-like lesions on hands and legs of two herders attending the infected camel herd. Partial genome sequencing revealed human PV type 2 in one of the two human samples providing no indications for interspecies transmission of camel PVs, yet provides, for the first time evidence of active circulation of this virus in eastern Sudan.
Collapse
Affiliation(s)
- Abdelmalik I Khalafalla
- 1 Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum , Khartoum North, Sudan
- 2 Abu Dhabi Food Control Authority , Abu Dhabi, United Arab Emirates
| | - Annabel Rector
- 3 KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical & Epidemiological Virology , Leuven, Belgium
| | - Ahmed K Elfadl
- 4 Department of Pathology, Faculty of Veterinary Medicine, University of Khartoum , Khartoum North, Sudan
| |
Collapse
|
30
|
Clinicopathological investigations during an outbreak of camelpox in a dromedary camel herd in India. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2763-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
31
|
Gao J, Gigante C, Khmaladze E, Liu P, Tang S, Wilkins K, Zhao K, Davidson W, Nakazawa Y, Maghlakelidze G, Geleishvili M, Kokhreidze M, Carroll DS, Emerson G, Li Y. Genome Sequences of Akhmeta Virus, an Early Divergent Old World Orthopoxvirus. Viruses 2018; 10:v10050252. [PMID: 29757202 PMCID: PMC5977245 DOI: 10.3390/v10050252] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
Annotated whole genome sequences of three isolates of the Akhmeta virus (AKMV), a novel species of orthopoxvirus (OPXV), isolated from the Akhmeta and Vani regions of the country Georgia, are presented and discussed. The AKMV genome is similar in genomic content and structure to that of the cowpox virus (CPXV), but a lower sequence identity was found between AKMV and Old World OPXVs than between other known species of Old World OPXVs. Phylogenetic analysis showed that AKMV diverged prior to other Old World OPXV. AKMV isolates formed a monophyletic clade in the OPXV phylogeny, yet the sequence variability between AKMV isolates was higher than between the monkeypox virus strains in the Congo basin and West Africa. An AKMV isolate from Vani contained approximately six kb sequence in the left terminal region that shared a higher similarity with CPXV than with other AKMV isolates, whereas the rest of the genome was most similar to AKMV, suggesting recombination between AKMV and CPXV in a region containing several host range and virulence genes.
Collapse
Affiliation(s)
- Jinxin Gao
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Crystal Gigante
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Ekaterine Khmaladze
- Laboratory of Molecular Epidemiology, National Center for Disease Control and Public Health of Georgia, 9 M. Asatiani Street, Tbilisi 0177, Georgia.
| | - Pengbo Liu
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Shiyuyun Tang
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Kimberly Wilkins
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Kun Zhao
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Whitni Davidson
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Yoshinori Nakazawa
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Giorgi Maghlakelidze
- Division of Global Health Protection (DGHP), Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Marika Geleishvili
- Division of Global Health Protection (DGHP), Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Maka Kokhreidze
- Laboratory of the Ministry of Agriculture of Georgia (LMA), Animal Disease Diagnostic Department, 49 Vaso Godziashvilis Street, Tbilisi 0159, Georgia.
| | - Darin S Carroll
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Ginny Emerson
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Yu Li
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers of Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| |
Collapse
|
32
|
Erster O, Melamed S, Paran N, Weiss S, Khinich Y, Gelman B, Solomony A, Laskar-Levy O. First Diagnosed Case of Camelpox Virus in Israel. Viruses 2018; 10:v10020078. [PMID: 29438294 PMCID: PMC5850385 DOI: 10.3390/v10020078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/21/2022] Open
Abstract
An outbreak of a disease in camels with skin lesions was reported in Israel during 2016. To identify the etiological agent of this illness, we employed a multidisciplinary diagnostic approach. Transmission electron microscopy (TEM) analysis of lesion material revealed the presence of an orthopox-like virus, based on its characteristic brick shape. The virus from the skin lesions successfully infected chorioallantoic membranes and induced cytopathic effect in Vero cells, which were subsequently positively stained by an orthopox-specific antibody. The definite identification of the virus was accomplished by two independent qPCR, one of which was developed in this study, followed by sequencing of several regions of the viral genome. The qPCR and sequencing results confirmed the presence of camelpox virus (CMLV), and indicated that it is different from the previously annotated CMLV sequence available from GenBank. This is the first reported case of CMLV in Israel, and the first description of the isolated CMLV subtype.
Collapse
Affiliation(s)
- Oran Erster
- Division of Virology, Kimron Veterinary Institute, P.O. Box 12, Beit Dagan 50250, Israel.
| | - Sharon Melamed
- Department of Infectious Diseases, IIBR P.O. Box 19, Ness Ziona 74100, Israel.
| | - Nir Paran
- Department of Infectious Diseases, IIBR P.O. Box 19, Ness Ziona 74100, Israel.
| | - Shay Weiss
- Department of Infectious Diseases, IIBR P.O. Box 19, Ness Ziona 74100, Israel.
| | - Yevgeny Khinich
- Division of Virology, Kimron Veterinary Institute, P.O. Box 12, Beit Dagan 50250, Israel.
| | - Boris Gelman
- Division of Virology, Kimron Veterinary Institute, P.O. Box 12, Beit Dagan 50250, Israel.
| | - Aharon Solomony
- Negev Veterinary Bureau, Israeli Veterinary Services, Binyamin Ben Asa 1, Be'er Sheba 84102, Israel.
| | - Orly Laskar-Levy
- Department of Infectious Diseases, IIBR P.O. Box 19, Ness Ziona 74100, Israel.
| |
Collapse
|
33
|
Li Y, Khalafalla AI, Paden CR, Yusof MF, Eltahir YM, Al Hammadi ZM, Tao Y, Queen K, Hosani FA, Gerber SI, Hall AJ, Al Muhairi S, Tong S. Identification of diverse viruses in upper respiratory samples in dromedary camels from United Arab Emirates. PLoS One 2017; 12:e0184718. [PMID: 28902913 PMCID: PMC5597213 DOI: 10.1371/journal.pone.0184718] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/29/2017] [Indexed: 02/05/2023] Open
Abstract
Camels are known carriers for many viral pathogens, including Middle East respiratory syndrome coronavirus (MERS-CoV). It is likely that there are additional, as yet unidentified viruses in camels with the potential to cause disease in humans. In this study, we performed metagenomic sequencing analysis on nasopharyngeal swab samples from 108 MERS-CoV-positive dromedary camels from a live animal market in Abu Dhabi, United Arab Emirates. We obtained a total of 846.72 million high-quality reads from these nasopharyngeal swab samples, of which 2.88 million (0.34%) were related to viral sequences while 512.63 million (60.5%) and 50.87 million (6%) matched bacterial and eukaryotic sequences, respectively. Among the viral reads, sequences related to mammalian viruses from 13 genera in 10 viral families were identified, including Coronaviridae, Nairoviridae, Paramyxoviridae, Parvoviridae, Polyomaviridae, Papillomaviridae, Astroviridae, Picornaviridae, Poxviridae, and Genomoviridae. Some viral sequences belong to known camel or human viruses and others are from potentially novel camel viruses with only limited sequence similarity to virus sequences in GenBank. A total of five potentially novel virus species or strains were identified. Co-infection of at least two recently identified camel coronaviruses was detected in 92.6% of the camels in the study. This study provides a comprehensive survey of viruses in the virome of upper respiratory samples in camels that have extensive contact with the human population.
Collapse
Affiliation(s)
- Yan Li
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Clinton R. Paden
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Mohammed F. Yusof
- Animal Wealth Sector, Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates
| | - Yassir M. Eltahir
- Animal Wealth Sector, Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates
| | | | - Ying Tao
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Krista Queen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | | | - Susan I. Gerber
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Aron J. Hall
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Salama Al Muhairi
- Animal Wealth Sector, Abu Dhabi Food Control Authority, Abu Dhabi, United Arab Emirates
| | - Suxiang Tong
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
34
|
Olson VA, Shchelkunov SN. Are We Prepared in Case of a Possible Smallpox-Like Disease Emergence? Viruses 2017; 9:E242. [PMID: 32962316 PMCID: PMC5618008 DOI: 10.3390/v9090242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Smallpox was the first human disease to be eradicated, through a concerted vaccination campaign led by the World Health Organization. Since its eradication, routine vaccination against smallpox has ceased, leaving the world population susceptible to disease caused by orthopoxviruses. In recent decades, reports of human disease from zoonotic orthopoxviruses have increased. Furthermore, multiple reports of newly identified poxviruses capable of causing human disease have occurred. These facts raise concerns regarding both the opportunity for these zoonotic orthopoxviruses to evolve and become a more severe public health issue, as well as the risk of Variola virus (the causative agent of smallpox) to be utilized as a bioterrorist weapon. The eradication of smallpox occurred prior to the development of the majority of modern virological and molecular biological techniques. Therefore, there is a considerable amount that is not understood regarding how this solely human pathogen interacts with its host. This paper briefly recounts the history and current status of diagnostic tools, vaccines, and anti-viral therapeutics for treatment of smallpox disease. The authors discuss the importance of further research to prepare the global community should a smallpox-like virus emerge.
Collapse
Affiliation(s)
- Victoria A. Olson
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sergei N. Shchelkunov
- Department of Genomic Research and Development of DNA Diagnostics of Poxviruses, State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559 Novosibirsk Region, Russia
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|